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Abstract

The paper develops a general framework for constrained clustering
which is based on the close connection of geometric clustering and dia-
grams. Various new structural and algorithmic results are proved (and
known results generalized and unified) which show that the approach is
computationally efficient and flexible enough to pursue various conflicting
demands.

The strength of the model is also demonstrated practically on real-
world instances of the electoral district design problem where municipali-
ties of a state have to be grouped into districts of nearly equal population
while obeying certain politically motivated requirements.

1 Introduction

Constrained Clustering General clustering has long been known as a fun-
damental part of combinatorial optimization and data analytics. For many
applications (like electoral district design) it is, however, essential to observe
additional constraints, particularly on the cluster sizes. Accordingly, the focus
of the present paper is on constrained clustering where a given weighted point
set X in some space X has to be partitioned into a given number k of clusters
of (approximately) predefined weight.

As has been observed for several applications, good clusterings are closely
related to various generalizations of Voronoi diagrams; see e.g. [15], [30], [20]
for recent work that is most closely related to the present paper. Besides elec-
toral district design, such applications include grain-reconstruction in material
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sciences ([1]), farmland consolidation ([10], [15], [11]), facility and service dis-
tricting ([55], [59], [45], [46], [40], [29], [3]), and robot network design ([21],
[19]).

We will present a general unified theory which is based on the relation of
constrained geometric clustering and diagrams. In Sections 2 and 3, we analyze
the model and prove various favorable properties.

Using several types of diagrams in different spaces, we obtain partitions that
are optimized with respect to different criteria: In Euclidean space, we obtain
clusters that are particularly well consolidated. Using locally ellipsoidal norms,
we can to a certain extent preserve originally existing structures. In a discrete
metric space derived from a graph that encodes an intrinsic neighboring relation,
we obtain assignments that are guaranteed to be connected. In the theoretical
part the various different issues will be visualized with the help of a running
example.

Electoral District Design Our prime example will be that of electoral dis-
trict design which has been approached from various directions over the last half
century (see [51], [38], and [56] for surveys, [32] for the example of Germany,
and [36], [37] for general accounts on partitions). Municipalities of a state have
to be grouped to form electoral districts. The districts are required to be of
nearly equal population and of “reasonable” shape. Hence a crucial nature of
the electoral district design problem is that there are several partly conflicting
optimization criteria such as the grade of population balance, consolidation, or
a desire for some continuity in the development of districts over time. Therefore
we will show how our unified approach allows the decision maker to compare
several models with different optimization foci.

Section 4 will show the effect of our method for the federal elections in
Germany. The German law ([25]) requires that any deviation of district sizes
of more than 15% from the federal average is to be avoided. As a preview,
Figure 1 contrasts the occurring deviations from the 2013 election with the
deviations resulting from one of our approaches. The federal average absolute
deviation drops significantly from 9.5% for the 2013 election to a value ranging
from 2.1% to 2.7% depending on the approach. For most states, these deviations
are close to optimal since the average district sizes of the states i.e., the ratios
of their numbers of districts and eligible voters differ from the federal average
already about as much. See Section 4 for detailed results and the Appendix
for further statistics. Furthermore, an online supplement depicts the results of
all approaches for the full data set, see http://www-m9.ma.tum.de/material/

districting/.

Constrained Clustering via Generalized Voronoi Diagrams
In accordance with [22], the generalized Voronoi diagram for given functions
fi : X → R, i = 1, . . . , k, is obtained by assigning each point x ∈ X to a subset
Ci of X whose value fi(x) is minimal. We are interested in clusterings of X
that are induced by such diagrams (cf. Section 2.2).
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(a) Deviations of the 2013
election districts in
Germany

(b) Deviations resulting from
our methodology.
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deviation from the
federal average
district size.

Figure 1: Absolute deviations from the average population size per district.

Of course, in order to obtain suitable diagrams, the choice of the functions
fi is crucial. For parameters (D, h,S,M) we define the k-tuple of functions
F(D, h,S,M) := (f1, . . . , fk) via

fi(x) := h(di(si, x)) + µi.

Here, D := (d1, . . . , dk) is a k-tuple of metrics (or more general distance mea-
sures) on X , h : R≥0 → R≥0 is monotonically increasing, S := (s1, . . . , sk) ∈ X k
is a k-tuple of points in X , and M := (µ1, . . . , µk) ∈ Rk is a vector of reals. If
the metrics di are not all identical, we call the resulting diagram anisotropic.

(a) Diagram in Euclidean
space.

(b) Anisotropic diagram with
local ellipsoidal norms.

(c) Diagram in discrete space.

Figure 2: Exemplary clusterings and related diagrams.
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We consider an exemplary selection of types of generalized Voronoi diagrams
(see also [4], [22], [48], [50]). For each of the considered types, Figure 2 depicts
an exemplary diagram together with its induced clustering.

In the Euclidean space, the choice

fi(x) := ‖x− si‖22 + µi

yields power diagrams; see [5], [8]. For the particular case of centroidal diagrams,
in which the sites coincide with the resulting centers of gravity of the clusters,
the inherent variance is minimized. This can be achieved by optimization over
S (cf. [15], [14], [9], [28]).

The setting
fi(x) := ‖x− si‖2 + µi

yields additively weighted Voronoi diagrams.
Allowing for each cluster an individual ellipsoidal norm yields anisotropic

Voronoi and power diagrams, respectively. Appropriate choices of norms facil-
itate the integration of further information such as the shape of pre-existing
clusters in our application.

We also consider the discrete case X = X. Here, we are given a connected
graph G := (X,E, δ) with a function δ : E → R>0 assigning a positive distance
to each edge. With dG(x, y) defined as the length of the shortest x-y-path in G
w. r. t. δ, this induces a metric on X . The choice of

fi(x) := dG(si, x) + µi

then leads to shortest-path diagrams. Such diagrams guarantee the connectivity
of all clusters in the underlying graph. This allows to represent intrinsic relations
of data points that cannot be easily captured otherwise.

As we will see, the parameters D and h mainly determine the characteristics
of the resulting diagrams. The points si then serve as reference points – called
sites – for the clusters.

It is shown that for any choice of D, h and S there exists a choice of the
additive parameter tuple M, such that the induced clusters are of prescribed
weight as well as optimally consolidated (cf. Corollary 2). Thus, we distinguish
between the structural parameters D, h and S and the feasibility parameter M.
Our approach does not automatically yield integral assignments in general but
may require subsequent rounding. However, the number of fractionally assigned
points and thus the deviation of cluster weights can be reasonably controlled
(see Theorem 5).

Typically, D and h are defined by the specific application as it determines
the requirements on the clusters. One can still optimize over the remaining
structural parameter S with respect to different criteria, e. g., optimal total
variances or margins. For any choice of structural parameters, the feasibility
parameter M is then readily provided as the dual variables of a simple linear
program.

As we will point out in more detail our framework extends various previously
pursued approaches. We feel that a unified and self-contained exposition serves
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the reader better than a treatment that relies heavily on pointers to the scattered
literature. Hence we include occasionally new concise proofs of known results
whenever this adds to the readability of the paper. Of course, we try to always
give the appropriate references.

Organization of the Paper Section 2 yields the general definitions and
methodology for our approach. Section 3 provides a short study of typical
generalized Voronoi diagrams and shows their relevance for constrained cluster-
ing. Section 4 then presents our results for the electoral district design problem
for the example of Germany in all detail, while Section 5 concludes with some
final remarks.

2 Definitions and Methodology

We begin by describing our approach to constrained geometric clustering in a
general context. Due to the specific application we focus on the discrete case
of partitioning a given finite weighted set; some results for the continuous case
will however also be mentioned.

First, Section 2.1 defines the terminology for constrained clusterings. We
construct clusterings that are induced by a suitable dissection of the underlying
space. For this purpose, Section 2.2 formally defines generalized types of Voronoi
diagrams and shows how they relate to clusterings. Section 2.3 then yields
the main theoretical results that establish a correspondence of clusterings with
prescribed capacities and generalized Voronoi diagrams.

2.1 Constrained Clustering

Let k,m ∈ N and X be an arbitrary space. We consider a set

X := {x1, . . . , xm} ⊂ X

with corresponding weights

Ω := (ω1, . . . , ωm) ∈ Rm>0.

Furthermore, let
K := (κ1, . . . , κk) ∈ Rk>0

such that
∑k
i=1 κi =

∑m
j=1 ωj .

The vector K contains the desired cluster ”sizes”. Hence, we want to find a
partition of X such that for each cluster Ci its total weight meets the prescribed
capacity κi.

For k = 2, integer weights, and κ1 = κ2 the associated decision problem
coincides with the well-known Partition problem and is therefore already NP-
hard.
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We consider also a relaxed version of the problem by allowing fractional
assignments

C := (ξi,j) i=1,...,k
j=1,...,m

∈ [0, 1]k×m

such that
∑k
i=1 ξi,j = 1 for each j. C is called a (fractional) clustering of X

and ξi,j is the fraction of unit j assigned to cluster i. We further set Ci :=
(ξi,1, . . . , ξi,m), call it cluster i and let

supp(Ci) := {xj ∈ X : ξi,j > 0}

denote its support, i. e., the set of those elements in X that are assigned to i
with some positive fraction. If C ∈ {0, 1}k×m, we call the clustering integer.

The weight of a cluster is given by

ω(Ci) :=

m∑

j=1

ξi,jωj .

A clustering C is strongly balanced, if

ω(Ci) = κi

for each i. If lower and upper bounds κ−i , κ
+
i ∈ R≥0 for the cluster weights are

given and

κ−i ≤
m∑

j=1

ωjξi,j ≤ κ+i

holds for every i, C is called weakly balanced. A case of special interest for our
application is that of κ−i = (1− ε)κi and κ+i = (1 + ε)κi for all i for some given
ε > 0. Then, i.e., if

(1− ε)κi ≤ ω(Ci) ≤ (1 + ε)κi

for each i we call C ε-balanced, or, whenever the choice of ε is clear simply
balanced.

By BC and BCε we denote the set of all strongly balanced and ε-balanced
fractional clusterings, respectively. Note that the condition

∑k
i=1 κi =

∑m
j=1 ωj

guarantees that BC 6= ∅. Similarly, let BCI and BCε
I denote the set of all

strongly balanced and ε-balanced integer clusterings, respectively. Of course,
BCI ⊂ BC ⊂ BCε and BCI ⊂ BC ε

I ⊂ BCε.

2.2 Clusterings induced by Generalized Voronoi Diagrams

Let a k-tuple F := (f1, . . . , fk) of functions fi : X → R for i = 1, . . . , k be given.
For each cluster, the corresponding fi is supposed to act as a distance measure.
While a classical Voronoi diagram in Euclidean space assigns each point to a
reference point which is closest, this concept can be generalized by assigning a
point to each region for which the corresponding value of fi is minimal. Formally,
we set

Pi := {x ∈ X : fi(x) ≤ fl(x) ∀l ∈ {1, . . . , k}}
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and call Pi the i-th (generalized) Voronoi region (or cell). Then P := (P1, . . . , Pk)
is the generalized Voronoi diagram (w. r. t. F).

Note that, in general, P does not constitute a partition of X . We will, of
course, in the application focus on choices of the functions fi that guarantee
that the cells Pi do not have interior points in common; see Lemma 6.

A generalized Voronoi diagram P is said to be feasible for a clustering C if

supp(Ci) ⊂ Pi

for all i. Typically, we do not want a Voronoi region to contain elements “by
chance”, i. e., points that are not (at least fractionally) assigned to their corre-
sponding cluster. Hence, we say P supports C, if

supp(Ci) = Pi ∩X

for all i.

2.3 Correspondence of Constrained Clusterings and Gen-
eralized Voronoi Diagrams

As described in the introduction, we are interested in finding a clustering C ∈ BC
that is supported by a generalized Voronoi diagram P w. r. t. functions fi(x) :=
h(di(si, x)) + µi. A natural question is for which choices of (D, h,S,M) such a
clustering exists.

By definition, a diagram P is feasible for C ∈ BC if and only if

ξi,j ·
(
h(di(si, xj)) + µi − min

l=1,...,k
(h(dl(sl, xj)) + µl)

)
= 0 (1)

holds for every i = 1, . . . , k and j = 1, . . . ,m.
We will now recover (1) as a complementary slackness condition in linear

programming. For this purpose, first note that in general, i. e., for any C ∈ BC
and (D, h,S,M), we have

k∑

i=1

m∑

j=1

ξi,j · ωj ·
(
h(di(si, xj)) + µi − min

l=1,...,k
(h(dl(sl, xj)) + µl)

)
≥ 0, (2)

as all weights ωj are positive and each factor in the sum above is non-negative.

Using
∑m
j=1 ωjξi,j = κi for each i and

∑k
i=1 ξi,j = 1 for each j, Inequality (2)

is equivalent to

k∑

i=1

m∑

j=1

ξi,j · ωj · h(di(si, xj)) ≥
m∑

j=1

ωj min
l=1,...,k

(h(dl(sl, xj)) + µl)−
k∑

i=1

κiµi.

(3)

Note that (1) holds for every i and j if and only if (2), and hence (3), holds
with equality.
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Now, observe that the left-hand side of (3) does not depend onM while the
right-hand side does not depend on C. For any choice of (D, h,S) equality in
(3) can therefore only hold if C minimizes the left-hand side whileM maximizes
the right-hand side. Thus, in particular, C ∈ BC must be a minimizer of the
linear program

min
C∈Rk×m

k∑

i=1

m∑

j=1

ξi,j · ωj · h(di(si, xj)) s.t.

k∑

i=1

ξi,j = 1 (i = 1, . . . , k)

m∑

j=1

ξi,jωj = κi (j = 1, . . . ,m)

ξi,j ≥ 0 (i = 1, . . . , k; j = 1, . . . ,m).

(P)

By introducing auxiliary variables E := (η1, . . . , ηm), maximization of the
right-hand side of (3) can be formulated as linear program, as well:

max
M∈Rk,
E∈Rm

m∑

j=1

ωjηj −
k∑

i=1

κiµi s.t.

ηj ≤ h(di(si, xj)) + µi (i = 1, . . . , k; j = 1, . . . ,m)

(D)

Now, observe that (D) is the dual program to (P). Thus, P is feasible for C if
and only if C and (M, E) are primal-dual optimizers. In particular, as

ηj = min
i=1,...,k

(h(dl(si, xj)) + µi)

holds for every optimal solution of (D), Equation (1) states exactly the com-
plementary slackness conditions. Furthermore, if the complementarity is strict,
i. e., exactly one factor is strictly positive in any equation of type (1), this is
equivalent to P supporting C.

We summarize these observations in the following theorem.

Theorem 1. Let C ∈ BC, D be a k-tuple of metrics on X , S ∈ X k, h : R≥0 →
R,M∈ Rk, and let P be the generalized Voronoi diagram w. r. t. F(D, h,S,M).
Further, set ηj := mini=1,...,k(h(di(si, xj)) + µi) for j = 1, . . . ,m, and E :=
(η1, . . . , ηm),

Then (M, E) is feasible for (D) and the following equivalencies hold:

P is feasible for C ⇔ C and (M, E) satisfy the
complementary slackness condition
for (P) and (D)

P supports C ⇔ C and (M, E) satisfy the
strict complementary slackness
condition for (P) and (D)
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Theorem 1 establishes a one-to-one-correspondence of (fractional) strongly
balanced clusterings that are supported by a generalized Voronoi diagram and
those faces of the polytope BC which are optimal w. r. t. a corresponding ob-
jective function.

Observe that the deduction of Theorem 1 did not use any further assump-
tions on the functions fi besides the additive component M. Thus, we obtain
the following corollary.

Corollary 2. Let f̂i : X → R, i = 1, . . . , k. Then C∗ ∈ BC is an opti-
mizer of minC∈BC

∑k
i=1

∑m
j=1 ξi,j · ωj · f̂i(xj) if and only if there exists M :=

(µ1, . . . , µk) ∈ Rk such that the generalized Voronoi diagram w. r. t. fi := f̂i+µi
is feasible for C∗.

For functions f̂i(x) := h(di(si, x)), this has already been shown by linear
programming duality in [15] for a discrete set X, h = (·)2, and the Euclidean
metric. In a continuous setting, i. e., for X = Rn and balancing constraints
defined w. r. t. a probability distribution on Rn, this has been proven in [5] and
extended to more general function tuples F in [30]. Here, the particular case h =
id is contained in [3]. In [21], this result was deduced for the Euclidean case and
an arbitrary function h by carefully considering the optimality conditions of an
alternative optimization problem and deducing optimality (but not establishing
the linear programming duality). Furthermore, in [19] and [20] the general
continuous case was proved by discretization also involving linear programming
duality.

Using the second part of Theorem 1, we can now characterize supporting
diagrams.

Corollary 3. Let f̂i : X → R, i = 1, . . . , k. Then C∗ ∈ BC lies in the relative
interior of the optimal face of minC∈BC

∑k
i=1

∑m
j=1 ξi,j ·ωj · f̂i(xj) if and only if

there exists M := (µ1, . . . , µk) ∈ Rk such that the generalized Voronoi diagram

w. r. t. fi := f̂i + µi supports C∗.

Thus, for non-unique optima the supporting property of the diagrams may
still be established but comes with the price of more fractionally assigned ele-
ments (cf. Section 3.3).

Another fact that roots in a basic result about extremal points of trans-
portation polytopes has been noted in their respective context by several au-
thors (e. g., [55], [44], [59], [34], [31], [39], [15]): An optimal basic solution of
(P) yields partitions with a limited number of fractionally assigned points.

Our proof of the following Lemma 4 relies on the bipartite assignment graph
H(C) that is associated with a given clustering C ∈ BC. It is defined by

H(C) := ({1, . . . , k} ∪X,E)

with
E := {{i, xj} : ξi,j > 0}.

By [41, Thm. 4] H(C) is acyclic if and only if C is extremal, i. e., a vertex of the
feasible region of (P).
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Lemma 4. Let f̂i : X → R, i = 1, . . . , k. Then there existsM := (µ1, . . . , µk) ∈
Rk and a clustering C ∈ BC with at most (k−1) fractionally assigned points and
at most 2(k − 1) fractional components ξi,j such that the generalized Voronoi

diagram w. r. t. fi := f̂i + µi is feasible for C.

Proof. Let C be an extremal solution of (P) and
H(C) = ({1, . . . , k} ∪ X,E) be the corresponding assignment graph. As H(C)
is acyclic it follows that |E| ≤ k +m− 1. Further, from the definition of BC it
follows that deg(xj) ≥ 1 for every j = 1, . . . ,m. Moreover, for any fractionally
assigned element xj ∈ X it follows that deg(xj) ≥ 2. As H(C) is bipartite, we
also have that |E| =

∑m
j=1 deg(xj). In conclusion, this yields

k +m− 1 ≥ |E| =
m∑

j=1

deg(xj) ≥ m+
1

2
|{{i, xj} : 0 < ξi,j < 1}|

≥ m+ |{xj ∈ X : xj is fractionally assigned}| ,

which implies the assertion.

Note that for the special case of ωj = 1 for all j every extremal solution of
the transportation problem (P) is integral, i. e., BC = BCI (cf. [41, Corollary
1]). In general, however, this is not the case.

Anyway, by solving the linear program (P) and applying suitable round-
ing, we obtain an integer clustering that satisfies an a-priori (and for many
applications very reasonable) error bound. More precisely, [54] showed that
minimizing the maximum error after rounding can be done in polynomial time
using a dynamic programming approach, while minimizing the sum of absolute
or squared errors is NP-hard. In [34] it was furthermore shown that minimizing
the number of fractional assignments while obeying a pre-defined error tolerance
is NP-hard.

The following theorem provides an upper bound for ε that guarantees the
existence of an ε-balanced integer clustering.

Theorem 5. Let f̂i : X → R, i = 1, . . . , k and
ε ≥ max1≤j≤m,1≤i≤k

ωj

κi
. Then there exists C ∈ BC ε

I together with M :=

(µ1, . . . , µk) ∈ Rk, such that the generalized Voronoi diagram w. r. t. fi := f̂i+µi
is feasible for C.

For rational input, i. e., Ω ∈ Qm>0,K ∈ Qk>0, f̂i(xj) ∈ Q, i = 1, . . . , k and
j = 1, . . . ,m, C and M can be determined in polynomial time.

Proof. By Corollary 2 a solution C̃ ∈ BC of (P) with a corresponding dual
solution (µ1, . . . , µk) ∈ Rk yields a generalized Voronoi diagram w. r. t. fi :=

f̂i + µi that is feasible for C̃. We may furthermore choose C̃ to be extremal.
We can also assume that the assignment graph H(C̃) is a tree (otherwise we
consider its connected components). We may further root this tree in the node
1 (that corresponds to cluster C1) and w.l.o.g. assume that the other clusters
are labelled according to their distance from the root, i. e., for 1 ≤ i < l ≤ k it

10



holds that the length of a shortest 1-i-path is at most the length of a shortest
1-l-path in H(C).

For each i = 1, . . . , k we denote the index sets of units that are either non-
integrally or integrally assigned to cluster Ci by

F (i) := {j : 0 < ξ̃i,j < 1} and I(i) := {j : ξ̃i,j = 1},

respectively. Now, we construct an integer clustering C∗ ∈ {0, 1}k×m in which
all integral assignments are preserved, i. e., ξ∗i,j := ξ̃i,j for ξ̃i,j ∈ {0, 1}. The
remaining components will be determined successively for each cluster.

Let us begin with C∗1 . We round up fractional assignments ξi,j , j ∈ F (1),
successively as long as this is allowed by the upper bound κ1. More precisely,
let

j∗ := max{j ∈ F (1) :
∑

r∈F (1):
r≤j

ωr ≤ κ1 −
∑

r∈I(1)

ωr}

if the set on the right-hand side is non-empty, otherwise set j∗ := 0. With

ξ∗1,j :=

{
1, if j ≤ j∗

0, otherwise.

for every j ∈ F (1) it then follows that |
∑m
j=1 ξ

∗
1,jωj − κ1| < maxj=1,...,m ωj .

Now let i0 ≥ 2 and assume that we have determined C∗i appropriately for
every i < i0. Let xj0 ∈ X be the predecessor of the node i0 in the rooted tree

H(C̃). By assumption, the assignment ξ∗i,j0 of unit xj0 to cluster Ci has already
been determined for every i < i0. We then set

ξ∗i0,j0 :=

{
1, if ξ∗i,j0 = 0 for all i < i0

0, otherwise.
(4)

In analogy to the first step, we define

j∗∗ := max{j ∈ F (i0) \ {j0} :
∑

r∈F (i0):
r≤j

ωr ≤ κi0 −
∑

r∈I(i0)

ωr − ξ∗i0,j0ωj0}

if the set on the right-hand side is non-empty, j∗∗ := 0 otherwise, and set

ξ∗i0,j :=

{
1, if j ≤ j∗∗

0, otherwise

for every j ∈ F (i0) \ {j0} .
Every point that is fractionally assigned in C̃ is assigned either to its prede-

cessor in H(C̃) or to exactly one successor by (4). Thus, it holds that C∗ ∈ BC ε
I .

As supp(C∗i ) ⊂ supp(C̃i), the already obtained generalized Voronoi diagram
remains feasible for C∗.

Hence, under the additional rationality assumptions, we can solve the linear
program (P) and perform the successive rounding in polynomial time.
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Note that the bound of Theorem 5 is asymptotically worst-case optimal
(e. g., for m = 1, ω1 = k, κi = 1 for all i and letting k →∞).

As in [15], we may also consider weakly balanced clusterings where lower and
upper bounds κ−i , κ

+
i ∈ R≥0 for the cluster weights are provided. Of course, a

minimizer C∗ over the polytope of such weakly balanced clusterings is a min-
imizer of (P) when setting κi := ω(C∗i ) for every i. Hence, optimal weakly
balanced clusterings still yield supporting generalized Voronoi diagrams. Un-
fortunately, the converse is not true in general; see [15] for an example.

Naturally, we prefer generalized Voronoi diagrams that support a clustering
over diagrams that are only feasible, as they exclude the possibility of points
lying in a diagram’s region only “by coincidence”. At the same time, we prefer
clusterings with only few fractional assignments as provided by Theorem 5. As
a consequence of Corollary 3, this coincides whenever the optimum of (P) is
unique. In case of X = Rn, this can be guaranteed by an appropriate choice of
the structural parameters D, h,S. We first show that under mild assumptions
the generalized Voronoi-cells behave properly.

Lemma 6. Let X = Rn, D := (d1, . . . , dk) be a family of metrics induced by
strictly convex norms, h : R→ R injective, S := (s1, . . . , sk) ∈ (Rn)k such that
si 6= sl for i 6= l, and M∈ Rk.

Then for the generalized Voronoi diagram P w. r. t. F(D, h,S,M) we have
int(Pi) ∩ int(Pl) = ∅ whenever i 6= l.

Proof. Let B1, B2 ⊂ Rn be the unit balls of the norms that induce d1 and d2,
respectively. Furthermore, denote by ‖·‖Bi

, i = 1, 2, the corresponding norms,
i. e., di(x, 0) = ‖x‖Bi

= min{ρ ≥ 0 : x ∈ ρBi} for every x ∈ Rn, i = 1, 2.
Suppose that there exists x0 ∈ Rn and δ > 0 such that x0 + δB2 ⊂ P1 ∩ P2

where B2 is the Euclidean unit ball. This means we have

h(‖x− s1‖B1
)− h(‖x− s2‖B2

) = µ2 − µ1 (5)

for all x ∈ x0 + δB2. W.l.o.g. let s1, s2 and x0 be affinely independent.
Next, let a ∈ Rn \ {0} such that

H≤
a,aTx0

:= {x ∈ Rn : aTx ≤ aTx0}

is a halfspace that supports s1 + ‖x0 − s1‖B1
B1 in x0.

If H≤
a,aTx0

does not support s2+‖x0 − s2‖B2
B2 in x0, it follows that there ex-

ists z ∈ x0 +δB2 with ‖z − s1‖B1
= ‖x0 − s1‖B1

and ‖z − s2‖B2
6= ‖x0 − s2‖B2

.
As h is injective, this implies that (5) does not hold for z, a contradiction.

Hence, H≤
a,aTx0

must support s2 + ‖x0 − s2‖B2
B2 in x0.

Now there exist λ > 1 and ν ∈ R such that x1 := s1 + λ(x0 − s1), x2 :=
s2 + ν(x0 − s2) ∈ int(x0 + δB2) and ‖x1 − s1‖B1

= ‖x2 − s1‖B1
. Furthermore,

due to the affine independence of s1, s2 and x0 we have that x1 6= x2.
As H≤

a,aTx0
supports s1 + ‖x0 − s1‖B1

B1 in x0, it follows that H≤
a,aTx1

sup-

ports s1+‖x1 − s1‖B1
B1 in s1+

‖x1−s1‖B1

‖x0−s1‖B1

(x0−s1) = x1. Analogously, H≤
a,aTx2

12



supports s2 + ‖x2 − s2‖B2
B2 in x2. By the same argumentation as before we

see that H≤
a,aTx2

must also support s1 + ‖x2 − s1‖B1
B1 = s1 + ‖x1 − s1‖B1

B1

in x2 (as otherwise we find a point contradicting (5)).
Hence, s1 + ‖x1 − s1‖B1

B1 is supported in x1 and x2 by the halfspaces

H≤
a,aTx1

and H≤
a,aTx2

, respectively. This contradicts the strict convexity of B1.

In the situation of Lemma 6 we see (as a generalization of [15, Lemma 4.1])
that a minimal perturbation of the sites suffices for (P) having a unique opti-
mum. For the proof we need the notion of cyclic exchanges. Consider a sequence
(i1, xj1 , i2, xj2 , . . . , ir, xjr ) of pairwise distinct cluster indices
i1, . . . , ir ∈ {1, . . . , k} and pairwise distinct points xj1 , . . . , xjr . We define the
cyclic exchange Z := (ζi,j) i=1,...,k

j=1,...,m
∈ Rk×m by

ζil,jl := − 1

ωjl
, ζil−1,jl :=

1

ωjl

for l = 1, . . . , r, reading indices modulo r, and equal 0 in the remaining com-
ponents. Observe that for any C1, C2 ∈ BC, it follows that C1 − C2 can be
decomposed into a sum of finitely many scaled cyclic exchanges.

Theorem 7. Let X = Rn, D := (d1, . . . , dk) be a k-tuple of metrics induced by
strictly convex norms, M∈ Rk, and h : R→ R injective.

Then for all S := (s1, . . . , sk) ∈ (Rn)k and ε > 0 there exists an S̃ :=

(s̃1, . . . , s̃k) ∈ (Rn)k with
∑k
i=1 ||si − s̃i|| < ε such that for (D, h, S̃) the linear

program (P) has a unique optimizer.

Proof. Suppose that the solution of (P) for F(D, h, S,M) is not unique.
Then there exists C ∈ BC, a cyclic exchange Z and α > 0 such that C±αZ ∈

F , where F denotes the optimal face of (P). W.l.o.g. let Z correspond to the
sequence (1, x1, 2, . . . , r, xr). Since the values of the objective function of (P)
are the same it follows that

r−1∑

l=1

h(dl(sl, xl))−h(dl(sl, xl+1)) + h(dr(sr, xr))−h(dr(sr, x1)) = 0.

Set

c :=

r−1∑

l=2

h(dl(sl, xl))−h(dl(sl, xl+1)) + h(dr(sr, xr))−h(dr(sr, x1)).

In particular, c does not depend on s1. It follows that the set of sites s̃1 such
that Z is orthogonal to the objective function vector of (P) is described by the
equation

h(d1(x1, s̃1))− h(d1(x2, s̃1)) = −c.
With x1 and x2 interpreted as sites, this is the intersection of their corresponding
cells of the generalized Voronoi diagram w. r. t. F

(
(d1, d1), h, (x1, x2), (c, 0)

)
. By
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Lemma 6, this set has an empty interior. Together with the fact that there can
only be a finite number of cyclic exchanges, the claim follows.

Finally, similarly to [20], we may derive the following continuous version of
Corollary 2 by considering a sequence of refining discretizations.

Corollary 8. Let X = Rn, and Ω a finite continuous measure with Ω(X ) =∑k
i=1 κi, and measurable functions f̂i : X → R for i = 1, . . . , k be given. Fur-

ther, assume that for 1 ≤ i < l ≤ k and every c ∈ R it holds that Ω({x ∈ Rn :

f̂i(x)−f̂l(x)=c}) = 0.
Then any partition of X into measurable sets Ci with Ω(Ci) = κi is optimal

w. r. t.
∑k
i=1

∫
Ci
f̂i(x)Ω(dx) if and only if there exists µ1, . . . , µk ∈ R such that

with Pi :=
{
x ∈ X : f̂i(x) + µi ≤ f̂l(x) + µl ∀l

}
it follows that Pi = Ci up to

sets of Ω-measure 0 for every i.

3 Classes of Generalized Voronoi Diagrams

Our general approach can be summarized as follows: We first choose D and h
depending on the application. How this choice is made will depend on which
properties of the cells are desired; see Sections 3.1 to 3.3 for examples; see also
Table 4. Then we make an appropriate, possibly optimal choice of sites S. In
Euclidean space, for instance, we can optimize over S in order to approximate
maximally consolidated clusterings by evoking results of [14]. Over a discrete
space, we may heuristically search for sites that minimize the resulting devia-
tion of cluster weights due to rounding a fractional clustering. In the case of
anisotropic diagrams, we will use the centers of the current districts as sites in
order to obtain similar new districts.

For any choice of S, we can get a solution C and the feasibility parameter
M from (P) and (D), respectively. After successive rounding, we then ob-
tain a clustering together with the feasible generalized Voronoi diagram w. r. t.
F(D, h,S,M).

We will now shortly discuss appropriate choices for D and h and illustrate
them by a simple example. In particular, we show how these choices relate to
clusterings with certain characteristics.

An example Figure 3 shows an instance of constrained geometric clustering.
Here, the space X (gray filled area) is a subset of R2 that is not simply connected.
The set X consists of 500 points (blue dots), each of weight 1. We want to find
a clustering of k = 5 clusters, each of weight 100. Also, a “distance graph“ G
(black lines) is given whose edges are weighted by the Euclidean distances of
their nodes. For this example, G was constructed via a Delaunay triangulation of
X and dropping edges outside X . This graph encodes an intrinsic connectivity
structure for X. Finally, the black-framed white squares depict the sites S,
which we assume to be pre-determined in this example. Figures 4 to 8 show the
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Figure 3: Exemplary constrained clustering instance of Section 3

clusterings and supporting diagrams obtained for the different choices of D and
h via the methodology described above.

3.1 Euclidean Space

First, we consider the case that all metrics in D are Euclidean.

Additively Weighted Voronoi Diagrams An obvious choice is h = id, i. e.,
fi(x) := ||x − si|| + µi is the Euclidean distance to the respective cluster’s site
shifted by µi. Solving (P) for a general instance then means to search for a
fractional clustering minimizing the weighted average Euclidean distance to the
assigned sites. All clusterings in the relative interior of the optimal face of (P)
are supported by additively weighted Voronoi diagrams. For results on the latter
see [4], [50, Chapter 3.1.2], [7, Chapter 7.4]. Here, Voronoi regions are separated
by straight lines or hyperbolic curves and are in particular star-shaped w. r. t.
their respective sites; see Figure 4. If X is convex, this yields connected regions.
Of course, as the above example shows, this does not hold for general X .

Power Diagrams Taking the squared Euclidean distances, i. e., fi(x) := ||x−
si||2+µi, yields power diagrams (see [6], [50, Chapter 3.1.4]). Figure 5 shows this
case for our example. Here, regions are separated by straight lines perpendicular
to the line spanned by the respective sites. In particular, this yields convex
and therefore connected regions whenever X is a convex subset of Rn. Again,
connectivity might get lost when X is non-convex as is the case in this example.
Solving (P) may be interpreted as minimizing the weighted squared error when
the clusters are represented by their respective sites.

As already pointed out, power diagrams have been thoroughly investigated
for the example of farmland consolidation ([13], [11]) and a comprehensive the-
ory on their algorithmic treatment has been derived ([15], [14], [9]).
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Figure 4: Clustering w. r. t. f̂i(x) =
||si − x||

Figure 5: Clustering w. r. t. f̂i(x) =
||si − x||2

Let us close this subsection by briefly recapitulating a result from [15] that
deals with optimal choices of the sites in the strongly balanced case. Recall that
a feasible power diagram is called centroidal if

si = c(Ci) :=
1

κi

m∑

j=1

ξi,jωjxj

for i = 1, . . . , k. The following result characterizes centroidal power diagrams
as local maximizers of the function φ : BC→ R defined by

φ(C) :=

k∑

i=1

κi||c(Ci)||2.

Here, some trivial cases of clusters have to be excluded: A clustering C ∈ BC is
called proper, if for all i 6= l it holds that

| supp(Ci)| = | supp(Cl)| = 1⇒ supp(Ci) 6= supp(Cl).

Theorem 9 ([15, Theorem 2.4]). Let C ∈ BC be proper. Then there exists a
centroidal power diagram that supports C if and only if C is the unique optimum
of (P) and a local maximizer of φ.

Furthermore, finding the global maximum of φ over BC is equivalent to
optimizing

min
C∈BC

k∑

i=1

m∑

j=1

ξi,jωj ||xj − c(Ci)||2. (6)

This may be read as minimizing an average variance of clusters, also called the
moment of inertia.
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Note that φ actually depends only on the centers of gravity rather than
on the clusters themselves. By definition those centers are given by a linear
transformation of BC into the set of all gravity centers in Rkd. Optimizing φ
over BC is then equivalent to maximizing an ellipsoidal norm in Rkd over the
set of gravity centers. One can now approximate this norm in the comparably
low dimensional space Rkd by a polyhedral norm. This yields an approximation
algorithm by solving a typically manageable number of linear programs of type
(P); see [14], [15].

Another possibility to derive local optima of φ is by means of a balanced
variant of the k-means algorithm (see [9]).

3.2 Anisotropic Diagrams with Ellipsoidal Norms

Using the Euclidean norm obviously cannot pay regard to the shape of X nor
any other information about the desired extents or orientations of the resulting
clusters. One possibility of including such information is to use anisotropic
diagrams.

While we could, in principle, employ arbitrary norms we will consider D
to be induced by ellipsoidal norms in the following. So, let Mi ∈ Rn×n be
symmetric positive definite matrices defining the ellipsoidal norms via

||x||Mi
:=
√
xTMix,

i = 1, . . . , k. In our main application, the matrices are chosen so as to obtain
clusters similar to a pre-existing structure (cf. Section 4.4).

As in the Euclidean case, we consider the transformation functions h = id
and h = (·)2. For h = id we obtain anisotropic Voronoi diagrams. These have
already been applied in the field of mesh generation ([42], [18]) on a Riemannian
manifold in Rn provided with a metric tensor M : X → Mn×n. Hence, the
functions fi can be seen as local approximations of the geodesic distances w. r. t.
that manifold. Even without additive weights, the resulting diagrams need not
be connected.

We will refer to case h = (·)2 as anisotropic power diagrams. In [1] these
were successfully used for the reconstruction of polycrystalline structures, where
information about volumes as well as moments of crystals is given. Regions
are separated by straight lines or quadratic curves. Figures 6 and 7 show the
case of additively weighted anisotropic Voronoi diagrams and anisotropic power
diagrams, respectively. The dotted ellipses depict the unit balls of the respective
norms.

3.3 Shortest-Path Diagrams

Even in the anisotropic case, the diagrams considered so far might fail in de-
picting intrinsic relations of the points in X . In our application of electoral
district design, this occurs as points are only representatives of their munici-
palities’ regions. Thus, information about neighborhood relations is lost (cf.
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Figure 6: Clustering w. r. t. f̂i(x) =√
(x−si)TMi(x−si)

Figure 7: Clustering w. r. t. f̂i(x) =
(x−si)TMi(x−si)

Section 4). In such cases, generalized Voronoi diagrams on an edge-weighted
graph G = (X,E, δ) can be preferable.

Figure 8 shows the result if X is the discrete space of all elements in X to-
gether with the metric induced by G (see Section 1). Taking fi(x) := dG(si, x)+
µi, this means that the weighted average distance of elements to their assigned
sites in the graph is minimized. We will refer to this case as shortest-path dia-
grams. Of course, if G is complete and edge weights are the Euclidean distances
between the vertices, this again results in additively weighted Voronoi diagrams.

Figure 8: Clustering w. r. t. f̂i(x) =
dG(si, x)

Figure 9: Clustering w. r. t. f̂i(x) =
dG(si, x)2

In general, there are two main motivations to use a discrete space (X, dG).
The obvious first reason are applications that live on some sort of graph. For
instance, [49] proposes to use Voronoi diagrams on discrete spaces for the repre-
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sentation of service areas in cities as the Euclidean norm is often unsuitable for
approximating distances in urban traffic networks. Second, there are applica-
tions that require clusters to be connected in some sense. Often, of course, this
connectivity is already established when clusters are supported by a diagram
in X with connected regions. However, as has been observed before, this is
not always the case with the diagrams proposed so far, in particular, since the
underlying space might not be convex.

We say that a fractional clustering C ∈ BC is S-star-shaped for sites S =
(s1, . . . , sk) ∈ Xk, if for every i ∈ {1, . . . , k} and x ∈ supp(Ci) it follows that
v ∈ supp(Ci) for every v on a shortest si-x-path in G. By the following result,
clusters that are supported by shortest-path diagrams are S-star-shaped. More
precisely, the Voronoi regions are shortest-path trees rooted at their sites.

Theorem 10. Let (X, dG) be the metric space induced by a connected and
edge-weighted graph G = (X,E, δ). Let C ∈ BC, S ∈ Xk, M ∈ Rk, and define
D := (d1, . . . , dk) via di = dG for i = 1, . . . , k.

If the generalized Voronoi diagram P w. r. t. F(D, id,S,M) supports C, then
C is S-star-shaped. In particular, si ∈ supp(Ci) holds for all i ∈ {1, . . . , k}.

Proof. Let F be the optimal face of (P), then C ∈ relint(F ) holds by Corollary 3.
For some i ∈ {1, . . . , k}, let xj ∈ supp(Ci) and let si = v1, v2, . . . , vt := xj be a
shortest si-xj-path in G.

Suppose that there exists xp such that vl = xp 6∈ supp(Ci) for some l ∈
{1, . . . , t − 1}. By the feasibility of C there exists r ∈ {1, . . . , k} such that
xp ∈ supp(Cr).

Due to the choice of xp and xj it follows that ξi,p = 0 < 1, ξi,j > 0,
ξr,j ≤ 1− ξi,j < 1 and ξr,p > 0.

Let Z ∈ Rk×m be the cyclic exchange for the sequence (i, xj , r, xp) (as defined
in Section 2.3). Then there exists some α > 0 such that C + αZ ∈ BC. If α
is sufficiently small C + αZ has (at least) one non-zero component more than
C. Since C ∈ relint(F ), it follows that C + αZ 6∈ F . Thus, 0 < dG(si, xp) −
dG(si, xj) + dG(sr, xj)− dG(sr, xp).

Now, by the triangle inequality, dG(sr, xj) ≤ dG(sr, xp) + dG(xp, xj). As xp
lies on a shortest si-xj-path, it furthermore holds that dG(si, xj) = dG(si, xp) +
dG(xp, xj).

Together, this yields dG(sr, xj) − dG(si, xj) ≤ dG(sr, xp) − dG(si, xp), a
contradiction.

As supp(Ci) 6= ∅ for i = 1, . . . , k, this in particular implies si ∈ supp(Ci).

The requirement that C ∈ BC lies in the relative interior of the optimal
face (P) is crucial for shortest-path distances to preserve star-shapedness. In
[59], a Lagrange relaxation model of an integer version of (P) for shortest-path
distances was considered and connectivity of resulting clusters was demanded,
while it was pointed out in [54], that this may not hold whenever non-unique
optima appear. Theorem 10 clarifies the situation: in view of [54] it is precisely
the requirement that the solution lies in the relative interior of the optimal set.

19



x1 = s1 x2

x3

x4 = s2

a

b

c

Figure 10: Intersecting shortest paths.

Let us now consider the example of Figure 10 with a := 1, b := 1, c := 2
and the resulting constrained clustering instance for Ω := 1, K := (2, 2)T. We
obtain the two clusterings C(a), C(b) ∈ BC via

C
(a)
1 := (1,

1

2
,

1

2
, 0), C

(a)
2 := (0,

1

2
,

1

2
, 1)

and
C

(b)
1 := (1, 0, 1, 0), C

(b)
2 := (0, 1, 0, 1).

The generalized Voronoi diagram P∗ w. r. t. f1(x) = dG(s1, x) + 1 and f2(x) =
dG(s2, x) (i. e., h = id and M = (1, 0)T), consists of the cells P ∗1 = {x1, x2, x3}
and P ∗2 = {x2, x3, x4}. Thus, it is feasible for both C(a) and C(b). Hence, they
are both minimizers of (P) by Theorem 1. However, only C(a) is supported by
P∗ and S-star-shaped while C(b) contains a disconnected cluster.

More generally, this happens whenever shortest paths intersect. This can
have a dramatic effect on integer assignments. In fact, in order to conserve
connectivity after rounding, whole fractionally assigned branches of the shortest-
path trees might have to be assigned to one of their supporting clusters. Of
course, this results in greater deviations of cluster weights. For our running
example, Figure 11 depicts the points that have originally been fractionally
assigned to both the blue and the green colored cluster and are now fully assigned
to the green cluster in the integer solution.

Figure 11: Rounded units in the case f̂i(x) = dG(si, x).

A natural idea to overcome this effect as well as to obtain more consolidated
clusters is to try to imitate the idea of squaring the distances (that led to power
diagrams in the Euclidean space) to the discrete space (X, dG).
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Figure 12: Non-connected cluster in the case f̂i(x) = dG(si, x)2.

Let us once more consider the previous example from just above. This
time, however, we take the generalized Voronoi diagram P ′ w. r. t. f1(x) =
dG(s1, x)2 + 4 and f2(x) = dG(s2, x)2 (i. e., h = (·)2 and M = (4, 0)T). It
follows that P ′1 = {x1, x3} and P ′2 = {x2, x4}. Thus, P ′ supports C(b) but is
not even feasible for C(a). In fact, C(b) is the unique minimizer of (P) for this
choice of h and does not yield connected clusters. Figure 12 demonstrates the
same effect for our running example. Here, the single yellow unit in the center
is separated from its respective cluster.

Unfortunately, the following theorem shows that this is a general effect.
In fact, for any transformation function h that is not affine, clusters can be
disconnected despite being supported by a corresponding diagram. Thus, if
connectivity is to be guaranteed a-priorily, this dictates the choice of shortest-
path diagrams in our approach.

Theorem 11. Let (X, dG) be the metric space induced by a connected and
edge-weighted graph G. Let C ∈ BC, S ∈ Xk, and M ∈ Rk, and define D =
(d1, . . . , dk) via di = dG for i = 1, . . . , k. Furthermore, let h : R≥0 → R be
continuous.

If h(x) = α · x + β for some α ∈ R≥0, β ∈ R and the generalized Voronoi
diagram w. r. t. F(D, h,S,M) supports C, then C is S-star-shaped.

If h is any continuous function but not of the above type, this is not true in
general.

Proof. The first claim follows by replacing dG with α · dG + β in the proof of
Theorem 10. Note that in the case α = 0 the whole set BC is optimal, which
causes all components of a solution from the relative interior to be strictly
positive.

For the second claim, let some continuous function h : R≥0 → R be given.
Consider the graph from Figure 10 with X = {x1, x2, x3, x4}, edges {{x1, x2},
{x2, x3}, {x2, x4}} and edge weights δ({x1, x2}) = a, δ({x2, x3}) = b and
δ({x2, x4}) = c for some a, b, c ∈ R>0. Furthermore, let ω1 = ω2 = ω4 = 1,
ω3 = 3 and κ1 = κ2 = 3. By Corollary 3 and since BC 6= ∅ there exists a clus-
tering C ∈ BC that is supported by the generalized Voronoi diagram P w. r. t.
F(D, h,S,M) for some M∈ R2.

Now suppose that C is S-star-shaped. Together with the choice of the
weights this implies {x2, x3} ⊂ supp(C1) ∩ supp(C2) ⊂ P1 ∩ P2. Hence, one
gets h(dG(s1, xj)) + µ1 = h(dG(s2, xj)) + µ2 for j = 2, 3. Subtraction of the
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equality for j = 3 from the one for j = 2 and insertion of the shortest paths
lengths yields

h(a)− h(a+ b) = h(c)− h(c+ b).

Setting h̃ := h− h(0), taking the limit c→ 0 and using the continuity of h this
implies

h̃(a+ b) = h̃(a) + h̃(b).

Since a, b ∈ R>0 are arbitrary and h̃ is continuous, it readily follows that h̃ is
linear on R≥0 and thus h is of the form h(t) = α · t+ β.

In order to see that α ≥ 0, it is sufficient to consider the example X =
{x1, x2}, si = xi, ωi = 1, κi = 1 for i = 1, 2 and a single edge {x1, x2} of
arbitrary positive length. If α < 0, then the optimal clustering is supp(C1) =
{x2} and supp(C2) = {x1}, which contradicts the claim of Theorem 10.

4 Application to the Electoral District Design
Problem

We will now apply our approach to the electoral district design problem. We
show the effect of using power diagrams, anisotropic power diagrams and shortest-
path diagrams for the example of the Federal Republic of Germany.

4.1 Electoral District Design

Despite the differences in voting systems, the issue of designing electoral dis-
tricts can be stated in a common way suitable for most of them. A state consists
of basic units such as municipalities or smaller juridical entities. Units are of
different weight, usually and in the following their number of eligible voters.
Units are then to be partitioned into a given number of districts of (approxi-
mately) equal weight. Hence, we are facing a constrained clustering problem as
defined in Section 2.1.

Usually, districts are required to be “compact” and “contiguous” (cf. [51]).
Both are, not formally defined juridical demands requiring a proper mathemat-
ical modelling. How to define a measure for “compactness” of districts has,
in fact, been widely discussed in the literature (e. g. [58], [47], [35], [2]). One
widely accepted measure ([33], [28]) is the moment of inertia as defined by (6),
where each municipality is modelled as a point in the Euclidean plane.

Contiguity usually requires that the area belonging to a district’s munici-
palities is connected. This can be modelled by the adjacency graph G with
nodes corresponding to the units and edges between two units whenever they
share a common border (which can be crossed). Connectivity of clusters is then
defined by demanding that each induced subgraph G[supp(Ci)] is connected.
The edges of G can be weighted, for example, by driving distances between the
corresponding municipalities’ centers.
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Due to census development electoral districts have to be regularly adapted.
Therefore, a further requirement may be to design districts that are similar
to the existing ones. Let Co be the integer clustering that corresponds to the
original districts and C∗ be a newly created integer clustering. One may mea-
sure the difference of the two district plans by the ratio of voter pairs that
used to share a common district but are now assigned to different ones. With
A(Co, C∗) := {(j, r) : 1 ≤ j < r ≤ m ∧ ∃i : ξoi,j = ξoi,r = 1 ∧ ∀i : ξ∗i,j · ξ∗i,r = 0}
this is, more formally, given by

1
∑k
i=1

(
ω(Co

i )
2

)
∑

(j,r)∈A(Co,C∗)

ωj · ωr. (7)

4.2 Dataset Description

By the German electoral law [25], there are a total of 299 electoral districts that
are apportioned to the federal states according to their population. As districts
do not cross state borders, each state must be considered independently. A
district’s size is measured by its number of eligible voters ([24]). It should
not deviate from the federal average by more than 15%; a deviation exceeding
25% enforces a redesign of districts. As far as possible, for administrative and
technical reasons municipal borders must be conserved. Furthermore, districts
are supposed to yield connected areas.

For our application the data from the last German election held on Septem-
ber 22nd 2013 was used. Statistics about the number of eligible voters were
taken from [26]. Geographic data for the municipalities and election districts
of 2013 were taken from [23] and [27], respectively. Greater cities which on
their own constituted one or several election districts in 2013 were neglected
for our computations as any proper district redesign would imply to split these
municipalities up into smaller units and thus, of course, required data on a more
granular basis. For the same reason, the city states (Berlin, Bremen, Hamburg)
were not taken into consideration.

Figure 1a depicts the deviation of clusters sizes of the 2013 election from
the federal average. Accordingly, in the 2013 elections 57 of the 249 districts
that were considered had a deviation of more than 15%. The overall average
deviation is 9.5%. The maximum deviation of 25.15% is obtained for a district
in the state of Bavaria.

We have identified each municipality by a point in the plane given by its
geographic coordinates in the EPSG 3044 spatial reference system ([57]). For
the shortest-path clustering approach, we have an edge in the graph G between
two municipalities whenever their regions share a border. The edge lengths were
taken as driving distances obtained from the MapQuest Open Geocoding API
([43]).

In the following of this chapter, we state the practical results for all of
Germany and for various single states. The latter are typical examples, i. e.,
the individual results for the other states are very similar; see Table 5 and
http://www-m9.ma.tum.de/material/districting/.
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4.3 Power Diagrams

As pointed out in Section 3.1, clusterings with minimal moment of inertia are
supported by centroidal power diagrams. Thus, power diagrams yield highly
consolidated district plans.

Squared Euclidean distances were already used for the problem of electoral
district design; see e.g. [33] and [34]. Centroidal power diagrams have been
used by [28], who presented a gradient descent procedure similar in spirit to the
balanced k-means approach ([9]).

In our approach, first a fractional clustering that is supported by a centroidal
power diagram was created. Here, the sites were determined as approximations
of the global optimizers of (6) as proposed in [14]. Second, the fractionally
assigned units were rounded optimally with respect to the resulting balancing
error.

As it turns out, non-connected districts do indeed sometimes occur. This is
due to the non-convexity of the states in general and particularly due to “holes”
in the state areas resulting from excluded municipalities or city states. In many
cases, this may not regarded a problem. However, since we insisted on con-
nected districts we applied some post-processing. After running the approach
as described in Section 3.1, the resulting districts were checked for connectivity.
This was done in an automated manner using the adjacency graph of neighbor-
ing units and standard graph algorithms. If unconnected districts were detected,
the program (P) was rerun under preventing or forcing municipalities to be as-
signed to a certain district by constraining the corresponding decision variables
to 0 or 1, respectively. For example, if a district had been split into two parts by
a geographical barrier such as a lake or an indentation in the state border, the
smaller part (which mostly consisted of a a single municipality) was excluded
from being assigned to that district. This was comfortably done using a graph-
ical user interface and required only a few, if any, iterations per state. For the
considered data, a total of 51 (0.46%) municipalities was preassigned in order
to establish connectivity.

Figure 13 shows the original districts of the state of Bavaria from the 2013
elections compared to the results of the power diagram approach. Figure 13b
furthermore depicts the resulting polyhedral power diagram regions. Here, three
units had to be fixed in order to establish connectivity.

4.4 Anisotropic Power Diagrams

Next, we show how to use anisotropic power diagrams in order to obtain clusters
that are similar to those of the 2013 election.

As in [1], a principal component analysis was performed in order to determine
a local ellipsoidal norm for each district. Let Co :=

(
ξoi,j
)
i=1,...,k
j=1,...,m

be the integer

clustering encoding the original districts of some state. For each i = 1, . . . , k,
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(a) Districts from the 2013 elections. (b) Districts via power diagrams.

Figure 13: Districts for the state of Bavaria. Here and in the following, we use
a six-coloring of the districts for an easy distinguishability.

the covariance matrix Vi is computed as

Vi :=

m∑

j=1

ξoi,jωj

ω(Co
i )

(xj − c(Co
i )) (xj − c(Co

i ))
T
.

Using a singular value decomposition, we obtain an orthogonal matrix Q ∈ O(2)

and σ
(i)
1 , σ

(i)
2 > 0 such that

Vi = Q

(
σ
(i)
1 0

0 σ
(i)
2

)
QT.

We then set

Mi := Q

(
(σ

(i)
1 )−1 0

0 (σ
(i)
2 )−1

)
QT

in order to obtain an ellipsoidal norm as described in Section 3.1. With the
centroids of Co as starting sites we performed a balanced k-means algorithm
(see [9]) in order to obtain centroidal anisotropic power diagrams.

As in the case of power diagrams and due to the same reasons, again not
all of the resulting clusters were connected. Applying the same post-processing
this could again be treated, affecting a total of 33 (0.30%) municipalities.

Figure 14 shows the 2013 elections’ districts of the state of Lower Saxony
and the results of the anisotropic power diagram approach. The blue ellipses in
14b depict the unit balls of corresponding local cluster norms. For this state no
post-processing was necessary.
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(a) Districts from the 2013 election. (b) Districts via anisotropic power
diagrams. Ellipses depict unit balls of
local norms (determined from the
districts of 2013).

Figure 14: Districts for the state of Lower Saxony.

4.5 Shortest-Path Diagrams

In order to enforce connectivity directly, we apply the shortest-path diagrams of
Section 3.3 w. r. t. the adjacency graph G of neighboring units. Shortest-path
distances have appeared in the context of electoral district design several times
(e. g., [55], [59], [54], [39], [53]). In [52] also Voronoi diagrams on a connectiv-
ity graph were considered but multiplicative rather than additive weights were
evoked, which led to substantially bigger balancing errors. In [59] and [54],
Lagrangian relaxations were applied which are, naturally, closely related to our
methodology.

In our approach, the effect of non-unique optima and therefore more fraction-
ality could be observed as predicted in Section 3.3. This was again handled in
a post-processing phase by the implementation of a slightly more sophisticated
rounding procedure. Here, fractional components were rounded in an iterative
manner while updating the shortest-path distances to the already integrally as-
signed clusters in each step. In order to determine suitable sites si, i = 1, . . . , k,
a simple local search w. r. t. improvement of the resulting deviation of cluster
sizes was performed. Here, the units closest to the centroids of Co served as
starting sites.

Figure 15 shows the original districts of the state of North Rhine-Westphalia
from the 2013 elections compared to the results via shortest-path diagrams. The
edges in Figure 15b furthermore depict the shortest-path trees connecting the
resulting clusters.
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(a) Districts from the 2013 election. (b) Districts via shortest-path diagrams.

Figure 15: Districts for the state of North Rhine-Westphalia.

4.6 Evaluation

We will now summarize the results of our different
approaches. See Table 5 in the appendix for a more detailed overview of the
results for the different German states.

(a) Power diagram approach. (b) Anisotropic power
diagram approach.

(c) Shortest-path diagram
approach.

Figure 16: Deviations after applying our methodology. Colors as in Figure 1.

As already pointed out, all approaches led to district plans complying with
the German electoral law, i. e. obeying the deviation limits and connectivity of
districts.

The largest maximal deviations occur for the states of
Mecklenburg-Vorpommern (14.71%) and North Rhine-
Westphalia (14.34%), both for the anisotropic power diagram approach. How-
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Districts
2013

Power
Diagrams

Anisotropic
Power

Diagrams

Shortest-
Path

Diagrams

Avg. 9.52% 2.69% 2.73% 2.13%
Max. 25.1% 10.60% 14.71% 9.73%

Table 1: Deviations of district sizes from the federal average size.

ever, Table 5 shows that even those deviations are not far off from optimality.
In fact, the average district size in Mecklenburg-Vorpommern itself is already
8.9% below the federal average. In North Rhine-Westphalia, the high popula-
tion density results in units of greater weight and thus greater rounding errors.
As expected, Table 5 shows that states with a finer division into municipalities
generally yield smaller deviations.

Figure 16 depicts the deviations of district sizes for our approaches and
Table 1 contains the average and maximal values for all our approaches and the
elections of 2013. While all approaches perform well, the shortest-path diagram
approach is slightly superior. This is not surprising, as the local search in the
shortest-path approach only focuses on the deviation error.

Power
Diagrams

Anisotropic
Power

Diagrams

Shortest-Path
Diagrams

∆MoI -11.3% 1.3% -0.5%

Table 2: Relative change of the moment of inertia as defined by (6) compared
to 2013.

Table 2 yields the relative change of the total moment of inertia (as defined in
(6)) compared to 2013. According to this measure, power diagrams lead to the
by far best consolidation. Shortest-path diagrams yield slightly more and the
anisotropic power-diagram slightly less consolidated districts. However, recall
that the moment of inertia is measured in Euclidean space, while the anisotropic
power diagrams minimize local ellipsoidal norms. Hence, a fair comparison
should really involve a measure similar to (6) but based on those local norms.

Power
Diagrams

Anisotropic
Power

Diagrams

Shortest-Path
Diagrams

∆Pairs 40.6% 21.4% 35.4%

Table 3: Total ratio of changed pairs of voters as defined by (7).

In order to compare the obtained districts to the ones of 2013, the ratio of
changed pairs according to (7) over the districts of all states are shown in Table 3.
Here, indeed the
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anisotropic power diagram approach separates significantly less pairs of voters
that used to vote in the same district in the 2013 election.

(a) Original districts of the 2013 election. (b) Districts via power diagrams.

(c) Districts via anisotropic power diagrams. (d) Districts via shortest-path diagrams.

Figure 17: Districts for the state of Hesse resulting from the different ap-
proaches. See also Table 5 for corresponding key figures.

Figure 17 shows the results of the state of Hesse for all approaches in direct
comparison. In particular, they illustrate the numbers listed above. The power
diagram districts seem most consolidated, while elongated districts appear in

29



the shortest-path result. Also, a higher degree of similarity of the districts from
anisotropic power diagrams to the original districts can be recognized.

Finally, concerning the computational running times of our approaches, note
that once the parameters (D, h,S) are determined, a simple linear program (P)
in dimension k ×m with k + m constraints and 2km non-zero entries is to be
solved. This, of course, is unproblematic even for fairly large instances (such as,
for example, 105 municipalities and 103 districts) using state-of-the-art solvers.

When, however, the structural parameters are part of the optimization pro-
cess, the computational scalability strongly depends on the chosen approach: In
case of power diagrams, an approximate optimization of (6) (cf. Section 3.1)
also leads to solving a number of linear programs in dimension k×d and a fairly
small number of constraints. However, this means approximately maximizing an
ellipsoidal norm, which is an NP-hard problem with no constant-factor approx-
imation unless P = NP (cf. [16], [17], [12], [15]). Thus, this will be problematic
for huge k. However, as the number of representatives is limited and, par-
ticularly, voting is in effect often restricted to subpopulations (like the states
within the Federal Republic of Germany), this remains tractable in practice (as
demonstrated).

In the case of anisotropic power diagrams, the applied balanced k-means
variant reduces to solving (P) a few times.

As we applied a local-search of sites for shortest-path diagrams, there, the
running times are, of course, highly dependent on the size of the considered
neighborhoods that are evaluated. In our computations, we restricted a sites
vector’s neighborhood to single site-exchanges with the respective 50 closest
units. Then, if the local search is performed separately for each cluster, we can
again expect good scalability in terms of k.

For our data sets, the computations ran on a standard PC within seconds
for anisotropic power diagrams, within few hours for (approximately) centroidal
power diagrams and were in the range of several hours for the shortest-path ap-
proach. In any case, for our application of electoral districting the computation
times were not critical.

5 Conclusion

We presented a unifying approach to constrained geometric clustering in ar-
bitrary metric spaces and applied three specifications to the electoral district
design problem. We used a relation between constrained fractional clusterings
and additively weighted generalized Voronoi diagrams which is based on LP-
duality. In particular, we obtained clusterings with prescribed cluster sizes that
are embeddable into additively weighted generalized Voronoi diagrams. A short
discussion of typical classes of diagrams as well as details for the special cases
of power diagrams and shortest-path diagrams on graphs were provided.

Results for the example of electoral district design in Germany prove to be
very favorable with respect to the deviations from prescribed cluster sizes of
the obtained integer clusterings. In particular, we pointed out how the choice
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Power
Diagrams

Anisotropic
Power

Diagrams

Shortest-
Path

Diagrams

consolidation ⊕ ⊕ ⊕
connectivity ⊕ ⊕ ⊕
conservation of
existing
structure

⊕ ⊕ ⊕

Table 4: ”rule of thumb” for the choice of diagram types

of a class of diagrams can be made for the different optimization criteria. Ta-
ble 4 summarizes our observations by providing an informal ”rule of thumb”
for the choice of a diagram type: If particularly consolidated districts are de-
sired, power diagrams yield the best results. As they further produce convex
cells, the resulting districts are likely to be connected whenever the units can
be approximated well by points in the plane and the state area is close to con-
vex. If districts are preferred that are similar to existing structures, anisotropic
power diagrams perform very well. Due to their relation to power diagrams,
they have favorable characteristics w. r. t. consolidation as well. Connectivity is
guaranteed a-priorily by shortest-path diagrams. Note that with edge distances
obtained from anisotropic norms, conservation of existing structures may here
be achieved, too. Thus, our methodology is capable of satisfying different re-
quirements that may occur for political reasons.
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A Results for the German federal election
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