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1 Introduction

As students, we are often asked to draw (hopefully without a calculator) real zero
sets of low degree polynomials in few variables. As scientists and engineers, we are
often asked to count or approximate (hopefully with some computational assistance)
real and complex solutions of arbitrary systems of polynomial equations in many
variables. If one allows sufficiently coarse approximations, then the latter problem
is as easy as the former. Our main results clarify this transition from hardness
to easiness. In particular, we significantly speed up certain queries involving
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distances between points and complex algebraic hypersurfaces (see Theorems 1.4–
1.6 below). We then apply our metric results to finding specially constructed start
systems—dramatically speeding up traditional homotopy continuation methods—to
approximate, or rule out, roots of selected norm (see Sect. 3).

Polynomial equations are ubiquitous in numerous applications, such as algebraic
statistics [29], chemical reaction kinetics [42], discretization of partial differential
equations [28], satellite orbit design [47], circuit complexity [36], and cryptography
[10]. The need to solve larger and larger equations, in applications as well as for
theoretical purposes, has helped shape algebraic geometry and numerical analysis
for centuries. More recent work in algebraic complexity tells us that many basic
questions involving polynomial equations are NP-hard (see, e.g., [13, 52]). This
is by no means an excuse to consider polynomial equation solving hopeless:
Computational scientists solve problems of near-exponential complexity every day.

Thanks to recent work on Smale’s 17th Problem [8, 14], we have learned that
randomization and approximation can be the key to avoiding the bottlenecks present
in deterministic algorithms for solving hard questions involving complex roots of
polynomial systems. Smale’s 17th Problem concerns the average-case complexity
of approximating a single complex root of a random polynomial system and is well-
discussed in [54–58, 60, 61]. Our ultimate goal is to extend this philosophy to the
harder problem of localized solving: estimating how far the nearest root of a given
system of polynomials (or intersection of several zero sets) is from a given point.
Here, we start by first approximating the shape of a single zero set, and then in
Sect. 3 we outline a tropical-geometric approach to localized solving. Toward this
end, let us first recall the natural idea (see, e.g., [65]) of drawing zero sets on log-
paper. In what follows, we let C� denote the non-zero complex numbers and write
C

�
x˙1

1 ; : : : ; x˙1
n

�
for the ring of Laurent polynomials with complex coefficients,

i.e., polynomials with negative exponents allowed. Also, for any two vectors u WD
.u1; : : : ; uN / and v WD .v1; : : : ; vN / in RN , we use u � v to denote the standard dot
product u1v1 C � � � C uN vN .

Definition 1.1 We set x WD .x1; : : : ; xn/ and Logjxj WD .log jx1j; : : : ; log jxnj/, and,
for any f 2 C

�
x˙1

1 ; : : : ; x˙1
n

�
, we define Amoeba.f / to be the set fLogjxj W

f .x/ D 0 ; x 2 .C�/ng. We call f an n-variate t-nomial when we can write
f .x/ D Pt

iD1 ci x
ai with ci ¤ 0, ai WD .a1;i ; : : : ; an;i /, the ai are pair-wise distinct,

and xai WDx
a1;i

1 x
a2;i

2 � � � xan;i
n for all i . When f is not the zero polynomial, we define

the Archimedean tropical variety of f , denoted ArchTrop.f /, to be the set of all
w2Rn for which maxi jci e

ai � wj is attained for at least two distinct indices i . Finally,
we define ArchTrop.0/ to be Rn. ˘
In Sect. 3 we will see how amoebae and tropical varieties are useful for speeding up
polynomial system solving.
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(− log3;0)
(0;− log3)

(2log3;3log3)

Example 1.2 Taking f .x/D1Cx3
1 Cx2

2 �3x1x2, an illustration of Amoeba.f / and
ArchTrop.f /, truncated to Œ�7; 7�2, appears above. Amoeba.f / is lightly shaded,
while ArchTrop.f / is the piecewise-linear curve. ˘
One may be surprised that Amoeba.f / and ArchTrop.f / are so highly structured:
Amoeba.f / has tentacles reminiscent of a living amoeba, and ArchTrop.f / is a
polyhedral complex, i.e., a union of polyhedra intersecting only along common
faces (see Definition 2.7 below). One may also be surprised that Amoeba.f / and
ArchTrop.f / are so closely related: Every point of one set is close to some point of
the other, and both sets have topologically similar complements (4 open connected
components, exactly one of which is bounded). Example 2.2 below shows that we
need not always have ArchTrop.f /�Amoeba.f /.

To quantify how close Amoeba.f / and ArchTrop.f / are in general, one can
recall the Hausdorff distance, denoted �.U; V /, between two subsets U; V �Rn: It
is defined to be the maximum of supu2U infv2V ju � vj and supv2V infu2U ju � vj.
We then have the following recent result of Avendaño, Kogan, Nisse, and Rojas.

Theorem 1.3 ([4]) Suppose f is any n-variate t-nomial. Then Amoeba.f / and
ArchTrop.f / are (a) identical for t � 2 and (b) at Hausdorff distance no greater
than .2t � 3/ log.t � 1/ for t �3. In particular, for t �2, we also have

sup
u 2 Amoeba.f /

inf
v 2 ArchTrop.f /

ju � vj � log.t � 1/:
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Finally, for any t >n�1, there is an n-variate t-nomial f with

�.Amoeba.f /; ArchTrop.f //� log.t�1/: �

Note that the preceding upper bounds are completely independent of the coeffi-
cients, degree, and number of variables of f . Our upcoming examples show that
Amoeba.f / and ArchTrop.f / are sometimes much closer than the bound above.

Our first two main results help set the stage for applying Archimedean tropical
varieties to speed up polynomial root approximation. Recall that QŒ

p�1� denotes
those complex numbers whose real and imaginary parts are both rational. Our
complexity results will all be stated relative to the classical Turing (bit) model, with
the underlying notion of input size clarified below in Definition 1.7.

Theorem 1.4 Suppose w 2Rn and f 2C
�
x˙1

1 ; : : : ; x˙1
n

�
is a t-nomial with t � 2.

Then

� log.t � 1/� inf
u2Amoeba.f /

ju � wj � inf
v2ArchTrop.f /

jv � wj� .2t � 3/ log.t � 1/:

In particular, if we also assume that n is fixed and .f; w/2QŒ
p�1�

�
x˙1

1 ; : : : ; x˙1
n

��
Qn with f a t-nomial, then we can compute polynomially many bits of
infv2ArchTrop.f / jv � wj in polynomial-time, and there is a polynomial-time algorithm
that declares either (a) infu2Amoeba.f / ju � wj � .2t � 2/ log.t � 1/ or (b)
w 62Amoeba.f / and infu2Amoeba.f / ju � wj� infv2ArchTrop.f / jv � wj � log.t � 1/>0.

Theorem 1.4 is proved in Sect. 5. The importance of Theorem 1.4 is that deciding
whether an input rational point w lies in an input Amoeba.f /, even restricting to
the special case nD1, is already NP-hard [4].

ArchTrop.f / naturally partitions Rn into finitely many (relatively open) poly-
hedral cells of dimension 0 through n. We call the resulting polyhedral complex
˙.ArchTrop.f // (see Definition 2.7 below). In particular, finding the cell of
˙.ArchTrop.f // containing a given w2Rn gives us more information than simply
deciding whether w lies in ArchTrop.f /.

Theorem 1.5 Suppose n is fixed. Then there is a polynomial-time algorithm that,

for any input .f; w/ 2 Q

hp�1
i�

x˙1
1 ; : : : ; x˙1

n

� � Qn with f a t-nomial, outputs

the closure of the unique cell �w of ˙.ArchTrop.f // containing w, described as an
explicit intersection of O.t2/ half-spaces.

Theorem 1.5 is proved in Sect. 4. As a consequence, we can also find explicit
regions, containing a given query point w, where f can not vanish. Let d

denote the degree of f . While our present algorithm evincing Theorem 1.5 has
complexity exponential in n, its complexity is polynomial in log d (see Defini-
tion 1.7 below). The best previous techniques from computational algebra, including
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recent advances on Smale’s 17th Problem [8, 14], yield complexity no better than

polynomial in .dCn/Š

d ŠnŠ
�max

n�
dCn

d

�d
;
�

dCn
n

�n
o
.

Our framework also enables new positive and negative results on the complexity
of approximating the intersection of several Archimedean tropical varieties.

Theorem 1.6 Suppose n is fixed. Then there is a polynomial-time algorithm

that, for any input k and .f1; : : : ; fk; w/ 2
�
QŒ

p�1�
�
x˙1

1 ; : : : ; x˙1
n

��k � Qn,

outputs the closure of the unique cell �w of ˙
�Sk

iD1 ArchTrop.fi /
�

containing w,

described as an explicit intersection of half-spaces. (In particular, whether w lies
in

Tk
iD1 ArchTrop.fi / is decided as well.) However, if n is allowed to vary, then

deciding whether �w has a vertex in
nT

iD1

ArchTrop.fi / is NP-hard.

Theorem 1.6 is proved in Sect. 6. We will see in Sect. 3 how the first assertion
of Theorem 1.6 is useful for finding special start-points for Newton Iteration and
Homotopy Continuation that sometimes enable the approximation of just the roots
with norm vector near .ew1 ; : : : ; ewn/. The final assertion of Theorem 1.6 can
be considered as a refined tropical analogue to a classical algebraic complexity
result: Deciding whether an arbitrary input system of polynomials equations (with
integer coefficients) has a complex root is NP-hard. (There are standard reductions
from known NP-complete problems, such as integer programming or Boolean
satisfiability, to complex root detection [21, 52].)

On the practical side, we point out that the algorithms underlying Theorems 1.4–
1.6 are quite easily implementable. (A preliminary Matlab implementation of our
algorithms is available upon request.) Initial experiments indicate that a large-scale
implementation could be a worthwhile companion to existing polynomial system
solving software.

Before moving on to the necessary technical background, let us first clarify our
underlying input size and point out some historical context.

Definition 1.7 We define the input size of an integer c to be size.c/ WD log.2 C jcj/
and, for p; q 2 Z relative prime with jqj � 2, size.p=q/ WD size.p/ C size.q/.
Given a polynomial f 2 QŒx1; : : : ; xn�, written f .x/ D Pt

iD1 ci x
ai , we then

define size.f / to be
Pt

iD1

�
size.ci / C Pn

j D1 size.ai;j /
�

, where ai D.ai;1; : : : ; ai;n/

for all i . Similarly, we define the input size of a point .v1; : : : ; vn/ 2 Q
n asPn

iD1 size.vi /. Considering real and imaginary parts, and summing the respect
sizes, we then extend the definition of input size further still to polynomials in

Q

hp�1
i
Œx1; : : : ; xn�. Finally, for any system of polynomials F WD .f1; : : : ; fk/,

we set size.F / WDPk
iD1 size.fi /. ˘

Note in particular that the size of an input in Theorem 1.6 is size.w/CPk
iD1 size.fi /.

Remark 1.8 The reader may wonder why we have not considered the phases of
the root coordinates and focussed just on norms. The phase analogue of an amoeba
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is the co-amoeba, which has only recently been studied [30, 46, 48]. While it is
known that the phases of the coordinates of the roots of polynomial systems satisfy
certain equidistribution laws (see, e.g., [35, Thm. 1 (pp. 82–83), Thm. 2 (pp. 87–
88), and Cor. 30 (p. 88)] and [2]), there does not yet appear to be a phase analogue
of ArchTrop.f /. Nevertheless, we will see in Sect. 3 that our techniques sometimes
allow us to approximate not just norms of root coordinates but roots in full. ˘
Historical Notes Using convex and/or piecewise-linear geometry to understand
solutions of algebraic equations can be traced back to work of Newton (on power
series expansions for algebraic functions) around 1676 [44].

More recently, tropical geometry [6, 17, 32, 38, 39] has emerged as a rich
framework for reducing deep questions in algebraic geometry to more tractable
questions in polyhedral and piecewise-linear geometry. For instance, Gelfand,
Kapranov, and Zelevinsky first observed the combinatorial structure of amoebae
around 1994 [22]. ˘

2 Background

2.1 Convex, Piecewise-Linear, and Tropical Geometric Notions

Let us first recall the origin of the phrase “tropical geometry”, according to [51]:
the tropical semifield Rtrop is the set R [ f�1g, endowed with the operations
x ˇ y WD x C y and x ˚ y WD maxfx; yg. The adjective “tropical” was coined by
French computer scientists, in honor of Brazilian computer scientist Imre Simon,
who did pioneering work with algebraic structures involving Rtrop. Just as algebraic
geometry relates geometric properties of zero sets of polynomials to the structure of
ideals in commutative rings, tropical geometry relates the geometric properties of
certain polyhedral complexes (see Definition 2.7 below) to the structure of ideals in
Rtrop.

Here we work with a particular kind of tropical variety that, thanks to Theo-
rem 1.3, approximates Amoeba.f / quite well. The binomial case is quite instruc-
tive.

Proposition 2.1 For any a2Zn and non-zero complex c1 and c2, we have

Amoeba.c1 C c2xa/DArchTrop.c1 C c2x
a/Dfw2R

n j a � wD log jc1=c2jg:

Proof If c1 C c2x
a D 0 then jc2x

aj D jc1j. We then obtain a � w D log jc1=c2j
upon taking logs and setting w D Logjxj. Conversely, for any w satisfying a � w D
log jc1=c2j, note that x DewC�

p�1, with a � � the imaginary part of �c1=c2, satisfies
c1 C c2x

a D 0. This proves that Amoeba.c1 C c2xa/ is exactly the stated affine
hyperplane. Similarly, since the definition of ArchTrop.c1 C c2x

a/ implies that we
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seek w with jc2e
a � wj D jc1j, we see that ArchTrop.c1 C c2x

a/ defines the same
hyperplane. �

While ArchTrop.f / and Amoeba.f / are always metrically close, ArchTrop.f /

need not even have the same homotopy type as Amoeba.f / in general.

Example 2.2

Letting f WD 1 C x2
2 C x4

2 C x1x2
2 C x1x4

2 C x2
1x2 C x2

1x2
2 C x3

1 and g WD
0:1C0:2x2

2 C0:1x4
2 C10x1x

2
2 C0:001x1x

4
2 C0:01x2

1x2 C0:1x2
1x2

2 C0:000005x3
1 we

obtain the amoebae and tropical varieties (and more lightly shaded neighborhoods),
restricted to Œ�11; 11� � Œ�9; 9�, respectively drawn on the left and right above. The
outermost shape in the left-hand (resp. right-hand) illustration is a neighborhood of
ArchTrop.f / (resp. Amoeba.g/).

It turns out that every point of Amoeba.f / (resp. ArchTrop.g/) lies well within
a distance of 0:65 (resp. 0:49) of some point of ArchTrop.f / (resp. Amoeba.g/),
safely within the distance log 7 < 1:946 (resp. 13 log 7 < 25:3) guaranteed by the
second (resp. first) bound of Theorem 1.3. Note also that ArchTrop.g/ has two holes
while Amoeba.g/ has only a single hole.1 ˘

Given any f one can naturally construct a convergent sequence of polynomials
whose amoebae tend to ArchTrop.f /. This fact can be found in earlier papers of
Viro and Mikhalkin, e.g., [41, 65]. However, employing Theorem 1.3 here, we can
give a 5-line proof.

Theorem 2.3 For any n-variate t-nomial f written
Pt

iD1 ci x
ai , and s > 0, define

f �s.x/ WDPt
iD1 cs

i xai . Then �
�

1
s
Amoeba.f �s/; ArchTrop.f /

�!0 as s ! C1.

Proof By Theorem 1.3, �.Amoeba.f �s/; ArchTrop.f �s// � .2t � 3/ log.t � 1/

for all s > 0. Since jci e
ai � wj � jcj eaj � wj ” jci e

ai � wjs � jcj eaj � wjs ,
we immediately obtain that ArchTrop.f �s/ D sArchTrop.f /. So then

1A hole of a subset S �Rn is simply a bounded connected component of the complement Rn n S .
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�.Amoeba.f �s/; ArchTrop.f �s// D s�
�

1
s
Amoeba.f �s/; ArchTrop.f /

�
and thus

�
�

1
s
Amoeba.f �s/; ArchTrop.f /

� � .2t�3/ log.t�1/

s
for all s >0. �

To more easily link ArchTrop.f / with polyhedral geometry we will need two
variations of the classical Newton polygon. First, let Conv.S/ denote the convex
hull of2 S � Rn, O WD .0; : : : ; 0/, and ŒN � WD f1; : : : ; N g. Recall that a polytope
is the convex hull of a finite point set, a (closed) half-space is any set of the
form fw 2 Rn j a � w � bg (for some b 2 R and a 2 Rn n fOg), and a (closed)
polyhedron is any intersection of finitely many (closed) half-spaces. Polytopes are
exactly polyhedra that are bounded [27, 66]. The two resulting representations
of polytopes—V -presentation (the convex hull of a finite point set) and H -
presentation (an intersection of finitely many half-spaces)—are equivalent, but can
be exponentially different from an algorithmic point of view. See, e.g., [24, 25].

Definition 2.4 Given any n-variate t-nomial f written
Pt

iD1 ci x
ai , we define its

(ordinary) Newton polytope to be Newt.f / WDConv
�fai gi2Œt �

�
, and the Archimedean

Newton polytope of f to be ArchNewt.f / WDConv
�f.ai ; � log jci j/gi2Œt �

�
. Also, for

any polyhedron P � RN and v 2 RN , a face of P is any set of the form Pv WD
fx 2 P j v � x is maximizedg. We call v an outer normal of Pv. The dimension of
P , written dim P , is simply the dimension of the smallest affine linear subspace
containing P . Faces of P of dimension 0, 1, and dim P � 1 are respectively called
vertices, edges, and facets. (P and ; are called improper faces of P , and we set
dim ; WD �1.) Finally, we call any face of P lower if and only if it has an outer
normal .w1; : : : ; wN / with wN < 0, and we let the lower hull of ArchNewt.f / be
the union of the lower faces of ArchNewt.f /. ˘
The outer normals of a k-dimensional face of an n-dimensional polyhedron P form
the relative interior of an .n � k/-dimensional polyhedron called an outer normal
cone. Note that ArchNewt.f / usually has dimension 1 greater than that of Newt.f /.
ArchNewt.f / enables us to relate ArchTrop.f / to linear optimization.

Proposition 2.5 For any n-variate t-nomial f , ArchTrop.f / can also be
defined as the set of all w 2 R

n with max
x2ArchNewt.f /

fx � .w; �1/g attained on a

positive-dimensional face of ArchNewt.f /.

Proof The quantity jci e
ai � wj attaining its maximum for at least two indices i is

equivalent to the linear form with coefficients .w; �1/ attaining its maximimum for
at least two different points in f.ai ; � log jci j/gi2Œt �. Since a face of a polytope is
positive-dimensional if and only if it has at least two vertices, we are done. �

Example 2.6 The Newton polytope of our first example, f D 1 C x3
1 C

x2
2 � 3x1x2, is simply the convex hull of the exponent vectors of the

monomial terms: Conv.f.0; 0/; .3; 0/; .0; 2/; .1; 1/g/. For the Archimedean
Newton polytope, we take the coefficients into account via an extra coordinate:

2That is, smallest convex set containing. . .
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ArchNewt.f / D Conv.f.0; 0; 0/; .3; 0; 0/; .0; 2; 0/; .1; 1; � log 3/g/. In particular,
Newt.f / is a triangle and ArchNewt.f / is a triangular pyramid with base
Newt.f / � f0g and apex lying beneath Newt.f / � f0g. Note also that the image of
the orthogonal projection of the lower hull of ArchNewt.f / onto R2 � f0g naturally
induces a triangulation of Newt.f /, as illustrated below. ˘

Our last example motivates us to consider more general subdivisions and duality.
(An outstanding reference is [15].) Recall that a k-simplex is the convex hull of
k C 1 points in RN (with N � k C 1) not lying in any .k � 1/-dimensional affine
linear subspace of RN . A simplex is then simply a k-simplex for some k.

Definition 2.7 A polyhedral complex is a collection of polyhedra ˙ D f�i gi such
that for all i we have (a) every face of �i is in ˙ and (b) for all j we have that
�i \ �j is a face of both �i and �j . (We allow improper faces like ;, �i , and �j .)
The �i are the cells of the complex, and the underlying space of ˙ is j˙ j WDS

i �i .
In particular, we define ˙.ArchTrop.f // to be the complex whose cells are exactly
the (possibly improper) faces of the closures of the connected components of Rn n
ArchTrop.f /.

A polyhedral subdivision of a polyhedron P is then simply a polyhedral complex
˙ D f�igi with j˙ j D P . We call ˙ a triangulation if and only if every �i

is a simplex. Given any finite subset A � Rn, a polyhedral subdivision induced
by A is then just a polyhedral subdivision of Conv.A/ where the vertices of
all the �i lie in A. Finally, the polyhedral subdivision of Newt.f / induced by
ArchNewt.f /, denoted ˙f , is simply the polyhedral subdivision whose cells are
f�.Q/ j Q is a lower face of ArchNewt.f /g, where � W RnC1 �! Rn denotes the
orthogonal projection forgetting the last coordinate. ˘

Recall that a (polyhedral) cone is just the set of all nonnegative linear combi-
nations of a finite set of points. Such cones are easily seen to always be polyhedra
[27, 66].

Example 2.8 The illustration from Example 2.6 above shows a triangulation of the
point set f.0; 0/; .3; 0/; .0; 2/; .1; 1/g which happens to be ˙f for f D 1 C x3

1 C
x2

2 � 3x1x2. More to the point, it is easily checked that the outer normals to a face of
dimension k of ArchNewt.f / form a cone of dimension 3�k. In this way, thanks to
the natural partial ordering of cells in any polyhedral complex by inclusion, we get
an order-reversing bijection between the cells of ˙f and pieces of ArchTrop.f /. ˘
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That ArchTrop.f / is always a polyhedral complex follows directly from Proposi-
tion 2.5 above. Proposition 2.5 also implies an order-reversing bijection between the
cells ˙f and the cells of ˙.ArchTrop.f //—an incarnation of polyhedral duality
[66].

Example 2.9 Below we illustrate the aforementioned order-reversing bijection of
cells through our first three tropical varieties, and corresponding subdivisions ˙f

of Newt.f /:

Note that the vertices of ˙.ArchTrop.f // correspond bijectively to the
two-dimensional cells of ˙f , and the one-dimensional cells of ˙.ArchTrop.f //

correspond bijectively to the edges of ˙f . (In particular, the rays of ˙.ArchTrop
.f // are perpendicular to the edges of Newt.f /.) Note also that the vertices
of ˙f correspond bijectively to connected components of the complement
R2nArchTrop.f /. ˘

2.2 The Complexity of Linear Programming

Let us first point out that [3, 21, 49, 59] are excellent references for further
background on the classical Turing model and NP-completeness. The results on
the complexity of linear optimization we’ll use are covered at a more leisurely pace
in standard monographs such as [26, 53]. See also [23].

Definition 2.10 Given any matrix M 2 Qk�N with i th row mi , and b WD
.b1; : : : ; bk/> 2 Qk , the notation M x � b means that m1 � x � b1; : : : ; mk � x � bk

all hold. Given any c D .c1; : : : ; cN / 2QN we then define the (natural form) linear
optimization problem L .M; b; c/ to be the following: Maximize c � x subject to
M x � b and x 2 RN . We also define size.L .M; b; c// WD size.M / C size.b/ C
size.c/ (see Definition 1.7). The set of all x 2RN satisfying M x �b is the feasible
region of L .M; b; c/, and when it is empty we call L .M; b; c/ infeasible. Finally,
if L .M; b; c/ is feasible but does not admit a well-defined maximum, then we call
L .M; b; c/ unbounded. ˘
Theorem 2.11 Given any linear optimization problem L .M; b; c/ as defined
above, we can decide infeasibility, unboundedness, or (if L .M; b; c/ is feasible,
with bounded maximum) find an optimal solution x�, all within time polynomial in
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size.L .M; b; c//. In particular, if L .M; b; c/ is feasible, with bounded maximum,
then we can find an optimal solution x� of size polynomial in size.L .M; b; c//. �

Theorem 2.11 goes back to work of Khachiyan in the late 1970s on the Ellipsoid
Method [34], building upon earlier work of Shor, Yudin, and Nemirovskii.

For simplicity, we will not focus on the best current complexity bounds, since
our immediate goal is to efficiently prove polynomiality for our algorithms. We will
need one last complexity result from linear optimization: Recall that a constraint
mi � x � bi of M x � b is called redundant if and only if the corresponding row
of M , and corresponding entry of b, can be deleted from the pair .M; b/ without
affecting the feasible region fx 2RN j M x �bg.

Lemma 2.12 Given any system of linear inequalities M x � b we can, in time
polynomial in size.M / C size.b/, find a submatrix M 0 of M , and a subvector b0
of b, such that fx 2RN j M 0x � b0g D fx 2RN j M 0x � b0g and M 0x � b0 has no
redundant constraints. �

The new set of inequalities M 0x � b0 is called an irredundant representation of
M x � b, and can easily be found by solving � k linear optimization problems of
size no larger than size.L .M; b; O// (see, e.g., [53]).

The linear optimization problems we ultimately solve will have irrational “right-
hand sides”: Our b will usually have entries that are (rational) linear combination
of logarithms of integers. As is well-known in Diophantine Approximation [5],
it is far from trivial to efficiently decide the sign of such irrational numbers.
This problem is equivalent to deciding inequalities of the form ˛

ˇ1

1 � � � ˛ˇN

N > 1,
where the ˛i and ˇi are integers. Note, in particular, that while the number of
arithmetic operations necessary to decide such an inequality is easily seen to be
O..

PN
iD1 log jˇi j/2/ (via the classical binary method of exponentiation), taking bit-

operations into account naively results in a problem that appears to have complexity
exponential in log jˇ1j C � � � C log jˇN j. But we can in fact go much faster. . .

2.3 Irrational Linear Optimization and Approximating
Logarithms

Recall the following result on comparing monomials in rational numbers.

Theorem 2.13 ([11, Sec. 2.4]) Suppose ˛1; : : : ; ˛N 2 Q are positive and
ˇ1; : : : ; ˇN 2 Z. Also let A be the maximum of the numerators and denominators
of the ˛i (when written in lowest terms) and B WDmaxi fjˇi jg. Then, within

O
�
N 30N log.B/.log log B/2 log log log.B/.log.A/.log log A/2 log log log A/N

�

bit operations, we can determine the sign of ˛
ˇ1

1 � � � ˛ˇN

N � 1. �
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While the underlying algorithm is a simple application of Arithmetic-Geometric
Mean Iteration (see, e.g., [9]), its complexity bound hinges on a deep estimate of
Nesterenko [43], which in turn refines seminal work of Matveev [40] and Alan
Baker [5] on linear forms in logarithms.

Definition 2.14 We call a polyhedron P `-rational if and only if it is of the form
fx 2Rn j M x �bg with M 2Qk�n and b D.b1; : : : ; bk/> satisfying

bi Dˇ1;i log j˛1j C � � � C ˇk;i log j˛kj;

with ˇi;j ; ˛j 2Q for all i and j . Finally, we set

size.P / WDsize.M / C size.Œˇi;j �/ C
kX

iD1

size.˛i /:˘

Via the Simplex Method (or even a brute force search through all n-tuples of facets
of P ) we can obtain the following consequence of Theorems 2.11 and 2.13.

Corollary 2.15 Following the notation of Definition 2.14, suppose n is fixed. Then
we can decide whether P is empty, compute an irredundant representation for
P , and enumerate all maximal sets of facets determining vertices of P , in time
polynomial in size.P /. �

The key trick behind the proof of Corollary 2.15 is that the intermediate linear
optimization problems needed to find an irredundant representation for P use linear
combinations (of rows of the original representation) with coefficients of moderate
size (see, e.g., [53]).

3 Tropical Start-Points for Numerical Iteration
and an Example

We begin by outlining a method for picking start-points for Newton Iteration
(see, e.g., [12, Ch. 8] for a modern perspective) and Homotopy Continuation
[7, 31, 37, 62, 64]. While we do not discuss these methods for solving polynomial
equations in further detail, let us at least point out that Homotopy Continuation
(combined with Smale’s ˛-Theory for certifying roots [7,12]) is currently the fastest,
most easily parallelizable, and reliable method for numerically solving polynomial
systems in complete generality. Other important methods include Resultants [18]
and Gröbner Bases [20]. While these alternative methods are of great utility in
certain algebraic and theoretical applications [1, 19], Homotopy Continuation is
currently the method of choice for practical numerical computation with extremely
large polynomial systems.
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Algorithm 3.1 (Coarse Approximation to Roots with Log-Norm Vector Near a
Given Query Point)

INPUT. Polynomials f1; : : : ; fn 2 Q

hp�1
i�

x˙1
1 ; : : : ; x˙1

n

�
, with fi .x/ D

Pti
j D1 ci;j xaj .i/ an n-variate ti -nomial for all i , and a query point w2Q

n.
OUTPUT. An ordered n-tuple of sets of indices .Ji /

n
iD1 such that, for all i ,

gi WDP
j 2Ji

ci;j xaj .i/ is a sub-summand of fi , and the roots
of G WD.g1; : : : ; gn/ are approximations of the roots of
F WD.f1; : : : ; fn/ with log-norm vector nearest w.

DESCRIPTION.

1. Let �w be the closure of the unique cell of ˙.
Sn

iD1 ArchTrop.fi // (see Defini-
tion 2.7) containing w.

2. If �w has no vertices in
Tn

iD1 ArchTrop.fi / then output an irredundant collection
of facet inequalities for �w, output “There are no roots of F in
�w.”, and STOP.

3. Otherwise, fix any vertex v of �w\Tn
iD1 ArchTrop.fi / and, for each i 2 Œn�, let Ei

be any edge of ArchNewt.fi / generating a facet of ArchTrop.fi / containing v.
4. For all i 2 Œn�, let Ji WDfj j .aj .i/; � log jci;j j/2Ei g.
5. Output .Ji /

n
iD1. �

Thanks to our main results and our preceding observations on linear optimization,
we can easily obtain that our preceding algorithm has complexity polynomial in
size.F / for fixed n. In particular, Step 1 is (resp. Steps 2 and 3 are) accomplished
via the algorithm underlying Theorem 1.5 (resp. Corollary 2.15).

The key subtlety then is to prove that, for most inputs, our algorithm actually
gives useful approximations to the roots with log-norm vector nearest the input
query point w, or truthfully states that there are no root log-norm vectors in �w.
We leave the precise metric estimates defining “most inputs” for future work.
However, we point out that a key ingredient is the A -discriminant [22], and a recent
polyhedral approximation of its amoeba [50] refining the tropical discriminant [16].
So we will now clarify the meaning of the output of our algorithm.

The output system G is useful because, with high probability (in the sense of
random liftings, as in [18, Lemma 6.2]), all the gi are binomials, and binomial
systems are particularly easy to solve: They are equivalent to linear equations in
the logarithms of the original variables. In particular, any n � n binomial system
always has a unique vector of norms for its roots.

Recall the standard notation Jac.F / WD
h

@fi

@xj

i

n�n
. The connection to Newton

Iteration is then easy to state: Use any root of G as a start-point z.0/ for the
iteration z.n C 1/ WD z.n/ � Jac.F /�1jz.n/F .z.n//. The connection to Homotopy
Continuation is also simple: Use the pair .G; �/ (for any root � of G) to start a
path converging (under the usual numerical conditioning assumptions on whatever
predictor-corrector method one is using) to a root of F with log-norm vector near
w. Note also that while it is safer to do the extra work of Homotopy Continuation,
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there will be cases where the tropical start-points from Algorithm 3.1 are sufficiently
good for mere Newton Iteration to converge quickly to a true root.

Remark 3.2 Note that, when applying Algorithm 3.1 for later Homotopy Continua-
tion, we have the freedom to follow as few start-points, or as few paths, as we want.
When our start-points (resp. paths) indeed converge to nearby roots, we obtain a
tremendous savings over having to follow all start-points (resp. paths). ˘
Definition 3.3 Given any n-dimensional polyhedra P1; : : : ; Pn � R

n, we call a
vertex v of

Tn
iD1 Pi mixed if and only if v lies on a facet of Pi for all i . ˘

Note that, by construction, any vertex chosen in Step 3 of Algorithm 3.1 is mixed.

Example 3.4 Let us make a 2 � 2 polynomial system out of our first and third
examples:

f1 WD 1 C x3
1 C x2

2 � 3x1x2

f2 WD 0:1 C 0:2x2
2 C 0:1x4

2 C 10x1x
2
2 C 0:001x1x

4
2

C0:01x2
1x2 C 0:1x2

1x2
2 C 0:000005x3

1

The system F WD .f1; f2/ has exactly 12 roots in .C�/2, the coordinate-wise log-
norms of which form the small clusters near certain intersections of ArchTrop.f1/

and ArchTrop.f2/ shown on the left illustration above. In particular, �.2;1/ is the
heptagonal cell3 magnified on the right of the figure above, and has exactly 2 vertices
that are mixed. (The other 5 vertices of �.1;2/ are vertices of ArchTrop.fi / lying in
the interior of a two-dimensional cell of ˙.ArchTrop.f3�i // for i 2f1; 2g.)

Applying Algorithm 3.1 we then have two possible outputs, depending on which
mixed vertex of �.1;2/ we pick. The output corresponding to the circled vertex is
the pair of index sets .f2; 3g; f3; 4g/. More concretely, Algorithm 3.1 alleges that

3The cell looks hexagonal because it has a pair of vertices too close to distinguish visually.
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the system G WD .g1; g2/ WD .x3
1 C x2

2 ; 0:1x4
2 C 10x1x

2
2/ has roots with log-norm

vector near a log-norm vector of a root of F that is in turn close to w. Indeed,
the sole log-norm vector coming from the roots of G is

�
log 10; 3

2
log 10

�
and

the roots themselves are f.˙10;
p	1000/g (with both values of the square root

allowed). All 4 roots in fact converge (under Newton iteration, with no need for
Homotopy Continuation) to true roots of F . In particular, the root .�10;

p
1000/

(resp. .�10; �p
1000/) converges to the root of F with closest (resp. third closest)

log-norm vector to w. The other two roots of G converge to a conjugate pair of roots
of F with log-norm vector .2:4139; 3:5103/ (to four decimal places) lying in the
small circle in the illustration. ˘
Remark 3.5 While we have relied upon Diophantine approximation and subtle
aspects of the Simplex Method to prove our bit-complexity bounds in Theo-
rems 1.4–1.6, one can certainly be more flexible when using Algorithm 3.1 in
practical floating-point computations. For instance, heuristically, it appears that one
can get away with less accuracy than stipulated by Theorem 2.13 when comparing
linear combinations of logarithms. Similarly, one should feel free to use the fastest
(but still reliably accurate) algorithms for linear optimization when applying our
methods to large-scale polynomial systems. (See, e.g., [63].) ˘

4 Proof of Theorem 1.5

Using t � 1 comparisons, we can isolate all indices i such that maxi jcie
ai � wj is

attained. Thanks to Theorem 2.13 this can be done in polynomial-time. We then
obtain, say, J equations of the form ai � w D � log jci j and K inequalities of the
form ai � w>� log jci j or ai � w<� log jci j.

Thanks to Lemma 2.12, combined with Corollary 2.15, we can determine the
exact cell of ArchTrop.f / containing w if J � 2. Otherwise, we obtain the unique
cell of Rn n ArchTrop.f / with relative interior containing w. Note also that an
.n � 1/-dimensional face of either kind of cell must be the dual of an edge of
ArchNewt.f /. Since every edge has exactly 2 vertices, there are at most t.t � 1/=2

such .n � 1/-dimensional faces, and thus �w is the intersection of at most t.t � 1/=2

half-spaces. So we are done. �

Remark 4.1 Theorem 1.5 also generalizes an earlier complexity bound from [4] for
deciding membership in ArchTrop.f /. ˘

5 Proof of Theorem 1.4

Note The hurried reader will more quickly grasp the following proof after briefly
reviewing Theorems 1.3, 1.5, and 2.13.
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Since ArchTrop.f / and Amoeba.f / are closed and non-empty, infv2ArchTrop.f / jv�
wj D jw � v0j for some point v0 2ArchTrop.f / and infu2Amoeba.f / ju � wjDjw � u0j
for some point u0 2Amoeba.f /.

Now, by the second upper bound of Theorem 1.3, there is a point v00 2
ArchTrop.f / within distance log.t � 1/ of u0. Clearly, jw � v0j�jw � v00j. Also, by
the Triangle Inequality, jw � v00j�jw � u0j C ju0 � v00j. So then,

inf
v2ArchTrop.f /

jv � wj� inf
u2Amoeba.f /

ju � wj C log.t � 1/;

and thus infu2Amoeba.f / ju � wj � infv2ArchTrop.f / jv � wj�� log.t � 1/.
Similarly, by the first upper bound of Theorem 1.3, there is a point u00 2

Amoeba.f / within distance .2t � 3/ log.t � 1/ of v0. Clearly, jw � u0j � jw � u00j.
Also, by the Triangle Inequality, jw � u00j � jw � v0j C jv0 � u00j. So then,
infu2Amoeba.f / ju � wj� infv2ArchTrop.f / jv � wj C .2t � 3/ log.t � 1/, and thus

inf
u2Amoeba.f /

ju � wj � inf
v2ArchTrop.f /

jv � wj� .2t � 3/ log.t � 1/:

So our first assertion is proved.
Now if f has coefficients with real and imaginary parts that are rational, and

n is fixed, Theorem 1.5 (which we’ve already proved) tells us that we can decide
whether w lies in ArchTrop.f / using a number of bit operations polynomial in
size.w/ C size.f /. So we may assume w 62ArchTrop.f / and dim �w Dn.

Theorem 1.5 also gives us an explicit description of �w as the intersection
of a number of half-spaces polynomial in t . Moreover, �w is `-rational (recall
Definition 2.14), with size polynomial in size.f /. So we can compute the distance
D from w to ArchTrop.f / by finding which facet of �w has minimal distance to
w. The distance from w to any such facet can be approximated to the necessary
number of bits in polynomial-time via Theorem 2.13 and the classical formula
for distance between a point and an affine hyperplane: infu2fx j r �xDsg ju � wj D
.jr � wj � sign.r � w/s/=jr j. More precisely, comparing the facet distances reduces to

checking the sign of an expression of the form �1 C�2 log
�

ci

ci 0

�
C�3 log

�
cj

cj 0

�
where

�1 (resp. �2, �3) is a rational linear combination of
pjai � ai 0 j and

pjaj � aj 0 j
(resp. rational multiple of

pjai � ai 0 j or
pjaj � aj 0 j), with coefficients of size

polynomial in size.f /, for some indices i; i 0; j; j 0 2 Œt �. We can then efficiently
approximate D by approximating the underlying square-roots and logarithms
to sufficient precision. The latter can be accomplished by Arithmetic-Geometric
Iteration, as detailed in [9], and the amount of precision needed is explicitly
bounded by an earlier variant of Theorem 2.13 covering inhomogeneous linear
combinations of logarithms of algebraic numbers with algebraic coefficients [5].
The resulting bounds are somewhat worse than in Theorem 2.13, but still allow us
to find polynomially many leading bits of infv2Amoeba.f / jv � wj (for w2Qn) in time
polynomial in size.w/ C size.f /.
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To prove the final assertion, we merely decide whether infv2ArchTrop.f / jv � wj
strictly exceeds log.t � 1/ or not. To do so, we need only compute a polynomial
number of leading bits of infv2ArchTrop.f / jv � wj (thanks to Theorem 2.13), and this
takes time polynomial in size.w/Csize.f /. Thanks to our initial observations using
the Triangle Inequality, it is clear that Output (b) or Output (a) occurs according as
infv2ArchTrop.f / jv � wj> log.t � 1/ or not. So we are done. �

6 Proving Theorem 1.6

6.1 Fast Cell Computation: Proof of the First Assertion

First, we apply Theorem 1.5 to .fi ; w/ for each i 2 Œk� to find which ArchTrop.fi /

contain w.
If w lies in no ArchTrop.fi /, then we simply use Corollary 2.15 (as in our

proof of Theorem 1.5) to find an explicit description of the closure of the cell of
R

nnSk
iD1 ArchTrop.fi / containing w. Otherwise, we find the cells of ArchTrop.fi /

(for those i with ArchTrop.fi / containing w) that contain w. Then, applying Corol-
lary 2.15 once again, we explicitly find the unique cell of

T

ArchTrop.fi /3w
ArchTrop.fi /

containing w.
Assume that fi has exactly ti monomial terms for all i . In either of the preceding

cases, the total number of half-spaces involved is no more than
Pk

iD1 ti .ti �1/=2. So
the overall complexity of our redundancy computations is polynomial in the input
size and we are done. �

6.2 Hardness of Detecting Mixed Vertices: Proving the Second
Assertion

It will clarify matters if we consider a related NP-hard problem for rational
polytopes first.

Ultimately, our proof boils down to a reduction from the following problem,
equivalent to the famous NP-complete PARTITION problem (see below): Decide if
a vertex of the hypercube Œ�1; 1�n lies on a prescribed hyperplane defined by an
equation of the form a � x D0 with a2Zn. Because the coordinates of a are integral,
we can replace the preceding equation by the inequality 0 � a � x � 1=2. With a
bit more work, we can reduce PARTITION to the detection of a mixed vertex for a
particular intersection of polyhedra. We now go over the details.
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6.2.1 Preparation over Q

In the notation of Definition 3.3, let us first consider the following decision problem.
We assume all polyhedra are given explicitly as finite collections of rational linear
inequalities, with size defined as in Sect. 2.2.
MIXED-VERTEX:
Given n 2 N and polyhedra P1; : : : ; Pn in R

n, does P WD Tn
iD1 Pi have a mixed

vertex? �
While MIXED-VERTEX can be solved in polynomial time when n is fixed (by a
brute-force check over all mixed n-tuples of facets), we will show that, for n varying,
the problem is NP-complete, even when restricting to the case where all polytopes
are full-dimensional and P1; : : : ; Pn�1 are axes-parallel bricks.

Let ei denote the i th standard basis vector in R
n and let M > denote the transpose

of a matrix M . Also, given ˛ 2 R
n and b 2 R, we will use the following

notation for hyperplanes and certain half-spaces in R
n determined by ˛ and b:

H.˛;b/ WD fx 2 R
n j ˛ � x D bg, H

�
.˛;b/ WD fx 2 R

n j ˛ � x � bg. For i 2 Œn�,

let si 2 N, Mi WD Œmi;1; : : : ; mi;si �
> 2 Zsi �n, bi WD .bi;1; : : : ; bi;si /

> 2 Zsi , and
Pi WD fx 2 Rn j Mix � bi g. Since linear optimization can be done in polynomial-
time (in the cases we consider) we may assume that the presentations .n; si I Mi ; bi /

are irredundant, i.e., Pi has exactly si facets if Pi is full-dimensional, and the sets
Pi \ H.mi;j ;bi;j /, for j 2 Œsi �, are precisely the facets of Pi for all i 2 Œn�.

Now set P WD Tn
iD1 Pi . Note that size.P / is thus linear in

Pn
iD1 size.Pi /.

Lemma 6.1 MIXED-VERTEX 2 NP.

Proof Since the binary sizes of the coordinates of the vertices of P are bounded by
a polynomial in the input size, we can use vectors v 2 Q

n of polynomial size as
certificates. We can check in polynomial-time whether such a vector v is a vertex
of P . If this is not the case, v cannot be a mixed vertex of P . Otherwise, v is a
mixed vertex of P if and only if for each i 2 Œn� there exists a facet Fi of Pi with
v 2 Fi . Since the facets of the polyhedra Pi admit polynomial-time decriptions as
H -polyhedra, this can be checked by a total of s1 C� � �Csn polyhedral membership
tests. These membership tests are easily doable in polynomial-time since any of the
underlying inequalities can be checked in polynomial-time and the number of faces
of any Pi no worse than linear in the size of Pi .

So we can check in polynomial-time whether a given certificate v is a mixed
vertex of P . Hence MIXED-VERTEX is in NP. �

Since (in fixed dimension) we can actually list all vertices of P in polynomial-
time, it is clear that MIXED-VERTEX can be solved in polynomial-time when n is
fixed. When n is allowed to vary we obtain hardness:

Theorem 6.2 MIXED-VERTEX is NP-hard, even in the special case where
P1; : : : ; Pn�1 are centrally symmetric axes-parallel bricks with vertex coordinates
in f˙1; ˙2g, and Pn has at most 2n C 2 facets (with 2n of them parallel to
coordinate hyperplanes).
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The proof of Theorem 6.2 will be based on a reduction from the following
decision problem:
PARTITION

Given d; ˛1; : : : ; ˛d 2 N, is there an I � Œd � such that
P

i2I ˛i D P
i2Œd �nI ˛i ?

�
PARTITION was in the original list of NP-complete problems from [33].

Let an instance .d I ˛1; : : : ; ˛d / of PARTITION be given, and set ˛ WD
.˛1; : : : ; ˛d /. Then we are looking for a point x 2 f�1; 1gd with ˛ � x D 0.

We will now construct an equivalent instance of MIXED-VERTEX. With n WD
d C 1, Nx WD .x1; : : : ; xn�1/ and 11n WD .1; : : : ; 1/ 2 Rn let

Pi WD ˚
. Nx; xn/j � 1 � xi � 1; �2 � xj � 2 for all j 2 Œn� n fig� :

Also, for i 2 Œn � 1�, let

Pn WD f . Nx; xn/ j � 2 � 11n�1 � Nx � 2 � 11n�1; �1 � xn � 1; 0 � 2˛ � Nx � 1g

and set P WDTn
iD1 Pi , Ǫ WD .˛; 0/.

The next lemma shows that Pn \f�1; 1gn still captures the solutions of the given
instance of partition.

Lemma 6.3 .d I ˛1; : : : ; ˛d / is a “no”-instance of PARTITION if and only if Pn \
f�1; 1gn is empty.

Proof Suppose, first, that .d I ˛1; : : : ; ˛d / is a “no”-instance of PARTITION. If Pn is
empty there is nothing left to prove. So, let y 2 Pn and w 2 f�1; 1gn�1 � R. Since
˛ 2 Nd we have j Ǫ � wj � 1. Hence, via the Cauchy-Schwarz inequality, we have
1 � j Ǫ � wj D j Ǫ � y C Ǫ � .w � y/j � j Ǫ � yj C j Ǫ � .w � y/j � 1

2
C j Ǫ j � jw � yj D

1
2

C j˛j � jw � yj and thus jw � yj � 1
2j˛j > 0. Therefore Pn \ �f�1; 1gn�1 � R

�
is

empty.
Conversely, if Pn \ f�1; 1gn is empty, then there is no x 2 f˙1gn�1 such that

0 � ˛ � Nx � 1
2
. Since Ǫ 2 Nn�1, we have that .d; ˛1; : : : ; ˛d / is a “No”-instance of

PARTITION. �
The next lemma reduces the possible mixed vertices to the vertical edges of the

standard cube.

Lemma 6.4 Following the preceding notation, let v be a mixed vertex of P WDTn
iD1 Pi . Then v2f�1; 1gn�1 � Œ�1; 1�.

Proof First note that Q WD Tn�1
iD1 Pi D Œ�1; 1�n�1 � Œ�2; 2�. Therefore, for each

i 2 Œn�1�, the only facets of Pi that meet Q are those in H.ei ;˙1/ and H.en;˙2/. Since
P � Œ�1; 1�n, and for each i 2 Œn � 1� the mixed vertex v must be contained in a

facet of Pi , we have v 2 Œ�1; 1�n \
n�1\

iD1

0

@
[

ıi 2f�1;1g
H.ei ;ıi /

1

A D f�1; 1gn�1 � Œ�1; 1�,

which proves the assertion. �
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The next lemma adds Pn to consideration.

Lemma 6.5 Let v be a mixed vertex of P WDTn
iD1 Pi . Then v2f�1; 1gn.

Proof By Lemma 6.4, v 2 f�1; 1gn�1 � Œ�1; 1�. Since the hyperplanes H.ei ;˙2/ do
not meet Œ�1; 1�n, we have v 62 H.ei ;�2/ [ H.ei ;2/ for all i 2 Œn � 1�. Hence, v
can only be contained in the constraint hyperplanes H. Ǫ ;0/; H.2 Ǫ ;1/; H.en;�1/; H.en;1/.
Since Ǫ 2 R

n�1 � f0g, the vector Ǫ is linearly dependent on e1; : : : ; en�1. Hence,
v2H.en;�1/ [ H.en;1/, i.e., v 2 f�1; 1gn. �
We can now prove the NP-hardness of MIXED-VERTEX.

Proof of Theorem 6.2 First, let .d I ˛1; : : : ; ˛d / be a “yes”-instance of PARTITION,
let x� WD .	�

1 ; : : : ; 	�
n�1/ 2 f�1; 1gn�1 be a solution, and set 	�

n WD 1, v WD .x�; 	�
n /,

Fi WDH.ei ;	�

i / \ Pi for all i 2 Œn�, and OFn WDH. Ǫ ;0/ \ Pn. Then v 2 OFn � Pn, hence
v 2 P and, in fact, v is a vertex of P . Furthermore, Fi is a facet of Pi for all i 2 Œn�,
v2Tn

iD1 Fi , and thus v is a mixed vertex of P .
Conversely, let .d I ˛1; : : : ; ˛d / be a “no”-instance of PARTITION, and suppose

that v 2 Rn is a mixed vertex of P . By Lemma 6.5, v 2 f�1; 1gn. Furthermore, v
lies in a facet of Pn. Hence, in particular, v 2 Pn, i.e., Pn \ f�1; 1gn is non-empty.
Therefore, by Lemma 6.3, .d I ˛1; : : : ; ˛d / is a “yes”-instance of PARTITION. This
contradiction shows that P does not have a mixed vertex.

Clearly, the transformation works in polynomial-time. �

6.3 Proof of the Second Assertion of Theorem 1.6

It clearly suffices to show that the following variant of MIXED-VERTEX is NP-hard:
LOGARITHMIC-MIXED-VERTEX:
Given n 2 N and `-rational polyhedra P1; : : : ; Pn �Rn, does P WD Tn

iD1 Pi have
a mixed vertex? �

Via an argument completely parallel to the last section, the NP-hardness of
LOGARITHMIC-MIXED-VERTEX follows immediately from the NP-hardness of the
following variant of PARTITION:
LOGARITHMIC-PARTITION

Given d 2 N, ˛1; : : : ; ˛d 2 N n f0g, is there an I � Œd � such that
P

i2I log ˛i DP
i2Œd �nI log ˛i ? �
We measure size in LOGARITHMIC-PARTITION just as in the original PARTITION

Problem:
Pd

iD1 log ˛d . Note that LOGARITHMIC-PARTITION is equivalent to the
obvious variant of PARTITION where we ask for a partition making the two resulting
products be identical. The latter problem is known to be NP-hard as well, thanks to
[45], and is in fact also strongly NP-hard. �
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