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Abstract

Hierarchical structures permeate our daily lives, and as such are also fea-
tured in many of the software applications we work with. Unfortunately,
maintaining and querying hierarchical data in the underlying database
systems remains a clumsy and inconvenient task even today, almost 50
years after the relational data model was first conceived. Now that modern
in-memory engines are becoming more capable than ever, we take the op-
portunity to revisit the challenge of making these systems truly “hierarchy-
aware.” Our approach is based on modeling hierarchies in relational tables
in an intuitive and light-weight way by means of a built-in abstract data
type. This opens up new opportunities both on the level of the SQL query
language as well as at the heart of the database engine, which we fully ex-
ploit: We extend SQL with concise but expressive constructs to represent,
bulk-load, manipulate, and query hierarchical tables. An accompanying
set of relational algebra concepts and algorithms ensure these constructs
can be translated into highly efficient query plans. We design these algo-
rithms in terms of a carefully crafted generic framework for representing
and indexing hierarchies, which enables us to freely choose among a vari-
ety of sophisticated indexing schemes at the storage layer according to the
application scenario at hand. While we strive to leverage the decades of
existing research on indexing and processing semi-structured data in our
framework, we further push the limits when it comes to robustly indexing
and querying very large and highly dynamic hierarchical datasets.

The result is an unprecedented degree of native support and versatility
for managing hierarchical data on the level of the relational database sys-
tem. This benefits a great many real-world scenarios which routinely deal
with hierarchical data in enterprise software, scientific applications, and
beyond.
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Introduction

can be arranged in a hierarchy, be it political, socioeconomic, technical, bio-

logical, or nature itself. As a consequence, hierarchies also appear in software
applications throughout. Central concepts in computing are inherently hierarchical,
such as file systems, access control schemes, or semi-structured document formats like
XML and JSON. If we look specifically at enterprise software, we see hierarchies being
used for modeling geographically distributed sites, marketing schemes, financial ac-
counting schemes, reporting lines in human resources, and task breakdowns in project
plans. In manufacturing industries, so-called bills of materials, which describe the hi-
erarchical assembly structure of an end product, are a central artifact. And last but
not least, in business analytics, hierarchies in the dimensions of data cubes help data
analysts to effectively organize even vast amounts of data and guide their analysis to
the relevant levels of granularity.

HIERARC HIES are infused into our daily lives. Nearly any system in the world

A crucial component in virtually all of the larger mission-critical applications is the
database layer, where the hierarchies are ultimately stored. Given the important role
that hierarchies play in so many commercial applications, it comes as no surprise that
the first recognized database model, devised by IBM for their Information Manage-
ment System in the 1960s, was hierarchical in nature. One of its intended purposes
was to manage bills of materials for the construction of the Apollo spacecraft [5]. Many
other early database systems focused primarily on manufacturing scenarios, such that
“BOM processor” became a household term. Today, however, virtually all mainstream
database systems are based on Codd’s relational data model [21].

While the relational data model has been a runaway success for many good rea-
sons, its flat nature makes it particularly hard to accommodate hierarchies and their
inherently recursive structure: A hierarchy must be manually mapped to a flat table
in the database schema, where rows of the table correspond to nodes of the hierarchy,
and a designated set of columns represents the structure by means of a particular en-
coding scheme. Choosing and manually implementing such an encoding scheme is a
major challenge for application developers: The encoding must be expressive enough
to be able to answer all relevant types of queries against the hierarchy, and at the same
time it must support all types of structural updates the users may wish to perform. A
poorly chosen encoding can render certain queries and updates prohibitively expen-
sive to execute, if not impossible to express in the first place. The developer further
has to consider the physical design and add supporting database indexes as necessary
in order to find a suitable tradeoff between storage utilization, support for updates,
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BOM
ID |PID [Kind Payload
T "Al'|NULL|'compound'

"A2' NULL|'display’
P
'B1'|'Al'|'engine’

'B2'|'Al'|'engine’
'"Cl'|'Bl'|'valve'
'C2'|'Bl'|'rotor'
. 'C3'|'B2"'|'compound"’
'C4'|'B2'|'control’
'D1'|'C3'|'valve'
'D2'|'C3"'|'rotor’
'D3'|'C4"|'cpu’

Figure 1.1: An example bill of materials hierarchy and how it would typically appear
in a relational database table.

and query performance. Beyond that, an eye has to be kept on keeping the database
logic maintainable, and on foreseeing future update operations and query workloads
that may come up in an evolving application. All this is a major burden to develop-
ers and very hard to get right. Somewhat surprisingly, today’s off-the-shelf relational
database products do not offer much support to their users, even though there has
been popular demand ever since the relational data model has existed. A solution
that application developers thus commonly resort to is to use a trivial data model for
representing the hierarchy at the database layer (Figure 1.1) and outsource most logic
into the application layer. This situation is especially unsatisfactory in the context of
highly capable modern in-memory technology, where software architects are looking
for ways to push more logic down to the database layer in order to utilize the available
powerful hardware.

This research project therefore takes on the challenge of making database systems
truly hierarchy-aware. Our aim is a general and user-friendly framework for storing,
manipulating, and querying hierarchical datasets in a relational database context.

1.1 Contributions

Our contributions towards providing comprehensive support for hierarchies in emerg-
ing in-memory relational database systems can be summarized as follows:

A holistic approach. We consider all relevant aspects across the layers of a typical data-
base system architecture: the logical modeling of hierarchical data, the SQL front-end,
the translation of our SQL constructs into relational algebra, necessary operators and
algorithms for processing updates and queries efficiently, and last but not least the
storage layer where the hierarchies are represented and indexed. To our knowledge,
we are the first to tackle such a holistic approach. Previous work often starts off on



1.1 Contributions

top of the SQL level (e.g., by adding functionality through user-defined data types
or stored procedures) without touching the backend. Our invasive method enables a
deeper and more comprehensive integration of hierarchical and relational data and
results in unprecedented usability and performance.

A design based on real-world use cases. Our research has been conducted in cooperation
with the HANA Database group [29] of SAP SE based in Walldorf. As a major vendor
of enterprise solutions, SAP has a plethora of relevant use cases. Academic literature
sometimes focuses on techniques that are theoretically powerful but turn out to lack
usability in practice. By contrast, we consider a selected set of real-world use cases
and let them guide us in finding the “right” degree of flexibility and functionality to
support. This ensures our research can be of immediate benefit to the industry.

An analysis of conventional approaches to hierarchies in RDBMS. We thoroughly investi-
gate the present state of support for hierarchies in today’s off-the-shelf database sys-
tems. We also briefly cover more distantly related functionality and research tracks.
While many relevant query processing techniques—e. g., for recursive common table
expressions and structural joins—have been tackled by prior research, our analysis
from a practical point of view reveals that a robust and efficient solution that would
optimally meet the requirements of our application scenarios is still missing to date.
Our research thus generalizes and reconciles many of the prior ideas and techniques
into a more comprehensive, flexible, and user-friendly framework for handling hierar-
chies specifically in a relational context.

A concept to allow explicitly modeling hierarchies as “first-class citizens”. The fundamental
idea of our approach is to allow users to model hierarchical tables within the database
by means of a built-in abstract data type NODE. This intuitive and light-weight concept
makes the fact that a hierarchy is being modeled explicit, and ensures that hierarchical
and relational data can interact seamlessly. The NODE type supports a well-defined hier-
archy topology: irregular forest structures with heterogeneous node types. It also gives
access to well-defined functionality with guaranteed performance characteristics.

Carefully crafted extensions to the SQL query language. As a consequence of being unable
to model hierarchies explicitly in the past, SQL has no real support for queries on hi-
erarchies, which results in unintelligible and unmaintainable query statements. Our
NODE data type can serve as a “syntactic handle” to the hierarchy and thus provides the
foundation for attractive language features. We add concise but expressive constructs
to create and populate hierarchical tables, to manipulate the hierarchy structure, and to
effectively express queries on the hierarchies. Our constructs interact seamlessly and
intuitively with well-established SQL concepts such as views, joins, and windowed
tables, and they are light-weight and orthogonal in that no significant grammar exten-
sions are required. Thus, the original spirit of SQL is maintained.

Nowvel functionality regarding hierarchical computations. Our SQL extensions allow users
to conveniently express a class of practically relevant queries from typical applica-
tion scenarios. When it comes to aggregation-like hierarchical computations involving
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structural recursion, they go beyond what can practically be expressed in SQL today.
Many applications—in particular in business analytics—depend on such functionality
and will thus be able to push logic down to the database layer.

Engine support for query processing. Lacking data modeling and query language sup-
port, adding engine support for queries on hierarchies has not been a consideration in
today’s database systems. However, to be able to evaluate complex real-world queries
with high performance and scalability, such support is indispensable. In our design
the backend is aware of the hierarchical structure of the involved tables and thus many
opportunities are opened up in that regard. We describe a comprehensive system of
generic and asymptotically efficient algebra operators and algorithms for implement-
ing the functionality that our SQL constructs expose. We also cover considerations on
the relational algebra level and issues around generating efficient query plans.

A flexible framework for hierarchy indexes. Our algebra operators are designed in terms
of a carefully crafted generic framework for representing and indexing hierarchies at
the storage layer. A hierarchy indexing scheme comes with a definition of the abstract
NODE data type and is encapsulated by a common index interface, which exposes low-
level query primitives and update operations with suitable performance guarantees. A
broad range of existing sophisticated techniques for encoding hierarchies fit into this
design. This provides users with the flexibility to choose among a variety of indexing
schemes according to the application scenario at hand.

A survey of indexing techniques. The technical challenges of storing and indexing re-
cursively structured data have received a fair amount of attention from the research
community in the past two decades, although that work has not primarily been in the
context of relational databases but in the domains of XML and semi-structured data-
bases. A plethora of tree encoding schemes have been proposed that can equally be
applied to hierarchies in a relational schema. We contribute a comprehensive survey
of this area, and design our framework to embrace the prior art.

Pushing the limits of hierarchy indexing. As part of our research project a family of
indexing schemes called order indexes has also been proposed, which further advances
the state of the art when it comes to indexing hierarchies in relational databases. Unlike
many prior works, their emphasis is particularly on coping with very large and at the
same time highly dynamic datasets, on supporting complex update operations, and
on offering robustness in case of unfavorable “skewed” update patterns. While their
design and implementation is not in the scope of this thesis, we cover how they are
fitted into our framework and demonstrate their feasibility in our benchmarks.

Working with existing hierarchical data. Providing a migration path for legacy applica-
tions is of high practical relevance but easily overlooked in green-field designs. We
place an emphasis on this topic by providing language constructs to derive hierar-
chical tables from existing relational data. We also cover the necessary algorithms to
efficiently bulk-load hierarchy indexing schemes from the data.
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Prototype. Our research prototype provides a proof of concept for the mentioned algo-
rithms and algebra operators. It also incorporates a considerable selection of indexing
scheme implementations that fit our generic design. We use it to conduct an experi-
mental evaluation to demonstrate the performance characteristics of our framework.

1.2 Publications

Some ideas and figures presented in this thesis have appeared previously in the fol-
lowing publications. Some were written jointly with collaborators from TUM and SAP.

¢ Robert Brunel and Jan Finis. “Eine effiziente Indexstruktur fiir dynamische hi-
erarchische Daten”. In: Datenbanksysteme fiir Business, Technologie und Web (BTW)
2013. Workshopband P-216 (Mar. 2013), pp. 267-276

¢ Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neumann, Franz Farber, and
Norman May. “DeltaNI: An efficient labeling scheme for versioned hierarchical
data”. In: Proc. 2013 ACM SIGMOD Int. Conf. Management of Data. ACM, June

2013, pp. 905-916

¢ Jan Finis, Martin Raiber, Nikolaus Augsten, Robert Brunel, Alfons Kemper, and
Franz Farber. “RWS-Diff: Flexible and efficient change detection in hierarchi-
cal data”. In: Proc. 22nd ACM Int. Conf. Information and Knowledge Management
(CIKM). ACM, Oct. 2013, pp- 339-348

* Robert Brunel, Jan Finis, Gerald Franz, Norman May, Alfons Kemper, Thomas
Neumann, and Franz Farber. “Supporting hierarchical data in SAP HANA”. In:
Proc. 31st Int. Conf. Data Engineering (ICDE). IEEE, Apr. 2015, pp. 1280-1291

¢ Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neumann, Norman May, and
Franz Farber. “Indexing highly dynamic hierarchical data”. In: Proc. VLDB En-
dowment 8.10 (Aug. 2015), pp. 986—997

¢ Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neumann, Norman May, and
Franz Farber. “Order Indexes: Supporting highly dynamic hierarchical data in
relational main-memory database systems”. In: The VLDB Journal 26.1 (Feb. 2017),

pp- 55-80
* Robert Brunel, Norman May, and Alfons Kemper. “Index-assisted hierarchical

computations in main-memory RDBMS”. In: Proc. VLDB Endowment 9.12 (Aug.
2016), pp. 1065-1076
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1.3 Outline

The remainder of this thesis is organized as follows:

CHAPTER 2: Hierarchical Data in Relational Databases

This chapter provides our foundation and motivation. It introduces all relevant concepts con-
cerning hierarchical data in relational databases. We characterize the forms of hierarchical data
we target, motivate our focus by citing typical scenarios and queries from the enterprise ap-
plications of SAP, and state specific requirements a relational database system has to fulfill to
be called “hierarchy-aware.” A survey of the state of the art positions us against the various
related work in the area.

CHAPTER 3: A Framework for Integrating Relational and Hierarchical Data

This chapter covers our framework for hierarchical data in SQL-based database systems, be-
ginning with its core concept of encapsulating the structure of a hierarchy by an abstract data
type NODE. Based on this we motivate and define extensions to SQL for creating, querying, and
modifying a hierarchical table. A few advanced examples illustrate that the language elements
cover typical usage scenarios and blend seamlessly with the “look and feel” of SQL.

CHAPTER 4: The Backend Perspective of Hierarchical Tables

This chapter discusses how hierarchical tables and the NODE type are implemented and indexed
under the hood, what exactly makes up a hierarchy indexing scheme, and our common abstract
index interface. We also thoroughly survey a broad range of existing hierarchy encoding tech-
niques that fit into this design, and describe how it accommodates our proposed order indexes
family of indexing schemes. Finally, we discuss how to implement update statements as well
as efficient bulk-building from existing hierarchical data.

CHAPTER 5: Query Processing on Hierarchical Data

This chapter covers the translation of our query language extensions into relational algebra and
from there into executable query plans. We propose a comprehensive set of hierarchy-aware
physical algebra operators, analyze their properties in detail, and discuss their generic imple-
mentation in terms of the query primitives of our index interface.

CHAPTER 6: Experimental Evaluation

In this chapter we demonstrate the feasibility of our framework by exercising the proposed
indexing and query processing techniques against synthetic and real-world data based on a
prototypical execution engine. Our experiments comprise our own family of indexing schemes
and physical algebra operators as well as typical alternative approaches and ad-hoc solutions.

CHAPTER 7: Conclusions and Outlook

This chapter concludes this thesis, wraps up the key properties of our solution, and outlines
possible directions for future research.



Hierarchical Data
in Relational Databases

This chapter sheds light on our motivation and the challenges we tackle in this thesis.
We first introduce the necessary fundamental concepts around hierarchies in a rela-
tional database context (§2.1). This foundation allows us to precisely characterize the
forms of hierarchies we intend to support with our framework (§ 2.2.1, § 2.2.2). We mo-
tivate our focus by looking at a number of scenarios in enterprise applications (§2.2.3),
which in particular gives us an understanding of the common types of queries (§2.2.4).
Based on this discussion, we summarize the requirements a database system has to
meet in order to exhibit decent support for managing hierarchical data (§2.2.5). Fi-
nally, we survey the state of the art of how users deal with such data today, which
reveals the existing functionality gaps that our framework intends to fill (§2.3).

2.1 Basic Concepts of Hierarchies

Hierarchical data appears in database applications in various forms. Much like an or-
dinary relation in the relational data model, a hierarchy is a collection of real-world
entities such as objects, names, or categories. The gist is a particular relationship that
is defined between the entities, which gives meaning to terms such as one entity be-
ing “above,” “below,” or “at the same level as” another. Different applications place
different constraints on how exactly the hierarchical arrangement may look. Figure 2.1
displays two examples. In hierarchy (a) each entity has at most one superordinate en-
tity, and there are no cycles in the “is below” relationships. Hierarchies like this are
often called strict. Hierarchy (b) has two top-level entities, (A) and (F), and allows entity
(D) to have multiple superordinates: it is “directly below” (8), (¢), and (F). A hierarchy
like this is sometimes referred to as an overlapping hierarchy. Figure 2.1c shows the
common data model in the high-level entity/relationship notation [18]: Each entity
is identified by a key and described by certain attributes, and there is an “is below”
relationship between entities. The multiplicity N of the relationship can be 1 in order
to model a strict hierarchy, or it can be * to allow for an overlapping hierarchy. In a
relational database, the N = 1 model can be implemented as a single flat table:

CREATE TABLE Entity (
ID INTEGER NOT NULL PRIMARY KEY,
PID INTEGER NULL REFERENCES Entity (ID), -- “isbelow”

- - additional attributes
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Entity
ID |PID |Attributes
"Al' [NULL cee
'‘B1'|['Al"'
'B2'['Al!
'Cl'|'B1"

N 'c2'|'B1"
'C3'|'B2'

Entity "c4'|'B2!
M 'D1'|'C3'

Key. 02 |3
Attributes 03 |'ca

() (d)

Figure 2.1: Two example hierarchies, and how they may appear in entity/relationship
models (c) and relational database tables (d).

The hierarchical relationship is established by the foreign key self-reference, which
associates each entity (row) with the respective superordinate entity. Figure 2.1d shows
example data representing hierarchy (a).

In practice, the basic multiplicities of E/R diagrams and REFERENCES constraints of
SQL are not expressive enough to precisely capture the semantics of the modeled
hierarchies. Most applications have additional constraints on the structure of the hi-
erarchies. For example, the above models permit cyclic “is below” relationships (an
entity could even be a subordinate of itself!), which is usually meaningless.

The Structure of a Hierarchy. To characterize hierarchical structures precisely we
need to bring in the terminology of graph theory (as covered, e.g., in [26]). We can
describe a data model such as Figure 2.1c as a vertex-labeled directed graph, where each
graph node is associated with exactly one entity (table row). The mathematical model
of a directed graph is a tuple G = (V,E), where V is some set of objects, the nodes (or
vertices), and where E C V x V is a set of ordered pairs of elements of V representing
the directed edges. By their nature as elements of a set, the nodes are distinguishable,
so we may call the graph vertex-labeled.

In our setting, the labels (the contents of V) are the key values that identify the
modeled entities. The edge set E thus contains pairs of keys and directly represents
the “is below” relationship. Note that an edge is defined solely by the two nodes it
connects: In hierarchies the focus is typically on the entities themselves rather than
on their relationship. Treating the edges as weak entities without an own identity is
therefore usually sufficient. Furthermore, neither the E/R model nor the relational
model would allow the same edge to exist multiple times between a particular pair of
nodes. In line with this, our graph model defines E as a set rather than a multiset,
precluding so-called “multiple edges” by design. Beyond this, our relational model
does not impose any further structural constraints that may hold in applications. The
terminology of graph theory helps us to express these. Common restrictions are:
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* Connected graphs: In a connected graph, every pair of nodes is connected by at
least one path. There are no unreachable nodes.

* Acyclic directed graphs (DAGs): A directed graph is acyclic if there are no directed
cycles. A directed cycle is a closed walk over the nodes using only edges in E, with
no repetitions of nodes and edges (other than the end node matching the start
node). Disallowing directed cycles also precludes edges that connect a node to
itself, so-called loops. However, a DAG may still have an undirected cycle, a closed
walk that ignores the direction of the edges.

* Rooted trees: A rooted tree is a directed graph with the following properties: (1.) It
is connected. (2.) It is rooted: There is a designated root node T € V which de-
termines the direction of the edges. All edges are oriented away from the root".
(3.) It is acyclic. There are neither directed nor undirected cycles.

The example (a) of Figure 2.1 is a tree with root (A1), whereas (b) is a connected DAG.

Further Terminology for Trees. Besides being connected and acyclic, trees have sev-
eral further characteristic properties, which render them comparatively simpler to rep-
resent and process algorithmically: The absence of cycles means that any node is reach-
able from the root through a unique path. It also implies that a tree of |V| nodes has
exactly |E| = |V|—1 edges (assuming |V| is finite). For example, the hierarchy in
Figure 2.1a has 10 vertices and, by its nature as a tree, 9 edges.

The concept of a unique root path furthermore gives rise to a rich and intuitive
terminology that we will heavily use in this thesis. The most important terms are:

e If the unique path from T to node v passes through node u, node u is called an
ancestor of v, and v is called a descendant of u.

* The parent of a node v is the ancestor that is directly connected to v. Every node
except the root has a unique parent. A child of a node v is a node of which v is
the parent. A node that has no children is called a leaf. A node that is not a leaf
is called an inner node (also internal or branch node).

¢ The depth of a node v is the number of nodes on the path from T to v. In the ex-
ample of Figure 2.1a the depth of (1) is 4. (By contrast, in the DAG of Figure 2.1b,
the depth of (D) is ambiguous: it can be seen as either 3 or 2.) A hierarchy in
which all leaves have the same depth is called a balanced hierarchy.

'Equivalently, all edges could be considered as being oriented towards the root. This interpretation is
essentially up to the application. We consistently stick to the former, more common interpretation, as
it matches the natural direction of traversal. Also note that as T determines the direction of the edges,
there is no need to explicitly manifest that direction in the mathematical model. In the literature, a tree
is therefore more commonly defined as a 3-tuple (V,E, T) where (V, E) is an undirected graph, whose
edges E are unordered pairs (2-sets) of nodes.
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Ordered Hierarchies. In some applications the relative order of entities with a com-
mon superordinate is meaningful, although neither E/R models nor SQL have built-in
means for expressing this. In structured documents like XML, for example, a “docu-
ment order” is inherent. In other scenarios, a particular attribute may represent the
order. Even if that is not the case, we want to treat such hierarchies as being ordered
when storing them in a database. Although maintaining the order incurs space and
runtime overhead, queries such as “enumerate all nodes in their natural hierarchy or-
der” could otherwise not be answered deterministically. Mathematically, we are thus
dealing with ordered graphs: An ordered graph is an unordered graph where the out-
going edges of each node are totally ordered.

Two concepts that exist only with ordered trees are preorder and postorder. They refer
to a linear ordering of the nodes that can be produced by “tracing” an ordered depth-
tirst traversal. In a preorder listing, the root of each subtree is listed just before the
nodes in its subtree:

Al B1 C1 Cc2 B2 C3 D1 D2 C4 D3
@ (@ & @

In a postorder listing, each root appears right after the nodes in its subtree:

C C B D D C D3 C B A

If we assign numbers to the nodes reflecting their preorder and postorder ranks, we
can characterize the terms ancestor and descendant via these numbers:
v is a descendant of u <= pre(v) > pre(u) A post(v) < post(u)
v is an ancestor of u <= pre(v) < pre(u) A post(v) > post(u)

The other two possible combinations are:

v precedes u <= pre(v) < pre(u) A post(v) < post(u)
v follows u <= pre(v) > pre(u) A post(v) > post(u)

In our example, follows (B), (c1), and (c2), but precedes and (03). Note the symme-
try in the ancestor/descendant and preceding/following relationships.

In the terminology of XPath [110], binary relationships of this kind are called axes,
and further axes beyond ancestor, descendant, preceding, and following are defined.
However, in the context of “pure” hierarchies the ancestor and descendant axes matter
the most. These concepts will play a central role in later chapters, in particular § 5.

2.2 Application Scenarios

In our cooperation with SAP, we consulted with stakeholders of various enterprise
applications and investigated a number of scenarios that can benefit from first-class
support for hierarchical datasets. Armed with the concepts introduced in the previous
section, we can now precisely characterize the modeled types of hierarchies and clarify
the scenarios we particularly focus on.

10
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Entity 1 Hierarchy
0..1
Entity 0.* Key 1
N . Attribute 1
1.1 1.1 Entity 2
Entity Key 2
1 ’
M X 0.1 Attribute 2
Key 0.. 0.1 0. Key 3
Attributes Edge Entity 3 Attribute 3
(a) (b) () (d)

Figure 2.2: Common entity/relationship models of hierarchical data

2.2.1 Common Data Models

Figure 2.2 shows, again from an abstract entity/relationship point of view, different
models of hierarchical data that are commonly seen in practice:

(a) This is the basic “self-referencing entity” model we have already seen in Fig-
ure 2.1c. It is capable of representing directed graphs, but they may be discon-
nected or cyclic. If N = 1 and cycles are disallowed, it closely corresponds to our
notion of a tree.

(b) This variant is equivalent to (a) with N = 1, but gives edges a distinct identity.

A design in the fashion of (b) is necessary when a general graph is modeled and the
edges are to be labeled. However, labeled edges are untypical for “pure” hierarchies
where the focus is primarily on the entities (the nodes). Also note that for a tree the
distinction between node attributes and edge attributes is technically not necessary:
Since every entity has a unique superordinate, there is a 1 : 1 correspondence between
a node v, its incoming edge (u,v), and transitively the whole path T,...,v from the
root to v. This allows us to “join” the Edge relation into the Entity relation, bringing
us back to variant (a). The interpretation of whether an attribute is a node label or an
edge label is then up to the application.

(c) Besides having a single self-referencing entity, another common pattern is a series
of multiple entities in 1 : N relationships, directed from subordinate entity to
superordinate entity, respectively.

This models a homogeneous hierarchy where the number of levels is fixed and all entities
on a level are of the same type. These hierarchies are usually also balanced. A common
example is geographic data:

Continent : {[ Name ]} = {(Europe), ...}

Country : {[ Name, Continent ]} = {(Germany, Europe), ...}

State : {[ Name, Country ]} = {(Bavaria, Germany), ...}
Region : {[ Name, State ]} = {(Upper Bavaria, Bavaria), ...}
City : {[ Name, Region ]} = {(Munich, Upper Bavaria), ...}

11
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Although this model is widespread in practice, it does not make sense for every ap-
plication. The rigid homogeneous structure creates modeling problems when entities
on certain levels do not actually exist (e.g., states and regions in tiny countries). To
account for such cases one would have to either insert a dummy region or distort the
application logic accordingly.

Model (c) can be transformed into model (a) by introducing a common key (e.g., an
integer ID) with a shared domain across all involved tables, and then arranging these
IDs in a separate self-referencing relation according to model (a).

(d) In this model there is a single “denormalized” relation with a number of dedi-
cated attributes ay, ..., a; which represent the hierarchy structure somewhat im-
plicitly: Attribute a; (as a whole) represents level i of the hierarchy, and each
distinct a; value represents a particular node on that level. A tuple of a; values
corresponds to a complete path from the root to a leaf node.

Model (d) is a variant of model (c) where all relations are joined into one. In prac-
tice many database tables exhibit this design or can be interpreted as a hierarchy
in this way. For example, every table containing a date field could be viewed as a
Year-Quarter-Month-Day hierarchy.

2.2.2 Our Focus

Our goal is to make working with data models such as those shown in Figure 2.2 as
convenient and efficient as possible. We primarily focus on hierarchy structures of the
following two categories:

1. Rooted trees. We refer to these as strict hierarchies. They may be inhomogeneous
(unlike models c and d), unbalanced, arbitrarily wide and deep, and ordered.

2. Non-strict hierarchies that can reasonably be viewed as strict hierarchies.

Although the data models of Figure 2.2a and b can accommodate them, we do not
intend to support arbitrary directed graphs. An often-cited example for this kind of
scenario is flight planning (e. g., [82]): In a flight route graph, entities of type Airport
are connected via Flight edges, forming a complex and inherently cyclic directed graph.
Flights may be associated with attributes such as a departure time, duration, and cost,
and a common query may be: “For every pair of cities, count the potential flights in a
given time range.” To express such queries effectively one requires a graph-centered
query language [106], and evaluating them involves systematic graph traversals that
can handle encountered cycles. This appears to be better tackled by dedicated graph
databases (see, e. g., [89]). We therefore decided to exclude any graphs that cannot rea-
sonably be interpreted as strict hierarchies from our scope. Our goal is a light-weight
solution in the world of SQL that tightly integrates with relational database backends,
where most business data today lives. This targeted focus allows us to provide features
that are both user-friendly and “performance-friendly” to a degree that would be hard
to achieve by a one-size-fits-all solution for graph-like data.

12
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That said, deviations from a strict hierarchy structure are sometimes necessary or
desirable in real-world applications such as those of SAP. Acyclic directed graphs with
a limited number of edges violating the strictness condition are not as problematic.
We found that these scenarios can usually be handled by working on a tree view
of the graph, on which all operations of strict hierarchies are well-defined. Such a
view can be obtained either by eliminating edges to extract a spanning tree, or by
replicating any subtrees that are reachable via multiple paths. We anticipate these
advanced requirements in our framework.

2.2.3 Example Scenarios

We now look at typical applications featuring strict hierarchies, mostly in the context
of enterprise software. To gain insights into which features and semantics we require
from our framework, we consider both the data modeling perspective as well as the
queries that are commonly run against the data.

Materials Planning. A bill of materials (BOM) is perhaps the classic use case for data-
bases in business applications. It is defined by the German standard pIN 199 [27] as
“a complete, formally structured list of the components that make up a product or as-
sembly.” The BOM is a central artifact in enterprise resource planning systems, where
it can drive the whole value chain from engineering to manufacturing through to sales
and maintenance. From a data modeling perspective, a BOM contains entities of type
Part, and there is a Part “is composed of” Part relationship, possibly associated with a
quantity denoting how often the part appears within the composite. The relative order
of parts usually does not matter.

By far the most common materials planning procedure is the parts explosion, a struc-
tured (indented) list that breaks apart an assembly into the components that are needed
to build it. Explosions can be created in various ways: The list may be in depth-first or
(more rarely) breadth-first order; it may show only direct subassemblies (single-level
explosion) or a limited number of levels. Where-used queries view the BOM in a bottom-
up manner, going from raw materials to composites at increasingly higher levels. Of-
ten there are additional filters, or accumulated quantities are displayed with the parts.
Example queries are: “What are the total production costs for assembly X?”; “List sub-
assemblies whose accumulative costs are larger than X”; “Which raw materials need
to be ordered in which quantity?”; “What is the total quantity of each component re-
quired to build X, grouped by component type?” (summarized explosion); and “In
how many different assemblies does a subpart of type t appear?”

Human Resources. In large organizations, department divisions and reporting lines
usually form hierarchies. These comprise two entity types, Employee and Department,
in different relationships: A department “subdivides” another department, and each
employee is “assigned to” a department and “reports to” a supervising employee. The
sibling order does not matter. In a more complex model an employee could be par-
tially assigned to multiple departments (creating an N : M relationship), where each
assignment is labeled with the contribution in percent. Queries are primarily about

13
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listing and inspecting the organization structure: “Which employees work under man-
ager X?”; or “Display the reporting line for Y.” Beyond that, simple computations
may be performed: “Count all employees within each level-k department”; or “List
managers who are responsible for more than n employees.”

Enterprise Asset Management. An asset hierarchy helps to keep track of production-
relevant assets (such as machine parts, tools, and auxiliary equipment) and their func-
tional locations (plants, rooms, assembly lines). It contains two types of potentially
nested entities: Functional Location and Equipment. A piece of equipment is “installed
at” a functional location and may be “composed of” another piece of equipment. Al-
ternatively, two separate location and equipment hierarchies could be modeled—the
latter resembling a BOM. The sibling order usually does not matter.

Profit Center Accounting. Cost and profit centers are typically arranged in a strict
hierarchy with a Cost Center “is composed of” Cost Center relationship. The sibling
order reflects the numbering scheme of the accounts. Queries often involve computa-
tions, such as “Sum up the costs for each level-k cost center.”

Project Planning. Planning and issue tracking systems often structure their items into
milestones and each milestone into tasks and subtasks. The primary relationship is
Task “depends on” Task. A task is considered complete when all of its subtasks are
complete. The sibling order may model the priorities or the planned order of comple-
tion. More complex project plans may additionally contain cross-links between tasks,
resulting in an acyclic directed graph. However, strictly hierarchical project plans are
often preferred, as they are easier to display, navigate, and maintain.

Documents. Semi-structured text, most notably XML [108] and JSON [52], is by nature
strictly hierarchical and ordered. A document consists of entities of type Document
Node, with subtypes such as Text Block, Paragraph, Section, Page, et cetera. There
may be auxiliary cross-references within a document. Queries involve searching for
document nodes of certain types, matching simple patterns against the document, and
summing up metrics such as word counts along the document structure.

Many other artifacts in computing and software technology could be counted into
this category, such as file repositories, package dependencies, and abstract syntax trees.

Business Intelligence (BI). In analytic applications, hierarchies are routinely used to
explore large fact tables. Such a table characterizes facts (e.g., sales items) by a num-
ber of dimension attributes (e.g., the sold product) and associates them with numeric
measures of interest (e. g., the price). Many dimensions can be organized as hierarchies.
For example, consider a large enterprise that uses a hierarchical scheme for its product
portfolio (e. g., Business Area—Product Line-Product—Version). We may have a table of
sales and an auxiliary table storing the products:

Sale : {[ID, Item, Customer, Product, Date, Amount]}
Product : {[ID, Name, Category, Size, Price]}

14
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If Category identifies a node in the product hierarchy, Product can act as a hierarchical
dimension of the sales table. Other common examples are geographic dimensions such
as Continent-Country-Region-City, or date/time dimensions such as Year—-Quarter—
Month-Day or Year-Calendar Week-Day. BI products use such dimensions to inter-
actively filter and group the facts. The user may begin his analysis on the top-most
level—at the most coarse level of detail—and then “drill” deeper as required. From
published material on BI technology and multidimensional data models [50, 54, 86,
101] we can learn about the typical characteristics of dimension hierarchies: They are
usually strict, as directed graphs are difficult to handle in user interfaces and pose
semantic issues when summarizing and accumulating the data. The sibling order is
usually meaningless for discrete dimension values, or the required order may depend
on the type of report (e.g., products ordered by name or by decreasing revenue). For
simplicity, the hierarchies are also often balanced and treated primarily as a fixed set of
named levels, so they can be conveniently referred to in the user interface. (Although
this is not always the most appropriate modeling, as we noted in §2.2.1.) The lowest
level has a distinguished role, as the leaves in each dimension represent the specific
items the facts are mapped to (e.g., the actual products), whereas the inner nodes
represent abstract groups or summarized ranges of items.

Multiple hierarchies may be in place for a dimension, as the various examples of
subdividing a date/time period show. A design one sometimes encounters is to mix
multiple divisions into a single overlapping hierarchy. For example, when hierarchies
for both Fiscal Year and Calendar Year are defined, sharing the lower Month-Day levels
instead of replicating them in two hierarchies seems convenient. But this is not clean,
as Day 1 of January is in fact a different entity than Day 1 of February. Turning the
hierarchy into a DAG needlessly complicates matters. As two different divisions are
rarely used in the same query, it is virtually always preferable to treat them as different
(strict) hierarchies. We therefore do not intend to support overlapping hierarchies.

Queries involving dimension hierarchies are generally computation-intensive. They
apply various filters to the fact data and aggregate the measures along the hierarchy
structure. Examples are: “Compute the total/average sales amount per region”; or
“List regions with total sales below average.” A challenge is that multiple hierarchi-
cal dimensions are sometimes involved: “Display a crosstab of total sales per coun-
try/region and per year/month.” Having multiple dimensions essentially multiplies
the number of possible paths through the hierarchies for aggregation.

2.2.4 Typical Queries on Hierarchies

By looking at the scenarios discussed in the previous section, we see that queries in-
volving hierarchies can broadly be classified into three categories:

1. Basic node queries produce a potentially ordered listing of a selection of hierarchy
nodes and project basic properties such as their depths.

2. Structural pattern matching queries filter and match entities based on their positions
in the hierarchy.
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3. Hierarchical computations associate a subset of the hierarchy nodes with numeric
values and then propagate or aggregate them along the hierarchy structure.

Due to the limitations of the relational model and SQL, hierarchies are in practice
often represented using very basic relational encodings, which preclude implement-
ing such queries at the database layer. While investigating the applications of SAP,
we observed several implementations of largely equivalent hierarchy-handling logic
written in ABAP (running within the application server) or stored procedures. These
approaches have significant shortcomings regarding performance, interoperability, and
maintainability. Our goal, therefore, is to be able to express all relevant queries directly
using appropriate extensions to SQL. To achieve this we need to examine the three cat-
egories of queries and clarify what features exactly are missing from the language.

Basic Node Queries. Certain properties of the hierarchy nodes are needed frequently
and should therefore be easily accessible. The most interesting properties of a node
are its depth, whether it is a root or a leaf node, and its number of children. Besides
querying these properties, the user may wish to filter nodes according to their values,
and produce a listing of the nodes in a particular order. These requirements all map
fairly straightforwardly onto the basic SELECT-FROM-WHERE-ORDER framework of SQL, so
no major conceptual enhancements are needed. We only have to extend the expression
language of SQL appropriately. For example:

SELECT ID, depth of the node FROM Hierarchy WHERE depth of the node <= 3
ORDER BY depth-first hierarchy order

Structural Pattern Matching Queries. Pattern matching queries involve a hierarchi-
cal pattern, which can be as simple as “v is below u,” where u and v are placeholders
for nodes. The user usually either wants a list of all combinations of nodes that match
the given pattern, or test a particular list of combinations against the pattern and see
those combinations that match. To illustrate a more complex pattern matching query,
we revisit the bill of materials table from Figure 1.1 (p. 2):

“Select all combinations (e, 7,c) of an engine e, a rotor r, and a compound
part ¢, such that e contains r, and r is contained in c.”

The qualifying combinations are ((82), (02),(3)), ((B2),(02), (A1), and ((B1),(C2), (A1).

The challenge with pattern matching queries lies in the recursive nature of the “is
below” relationship. We want to be able to match, for instance, a node v with a partic-
ular ancestor u without having to—from a language perspective—explicitly mention or
“loop” over the intermediate nodes between u and v in the query statement. It turns
out these kinds of queries fit quite well into SQL’s declarative paradigm. The most
appropriate mechanisms to express pattern matching are filters and structural joins on
hierarchy axes. For example, the simple “v is below u” pattern becomes:

SELECT u.ID, v.ID FROM Hierarchy u, Hierarchy v WHERE v’s node is a descendant of u’s node
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Figure 2.3: A hierarchy with weighted edges represented by table Hierarchyl, and a
table Inputl of numeric input values attached to some of the nodes.

Note that the hierarchy may potentially contain a large number of intermediate nodes
between any two nodes matching this pattern. Intermediate nodes merely provide con-
nectivity between the nodes of interest; they otherwise are not relevant to the query.
This leads us to an important design goal concerning the evaluation of such queries:
The evaluation of a pattern should not be required to “touch” (or iterate over) the inter-
mediate nodes in any way. In particular, the number of intermediate nodes should be
insignificant to the overall performance. To achieve this goal, we require appropriate
hierarchy indexes that efficiently maintain the connectivity information, as well as join
operators that can leverage those indexes. Many relevant indexing and query process-
ing techniques have been studied previously in the domain of XML databases [11, 41,
53, 118]. The problem of efficiently evaluating pattern matching queries can thus be
considered as largely solved already—albeit in a different context.

Hierarchical Computations. When it comes to the third category of queries, things
are less obvious. Consider the example hierarchy in Figure 2.3, where the edges are
weighted and some nodes are associated with numeric values given by table Input1. If
Hierarchyl would model a bill of materials, for example, ID could be a foreign key ref-
erencing the part master data, Weight the part quantity, and Value the prices of selected
components. Now, suppose we want to compute weighted sums of those values bot-
tom up—how can we state a SQL expression that correctly incorporates the weights?
To see how this can work, we need to take a closer look at the intended semantics.

In general, a hierarchical computation propagates and accumulates data—usually nu-
meric values—along the hierarchy edges. Data flow can happen either in the direction
towards the root (bottom up) or away from the root (fop down). The computation input
may include the “static” labels stored with the entities themselves (e. g., ID and Weight
in Hierarchyl). However, in realistic queries the input is generally the result of an ar-
bitrary subquery, which associates the hierarchy nodes with “dynamic” input values
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Input2
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Figure 2.4: Example tables. — (a/b) input/output nodes for binary grouping; (c) result of a
bottom-up rollup based on Inputl; (d) combination of Hierarchyl and Inputl for
unary grouping; (e) result of a bottom-up rollup based on Input2

(like table Inputl). Not all nodes potentially carry an input value, and not all nodes
will be equally interesting in the result. Consider an analytic scenario as in § 2.2.3, with
a fact table of sales data and a dimension hierarchy of products and product groups.
Here, the computation input could be the (pre-aggregated) sales amounts that are as-
sociated with the products (the leaf nodes) via join. A common task in scenarios of
this kind is to sum up the revenue of a selection of products—say, “type A”—along
the hierarchy and report these sums for certain product groups visible in the user in-
terface—say, the three uppermost levels. This example represents a type of hierarchical
computation with two particular characteristics: First, only a subset of nodes carry an
input value. We call these the input nodes. Second, the set of input nodes is compar-
atively small and mostly disjunct from the nodes that after the computation carry a
result we are interested in. We call those the output nodes. As input and output nodes
are naturally determined by two separate subqueries, we refer to this type of hierar-
chical computation as binary structural grouping. “Structural” here alludes to the role
the hierarchy structure plays in forming groups of tuples: In the top-down case, the
group of each node consists of its ancestors; in the bottom-up case, it consists of the
descendants. In our example we are computing a simple sum over each group.

In both SQL and relational algebra, binary grouping queries exhibit a join—group-
aggregate pattern, with an inner or left outer join on a hierarchy axis such as descendant,
and subsequent grouping of the outer side. The following example statement computes
a bottom-up rollup based on Hierarchy1, given the input nodes Inputl and the output
nodes Outputl in Figure 2.4b (but neglecting the edge weights for now):

SELECT t.*, SUM(u.Value) AS Result
FROM Outputl t LEFT OUTER JOIN Inputl u
ON u.Node = t.Node OR u’s node is a descendant of t’s node in Hierarchyl
GROUP BY t.x*
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In our example this yields table Resultl (Figure 2.4¢). From an expressiveness point of
view, join-group—-aggregate statements are a sufficient and to most SQL users a fairly
intuitive way of specifying a hierarchical computation. They are not fully satisfactory,
though: they lack conciseness, since conceptually a table of tuple pairs representing
the group associations must be assembled by hand prior to grouping, and the fact
that a top-down or bottom-up hierarchical computation is being done is somewhat
disguised. Regarding their evaluation, join—group-aggregate query plans perform ac-
ceptably when the aggregation (in the example: SUM) is cheap to compute and the set of
output nodes is rather small. However, there is a major efficiency issue: for each output
node, the computation naively sums up the values of all matching input nodes, while
ideally we would reuse results from previously processed output nodes. In our exam-
ple, to compute the sum for (A1) we can save a few arithmetic operations by reusing
the sum of and adding just the input values of (1), (02), and (©3). To enable such
reuse, hierarchy-aware algorithms are needed. The binary grouping operators in our
framework process output nodes (i. e., the left join input) in the natural top-down or
bottom-up order—which ensures each output node is processed after any of its cov-
ered nodes—and memorize any results that can be reused for upcoming output nodes.
Thereby they overcome the mentioned efficiency issues.

Binary structural grouping is not suitable for all types of hierarchical computations,
however. In cases where there is no clear distinction between input and output nodes,
unary structural grouping is more natural. Unary structural grouping works on a single
table and inherently yields a result for every tuple. Every node essentially acts as
both an input and an output node. This is comparable to a binary grouping query
where the output and input nodes and the input values have been fused into one table
and a self-join is performed. For example, Input2 in Figure 2.4d combines the nodes
of Hierarchyl with Inputl. Since only input nodes carry meaningful values, “output-
only” nodes are assigned NULL as a neutral Value. Figure 2.4e shows the new column
resulting from a unary bottom-up rollup computing the (unweighted) suM on that
table. In SQL, there is currently no more direct way to express this than a self-joining
join—group—-aggregate statement. What we would ideally be able to write is:

SELECT t.x, t.Value + SUM(u.Value over all covered nodesu) AS x
FROM Input2 t with bottom-up unary structural grouping based on Hierarchyl

Besides lending themselves well for certain computations, unary grouping queries also
afford more powerful types of aggregations: In theory, we can evaluate a structurally
recursive aggregation formula against the data. Such a formula, when evaluated for a
node v in the table (say, in Input2) is conceptually first evaluated in a recursive
manner for its directly covered nodes ((c3) and (c4)), and the evaluation results become
available in the computation for v itself. Using structural recursion we can state the
above rollup in yet another way:

SELECT t.x, t.Value + SUM(u.x over directly covered nodesu) AS x
FROM Input2 t with bottom-up unary structural grouping based on Hierarchyl

Note that the computation for each node does (in the bottom-up case) no longer go
over all descendants as in our previous binary grouping example; only direct input
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nodes are included in the sums. For the value x would be computed as 10 +
(x of €1)) + (x of (c2)), and overall this would yield the same result column x as in
Figure 2.4e. Finally, we can now express the weighted rollup of our opening example
by simply multiplying in the Weight within the SUM expression.

Thus, unary structural grouping combined with structurally recursive aggregation
expressions goes way beyond what basic join—group-aggregate statements are able to
express. However, it requires the system to “know” the hierarchy structure, so it can
apply the expression in a bottom-up manner. Given this ability, enhancing SQL by
a corresponding syntax turns out to be surprisingly straightforward, as we will see
in § 3. Regarding the evaluation, note that—unlike binary grouping—unary grouping
with structural recursion makes reusing the results of covered nodes explicit and thus
inherently translates into an efficient evaluation approach.

2.2.5 Summary of Requirements and Challenges

Following the discussion of application scenarios in this section, we can now summa-
rize the requirements that a database system needs to fulfill in order to exhibit decent
support for hierarchical data.

#1 Tightly integrate relational and hierarchical data. First and foremost, any support for
hierarchies in databases must harmonize with relational concepts, both on the data
model side and on the query language side. Business data today still resides mainly
in pure relational tables, and from the examples in this section it becomes clear that
queries on hierarchies will routinely need to refer to such “pure” data as well. In
particular, it is of major importance that joining hierarchical and relational data works
in a straightforward and frictionless way.

#2 Provide expressive and intuitive extensions to SQL. The language constructs must be
expressive enough to support all typical tasks of defining, manipulating, and querying
hierarchies. Apart from expressiveness, the resulting statements must be intelligible, so
that programmers are able to intuitively understand, adopt, and leverage the function-
ality they provide. At the same time, an eye must be kept on light syntactic impact:
Where appropriate, existing mechanisms of SQL should be reused or enhanced rather
than replaced with new inventions. This not only minimizes training efforts for users
who are already familiar with SQL, but also reduces implementation complexity and
adoption barriers for existing relational database systems.

#3 Support explicit modeling of hierarchical data. When designing a relational database
schema from scratch, a database engineer initially has to decide on a data model to
represent a hierarchy and in particular to encode its structure—for example, using a
self-referencing table as we have seen in §2.1. Even though relational tree encodings
have been thoroughly studied in the literature (cf. § 2.3), carefully choosing and imple-
menting one of them still requires advanced knowledge. What’s more, the non-trivial
encodings tend to clutter the table schema and disguise the hierarchical nature of the

20



2.2 Application Scenarios

data. What is required is a way to explicitly model a hierarchical table in the schema,
using abstract data definition constructs that hide the gory implementation details.

#4 Enable and facilitate non-trivial queries involving hierarchies, by offering convenient
query language constructs and corresponding backend support. Besides basic queries
on hierarchy nodes, we discussed two types of queries in § 2.2.4 that must be supported
in particular: structural pattern matching and hierarchical computations.

#5 Support updates to the hierarchy structure. Hierarchies in transactional databases are
usually dynamic and undergo regular updates. In some applications only basic inser-
tions or removals of individual leaf nodes are performed, while in other cases complex
operations such as bulk-relocations of arbitrarily large subtrees are required. As an ex-
ample, consider the asset management scenario of §2.2.3. In an automotive company,
such a hierarchy would contain a large number of machines, robots, and mechanical
tools. The assets would need to be relocated in bulk when a new production line is
established. In [31] we conducted an analysis of the asset hierarchy of an SAP ERP cus-
tomer, and found that as much as 31% of the recorded update operations were subtree
relocations. The database system must therefore provide a data manipulation interface
that supports various types of structural changes—including both leaf and subtree ma-
nipulations—, and appropriate backend support for their efficient execution.

#6 Enforce structural integrity. Support for manipulating the hierarchy structure goes
hand in hand with the requirement of ensuring its integrity. To this end, the system
must prevent the user from inserting edges that would violate the strictness properties
of the hierarchy (see §2.2.2). Furthermore, it must ensure that an entity cannot be
removed as long as it still has subordinate entities, which would become orphans in
the hierarchy.

#7 Support legacy applications. In live applications, modeling and maintaining hierar-
chies explicitly (#3) by designing a green-field database schema or by extending an
existing schema is not always an option. In existing databases, hierarchies are neces-
sarily represented in variants of the data models we discussed in §2.2.1. An important
requirement thus is to allow users to take advantage of the extended functionality for
hierarchies in an ad-hoc way on the basis of existing data, without forcing them to
modify the schema. For that purpose, means to create a derived hierarchy from com-
mon data formats are required. This process must be supported in the backend by
efficient transformation and bulk-building operations.

#8 Cope with very large hierarchical datasets comprising millions of entities. All provided
language constructs must have strict performance guarantees and allow themselves
to be translated into highly efficient execution plans. To achieve high query perfor-
mance, backend support in the form of sophisticated hierarchy indexing schemes and
physical algebra operators is indispensable. The backend also needs to adapt to dif-
ferent scenarios: For hierarchies that are never updated—in particular derived hierar-
chies (#y7)—read-optimized static indexing schemes may be used. In contrast, dynamic
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scenarios (#5) demand dynamic indexing schemes that provide an adequate tradeoff
between query and update performance.

A system fulfilling these requirements will enable application engineers to implement
all logic for handling hierarchies directly at the database layer, or to push parts of
the logic in an existing application down to the database. This promises significant
maintainability benefits, makes it easier to ensure the consistency of the hierarchical
data, allows for novel kinds of queries on the hierarchies, and enables the applications
to handle even large-scale datasets with excellent performance.

2.3 Status Quo: Integrating Hierarchical Data and DBMS

At this point we have a fair understanding of the scenarios we intend to support. In
terms of DBMS history, the problem of representing, manipulating, and querying hier-
archical data is very old and has been studied many times in the past. We now survey
the state of the art with a focus on the off-the-shelf functionality available in today’s
relational database systems, where hierarchies are stored as basic tables, but we also
strive various related areas of database research and technology. We cover the strongest
solutions we found and assess them against our requirements stated in §2.2.5.

2.3.1 The Adjacency List Model

In a relational database, every hierarchy modeled in the application becomes a flat
table which encodes the structure in terms of one or more table columns of basic SQL
data types. Although there is a lot of freedom to how this can be done, in practice
one very frequently encounters the basic self-referencing table model we introduced
in §2.1 (Figure 2.1d), or minor variants thereof. In the literature (e.g., [13]) it is also
referred to under the term adjacency list model—although that is somewhat misleading,
as the resulting table is more comparable to an “edge list.” To support accessing tuples
by their ID or PID, two (usually B-tree-based) indexes can be defined. Furthermore, to
represent a sibling order, a dedicated numeric field is sometimes added. Under the
name edge mapping, the indexed and ordered variant has for example been applied to
storing XML documents in RDBMS (see [36, 39, 40]).

The adjacency list model is perhaps the most effortless approach to store a hierarchy
in a table, which explains its popularity. However, one pays for its simplicity when it
comes to updating and querying the table. Having two indexes is not economical in
space—especially when the keys are of a string type—and costly to maintain (not to
speak of the Order field). Regarding queries, the foreign key self-reference only gives
us access to the direct parent and children of a node. Anything beyond that is not
directly supported and requires iteration or recursion (i. e., a level-by-level search); see
the following sections. Due to the many drawbacks, practical guidelines such as [13]
and academic works often recommend more sophisticated encodings, which represent
the “is below” relationship in a more implicit way along with other information that
helps in answering common queries. We will cover many of those in §2.3.6 and §4.2.
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2.3.2 Recursion in SQL

The structure of hierarchical data is recursive by nature. Thus, queries against a hier-
archy sometimes require recursion as well. In particular when the structure is en-
coded as a trivial adjacency list (§2.3.1), even basic tasks—such as determining all
descendants of a node—require iteration or recursion. But even with more powerful
encodings, the user may wish to evaluate a structurally recursive expression against
the hierarchy, as we explored in §2.2.4.

Not all database systems offer any support for recursive queries. Users therefore
often resort to application-level logic as workarounds, which is of course unsatisfying
from an expressiveness, efficiency, and maintainability point of view. One mechanism
that some systems do provide is the ability to define custom stored procedures, which
may use iterative loops or even recursive calls. The following example uses standard
SQL/PSM syntax [97] and is adapted from § 2.4.1 of [13]. Starting from a given node,
a WHILE loop moves up the hierarchy toward the root and performs an action for each
encountered node:

CREATE PROCEDURE TraverseUpwards (IN n INTEGER) LANGUAGE SQL DETERMINISTIC
WHILE EXISTS (SELECT * FROM Hierarchy WHERE Node = n) DO BEGIN

CALL AnotherProcedure ( n ) H - - process the current node
SET n = (SELECT Parent FROM Hierarchy WHERE Node = n);
END WHILE;

Stored procedures are an improvement over application-level code, as they get exe-
cuted much closer to the actual data they operate on. No per-iteration data transfers
between the application layer and the database layer are necessary. However, an un-
fortunate practical issue is that many database systems use a proprietary syntax for
stored procedures, and each offers a slightly different feature set. As in our example,
the procedures usually need to be hard-coded against a particular table. Furthermore,
they are often executed as a black box, which hinders optimization and creates friction
losses. To achieve better performance, it is desirable to have a mechanism that is deeply
integrated into the execution engine. We will examine two such mechanisms: Hier-
archical Queries (§2.3.3) and Recursive Common Table Expressions (RCTEs, §2.3.4).
Unlike stored procedures, RCTEs can straightforwardly be translated into holistic exe-
cution plans and are thus (in practical terms) more amenable to optimization. Refer to
Ordonez et al. ([82] and [83]) for a recent survey of optimization techniques.

A merit of all three mentioned approaches is that they are general, flexible and
computationally powerful in the sense that they can potentially generate entirely new
pieces of data and recur on them. (Some authors refer to this as generative recursion as
opposed to structural recursion [30].) Working with adjacency-list-encoded hierarchies
(§2.3.1) is therefore just one of their many use cases. But the power and generality
of recursive stored procedures and RCTEs is also connected to two major drawbacks:
They are difficult for the user to write and maintain, and they are comparatively hard
for the system to optimize. Also, for the purposes of hierarchical computations (§2.2.4),
the computational power of generative recursion is less relevant: It turns out that struc-
tural recursion—where the recursion tree is essentially predetermined, in our case by
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the hierarchy itself—suffices for typical tasks. As this concept does not exist in SQL yet,
we add language extensions that focus on structural recursion. They enable computa-
tions that even go beyond what is practically possible with RCTEs, while minimizing
the syntactic overhead. As an added benefit, the simple nature of structural recursion
leaves more room for optimizations and efficient evaluation techniques, as we will see

in §5.1.7.

2.3.3 Hierarchical Queries in Oracle Database

Hierarchical Queries are a proprietary SQL extension for “connecting” and traversing re-
cursively structured data. They have been a part of Oracle Database for about 35 years
(§ 9.3 of [80]), and a part of IBM DB2 for i since 2001 [45]. A hierarchical query is
an extended SELECT statement using the constructs START WITH, CONNECT BY, and ORDER
SIBLINGS BY. The following example is slightly adapted from [80]:

SELECT ID, LEVEL, SYS_CONNECT_BY_PATH(ID, '/') "Path"
FROM Employees
WHERE LEVEL <= 3
START WITH Name = 'King'
CONNECT BY PRIOR ID = PID
ORDER SIBLINGS BY Name

The wording of the constructs clearly hints at their intended use for traversing hier-
archical data in the adjacency list format. They inform the database engine about the
“is below” relationship in the table, the intended roots, and the sibling order. To work
with the so-created hierarchy, the projection list may include special pseudo columns
such as LEVEL and built-in functions such as CONNECT_BY_PATH (for obtaining a string
representation of the root path) and CONNECT_BY_ROOT (for accessing the root row).

The underlying recursion mechanism is conceptually similar to RCTEs. Most func-
tionality of hierarchical queries can be expressed straightforwardly using RCTEs [75],
and Oracle Database appears to execute them using a similar technique (a CONNECT BY
PUMP operator that iteratively adds rows to a union). The following discussion therefore
applies to hierarchical queries as well.

2.3.4 Recursive Common Table Expressions

Recursive Common Table Expressions (RCTEs) are a mechanism to compute the tran-
sitive closure of a recursively defined table using iterative fixpoint semantics. They
were introduced to standard SQL in 1999 [35, 97], and superseded Hierarchical Queries
(§2.3.3) and several previous proposals for recursion support such as Recursive Union
(also critiqued in [35]). While RCTEs are general and powerful in theory, an approach
relying only on the adjacency list model and RCTEs to query hierarchies would leave
a lot to be desired, as we will see. The following example shows how basic naviga-
tion works. It starts at node (a1) of the hierarchy in Figure 2.1d (p. 8) and produces an
(unordered) list of its descendants:
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WITH RECURSIVE ER (ID, PL, r_ID, r_PL, r_Kind) AS (
SELECT e.ID, e.Payload, e.ID, e.Payload, e.Kind
FROM BOM e
WHERE e.Kind = 'engine'
UNION ALL
SELECT e.ID, e.PL, r.ID, r.Payload, r.Kind
FROM BOM r JOIN ER e ON r.PID = e.r_ID
) o
CER (e_ID, e_PL, r_ID, r_PL, c_ID, c_PL, c_Kind, PID) AS (
SELECT ID, PL, r_ID, r_PL, r_ID, r_PL, r_Kind, r_ID
FROM ER
WHERE r_Kind = 'rotor'
UNION ALL
SELECT e.e_ID, e.e PL, e.r_ID, e.r_PL, c.ID, c.Payload, c.Kind, c.PID
FROM BOM c¢ JOIN CER e ON e.PID = c.ID

)
SELECT e_ID, e_PL, r_ID, r_PL, c_ID, c_PL FROM CER WHERE c_Kind = 'compound'

Figure 2.5: A structural pattern matching query, expressed using two RCTEs.

WITH RECURSIVE RCTE AS (
SELECT * FROM Entity WHERE ID = 'Al’
UNION ALL
SELECT v.x FROM RCTE u INNER JOIN Entity v ON v.PID = u.ID
) SEARCH DEPTH FIRST BY ID SET Ord
SELECT * FROM RCTE ORDER BY Ord

The result includes all fields of the original Entity table, plus a generated column Ord,
which can be used to arrange the rows in depth-first order. The de facto standard
technique to evaluate an RCTE is the semi-naive algorithm described in [35]: It first
evaluates the non-recursive part of the UNION, then iteratively evaluates the recursive
query expression and the UNION operation until no new rows are generated, which
means a fixpoint has been reached.

To see RCTEs in action in a less trivial example, we revisit the pattern matching
query from §2.2.4, which determines combinations of three nodes (e, r,¢) in a particu-
lar hierarchical relationship. Figure 2.5 shows the RCTE-based solution. It includes the
ID and the Payload of each of the three nodes in the result. The statement uses two
RCTEs: one starting from an engine e and navigating downwards from e to a rotor 7,
the other navigating upwards from 7 to a compound c. This example clearly conveys
the major downsides of an RCTE-based approach: The statements are convoluted and
tedious to write down, and not intelligible to their readers. In our examples, it is not
immediately obvious that a hierarchy is being traversed, or which direction the traver-
sal proceeds in. Seemingly basic tasks are surprisingly difficult to express (let alone
evaluate): In order to determine basic node properties such as the depth of a node, the
user must manually specify the computation using arithmetics within the RCTE. As a
consequence of the trivial adjacency list model, structural patterns other than the basic
descendant and ancestor axes are not supported.
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The reason why RCTEs become bulky very quickly is that they combine three sepa-
rate tasks into one statement: First, imposing a hierarchy structure onto the base table
(by specifying a join condition that identifies the relevant ID and PID fields); second,
“discovering” the hierarchy nodes on the fly by navigating it via joins; and third, com-
puting the actual data of interest. These tasks are inseparably intertwined.

In addition, there are two less obvious issues that render RCTEs virtually infeasi-
ble when it comes to hierarchical computations: First, to enable semi-naive fixpoint
evaluation (i. e., to guarantee stratification), several SQL constructs are disabled within
the recursive query expression of an RCTE (see [35] for details). In particular, GROUP BY
is forbidden, as aggregation crossing recursion can violate monotony in subtle ways.
The GROUP BY therefore has to be placed outside of the RCTE definition, which essen-
tially results in a join—group-aggregate statement with a very expensive recursive join.
Second, RCTEs inherently require any hierarchical computation to be phrased in an
iterative way. This means that, even if we ignore any concerns about readability and
performance, it is virtually impossible to use RCTE-based recursion with GROUP BY to
achieve the semantics of structural grouping, in particular the bottom-up case. Such
a computation would have to be stated in a bottom-up iterative way, starting at the
“lowermost” tuples in the input, then sweeping breadth-first over the input by iter-
atively joining in the “next higher” tuples. However, neither “lowermost” nor “next
higher” can be reasonably expressed with the adjacency list model (and would re-
quire unwieldy EXISTS subqueries even with more powerful encodings). Even if that
were possible and GROUP BY were allowed within the RCTE, the grouping would not
necessarily capture all relevant covered nodes within a single iteration: In an irregular
hierarchy the “lowermost” nodes will already be on different levels, to begin with.

What we have discussed so far are mainly issues of expressiveness. When it comes
to performance, an RCTE-based approach also bears some inherent inefficiencies:

* Repeated self-joins can be expensive. Each join can potentially produce a large
intermediate result, and the overall number of iterations depends on the height
of the hierarchy. (Our evaluation in § 6 quantifies this further.)

¢ Often, attributes of interest to the user (Payload in our example) must be materi-
alized early and carried along through the recursion, which is costly.

¢ The RCTE necessarily has to navigate over all intermediate nodes between the
actual nodes of interest. In the example of Figure 2.5, we are interested only
in qualifying ancestor/descendant pairs (e,r) and (r,c), but not in any nodes
in between. Touching the intermediate nodes would violate our requirement of
§2.2.4 that the query runtime should not depend on the number of intermediate
nodes; it should ideally be linear in the number of e, r, and c candidates.

Finally, RCTE statements have an imperative aspect that violates SQL’s declarative na-
ture. Consider again Figure 2.5. An alternative solution to the same problem would
be to use a different join order: start with r, then navigate to e and c from there. Yet
another option would be to first materialize all possible ancestor/descendant combina-
tions (u,v) using a single RCTE, and then use two non-recursive joins on the resulting
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table to match the pattern. For large hierarchies this option is usually inferior due
to the larger intermediate result. The point is that it is up to the user to choose the
most appropriate strategy for answering the query, and the query optimizer is tightly
constrained by that choice. This can easily result in severe performance penalties.

All in all, we do not believe RCTEs to be a practical solution for our use cases. Writ-
ing RCTEs is an “expert-friendly” and error-prone task in terms of achieving correct-
ness, intelligibility, and robust performance. As a general mechanism, RCTEs do have
interesting uses beyond traversing hierarchical data, and we do not intend to render
them obsolete. That said, applications relying on our framework will never have to
resort to RCTEs for typical tasks.

2.3.5 Hierarchical Computations via ROLLUP

In Figure 2.2d (p. 11) we showed a common data model for hierarchies that is based
on a denormalized table. This model is quite restrictive in that it accommodates only
homogeneous and balanced hierarchies. Nevertheless, it seems to be dominant today
for modeling dimension hierarchies in data warehouses [93, 100]. The Common Ware-
house Metamodel [23] refers to this model under the term level-based hierarchy.

Indeed, there is a particular use case where tables of this type shine: bottom-up
hierarchical rollups computing simple aggregations such as COUNT and SuM. This is a
routine task in analytic applications (see § 2.2). Computations of this type can easily be
expressed on level-based tables using SQL’s basic grouping mechanisms GROUP BY and
GROUPING SETS. SQL in fact has another feature that is targeted at exactly this scenario:
the ROLLUP construct [38, 81, 97]. Given a sales table with a hypothetical geographic
dimension hierarchy as outlined in §2.2.3, we could for example write:

SELECT Country, State, Region, SUM(Sale)
FROM Sale
GROUP BY ROLLUP (Country, State, Region)

Technically, the construct is merely syntactic sugar for GROUPING SETS. A ROLLUP with
k dimensions (Cy, ..., Cy) is equivalent to a GROUPING SETS clause with k + 1 grouping
sets, corresponding to all prefixes of the sequence:

GROUP BY GROUPING SETS ( (Cy,...,Ci), (C1,...,Cr1) .., (C1,C2), (C1), O))

Thus, it does not enable any computations that are not possible otherwise. A merit
of using the existing grouping operators is that they tend to be heavily optimized in
commercial DBMS. If the aggregates are algebraic or distributive [38], they are also
well-suited to parallelization, and the results for higher levels can be derived from the
lower levels. Rollup computations can therefore yield high performance.

On the other hand, there are tight constraints on both the structure of the underlying
hierarchy and the class of computations that can be expressed. When the hierarchy
is inhomogeneous or exhibits an irregular structure—where the depth is unbounded
and nodes on a level may be of different types—, or when the computations are more
involved than simple rollups, the approach fails. Many of the scenarios of §2.2.3 do
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indeed feature such complex hierarchies. We therefore believe that, while ROLLUP is
attractive due to its simplicity and performance, users would welcome less restrictive
data models and enhanced functionality for hierarchical computations. Our framework
is able to provide both.

2.3.6 Encoding Hierarchies in Tables

In the previous sections we have seen the shortcomings of approaches based on the
adjacency list model (§2.3.1) or the level-based model (§2.3.5). Some of these short-
comings can be overcome by representing the hierarchy structure more cleverly in the
database schema. Such representations, which rely entirely on the means of the rela-
tional model and standard SQL (as opposed to specific engine support), are commonly
referred to as labeling schemes. In general, a labeling scheme represents a hierarchy pri-
marily as a set of nodes, and attaches to each node a unique label. A label is a fixed
number of data items—in our setting, table fields. The edges are not represented ex-
plicitly. Labeling schemes have been studied extensively [2, 7, 12, 41, 44, 46, 48, 60-63,
73, 79, 99, 113, 115, 118]. Especially in the context of XML, a large body of relevant
research exists (see also §2.3.9). We can categorize the various approaches as follows:

* Naive labeling schemes use trivial labels. An example is the adjacency list
model, where the label is simply the key of the parent. They are easy to imple-
ment and thus widespread in practice. However, in comparison to “full-blown”
labeling schemes they do not provide sufficient support for queries and updates.

¢ Containment-based labeling schemes, also known as order-based schemes, label
each node with a [lower, upper| interval or similar values. As the term “con-
tainment” alludes to, their main property is that the interval of each node is
contained in (or nested into) the interval of its parent node.

¢ Path-based labeling schemes, sometimes called prefix-based codes, label each node
with the full path from the root to the node using variable-length labels.

Figure 2.6 shows three examples: (a) is a simple and often-cited nested intervals labeling
[44, 48, 63, 104, 105, 114, 118]. We can see that node is a descendant of node (A1),
because its interval [16,17] is a proper subinterval of [1,20]. Example (b) shows the
conceptually similar pre/post labeling scheme, as for example studied in [39—41]. Here
each node is labeled with its preorder and postorder ranks. Example (c) shows a Dewey
labeling [99], which is perhaps the most basic path-based scheme. It builds upon the
sibling rank, the 1-based position of a node among its siblings. A label consists of the
label of the parent node, a separating dot, and the sibling rank. In the example, the
Dewey label of is 1.2.2, as it is the second child of (82), which is the second child of
(A1), which is the first root. Note how all three schemes naturally represent the sibling
order. We will study further types of labeling schemes in § 4.2. For now, we are mainly
interested in their basic properties.
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In general, all queries against the hierarchy are answered by considering only the
labels. With containment-based schemes, this means testing whether the intervals of
the involved nodes overlap (a constant-time operation); with path-based schemes, this
means decomposing and comparing the variable-length path strings. Labeling schemes
obviate the need for recursion to perform basic axis checks, which is a big gain in
usability over the naive adjacency list model. For example, we can straightforwardly
translate the abstract “v is a descendant of u” condition of §2.2.4 into SQL:

Nested Intervals: v.lower > u.lower AND v.upper < u.upper
Pre/Post: v.pre > u.pre AND v.post < u.post
Dewey: u.path isa substring of v.path

Finding and enumerating the labels can be further supported by defining B-tree or
hash indexes over the label columns. Updates to the hierarchy structure are generally
executed by relabeling the affected nodes and updating the indexes accordingly.

It is a major challenge to design a labeling scheme that supports all anticipated
operations well while balancing the classic tradeoff between query and update per-
formance, especially when considering large hierarchies and high rates of non-trivial
update operations in potentially skewed patterns. We cover how state-of-the-art label-
ing schemes attempt to tackle this challenge in §4.2. In any case, solutions based on
labeling schemes are always rather specialized. They need to be carefully chosen and
manually implemented for the application scenario at hand. The choice largely dic-
tates (or restricts) the types of hierarchies that can be represented and the types of
queries and updates that can be expressed conveniently. As this is a non-trivial task,
entire books such as [13] have been written to provide recipes to SQL developers. They
usually come with sets of hard-wired SQL snippets that implement particular schemes
and their supported query and update operations.

Ideally, we want the database system to take over these tasks for us. Our approach
therefore is to provide an abstract data type that hides the underlying encoding details
completely. It guarantees a decent feature set regardless of the actual representation,
and thus relieves the user from dealing with the complexities and limitations of a
custom implementation. At the same time, the database kernel is given the means
to employ special-purpose algorithms and data structures, which allow it to easily
outperform most hand-implemented “pure” labeling schemes.

2.3.7 hierarchyid in Microsoft SQL Server

The built-in hierarchyid data type introduced in SQL Server 2008 [70, 78] is a compar-
atively recent example of an RDBMS vendor investing into enhancements to simplify
working with hierarchical data. The hierarchyid type represents a path string. A col-
lection of hierarchyid values can thus be used to represent an ordered tree. A node
can effectively be inserted and relocated by assigning the row a new hierarchyid value.
Such values can be generated from a string representation (e.g., '/2/1/1/’) or from
existing values using methods such as GetReparentedValue and GetDescendant. For

29



2 HIERARCHICAL DATA IN RELATIONAL DATABASES

(@D, [1,20]) (€3, ]9, 14]) (@D, 1,10) (€3)6,6) @1 (©@121)
@ 27) @) | | @23 @74 (@),11) (©Ev12.11)
@ [34) (@ 1213) p { (@31 (@85 (©0111) (©2,1212)
(@ [56)) @@ [518) | | @42 @098 (c2,112) (c8,122)
(®.18,19) (©,[16,17) ) | (@59 (©9,107) (®,12) (09),1.221)

(a) (b) (©

Figure 2.6: Example labeling schemes representing the hierarchy of Figure 2.2a.

querying nodes, the data type provides self-explanatory methods such as GetLevel,
IsDescendantOf, GetAncestor, CommonAncestor, GetRoot, and conversions from and
to strings and VARBINARY. The following example procedure lists all nodes below (g2):

DECLARE @v hierarchyid
SELECT @v = Node FROM Hierarchy WHERE ID = 'B2';

SELECT *, Node.ToString() AS Position, Node.GetLevel() AS Depth
FROM Hierarchy
WHERE Node.IsDescendantOf(@v) = 1;

To speed up queries, the reference manual [70] recommends users to add an ordinary
B-tree index to maintain the rows in depth- or breadth-first hierarchyid order, and a
unique index to guarantee the hierarchy actually forms a tree. Overall, this design is
comparable to our hierarchical table model from a syntax and data model perspective.
However, there are also several major differences:

First, hierarchyid is basically a plug-in based on SQL Server’s Common Language
Runtime (CLR). To our knowledge, it does not come with deeper SQL language and en-
gine integration. We go a step further by employing special-purpose hierarchy indexes
instead of ordinary B-tree indexes, as well as physical algebra operators integrated into
the execution engine.

Second, the hierarchyid type is provided as a simple tool for modeling a hierarchy;
yet, a table with such a field does not necessarily represent a valid hierarchy. By de-
sign, the system does not enforce the structural integrity of the represented tree. For
example, it does not guarantee the uniqueness of generated values, so multiple rows
could represent the same node. It also does not require the direct parent of a node to
exist, so one could accidentally “orphan” a subtree by deleting its parent. It is up to
the user to generate and manage the values in a reasonable way. In contrast, we are
more stringent in that regard and guarantee structural integrity at any time (Require-
ment #6 of §2.2.5). Of course, this design choice comes at a price, as consistency has to
be checked on each update, but it helps to avoid surprising results from queries. Our
indexes make these consistency checks comparatively cheap.

Third, as another difference, we opt to provide flexibility regarding the underly-
ing indexing scheme. The encoding scheme used behind the hierarchyid type is Ord-
path [79], a path-based scheme. It is hard-wired into the data type; in particular, con-
versions from and into a path string are directly supported, which would be hard to
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efficiently compute with encoding schemes that are not path-based. While it is claimed
to be “compact and update-friendly” [79], Ordpath has a few inherent deficiencies that
are common to all path-based schemes: First, to relocate a subtree one has to update all
hierarchyid values in that subtree. Second, the representation is variable-length (and
allowed to grow up to 892 bytes), which makes hierarchyid values less compact and
processing-friendly than certain alternative schemes. Due to these reasons, our philos-
ophy is to avoid manifesting a particular encoding scheme into the design; we rather
intend the scheme to be chosen flexibly according to the application scenario at hand.

2.3.8 ltree in PostgreSQL

PostgreSQL has a module called ltree for representing “hierarchical tree-like struc-
tures” [87]. It comes with a data type ltree that stores a so-called label path, much com-
parable to the hierarchyid type discussed in the previous section. The module also
comes with a general path pattern matching language, which is needed to formulate
queries against a hierarchy. For example:

SELECT *, NLEVEL(PATH) AS Depth FROM Hierarchy WHERE Path <@ 'Al1.B2';

Also noteworthy is the use of special indexes that fit into the framework of Generalized
Search Trees (GiST, [47]). Thus, ltree goes a step further in terms of language syntax
and backend support when compared to hierarchyid. Apart from that, most of the
remarks we made in the previous section also apply to ltree.

2.3.9 XML Databases and SQL/XML

In the late 1990s the Extensible Markup Language (XML) [108] became popular as a
versatile format for data transport. There were high hopes that it would also lend itself
well to data storage and access. To allow users to conveniently extract nodes and data
from XML documents, the powerful XPath [110] and XQuery [111] languages were
developed. The existing database products around these technologies can roughly be
divided into two classes: On the one hand, there are “native” XML stores, whose in-
ternal physical structures were designed from the ground up for XML. On the other
hand, there are systems that rely on relational databases as the backend for storing
XML fragments and executing queries by translating XPath and XQuery to SQL [6, 42].
As documents written in XML are inherently hierarchical, the latter class is particularly
interesting in our context. To speed up the resulting queries, suitable RDBMS-based
XML encodings and indexing schemes have been studied, e. g. [1, 7, 22, 24, 36, 3943,
56, 63, 66, 67, 72, 79, 95, 99, 102, 118]. If one ignores some XML specifics, much of this
work is applicable to our setting as well. We therefore thoroughly survey many of the
proposed indexing techniques in § 4.2.

Another, more invasive approach is to turn existing RDBMS into XML-enabled sys-
tems by “fusing” the two data models together and integrating XML support directly
into SQL. This idea resulted in the SQL /XML standard [98] and has been implemented
by prominent vendors [4, 64, 84]. SQL/XML enables queries over both tables and XML
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SELECT XMLElement ("PurchaseOrder",
XMLAttributes(pono AS "pono"),
XMLElement ("ShipAddr",
XMLForest(street AS "Street", city AS "City", state AS "State")),
(SELECT XMLAgg (
XMLElement("LineItem", XMLAttributes(lino AS "lineno"),
XMLElement ("liname", liname)))
FROM lineitems 1
WHERE 1.pono = p.pono
) AS po
FROM purchaseorder p

SELECT top_price,
XMLQUERY (
'for $a in /buyer/contract/item/amount where /buyer/name = $varl return $a'
PASSING BY VALUE 'A.Eisenberg' AS varl, buying_agents
RETURNING SEQUENCE BY VALUE

)
FROM buyers

Figure 2.7: Using SQL/XML to generate XML fragments from relational data (top,
from [64]), and to evaluate XQuery on an XML fragment, producing a mix
of relational and XML data (bottom, from [28]).

documents, and as such is clearly the tool of choice for working with XML in a rela-
tional context. One may therefore ask whether this technology can be leveraged for
our scenarios by representing hierarchies as XML fragments, and whether the design
of the XML-enabled SQL dialect can serve as a blueprint for our language extensions.

To this end, consider Figure 2.7, which shows the interaction between relational
and XML data by means of two example queries. The top example illustrates how so-
called publishing functions enable the user to convert relational input data into XML
fragments. Note how a single field of type XML can store a complete hierarchy of XML
nodes. This is a major difference to our approach, which associates one table row with
one node. The bottom example illustrates how XQuery is used within SQL statements
to extract data from an XML fragment and produce either XML or a relational view.
Note the heavy “machinery” for passing values in and out of the query.

Without going into details, these two examples clearly show that SQL/XML makes
no attempt to bridge the duality between the two types of data. It requires users to
know both models and the respective query languages, which is a challenge to SQL-
only users. Furthermore, converting data from relational to XML or vice versa induces
a lot of overhead. This overhead is not only “syntactic,” as the many XML... clauses
cluttering Figure 2.7 attest; there is also a significant runtime cost. In summary, the
heavyweight approach of drawing in the complete technology stack of XML, XML
Schema, XPath, and XQuery into the database would contradict our requirements #1
and #2, which mandate that the data model and query language must blend seamlessly
with SQL. We therefore cannot consider SQL/XML as a fruitful design blueprint.

32



2.3 Status Quo: Integrating Hierarchical Data and DBMS

2.3.10 Multidimensional Databases and MDX

The multidimensional data model is a variation of the relational model that organizes
data as a collection of multidimensional data cubes. Its applications are mainly in the
business intelligence tools we already mentioned in §2.2.3, where the cubes are sliced-
and-diced and aggregated along their dimensions and presented in visual or crosstab-
style reports. To produce the data underlying these reports, Multi-Dimensional Ex-
pressions (MDX) is often used, a declarative query language for data cubes. It is a
proprietary technology by Microsoft [71], who first released it in 1997 as part of their
OLE DB for OLAP specification, but has been embraced by a majority of OLAP prod-
ucts since. For a general overview of BI technology and multidimensional database
concepts, refer to [16], [54], and the survey articles by Jensen and Pedersen [50, 86].
In this section we are mainly interested in multidimensional databases and MDX for
the primary role they give to hierarchical dimensions, and how they can inspire us
in extending SQL for hierarchies. As a simple example, assume a dimension [Store]
for which a hierarchy [Location] of three levels has been defined, referred to in the
path-like notation of MDX by:

[Store].[Location].[Continent] [Store].[Location].[Country] [Store].[Location].[City]

Having defined this upfront, one can output the full hierarchy as a tree by simply
“selecting” it, much like one would select a column in SQL:

SELECT [Measures].[Sales Amount] ON COLUMNS,
[Store].[Location].Members ON ROWS
FROM [Sales Cube]

This already associates the nodes with the corresponding sums of sales amounts. To
demonstrate further features related to hierarchies, Figure 2.8 shows a less trivial query
taken from the MDX Language Reference [71]. The Adventure Works cube has a Cus-
tomer dimension, which in turn has a geographic hierarchy arranging the customers.
In the SELECT part, the query navigates the geographic hierarchy using the Descen-
dants() function: It determines the descendants of the Australia node on the State-
Province level, that is, all state-provinces in Australia. This set of members is placed on
the rows of the report. In the first column, the Internet Sales Amount for each province
is displayed. In the second column, the [Measures].X calculation is displayed. This cal-
culation computes the percentage of the Internet Sales Amount in a State-Province
relative to the aggregated total Internet Sales Amount in the country (i.e., Australia).
How the percentages are computed is specified in the WITH clause. The Ancestors()
function determines the Country to which CurrentMember belongs; the query execu-
tion engine will successively bind CurrentMember to each State-Province value in the
report rows. Item() is needed for technical reasons: it extracts the first (and only) tuple
from the set returned by Ancestors(). Although this example (and arguably MDX as
such) is not exactly easy to understand, we can learn several things:

* MDX works on a rich data model that has been specified upfront using some
proprietary tooling (e.g., XML for Analysis [109]). It is a language for querying
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WITH MEMBER [Measures].X AS

[Measures].[Internet Sales Amount] / ([Measures].[Internet Sales Amount],

Ancestors
([Customer].[Customer Geography].CurrentMember,
[Customer].[Customer Geography].[Country]
). Item(0)

), FORMAT_STRING = '0%'

SELECT

{Descendants(

[Customer].[Customer Geography].[Country].&[Australial],
[Customer].[Customer Geography].[State-Province],
SELF)} ON ROWS,

{[Measures].[Internet Sales Amount], [Measures].X} ON COLUMNS

FROM [Adventure Works]

Figure 2.8: An example MDX query

only; it supports neither data definition nor data manipulation, whereas our SQL
extensions cover these aspects as well.

MDX attempts to look like SQL, but its mechanics work quite differently. To SQL
users its behavior, such as the fact that aggregations of the numeric measures
in the cube happen implicitly, may come as a surprise. While MDX makes it
possible to express multidimensional hierarchical aggregations very concisely, it
deviates too far from the SQL look and feel for our purposes.

Hierarchies (and their levels) are named first-class objects, and can be handled
much like an ordinary column in SQL. Again, this is a step too far for our pur-
poses. Our goal is to treat hierarchies as ordinary database tables instead of as
distinct objects. Also, a hierarchy is treated as a fixed set of homogeneous levels,
and this limitation is deeply built into the language. As already noted in §2.2,
we want to allow for more flexibility regarding the hierarchy structure.

The Ancestors() and Descendants() functions used in the query are part of an
extensive set of functions for hierarchy navigation that can be used in query
statements and calculations. The general approach to navigation is to apply set-
valued functions to sets of nodes. This functional style contradicts the declarative
nature of SQL. Our preferred way to express navigation is an ordinary SQL join

(see §2.2.4).

We thus conclude that the concepts of MDX, although promising upon first sight, are
mostly inapplicable to our setting.
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A Framework for Integrating
Relational and Hierarchical Data

This chapter covers our framework for supporting hierarchical data in relational data-
base systems. Based on its core concepts of a hierarchical table and an abstract NODE
data type (§3.2), we describe language constructs for querying hierarchies (§3.3), for
defining new hierarchies or deriving them from existing data (§3.4), and for updating
their structure (§3.5). The language elements are designed to cover typical require-
ments and blend seamlessly with the look and feel of SQL, which we illustrate on
some advanced scenarios (§ 3.6).

3.1 Overview

Before delving into the details, we outline the central concepts of our framework and
demonstrate its language features by some simple examples. As there is virtually no
application that consists solely of hierarchical data, our central design goal has been
to seamlessly blend all functionality into existing SQL concepts. In particular, we re-
frain from treating hierarchies as a distinct type of object in the database schema, as
this would counteract the idea of a frictionless interaction between hierarchical data
and coexisting tables. Instead, we tie hierarchies very closely to an associated table
that contains the actual data that is hierarchically arranged. This leads us to our core
concept of a hierarchical table, which is a table containing at least one column of the
abstract data type NODE. In a nutshell, a field of this type represents the position of the
row in the hierarchy. It is backed by an index that represents the structure, but these
details are completely hidden from the user. The user can create a hierarchical table
either from scratch or derive such a table from existing data. For example, the bill of
materials table from the opening chapter (Figure 1.1, p. 2) can be transformed into a
hierarchical table based on the information in its ID and PID fields. This is a one-time
process, after which the system becomes fully aware of the hierarchy structure: The
resulting NODE column and its accompanying index can be cached or even persisted
and then leveraged in all subsequent queries on the same table.

From the user’s perspective, all queries against the hierarchy are expressed in terms
of the readily available NODE field. Our extensions to SQL comprise a small yet essential
set of built-in functions that conceptually operate on values of type NODE. To see them

This chapter is primarily based on the material published in [g]. The concepts and language constructs
for hierarchical computations were previously published in [10].
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SELECT e.ID, e.Payload, r.ID, r.Payload, c.ID, c.Payload
FROM BOM e, BOM r, BOM c
WHERE e.Kind = 'engine'
AND IS_DESCENDANT(r.Node, e.Node)
AND r.Kind = 'rotor'
AND IS _ANCESTOR(c.Node, r.Node)
AND c.Kind = 'compound'

Figure 3.1: The query from Figure 2.5, expressed in terms of our SQL extensions.

in action, let us first consider structural pattern matching. In §2.2.4 we implemented a
non-trivial example query as a recursive common table expression (Figure 2.5, p. 25).
Figure 3.1 shows the query in our syntax. This example exhibits three cornerstones of
our design: First, there is a clear separation between the task of creating or deriving
a hierarchy on the one hand, and the task of actually querying it on the other hand.
In contrast, the RCTE necessarily “explores” the hierarchy structure through cumber-
some, user-prescribed joins on the ID and PID fields, and queries it at the same time;
the two aspects are inseparably intertwined. Second, unlike the general-purpose facili-
ties for recursion (see § 2.3.2), our syntax is tailored for working with hierarchies, as the
two used predicates IS_DESCENDANT and IS_ANCESTOR attest. This specialization allows
us to increase user-friendliness and expressiveness, as well as to use special-purpose
data structures and algorithms at the backend. Third, hierarchical relationships such
as “descendant of” are stated in a direct and declarative way. The recursive nature of
a hierarchy is mostly hidden, so the user does not have to craft a recursive solution.
This again benefits the backend, as the query optimizer can reason about the user’s in-
tent and pick an optimal evaluation strategy (i.e., join direction). Finally, the example
also shows how we meet the requirements #1, #2, and #4 stated in §2.2.5: Our syntax
blends with SQL (#1), as we stick mostly to joins and built-in functions to provide the
required query support (#4). As a corollary, the syntactic impact—in terms of required
extensions to the SQL grammar—is low (#2). Still, the syntax is highly expressive (#2):
the query in Figure 3.1 reads just like the English sentence defining it.

Structural Grouping. A significant part of our language extensions is dedicated to
rendering structural grouping as convenient as possible. § 2.2.4 motivated such queries
from a high-level point of view. We saw that binary structural grouping translates into
join-group-aggregate queries that combine a join on a hierarchy axis (as in Figure 3.1)
with a subsequent GROUP BY of the outer side. This way, a useful class of hierarchical
computations can be expressed fairly intuitively out of the box. The following example
corresponds to the analytic query of §2.2.4, which sums up the revenue of “type A”
products bottom up and reports the sums for the three uppermost levels:

WITH Inputl AS (
SELECT p.Node, s.Amount AS Value
FROM Hierarchyl p JOIN Sale s ON p.Node = s.Product
WHERE p.Type = 'type A' )
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SELECT t.*, SUM(u.Amount) AS Total

FROM Hierarchyl t LEFT OUTER JOIN Inputl u ON IS _DESCENDANT_OR_SELF(u.Node, t.Node)
WHERE DEPTH(t.Node) <= 3

GROUP BY t.x*

However, we already noted a lack of convenience and conciseness in such join—-group—
aggregate queries. The user has to assemble a table of tuple pairs representing the
group associations by hand prior to grouping. This disguises the fact that a top-down
or bottom-up hierarchical computation is being done. It becomes tedious especially
when the output and input nodes largely overlap or are even identical, as in:

SELECT t.Node, SUM(u.Value)
FROM Inputl AS t
LEFT OUTER JOIN Inputl AS u ON IS_DESCENDANT_OR_SELF(u.Node, t.Node)
GROUP BY t.x*

This query works on only one table, but we have to mention it twice in the query. A
small yet effective extension to the windowed table mechanism of SQL will allow us
to rewrite such queries into a unary structural grouping form:

SELECT Node, SUM(Value) OVER (HIERARCHIZE BY Node) FROM Inputl

The HIERARCHIZE BY clause forms windows over the current table in a hierarchical way;,
which in this case achieves exactly the desired bottom-up rollup semantics. In general,
rewriting binary to unary structural grouping queries will often result in more con-
cise and intuitive statements. But beyond that, the same mechanism offers us another
attractive language opportunity: support for structural recursion. Using a structurally
recursive SQL expression we can state the rollup in statements II-a and II-b from above
in yet another way:

SELECT Node, RECURSIVE INT (Value + SUM(x) OVER w) AS x Il-c
FROM Inputl WINDOW w AS (HIERARCHIZE BY Node)

The expression for x works just like in our original pseudo code from §2.2.4: it sums up
the readily computed sums x of all tuples that are covered by the current tuple. Besides
allowing us to state certain binary hierarchical computations (which are in principle
already supported in SQL today) in a simpler and more direct way, unary grouping
also enables us to state significantly more complex computations based on structural
recursion with remarkable conciseness. For example, we can now straightforwardly
take the edge weights from Input2 (Figure 2.4d, p. 18) into account in our rollup:

SELECT Node, RECURSIVE DOUBLE (Value + SUM(Weight x x) OVER w) AS x (]
FROM Input2 WINDOW w AS (HIERARCHIZE BY Node)

Such computations could not be expressed (let alone evaluated) convincingly in the
past. With our hierarchical windows they appear very natural.
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BOM
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Figure 3.2: The bill of materials table from Figure 1.1 as a hierarchical table.

3.2 The Hierarchical Table Model

3.2.1 Hierarchical Tables

A hierarchical table is a table with at least one hierarchical dimension. A hierarchical di-
mension is a strict hierarchy that is associated with the table and arranges its tuples.
The hierarchy conceptually does not contain any data besides the structural informa-
tion and the node-tuple associations. A table may have multiple hierarchical dimen-
sions, but a hierarchy can have exactly one associated table. (If additional tables need
to be “tied” to a hierarchy, ordinary foreign key references to the hierarchical table can
of course be used; see §3.6.) Table BOM in Figure 3.2 is an example; it has only one
associated hierarchy.

In our model, the topology of a strict hierarchy is an ordered, rooted, labeled tree as
defined in §2.1. Much of the functionality we describe in this chapter thus does not
(and cannot) apply for non-strict hierarchies. To still support such data to some degree,
we provide the means to transform data representing a directed graph into a proper
strict hierarchy (see §3.4.2). Note also that we rely on an ordered tree model. The sys-
tem maintains a deterministic internal order even if no meaningful sibling order is
prescribed by the user. This in particular ensures that every node has a well-defined
rank in the preorder or postorder sequence of all nodes; for example, (81) in Figure 2.3
always has pre rank 2 and post rank 3. These ranks enable certain order-based lan-
guage features, and they are the foundation for the evaluation techniques we discuss
in §5.

A single hierarchical table may be used to store multiple logical hierarchies of the
same type. For example, the BOM table could store all bills of materials that have ever
been entered into the system. We therefore do not require the hierarchy to form a single
connected tree. This means there may be multiple root nodes. To avoid complications
in handling such forests (as well as issues with empty hierarchies), we always maintain
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a single, virtual root node, which we denote by T and call the super root. The actual
roots of the individual hierarchies in the user data become the children of T. This way,
the hierarchy can be represented as a connected tree internally, but will appear to the
user—who never sees the virtual T node—as a forest.

Let us now consider the tuple-node relationship, given a hierarchy H attached to a
table T. We require each tuple of T to be associated with at most one node of H. Thus,
some tuples may not appear in the hierarchy. Conversely, we require each node v
except for T to be associated with exactly one tuple t of T. Logically, a node is not
associated with any further data: The label of node v consists exactly of the fields of t.
Although we associate the label with the node, recall from §2.1 that for trees a 1:1
association between a node and its incoming edge can be made. Each field value can
thus be interpreted as a label on either the node v or the edge onto v. This is up to the
application. For instance, in Figure 2.3 (p. 17) we viewed the Weight column of table
Hierarchyl as an edge label and the ID column as a node label.

A user never works with the hierarchy object H itself, only with the associated ta-
ble T. Consequently, a “syntactic handle” is required to enable the user to refer to a
node in H given the corresponding tuple. Such a handle is provided by an attribute of
type NODE in T, whose name can be chosen freely by the user.

3.2.2 The NODE Data Type

A field of the built-in data type NODE serves as the primary handle to a specific hierar-
chical dimension H. Intuitively, a NODE value represents the position of the associated
node of a tuple in that hierarchy. For our example table BOM with its NODE field named
Node, this would look as follows:

SELECT h.ID, ..., “depth of” h.Node FROM BOM AS h WHERE h.Node “is a leaf”

These node handles are a cornerstone of our design. There are in fact other conceivable
approaches to making such a handle available in the query language, such as exposing
built-in pseudo columns (similar to Hierarchical Queries in Oracle, see §2.3.3), operat-
ing on the table alias h itself (a style mandated by early proposals for temporal SQL
[25]), or operating on explicit named hierarchy objects. However, after careful consider-
ation, we found that the proposed design allows us to expose all desired functionality
in the most natural way while incurring the least “syntactic impact.” It also simpli-
ties some technical aspects: Transporting “hierarchy information” across a SQL view
becomes a trivial matter of including the NODE column in the projection list of the defin-
ing SELECT statement. Furthermore, the functionality can be extended in the future by
simply defining new operators and functions on the NODE type.

Similar to an abstract data type, we want the actual values of the NODE data type to be
opaque to the user. To prevent them from being observed directly, a naked NODE field
may not be part of the output of a top-level query. The user may think of a NODE value
as a position in a hierarchy, but how this position is represented is not relevant to the
user. (In fact, even at the backend it can mostly be treated as BINARY data of variable-
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length size; the actual properties of the type and its representation and manipulation
are ultimately up to an underlying indexing scheme, as we discuss in § 4.)

The user works with a NODE field mostly by applying hierarchical functions and pred-
icates such as “level of” and “is ancestor of.” Besides that, the NODE type supports only
the operators = and <>. Other operations such as arithmetics and casts from other data
types are not allowed.

NODE values can be NULL to express that a tuple is not part of the hierarchy. A non-null
value always encodes a valid position in the hierarchy. The handling of NULL values dur-
ing query processing must be consistent with SQL semantics. For example, a predicate
such as “is ancestor of” applied to two NODE values where at least one value is NULL
must evaluate to UNKNOWN. Likewise, grouping (via GROUP BY) must treat NULL nodes as
equivalent and place them into one group.

We already noted that each NODE field is associated to a different, specific hierarchy.
We provide no way to add more than one NODE for the same hierarchical dimension
to a hierarchical table. This guarantees a tuple can only appear once in any hierarchy,
which is in line with our fundamental hierarchy model. However, a table can very
well have two or more NODE fields, and thus a tuple can be part of multiple distinct
hierarchies. Similarly, the user can of course join hierarchical tables together and thus
assemble tuples with arbitrarily many different NODE fields. In these situations, NODE
values from different hierarchies could potentially be applied to a binary predicate
such as “is ancestor of,” or even mixed into a single column via set operations such
as UNION. This is not a feature we support, as such mixing is usually meaningless and
likely an error in the program logic. We therefore require the system to prohibit this at
query compilation time by tracking the underlying hierarchy of each NODE field as part
of its type, and raising a SQL error when two different NODE types are mixed. Effectively,
each hierarchy H has its own distinct NODE type, although this is not exposed to the user.
In the remainder we will occasionally use the notation NODE! to express the NODE type
that is specific to hierarchy H.

3.3 QL Extensions: Querying Hierarchies

We now cover our enhancements to SQL’s query language to support and facilitate
complex queries (our Requirement #4). As outlined previously, queries require a NODE
field that serves as handle to the nodes in the associated hierarchy. For the following,
we assume a table with a field ¢ of data type NODE! is at hand. How to obtain such a
table—either a hierarchical base table or a derived hierarchy—is covered in § 3.4.

3.3.1 Hierarchy Functions

To enable the user to directly query commonly required properties of the nodes, we
provide some built-in scalar functions that operate on a NODE value ¢:

IS_LEAF (/) — Whether / is a leaf, i. e., has no children.
IS_ROOT(¢) — Whether / is a root, i.e., its parent is T.
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Node|IS_LEAF|IS_ROOT|DEPTH|SIZE|DEGREE |HEIGHT|PRE_RANK|POST_RANK
FALSE | TRUE 1 |10 2 4 1 10
FALSE | FALSE | 2 3 2 2 2 3
TRUE | FALSE | 3 1 0 1 3 1
TRUE | FALSE | 3 1 0 1 4 2
FALSE | FALSE | 2 6 2 3 5 9
FALSE | FALSE | 3 3 2 2 6 6
TRUE | FALSE | 4 1 0 1 7 4
TRUE | FALSE | 4 1 0 1 8 5
FALSE | FALSE | 3 2 1 2 9 8
TRUE | FALSE | 4 1 0 1 10 7
TRUE | TRUE 1 1 0 1 11 11

Figure 3.3: Projecting basic properties of the nodes in the BOM table.

DEPTH(¢) — The number of edges on the path from T to /.
SIZE(¢) — The number of nodes in the subtree rooted at ¢.
DEGREE(¢/) — The number of children of ¥.

HEIGHT (¢) — The height of the subtree rooted at /, i.e., the depth of the deepest node
in ¢’s subtree.

PRE_RANK(¢) — The preorder traversal rank of /.
POST_RANK(¢) — The postorder traversal rank of /.

Figure 3.3 shows the result of projecting all these properties for the BOM table. Note
the values of DEPTH, HEIGHT, PRE_RANK, and POST_RANK are 1-based. The following simple
query shows the node properties in action:

SELECT ID, DEPTH(Node) AS "Depth" FROM BOM WHERE IS_LEAF(Node) = TRUE

It produces a list of all non-composite parts (i. e., leaves) and their respective depths.

These functions are primarily offered for the sake of expressiveness and convenience.
Therefore, they are deliberately not strictly orthogonal. For example, IS_R00T(v) is
equivalent to DEPTH(v) =1 and thus redundant. (We will explore more equivalences
of this kind in § 5.1.2.) Furthermore, the user could also compute these functions man-
ually, using for example joins or hierarchical windows. It is therefore acceptable if a
particular implementation chooses to not expose all of the functions. HEIGHT and DEGREE,
in particular, are used rather infrequently but may be expensive to compute depending
on which indexing scheme is employed, so we regard them as optional.

As the semantics of SQL mandate, the order of the result tuples in the above query is
undefined. To traverse a hierarchy in a particular order, one can combine ORDER BY with
a node property. As an example, consider a parts explosion for the BOM (cf. §2.2.3),
which shows the parts in depth-first order, down to a certain maximum depth:

- Depth-first, depth-limited parts explosion with depths
SELECT ID, DEPTH(Node) FROM BOM WHERE DEPTH(Node) < 5 ORDER BY PRE_RANK(Node)
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In fact, the primary use case for PRE_RANK and POST_RANK is to perform such topologi-
cal sorting. With PRE_RANK, parents will be arranged before children (preorder); with
POST_RANK, children will be arranged before parents (postorder). A breadth-first search
order can be achieved with DEPTH:

- Breadth-first parts explosion

SELECT ID, DEPTH(Node) FROM BOM ORDER BY DEPTH(Node), ID

3.3.2 Hierarchy Predicates

Besides querying node properties, a general task is to navigate from a given set of
nodes along a certain hierarchy axis. Such axes can be expressed using one of the
following binary hierarchy predicates (where /1 and ¢, are NODE values):
IS_PARENT(/1,¢;) — whether /; is a parent of /5.

IS_CHILD(¢;,¢3) — whether ¢, is a child of /5.

IS_SIBLING(/1,{2) — whether ¢; is a sibling of /5, i.e., has the same parent.
IS_ANCESTOR(/1,¢,) — whether #; is an ancestor of /5.

IS_ANCESTOR_OR_SELF(¢1,¢,) — whether /1 = ¢, or ¢ is a ancestor of /5.

IS_DESCENDANT (¢1,¢2) — whether /¢ is a descendant of /».
IS_DESCENDANT_OR_SELF(¢1,¢5) — whether ¢; = ¢, or ¢; is a descendant of /.
IS_PRECEDING(/1,¢y) — true iff /1 precedes ¢, in preorder and is not an ancestor of /,.
IS_FOLLOWING(/1,¢;) — true iff /1 follows /5 in preorder and is not a descendant of /5.
As we already noted in §2.2.4, the task of axis navigation maps quite naturally onto

a self-join with an appropriate hierarchy predicate as the join condition. For example,
the following lists the IDs of all pairs (¢1, ¢2) of nodes where ¢; is a descendant of ¢5:

SELECT u.ID, v.ID FROM BOM u JOIN BOM v ON IS_DESCENDANT(u.Node, v.Node)

As another example, we can use a join to answer the classic where-used query on a bill of
materials (cf. §2.2.3). The query “Where is part (02) used?” corresponds to enumerating
all ancestors of the corresponding node:

SELECT u.ID FROM BOM u, BOM v WHERE IS_ANCESTOR(u.Node, v.Node) AND v.ID = 'D2'

Here we formulated the join as a filter.

The set of predicates is somewhat aligned with the axis steps of XPath (see §2.1).
Note that the preceding and following predicates are only meaningful in an ordered
hierarchy, and will thus rarely be used in order-indifferent applications. Also, the set
of predicates again has some redundancy for the user’s convenience; for example,
IS_ANCESTOR and IS_DESCENDANT are symmetric, and the OR_SELF variants are a simple
shorthand for hand-written OR expressions. In §5.1.2 these properties are explored
further.
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Sale : {[ID, Item, Customer, Product, Date, Amount]}
SELECT Customer, Date, SUM(Amount) OVER w

FROM Sale
WINDOW w AS (
PARTITION BY Customer - - window partition clause
ORDER BY Date - - window ordering clause
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

EXCLUDE NO OTHERS - - window frame clause

Figure 3.4: An example window specification for a sales table.

The set of functions and predicates presented thus far covers everything that is
needed in the common application scenarios we encountered, while being aligned
with the capabilities of the hierarchy indexing schemes we considered for the backend.
It is of course conceivable (and straightforward!) to further extend this set in order to
cover more specialized use cases.

3.3.3 Hierarchical Windows

While node properties and hierarchy predicates are useful in particular for pattern
matching queries, hierarchical windows are designed to facilitate complex hierarchical
computations based on the concept of unary structural grouping we introduced in
§2.2.4. Unlike binary grouping, unary structural grouping is a novel concept to SQL
that could not be expressed in the past. Following our informal overview in §3.1, we
now cover the syntax and semantics of our extensions for unary grouping.

Windowed Tables and Hierarchies. Windowed tables are a convenient and powerful
means for aggregations and statistical computations on a single table, which other-
wise would require unwieldy correlated subqueries. Their implicitly self-joining na-
ture makes them a natural fit for structural grouping. We therefore add the concept of
hierarchical windows to this mechanism.

Let us first briefly review the standard terminology and behavior of windowed ta-
bles. (We assume the reader to already be somewhat familiar with these concepts; refer
to e.g. [116].) A window is formed on the result table of a SELECT/FROM/WHERE query
according to a window specification. Note the table underlying a window may not be
grouped. That is, in case GROUP BY is used in the same SQL block, the statement will be
syntactically transformed by the query compiler so that the GROUP BY is encapsulated
in a nested subquery. This ensures that these two related features do not get into each
other’s way. A standard window specification may comprise a window partition clause,
a window ordering clause, and a window frame clause. As an example, consider again
our sales table from §2.2.3: Figure 3.4 shows how we may annotate the table with
per-customer sales totals running over time. The used frame clause is:

RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
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This happens to be the implicit default and thus could be omitted. Conceptually, the
query is evaluated as follows: (1) the sales are partitioned by Customer; (2) each parti-
tion is sorted by Date; (3) within each sorted partition, each tuple ¢ is associated with
a group of tuples relative to t, its window frame as determined by the frame clause, in
this case: all sales up to t; (4) the window function (SuM) is evaluated for that group
and its result appended to t.

The frame is always a subsequence of the current ordered partition. The order im-
posed by the ordering clause is generally a partial order, since tuples may not be dis-
tinct with respect to the ORDER BY fields. Tuples in t’s frame that match in these fields
are called peers or TIES.

Hierarchical Window Specification. For unary structural grouping, our windowed
table will be a collection of nodes; that is, there is a NODE column whose values are
drawn from a hierarchical base table. (Table Inputl from the scenario of §2.2.4 is an
example.) We extend the standard window specification with a new HIERARCHIZE BY
clause specifying a hierarchical window. This clause may take the place of the ordering
clause behind the partitioning clause. That is, partitioning happens first as usual, and
hierarchizing replaces ordering. While window ordering turns the partition into a par-
tially ordered sequence, hierarchizing turns it into an acyclic directed graph derived
from the hierarchy. We begin our discussion with a minimal hierarchical window spec-
ification, which omits partitioning and the frame clause (so the above default applies):

HIERARCHIZE BY ¢ [BOTTOM UP|TOP DOWN]

The clause determines the NODE field /, its underlying hierarchy H, and the direction
of the intended data flow (bottom up by default), giving us all information we need to
define an appropriate < predicate on the partition:

top-down:  u <t :<=> IS_ANCESTOR(u./,t.0)
bottom-up: u <t :<=> IS_DESCENDANT(u./,t.0)

We additionally need the notion of covered elements we already used informally in
§2.2.4. An element u is said to be covered by an element ¢ if no third element lies in
between:

u<it:e= u<tA-Ju:u<u <t

Using <:, we can identify the immediate < neighbors (descendants/ancestors) of a
tuple t within the current partition. Note that in case all hierarchy nodes are contained
in the current partition, the “tuple u is covered by t” relationship is equivalent to
“node u.v is a child/parent of t.v.” However, we need the general <: notion because
the current partition may well contain only a subset of the nodes. The <: predicate
helps us establish a data flow between tuples even when the intermediate nodes do
not appear in the input.

A tuple u from the current partition can be related in four relevant ways to the
current tuple t:

@u<t b)t<u (c)uv=tv (d)neither of those
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SELECT SUM(Value) OVER (HIERARCHIZE BY Node) AS x FROM Input3

Input3 Window Frame ||Result GD ]
Node|Value o1 2 3 4 5||X /"\
100 |jo = 100 Br @
200 |1 = 200 /T T\
D1) |1000 S 1000 O S N
: [CD ] (€2, ] {C3: (C4':
3000 ||3 2 3000 T T
20 4 < < = 4020
Ay |1 5< < < < < =|4321 @D 1 (@D

Figure 3.5: Applying a bottom-up hierarchical window to a table.

To reuse the syntax of the standard window frame clause without any modifications,
we have to reinterpret three concepts accordingly: PRECEDING tuples are those of cate-
gory (a); FOLLOWING tuples are those of category (b); TIES are tuples of category (c).

In the bottom-up case, PRECEDING tuples correspond to descendants and FOLLOWING
tuples to ancestors of t.v. These terms are intuitively understood if we view the tuples
in the window frame as a sequence partially ordered by <. They are not to be mixed
up with the preceding and following hierarchy axes. Tuples on those axes, as well as
tuples where v is NULL, fall into category (d) and are always excluded from the frame.

The default frame clause includes categories (a), (c), and the current row. The han-
dling of (c) tuples can be controlled independently via the EXCLUDE clause. The options
are to include them (NO OTHERS, default) or to exclude the CURRENT ROW, the TIES, or the
whole GROUP. Note that distinguishing between category (c) and (d) is specific to hier-
archizing; standard window ordering puts all tuples for which neither u < t nor t < u
holds into t’s peer group (with < defined according to the ordering clause).

Example. As a basic example, consider Figure 3.5, where we apply a bottom-up hier-
archical window to table Input3 and compute x = SUM(Value), just as in Statement II-b
from our initial overview in §3.1. The matrix indicates the relationships of the tuples.
Since our window uses the default frame clause, the frames comprise exactly the <
and <: tuples, plus the current row. (Note there are no ties in this example data.) Sum-
ming over them yields the x values shown to the right. Note that although the table
does not include the intermediate nodes (81)/(c3)/(c4), the input values of (c1)/(c2) do still
count into (A1), and likewise for (01)/(03) and the (B2) tuple, as illustrated by the data flow
graph to the right. As said, unary grouping does not require all intermediate nodes to
be present in the input. Thus, it behaves precisely like the alternative binary approach
based on an IS_DESCENDANT_OR_SELF join (Statement II-a from §3.1).

For basic rollups, which are by far the most common type of hierarchical computa-
tion, the implicit window frame clause does exactly the “right thing”—thanks to our
definitions of < and the PRECEDING/FOLLOWING concepts—and it is hard to imagine a
more concise and readable way of expressing them in SQL.
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3.3.4 Recursive Expressions

Thus far, hierarchical windows are merely a shorthand; the computations we have
seen can equivalently be expressed using join—group—aggregate statements. Structural
recursion, however, significantly extends their expressive power. To enable recursive
expressions, we recycle the SQL keyword RECURSIVE and allow wrapping it around
expressions containing one or more window functions:

RECURSIVE [T] (expr) ASc

This makes a field c of type T accessible within any contained window function, and
thus provides a way to refer to the computed expr value of any tuple in the window
frame. If c is used anywhere in expr, T must be specified explicitly, and an implicit CAST
to T is applied to expr. Automatic type deduction in certain cases is a possible future
extension, but it is not generally possible without ambiguity.

The following additional rules apply: First, if expr contains one or more window
function expressions of the form “expr; OVER w;,” all used hierarchical windows w;
must be equal (that is, match in their partitioning and HIERARCHIZE clauses, including
the NODE field and the direction).

Second, the frame of each window wj; is restricted as follows: only the covered tu-
ples (“RANGE 1 PRECEDING”) can potentially be included in the frame, and in particular
EXCLUDE GROUP is enforced. That is, the frame clause of every window function within
expr effectively becomes:

RANGE BETWEEN 1 PRECEDING AND CURRENT ROW EXCLUDE GROUP

This in particular ensures that the window frame will not contain the CURRENT ROW, any
TIES, or any FOLLOWING tuples. If any of those were contained in the frame, any access
to field ¢ within expr would create a cyclic dependency. (It is conceivable to loosen
the restrictions somewhat and give the user more control via a custom frame clause.
However, as there are no obvious use cases for this functionality, we do not consider
frame clauses at this point.)

Third, the field ¢ may appear only within one of the window function expressions
expr;; for instance, in combination with an aggregate function AGG:

RECURSIVE T (... AGG(expr') OVER w ...) AS ¢

Mentioning ¢ outside a window function would implicitly access the current tuple,
which is forbidden, whereas according to SQL’s rules, mentioning ¢ within expr” implic-
itly accesses the frame row (FRAME_ROW), which thanks to our restrictive window frame
can only be a covered tuple for which the c value is available. While this standard
behavior is what is usually intended and quite convenient, SQL has a way to override
the implicit frame row access. We could for example refer to the current tuple even
within AGG by using a so-called nested window function:

RECURSIVE T (... AGG(...VALUE_OF(c AT CURRENT_ROW)...) OVER w ...) AS ¢
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SELECT * FROM (
SELECT h.x,

SUM(Amount) FILTER (WHERE Type = 'type A') OVER w
FROM Hierarchyl h LEFT OUTER JOIN Sale s ON Node = s.Product
WINDOW w AS (HIERARCHIZE BY Node)
) WHERE DEPTH(Node) <= 3

Figure 3.6: Statement I-a from § 3.1, expressed using hierarchical windows.

We prohibit this for c (which, as said, may only be accessed “AT FRAME_ROW”), but allow
it for any other field.

Returning to Figure 3.5, we can now equivalently apply the recursive rollup expres-
sion from our example Statement II-c in § 3.1 to Input3:

RECURSIVE INT (Value + SUM(x) OVER w) AS x

The window frames are now restricted to the covered <: tuples. Since Input3 is already
ordered suitably for bottom-up evaluation—i. e., postorder—we can fill in the x result
column in a single pass and always have the x values of our frame rows at hand when
we need them.

3.3.5 Further Examples

Even with non-recursive expressions, hierarchical windows are already an attractive
alternative to verbose join-group-aggregate statements. Consider again our opening
Statement I-a from § 3.1. A little-known but useful feature of the aggregation functions
in SQL is that the input values to each function can be further restricted by specifying
a FILTER condition. This allows us to state this query as shown in Figure 3.6. Since a
self-join is now implicitly covered through the hierarchical window, we save one join
over Statement I-a. Note also that the outer join may yield tuples where Amount is
NULL, but these are conveniently ignored in the SuM; therefore, no further preprocessing
is necessary.

Altogether there are three conceivable points in the evaluation of a SELECT state-
ment where the user might want to add WHERE conditions: a priori (before windows are
formed); as FILTER (restricting the computation input but not affecting the table); and
a posteriori (restricting the output). To achieve the latter, two selections must be nested,
as SQL currently has no HAVING equivalent for windowed tables.

Figure 3.7 shows further meaningful expressions. They all are based on the bottom-
up or top-down hierarchical window specified by the following query:

Input : {[Node, ID, Weight, Value]}

SELECT Node, expr FROM Input
WINDOW td AS (HIERARCHIZE BY Node TOP DOWN),
bu AS (HIERARCHIZE BY Node BOTTOM UP)

The input table here models a weighted hierarchy with additional values attached
to the nodes (like in Figure 2.4d, p. 18). Some of the example expressions are based
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(1a) SUM(value) OVER bu
(1b) RECURSIVE INT (Value + SUM(x) OVER bu) AS x
(

2a) PRODUCT (Weight) OVER td -- non-standard
(2b)  RECURSIVE INT (Weight * COALESCE(FIRST_VALUE(x) OVER td, 1)) ASx

(3a) SUM(value) OVER (bu RANGE 1 PRECEDING EXCLUDE GROUP)
(3b) RECURSIVE (SUM(Value) OVER bu)

(4a) RECURSIVE DOUBLE (Weight * (Value + SUM(x) OVER bu)) AS x

(4b) RECURSIVE DOUBLE (Value + Weight * (SUM(x) OVER bu)) AS x

(4c) RECURSIVE DOUBLE (Value + SUM(Weight * x) OVER bu) AS x

(4d) RECURSIVE DOUBLE (Value + SUM(VALUE_OF (Weight AT CURRENT_ROW) * x) OVER w) AS x

(5) RECURSIVE VARCHAR ( COALESCE(FIRST_VALUE(x) OVER td, '') || '/' || ID) AS x

(6a) COUNT(x) OVER td
(6b)  RECURSIVE INT (COALESCE(FIRST_VALUE(x) OVER td, 0) +1) AS x

(7a)  COUNT(x) OVER bu
(7b) RECURSIVE INT (COALESCE(FIRST_VALUE(x) OVER td, 0) +1) ASx

(8) RECURSIVE INT (1 + COALESCE(MAX(x) OVER bu, ©)) AS x

(9a) COUNT(*) OVER (bu RANGE 1 PRECEDING EXCLUDE GROUP)
(9b)  RECURSIVE (COUNT(*) OVER bu)

(10) RECURSIVE (MY_FUNC(ARRAY_AGG(ROW(ID, x)) OVER w)) ASx

Figure 3.7: SQL examples for unary computations

on the assumption that Input contains all nodes of the underlying hierarchy, that is,
INode (Input) = TlNoge(T), if T is the hierarchical base table. For computations that
can be stated using either an ordinary expression or a RECURSIVE expression, Figure 3.7
shows both alternatives. (And there would be yet another alternative to express these
computations: a selfjoining join—group—aggregate statement, i.e., binary structural
grouping; but we omit these verbose statements in the figure.)

(1)

(2)
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is our familiar rollup. Besides SuM, the operation in expression 1a could also be
AVG, MIN, MAX, COUNT (cf. example 7), EVERY, ANY, or ARRAY_AGG to simply collect all
values in an array. The recursive variant would have to be appropriately adapted.
Duplicate input values can be eliminated as usual using DISTINCT, as opposed
to the implicit ALL semantics. SQL’s FILTER construct adds further expressiveness.
For example, in a bill of materials we may count the distinct types of subparts of
a certain manufacturer that each part is built of:

COUNT (DISTINCT Type) FILTER (WHERE Manufacturer = 'A') OVER bu

is a top-down counterpart to the previous example (1). This computation yields
the effective weights by multiplying over all tuples on the root path. Expres-
sion 2a uses a hypothetical PRODUCT aggregation function, which is curiously miss-
ing from standard SQL. Expression 2b works around that via recursion, aptly
taking advantage of the special FIRST_VALUE aggregation function. To understand
the example, note that for a top-down recursive computation, the window frame
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can be either empty—making FIRST_VALUE yield NULL—or contain one covered an-
cestor. In our bill of materials the weight could be the part’s multiplicity (“how
often?”) within its super-part. Here the product would tell us how often the part
appears in total in the assembly.

is a variant of example (1) summing over only the covered tuples rather than all
descendants. In expression 3b we access only Value but not the actual expression
result (thus, its type T can be auto-deduced); still, the semantics are those of re-
cursive evaluation. Under the assumption that Input2 happens to contain all hier-
archy nodes, the cover relation <: becomes equivalent to the IS_CHILD predicate
as noted earlier; so the same could as well be achieved via join—group-aggregate.

are variants of a weighted rollup; they sum up Value while taking Weight into ac-
count. Expression 4a immediately applies t.Weight to every computed t.x value,
whereas expression 4b applies it only to the u.x values of the input tuples u. Ex-
pression 4c applies the u.Weight of any input tuple u to the u.x value of that tuple.
(Therefore, during the computation of t.x, both the x and the Weight fields of the
frame rows are accessed.) Expression 4d is mostly equivalent to expression 4b,
but brings it into a form similar to expression 4c using a nested window function
to access the Weight of the current row within the Sum.

In general, such weighted rollups cannot be performed without (structural) re-
cursion. A non-recursive expression such as “SUM(Weight *Value) OVER bu” would
apply the Weight only to each tuple’s Value, rather than the accumulated value,
which is not what we intend. A non-recursive workaround that is sometimes
applicable is to “multiply out” the expression according to the distributivity
law and use two separate computations: First expression 2a, yielding absolute
weights w for each tuple, then SUM(w * Value) bottom up. The result is then mostly
equivalent to expression 4a.

constructs a path-based representation of the hierarchy using the same technique
as example (2). It builds a string from the ID values on the root path, for example
/A1/B1/C1 for (c1). Related hierarchy-handling tools such as Hierarchical Queries
(§2.3.3), hierarchyid (§ 2.3.7), and ltree (§ 2.3.8) often provide similar functionality
via built-in functions. This example demonstrates how one can easily emulate
that functionality by a custom computation, but with added flexibility.

compute properties of the data flow graph over the input table. As Input2 can
be viewed as an extension of the hierarchical base table (containing all nodes of
the hierarchy), they are equal to the node’s (6) depth, (7) subtree size, (8) subtree
height, and (9) degree. In general (7) gives us the size of the window frame
and (9) the number of covered tuples. Note how expression gb does not actually
access any frame tuple at all. COUNT (*) counts tuples but does not actually access
any attributes.

Finally, if we need to go beyond the capabilities of SQL’s aggregate functions
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and expression language, we can use ARRAY_AGG to collect data from the covered
tuples and pass it to a user-defined function.

Yet another option for (10) would be user-defined aggregates, which can be imple-
mented in some RDBMS via proprietary extension mechanisms (e. g. [38]). Using these
mechanisms arbitrarily complex computations could be plugged in.

3.4 DDL Extensions: Creating Hierarchies

The previous section covered our query language constructs which work on fields of
type NODE. In this section, we show how hierarchical tables containing such fields are
defined and maintained.

3.4.1 Hierarchical Base Tables

For newly designed applications we intend to provide specific DDL constructs to ex-
press and maintain hierarchies explicitly in the table schema (Requirement #3 from
§2.2.5). Because the underlying object is a persistent base table, updates are supported.
In this scenario the user starts out with an empty hierarchy and then incrementally
adds and updates its nodes using the DML constructs we discuss in § 3.5.

A base table definition may specify a hierarchical dimension as follows:

CREATE TABLE T (

HIERARCHY name [NULL|NOT NULL] [WITH (option*)]
)

This implicitly adds a column named name of type NODE to the table, exposing the un-
derlying hierarchy. Explicitly adding columns of type NODE is prohibited. A hierarchical
dimension can also be added to or dropped from an existing table using ALTER TABLE:

ALTER TABLE T ADD HIERARCHY Node NULL
ALTER TABLE T DROP HIERARCHY Node

Like a column, a hierarchical dimension can explicitly be declared nullable, or a “NoT
NULL” constraint can be added. If it is declared NOT NULL, the implicit NODE value of a
newly inserted row becomes DEFAULT, making it a new root without children. A row
with a NULL value in its NODE field is not part of the hierarchy.

A hierarchy whose structure is known to rarely or never change allows the system to
employ a read-optimized indexing scheme (cf. Requirement #8). Therefore, we provide
the user with a means of controlling the degree to which updates to the hierarchy are
to be allowed. This is done through an option named UPDATES:

UPDATES = {BULK|NODE|SUBTREE}

BULK allows only bulk-updates, which makes the NODE column essentially immutable;
NODE allows bulk-updates and single-node operations, that is, relocating, adding, and
removing single leaf nodes; SUBTREE allows bulk-updates, single-node operations, and
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the relocation of whole subtrees. These restrictions are strict in the sense that an SQL
error is raised when a prohibited DML operation is attempted. The default setting is
SUBTREE, so full update flexibility is provided unless there is an explicit restriction from
the user. Depending on the specified option, the system can choose an appropriate
indexing scheme. The motivation behind distinguishing between single-node and sub-
tree updates is that the latter require a more powerful dynamic indexing scheme than
the former, with inevitable tradeoffs in query performance (see § 4.2).

Note that a table with one or more hierarchical dimensions might additionally have
one or more temporal dimensions, specified via standard PERIOD definitions [97]. The
defined hierarchies would then by default become temporal hierarchies. Although we
do not cover this topic any further, the orthogonal way in which a hierarchical dimen-
sion is specified would allow our framework to fairly straightforwardly accommodate
scenarios featuring temporal-hierarchical data in the future (see §7).

3.4.2 Derived Hierarchies: The HIERARCHY Expression

While hierarchical base tables are a preferred choice for newly designed applications,
derived hierarchies are targeted mainly at legacy applications. According to our Re-
quirement #7 from §2.2.5, legacy applications demand for a means to derive a hier-
archy from an available table using a certain relational hierarchy encoding. Derived
hierarchies enable users to take advantage of all query functionality “ad hoc” on the
basis of relationally encoded hierarchical data, while staying entirely within the query
language—and in particular, without requiring schema modifications via DDL.

For this purpose we provide the derived hierarchy construct, which syntactically resem-
bles an invocation of a built-in table-valued function named HIERARCHY. It derives a
hierarchy from a given source table, which may be a table, a view, or the result of an
arbitrary subquery:

SELECT ..., name
FROM HIERARCHY (

USING source table AS source name

cen - transformation specification

SET name - - NODE column name

)

This expression can be used wherever a table reference is allowed, in particular a FROM
clause. It is comparable to a table-valued function: Its result is a temporary table con-
taining the data from the source table and additionally a new NODE column named name
and an associated hierarchy as metadata. The transformation specification is a descrip-
tion of the specific relational input format. A system might support various common
input formats, such as those we discussed in §2.2. We next cover the proposed syntax
of the transformation specification for the most common type of input, the adjacency
list format (§ 3.4.3).

3.4.3 Deriving a Hierarchy from an Adjacency List

The syntax to derive a hierarchy from a table in the adjacency list format is as follows:
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HIERARCHY (
USING source table AS source name
[START WHERE start condition]
JOIN PRIOR parent name ON join condition
[SEARCH BY order]
SET node column name
)

Conceptually, this table-valued expression is evaluated by first self-joining the source
table in order to derive a parent-child relation representing the edges, then building a
temporary hierarchy representation from that, and finally producing the correspond-
ing NODE column. The optional START WHERE subclause can be used to restrict the hier-
archy to only the nodes that are reachable from any node satisfying start condition. The
optional SEARCH BY subclause can be used to specify a desired sibling order; if omitted,
siblings are ordered arbitrarily. In more detail, the conceptual procedure for evaluating
the complete expression is as follows:

1. Evaluate source table and materialize the required columns into a temporary ta-
ble T. Also add a NODE column named node column name to T and initialize it with
NULL values.

2. Perform the join
T AS C LEFT OUTER JOIN T AS P ON join condition

where P is the parent name and C is the source name. Within the join condition, P and C
can be used to refer to the parent and the child node, respectively.

3. Build a directed graph G containing all row IDs of T as nodes, and add an edge
rp — rc between any two rows rp and ¢ that are matched through the join.

4. Traverse G, starting at rows satisfying start condition, if specified, or otherwise at
rows that have no (right) partner through the outer join. If order is specified, visit
siblings in that order. Check whether the traversed edges form a valid tree or
forest, that is, there are no cycles and no node has more than one parent. Raise
an error when a non-tree edge is encountered.

5. Build a hierarchy representation from all edges visited during Step 4 and popu-
late the NODE column of T with a corresponding NODE value for each visited node,
accordingly. The result of the HIERARCHY expression is T.

Note that this description is merely conceptual; we describe an efficient implementa-
tion in § 4.6.

In Step 4, an error is raised when an edge is encountered that leads to an already
visited node. The resulting hierarchy is therefore guaranteed to have a strict tree struc-
ture (Requirement #6). Alternatively, such edges could simply be ignored. This would
effectively derive a spanning tree over the graph. Yet another alternative would be to
revisit the previously visited node again but producing new tree nodes for that branch
in the output. This would have the effect of “multiplying out” the whole graph. Which
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WITH PartHierarchy AS (
SELECT ID, Node
FROM HIERARCHY ( USING BOM AS c JOIN PRIOR p ON p.ID = c.PID SET Node )
)
SELECT v.ID, DEPTH(v.Node) AS Depth
FROM PartHierarchy u, PartHierarchy v
WHERE u.ID = 'C2' AND IS_DESCENDANT(v.Node, u.Node)

Figure 3.8: Deriving a hierarchy from the BOM table and querying it ad hoc.

option is most suitable depends on the application to hand. Either option ensures that
the derived hierarchy will be strict.

The HIERARCHY syntax may be reminiscent of Hierarchical Queries (§2.3.3) or RCTEs
(§2.3.4). In particular, the self-join via parent name is roughly comparable to a CONNECT
BY via PRIOR in a Hierarchical Query. However, the semantics of HIERARCHY are quite
different in that by design only a single self-join is performed on the input rather than
a recursive join. This allows for a very efficient evaluation algorithm compared to
a recursive join. And there is another major conceptual difference to the mentioned
approaches: Note that the HIERARCHY expression does nothing more than define a hier-
archy; that hierarchy can then be queried by wrapping the expression into a SELECT
statement. In contrast, an RCTE both defines and queries a hierarchy in one convo-
luted statement. Separating these two aspects greatly increases comprehensibility. As
an example, consider again our familiar BOM of Figure 1.1 (p. 2). The statement in
Figure 3.8 uses a CTE featuring a HIERARCHY expression to derive the Node column
from ID and PID, then selects the IDs and depths of all parts that are used within
part (C2). The mentioned separation of aspects is clearly visible. PartHierarchy could
be extracted into a SQL view and reused for different queries. One might argue that
an RCTE or Hierarchical Query could be wrapped into a view as well, but that still
would not clearly separate the definition and querying aspects: The user would have to
compute any node properties that might potentially be needed in later queries (such
as DEPTH in the example) upfront in the view definition, even though they are clearly
part of the query. A query that does not need the depths would still trigger their com-
putation, resulting in unnecessary overhead. In contrast, our design allows the user to
cleanly defer the selection of node properties of interest to the actual query.

3.5 DML Extensions: Manipulating Hierarchies

In order to accommodate legacy applications (Requirement #7), we aim to provide a
smooth transition path from relationally encoded hierarchies to full-fledged hierarchi-
cal dimensions. In a first stage, we expect most legacy applications to rely entirely on
views featuring HIERARCHY expressions on top of relational encodings such as adjacency
lists, as this approach allows them to avoid any schema changes. In such a scenario,
each view evaluation conceptually derives a new hierarchical table from scratch (al-
though that may often be elided if the system supports view caching). As the NODE
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column of a derived hierarchy is immutable, the only way the hierarchy structure can
be modified is to manipulate the original encoding.

In a second stage, a partly adapted legacy application might add a static hierarchical
dimension (UPDATES=BULK) alongside the existing adjacency list encoding, and update
the dimension periodically from the adjacency list by performing an explicit bulk update.
This can be done using SQL’s standard MERGE INTO statement, by specifying a HIERARCHY
expression as the source to merge and the existing hierarchical table as the target.

These two stages provide a way to gradually adopt hierarchy functionality in a
legacy application, but they come at the cost of requiring frequent bulk builds when-
ever the hierarchy structure changes. Therefore, for both green-field applications as
well as fully migrated legacy applications it may be preferable to use a dynamic hier-
archy (UPDATES=NODE or SUBTREE). Such a hierarchical table supports fine-grained up-
dates via explicit DML constructs. Again, our NODE abstraction allows us to straight-
forwardly add support for expressing structural updates while using a minimally in-
vasive syntax: Update operations naturally translate into ordinary INSERT and UPDATE
statements operating on the NODE column of a hierarchical dimension.

Node Anchors. To specify the position where a row is to be inserted into the hier-
archy, we use an anchor value. A node anchor acts as a pseudo value for the NODE field in
an INSERT or UPDATE statement. It is essentially an existing NODE value plus an indication
of where the node or subtree being manipulated is to be placed relative to that node.
Again, we refrain from extending the SQL grammar and instead use simple built-in
functions which take a NODE value as input and yield a node anchor as output:

® BELOW(/) inserts the new row as a child of /. The insert position among the exist-
ing children is undefined.

* BEFORE (/) or BEHIND (/) insert the new row as the left or right sibling of /.

® ABOVE (/) inserts the new row above /. The parent of ¢ becomes the parent of the
new node, and /¢ itself becomes the child of the new node.

The BELOW anchor is useful for unordered hierarchies, while BEFORE and BEHIND anchors
allow for precise positioning in hierarchies where sibling order matters.

Inserting Nodes. When we insert a new row into a hierarchical base table using
INSERT, we can add a corresponding node to the hierarchy by specifying a node anchor
for the NODE field. Obtaining an appropriate node anchor typically requires a sub-select.
For example, we can add a node (83) as new child of (a2) into our familiar BOM hierarchy
like this:

INSERT INTO BOM (ID, Node)
VALUES ('B3', ( SELECT BELOW(Node) FROM BOM WHERE ID = 'A2' ) )

or

INSERT INTO BOM (ID, Node)
SELECT 'B3', BELOW(Node) FROM BOM WHERE ID = 'A2'
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To make the new row a root, we can specify the DEFAULT value. To omit the row from
the hierarchy, we can specify NULL, provided the NODE column is nullable:

INSERT INTO T ( - Node) VALUES ( gy DEFAULT) - - insert as root node
INSERT INTO T ( ey Node) VALUES ( - NULL) - - do not insert a node

In case no value is provided in the INSERT statement, DEFAULT and NULL are the implicit
defaults for non-nullable and for nullable dimensions, respectively. A row with a NULL
node can of course be added to the hierarchy later on via an UPDATE.

Relocating Nodes. A node can be relocated by updating the NODE field of the associ-
ated row using an ordinary UPDATE statement, again specifying an anchor to indicate
the target position:

UPDATE T SET Node = ( SELECT BELOW(Node) FROM T WHERE ... ) WHERE ...

If the node to be relocated has any descendants, the whole subtree rooted at the node
is relocated together with it. However, such a subtree relocation is only allowed if
option UPDATES =SUBTREE is used for the hierarchical dimension. In order to guarantee
structural integrity, the system must raise a SQL error when a subtree is attempted to
be relocated below a node within that same subtree, as this would result in a cycle.

Removing Nodes. A node can be removed from a hierarchy either by deleting its
row or by updating its NODE field to NULL:

UPDATE T SET Node = NULL WHERE ...
DELETE FROM T WHERE ID = '...' - - by attribute/key value
DELETE FROM T WHERE Node IN (...) -- bynNoDE value

However, these operations are prohibited if the node has any descendants that are not
also removed during the same transaction. In other words, in order to remove the root
of a subtree, all its children have to be relocated first or removed together with that
node. This rule is quite restrictive, but it is necessary to ensure that removing nodes
does not leave behind an invalid hierarchy. Also note that in case the hierarchical
dimension uses option UPDATES =BULK, nodes cannot be individually inserted, relocated,
or removed. This renders it difficult to delete any rows that are part of the hierarchy,
that is, whose NODE value is not NULL. One operation that is allowed on a BULK dimension
is to truncate the whole hierarchy by unconditionally setting the NODE values of all rows
to NULL: “UPDATE T SET Node = NULL.” Thus, a way to delete rows with associated nodes
is to first truncate the hierarchy, then delete the rows at will, and subsequently rebuild
the hierarchy from scratch. If any of the mentioned rules are violated, a SQL error is
raised. Although this is restrictive, it ensures that the structure of the hierarchy remains
valid at any time, thus satisfying Requirement #6 of §2.2.5.
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3.6 Advanced Examples

We now explore several more advanced scenarios involving hierarchical tables. This
includes modeling entities that are part of multiple hierarchies or entities that appear
in the same hierarchy multiple times (§3.6.1), as well as creating inhomogeneous hier-
archies that contain entities of various types (§3.6.2). These examples are inspired by
customer scenarios at SAP and demonstrate that our language extensions stand up to
real-world scenarios.

3.6.1 Flexible Forms of Hierarchies

In certain applications an entity may be designed to belong to two or even more hi-
erarchies at the same time. For example, an employee might have both a disciplinary
superior as well as a line manager, and thus be part of two reporting lines. A straight-
forward way to model this is to add multiple hierarchical dimensions to a table:

CREATE TABLE Employee (
ID INTEGER PRIMARY KEY,

HIERARCHY Disciplinary,
HIERARCHY Line
)

A more complex case arises when a single hierarchy shall be able to contain the same
entity multiple times. Again, a bill of materials can serve as an example: A common
part such as a screw may generally appear multiple times within the same BOM, and
we may not want to replicate its attributes each time. This is a typical 1 : N relationship:
one part may appear N times in the hierarchy. The solution is to model this case exactly
as one would usually model 1 : N relationships in the relational model, namely by
introducing two tables and linking them by means of a foreign key constraint. In our
example, we would split the original BOM schema from Figure 3.2 (p. 38) into a Part
table storing per-part data and a correspondingly simplified BOM table:

CREATE TABLE Part ( CREATE TABLE BOM (
ID INTEGER PRIMARY KEY, NodeID INTEGER PRIMARY KEY,
Kind VARCHAR, HIERARCHY Node,
- per-part master data PartID INTEGER, -- anodeisapart (N:1)

FOREIGN KEY (PartID) REFERENCES Part (ID),
) - - additional node or edge attributes

)
The generalized pattern of “factoring out” a hierarchy into a satellite table is as follows:

CREATE TABLE T ( PK INTEGER PRIMARY KEY, ... )
CREATE TABLE U ( HIERARCHY Node, FK INTEGER UNIQUE REFERENCES T (PK), ... )

The UNIQUE constraint on FK ensures that U-T is a 1 : 1 relationship. Thus, the hierarchy
effectively arranges the rows from both T and U. Fields that logically belong to a node
or edge should be placed in U in order to keep T uncluttered. Rows from T that are
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currently not a part of the hierarchy do not need to actually appear in U. To remove a
node, one would rather delete the corresponding U row altogether instead of setting
its Node value to NULL.

With this pattern, one can add any number of distinct T-hierarchies by simply cre-
ating more satellite tables like U. Furthermore, if we relax the U-T relationship by
dropping the UNIQUE constraint, a T entity can effectively appear any number of times
within the same hierarchy.

3.6.2 Heterogeneous Hierarchies (I)

In many scenarios, entities of various types are arranged in a single hierarchy. Dif-
ferent types of entities are characterized by different sets of attributes. Especially in
structured documents such as XML, various types of document nodes (i.e., tags with
corresponding attributes) are interleaved in arbitrary ways, and XPath expressions rou-
tinely combine hierarchy navigation with filtering by node type (so-called node tests).
The SQL way of modeling multiple entity types is to define a separate table per type,
each with an different set of columns as appropriate. Returning to our BOM example
from §3.6.1, we can elaborate the Part-BOM data model further by introducing entities
of type “engine”:
CREATE TABLE Engine (

ID INTEGER PRIMARY KEY,

FOREIGN KEY (ID) REFERENCES Part (ID),

Power INTEGER,

- - engine-specific master data

)

While Part contains master data that is common to all kinds of parts, Engine adds
master data that is specific to engines. Note that the two tables must have a common
primary key domain (ID). The foreign key constraint enforces a 1 : 1 relationship to
Part. BOM is now a heterogeneous hierarchy in that each node can be either of type Part
or of the specific subtype Engine. This design is extensible. Further part types can be
added by defining further tables like Engine.

When querying the BOM, type-specific part attributes can be accessed by simply
joining in the corresponding master data. Such a join acts as a filter by type. As an
example query, suppose that fittings by manufacturer X have been reported to outwear
too quickly when used in combination with engines more powerful than 700 watts,
and we need to determine the compounds that contain this hazardous combination
in order to issue a recall. Figure 3.9 shows the solution. Note in particular how the
BOM-Engine join implicitly ensures that node e is of kind “engine,” so we do not
need a separate test.

3.6.3 Heterogeneous Hierarchies (II)

We now consider another example from a Human Resources use case, where entities
of two entirely different types are mixed into a single hierarchy. Suppose we have
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SELECT *
FROM BOM c, Part cm, - - compound node and master data
BOM f, Part fm, - - fitting node and master data
BOM e, Engine em - - engine node and master data

WHERE c.ID = cm.ID AND cm.Kind = 'compound'
AND IS _DESCENDANT(f.Node, c.Node)
AND f.ID = fm.ID AND fm.Kind = 'fitting' AND fm.Manufacturer = 'X'
AND IS _DESCENDANT (e.Node, f.Node)
AND e.ID = em.ID AND em.Power > 700

Figure 3.9: Querying the heterogeneous bill of materials hierarchy.

SELECT e.Emp AS "Employee", d.Dep AS "Department"
FROM DepEmp e, DepEmp d
WHERE e.Emp = 'Bob'

AND IS_ANCESTOR(d.Node, e.Node) -- eiswithind
AND d. Dep IS NOT NULL - - disadepartment
AND NOT EXISTS ( - - no department in between

SELECT * FROM DepEmp v
WHERE IS_ANCESTOR(d.Node, v.Node) AND IS_ANCESTOR(v.Node, e.Node)
AND v.Dep IS NOT NULL

Figure 3.10: Querying the Department-Employee hierarchy: “Where does Bob work?”

an existing Department table and an existing Employee table, and we want to arrange
the departments and employees in a combined hierarchy. In this hierarchy, each depart-
ment node would have one child of type employee indicating the department manager,
as well as any number of children for the subdepartments; each manager node would
form the root of a subhierarchy of employees. One way to model this is as follows:

CREATE TABLE DepEmp (
NodeID INTEGER PRIMARY KEY,
HIERARCHY Node,

Dep INTEGER UNIQUE REFERENCES Department (ID),

Emp VARCHAR UNIQUE REFERENCES Employee (ID),

CONSTRAINT C1 CHECK (Dep IS NULL OR Emp IS NULL)
)

Every node in this table references either a department or an employee, but never
both at the same time. Additional attributes on the entities can be joined in from the
Department and Employee tables when needed.

To query, for example, the department a given employee e works in, we need to
determine the closest department node above e. Figure 3.10 shows a possible solution.
A bigger challenge is to query the manager of e: If ¢ has a parent of type employee,
that is the manager; if, however, e is a department head, the manager is the head of the
parent department. To solve this query we would need a much more complex pattern.

An advantage of the DepEmp design is that it is not invasive: We do not need to
modify the original Department and Employee tables, nor do we need to add any
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SELECT v.ID, SUM(sale.Amount)
FROM Location u, Location v, Location w, Store store, Sale sale
WHERE u.Name = 'Europe'
AND IS_DESCENDANT(v.Node, u.Node)
AND DEPTH(v.Node) = DEPTH(u.Node) + 2
AND IS_DESCENDANT (w.Node, v.Node)
AND IS_LEAF (W 5 Node) = TRUE -- store locations are leaves
AND w.ID = store.LocationID
AND store.ID = sale.StorelD
GROUP BY v.ID

Figure 3.11: A rollup query based on a geographic dimension hierarchy.

satellite tables or have a shared key domain between Department and Employee, un-
like the approaches of §3.6.1 and §3.6.2. However, it is somewhat inconvenient that
an employee node cannot have both a parent employee (manager) and a parent depart-
ment, as this would violate the strictness constraints. Our example works around this
by interleaving the nodes such that employees are only indirectly connected to their
department via the manager. This of course results in more complex queries, as the
above example shows.

3.6.4 Dimension Hierarchies

As we noted in § 2.2.3, dimension hierarchies of fact tables are an important use case. In
this example we consider a variant of the sales scenario, where the sales table records
the store where each sale took place, and the stores are arranged in a common geo-
graphic hierarchy. The schema is:

Sale : {[StorelD, Date, Amount, ...]}
Store : {[ID, LocationID, ...]}
Location : {[ID, Node, Name, ...]}

By joining Sale-Store-Location, we can associate each sale with a Node value corre-
sponding to the location of the store.

Now, let us answer the following example query: “Considering only sales within
Europe, list the total sales per sub-subregion.” The prose form of this query speaks,
quite implicitly, of three distinct Location nodes: a reference node u, namely Europe;
a node v two levels below u, corresponding to a sub-subregion; and a leaf node w
below v, corresponding to the location of a store where a sale took place. We can use a
join-group-aggregate statement to answer the query. While we are mainly interested
in the values for v, we also need names for # and w in the statement. All in all, three self-
joined instances of the hierarchical table are required. Figure 3.11 shows the solution.

Note the straightforward reading direction of the query: it intuitively matches the
direction of navigation in the hierarchy. This example and the one from Figure 3.9 are
good examples of how our language extensions maintain the original “look and feel”
of SQL, so even more complex queries will be intuitive to experienced SQL users.
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3.6.5 A Complex Report Query

In our previous example, we were able to express a non-trivial hierarchical computa-
tion in terms of a simple join-group-aggregate statement. We now investigate a more
elaborate query whose solution requires hierarchical windows. Similar to the setup
of §2.2.4, it is based on an abstract hierarchical table and a separate table of numeric
input values attached to some of the nodes:

Hierarchy : {[ID, Node, Payload]} Input : {[Node, Value]}

At the heart, the purpose of this query is to compute a bottom-up sum of the mea-
sure values, much like in the basic examples of §3.1. But there are some additional
requirements: First, before we can do the rollup we need an initial join between the
given Input values and the Hierarchy nodes, which gives us a combined input table
for unary structural grouping. Second, each node in the hierarchy carries 128 bytes of
further payload, which we want to include in the result and thus have to carry through
the computation. Third, in addition to the actual sum x for each node, we want to also
show the contribution p in percent of each node’s x value to the total of its parent.
Fourth, we want to report only the three upper levels of the hierarchy, with the nodes
arranged in preorder. Fifth, we want to visualize the nodes’ positions using Dewey-
style path strings (see §2.3.6). If the x value of (81) is 1250, an example result line for

may be

['/A1/B1/C2"', 125, 10%, payload]

The additional “stress factors” in this example are commonly found in real-world
queries. In particular, the contribution percentage is an often-requested measure in
financial applications we saw at SAP. To obtain both the contribution percentages and
the Dewey path strings, we need a bottom-up and a top-down hierarchical computation.
With the help of hierarchical windows this is expressed as follows:

- bottom-up rollup
WITH T1 (Node, ID, Payload, x) AS (
SELECT h.Node, h.ID, h.Payload,
SUM(in.Value) OVER (HIERARCHIZE BY h.Node BOTTOM UP)
FROM Hierarchy h LEFT OUTER JOIN Input in ON h.Node = in.Node
),
- top-down computation of the contribution p and the path
T2 (Node, ID, Payload, x, p, Path) AS (
SELECT Node, ID, Payload, X,
RECURSIVE ( 100.0 * x / FIRST_VALUE(x) OVER w ),
RECURSIVE VARCHAR(255) (
COALESCE (FIRST_VALUE(p) OVER w, ') || '/' || ID) AS p,
FROM T1 WINDOW w AS (HIERARCHIZE BY Node TOP DOWN)
)
- -~ final filtering and odering
SELECT Path, x, p, Payload FROM T2 WHERE DEPTH(Node) <= 3
ORDER BY PRE_RANK(Node)

Without our language extensions this query would be prohibitively difficult to express.
By contrast, the above statement is fairly intuitive, considering the complexity of the
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task at hand. Moreover, it can also be translated into a very efficient execution plan, as
our evaluation in §6.3.7 will show.

3.6.6 Hierarchical Tables and RCTEs

In §2.3.4 we mentioned that hierarchical tables are not intended to completely replace
or obviate RCTEs. In fact, these two features can interact. We illustrate this by the
example of a quantities calculation in a bill of materials. Suppose the payload of a
Part contains a Quantity field indicating how often the part is used within its respec-
tive parent part. The following query computes the required quantity of each part by
multiplying the quantities of the nodes on the root path:

WITH RECURSIVE RCTE (Node, Quantity) AS (
SELECT Node, Quantity FROM Part WHERE DEPTH(Node) = 1
UNION ALL
SELECT v.Node, u.Quantity * v.Quantity
FROM RCTE u JOIN Part v ON IS_CHILD(v.Node, u.Node)
)

SELECT * FROM RCTE

This particular query could of course be expressed more easily in terms of a hierar-
chical window. (A join—group-aggregate statement over the ancestors of each node is
not possible, but only because there is no PRODUCT aggregation function in standard
SQL.) However, what the example shows is that RCTEs can navigate hierarchical ta-
bles just like adjacency list tables, using, for example, IS_CHILD as the join condition
within the recursive query expression. Legacy queries relying on RCTEs can therefore
straightforwardly be rewritten when the underlying tables are migrated to hierarchi-
cal tables. An RCTE like in the example could be considered comparatively readable:
The general structure of the recursion—start at level 1, iteratively move along the child
axis—is quite obvious in the statement. An expression of the form IS_CHILD(v, u) ex-
presses the navigation direction more clearly than an ordinary join such as v.PID =
u.ID would.
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The Backend Perspective
of Hierarchical Tables

In the hierarchical table model we introduced in the previous chapter, a hierarchy ap-
pears to the user as an ordinary relational table with an added column of type NODE.
From the user’s perspective, the NODE field is opaque; it is merely a “syntactic handle”
for expressing queries and updates on the hierarchy. At the backend, this fundamental
design gives us the flexibility to choose between different encoding schemes for the
structure, which we call hierarchy indexing schemes (§ 4.1). This flexibility is critical: As
Requirement #8 from §2.2.5 anticipates, there is no “one size fits all” encoding that
could serve all applications equally well. All data structures that make up a specific
type of indexing scheme are encapsulated by an abstract index interface (§ 4.1.2). The
interface exposes the required primitives to implement our SQL extensions with suit-
able worst-case asymptotic performance guarantees. Thus, the backend can be mostly
agnostic about the layout and manipulation of the NODE values and auxiliary data struc-
tures. Each implementation of an indexing scheme comes with a definition of the ab-
stract NODE type and a number of related data types, plus usually one or more auxiliary
data structures. We survey a broad range of existing schemes that fit into our abstract
model (§4.2), and recommend suitable default options for common scenarios (§4.3)
and in particular static settings (§ 4.4). We also include an overview of our novel order
indexes family of indexing schemes (§ 4.5), which target highly dynamic scenarios. Be-
sides the query primitives, indexing schemes also need to support bulk building (§ 4.6)
as well as SQL update statements (§ 4.7). Efficient bulk-building is particularly impor-
tant for supporting legacy applications that derive hierarchies from existing data; we
therefore cover the necessary algorithms in much detail.

4.1 Hierarchy Indexing Schemes
A hierarchy indexing scheme is a specific implementation of a hierarchy encoding on

top of the abstract NODE column design. We begin our discussion by considering the
fundamental components that make up such an implementation.

This chapter builds upon the publications [9], [32], and [33]. As the implementation of our proposed
order indexes is not in the focus of this thesis, we only summarize their relevant characteristics in § 4.5
and refer to those publications for further information. § 4.6 provides a much extended discussion of
the bulk-building techniques first described in [9].



4 THE BACKEND PERSPECTIVE OF HIERARCHICAL TABLES

4.1.1 Basic Concepts

With most types of indexing schemes, the NODE column is backed by a more or less so-
phisticated auxiliary data structure. The run-time representation of a hierarchy there-
fore generally consists of two logical data objects: the complete contents of the NODE
column, and an instance of the auxiliary data structure. Unlike the NODE column, the
index structure is entirely transparent to the user: It is not an explicit, user-accessible
object in the database catalog. It is created or destroyed, kept up to date, and leveraged
for query processing by the backend alone without the user ever noticing. In some
ways, this is comparable to a traditional index on a table column, such as a B-tree or
hash table. However, there is an important difference: The hierarchy indexing scheme
contains the hierarchy structure as non-redundant information. Traditional indexes, by
contrast, are redundant and could be dropped at any time without losing information.

In § 4.2 we explore specific types of indexing schemes. Each type of indexing scheme
consists of implementations of the following general components:

¢ The auxiliary index structure (and possible sub-structures).

¢ A Label data type, which is the actual data that is stored per row in the abstract
NODE field. We call these scheme-specific, SQL-level node identifiers the labels of
the indexing scheme.

* A Node data type and a Cursor data type. A Node or Cursor object can be obtained
from a Label. These objects are internal node handles as opposed to the labels,
which are exposed at SQL level. They are obtained and manipulated through the
interface and used in the backend during query processing. Cursor is a subtype
of Node, that is, cursors can be used wherever the Node type is required. While Node
is a basic handle to a single node, a Cursor can additionally be used to traverse
the hierarchy structure in various directions.

¢ An implementation of the abstract hierarchy index interface based on the Label,
Node, and Cursor types and the auxiliary index structure.

Some update operations require a specification of an intended target position in the
hierarchy. This concept is based on the Node data type: A target position is simply a
Node object plus an anchor, which can be “before” or “behind” (meaning: as a direct
left or right sibling), “above,” or “below.” The unspecific “below” is used when the
sibling order is not meaningful; its semantics are up to the indexing scheme.

A hierarchy indexing scheme has to maintain a bidirectional association between the
table rows and the internal representation of the nodes. If an auxiliary data structure
is used, the Label essentially works as a link from the row to an entry representing
the node in the index structure. Defining the mechanism for this is up to the indexing
scheme. The link from a hierarchy node to its associated row, on the other hand, is
realized via ordinary row IDs. The row ID can be obtained from a Node or Cursor
handle via the index interface. This “linking” via row IDs is analogous to how ordinary
database indexes such as B-trees work. The row IDs are usually stored directly in the
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index structure entries. How a row ID is actually represented may differ significantly
between row stores, column stores, disk-based systems, and in-memory systems, but
this is not relevant in the following.

The motivation for having three data types rather than just the labels is that the pro-
cess of locating an internal entry (i. e., obtaining a Node) in the auxiliary index structure
given only a Label as a starting point may have a non-trivial cost, which we want to
avoid where possible. Furthermore, the capability to perform systematic traversals of
the hierarchy structure may require a Cursor to maintain a non-trivial state.

The actual definitions of the Label, Node, and Cursor data types heavily depend on the
design of the auxiliary data structure. A Label may be a simple pointer, a structured
set of values, or a non-trivial binary code. The Node and Cursor types are a form of
pointer to an entry in the data structure, which can be dereferenced in constant time.

Any Label, Node, and Cursor values are manipulated solely through the index inter-
face and are treated by the rest of the backend as opaque bytes. In that regard, the
NODE type is comparable to BINARY or VARBINARY. That is, the Label of a row can be ac-
cessed individually and treated as opaque bytes. Whether its length is fixed or variable
depends on the indexing scheme, but the size limit is known at data definition time.

Static and Dynamic Indexing Schemes. The choice among indexing schemes mat-
ters particularly with regard to their varying degrees of support for updates. We dif-
ferentiate static and (more or less) dynamic schemes. Static indexing schemes cannot
incorporate incremental updates and are invalidated whenever nodes are inserted, re-
located, or removed. An invalidated indexing scheme must be rebuilt at the latest
when it is accessed by a transaction to which the changes are visible. Static schemes
generally can employ significantly more compact data structures and efficient algo-
rithms than their dynamic counterparts. But they are only feasible when the hierarchy
structure does not change often, or when changes only happen in batches. Two cases
where static schemes are a perfect choice are derived hierarchies, which are by design
immutable, and snapshots of historic states in system-time temporal tables. Dynamic in-
dexing schemes, on the other hand, trade off query processing performance and simplic-
ity of data structures in return for more efficient and more powerful update operations.
They are significantly more complex to design and implement.

Clustering. In physical storage, database systems usually maintain the rows of a
table in a purposeful order, such as by primary key or in a way that maximizes com-
pression rates or temporal locality. In many scenarios (such as the SAP ERP use cases
we analyzed in [9]), a hierarchy is not the primary dimension of a table, and clustering
the associated table by hierarchy structure is infeasible or not preferable. Hierarchy
indexes are therefore non-clustered indexes: The existence of a hierarchical dimension
does not enforce a particular ordering of the rows in memory or persisted storage.
That said, the user may still direct the system to cluster a hierarchical table by the hier-
archy order, that is, to arrange the rows in pre-, post-, or level-order. This can signifi-
cantly speed up certain workloads, such as when nodes are enumerated first via the
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CONSTRUCTION NODE PROPERTIES LEAF UPDATES
H.build(H") H.depth(v) v < H.insert-leaf(r, p)
H.relink(¢,r,1") H.is-root(v) H relocate-leaf(v, p)
H.is-leaf(v) H.remove-leaf(v)
BASIC ACCESS H.SiZQ(V)
v + Hnode(!) H.range-size([v1, v2]) SUBTREE UPDATES
¢ « H.cursor(v) H.relocate-subtree(v, p)
¢ < H.label(v) BINARY PREDICATES H.remove-subtree(v)
r < H.rowid(v) H.is-before-pre(vy, v7)
H.is-before-post(v1,17) RANGE UPDATES
ORDINAL ACCESS 11 axis(vq,12) H.relocate-range([v1, v2], p)
i < H.pre-rank(v) H.is-parent(vy, ;) H.remove-range([vy, v2])
¢ < H.pre-select(i

i < H.post-rank(v
¢« H.post-select(i) ¢’ < H.c-prev(c), H.c-next(c) V ¢ H.insert-inner(r, [v1,v2])
¢ + H.¢-begin(c), Hc-end(c) H relocate-inner (v, [v1,v])
¢’ + H.next-sibling(c) H .remove-inner(v)
¢’ < H.next-following(c)

) TRAVERSAL INNER UPDATES
i

Figure 4.1: Essential query and update primitives on hierarchies.

hierarchy index but additional table columns are subsequently accessed. We do not
consider these orthogonal optimization techniques further, but note that our design
can easily incorporate them, as hierarchy indexes use ordinary row IDs to reference
the associated rows.

4.1.2 A Common Interface for Hierarchy Indexes

Figure 4.1 gives an overview of the primitives for querying and updating hierarchies
that are provided by our common index interface. While many further primitives are
conceivable, our design goal has been to devise a coherent set of essential primitives
that is aligned with the functionality of our SQL language constructs (and foreseeable
future extensions of it), but that at the same time allows for practical and efficient in-
dexing scheme implementations. Therefore, our discussion in § 4.1.4 omits query prim-
itives that are clearly too specific (e. g., least common ancestor) or that few schemes can
support (e.g., subtree height). Likewise, the update operations we present in § 4.1.5 can
be reasonably supported by any sophisticated dynamic indexing scheme. Of course,
implementers may still decide to add special primitives for advanced applications, or
redundant primitives for special cases in order to improve performance further.

Many operations in our interface (in particular the traversal and ordinal primitives)
depend on a well-defined and deterministic sibling order. We therefore consider only
indexing schemes that maintain ordered hierarchies (§2.1). Even if the user hierarchy is
unordered, they impose a deterministic, implementation-defined internal order.

We use a few conventions in the following discussion:

* The variable T refers to the hierarchical table containing the NODE column at hand,
which is assumed to be named “Node.” The variable H refers to the associated
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instance of the hierarchy indexing scheme. The notation |H| refers to the number
of nodes in H. The notation T[r| accesses a row of table T by its row ID r. For
instance, T[r].Node retrieves the label of row r.

¢ [ is a variable of type Label, that is, a value stored in some NODE column such as
T Node. Labels directly support basic equality comparisons ¢; = ¢, and ¢; # /.
Variables v and v; are of type Node. Variables ¢ and ¢’ are of type Cursor. Note
again that a Cursor can be used in any place where a Node is required.

e The syntax [vy, 1] denotes a sibling range of nodes: v, must be a right sibling of 14
(or vy itself), and [vq, v2] refers to all siblings between and including vy and v5.

¢ pindicates a target position in the hierarchy, used for updating.

All primitives that accept arguments of type Label, Node, Cursor, or a target position
require that these arguments represent valid values, that is, a node with label ¢ or
node handle v or cursor ¢ must exist in H. They are undefined otherwise. In particular,
Label values are expected to be non-NULL. (NULL arguments are handled at the level
of the SQL functions, which yield NULL when any argument is NULL.) These implicit
preconditions are not repeated in the following.

4.1.3 Elementary Index Primitives

Before we proceed to the individual primitives for queries and updates, we first con-
sider how an indexing scheme is constructed and how its fundamental index/table
association can be accessed and maintained. We begin with construction:

H.build(H’) — Builds the hierarchy from another hierarchy representation H'.

This operation can also be used to “bulk-update” an existing indexing scheme, even
if it is static. It clears the contents of H and the associated NODE column and recon-
structs the index structure and NODE column to reflect the structure of H'. The given
hierarchy H' must be tied to the same hierarchical table T; that is, it must contain a
subset of the rows in T. The underlying representation of H' may be entirely different
from H. We require the worst-case asymptotic runtime complexity of build() to be in
O(|H'|1og|H'|). For many indexing schemes it can even be in O(|H'|).

An efficient operation for bulk-building is useful in several situations: The main use
case is deriving a new hierarchical table from existing relational data in another format,
such as an adjacency list, using our HIERARCHY () construct. A related use case are bulk-
updates via MERGE, which replaces the existing hierarchy structure in a hierarchical
table by a newly derived structure. Another scenario is creating a snapshot from a
temporal hierarchy index. Finally, serialization mechanisms can use bulk-building to
efficiently reconstruct an index from a serial format.

§ 4.6 considers the implementation of build() in detail, and also discusses a practical
data structure for an intermediate hierarchy representation H'.
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Relinking Nodes. In general, executing any of the query or update primitives may
require access to arbitrary other index entries and labels of T, even if the primitive itself
logically affects only a single node. Therefore, an important precondition for all prim-
itives is that all node-row associations are valid at the time of invocation. However,
since indexing schemes reference rows through ordinary row IDs, these associations
may be affected by database operations that are not direct manipulations of the hier-
archy structure, such as DML statements against the hierarchical table T or a physical
reorganization. We therefore need the database engine to cooperate: Whenever the sys-
tem “moves” a row of T that is also referenced in H (i.e., a row whose NODE value is
not NULL) in a way that affects its row ID, it needs to notify the indexing scheme to
update its node-row association. The following primitive serves this purpose:

H.relink(¢,r,7") — Update the row associated with the node given by label .

This tells the index that the row with former ID r now has a new row ID r’.
Basic Access. A few elementary primitives are needed in order to obtain an index
handle from a given table row, and vice versa:

v <= Hnode(¢) — The node with label /.

¢ < H.cursor(v) — A cursor to node v.

¢ < Hlabel(v) — The label of node v.

r <— H.rowid(v) — The row ID corresponding to the given node v.

Most query and update primitives require at least Node objects or even cursors as ar-
guments. A label ¢ as such is therefore not very useful; the corresponding node has to
be located first in the index structure using node({). Vice versa, given a Node handle,
label() returns the corresponding Label object, that is, node() and label() are inverse:

Hlabel(H.node(¢)) = ¢

The rowid() function returns the ID of the corresponding table row holding the label,
which allows us to access the whole table row rather than just the label. Thus, label(v)
is logically just a short-hand for T[H.rowid(v)].Node.

4.1.4 Index Primitives for Queries

Query primitives are the building blocks for answering high-level queries on hierar-
chies. We distinguish between four kinds of query primitives: node properties, binary
predicates, traversal operations, and primitives for ordinal access.

Node Properties compute characteristic properties of a node:

H.depth(v) — The number of edges on the path from the super-root T to v.
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H.is-root(v) — Whether v is a root node, i.e., a child of T.

H.is-leaf(v) — Whether v is a leaf node, i.e., has no children.
H.size(v) — The number of nodes in the subtree rooted in v.
H.range-size([v1,12]) — The number of nodes in all subtrees rooted in [vy, v3].

These primitives are primarily needed for queries that explicitly request the node prop-
erties via the corresponding SQL functions, but they may also be leveraged internally,
for example to gather statistics for cardinality estimations. Let us examine some of
their properties: Regarding depth(), note that user-level roots have a depth of 1. The
depth of the super-root would be 0, but this node can never appear in any user data.
The integral functions depth(), size(), and range-size() yield values in the range [1; |H||,
but are neither injective nor surjective. Finally, the two unary predicates are redundant,
as we have the equivalences

H.s-root(v) <& H.depth(v) =1 and H.s-leaf(v) < H.size(v) = 1.

However, they may be significantly cheaper to compute directly, depending on the
indexing scheme in use.

Binary Predicates allow us to test the relationship of two given nodes.

11 = v» — Whether 11 and v, are the same node.

H.is-before-pre(vy, 1) — Whether v; precedes v, in a preorder traversal.
H.is-before-post(vy,12) — Whether v; precedes 1, in a postorder traversal.
H.axis(v1,12) — Returns the axis of v; with respect to v5.

H.is-parent(vq1,v2) — Whether v; is the parent of v5.

There are exactly five basic, disjunct axes in which two given nodes can possibly be
positioned (see §2.1):

Axes = {preceding, ancestor, self, descendant, following }.

The Node equality check “=" has the usual properties of an equivalence relation. The is-
before-pre() and is-before-post() predicates form a total and strict order relation on the
set of Node objects—that is, they are irreflexive, asymmetric, and transitive. In particular,
exactly one of the following terms is always true (where ¢ is either “pre” or “post”):

H.s-before-¢(v1,12) V (11 =1p) V H.s-before-g(va,11).

“__n

Most of the order-based physical hierarchy operators we discuss in §5 rely on
and is-before-¢() alone, which makes them the most important primitives for query
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processing. The other two predicates are redundant. is-parent() can be expressed in
terms of axis() and depth():

H.is-parent(v1,12) < (H.axis(v1, v2) = ancestor) A (H.depth(v2) = H.depth(v;) +1).

A self axis check “H.axis(v1,v2) = self” is equivalent to “v; = v,.” The other axes can
be dissected into elementary is-before-¢() checks:

H.axis(v1,12) = preceding < H.is-before-pre(vy, v2) A H.is-before-post(vq, 7).
H.axis(v1,12) = ancestor & H.s-before-pre(vq,v2) A H.is-before-post(vz, v1).
H.axis(v1,12) = descendant <  H.is-before-pre(vy, v1) A H.is-before-post(vq, 7).
H.axis(v1,12) = following < H.is-before-pre(vy, v1) A H.is-before-post(va, v1).

It follows from these definitions that the preceding, ancestor, descendant and following
axis checks are also strict order relations, albeit not total.

Despite their redundancy, we found dedicated and potentially optimized implemen-
tations for is-parent() and axis() to be clearly beneficial to performance, as navigation
along these axes is featured in many typical queries.

Traversal Operations navigate along the hierarchy structure in various directions, in
particular preorder (¢ = pre) and postorder (g = post).
¢’ < H.g-prev(c) — A cursor to the previous node in g-order (if ¢ # H.¢-begin()).
¢’ < H.g-next(c) — A cursor to the next node in g-order (if ¢ # H.g-end()).
¢ < H.g-begin() — A cursor to the first node in g-order.
¢ < H.g-end() — A cursor to the one-behind-the-last node in ¢-order.
¢’ < H.next-sibling(c) — A cursor to the next sibling.

¢’ + H.ext-following(c) — A cursor to the next node in preorder that is on the
following axis of the node indicated by c.

Traversal operations are useful to implement scan operators that enumerate certain
subsets of the nodes. The seemingly obscure next-following() retrieves the first preor-
der successor outside of the subtree rooted in ¢, which is often a suitable scan delimiter.

Ordinal Access Primitives are based on the position of a node with respect to a
systematic traversal of the hierarchy H in g-order, where ¢ can be “pre” or “post.”
i < H.g-rank(v) — The numerical position of v in the ¢-ordered sequence of nodes.
v < H.g-select(i) — The i-th node in the ¢-ordered node sequence (if i € [1, |H]|)).

pre-rank() and post-rank() return the position of a node with respect to preorder or
postorder traversal, respectively. Given such ranks, pre-select() and post-select() return
the corresponding nodes.
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The ¢-rank() functions are counterparts to the is-before-g() order relations. As such,
they are bijective, produce a dense numbering from 1 to |H|, and

H.is-before-¢(v1,12) < H.¢-rank(v1) < H.g-rank(vy).
¢-rank() and ¢-select() are inverse:
H.g-rank(H.¢-select(i)) =i and H.select-g(H.¢-rank(v)) = v.

With the help of ¢-rank() we can establish a relationship between depth(), pre-rank(),
post-rank(), and size():

H.pre-rank(v) — H.post-rank(v) + H.size(v) — H.depth(v) = 0.

Thanks to this relationship, only three out of four functions have to be explicitly com-
puted, and the fourth can be derived using simple arithmetics. In particular, by imple-
menting rank() the support for size() and even range-size() comes as a byproduct.

Although few applications require the full power of these primitives, they can be
very convenient. Ranks are, for instance, used to create compact representations of
subtrees, so-called tree signatures, for pattern matching purposes [117]. A use cases for
select primitives are top-k queries with an offset for displaying parts of the hierarchy
in a user interface. Unlike the other primitives we discussed, most indexing schemes
require additional implementation efforts, storage space, and update overhead to sup-
port them efficiently. This will not pay off in every application. In particular, it is often
sufficient to use is-before-g() comparisons instead of evaluating the g-rank() values. We
therefore rely only on the is-before-g() primitives in our algorithms.

4.1.5 Index Primitives for Updates

We now consider a set of update primitives to manipulate the hierarchy structure rep-
resented by an indexing scheme. Note that these primitives work only on index level;
they do not modify the hierarchical table apart from potentially updating the affected
labels stored in the NODE column. They are, however, usually triggered by table updates,
such as when a row is deleted. How exactly SQL update statements are translated into
invocations of the primitives is covered in § 4.7.

The update primitives can be grouped into four classes: leaf updates, subtree updates,
range updates, and inner updates, named after the affected entities. Within each class,
three kinds of updates are conceivable: inserting nodes, relocating nodes, and removing
nodes. Unlike relocate and remove, insert primitives add new nodes to the hierarchy;,
so they do not take an existing Node object as their argument; instead, their argument
is a row ID r, and their return value is the new Node object. The row r must not yet
exist in H, that is, its NODE value must be NULL.

Figure 4.2 illustrates the various update classes with regard to the relocate kind
on an example hierarchy. The other kinds, insert and remove, are similar; the only
difference is that the updated entities enter or leave the hierarchy, respectively, instead
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Leaf Updates alter a single leaf node.
v < H.insert-leaf(r, p) — Inserts a node for row r as a leaf node at position p.

Precondition: p is a valid position in H, and does not use an above anchor.

H.relocate-leaf(v, p) — Relocates node v to position p (if H.is-leaf(v)).

H.remove-leaf(v) — Removes node v (if H.is-leaf(v)).

Subtree Updates

relocate or remove a subtree.

H.relocate-subtree(v, p) — Relocates the subtree rooted in v to position p.

H.remove-subtree(v) — Removes the subtree rooted in v.

Range Updates alter all subtrees rooted in a range of siblings.

H.relocate-range([v1,v2], p) — Relocates all subtrees rooted in range [v1, v2] to p.

H.remove-range([v1,12]) — Removes all subtrees rooted in range [vy, v2].

Inner Updates

alter an inner node.

v < H.nsert-inner(r, [v1, v2]) — Inserts a node v for row r in place of range [v1, ;]
and makes [v1,1;] children of v.
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H.relocate-inner(v, [v1,12]) — Puts the children of v into v’s place and moves v to
the place of [v1, 1], which become children of v.

H.remove-inner(v) — Removes node v and puts its children into its place below its
former parent.

Note that insert-subtree() and insert-range() are missing from the set, as our SQL ex-
tensions have no syntax for inserting a whole range of nodes at once (or “copying”
over a range of nodes from another hierarchical table).

Leaf updates have been the main focus of many prior publications. In comparison
to the other classes, they are easiest to implement. However, we found that many sce-
narios require strong support for the more complex subtree updates. Here, a subtree of
an arbitrary size is removed as a whole, or moved in bulk to another location. As an
example, consider an enterprise asset hierarchy where an assembly line is relocated to
another plant, or a machine or robot is relocated to another assembly line. Since the
machine consists of parts and subparts and the assembly line consists of various ma-
chines, robots, and equipment, these are large subtree relocations. Note that subtree
updates subsume the corresponding leaf updates, as every leaf is a trivial subtree. But
since most indexing schemes can employ optimizations for leaves, distinguishing be-
tween those classes is still useful in practice. The range updates might seem obscure at
tirst sight, but they are in fact very powerful: They subsume subtree and leaf updates,
because a subtree rooted in v is a trivial sibling range. Finally, the inner updates are
useful for injecting a new level into the hierarchy, and for wrapping a subtree into a
new root. As an example application, certain tree differentiation algorithms such as
MH-Diff [17] emit edit scripts featuring these operations. An index that is being used
for replaying such edit scripts has to support them. Inner updates are subsumed by
range updates as well: We can use range relocation to move all children of an inner
node to another position, making this node a leaf, then use a leaf update to relocate (or
remove) it. Thus, indexes that support range updates—such as our order indexes—can
implement all update primitives in terms of range updates.

Unlike the query primitives, the update primitives may be significantly more com-
plex for ordered than for unordered hierarchies, as the sibling order must be maintained.
Vice versa, allowing an ordered indexing scheme to neglect the sibling order may be an
interesting optimization. For example, some schemes may be able to leverage the un-
specific “below” target position and pick the sibling position that yields the cheapest
update, while for others, “below x” may safely default to, e. g., “as last child of node x”
with no performance loss.

4.2 Implementing Indexing Schemes: State of the Art

In §2.3.6 we already noted that there is a tremendous amount of prior work on rep-
resenting hierarchies in databases. Many of the techniques discussed in those works
can be used to implement our interface for indexing schemes. Each design provides a
different tradeoff between query and update performance. However, it turns out that
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Query Primitives

ACCESS PREDICATES PROPERTIES TRAVERSAL

node before axis  parent |depth  root leaf size pre post  sibling following

cursor
Naive Schemes
Adjacency 1 — I 1 1 1 1 — — — — —
Linked 1 I I 1 ' 1 1 s 1 1 1 1
Containment-based Labeling Schemes
NI logn 1 1 v — v 1 1 1 1 1 1
Dyn-NI lognt |11 1% 4 — v 1 5 i 1 1 14
(Dyn-)NI-Parent | lognt |11 1t 1+ I+ 1 1/1" s 1 1 1 1
(Dyn-)NI-Level |lognt |1% 1# 1f 1 1 1/1% s 1 1 1 1
Path-based Labeling Schemes
Dewey llogn |1 1 ! 1 1 I s 1 Ilogn llogn llogn
Dyn-Dewey llognt |1t i i i 1 't s 1/ llognt Ilognt Ilognt
Index-based Schemes
B-BOX[B] B loggn' loggn' b/ — v 1 ] 1 1 1 1
AO-Tree 1 logn’ logn’ logn’ |logn'* logn'* 1 logn’* |1 1 1 1
BO-Tree[B] 1 loggn' loggn' logyn'|loggn'* logyn'* 1 loggn'* |1 1 1 1
O-List[B] 1 1 1 1 1 1 1 1 1 1 1 1
DeltaNI log u 1 1 1 1 1 1 logu’ |logu’ logu’ logu’ logu'

Update Primitives n hierarchy size

LEAF SUBTREE INNER RANGE SKEW[u] I level/depth of node
Naive Schemes b number of siblings
Adjacency 1 1 c c 1 1 number of updates
Linked 1 1 c c 1 B block size
Containment-based Labeling Schemes ¢ number of children
NI n n n n n s number of descendants
Dyn-NI 1 s 1 s u f number of following siblings incl. descendants
Dyn-NI-Parent | 1 s c s u — not supported
Dyn-NI-Level |1 s s s u " operates on Node or Cursor objects
Path-based Labeling Schemes " only in the static variant
Dewey If I(f+s) I(f+s) I(f+s) I(f+s) ¥ in the Dyn variant, performance may decrease
Dyn-Dewey I s i s I m over time due to growing labels
Index-based Schemes " O(1) during index scan
AO-Tree 1 logn logn logn 1 Qualitative rating:
BO-Tree[B] 1 Bloggn Bloggn Bloggn 1 O efficient
O-List[B] 1 s/B+B s/B+B s/B+B u/B? O mostly efficient
DeltaNI logu logu log u log u log u O inefficient or unsupported

Figure 4.3: Asymptotic query and update complexities for various groups of indexing
schemes (amortized, average case).
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many proposals are variations of basic schemes with similar capabilities and asymp-
totic properties. We can therefore group the prior art into a small taxonomy.

In this taxonomy we primarily distinguish between labeling schemes and index-based
schemes. The former class of schemes was already introduced in §2.3.6, together with
the subcategories of naive, containment-based, and path-based labeling schemes. In our
terminology of hierarchy indexing schemes, labeling schemes store the essential in-
formation encoding the hierarchy structure entirely in the Label data type, and use
common database indexes for the auxiliary index structure. These schemes are compar-
atively simple and non-invasive in that they can be implemented entirely in terms of
SQL. Index-based schemes, by contrast, enhance the RDBMS backend by special-purpose
auxiliary index structures. These indexes contain the bulk of the hierarchy information,
and the Label objects mainly act as handles into those structures. Modifying the back-
end is of course a much more invasive approach.

Generally speaking, labeling schemes allow for executing certain queries very effi-
ciently by merely considering the labels at hand, whereas index-based schemes suffer
from the overhead of their auxiliary index structure. Regarding updates, however, a
common drawback of many labeling schemes is that structural updates can easily be-
come very expensive. Most attempts to mitigate this bring along major drawbacks like
large memory footprints, a vulnerability to skewed updates, or no longer supporting
all desired query and update primitives. With our work on order indexes (§4.5) we
therefore make a case for index-based schemes.

Figure 4.3 is a compact overview of the different groups of schemes in our taxonomy.
It shows the amortized asymptotic time complexities for the most important primitives
and the different classes of updates of Figure 4.1. Many of our index primitives are not
discussed in the cited works, but inferring their implementation is straightforward.

For entries tagged with a red ’ in the figure we assume the Node object of the involved
node to be readily available; for the other entries we assume a Label argument. The
update operations in general are given Node objects to indicate a desired target position.
Depending on the access path to the index during query execution, the Node objects
may first need be obtained from the labels via the node() function—which can have
non-negligible costs, as the table also shows—, or they might happen to be readily
available from previous operations. A case where the Node objects are already available
“for free” is when the traversal primitives are used to scan the hierarchy, or when a Node
was obtained from a prior update at the same position. For the asymptotic complexities
of updates we therefore do not include the time for obtaining the Node handles.

4.2.1 Challenges in Dynamic Settings

A particular emphasis in our following analysis is on highly dynamic use cases. We
will see that existing dynamic indexing schemes lack important capabilities: they either
ignore important query primitives, or they inherently suffer from certain problems in-
hibiting their update flexibility or robustness. To characterize these missing capabili-
ties, we identify three problems Pz to P3 in this section. Figure 4.4 illustrates different
indexing schemes—the familiar adjacency list model, as well as PSL, NI, GapNI, and
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Node|| Adjacency ||NI GapNI PSL PPPL Ordpath
ID |Parent||[l,u] |[|[L, u] (p,s, 1) p
a v |[[0,17]|[[  0,1700]}[(0,8,0)|[(0,9, =, 0)|[1
‘B 'a||[ 1, 2]||[ 100, 200]||(1,0,1)||(1,1,0,1) |[1.1
et ||[ 3,12]{|[ 300,1200]|((2,4,1)||(2,6,0,1) |[1.3
@ |['o'|'ct||[ 4 5]||[ 400, 500]||(3,0,2)|/(3,2,2,2) ||1.3.1
E'l'c||[6 7]||[ 600, 700]||(4,0,2)||(4,3,2,2) ||1.33
¢ || 8, 9]||[ 800, 900](|(5,0,2)||(5,4,2,2) ||1.35
'6'{*ct ||[10,11]||[1000,1100]||(6,0,2)||(6,5,2,2) |[1.5.7
"He{'AT|[[13,14]||[1300,1400]||(7,0,1)||(7,7,0,1) ||1.5
@D IU'A [15,16]||[1500,1600]||(8,0,1)|((8,8,0,1) ||1.7

Figure 4.4: An example hierarchy and the corresponding data stored in the Label ob-
jects for different indexing schemes.

Node|| Adjacency ||PSL NI GapNI Ordpath
T ID |Parent||(p,s, 1) ||[L,u] ||l u] p
l "A'NULL [{(0,8,0)||[ 0,17]||[ 0,1700]||1
B A ||(1,0,D)||[ 1, 2]||[ 100, 200]|[1.1
et ]](3,4,2)||[ 4,13]||[1309,1390]||1.5.1
@ ||'o'['ct ||(4,0,3)||[ 5 6]||[1318,1327]||1.5.1.1
"E'|'C’ (5,0,3)||[ 7, 8]||[1336,1345]|1.5.1.3
"FrirC (6,0,3)||[ 9,10]||[1354,1363]||1.5.1.5
6t ||(7,0,3)||[11,12]||[1372,1381]| |1.5.1.7
weltar o |(2,5,1)||[ 3,14]||[1300, 1400]||1.5
@ |['zr]ar [[(8,0,1)]|[15,16]||[1500, 1600] || 1.7

Figure 4.5: Relocating subtree (C) in the example from Figure 4.4. Labels that need to
be changed are highlighted.

Ordpath, which we cover later—to help us exemplify the problems.

[P1] Lack of Query Capabilities. Certain indexing schemes do support updates decently,
but fail to offer query capabilities to evaluate even fundamental queries, which renders
them infeasible for our use cases. An example is the adjacency list model, which cannot
even handle the ancestor-descendant relationship efficiently. The fundamental query
primitives we identified in §4.1.4 are the minimum we require. An implementation
that fails to support them cannot be considered a general-purpose hierarchy indexing
scheme.

[P2] Lack of Complex Update Capabilities. Various use cases demand for an indexing
scheme that supports a rich set of update operations efficiently. However, most existing
schemes are confined to leaf updates, that is, insertion or removal of single leaf nodes,
and fail to recognize more complex operations.

Consider subtree relocation: The trivial adjacency list model happens to naturally
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support this quite well. However, virtually all labeling schemes by design preclude an
efficient implementation, because they inherently require relabeling all nodes in the
relocated subtree. In general, subtree and range operations have to be implemented
naively through node-by-node processing, requiring at least s leaf updates for a subtree
of size s. Figure 4.5 shows the hierarchy from Figure 4.4 with the subtree rooted in
moved below (H), and highlights the Q)(s) fields that need to be updated.

For small subtrees, an update complexity of )(s) might be tolerable. However, real-
world hierarchies—such as those found in SAP ERP datasets—tend to have a large
average fan-out. Thus, even if a node that has only leaves as children is relocated, s
will often be in the magnitude of thousands. Of course, updating larger subtrees will
be detrimental to overall system performance only if a lot of such operations appear
in the workload. But in certain use cases, a high percentage of updates (e.g., 31% in
the enterprise asset hierarchy we examined in [31]) are indeed subtree relocations.

Furthermore, note that although subtree relocation may appear as an unnatural bulk
operation in comparison to single leaf insertion or removal, the operation is quite
heavily exercised in SQL statements: Our language extensions make it easy to relocate
a subtree by simply updating the NODE field of its root. Likewise, in the adjacency
list table shown in Figure 4.5, the relocation is performed by simply setting the Parent
field of (C)to 'H'. A single UPDATE statement may in fact provoke an arbitrary number of
subtree relocations at once. Our assessment of prior work therefore places an emphasis
on the complex update operations we identified in § 4.1.5.

[P3] Vulnerability to Skewed Updates. Certain dynamic labeling schemes crumble when
they are confronted with skewed updates, such as when inserts are issued repeatedly
at the same position. In some scenarios these updates are more frequent than is com-
monly acknowledged. For example, when inserting a new plant into an enterprise asset
hierarchy, many nodes will be added at one position. Fixed-length labeling schemes
commonly indulge in excessive relabeling in this case, while variable-length schemes
decay in their query performance and memory effectiveness due to overly growing
labels. We therefore point out such vulnerabilities in our assessment. In Figure 4.3,
column skew([u] represents “skewed” leaf node insertions. It depicts the complexity of
a single skewed insertion after u other skewed insertions have taken place. This is an
indication of how severely an indexing scheme can be impacted by skewed insertion
patterns in the worst case.

We proceed to explore the indexing schemes in our taxonomy with a focus on dynamic
settings, and assess to which extent they suffer from the three identified problems.

4.2.2 Naive Hierarchy Representations

Figure 4.3 includes two “naive” indexing schemes. They are comparatively easy to
implement, but cannot stand up to the full-blown indexing schemes in terms of query
capabilities and efficiency (P1).

The first, Adjacency, is an incarnation of the familiar adjacency list scheme (§2.3.1).
We assume a hash index for the ID and PID columns, so that node(), which performs a
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lookup by label, can run in O(1). As Adjacency does not maintain a sibling order, it has
no support for any of the order-based query primitives. The extreme simplicity of the
scheme happens to make subtree relocations and the is-parent() predicate remarkably
efficient. On the other hand, it is unsurprisingly very weak in answering most of the
query primitives (P1).

The second naive representation is Linked, a simple in-memory node structure rem-
iniscent of a classic linked list, whose structure matches the hierarchy structure. Each
node has links—in the form of direct pointers—to the parent, the first and last child,
and the previous and next sibling. A label stores direct pointers into the hierarchy
representation, so node() also runs in O(1).

The limitations of these two naive schemes can be clearly seen with the important
query primitives depth() and axis(): Because their implementations have to walk up
the tree, they run in O(I) and are also likely to cause O(I) cache misses.

4.2.3 Containment-based Labeling Schemes

The first major category of non-naive schemes are labeling schemes. We begin with the
subcategory of containment-based labeling schemes. Our discussion of labeling schemes
in general assumes that the label column is indexed with a B-tree, where B is the block
size of the B-tree. We further make use of that B-tree for the traversal operations, as
they could otherwise not be implemented efficiently. Under this assumption, the node()
operation runs in logarithmic time, because it has to perform a B-tree lookup to locate
the corresponding index entry. Note that the B-tree also adds an O(B) term to all
update operations for these schemes, because the block in which the corresponding
index entry lies has to be updated. For simplicity reasons, and because B is a constant
independent of the hierarchy size, we omit this term in Figure 4.3.

Column NI in Figure 4.4 shows the classic nested intervals labeling [44, 48, 118],
and a variation, the Pre/Post scheme [41], where each node is labeled with its preorder
and postorder ranks. We already introduced both in §2.3.6. These schemes are static
(P2). Their fundamental weakness is that each insertion or removal requires relabeling
O(|H|) labels on average, as all interval bounds behind a newly inserted bound have
to be shifted to make space. Static nested interval schemes of this kind are grouped
under the name NI in the tables.

Considering queries, the plain NI and Pre/Post schemes have similar, limited capabil-
ities: For example, we cannot test the important is-parent() predicate, because neither
scheme allows us to compute the distance between a node and an ancestor. This se-
vere limitation renders a nested intervals scheme without further fields useless (P1). It
can be mitigated by either storing the depth of a node or its parent in addition to the
interval. In the tables, these variants are named NI-Level and NI-Parent, respectively.

Various mitigations for the nested intervals update problem have been proposed.
These are collectively grouped under the name Dyn-NI in the tables.

¢ Li et al. [63] suggest pre-allocating gaps between the interval bounds. Column
GapNlI in Figure 4.5 illustrates this. As long as a gap exists, new bounds can be
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placed in it and no other bounds need to be shifted; once a gap between two
nodes is filled up, all bounds are relabeled with equally spaced values. The prob-
lem is that relabelings are expensive, and skewed insertions may fill up certain
gaps overly quickly and lead to unexpectedly frequent relabelings (P3). Also, all
s nodes in a range or subtree being updated still need to be relabeled (P2).

* Amagasa et al. [2] propose the QRS encoding based on pairs of floating-point
numbers. Schemes along these lines are essentially gap-based as long as they
rely on fixed-width machine representations of floats.

* Boncz et al. [7] tackle the update problem with their Pre/Size/Level encoding (PSL,
see Figure 4.4) by storing the pre-rank() values implicitly as a page offset, which
yields update characteristics comparable to gap-based schemes.

* W-BOX [96] uses gaps but tries to relabel only locally using a weight-balanced
B-tree. Its skewed update performance is superior to basic gap-based schemes.

e The Nested Tree [115] uses a nested series of nested interval schemes to relabel
only parts of the hierarchy during an update and is therefore comparable to
gap-based schemes as well.

Another idea to tackle the update problem for Nl is to use variable-length data types to
represent interval bounds: For example, the QED [60], CDBS [61], and CDQS [62] encod-
ings by Li et al. are always able to derive a new label between two existing ones, and
thus avoid relabeling completely. EXCEL [73] uses an encoding comparable to CDBS.
It tracks the lower value of the parent for enhanced query capabilities. While these
encodings never have to relabel nodes, they bear other problems: The variable-length
labels cannot be stored easily in a fixed-size table column, and comparing them is
more expensive than comparing fixed-size integers. In addition, labels can degenerate
and become overly big due to skewed insertion (P3). Cohen et al. [22] proved that for
any labeling scheme that is not allowed to relabel existing labels upon insertion, an
insertion sequence of length N exists that yields labels of size Q)(N). Thus, the cost of
relabeling is traded in for a larger, potentially unbounded label size. Query primitives
that suffer from these degenerating labels are tagged with f in Figure 4.3.

All gap-based and variable-length NI schemes handle inner node updates decently
by wrapping a node range into new bounds. For example, with GapNI in Figure 4.4 we
could insert a parent node (k) above (D), (E), and (F) by assigning it the bounds [350, 950].
However, as soon as the node’s depth [7] or parent [73] are to be tracked (these variants
are named Dyn-NI-Level and Dyn-NI-Parent in the tables), inner node updates turn
expensive, as the depths of all s descendants change, and the parent references of all
¢ children of (K) (namely (D), (E), and (F)) need to be adjusted. Updates to subtrees or
ranges of size s always require us to modify s labels. Unfortunately, tracking at least
the depth is necessary for many queries (P1). Thus, containment-based schemes suffer
from P2 and P3, which limits their use in dynamic settings.
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4.2.4 Path-based Labeling Schemes

We next consider path-based labeling schemes. From this subcategory we already dis-
cussed the Dewey [99] labeling scheme (§2.3.6), which is the basis of several more
sophisticated schemes. Figure 4.5 repeats the example data.

Dewey is not dynamic (P2): We can easily insert a new node as rightmost sibling,
but in order to insert a node v between two siblings, we need to relabel all siblings
to the right of v and all their descendants (as indicated by factor f in Figure 4.3). For
unordered hierarchies, inserting rightmost siblings is sufficient, but for ordered hierar-
chies insertion between siblings is a desirable feature. Therefore, several proposals of
dynamic path-based schemes try to enhance Dewey correspondingly:

* One prominent representative is Ordpath ([79], see also §2.3.7). It is similar to
Dewey, but uses only odd numbers to encode sibling ranks, while reserving even
numbers for “careting in” new nodes between siblings. This way, Ordpath sup-
ports insertions at arbitrary positions without having to relabel existing nodes.
In Figure 4.4, for example, inserting a sibling between (¢) and (H) would result
in the label 1.4.1. Note that the dot notation is only a human-readable surrogate;
Ordpath actually stores labels in a more compact binary format.

¢ DeweyID [46] improves upon Ordpath by providing gaps that are possibly larger
than the ones of Ordpath, thus resulting in less carets and usually shorter labels.

* CDDE [113] also aims for a Dewey encoding with shorter label sizes than Ordpath.
¢ The techniques of [60-62] can also be used to build dynamic path-based schemes.

In the tables, Dewey refers to static path-based schemes such as Dewey itself and Dyn-
Dewey refers to dynamic ones (e. g., Ordpath and CDDE). Dynamic path-based schemes
are variable-length labeling schemes, and the proof of [22] holds as well, so they pay
the price of potentially unbounded label sizes. In addition, all path-based schemes pay
a factor I on all update and most query operations, since the size of each node’s label
is proportional to its depth.

Considering updates, the dynamic variants cannot handle inner node updates effi-
ciently, as the paths and thus the labels of all descendants of an updated inner node
would change. An exception to this is OrdpathX [12], which can handle inner node
insertion without having to relabel other nodes. All path-based schemes inherently
cannot handle subtree and range relocations efficiently, as the paths of all descendants
have to be updated (P2). For ordered hierarchies, they are also vulnerable to skewed
insertions (P3); however, update sequences that trigger worst-case behavior are much
less common than for a containment-based scheme.

4.2.5 Index-based Schemes

To evaluate queries, index-based schemes use special-purpose auxiliary index struc-
tures rather than considering just the Label (all operations tagged with ' in Figure 4.3).
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As such they must be tightly integrated into the database system. Their advantage is
that they generally offer much improved support for updates.

B-BOX [96] uses a keyless B*-tree to represent a containment-based scheme dynam-
ically. It has the same update complexity as the BO-Tree in Figure 4.3. However, it
represents only lower and upper bounds but does not add information to efficiently
determine a node’s depth() or parent. It thus has limited query capabilities (P1). Its
node() implementation runs in O(B), because it always scans a block of size B when
searching for index entries.

DeltaNI, one of the contributions of this research project [31], uses an index to repre-
sent a containment-based scheme with depth() support. DeltaNI supports even com-
plex update operations, such as relocating an entire subtree, in O(log |H|) time. As an
index for temporal hierarchies, it is able to capture a whole history of updates (factor u
in the figures) and can answer time-traveling queries. It can be used for non-temporal
hierarchies as well by simply keeping all data in a single version delta. While DeltaNI
bears none of the three identified problems, its overall query performance is generally
inferior to unversioned schemes, as the evaluation in [33] shows.

Order indexes are a family of index-based schemes we developed in order to over-
come the mentioned problems of prior works. An order index in essence represents a
nested intervals labeling in a dynamic, skew-resistant data structure. In [32] and [33]
we describe three specific implementations of this concept: the AO-Tree based on the
AVL tree, the BO-Tree based on the B'*-tree, and the O-List based on a linked list of
blocks. They combine various ideas, from keyless trees (B-BOX) to accumulation trees
(DeltaNI) through to gap allocation techniques (GapNl), to achieve increased update ef-
ficiency and robustness for dynamic workloads. The tree-based implementations are
able to handle all presented update operations efficiently in logarithmic worst-case
time. They avoid degeneration in case of unfavorable update patterns, and provide the
query capabilities of labeling schemes with highly competitive performance. By ad-
justing the configurable parameters, the BO-Tree and the O-List can be tuned towards
lower query times or lower update costs. This allows its applications to choose a trade-
off which is appropriate for the application at hand. As we recommend order indexes
as the standard dynamic indexing schemes for our hierarchy framework, we give a
more detailed overview in §4.5.

B-BOX, DeltaNI, AO-Tree, and BO-Tree can handle subtree and range relocations with
logarithmic worst-case complexity and thus do not show any of the update problems.

4.3 Schemes for Static and Dynamic Scenarios

In order to accommodate a wide variety of application scenarios, we expect any data-
base system that implements our framework to offer a selection of multiple alternative
hierarchy indexing schemes. In principle, a suitable scheme could be chosen individ-
ually for each hierarchical table. However, the user should not be burdened with the
choice; we rather intend the DBMS to pick the optimal scheme automatically among the
available implementations. The user may more or less indirectly influence the choice
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through additional parameters to the hierarchical dimension, in particular the critical
UPDATES option (§ 3.4). We propose a decision scheme along the following lines:

¢ For derived hierarchies, which are inherently static, and for hierarchical base ta-
bles with UPDATES = BULK, the obvious choice is a static labeling scheme. In §4.4
we introduce a suitable scheme called Pre/Post/Parent/Level scheme (PPPL), which
is particularly tailored to the requirements of our index interface.

e If the user requires support for complex updates (UPDATES = SUBTREE), the BO-tree
we discuss in §4.5 is a safe all-round choice. To further improve query perfor-
mance without sacrificing update support, the O-List may be a good alternative.
A path-based scheme may also perform well, in particular when the user set-
tles for simple updates (UPDATES = NODE). However, this choice has to be made by
considering the workload at hand.

¢ If the hierarchical table also has an application-time or system-time temporal
dimension, and this dimension is accessed non-trivially by queries in the work-
load, a temporal indexing scheme like DeltaNI is recommendable. However, the
implementation and performance of such a scheme heavily depends on the basic
design for temporal dimensions chosen by the specific RDBMS. This is not in
scope of this thesis.

More adaptive approaches to choosing the most suitable scheme according to the work-
load are conceivable, but this is part of future work (see § 7). We proceed with a detailed
discussion of the proposed PPPL (§4.4) and order indexes (§ 4.5) schemes.

4.4 PPPL: A Static Labeling Scheme

The Pre/Post/Parent/Level scheme (PPPL) is an extension of the Pre/Post containment-
based labeling scheme which we propose as the default built-in indexing scheme for
static or read-mostly scenarios. In these scenarios the hierarchy is loaded once and
rarely changed. Except for bulk-loading, no updates are supported.

The Label of PPPL is a 4-tuple [pre, post, parent-pre, level] consisting of the pre-
rank(), post-rank(), the pre-rank of the parent, and the depth() of the corresponding
node. Additionally, the hierarchical table is indexed on pre-rank() and on post-rank()
using two simple direct lookup tables, pre-to-rowid[] and post-to-rowid[]. No addi-
tional information is needed for Node or Cursor, so these types are identical to Label.
Figure 4.4 shows the NODE column of an example hierarchy.

Let us examine how the query primitives of our index interface can be implemented
with PPPL. The basic access primitives are almost no-ops:

Hmnode(?), H.cursor({) = /
H.label(v) = v
H.rowid(v) = pre-to-rowid[v.pre]
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Figure 4.6: A hierarchy represented by an AO-Tree order index [33].

The pre and post fields are sufficient for answering the critical is-before-pre(), is-before-
post(), and axis() predicates. The parent-pre field adds support for is-parent().

H.is-before-pre(vy, 17)
H.is-before-post(vy, v2)
H.axis(v1,17)
H.is-parent(vq,vs)

vi.pre < vp.pre
v1.post < vp.post

(via is-before)
Vp.parent-pre = vy.pre

The level field adds support for the properties depth(), size(), is-root(), and is-leaf().

H.depth(v) = v.level
H.is-root(v) = H.depth(v) =1
H.is-leaf(v) = Hsize(v) =1

H.size(v)

The pre-to-rowid[] and post-to-rowid[] indexes add support for traversal in preorder
and postorder, and for the ordinal access primitives.

T[g-to-rowid[v.¢ + 1]].Node
H .next-following(c)
T[pre-to-rowid[v.post + v.level + 1]].Node

V.G
T[¢-to-rowid[i]].Node

H.depth(v) + v.post — v.pre

H.g-next(c)

H .next-sibling(c)

H .next-following(c)
H.g-rank(v)
H.g-select(i)

As these definitions show, most primitives boil down to cheap O(1) arithmetics on the
label itself. This makes PPPL essentially as fast as an indexing scheme can get.

4.5 Order Indexes: A Family of Dynamic Indexing Schemes

The basic idea of order indexes is to represent nested intervals in a dynamic data
structure. A central observation on which they are based is that in a nested intervals
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encoding, the actual numerical value of each lower or upper bound has little importance;
what really counts is the relative order among the bounds. For example, in Figure 4.4
(p. 76), we can infer that node (F) is a descendant of node (), because its interval [8,9]
is a proper subinterval of (A)’s interval [0,17], thatis, 0 < 8 and 9 < 17. Thus, instead of
representing the numbers explicitly, we can use a data structure that directly represents
the order relation (<) among bounds. Ordered data structures such as the classic AVL-
or B-trees maintain an order relation among their entries by design. Consequently, or-
dered data structures can be adapted to represent nested interval encodings implicitly,
which is exactly what order indexes do.

An order index conceptually represents each hierarchy node by two interval bounds
and its depth value. These components [lower, upper, level] are stored in the Label. How-
ever, a lower and upper bound is not an explicit number or other literal, but rather a
special link to a corresponding entry in the ordered data structure. We call these links
back-links, as they refer back from a table row to an index entry, while common sec-
ondary indexes merely point the other way from an index entry to a row (through its
row ID). The main task of the ordered data structure is to maintain the relative order
of its entries—hence the term “order index.” Each entry represents either a lower or
an upper bound of a node. Regardless of the underlying ordered data structure, the
information an entry conceptually stores is the rowid of the corresponding table row
and an is-lower flag determining whether it is the lower or the upper bound of the row.
An order index cursor is a direct reference (e.g., a pointer) to a specific entry in the
ordered data structure. A cursor can be obtained from a back-link, although this incurs
a non-trivial cost. The Node and Cursor types are identical (i. e., no further distinction
is necessary) and simply wrap an order index cursor.

4.5.1 Order Index Interface

We now discuss the low-level interface an order index O provides for querying. In the
following, I is a back-link, and ¢, ¢/, ¢1, and ¢, are order index cursors.

¢ < O.entry(I) — Returns an order index cursor to the entry for back-link .
r < O.rowid(c) — Returns the ID of c¢’s associated row.

O.is-lower(c) — Returns true if ¢ represents a lower bound.

O.before(cy,c2) — Returns true if ¢; is before ¢; in the entry order.

¢’ <~ O.next(c) — Returns a cursor ¢’ to the next entry in the entry order.
O.adjust-level(c) — Returns the level adjustment for c.

The starting point for working with an order index is a back-link [, that is, a value
from the lower or upper field of a Label. Using O.entry(!), a back-link can be followed
to obtain a cursor. (This is in fact the only functionality back-links support.) O.rowid(c)
and O.is-lower(c) access the information of the entry to which ¢ points. next() is used
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to traverse the ordered data structure. The most central primitive is before(), which
reflects the order relation implied by the order index.

The level adjustments returned by adjust-level() are a mechanism to maintain depth()
information dynamically. The level stored in the Label of a node v is a relative value. Its
actual depth H.depth(v) can be obtained by adding the level adjustment for its lower
bound to the stored level. We will elaborate further on this mechanism below.

While the implementations of rowid() and is-lower() are trivial, the implementations
of entry(), next(), before(), and adjust-level() differ among the three order index imple-
mentations we propose. entry() depends on how back-links are actually represented.
next() corresponds to a basic forward traversal of whatever ordered data structure is
used. Similarly, before() has to traverse the data structure to detect the relative posi-
tions of the two given entries.

4.5.2 The AO-Tree

Figure 4.6 shows an example hierarchy (upper right) and its representation as a hier-
archical table and an associated AO-Tree order index. The AO-Tree (AVL-Order-Tree)
is one of our three proposed implementations. It is based on a keyless AVL tree.

A few exemplary back-links are shown as red, dotted arrows. An opening bracket
denotes a lower and a closing bracket an upper bound; for example, ]3 is the entry for
the upper bound (is-lower is false) of row #3 (rowid is 3). The more “left” an entry in the
AO-Tree is in the figure, the lower its place in the order relation is. For example,

<A< I<BL..,

and O.before(]2,15) is true.

Do not confuse hierarchy edges (—) and AO-Tree edges (+—): The purpose of
the AO-Tree edges is to maintain an ordered, balanced tree. Only the ordering that
is implied by this tree is meaningful in the sense that it constitutes an implicit nested
intervals encoding. Thus, for example, we could also rotate the entries |3 and [4 in
such a way that ]3 becomes the right child of [3 and [4 the right child of ]3. The implied
ordering [3 < |3 < [4 would stay the same.

Note that strictly speaking the is-lower flag would not have to be stored explicitly in
each entry, as

O.is-lower(c) = (O.entry(H.label(c).lower) = c).

However, implementing is-lower() this way would incur a round trip to the table on
each call, with a potential cache miss. We therefore prefer to store is-lower explicitly.

4.5.3 Block-based Order Indexes

Self-balancing binary trees such as AVL trees or red /black trees offer logarithmic com-
plexity for most operations. While this makes them good candidates for an order index
structure, their performance in practice is dwarfed by their cache-unfriendliness. We
therefore devised two more sophisticated order index implementations: the BO-Tree
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and the O-List. Rather than storing one entry per tree node like the AO-tree, they
are based on larger blocks of memory that fit B entries each. We therefore call them
block-based order indexes and B the block size.

Block-based data structures afford a technique called accumulation. This technique
allows us to efficiently maintain the level adjustments. (We originally conceived it in
the context of DeltaNI [31] for different purposes.) Accumulation works for any hierar-
chically organized data structure that stores its entries in blocks, such as a B-tree or
even a classic binary tree (where the “blocks” are just single-entry nodes). The idea
is to store a block level with each block. The level adjustment of an entry e is obtained
by summing up the levels of all blocks on the path from e’s block to the root block.
This brings along the cost that O.adjust-level(c) becomes linear in the height of the
data structure, usually O(log|H]|). But in return, even for range relocations at most
O(log |H|) block levels need to be adjusted in order to update the depths of the in-
volved nodes. An as optimization, during an index scan, the level adjustment can be
tracked and needs to be refreshed only when a new block starts. This would yield
amortized constant time for depth() in this case.

The BO-Tree (B*-Order-Tree) is basically a B*-tree that has been adapted as follows: The
entries are stored in a series of leaf blocks, which each have pointers to the neighboring
leaf blocks for faster scans. An entry in a leaf block consists of a row ID and an is-lower
flag. (Recall that no keys are needed.) In an inner block, there are no separator keys but
only child block pointers. Each block additionally maintains a back-link to its parent
block and a block level.

Most B'-tree operations, including splitting and rebalancing, need almost no adap-
tions. Key search is no longer required since BO-Trees are keyless and the table stores
back-links to leaf entries rather than keys. A cursor directly references an entry within
a leaf block; more precisely, a BO-Tree cursor ¢ consists of a pointer c.block to the block
hosting the entry and a position c.pos. The back-links to parent blocks are needed be-
cause most operations involve leaf-to-root navigation. adjust-level(), for instance, is
computed by summing up all block levels on the path from the corresponding leaf
entry’s leaf block to the root block.

The worst- and best-case complexity of adjust-level() and similar operations is pro-
portional to the tree height, which is in O(logy |H|). Thus, the wider the blocks in the
BO-tree, the faster these primitives work. Due to the large logarithm base B, a worst-
case complexity of O(log, |H|) is a very favorable asymptotic bound. For example, a
tree with B = 1024 is able to represent a hierarchy with 500 million nodes at a height of
only 3, and thus needs at most 3 steps for a binary predicate or a depth() query. Since
the root block will probably reside in cache, only 2 cache misses are to be anticipated
in this case, which makes the BO-Tree a very cache-efficient data structure.

The simpler O-List is not a tree structure but merely a doubly linked list of blocks.
Block keys encode the order among the blocks, an idea borrowed from GapNI. Block
keys are integers that are assigned using the whole key universe, while leaving gaps
so that new blocks can be inserted between two bocks without having to relabel, as
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long as there is a gap. In addition to the block key, each block maintains a block-level
tield for the level adjustment. The blocks are comparable to BO-tree leaf blocks without
a parent block, and treated in a similar manner: Inserting into a full block triggers a
split; a block whose load factor drops below a certain percentage (e. g., 40%) is either
refilled with entries from a neighboring block or merged with it. adjust-level() simply
returns the level of the corresponding entry’s block. is-before(cy, cp) first checks if the
corresponding entries e; and e, are in the same block; if so, it compares their positions
in the block, and if not, it compares the keys of their blocks. As both adjust-level()
and is-before() reduce to a constant number of arithmetic operations, they are in O(1),
which makes them even faster than for the BO-Tree. But this query performance comes
at the price of a possibly non-logarithmic update complexity.

A more detailed discussion of the implementation of the AO-Tree, BO-Tree, and O-List
indexes is not in scope of this thesis; the reader is referred to [32] and [33].

4.5.4 Representing Back-Links

In block-based order indexes, different designs for the representation of back-links are
conceivable. Recall that back-links are references to bounds stored in a Label, whose
only purpose is that they can be passed to entry() to obtain a corresponding cursor.
The task of entry() is to locate an entry in the data structure given the information
stored in the back-link.

In the AO-Tree, back-links and order index cursors are identical: they are simply
direct pointers to the AVL tree nodes, so O.entry(I) = I. This is only feasible because
AVL tree entries never move in memory. For the BO-Tree and the O-List, however,
entries are shifted around within their blocks or even moved across blocks by rotate,
merge, and split operations.

Suppose we would represent back-links exactly like cursors: by a block pointer and
the offset in the block. We call this the pos approach. It makes entry() a no-op. However,
the back-links (i.e., cursors) stored in the Label objects (i.e., the NODE column) would
have to be kept up to date whenever entries are moved out of their place, even when
an entry is just shifted around within its block. As any insertion or removal in a block
involves shifting all entries behind the corresponding entry, this slows down updates
considerably, especially for a larger B. As adjacent entries in the order index blocks
are not necessarily linked to adjacent tuples in the table (recall that hierarchy indexes
are non-clustered indexes), this would incur random data accesses and thus cause a
significant slowdown.

We suggest two alternative approaches for representing back-links in block-based
data structures: scan and gap.

e With the simple scan approach, a back-link consists only of a [block pointer| in-
dicating the block containing the entry. To actually locate an entry, entry() has
to scan the block linearly for the row ID. These block scans add an unattractive
O(B) factor to most queries and thus hinder us from using larger blocks. On the
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other hand, scan has the advantage that back-links need to be updated only when
entries are migrated to other blocks. The scan approach is used by B-BOX [96].

¢ The gap approach is a compromise between pos and scan. It again leverages ideas
of GapNI: Each entry is tagged with a block-local key (e.g., 1 byte) that is unique
within the block. A back-link is a [block pointer, key] pair. Initially the keys are
assigned by dividing the key space equally among the entries in the block. When
an entry is inserted, it is assigned the arithmetic mean of its neighbors; if no gap
is available, all entries in the block are relabeled. entry() uses binary search or
interpolation search to locate the entry by its block-local key.

gap is significantly cheaper than pos, which effectively relabels half a block, on average,
on each update. Like with GapNI, an adversary can trigger relabelings by repeatedly
inserting into a gap. That said, even frequent relabelings would not pose a serious
problem, as they are restricted to a single block of constant size B. Our evaluation in
[33] therefore suggests gap as a good all-round approach, but order indexes might be
configured to use pos or scan to further optimize certain applications.

4.5.5 Implementing the Query Primitives

All query primitives of our hierarchy index interface can be implemented in terms of
the six order index operations, as we show in the following. We begin with the basic
access primitives.

H.node(?), H.cursor({) = O.entry({.lower)
Hlabel(v) = T[H.rowid(v)].Node
H.rowid(v) = O.rowid(v)

To understand these and the following definitions, recall that both a Node v and a
Cursor ¢ of the hierarchy index interface are identical to an order index cursor. However,
the order index cursor of a Node is guaranteed to always point to the entry of the lower
bound of the node. In other words, O.is-lower(v) holds for a valid Node v, but not
necessarily for a Cursor. Some definitions in the following rely on this invariant.

The helper functions to-lower() and to-upper() are given an order index cursor ¢ to
some entry, which may represent either the upper or the lower bound of some node v,
and yield a cursor to respective lower or upper bound of node v:

O.to-lower(c) = if O.is-lower(c) then c else O.entry(H.label(c).lower)
O.to-upper(c) = if O.is-lower(c) then O.entry(H.label(c).upper) else ¢

Note that all hierarchy index primitives that accept a Node also accept a Cursor. The fol-
lowing definitions, however, expect a Node. If a Cursor ¢; is actually given, O.to-lower(c;)
has to be applied first to make sure it points to a lower bound.

Binary predicates mainly rely on before():
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H.is-before-pre(vy, 17)
H.is-before-post(vy, v2)
H.axis(v1,17) = desc.
H.is-parent(vq,vs)

O.before(vq, 1)

O.before(O.to-upper(vy), O.to-upper(1,))

O.before(va, v1) A O.before(vy, O.to-upper(1))
H.axis(vp,v1) = descendant

A H.depth(v2) = H.depth(vy) +1

We next consider the node properties. As noted above, depth() needs to take into ac-
count the level adjustment that applies to the block containing v’s lower bound:

H.depth(v) = H.abel(v).depth 4+ O.adjust-level(v)

is-root() is based on depth(). A leaf is detected if the lower bound of the node is imme-
diately followed by an upper bound:

H.is-root(v)
H.is-leaf(v)

H.depth(v) =0
—0.is-lower(O.next(v))

The traversal primitives mainly rely on next():

H.pre-next(c) ¢ < O.to-lower(c);

do ¢ < O.next(c) until O.is-lower(c);
c

¢ < O.to-upper(c);

do ¢ < O.next(c) until —O.is-lower(c);
c

O.next(O.to-upper(c))

H.pre-next(O.to-upper(c))

H.post-next(c)

H next-sibling(c)
H .next-following(c)

The above discussion omits the size(), rank(), and select() primitives, whose implemen-
tation is more involved. Refer to [33] for detailed coverage.

4.5.6 Implementing the Update Primitives

We now discuss how the update primitives of our index interface can be implemented
from a high-level point of view. Our aim is to outline how order indexes achieve their
logarithmic update characteristics, without diving into the technicalities of any specific
implementation. (These are covered in our publications [32] and [33].) The specific
algorithms need to manipulate the low-level blocks and entries making up the ordered
data structure. They of course differ much between AO-Tree, BO-Tree, and O-List, but
are mostly straightforward adaptions of the standard algorithms of the underlying
AVL- and B'-tree data structures. In fact, there is one big advantage the order index
adaptions have over the standard algorithms, which allows them to be simpler and
more efficient: They never have to perform key searches—which would be O(log N) for
balanced trees of size N—in order to locate entries. Rather, the positions of a node v
or range [v1, V2] to be relocated or removed, as well as the target position p of an
inserted node, are always given a priori: as cursors indicating positions in the sequence
of bounds.
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Two things complicate matters, however: First, we must take care of the back-links,
the links between the labels in the NODE column and their associated order index en-
tries. With block-based order indexes, back-links must be updated whenever entries
are migrated from one block to another, and also—in case the pos approach is used—
whenever they are moved around in their block during an update. Second, some op-
erations need to adjust the block levels so as to maintain a constant effective level
adjustment for any entries that are moved out of their place.

Also, order indexes require rebalancing just like the data structures they are based
on. The AO-Tree maintains balance through rotations. BO-Tree and O-List split over-
full blocks and fill underutilized blocks by taking entries from neighboring blocks or
merging two blocks, carefully maintaining the level adjustments in the process.

Implementing the leaf update operations is fairly straightforward: insert-leaf() in-
serts a lower and an upper bound as adjacent entries into the ordered data structure
(using individual insert-before() inserts, which are adaptions of the standard algo-
rithms) and stores a Label comprising the two back-links and an initial level in the
corresponding table row.

H.insert-leaf(r, before ¢) = [+ H.depth(O.to-lower(c));
¢z < O.insert-before(c, r, false);
c1 < O.insert-before(cy, 1, true);
I - I — O.adjust-level(cy);
T[r].Node <« [c1,¢2,1];

remove-leaf() removes the two entries from the data structure and sets the Label in the
table row to NULL.

H.remove-leaf(v) = r < H.rowid(v);
O.remove(H label(v).lower);
O.remove(H label(v).upper);
T[r].Node <— NULL;

Finally, relocate-leaf() can be done in terms of removal and subsequent reinsertion. Leaf
updates have an amortized runtime of O(1) with the AO-Tree and O(B) with the BO-
Tree (though occasionally some rebalancing work is necessary). With the O-List, leaf
updates have constant O(B) amortized average-case time complexity, but insert-leaf()
has a linear worst-case complexity due to its gap-based block keys.

To implement range updates, a move-range() update primitive operating on ranges
of bounds is useful:

O.move-range(|[c1, ¢2],ct, ). — Moves a range of entries. Cursors ¢; and ¢, represent
the first and last entry in the range to be relocated; cursor c; represents the target
before which the range is to be placed; J is the level difference between the source
and the target position. Cursor ¢; may not be in [c1, ¢3].

move-range() is aware of the level adjustment—the value returned by adjust-level()—
for the entries in the range [c1, cz]. It adjusts the effective level of each entry in the
range by 6. With move-range(), relocating a range is straightforward:
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H.relocate-range([v1, 12], before v') = ¢ + H.label(v;).lower;
2 < H.label(1,).upper;
¢t < H.label(v").lower;
0 < H.depth(v') — H.depth(11);
O.move-range(|[c1, ¢2], ¢t 0);

As noted, the target position is simply an order index cursor ¢;. In the example p is
“before v'” so ¢; is set to a cursor to the lower bound of v'.

For order indexes based on balanced trees, move-range() can generally be imple-
mented with logarithmic time complexity by relying on two low-level tree operations
split() and join(): The former splits a given tree into two; the latter concatenates two
trees to one. Both operations are in O(log N) for balanced trees, and can maintain
their balance. (Since split() and join() algorithms are rarely discussed in textbooks
about AVL- and B'-trees, we point the reader to their thorough in our publication [33].)
With the help of these operations, move-range() can first crop out the range [c1, ¢2]
into a separate tree T'; then add the desired level delta J to the block level of the
root block(s) of T’, which effectively adds ¢ to the levels of all nodes within the range;
rejoin the remaining parts of the original tree; rebalance underutilized blocks at the
crop boundaries; reinsert T at the target position; and finally rebalance again. Note
in particular that during move-range() both the number of level values of Label objects
as well as the number of block levels that need to be touched are bounded. The level
adjustment mechanism thus enables us to efficiently update the effective levels of all
nodes involved in the range relocation.

We have now discussed the leaf update primitives as well as relocate-range(). The al-
gorithm for remove-range() is a straightforward variation of relocate-range(). relocate-
subtree() and remove-subtree() can trivially be implemented via relocate-range() and
remove-range(). Finally, the inner update primitives can be expressed in terms of the
range operations as described in § 4.1.5.

4.6 Building Hierarchies

In §4.1.3 we pointed out several situations in which hierarchy indexing schemes are
constructed or re-built from scratch. A major use case is the derived hierarchical table,
where rebuilding is potentially necessary whenever a row in the original source table is
updated or a new row is inserted. To avoid painful stalls of the database system in these
situations, all stages of indexing scheme construction must be as efficient as possible. In
this section we cover this topic in much detail. We first consider the build(H’) primitive
and describe a practical data structure for its input hierarchy representation H’'. Based
on that we discuss a largely generic implementation of build(). We then cover the
complete process of transforming input data from the adjacency list format into such
an intermediate representation H' in order to implement derived hierarchies.
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Figure 4.7: The basic format of an Intermediate Hierarchy Representation.

4.6.1 A Practical Intermediate Hierarchy Representation

While the data structure used for H' in the build(H’) operation could be any of the
available full-blown hierarchy indexing schemes, this would often be overkill, since
H' is usually just used in a throw-away manner as an intermediate representation for
bulk building. Upon its construction, there is in fact only one task it has to support
well: performing a full depth-first traversal in O(|H’|) time. We therefore developed
a simple and space-efficient special-purpose data structure, the Intermediate Hierarchy
Representation (Hierarchy IR), which we found to be very effective in practice.

Similar to a full-blown indexing scheme, a Hierarchy IR references the rows of an
associated table via row IDs. It arranges these rows in a directed acyclic graph; that
is, each row can have one or more parent rows. The IR is thus less restrictive than
most of the indexing schemes we explored. This is helpful in particular for input data
that does not form a strict tree: We can bring the data into an IR representation first,
and then remove non-tree edges to transform it into a strict hierarchy according to a
specified given by the user (see §3.4.3).

At its heart, the data structure is a vector of the row IDs of the hierarchical table,
which is sorted and indexed by the respective row IDs of the parent rows of its entries.
Let T be the associated table. Let N := |T| be the number of rows in T. We assume
that the row IDs of T are assigned densely from 0 to N — 1, although this is not a
strict requirement. The representation consists of three vectors C, R, and M. Figure 4.7
shows an example hierarchy and its representation. Here, the table size |T| is 6. The
nodes are labeled by the IDs of the associated rows, which range from 0 to 5. The
tigure also displays the virtual super-root T; it is the parent of all rows that do not
have an associated parent row otherwise. The three vectors are defined as follows:

* R is a vector of row IDs of size N. It arranges the row IDs of T by the row IDs
of their respective parent rows: first the children of row 0 (none in the example),
then the children of row 1 ((2) and (5)), and so on. Rows without a parent ((4),
(3)) appear at the end. The internal ordering of a group of row IDs with the same
parent row is significant: it implicitly represents the sibling order of the hierarchy.

¢ (Cis a vector of size N + 1 storing indices of R, that is, it indexes R. Its purpose
is to enable us to determine the children of a given row. Its own indices are the
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function H.build(H')
H.initialize()
Cp<«C
S : Stack([rowid, bool]) o ®
S.push([|R],0]) 0 [T RS I B
while —S.empty b 4
0 5 0
.[VP, mp] — Stop() u l 2 —)l 0 l 0
if Cp[rp] :C[i"p—l—l] .3 Jdil sle
if mp 4|3 /4 4 41
¢ + H.visit-post(rp) ol /sl e
yield [rp, /] o) +la -
S-pop() -
continue
i Cp [rp] R] C—p
re R o[2 g6 |
fnemp\/M[z] 15$10
if m=1 20 o2
| H.visit-pre(r) W1 \®/3 3
s.push([r, m]) il
Cp[rp]%l.—f—l 5354
H finalize() N 4
(a) The algorithm. (b) Steps taken for the example Hierarchy IR.

Figure 4.8: A generic algorithm for build(), performing a depth-first traversal over H'.

row IDs of T: For i < N, C[i] gives us the index of the R entry that indicates the
first child of row i, if any. Thus, the children of row i can be found in the range
R[C[i],...,CJi + 1] — 1]. The last entry, C[N], points us to the children of T, that
is, all rows without a parent row: they are in the range R[C[N],..., N —1]. Note
that C is sorted. This is because the row IDs in R are arranged by parent row ID.

Vector M is optional. It is a bit vector of size N whose indices are the row IDs
of T (like C). Its purpose is to mark a subset of T’s rows in cases where the
hierarchy H’ shall be restricted to only those nodes reachable via a given set of
start nodes. (One such case are derived hierarchies with a specified START WHERE
clause.) If M[i] is set, row i is a start node. In the example, only (4) is a start node;
thus, (3), though represented in H’, it not considered to be part of the hierarchy.

A Hierarchy IR can be efficiently constructed from an unordered list of edges, as we
will discuss in §4.6.5.
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4.6.2 A Generic build() Algorithm

We now assume a valid Hierarchy IR instance H’ is given, and present an algorithm for
the H.build(H’) operation based on a systematic traversal of this data structure. The
implementation of build() is the only part of the construction process that is specific
to each indexing scheme. That said, the algorithm we present is still largely generic; it
can be used for most indexing schemes we investigated.

The algorithm performs a depth-first traversal of H'. During the traversal it performs
a pre and a post visit of each row: When a node is encountered first, the associated
row r is pre-visited, then its descendants are processed, and finally r is post-visited
again. The indexing schemes only differ in what is done during the pre/post visits,
and in what data needs to be tracked with the visited nodes during the traversal. We
therefore encapsulate these actions behind four internal operations:

H.initialize(N) — Initiates bulk building. N > 0 is the number of nodes in H'.

H.visit-pre(r) — Pre-visits row r.
Precondition: r has not been pre- or post-visited.

¢ < H.visit-post(r) — Post-visits row r.
Returns the label of the associated node.
Precondition: r has been pre-visited previously.

H finalize() — Finalizes bulk building.

The following protocol involving these operations must be strictly followed: initialize()
must be called first (exactly once), then visit-pre() and visit-post() may be called repeat-
edly, then finalize() must be called (exactly once). No other index operations on H may
be called in between, since it will be in a consistent state only after finalize() has been
called. Furthermore, the visit() calls must happen in a correctly nested pre/post order,
and their given arguments r must be row IDs in the range [0, N|. After the post visit
of a row 7, the Label object of the corresponding node for r becomes available and is
returned by visit-post().

Figure 4.8a shows the algorithm for build(). Its input is a Hierarchy IR H' = (C, R, M).
Its overall output is a stream of [row ID, Label] tuples, which provides a Label value
for each row ID that has actually been included in H. This information is subsequently
used to populate a corresponding NODE column, as we describe in § 4.6.3. As mentioned,
the algorithm essentially performs a depth-first traversal of H'. We maintain a stack S
to track the current position in the hierarchy. It contains pairs of a row ID and a boolean
mark. The sequence of row IDs on S represents the path from T to the current node.
We use the mark to determine whether the current node is reachable from any start
node and thus should be added to H. During the traversal, visit-pre() and visit-post()
are called for marked nodes and any of their descendants; all other nodes are traversed
but otherwise ignored.

In the initialization phase (1. 2-5) we first make a mutable copy C, of C. We use C, to
keep track of the “visited” parts of C. We begin the traversal with the super root T by
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pushing its pseudo row ID N onto the stack. We then continue the following process
until the stack becomes empty, which means that H' has been traversed completely:

¢ Inspect the row ID rp and the mark mp (“P” stands for “parent”) on the top of
the stack (L. 7). Use C, and C to determine the next child of node rp to visit:

If Cy[rp] = C[rp + 1], then rp either has no children at all, or we have already
visited all its children (1. 8). This means we are done with rp. If mp was set, this
means that rp was previously pre-visited. In that case, post-visit rp, obtain the
corresponding Label value ¢, and yield a tuple [rp, ¢] to the result (l. 9-11). Either
way, pop rp from the stack and continue (I. 12-13).

If C,[rp] < C[rp + 1], then there is at least one more child of rp left to be visited
next. That child’s row ID r is stored in R[C, [rp]].

e To visit row 7 (I. 14—20):

Determine whether r should be included in the index (I. 16-17). This is the case
only if it either is a start node by itself (M]i] is set) or if its parent rp has already
been pre-visited (mp from the top of S is set). Invoke H.visit-pre(r) only if r
should be included in the index (1. 18).

Push r onto the stack (1. 19). This has the effect that » will subsequently be con-
sidered as a parent, and its children, if any, will be visited next (in a depth-first
search manner). Finally, increase C,[rp]| by one (l. 20). Since the “current” child r
of rp has just been visited, this makes C,[rp| point to the next child.

Figure 4.8b shows the traversal steps that are taken for the example input. Initially, S
contains T, but the super root itself is not pre-visited. The algorithm first pre-visits the
nodes (4), (1), (2), (0) (arrows MW—@ in the figure) and pushes them onto the stack S (not
shown). It then determines that (0) is a leaf, as C,[0] = C[1] = 0. It therefore post-visits
(0), pops it from S and checks (2) again. However, as (2) has only one child, now also
Cp[2] = C[3] = 3,50 (2) is post-visited and popped as well. At this point, C,[1] = 1, but
there is another child of (1) to visit (C,[1] # C[2]), namely R[C,[1]] = 5. The algorithm
therefore pre-visits (5) (arrow (5). After post-visiting and popping (), (1), and (4), the
algorithm considers (3) as R[C,[6]] = 3 (arrow (6). However, as (3) is not a start node
(M[3] = 0), row ID 3 is pushed and subsequently popped without generating actual
pre- or post-visits. Finally, T is popped but not post-visited. At this point the algorithm
has pre- and post-visited all nodes in the following order:

(D@ OEIEOO @ E®E®E @ @@ EE @

Constructing the Indexing Scheme. As mentioned before, most indexing schemes
we investigated can be constructed during a single depth-first traversal of the inter-
mediate representation H'. To adapt the generic build() algorithm for these indexing
schemes, we only have to suitably define its four internal operations. Let us consider
a few example schemes.
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i function H.initialize(N) i function H.initialize(N)
reset counter ¢ < 0 2 reset pre, post <— 0

3 allocate .Z[0, ..., N| 3 allocate .Z[0,...,N|
s+ function H.visit-pre(r) + function H.visit-pre(r)
s | Z[r]lower  c++ s | Z[r].pre « pre++
s function H.visit-post(r) s function H.visit-post(r)
7 ZLr|.upper « c++ 7 ZL|r].post < post++
8 return .Z[r] 8 return .Z[r|

(a) Nested Intervals (b) Pre/Post

Figure 4.9: Defining the internal functions for bulk building.

i function H.visit-pre(r)

2 pre-to-rowid[pre| < r
i function H.initialize(N) j fé[ﬁ[ﬁ[@ pres+
: Pl‘ett_oo 5 ZL|r].parent-pre < {p.pre
’ pos , 6 ZLr|level < lplevel +1
4 allocate pre-to-rowid[0, ..., N[ ., function H.visit-post(r)
5 allocate post-to-rowid[0, ..., N| U p

8 post-to-rowid [post] « r

o ZLlr].post < post++

10 return .Z[r]

Figure 4.10: Defining the internal functions for bulk building: PPPL.

The simple nested intervals and pre/post encodings can both be constructed straight-
forwardly by maintaining a global counter c that is incremented on each pre and post
visit. Figure 4.9 shows the pseudo code. A table .# associates each seen node with its
(incomplete) label. On visit-pre the lower bound of the node is assigned from c to the
label. On visit-post the upper bound is assigned, making the label complete.

For the construction of the PPPL scheme we also associate each seen node with its
preliminary label. Figure 4.10 shows the pseudo code. We track the current pre-rank
and post-rank in global counters. During visit-pre(), we assign the pre-rank to the
label. Additionally, we determine the parent node and use it to fill in the parent-pre
and level fields. The post-rank is available on visit-post(), making the label complete.
The pre-to-rowid[] and post-to-rowid[] indexes are populated on the fly.

Order indexes can be constructed during a depth-first traversal by essentially building
up the ordered index structure from left to right: H.initialize() pre-allocates memory
and prepares the underlying ordered data structure. H.visit-pre(r) appends an entry
for the lower bound to the order index, and enters a link to that entry into the prelim-
inary Label. H.visit-post(r) appends an entry for the upper bound and again links to
it from the Label. H.finalize() constructs the remainder of the data structure—such as
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the inner levels in case of the BO-Tree. All three implementations fit into the generic
bulk-building algorithm and meet its guaranteed O(Nlog N) worst-case complexity:
For the AO-Tree and the BO-Tree, rather than performing one-at-a-time inserts for
the entries, we use straightforward adaptions of the common O(N) algorithms for
constructing AVL trees and B'-trees sequentially in a bottom-up manner. The B'-tree
algorithm first completes the leaf level, then during finalize() proceeds upwards level
by level (see [68] Sec. 15.5.3). The O-List algorithm is simpler, as there are no inner
blocks. However, it needs a second pass during finalize() to assign evenly-spaced keys
to its blocks. This two-pass algorithm is still in O(N).

4.6.3 Implementing Derived Hierarchies

We now discuss how to efficiently evaluate the derived hierarchy construct, whose basic
we defined in § 3.4.2 as follows:
HIERARCHY (
USING source table AS source name
derived hierarchy spec
SET name
)
A central pre-processing step behind this construct is to transform the relational source
table into a Hierarchy IR representation H' according to the specifications given by the
derived hierarchy spec. This step is independent of the type of the target indexing scheme.
Note that our focus is on data that is already in a relational table. That said, it is well
conceivable to also support deriving hierarchies from structured text such as XML and
JSON. Reading such data in document order is effectively a depth-first traversal, and
it is straightforward to generate corresponding visit-pre and visit-post events on the
fly. Such a traversal is already all functionality we require from H'.
Regardless of the actual input format that is specified by the derived hierarchy spec, the
general process to evaluate a derived hierarchy construct is as follows:

1. Evaluate source table and materialize the result into a temporary table T. If the
source table is a subquery or a view, this involves translating the query into an
optimized plan with a materialization operator to store the result. All columns
the user chooses to select in that query or view will be included in the final
hierarchical table.

2. Evaluate the derived hierarchy spec. (We discuss this for the adjacency list format in
§ 4.6.4.) The result of this operation is a Hierarchy IR object H" associated with T.

3. Create and populate the new hierarchy index H from H’ using the H.build(H’)
algorithm of § 4.6.2. The output of this operation is a stream of [row ID, Label] tu-
ples, associating rows of T with Label values corresponding to the created nodes.

4. Allocate the new NODE column and append it to T. Populate it from the output of
the previous operation. For rows that are not associated to a Label, set the NODE
value to NULL. — T is the final hierarchical table.
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T1

ID |PID |Ord HIERARCHY (
of "A"|'C' |1 USING T1 AS cc
1/'B"|'E" |1 START WHERE PID IS NULL
Sltc| "B |1 JOIN PARENT pp ON cc.PID = pp.ID
1o INuLLl2 SEARCH BY Ord

SET Nod

4| "E"|NULL|1 )
s|'F'['B' |2

(a) Input table (b) derived hierarchy syntax

Figure 4.11: Example derived hierarchy for the adjacency list input format.

The final step depends much on the architecture of the database engine at hand. How-
ever, no special logic should be needed: As NODE is a normal column, the usual updating
mechanisms can be used.

4.6.4 Transforming Adjacency Lists

We now concentrate on how to efficiently implement Step 2 of the described process
for the adjacency list format, which is the most common type of input. Let us revisit
the syntax of §3.4.3:

HIERARCHY (
USING source table AS source name
[START WHERE start condition]
JOIN PRIOR parent name ON join condition
[SEARCH BY order]
SET node column name
)

Figure 4.11a shows an example source table named T1. Figure 4.11b shows a HIERARCHY
clause that derives a hierarchy from T1.

The transformation consists of two steps: The first step is to extract an edge list
from the source table according to the specifications. The second step is to efficiently
transform this edge list into a Hierarchy IR. An important design goal is to reuse
existing relational operators for as many aspects as possible in order to leverage their
proven and optimized implementations.

The detailed process for Step 2 is as follows:

2.1 To determine the edges of the hierarchy, evaluate an outer self-join on T accord-
ing to the join condition: T AS C LEFT OUTER JOIN T AS P ON join condition.

The left join input C represents the child node and the right input P the parent
node of an edge. We use an outer join to not preclude nodes without a parent
node. In the absence of a start condition, these nodes are by default the roots of the
hierarchy.
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T1 AS C LEFT OUTER JOIN T1 AS P ON C.PID = P.ID

rc|C.ID|C.PID|C.Ord||/rp |P.ID|P.PID|P.Ord rclrp |m
0 ! 1 2 ‘¢t |'B! 1 2 (1 0
1 'E' 1 4 "E' |NULL |1 4 [NULL|1
2 'B' 1 1 '‘B' |'E’ 1 1|4 0
3 |'D" [NULL |2 NULL|NULL|NULL |NULL 0|2 0
4 |'E" |NULL |1 NULL|NULL|NULL |NULL 3 |NULL|1
5 'B' 2 1 'B' |'E' 1 5|1 0
(a) (b)

Figure 4.12: Intermediate results during the evaluation of a derived hierarchy.

We include the row IDs rp and r¢ of both join sides in the result for later use. rp
can be NULL due to the outer join. Furthermore, the r¢ are not necessarily unique:
While we would expect an N : 1 join for an adjacency list that represents a strict
hierarchy, this need not necessarily be the case with the given data.

In our example, this step results in the table of Figure 4.12a.
2.2 If order is specified, use a Sort operator to sort the join result accordingly. (If

order is missing, use an implementation defined ordering operation to ensure a
deterministic order.)

2.3 If a START WHERE clause is specified, use a Map operator to explicitly evaluate the
start condition. This results in a boolean column m (for start mark), which marks all
rows satisfying the condition. Note the start condition may reference the parent
row. This is why we have to evaluate it after the join.

In the absence of a START WHERE clause, mark the rows that had no join partner in
the outer join.
2.4 Remove all columns except for rp, r¢c, and m.

The result of this step is a stream of marked parent/child pairs (i. e., edges) in the
desired sibling order. In our example, after adding column m, sorting the table
by C.ord, and removing columns C.* and P.x, we obtain table Figure 4.12b.

2.5 Construct H' from the stream of marked edges. We encapsulate this process into
a new relational operator, Edge List Transformation, which is described next.

With the exception of the last step (Edge List Transformation), we are only reusing
existing query processing operators and facilities. In terms of relational algebra, the
process of executing our example HIERARCHY clause could therefore look as follows:

T™NT — Sort — Map [m| — Project [r¢c, rp, m]

— Edge List Transformation — H.build(H’) — Update.
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Figure 4.13: Executing the bulk-building operator on an example hierarchy.

4.6.5 Transforming Edge Lists to Hierarchy IR

The Edge List Transformation operator is the final step in transforming a table in the
adjacency list format into a Hierarchy IR. It converts an unordered edge list (consisting
of parent/child row ID pairs) into the ordered and indexed Hierarchy IR presentation.
As such it has applications beyond the adjacency list transformation as well.

The operator consumes a stream of [rc, rp, m| tuples. Their order is significant: it im-
plicitly reflects the intended sibling order. The operator’s output is the corresponding
Hierarchy IR representation H'. In the process, it also identifies non-tree edges, to the
system can detect early if the data does not represent a strict hierarchy. The operator
is designed for efficiency: it runs in O(N) time, where N is the size of its input stream,
that is, the number of edges in the hierarchy.

Figure 4.13 illustrates the steps of the algorithm. To the left, our example hierarchy is
shown again. Figure 4.14 shows the complete pseudo code, which proceeds as follows:

2.5.1 Materialize all edges into an vector E. In the process, track the highest row ID
"max encountered in the input. Set 71 to rmax + 1.

r1 is a “virtual” row ID we assign to the super root T. In the figure, the maximum
row ID is 5, s0 rv = 6.

The purpose of the following two steps is to collect information needed to sort E
by rp as efficiently as possible. Note that since T has been assigned the highest
row ID, edges without a parent will be placed at the back.

2.5.2 Count the number of children each node has. In the process, identify multi-parent
nodes to ensure there are no non-tree edges.

To this end, allocate a vector C of size r1 + 1. Each entry CJi] stores the child
count of the node with row ID i. Nodes without a parent (rp is NULL) are counted
in the last slot C[rr]. Additionally, allocate a bitvector B of size rr, initially set
to false, to mark encountered rc values. Once an r¢ value is encountered more
than once (i.e., B[rc| is found to be already set when it is encountered), a non-
tree edge rp — r¢ is identified. This case can be handled according to a policy

100



4.6 Building Hierarchies

specified by the user: by simply omitting the edge, or by raising an error and
aborting the entire process. After this step, B can be disposed again.

In the example, node (1) has two children, so S[1] = 2. There are two nodes,
and (4), without a parent, so S[r+] = 2. The figure omits the bitvector B for
brevity reasons.

2.5.3 Compute the prefix sums over the array of counts C:

Note the sums “lag behind” by one element, so Cx[1] = 0. The count C[1] = 2
first contributes to Cx[2].

As C is subsequently not needed anymore, the computation can happen in place
to increase efficiency: Iterate over C while maintaining a running prefix sum of
the counts, and store the prefix sums within C itself.

2.5.4 With the help of C (alias Cx), sort vector E by rp, producing the two sorted vectors
R (from E.rc) and M (from E.m). (The information of E.rp is no longer needed.)

To do the sorting, first make a copy C’ of C, since we need to modify C’ in
the process but still need the original C state for the Hierarchy IR. Then, iterate
over E; for each tuple [r¢, rp, m], the target position j in R and M is given by C|rp].
Increment C[rp] after moving each tuple.

In the example, node 2 is sorted into R[0] as C[1] = 0. Then C[1] is incremented
to 1, which results in node 5 being subsequently sorted into R[1].

After the algorithm, Cy, and the sorted R and M vectors constitute the Hierarchy IR H’
and can be passed to H.build(H’) algorithm.

Note that the final step is a “perfect” bucket sort: Thanks to the preprocessing steps,
the algorithm can directly determine the final target position of each tuple. Its asymp-
totic worst-case time complexity is O(N), whereas common comparison-based sort
algorithms are in O(NlogN). Only five simple operations per tuple are executed,
making this step extremely fast. Furthermore, the sort is stable: that is, the relative
order among rows with identical rp values is preserved. In the example, node 2 is
guaranteed to remain before node 5. This is important because otherwise the desired
sibling order (as indicated via SEARCH BY) would be destroyed.

Late Sorting. When a SEARCH BY term is specified, the transformation process as de-
scribed performs a complete Sort before executing the bulk-build. This is one of the
most expensive steps of the whole process.

An alternative approach is to defer sorting until after the bucket sort. To enable
this, all fields appearing in the SEARCH BY term—rather than just rc and rp—must be
included in the edge list E, which slows down the bucket sort due to larger tuples. The

101



4 THE BACKEND PERSPECTIVE OF HIERARCHICAL TABLES

// Step 3
1 2«0
// Step 1 2 foriG(O,.:.,rT>
i materialize input into E : {[rc,rp,m]}, ° ¢ Cli]
2 7 < 1+ maxrcorrpin E 4 Cli] + X
5 X<+ 2+c
// Step 2
s C[0,...,r7]«0 // Step 4
« B[0,...,r7] + false s C'+C
s for [rc,rp,:| € E 7 allocate R[O, ..., 7|
6 i+ (rp=NULL? 7T : 1p) s allocate M|0, ..., 77|
7| Cli] + Cli] +1 o for [rc,rp,m] € E
8 if Blrc] V (rp =r1c) 10 i< (rp=NULL? 7T : 7p)
o ‘ non-tree edge rp — rc found " j = Clil++
10 B[Tc] < true 12 R[]] —rc

13 M[]] —m
12 return C,R, M

Figure 4.14: Pseudo code for the Edge List Transformation operator.

advantage is that not all rows but only rows within each bucket then have to be sorted
by the SEARCH BY columns, which should speed up the sorting step considerably.

On the other hand, the original approach is appealing in that the implementation
of the Edge List Transformation operation remains simple and compact. Furthermore,
since the available Sort operator of the system is reused for the SEARCH BY sorting step,
we expect it to be highly optimized and potentially parallelized. We therefore recom-
mend to enable the late sorting option only if the Sort step appears to be the bottleneck
of the transformation process, and stick to the original approach otherwise.

Iterative Approach. The approach we discussed so far includes the entire hierarchy
in the Hierarchy IR and performs a complete traversal of H', regardless of whether a
potentially selective START WHERE clause is present or not. This way the full work would
be done even if—in an extreme case—only a few leaf nodes qualify as start nodes.

An different approach to the adjacency list transformation is to iteratively descend
from the qualifying start nodes, thus “discovering,” processing and traversing only the
nodes that are reachable by the start nodes:

1. Evaluate and materialize T (as is), and determine the start rows Ry.
2. Iteratively use the join condition to select the next level of rows from T, initially

starting from rows in Ry, in order to eventually enumerate all (and only) the
reachable nodes. Output corresponding edges during each iteration.
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3. Convert the edge list into a Hierarchy IR using the Edge List Transformation
operation as is.

However, as our experiments indicate (§6), a recursive join can be very expensive in
contrast to an ordinary join, so the recursive variant should only be chosen if it is very
certain the final hierarchy H (spanned by the start rows Rp) is very small in comparison
to the full intermediate hierarchy H' we would otherwise construct. Unfortunately, the
tinal size of H is not easy to predict, since the size of H is not related to the number
of the start nodes |Ry|: Suppose, for example, Ry contains only a single row 7y, so a
naive query optimizer might choose the recursive algorithm. If g, however, happens
to be the only root of H, then |H| = |H’| and the optimizer’s choice would be very bad.
We therefore do not suggest using the recursive algorithm, unless derived hierarchies
with exceptionally selective START WHERE clauses become a bottleneck.

4.7 Handling SQL Data Manipulation Statements

Our extensions for data manipulation (§ 3.5) realize updates to the hierarchy structure
via INSERT, UPDATE, and DELETE statements that provide appropriate node anchors as
values for the NODE field. The anchors may be ABOVE (¢), BELOW(¢), BEFORE(¢), or BEHIND ().
The special value NULL excludes a row from the hierarchy. The special value DEFAULT is
automatically translated to a specific anchor (e. g., “BEHIND the last root”).

The following table summarizes how the different DML statements affect the hier-
archical table T on the one hand, and the associated indexing scheme H on the other
hand. The NODE field is assumed to be named Node.

® INSERT row. Insert a new row r into T, with the Node field initially set to NULL.
If the insert sets Node to NULL, the hierarchy H is not affected. If the anchor is
ABOVE, insert a node using H.insert-inner(r, [v/,v']), where v/ is the target node of
the anchor. Otherwise, insert a leaf using H.insert-leaf(r, p) and a corresponding
position p. (These primitives populate the label stored in Node accordingly.)

* UPDATE row r. Update the fields of r as usual. Obtain a Node object v for the label
stored in the Node field of row r. Check whether v is a leaf. If the update sets
Node to NULL, invoke H.remove-leaf(v) if v is a leaf, otherwise H.remove-inner(v).
If the update sets Node to some anchor, translate it into a suitable target posi-
tion p and invoke H.relocate-leaf(v, p) or H.relocate-subtree(v, p), depending on
whether v is a leaf.

® DELETE row r. Obtain the Node object v for the label stored in the Node field of
row r. Invoke H.remove-inner(v) or H.remove-leaf(v) depending on H.is-leaf(v),
then delete row r.

On an INSERT, the row needs to be physically created first, whereas on a DELETE, the
corresponding index call needs to happen before physically removing the row, since
the row’s label may need to be accessed to execute the remove operation.
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In addition to these constraints, the system needs to make sure to keep the node-row
associations up to date at any time by carefully issuing all pending relink() calls be-
fore invoking any index primitives, as discussed in §4.1.3. (Recall that update primi-
tives may access arbitrary labels, so there must not be any stale row ID references at
any time.) The circumstances in which relink() calls are needed are system-dependent.
Some systems guarantee stable row IDs, in which case no relinking is needed at all.

Invalidation issues are another intricacy the system has to take into account. Calling
an index primitive may not only change the Label values in the (original) NODE column,
it may also invalidate any existing temporary Node or Cursor objects. Only the Label
objects in the original NODE column are guaranteed to be kept up to date. Therefore,
the Node arguments needed for the update primitives should be obtained through the
row ID immediately before the respective primitives are called. The fact that Label values
get invalidated by updates also means that if any such values are present in scratch
variables of running SQL scripts, or in the system cache (e. g., materialized views con-
taining a NODE field), those items have to be invalidated.

Outlook: Handling Concurrent Transactions. As indexing schemes in general store
non-redundant information and are closely tied to tables via direct row-node asso-
ciations, some care is needed to realize SQL transactions in an ACID-compliant way.
Essentially, when one transaction modifies the hierarchy, other transactions must be
prevented from seeing these updates before the writing transaction commits. At the
same time it must be possible to revert to the original hierarchy state in case of an
abort. With the exception of DeltaNI, the indexing schemes we discussed capture only
a single, namely the most recent, state of the hierarchy. This makes it hard to allow
for concurrent access with strong isolation guarantees. Furthermore, the protocols to
handle such concurrency and isolation issues differ highly from system to system. For
every database engine, a custom solution essentially has to be crafted. We can thus
only give a brief outlook of conceivable approaches:

¢ A trivial approach is to abort any transaction that accesses, or has accessed, a
hierarchy index that is being modified concurrently by a writing transaction.

* Another option is to use a second, static indexing scheme to create a read-only
snapshot of the original hierarchy state as soon as a transaction attempts to mod-
ify the hierarchy. This allows older read-only transactions to access the original
state, and in case the modifying transaction gets aborted, the changes can be
undone by bulk-loading the original (dynamic) index from the snapshot.

* Another viable approach is to use indexes with multi-versioning capabilities
(such as DeltaNI) to capture the relevant recent history of the hierarchy structure.
Transactions can then use time-traveling to access the version they are supposed
to see. This also integrates well with systems based on multi-version concurrency
control (MVCC, [3]), where updates create new versions of the involved rows
and retain the old versions in their original location. MVCC essentially adds a
temporal dimension to the table, and a temporal hierarchy index can natively
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capture that. The downside is that multi-versioning complicates the index logic
significantly and incurs considerable performance penalties. Then again, one gets
support for system-time temporal hierarchical tables at no extra cost.

* An interesting approach inspired by the XQuery Update Facility (XUE, [112])
is to defer the application of structural updates to the hierarchy until commit
time. Rather than executing the updates to the NODE field and the index immedi-
ately, they are collected in an edit script (“pending update lists” in XUF). When
the transaction commits, the complete edit script is checked for conflicts—such
as the same node being inserted, relocated, or removed more than once—and
atomically applied to the index. This is also a convenient time to normalize and
group the operations: For example, individual node operations can be rewritten
to more expressive subtree and range operations in order to reduce the number
of operations in total and to leverage the update capabilities of more sophisti-
cated indexing schemes. Unfortunately, this approach significantly impacts the
programming style, as structural updates remain invisible even to the updating
transaction prior to the commit, so the user cannot build on prior changes when
making a series of changes. However, the key advantage of this approach is that
the hierarchy index remains unchanged during the whole transaction, which el-
egantly circumvents many concurrency issues.

A further discussion of these approaches falls out of the scope of this thesis, especially
since they are highly system-dependent. However, we do consider them an interesting
topic for future research.
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Query Processing on Hierarchical Data

This chapter covers the process of translating the query language extensions intro-
duced in § 3 into executable query plans. We first discuss which operators are needed
on the relational algebra level (§5.1). Most of our SQL extensions take the form of func-
tions operating on the abstract NODE data type and as such do not actually extend the
syntax and semantics of SQL. Thus, it comes at no surprise that we can rely mostly on
existing relational algebra operators in their translation. On the physical algebra level
(§5.2), the key to efficient query evaluation is a set of special-purpose hierarchy oper-
ators. Unlike many existing works (§ 5.3), our algorithms are not tied to specific types
of labeling schemes. They rely entirely on the abstract Label, Node, and Cursor concepts
and the query primitives of the interface presented in §4.1.2. This way, a lot of com-
plexity is hidden, and query processing can use the same algorithms irrespective of
the underlying indexing scheme.

5.1 Logical Algebra Operators

We first investigate the translation of queries against hierarchical tables on the rela-
tional algebra level. Part of the design goals for our language extensions was to be
able to evaluate most constructs without having to introduce many new relational op-
erators. Thanks to this, creating (logical) query plans is fairly straightforward and can
rely on well-known techniques. Most of our query language constructs result in ba-
sic Map (§5.1.3) and Join (§5.1.4) operations. For evaluating hierarchical windows we
reuse the concept of Groupjoin (§5.1.5). Only for hierarchical windows with recursive
expressions, a new operator is needed: Structural Grouping (§ 5.1.6). For each operator,
we introduce our notation and discuss its uses by the example of simple SQL queries.

5.1.1 Preliminaries

Although we assume the reader to be fairly familiar with the general concepts of rela-
tional algebra, we first clarify some of the less common notations. Generally, we follow
the style used by Moerkotte et al. (e. g., [74]).

A relation is a bag (multiset) of tuples. We denote a set by {} and a bag by {};. For
an expression e that evaluates to a tuple or a relation, A(e) gives us the set of attributes

The material in this chapter on processing structural grouping queries has previously been published
in [10]. High-level discussions of query processing on hierarchical tables have also appeared in [9]
and [33]. This chapter extends these discussions and also includes additional, novel material.
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provided by the tuple or relation, and F (e) gives us the set of free (unbound) attributes
in the expression. We use _L; as a short-hand for a tuple of type T that consists only of
NULL values.

The o operator is overloaded in different contexts: For tuples ¢; : 7y and t; : T, the
notation #; o t; means tuple concatenation. When applied to tuple types rather than
concrete tuples (e.g., 71 0 Tp), the operation o yields the type of the concatenated tuple.
When applied to sequences, it yields the concatenated sequence.

Given a bag-valued expression e (i.e., the expression produces a bag of elements)
and a variable name ¢, the notation e[t] binds the elements to the variable; formally,
e[t] :={[t: x]|x € e}.

We use a number of well-known relational algebra operators: selection ¢, projec-
tion I1, duplicate-eliminating projection 1P, map ¥, the common join operations X, ¥,
M, D, X, X, b, 4, as well as the dependent join operators X, M4, ), X4, », <

The following conventions apply for the remainder of this chapter: We assume T is
a hierarchical table containing a label attribute named ¢ with the underlying hierarchy
index H; formally, T is of type {7r};,, where Tr is some type that has a field ¢ : Label'.
By convention, the symbols ¢, e, e;, et cetera denote arbitrary input expressions pro-
ducing some relations. Symbols v,vq, 12, et cetera denote names of Node!! attributes.
Symbols T, T;, et cetera denote tuple types.

5.1.2 Expression-level Issues and Normalization

On the SQL level, our set of hierarchy functions and predicates is intentionally some-
what redundant. The indexing scheme interface, however, exposes a more minimal set
of primitives. While the SQL-level functions and predicates operate on NODE values of
data type Label’, the index primitives operate only on Node? and cursor’! objects. This
distinction between Label and Node/Cursor is invisible to the user. To account for the
differences, some transformation and normalization has to take place as a first step
during query compilation.

Canonicalization of Hierarchy Functions and Predicates. A Label ¢ can occur in the
SQL statement either in a hierarchy function, a hierarchy predicate, or a hierarchical
window specification. For each distinct Label field ¢ used, we have to make the corre-
sponding Node v available. The easiest way to achieve this is to generate explicit calls
to an internal TO_NODE conversion function whenever a label is accessed:

FUNC ({) ~~ FUNC(TO_NODE (£))

PRED ({1, {2) ~~ PRED(TO_NODE (/1) , TO_NODE (/5))
b1 =10, ~~ TO_NODE (/1) = TO_NODE (£,)
HIERARCHIZE BY ¢ ~- HIERARCHIZE BY TO_NODE (/)

The T0_NODE function maps directly into a node() index call. This first rewriting step can
be done already during parsing with minimal implementation efforts. Alternatively,
the same could be achieved during the subsequent semantic analysis step, at the time
the ¢; references are resolved.
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Let us next consider the translation of SQL hierarchy functions FUNC (¢) or FUNC(v) to
corresponding index invocations. This is straightforward:

TO_NODE (/) H.node(!)

o DEGREE (v) ~» H.degree(v
IS_LEAF(v) ~» H.%s—leaf(l/) HETGHT (1) - Hheigght(( ))
[I);;F;ﬂ((ﬂ;v) " g;serotﬁt((vv)) PRE_RANK(v) ~- H.pre-rank(v)
Y P POST_RANK(v) ~- H.post-rank(v)
SIZE(v) ~ H.size(v)

NULL values simply propagate through the functions; for example, TO_NODE(NULL) is
NULL, and DEPTH(NULL) is still NULL. However, the index primitives internally expect valid
Label, Node, or Cursor argument objects, which must not be NULL. In situations where
they could possibly be null, the query compiler has to make sure this is handled by
generating appropriate checks. In terms of SQL, it conceptually has to rewrite the
function invocation to “CASE WHEN v IS NULL THEN NULL ELSE FUNC(v) END.”

Let us now consider the binary hierarchy predicates PRED(v1, 12). To handle them ef-
fectively during query optimization, we eliminate “redundant” predicates by rewriting
all predicates to uniform axis checks:

IS_ANCESTOR(v1, 1) ~» H.axis(v1,v2) € {ancestor}
IS_ANCESTOR_OR_SELF(vq1,v2)  ~» H.axis(vq,v2) € {ancestor, self}
IS_DESCENDANT (vq, 17) ~» H.axis(v1,12) € {descendant}
IS_DESCENDANT_OR_SELF (v, v2) ~» H.axis(vq,12) € {self, descendant}
IS_PRECEDING(vq, v2) ~ H.axis(v1,12) € {preceding}
IS_FOLLOWING(vq, 1) ~» H.axis(v1,12) € {following}

v =1, ~ H.axis(vy,12) € {self}

vy <> 1, ~ H.axis(v1,v2) & {self}

Recall from §4.1.2 that two given nodes can be on exactly one of five axes
Axes := {preceding, ancestor, self, descendant, following}.

The parent, child, and sibling axes are not part of the basic five axes. Nodes on the
parent and child axes are subsets of the nodes on the ancestor and descendant axes,
respectively. Nodes on the sibling axes are a subset of the nodes on the {preceding,
self, following} axes. These three axes need special treatment:

IS_PARENT(v1, 1) ~» H.is-parent(vy, 1)
IS_CHILD(vy,v2)  ~» H.is-parent(vz, 1)
IS_SIBLING(vq,v2) ~» H.is-sibling(vy,12)

Again, when one of the arguments can potentially be NULL, the query compiler has to
add NULL checks. In terms of SQL, this precaution conceptually looks as follows:

CASE WHEN vy IS NULL OR v IS NULL THEN UNKNOWN ELSE PRED(vi,vp) END
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The representation of SQL-level predicates as axis() calls based on sets of axes is useful
to reason about complex compound predicates. Two operations on axis sets are helpful:
First, given a axis set A C Axes, we can obtain the inverse set A := Axes \ A. Second,
we can “reflect” a set of axes: reflect(A) := {reflect(a) |a € A}, where reflect(a) maps
preceding > following, ancestor — descendant, self — self, descendant — ancestor,
and following +— preceding. With these helpers we can state a set of rules for trans-
forming a complex boolean expression of axis checks:

H.axis(vi,12) € A1 A H.axis(vy,1p) € Ay ~ H.axis(v,12) € AN A;
H.axis(vy,1p) € A1 V H.axis(v1,17) € Ay ~ H.axis(vq,12) € A1 U A,
H.axis(v1,1n) & ~ H.axis(vq,12) €
H.axis(v1,1p) € ~ H.axis(vp,17) € reﬂect( )
H.axis(vy,17) € Ax1s ~ true

H.axis(v1,172) € {} ~ false

The goal of the transformations is to simplify a complex expression, potentially consist-
ing of multiple conjunctive or disjunctive predicates, into a single non-negated term
“H.axis(vy,12) € A,” where A is as small as possible. For example, from the SQL ex-
pression “IS_ANCESTOR(vq, v2) OR (v3 =v7)” the rules allow us to obtain

H.axis(v1, 1) € {ancestor,self} or H.axis(vp,v1) = {self, descendant}.

Either one may be the most convenient choice for the evaluation of the overall query.

Altogether, the outlined transformations allow us to rewrite an arbitrarily complex
boolean expression of SQL hierarchy predicates into a potentially simpler expression
consisting only of axis(), is-parent(), or is-sibling() checks.

Optimizations on Expression Level. Since invocations of index functions and pred-
icates have a non-negligible cost for most hierarchy index types, a goal of the query
optimizer is to minimize the overall number of such calls.

For node() and the unary functions and predicates, ideally one call at most should be
issued for every distinct Label field being actually accessed. To achieve this, a conven-
tional analysis and elimination of common subexpressions first helps us to eliminate
any redundant expressions (such as multiple TO_NODE() calls) in a query block. Af-
ter translating the query into an internal algebra-based representation, there will be
a Map operator (see §5.1.3) that performs the calls. During query optimization, the
query optimizer may reorder this operator in two steps to potentially eliminate it: The
tirst step is to push it down as far as possible. In the process, another Map operator
for the same call may be found and eliminated. When a Hierarchy Index Scan or a
Hierarchy Index Join is encountered at a leaf of the plan, it may be able to handle the
call implicitly and thus eliminate the Map. In particular, node() can always be elimi-
nated since HIS and HIJ can produce the Node objects directly. In case the call cannot
be eliminated, a second step is to reduce the number of calls by pulling the operator
up again (across selections), towards the operator that actually consumes the results.
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In §4.1.4 we discussed several relevant properties and equivalences that apply for
the hierarchy functions and predicates. These are useful for query optimization in
two ways: First, to eliminate redundant terms in logical expressions and thus simplify
their evaluation. Second, to derive and introduce further predicates from existing ones,
which are subsequently moved around (pushed down or pulled up) in the query plan
in order to reduce result sizes early. For example, the equivalences for the unary pred-
icates is-root() and is-leaf() could be applied in both directions: For a set of is-leaf()-
filtered nodes, there is no need to explicitly compute degree(), size(), or height(). Vice
versa, if we can infer that the depth of a node variable is always 1 or always > 1, we
can omit an explicit is-root() check. As another example, if a join algorithm does not
support an is-parent() join directly, the equivalence to an ancestor join with a depth()
filter gives us an alternative way to evaluate it. These optimization techniques are used
in advanced SQL query compilers and are also known under the term predicate infer-
ence and subsumption. As this is a non-trivial, orthogonal topic, we point the reader to
[14, 59, 77] and the overview in [85].

5.1.3 Map

In §5.1.2 we examined the translation of SQL hierarchy functions and predicates into
internal calls of index primitives. After this step, the index invocations can in principle
be executed explicitly in the query plans using the Map operator x. This basic operator
produces new attributes a; by applying given functions f; : T — 17; to each tuple in the
input ¢, for a; ¢ A(e). It is commonly defined as

Xar: fiyan: fo(€) 1= {t O [a1: f1(E), ... a0 fu(t) |t € e]}p.

Example I. The basic query “SELECT *, DEPTH(Node) FROM T” is initially translated to

€1 <= Xv: Hnode(Node) (T)l €2 <= Xdepth : H.depth(v) (61>.

Note the first invocation of node(): As described in §5.1.2, whenever a function or
predicate is (explicitly) evaluated, the plan will also contain a node() call to first obtain
Node objects from the labels stored in the NODE field.

Example II.  As the index interface supports explicit axis() checks, we can even handle
hierarchy joins naively via Map. The query

SELECT * FROM (e1) u JOIN (ep) v ON IS_DESCENDANT(v.Node, u.Node)

can be translated into 0; — descendant(Xa : H.axis(v.v5, ur) (€1[1] X €2[0])). This assumes the
v1 and v, fields have already been obtained via node() calls. It first creates the cross-
product of the inputs, then uses x to perform an axis check on each pair, and ¢ to filter
pairs on the descendant axis.
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Example III. The query “SELECT * FROM T ORDER BY PRE_RANK(Node)” is translated to

€1 <= Xv : Hnode(Node) (T)r €2 < Xr: H.pre-rank(v) (61); e3 < Sort [7’] (32)'

Remarks. The examples attest that Map alone would in theory be sufficient to naively
translate almost all of our language extensions, with the exception of HIERARCHIZE BY
with recursive expressions. However, in the generated code Map results in explicit
per-tuple index calls. Plans relying on Map alone would therefore rarely deliver an ac-
ceptable performance. Whenever possible, we want to avoid Map or optimize it “away”
in favor of the following operators:

* Hierarchy Index Scan (§5.2.1). When the plan works directly on the hierarchical
table, as in Examples I and III above, this operator can be used (on the physical
algebra level) instead of an ordinary table scan and Map. It can sometimes obvi-
ate the need to explicitly evaluate certain functions of predicates by enumerating
the desired nodes directly.

¢ Join (§5.1.4). When a binary predicate is evaluated for the purpose of a join, as
in Example II above, an appropriate join operator should be chosen.

* Sort (§5.2.11). When PRE_RANK or POST_RANK appear only in the ORDER BY clause—
which is their main use case—then there is no actual need for the expensive
computation of the absolute ranks. For sorting purposes, a pairwise comparison
via is-before-pre() and is-before-post() is sufficient. In the case of Example III:

€1 <= Xv': Hnode(Node) (T); €2 <= Sort [v; is-before-pre] (e1).

Even better, the mentioned Hierarchy Index Scan can sometimes be used to enu-
merate the tuples in preorder or postorder directly.

Cases where Map is still needed are when the result values are explicitly requested by
the query, when none of the mentioned alternatives are applicable, or when the plans
that use the alternative hierarchy operators are not globally optimal.

5.1.4 Join

The join operation e; Xy e, is simply defined as op(e1 X e2). It comes in several well-
known variants 2, >, >, X, X, >, and <, but we do not repeat their definitions for brevity
reasons. In our context we are only interested in joins where 6 is a hierarchy join predicate.
A hierarchy join predicate is a boolean expression that relates two tuples of different
relations and features one or more invocations of hierarchy index primitives. Following
the normalization step of § 5.1.2, all remaining hierarchy join predicates are of the form

H.axis(vy, 1) € A, for A C Axes, or H.s-parent(v1,v2), or H.is-sibling(vy,12).
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Such predicates can appear as join conditions or filter conditions. A conventional query
optimizer that does not understand hierarchy join predicates would produce plans
based on x, x, and o, as shown in Example I of 5.1.3. These plans result in nested
loops with an explicit evaluation of the join condition, which is infeasible for all but
the smallest input sizes. Instead, we want these instances to be translated into standard
joins on logical algebra level, just like ordinary equi joins. This way, the physical hier-
archy join operators we discuss in § 5.2 can be considered during algorithm selection.
These operators generally do not have to enumerate the complete cross product, and
handle the join condition implicitly rather than computing it explicitly per tuple pair,
which is critical to the query performance of our framework.

The case “H.axis(v1,v2) € {self}” is special in that it corresponds to an ordinary
equi join. Hierarchy predicates using other sets of axes (e. g., {descendant}) are more
comparable to < joins rather than equi joins. For these cases special join operators are
needed in physical algebra. Generally, each such operator can handle only a limited set
of axis combinations A. For uncommon cases (e.g., A = {preceding, self, descendant})
the only options may therefore be to construct the union of two supported cases, or to
fall back to nested loops. We will discuss the particular cases our physical operators
can handle in the respective sections under §5.2.

Example I. Consider the join—group-aggregate pattern for hierarchical computations:

SELECT u.ID, SUM(v.Value)
FROM T u JOIN T v ON IS_DESCENDANT_OR_SELF(v.Node, u.Node)
GROUP BY u.x*

The plan features an inner join >y over 6 := (H.axis(v.vp, u.v7) € {self, descendant}).
This particular pattern of a descendant-or-self self-join is very common.

Example II. In real-world queries the types of hierarchy join predicates listed above
may not necessarily appear in isolation. Sometimes, queries feature more complex com-
pound join predicates. The predicate could be a conjunction or disjunction of multiple
hierarchy predicates, and it could contain further terms that are not necessarily hier-
archy predicates. For example, we may be interested in descendants of the same type:

6 := (H.axis(t1.v1, fr.1p) = descendant) A (t1.Type = £, Type).
Or we may wish to query only the following siblings of some nodes:
0 := H.is-sibling(t1.v1, t2.v2) A (H.axis(t1.v1, t2.v2) = following).
Also, nothing hinders the user from creating highly uncommon axis checks:
6 := (H.axis(t1.v1, t2.v2) € {preceding, following}).

None of our algorithms can handle such complex predicates directly. For this reason,
in such queries the optimizer has to determine which of the terms of the compound
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predicates could potentially be handled by a built-in join operator. The most selective
predicate term can then be handled by a join, and the remainder of the predicate by a
subsequent selection ¢. As this is an orthogonal standard task of algorithm selection,
we do not discuss it further.

Example III. Suppose we wanted to select the “lowermost” nodes in an arbitrary
subset U of nodes from T. Since U does not necessarily contain all nodes from T, we
cannot use IS_LEAF for this. Rather, we have to use an EXISTS subquery: lowermost
nodes are those for which no descendants exist in the input.

SELECT * FROM U v

WHERE [NOT] EXISTS ( SELECT * FROM U w WHERE IS_DESCENDANT(w.Node, v.Node) )
This is a common use of semi or anti hierarchy joins. The initial translation of the SQL
query is UK (0(U)) for the EXISTS version and U» (¢(U)) for the NOT EXISTS version.
The d-joins can immediately be fused with the ¢ operators and replaced by proper
semi and anti joins, yielding the “perfect” plans UX U and UP U. Note that in the
case that U contains all nodes from T, the same result can be achieved using a simple
IS_LEAF(Node) filter.

Example IV. The following query performs XPath-style path pattern matching:

SELECT DISTINCT w.*
FROM T u, Tv, Tw
WHERE IS_ROOT (u.Node)
AND IS_DESCENDANT(v.Node, u.Node) -- ¢
AND IS_DESCENDANT(w.Node, v.Node) -- ¢,
AND ¢y (u) AND ¢y (V) AND ¢y (w)
This query is comparable to the XPath expression “/*[¢,1//*[¢,1//*[¢w]1.” The initial
plan after pushing down selections and introducing join operators is

T3 (o, (T[u]) ¥, 0, (T[0]) Mo, o9, (T[e0]))-
By pushing down the projection I1, the inner joins can be replaced by semi-joins:
U(Pu (T[u]) ><]91 U¢v (T[U]) ><]92 0—¢w (T[w] ) °

Examples III and IV show that self- and anti-joins deserve special care. Significant
optimizations are possible: Of the non-retained join side, only the fields accessed by
the join condition (i. e., the Node field) need to be projected, and duplicate Node values
can be eliminated if DISTINCT semantics are desired. Going further, we can apply a
“staircase filter” to eliminate Node values which are dominated by others and thus do
not contribute to the join result. This technique is discussed in §5.2.6.

5.1.5 Binary Structural Grouping

The binary structural grouping operator we introduce in this section is used for two
purposes: First, to optimize a join-group—-aggregate query such as Example I of §5.1.4,
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and second, to evaluate a query that specifies a hierarchical window (§ 3.3.3) but does
not contain a recursive expression.

Definition. Binary structural grouping consumes two input relations {71 }; and {12},
given by expressions e; and e, where 71 and 1, are tuple types. Let 6 be a join predicate,
x a new attribute name, and f a scalar aggregation function {2}, — N for some type N.
The signature of the operation is

W0 e {nh x {nky = {m o [x: M.
Its definition is
e1 Wf“f er:={to[x: f(exfpt])] | t € 1}y, where e[pt] :={u|u cend(u,t)}.
It extends each tuple t € e; by an x attribute of type A, whose value is obtained by

applying function f to the bag e[yt], which contains the relevant input tuples for .

Example I. The initial query plans resulting from join-group-aggregate statements
are typically variations of

1_|15.>|ﬁ; x:f(el [t] Nu<t 62[7/[])/

where I' denotes unary grouping and < is a predicate—usually an axis check—that
reflects the input/output relationship among tuples. Using X' they can be rewritten to

<
4] Mx:f (%)

with the same definitions of f and <.

In §2.2.4 we discussed a non-weighted rollup based on an input table Inputl and
a table of output nodes Outputl (see Figure 2.4, p. 18). Assuming x operators that
perform the necessary node() calls, a plan to evaluate this example rollup would be

x(Outputl) M;:f X(Inputl), with u < t := (H.axis(u.v, t.v) = {self, descendant}),
f(X):= ) u.Value.

ueX

Example II. Besides for optimizing I'(- > -) plans, we also use X to evaluate hi-
erarchical windows with non-RECURSIVE expressions. They are translated into binary
self-grouping e[t] X e[u], with 8(t,u) defined as appropriate. Consider our example
query from §3.1:

SELECT Node, SUM(Value) OVER (HIERARCHIZE BY Node) FROM Inputl
The resulting query plan is

e[t] W;f e[u], with e := X, . H.node(Node) (Inputl), and u < t and f(X) as in Example L
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Remarks. Having the query optimizer rewrite the I'(- > -) pattern into a binary
grouping operator allows us to employ corresponding physical operators and thus
overcome the efficiency issues noted in §2.2.4. This idea is not new to relational alge-
bra but commonly known as binary grouping or groupjoin. It has been explored in [74]
mainly for the equi join setting, together with relevant rewrite rules for query opti-
mization. Our definition of X" is a minor adaption of [74]’s definition of the binary
grouping operator. Its semantics are those of left outer join; it can however be adapted
to inner join semantics as well.

For hierarchical windows, the join condition 0 is defined by the system in terms of
an axis() check. The basic join axis is Ag = {descendant} for a BOTTOM UP window and
Ao = {ancestor} for a ToP DOWN window. Details of the window frame exclusion clause
(EXCLUDE, § 3.3.3) can be handled on logical algebra level by adjusting the join condition:

NO OTHERS  O(u,t) := (H.axis(v1,12) € Ag U {self})

CURRENT ROW  6(u,t) := (H.axis(vq,v2) € Ag U {self}) A (u.rowid # t.rowid)
GROUP 0(u,t) := (H.axis(v1,12) € Ap)

TIES 0(u,t) ;== (H.axis(vy,12) € Ag) V (u.rowid = t.rowid)

Example III.  Starting from a binary self-grouping plan as shown in Example II, more
advanced rewrites are possible. Consider again Statement I-b from §3.3.5:

SELECT * FROM (
SELECT h.x,
SUM(Amount) FILTER (WHERE Type = 'type A') OVER w
FROM Hierarchyl h LEFT OUTER JOIN Sale s ON Node = s.Product
WINDOW w AS (HIERARCHIZE BY Node)
) WHERE DEPTH(Node) <= 3

The basic shape of the plan is (e X%, fo e), with e := (Hierarchyl X Sale). There

is a condition ¢(f) := (H.depth(t.v) < 3) on the output that does not depend on the
computed sum x. Select operators of this kind can typically be pushed down to the left
input of M. The FILTER (t) := (t.Type = ...) can be handled by f or pushed down to
the right input. The shape of the rewritten plan would be

ople M.y, €) v ople) MY ¢ oy(e).

Such rewriting always pays off, especially when the filters can be pushed down further.

5.1.6 Unary Structural Grouping

Translating a hierarchical window that features a recursive expression requires a new
operator, unary structural grouping I'(e).

Definition. Let expression e produce a relation {7}, for some tuple type 7; let < be
a comparator for T elements providing a strict partial ordering of e’s tuples, x a new
attribute name, and f a structural aggregation function T x {to[x : N}, — N, for some
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scalar type . The unary structural grouping operator I" associated with <, x, and f has
the signature

Iopidth = {rolx: N}
and is defined as
ff:f(e) i= {to[x:recy ((et)] |t € e}y, where

recy. r(e,t) := f(t,{uo[x :recy, (e, u)] |u € e[<:t]}s).

Remarks. This new operator is necessary because the quasi-recursive computation
cannot be expressed in terms of conventional relational algebra operators. Since the
concept as such may be useful beyond hierarchical windows, we define it based on
an abstract < comparison predicate on the tuples of the input relation, which drives
the data flow of the operation (i.e., the way the recursive grouping happens). It is
required to be a strict partial order relation: irreflexive, transitive, and asymmetric.
The operator arranges its input in an acyclic directed graph whose edges are given
by the notion of covered tuples <: we defined in §3.3.3. On that structure it evaluates
a structural aggregation function f, which performs an aggregation-like computation
given a current tuple t and the corresponding bag of covered tuples. In other words, a
variable, pseudo-recursive expression f is evaluated on a recursion tree predetermined
by <.

We reuse the symbol I' of standard unary grouping for [". Both are similar in that
they form groups of the input tuples, but I' does not “fold away” the tuples. Instead,
it behaves like SQL-style window grouping: it extends each tuple ¢ in e by a new
attribute x and assigns it the result of “rec,” which applies f to t and the bag of its
covered tuples u. The twist is that each tuple u in the bag already carries the x value,
which has in turn been computed by applying rec to u, in a recursive fashion. Thus,
while f itself is not recursive, a structurally recursive computation is encapsulated in
[”s definition. The recursion is guaranteed to terminate, since < is strict.

Examples. For hierarchical windows, we define < as in §5.1.5 in terms of axis(). As
we discussed in § 3.3.4, the default frame clause of a window function within a recur-
sive expression is

RANGE BETWEEN 1 PRECEDING AND CURRENT ROW EXCLUDE GROUP
Using the rules of §5.1.6 we thus obtain
(u < t) := (H.axis(u.vy, t.vy) € A)

where A = {descendant} for a BOTTOM UP window and A = {ancestor} for a TOP DOWN
window. This definition makes < indeed irreflexive, transitive, and asymmetric.
We can now translate our two example statements from §3.1 into plans based on [*:
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(1b) total Value T tValue+ Y ,cxux

(2b)  absolute Weight 1 t.Weight * I, cxu.x

(3b) Value sum over “<:” 1 Y, cxu.Value

(4a) weighted rollup T t.Weight * (t.Value + ), x 1.x)
(4b) t.Value + t.Weight (Y, cx 1.x)
(40 t.Value + ), c x u.Weight * u.x

(5) Dewey conversion 1 (tID) if X ={},
u.xo (tID) if X = {u}y

(6b) depth b T+ yexux
(7b) subtree size T 14+ Yuexux

(8) subtree height T 1if X = {};, else 1 + max,exu.x
(9b) degree T X

Symbols: 1 bottom up | top down

Figure 5.1: Example definitions of {’s structural aggregation function f (¢, X).

llc| RECURSIVE (Value + SUM(x) OVER (HIERARCHIZE BY Node)) AS x
~ f;:f(lnputl), f(t,X) =t Value+ Y, cx u.x

[m] RECURSIVE (Value + SUM(Weight % x) OVER (HIERARCHIZE BY Node)) AS x

s f;zf(lnputz), f(t,X) = t.Value + ¥, x u.Weight  u.x

Figure 5.1 shows further example definitions of f. They correspond to the SQL ex-
pressions of Figure 3.7 (p. 48). As the examples attest, RECURSIVE expressions can be
translated almost literally into corresponding f(t, X) formulas.

5.1.7 Unary Versus Binary Grouping

Theoretically, there are few restrictions on the function f of I' and X, which performs
the actual per-tuple computation. The practical limit is what SQL’s expression lan-
guage allows us to write. It is, however, useful to distinguish a class of common “sim-
ple” functions that let us establish a correspondence between ['(¢) and binary self-
grouping e X e.

An aggregation function {1}, — N for use with X is simple if it is of the form

accg; g; ¢(X) = @ g(u),

u:ueXNP(u)

where function ¢ : T — A extracts or computes a value from each tuple, ¢ is a pred-
icate to filter the input, and @ is a commutative, associative operator to combine the
N values. This largely corresponds to what SQL allows us to express in the form

AGG(expr) FILTER(WHERE ¢),
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where AGG is a basic aggregate function such as SUM, MIN, MAX, EVERY, or ANY without
DISTINCT set quantifier.

We can define a structural counterpart as follows: A structural aggregation function
Tx {To[x: N} — N for use with I is simple if it is of the form

str-accy: e, g; ¢ (£, X) 1= {g(t) O Buexwx it 9l1),
Duexu.x otherwise.
In Figure 5.1, functions 1b, 2b, 6b, and 7b are in fact simple.
To obtain our correspondence, consider R := I'{ . ..(¢). If the acyclic directed
graph imposed by < on e is a tree—that is, there are no undirected cycles—the fol-
lowing holds for all t € R:

tx=gHHe P ux=ghHHe P su)= P g

UER[<.t] uce[<t] ueel<t]

where we define u <t <= u <tVu =t, and assume ¢ = true for simplicity. The
simple form of the aggregation function allows us to “hide” the recursion through the
< predicate and obtain a closed form of the expression for t.x based on the original
input e. We can thus state the following correspondence:

N

<
e Mf: acca; ¢; ¢ €= r;: str-accx;e;g;q,(e)'
Note that this equivalence will not hold if there are multiple paths u <: ... <: ¢t

connecting two tuples u < t in the input e. In this situation, I' would indirectly count u
multiple times into t’s result, while X" would not. This is due to the particular semantics
of structural recursion, which simply propagates x values along the <: paths. When
we apply [ in our hierarchical window setting, the equivalence holds, as <: is derived
from the acyclic tree structure of H, provided that we additionally make sure there are
no duplicate v values in the current window partition.

The correspondence is then useful in both directions and enables significant op-
timizations: As many typical non-recursive hierarchical window computations (and
sometimes even join—group-aggregate queries) fit the form of acc, we can rewrite their
initial translation e X" ¢ into '(¢). As we assess in §6, even when e is just a table scan,
our [ algorithms outperform X due to their simpler logic (¢ need not be evaluated
twice) and effective pipelining.

Vice versa, if we can algebraically transform a given RECURSIVE expression into the
form of str-acc, then X" becomes an alternative to I'. If a WHERE condition ¢ on the output
or a FILTER condition ¢ is applied to the aggregate function, oy (e) M oy (e) will usually
be superior to o ([ f,(€)), as already noted in Example III of §5.1.5.

Finally, consider again our manual rewrite of Statement I-a to I-b from Figure 3.6
(p. 47). Here we saved one join by using a hierarchical window. This demonstrates
an advanced optimization from e; X e, into I': By “merging” the two inputs into a
combined input ejp, we can potentially (without going into details) rewrite e; > e;
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Operator [Parameters] (Inputs)
Short Name; Reference

Order (in; out)
Output Size

Time Complexity

Space Requirements

Hierarchy Index Scan [H;v;¢; £; ¢] ()
HIS; §5.2.1

Nested Loop Join [6; (] (e1,e2)
NLJ; §5.2.3

Hierarchy Index Join [H;v5;0; ;¢ (e1)

—6
|0p(T)| < [H]

arbitrary; I
leg Mes]|

arbitrary; 1

|HI)

o
o)

o

O(1), mat. e,

(
(
(lex] - le2])
(
(

O(lea] - [HI)
o(1)

HIJ; §5.2.4 ler X T

Hierarchy Merge Join [H; vq;v2;6; A; (] (e1,€2) t O(ler] + |ea| + |e1 Mez])
HMJ; §5.2.5 ler Mes| —"— mat. ey
Hierarchy Staircase Filter [H; v; g; a] (e) t O(le|)

HSF; §5.2.6 < e| 0(1)
Hierarchy Merge Groupjoin [H;vy;vp;¢, A;x: f] (e1,e2) 1 O(le1]| + le2])
HMG]; §5.2.8 1] O(jeal), mat. e,
Hierarchical Grouping [H;v;¢; A; x : f] (e) 1t O(le])

HG; §5.2.9 le] O(lef)

Sort [<] (e) arbitrary; < O(le| - log]el)
Sort; §5.2.11 le| O(le]), mat. e
Hierarchy Rearrange [H;v;¢] (e) t; ¢ O(le|)

HR; §5.2.11 le| O(le|)

H hierarchy index; v,v; Node attribute names; ¢ € {pre, post} sortorder; L list of name/expression pairs;
¢ filter predicate; 6 join predicate; : join type; a axis; A set of axes;

t requires suitably ordered inputs; 1 order of input(s) is retained in the output; mat. materialization required

Figure 5.2: An overview of the hierarchy operators in physical algebra.

to e;p X e1p and then f(eu). This would pay off if e; can be further simplified, for
example, when e; and e, were very similar in the first place. Establishing relevant
equivalences to enable such advanced optimizations is part of future work (see §5.3).

5.2 Physical Algebra Operators

On the level of physical algebra, several new algorithms are needed in order to ef-
ficiently evaluate the logical operators we discussed in §5.1. Figure 5.2 shows an
overview of the operators we cover in the following: Hierarchy Index Scan (HIS) ac-
cesses the rows of the hierarchical table through a hierarchy traversal in either preorder
or postorder. Nested Loop Join (NLJ), Hierarchy Index Join (HIJ), and Hierarchy Merge
Join (HM]) evaluate different types of hierarchy joins. Hierarchy Merge Groupjoin
(HMG]J) and Hierarchical Grouping (HG) evaluate unary and binary structural group-
ing queries (that is, join-group—aggregate statements and hierarchical windows); in
particular, the latter is needed whenever a RECURSIVE expression is involved. Hierarchy
Rearrange (HR) reorders inputs that are already sorted in either preorder or postorder;
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where applicable, it can outperform a full Sort.

For each operator, we specify a notation and syntactic rules for when it is applicable,
define its exact functionality, discuss its practical uses and restrictions, and provide the
pseudo code and a detailed analysis of the underlying algorithms. Thanks to our com-
mon index interface, the operators work for every type of hierarchy indexing scheme
that is implemented by the system. In the discussion of runtime complexities, we as-
sume the used index primitives to be in O(1) for static indexes and in O(log |H|) for
dynamic indexes, |H| being the hierarchy size (cf. Figure 4.3, p. 74). Either way, the
costs of the primitives are not affected by the input sizes and can therefore be consid-
ered constant-time for that matter.

We assume a push-based bottom-up model of query execution (see [76], §5.3). For
binary operators, we further stick to the convention that the left input e; is the one
that is conceptually pushed towards the operator, thus forming a pipeline. The right
input e; must be evaluated and materialized prior to the execution of the left pipeline,
and can then be accessed through iterators (potentially in a random-access manner). In
other words, the pipeline of the right input is always broken. In our pseudo code this
is recognizable by a simple outer “for” loop that iterates over e; in a strictly forward
manner, whereas e; is accessed like an array (“e;[i]”). We use the keyword “yield” to
indicate where a result tuple is pushed to the respective parent operator in the plan.

5.2.1 Hierarchy Index Scan

A hierarchy index provides an alternative access path to the hierarchical table T, much
like other common database indexes such as B'-trees or hash tables. Instead of scanning
the table, we can scan an attached hierarchy index H and obtain its nodes and the
corresponding row IDs of T in the scan order ¢. Additionally, a set of expressions £
based on the hierarchy nodes can be evaluated on the fly. Finally, the nodes can be
filtered by a predicate ¢.

Syntax. Hierarchy Index Scan [H;v;¢; £; ¢] (), where H is a hierarchy index, v is the
name to be attached to the generated Node attribute, and ¢ € {pre, post} is the scan
order, either preorder or postorder. £ = {fi:e1,...,fu:en} is a list of names and
expressions of types Ty, ..., T». The expressions may involve (only) the node attribute,
that is, F(e;) C {v}. They are evaluated for each scanned node and their result is
included in the output. ¢ is a boolean expression involving the v attribute or any of
the computed attributes, that is, 7 (¢) C {v, f1,..., fu}-

The output is of type [rowid : ROWID, v : Node?, f1 : 7y, ..., fi : Tw] and sorted by v in
g-order.

Remarks. Hierarchy Index Scan itself produces only a (sorted) stream e of row IDs
and Node objects. To actually access some attributes ay, ..., a, € A(T) of the hierarchi-
cal table T, a Map operator must be used to dereference the row IDs:

Map [t : T[rowid];t.ay,..., t.a,] (e)
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It is possible to emulate Hierarchy Index Scan in terms of basic operators, namely by
combining Scan, Map, Select and Sort. The following produces an equivalent result:
e1 < Scan [T;rowid, ¢, a1, ..., a,] ()

ep < Map [v: Hnode({), fi:e1,..., fm : €] (1)

es < Select [¢] (e2)

ey < Sort [<] (e3) where (11 < t) := H.is-before-¢(t;.v, tr.v)

Compared to this emulation, HIS has a few home-field advantages: First, no explicit
sorting is necessary; the sorting happens implicitly by traversing the index in the de-
sired order. Second, calling node() to obtain Node objects from the labels ¢ is not neces-
sary, as the index scan produces the Node objects directly. Third, filtering by ¢ happens
prior to dereferencing the row IDs. This increases efficiency if the dereferencing has a
non-negligible cost—as is commonly the case, especially with column-oriented table
storage. Fourth, there are favorable cache locality effects: Since the predicate ¢ and the
functions £ are evaluated “just in time” during the scan, the parts of the index data
structure that are needed for the evaluation are likely to be in cache. This enables HIS
to significantly outperform the conventional Scan-Map—Select-Sort alternative.

Example. HIS is very useful whenever hierarchical filtering or ordering is performed
directly on a hierarchical table:

SELECT Node, DEPTH(Node) FROM T WHERE DEPTH(Node) < 5 ORDER BY PRE_RANK(Node)

A conventional plan would be:
Sort [<.] (Select [d < 5] (Map [v : Hnode(?),d : H.depth(v)] (Scan [T] ())))

where t; <, t := H.is-before-pre(t;.v, t.v). When the optimizer considers HIS as an
alternative way to access T, it can detect that the Map, Select, and Sort instances can in
fact be pushed down to the scan and eliminated. The result is an “index-only” plan:

Hierarchy Index Scan [H; v; pre; d : H.depth(v); d < 5] ()

Algorithm. The algorithm is a straightforward loop over the hierarchy, using the
traversal primitives offered by our index interface. Its time complexity is in @(|H]|).
The space requirements are in O(1).
operator Hierarchy Index Scan [H; v;¢; £; ¢] ()
(c1,¢2,¢") < (H.¢-begin(), H.c-end(), ¢)
4+ C1 // ¢,c1,co are of type Cursor
while ¢ # ¢

x; < ej(c) for (fi:e) € L

t + [rowid : Hrowid(c), v : ¢, f1: X1,.-+, fn : Xn]

if ¢/ (1)

‘ yield ¢
¢ + H.g-next(c)

H
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Extensions. Evaluating the given £ and ¢ expressions on the fly already gives HIS
certain “just in time” advantages over a conventional a-posteriori Select¢. However,
since £ and ¢ are known at query compile time, we could improve the performance
even further by generating tailored variants of the scan algorithm. A big potential gain
is when a predicate ¢ can be handled implicitly by restricting the scan range. In this
case the evaluation of ¢ does not add to the runtime costs at all—it even reduces them.
To incorporate this idea into the above algorithm, we need to replace line 2 by

(c1,¢2,¢") < scan-range [H;v; g; ¢] ().

This helper function determines a range [c1, ¢2[ that is suitable for the given predicate ¢
and as small as possible. The range is guaranteed to not preclude any nodes for which
¢ may hold. However, it may still include nodes for which ¢ does not hold. Therefore, a
“residual” predicate ¢’ is returned that remains to be checked for each node in [c1, c2].
For example, a predicate ¢ of the form “H.axis(v,vp) = descendant,” where 1 is a
constant, can be fully handled by scanning from vy to its first following node. Here is a
simple version of scan-range() that can detect this case:
function scan-range [H; v; g; ¢] ()
if (¢ = pre) A (¢ = [H.axis(v, vp) = {descendant}] for some vp)
co < H.cursor(vp)
return (H.pre-next(cp), H.next-following(co), true)
else
| // other cases ...
else // fallback: full scan
| return (H.g-begin(), H.g-end(), ¢)

In summary, for the scan order ¢ = pre the four axes can be handled as follows:

Axis Restricted range [c1, co| Residual predicate ¢’
descendant [H.pre-next(cp), H.next-following(co)[ true

ancestor [H.pre-begin(), co[ —H.is-before-post(v, vp)
preceding  [H.pre-begin(), co| H.is-before-post(v, vp)
following [H.next-following(cg), H.pre-end()[ true

Of course, these optimizations are only beneficial for indexes where is-before-g() is
faster than axis(), and next-following() is not implemented in terms of a next-pre() loop.
This is for example the case with our order indexes, as shown in § 4.5.5. Extending the
outlined ideas further is a topic for future work (see also §6).

5.2.2 Hierarchy Join: Overview

In the following sections we discuss algorithms to evaluate hierarchy joins e; ™ e,
which we characterized in §5.1.4. The primary algorithms are Hierarchy Index Join
(HIJ, §5.2.4) and Hierarchy Merge Join (HM], §5.2.5). Nested Loop Join (NLJ, §5.2.3)
is mainly relevant as a fallback method. Each algorithm can handle only a limited set
of join cases and subsets of axis sets A. The relevant cases are:
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e Equi Joins — The case where 60(ty,tp) is “H.axis(t1.v1, tr.v2) € {self}” corre-
sponds to a plain equi join. Node objects are both equality-comparable and hash-
able, so this case can and should be handled with a standard equi join algorithm.

e HIJ — Joins of the form “e1 Xy 0(T),” where e; is arbitrarily ordered and the right
input is the (potentially restricted) hierarchical table itself, can be answered by
Hierarchy Index Join. Instead of independently evaluating the right join side, it
directly enumerates the joined tuples for each left input tuple in e;. Thus the
order of e is retained. However, HIJ only supports the join types X, 24, X, and .

e HIS + HIJ — Self joins of the form o(T) >y o(T) on the (potentially restricted)
hierarchical table can be answered using an “index only” approach that combines
HIS (to enumerate the left side) and HIJ. The result will be ordered by vi-v; in
either preorder or postorder.

e HMJ — If both e; are e; are intermediate result tables (rather than the hierarchical
table T itself), Hierarchy Merge Join can be used. It requires both inputs to be
sorted by the Node fields in either preorder or postorder. The order is retained,
that is, the resulting rows will be in preorder or postorder as well. HMJ supports
any join type. As HM] does not restrict the input expression ey, it can be used to
construct bushy query plans (like NL]J, but unlike HIJ).

* NLJ] — Only the basic Nested Loop Join can work with arbitrary input tables
without requiring them to be ordered as HM]. Furthermore, it can handle all
possible join predicates and join types.

* HSF — For semi and anti joins on ordered inputs, the Hierarchy Staircase Filter
(§5.2.6) can be applied in order to reduce the size of the non-retained join side
and thus improve the performance.

The naive and inefficient NL]J should be considered only as a fallback method, and
avoided by the optimizer in favor of the more efficient and robust HM] and HIJ al-
gorithms where possible. Introducing sort operators for both inputs to enable HM]
may well pay off. Compared to NLJ, HM] is a major improvement in that it requires
only a single pass through the two inputs and therefore has a linear worst-case time
complexity. Even with HIJ, ordering the left input to enable HMJ can be worthwhile,
especially if there are overlaps in the sets of join partners. That said, HM]J also requires
more space, since intermediate results need to be buffered.

Aside from the general usage patterns listed above, further restrictions are imposed
by the individual algorithms. For example, HM] comes in two variants—bottom up
and top down—with significantly different algorithms; the former handles axis A =
{descendant}, the latter axis {ancestor}. During algorithm selection, the optimizer
may need to apply the transformations discussed in §5.1.2—in particular, inverting
the axis set A or swapping the arguments using reflect()—in order to determine the
applicability of a join algorithm in the light of such restrictions.
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5.2.3 Nested Loop Join

Syntax. Nested Loop Join [6;(] (e1,e2), where 6 is a predicate with F(6) C A(e;) U
A(ey), 1 is the join type, 1 € {M}, MDD X XD, 4}, If the inputs are of type e1 : {T1 },
and e, : {2} for some tuple types 71 and 1, then the output is of type {7 o 1o}, for
1€ {X, X, of type {11 }p for ¢ € {X,>}, and of type {2}, for 1 € {3, 4}.

Remarks. The standard algorithm naively checks the predicate 0 for each pair in the
cross product e; X e, using nested loops. The only difference in our setting is that 6 is
a hierarchy predicate, as characterized in §5.1.4. Although NLJ is often prohibitively
inefficient, it is useful as a fallback: Its implementation is trivial, it is fully flexible
regarding 6 and ¢, and it does not impose any requirements on the inputs regarding
sortedness, the uniqueness of the Node values, or the shape of the subplans e; and e;.
Also, any available order in the inputs is retained (in e;—e, order).

The basic algorithm can be adapted and slightly optimized for left/right outer/
semi/anti join semantics. Furthermore, if the right input happens to be sorted by Node,
the “<” nature of hierarchy predicates allows the algorithm to skip parts of e, that can-
not match a given e; tuple. But regardless of such optimizations, the worst-case time
complexity remains in O(|e1] - |ez2|). As the cross product is not actually materialized,
no space is required besides for materializing the right input.

5.2.4 Hierarchy Index Join

Syntax. Hierarchy Index Join [H; v»;6; ;¢ (e1), where H is a hierarchy index, v; is the
name of the generated (right-hand) Node attribute, 8 is a hierarchy join predicate, ¢ is the
join type, ¢t € {M, X, P}, ¢ € {pre, post} is the desired sort order of the join partners,
and the input is of type e; : {71 };, for some tuple type 7.

Let 1, := [rowid : ROWID, v, : Node]. The output is of type {1 o 1o}, for 1 € {¥, 1},
and of type {m1 }; for 1 € {X,b}.

Algorithm. The algorithm simply runs a Hierarchy Index Scan for each t; € e; by
partially binding the predicate 6 to t; and giving it as a parameter to the scan. Then
all tuples produced by the scan are combined with t; and yielded. This simple “for”
loop can be expressed in terms of a dependent join *:

Hierarchy Index Join [H; v2; 6;%¢] (e1)
= e; X Hierarchy Index Scan [H; v»;¢6;{};0] ().

The other join types : translate into different variants of d-join (¥, ¥, and »).

As |e1| index scans are run in total, the time complexity is in O(le1| - |H|). The space
complexity is in O(1). For certain predicates 6, such as a join on the descendant axis,
the range of each scan can be restricted to exactly the join partners via the mechanism
discussed in § 5.2.1; the time complexity is then even in O(|e1| + |e; Xey|).
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Remarks. H]IJ is fairly efficient, as it pipelines e; and directly enumerates the T tuples
that potentially match. In the descendant case, the joining happens completely implic-
itly: unlike with NLJ or HM]J, tuple pairs that do not actually match are never even
considered. Beyond that, HIJ has some useful properties: First, it supports multiple
join types—albeit only the “left” joins X, XX, or > due to the dependent right side.
Second, it does not require e; to be sorted and retains the available order. Third, it
can enumerate the join partners in either preorder or postorder. Fourth, 6 can include
further restrictions besides the join condition, which are handled by HIS on the fly.

Example. The following query combines each root with the IDs of its descendants:

SELECT u.Node, v.ID FROM T u, T v
WHERE IS_ROOT(u.Node) AND IS_DESCENDANT(v.Node, u.Node)

A plan based on Hierarchy Index Join would be:

i eo < Hierarchy Index Scan [H; vy; pre; {¢ : H.is-root(v1)}; ¢] ()

2 0(ty,tp) := (H.axis(fp.v2, f1.v1) = descendant)

s e1 < Hierarchy Index Join [H; v; 6; pre] (ep)

4 ey < Map [ty : T[rowid]; t2.ID] (e1)

This is a reasonable and common use case. Note that each root node has a distinct set

of (potential) join partners. Its simple logic makes HIJ preferable to HM]J in this case.
When e; contains duplicate Node values, the basic version of HIJ does redundant

work. This also happens in cases where the sets of join partners overlap, such as when

one left input node is a parent of another and thus shares all its descendants. For

example, if we change the condition “IS_R00T(u.Node)” to “DEPTH(u.Node) < 3,” certain

vp values will be enumerated multiple times and thus repeatedly processed by the

subsequent Map operator. In these cases, a HIJ-based plan may be inferior to a plan

that first sorts e; and then employs Hierarchy Merge Join.

5.2.5 Hierarchy Merge Join

Syntax. Hierarchy Merge Join [H; v1;v2;6; A; 1] (e1,€2), where H is a hierarchy index,
v and v, are Node attribute names, ¢ € {pre, post} is the order of the two inputs (either
both preorder or both postorder), A is the set of hierarchy axes to join on, and ¢ is the
join type, 1 € {X, >4, DX, X, b, <.

Both inputs e; and e; must have a Node field named v; and 13, respectively; formally,
e; : {7}, for some tuple type 7; with a field v; : Node!!. The inputs are required to be
sorted by v; in g-order.

For 1 € {X,P} the output is of type {71 };, and ordered by v; in g-order. For 1 € {*, 4}
the output is of type {12 };, and ordered by v; in g-order. For i € {, X)X, >} the output
is of type {11 0 T2 };. It will be ordered either by v1-v; or by v,—v; in g-order, as detailed
below. (“Ordered by v;—1,” means that the joined tuples are ordered by first e;.v; in
g-order, then e;.1; in g-order.)
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Functionality. Hierarchy Merge Join is a family of four distinct algorithms. All four
algorithms have in common that they require both inputs to be sorted in ¢-order, and
they retain one of the two input orders as primary order in the output. Furthermore,
they generally pipeline their left input (and process it in a strictly forward manner) but
materialize their right input (and access it through an iterator).

The two dimensions they differ in are, first, whether they process preorder or post-
order inputs (¢ = pre versus ¢ = post), and second, whether their output is ordered
by v1—v> (algorithm “A”) or by vo—v; (algorithm “B”). Each of the four algorithms sup-
ports (only) a particular join “direction”: upwards or downwards. Upwards means that
the supported join predicate 6 is “H.axis(v, v1) = {ancestor, self}.” Downwards means
that 6 has to be “H.axis(v2,v1) = {self, descendant}.” Altogether, this gives us the fol-
lowing choices depending on the available order ¢ of the inputs and the intended join
direction (i. e., the axis A on which we wish to join e, against e;):

G Direction Suitable Algorithm Output Order
1. pre upwards Hierarchy Merge Join A/pre]|...] (e1,€2) V1—1; pre
2. post downwards Hierarchy Merge Join A/post]...] (e1,€2) V71—V post
3. pre upwards Hierarchy Merge Join B/pre]...] (e1,€2) Vp—Vq pre
4. post downwards Hierarchy Merge Join B/post]...] (e1,ep) Vp—y post
5. pre downwards Hierarchy Merge Join A/pre|...] (e, e1) Vp—V] pre
6. post upwards Hierarchy Merge Join A/post|...] (ez,€1) Vo post
7. pre downwards Hierarchy Merge Join B/pre|...] (e2, 1) V1V pre
8. post upwards Hierarchy Merge Join B/post]|...] (e, 1) V71—V post

The first algorithm, Hierarchy Merge Join A, comes in two variants, based on either
preorder or postorder inputs. The former joins e; and e, upwards (case 1), the latter
joins e; and e; downwards (case 2). The second algorithm, Hierarchy Merge Join B, also
comes in preorder and postorder variants and basically supports the same ¢/direction
combinations as HMJ A (cases 3 and 4), but produces the respective “swapped” output
orders. That is, the output of HMJ B is ordered by v,—v; when the output of HMJ A
would be ordered by v1-1; (cases 1 versus 3 and 2 versus 4).

By simply swapping the e; and e, arguments of HM] A, we can use HMJ] A to
effectively join e; and e; in the respective inverse directions: pre/downwards (case 5)
and post/upwards (case 6). Of course the resulting output order will then be vo-14
accordingly. Analogously, by swapping the e; and e, arguments of HM] B, we can,
for a given ¢, use HM] B to join in the respective inverse directions in comparison to
HM]J A but still achieve v;—1; order (cases 7 and 8). Viewed from a different angle,
HM]J B effectively joins downwards when HM] A would join upwards, and vice versa.
For example, we can use HMJ A for the pre/upwards case (1) and HM] B for the
pre/downwards case (7) and get output order v1—v, in both cases.

That said, swapping the arguments e; and e; also swaps the pipelined /materialized
roles of the inputs as a side effect, as HM] A and HM] B always pipeline their first
argument and materialize their second argument. This may be relevant to the perfor-
mance of the overall plan and should therefore also be considered during algorithm
selection by the query optimizer. It may, for instance, be preferable to materialize the
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smaller of the two inputs even if that would mandate using a (less efficient) HM] B
variant instead of HMJ A.

Remarks. The logic and properties of HM] A and HM] B are reminiscent of the classic
Merge Join operator (which handles equi join “=" predicates). Taking advantage of
their ordered inputs allows them to disregard ranges of the inputs that cannot possibly
match. HM] A and HM] B thus are able to achieve the ideal linear time complexity of
O(ler| + [e2] + [e1 Mez]).

The two HMJ A variants work with the “natural” input orders for the respective
cases, that is, orders that lend themselves well to merge-join-style forward processing.
For upwards joins the natural input order is preorder, whereas for downwards joins the
natural order is postorder. The HM] A algorithms are therefore very efficient. HM] B,
by contrast, rearranges its output in order to produce the “swapped” output order (v,—
v instead of v1-1;). As the above table shows, these rearranging joins are essentially
equivalent to the “unnatural” join variants pre/downwards and post/upwards. The
rearranging requires the HM] B algorithms to maintain buffers of stashed intermediate
results. Therefore, they are generally less efficient than the HM] A algorithms.

Concerning the semi or anti join cases, the “left” variants X and P are generally
preferable to the “right” variants X and ¢, when there is a choice (regardless of HMJ] A
versus HM] B). This can be understood by inspecting the pseudo code of the > and
variants, which use additional memory to mark the matched input tuples.

In the situation that a combination of input/output sort orders is desired that does
not match any of the cases 1-8 listed above (e. g., the input e; is in preorder but e; is in
postorder), Hierarchy Rearrange (§ 5.2.11) brings further flexibility. HR can be applied
to one or both inputs and/or the output to convert them from preorder to postorder,
and vice versa. Even though HR comes at a non-negligible runtime cost, this multiplies
the combinations of input/output orders that can be achieved, without requiring us to
implement even more variants of the Hierarchy Merge Join.

Our Hierarchy Merge Join operators are inspired by the work of Al-Khalifa et al. on
so-called structural join operators for XML data. In [53] the authors present two algo-
rithms “stack-tree-desc” and “stack-tree-anc,” which consume lists of XML nodes in
document order (i.e., preorder) and perform an axis step (i.e., join) on the descendant
axis. HM]J can be seen as a generalization of these concepts based on general hierarchi-
cal tables and a generic hierarchy index interface. We also contribute join algorithms
based on postorder inputs, which to our knowledge has not received much attention in
the XML field (since XML data is naturally in document order). In our classification
of Hierarchy Merge Join algorithms, stack-tree-desc is comparable to pre/upwards
HM]J A, whereas stack-tree-anc is comparable to pre/upwards HM] B.

Example. Consider a variant of the example we used for HIJ (§5.2.4):
SELECT u.Node, v.ID FROM T u, T v

WHERE IS_DESCENDANT(v.Node, u.Node)
AND DEPTH(u.Node) <= 2 AND DEPTH(v.Node) >= 5
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The following HM]J-based plan generally outperforms an equivalent HIJ-based plan:

i eo < Hierarchy Index Scan [H; vy; pre; {d : H.depth(vy)};d < 2] ()
2 e < Hierarchy Index Scan [H; vy; pre; {d : H.depth(v)};d > 5] ()

s e < Map [t : T[rowid]; t.ID] (e7)

+ e3 < Hierarchy Merge Join [H; vp; v1; pre; {ancestor }; X (ez, eo)

With HMJ A /pre the output would be in v,—v; order; with HM] B/pre it would be in
v1—v; order. Note there is some overlap between the different sets of join partners of
the left input tuples. Thanks to HM]J, we can push down Map in order to obtain the
ID values before performing the join, so this work is done only once per distinct v node.
This ability to create bushy plans allows HMJ-based plans to outperform the left-deep
HIJ-based plans in many situations.

Algorithm for HMJ A/pre. The following pseudo code shows the basic outline of
HM]J A, assuming the input order ¢ = pre, the join axes A = {ancestor, self}, and the
join type 1 = >

operator Hierarchy Merge Join A [H; vy; v2; pre; {ancestor, self }; X(] (e1, €2)

Sy : Stack (1) // stack of matched e, tuples
p:int, p <0 // position in e (iterator)
fort; € e;
(maintain S;)
if Sp = ()
‘ yield t 0 14, // “left outer” ey tuple
fort, € S, // “inner” join matches
| yield t; oty
for t; € ex[p..|e2|[ // remaining “right outer” e, tuples

yield L oty

Both inputs are accessed strictly sequentially: The outer loop (I. 4) passes through
e1, whereas e; is accessed via an iterator p. The stack Sy keeps tuples from e, that still
may have join partners. For each incoming left input tuple ¢, the (maintain S;) block—
which we consider below—maintains the stack Sy in such a way that it contains exactly
the join partners with respect to t;.v1 (L. 5). In the process it also adds further tuples
from e, onto S, if necessary. If S, is empty, a “left outer” tuple is yielded for ¢; (1. 6—
7). Otherwise, a simple “for” loop combines t; with the tuples on S, to produce the
“inner” join tuples (1. 8-9). Finally, after all e; tuples have been processed, there might
be further unprocessed tuples remaining in e>, which are yielded as “right outer” join
tuples (1. 10-11).

The (maintain Sy) block has to identify e, tuples that are on the ancestor or self axes
with respect to t1.v1:

(maintain S;):
while S, # () A H.is-before-post(Sz.top().v2, t1.11) // preceding axis
| Sa.pop()
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while p # |es|

ty < ep]

if than =t // self axis
‘ Sy.push(ty)

else if —H.is-before-pre(tp.v,t1.11) // descendant or following axis
\ break

else if H.is-before-post(ty.v2, t1.11) // preceding axis
‘ yield L, ot // “right outer” e, tuple

else
‘ Sy.push(ty) // ancestor axis

p++

The first loop pops preceding tuples from S, that are no longer relevant. The second
loop examines further tuples from e, up to the first descendant or following tuple. It
pushes them onto S, if they are on the ancestor or self axes, and dismisses them—after
yielding a corresponding “right outer” tuple—if they are on the preceding axis. The
seemingly redundant check in 1. 17 is an optimization for the self case. An equality

check is generally very cheap compared to the is-before() primitives.

To modify the algorithm to exclude the self axis, that is, to join on A = {ancestor}
only, it is sufficient to replace 1. 18 by “break.”

As noted, the shown algorithm performs a full outer join. With minor modifications,
it can support any other join type ¢ as well:

X Based on the : = X case, remove 1. 10-11 and replace 1. 22 by a no-op.
X Based on the : = X case, remove 1. 6—7.
X Apply the modifications for X and M.

X Based on the 1 = X case, replace the loop in 1. 8—9 by the following:

if S2 # ()
‘ yield t;

X Based on the 1 = X case, remove the loop in 1. 8—9. Replace the two occurrences
of “Sy.push(t)” by “yield t,.”

> Based on the 1 = X case, remove 1. 8—9. Replace “yield t; o 1 .,” by “yield ¢;.”
4 Based on the : = X case, remove 1. 8—9. Replace “yield L ot,” by “yield ¢,.”

In the semi- and anti-join cases, a Staircase Filter can be applied to the non-retained
join side; see §5.2.6.

Algorithm for HMJ A/post. This algorithm handles postorder inputs (¢ = post) and
joins downwards with A = {self, descendant}. Its basic outline is:
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operator Hierarchy Merge Join A [H; vy; vo; post; {self, descendant}; >{] (ey, e)
S1 : Stack {[v; : Node®, iy : int, i : int])
i1,ip:int, i1 <0, i + 0

fort] € g
(determine [i1,13])
ifip =1
‘ yield t; 0 Lo, // “left outer” ey tuple
for tp € ey[iy, iz // “inner” join matches
‘ yield t; ot
for i € [0, |ez|[ not covered by any [i1,i2[ on S; // “right outer” e, tuples

| yield L oesli]

The left input is again pipelined, but unlike the pre/upwards case of HM]J A, the right
input is not accessed in a strictly forward manner. (In return, no extra buffer S, for
ey tuples is needed.) The stack S; stores, for each seen node v; in the left input e;, a
corresponding range [i1,iz[ of e, that indicates the join partners with respect to f1.v;.
Thus, once the range has been determined for v; and placed on the stack, this informa-
tion can be reused for upcoming nodes v; who are ancestors of v1. Whenever such an
ancestor is placed on Sy, it “sucks up” any descendant entries already on S; and their
join ranges. The (determine [i1,i»[) block (1. 5) does the critical work of determining
the appropriate range of join partners, and maintains S; in the process. Once this is
done, an empty range indicates an unmatched “left outer” tuple (1. 6-7); otherwise,
the join pairs are straightforwardly enumerated (l. 8—9). In the end, unmatched “right
outer” tuples can be identified by the fact that they are not covered by any [i1, i»[ range
on 51, and enumerated in a simultaneous loop over S; and e; (1. 10-11).

The (determine [i1,iz[) block has to identify e, tuples that are on the self or descendant
axes with respect to v1:

(determine [i1, ip[):

if S1 # () A S1.top().n =ty // same as previous
‘ goto 1. 6
while iy # |ex| A (e2[iz].v2 = t1.11 V H.is-before-post(ep[iz].va, t1.17))
Ip++
il — iz

while S; # () A —H.is-before-pre(S;.top().vy, t1.v1) // descendants of v; on S;
‘ il — Slpop()u

while i1 > 0 A ~H.is-before-pre(ez[i1 — 1].vp,t1.v1)  // further descendants in e,
e

Sy.push([vy, i1, i2])

If the previous node on S; matches the current node, the [i1, ip[ range can immediately
be reused (1. 13-14). Otherwise, the first “while” loop (1. 15-16) increases the upper
bound i, up to the first node in the right input that is on the following or ancestor
axis of v;. (Note the i, value is initially taken over from the previous iteration.) The
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lower bound i; is initially set to i» (“no join partners”); however, any of the previous
nodes on S; (when viewed from the top) might be descendants of v;. In this case,
these entries are removed and their join ranges are subsumed (1. 18-19). This is correct
because any range of join partners of a descendant on S;, as well as any e, nodes in
between two such ranges, are also valid join partners for v;. After that, the interval [iy, i[
may need to be further extended on the lower end, as there might be tuples on the self
or descendant axes in the range e[S1.top().ip, i1[. This is done by the third “while” loop
(1. 20—21). Note that at this point iy = iy is possible if all considered nodes in e, and
on 51 happened to be on the preceding axis. Finally, the determined information is
memorized on S; for later reuse (I. 22).

To modify the algorithm so that the self axis is not included in the join, it is sufficient
to adjust the condition in 1. 15 accordingly.

Again, the algorithm can be modified to handle any other join type ¢, just like we
did for the pre/upwards variant of HMJ A.

Algorithm for HM] B/pre. The following pseudo code shows the basic outline of
HM]J B, assuming the input order ¢ = pre, the join axes A = {ancestor, self}, and the
join type 1 = X
operator Hierarchy Merge Join B [H; vq; 12; pre; {ancestor, self }; ] (e, e2)
Sy @ Stack ([t : T, joined : List (73 o T2), inherited : List (73 0 72)])
unmatched-#; : List (17)
p:int, p+ 0
fort] € g
(maintain Sy)
if S5 = ()
| unmatched-t;.add (t;)
fors € S // “inner” join matches
| sjoined.add(t; 0 s.t2)
while S, # ()
| (pop S2)
for t; € unmatched-t; // “left outer” e; tuples
‘ yield ;0 14,

To produce the desired v,—v; output order, this algorithm has to stash joined tuples in
tuple lists until they are ready to be yielded. The stack S, stores, for each encountered
right input tuple t;, a list of tuples “joined” thus far with t,, as well as a list of joined
tuples that have been “inherited” from descendants of t,.v> that were removed from
the stack.

The (maintain S;) block maintains S, in such way that it contains exactly the join
partners of t; (l. 6). These tuples are then joined with ¢;. However, instead of yielding
the joined tuples immediately, they are added to the appropriate “joined” lists (I. 7—10).
If there is no join partner for ¢y, it is stashed in the unmatched-t; list. The lists of joined
tuples are rearranged and possibly yielded at the point when the corresponding tuples
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are removed from Sy; this is done by the (pop S») block. After e; has been completely
processed, stack S; is unwinded to ensure all stashed joined tuples are yielded (I. 11—
12). Finally, “left outer” tuples for the unmatched-t; entries are yielded (l. 13-14). The
output shall be ordered by v,—v1, so these tuples with v, = NULL are yielded last.

The (maintain S,) block has to identify e, tuples that are on the ancestor or self axes
with respect to #;.v1:

(maintain Sy):

while S, # () A H.is-before-post(Sy.top().t2.v2, t1.11) // preceding axis
| (pop S2)

while p # |ey|

ty < ex[p]

if —(tp.vp = t1.v1 V H.is-before-pre(tp.vp, t1.11))

break

Sa-push([tz, (), (1)

if H.is-before-post(ty.v,t1.11) // preceding axis
| (pop S2)

p++

The first loop (1. 16-17) unwinds the stack to remove all tuples that are now on the
preceding axis. After that, only ancestor tuples are remaining on S;. The second loop
(l. 18-25) adds further tuples from e, that are on the ancestor, preceding, or self axes
to Sp. However, tuples on the preceding axis are immediately popped again (I. 23-24).
This conveniently results in a “right outer” tuple being produced by (pop S>). The net
result is that only the relevant join partners for t; remain on S;. Finally, the pseudo
code for the (pop S») block is as follows:

{pop 52):
[f2,joined, inherited] < Sy.pop()
if joined = ()
| joined.add (L, ot2) // “right outer” e tuple

if Sy # ()
| Sz.top().inherited.append (joined o inherited)

else
for t € joined o inherited
‘ yield ¢

If the popped t; tuple didn’t have a join partner, a “right outer” tuple is produced
(I. 28-29). If there is another entry remaining on S, that entry inherits the “joined”
and “inherited” lists of ¢, (1. 30-31). Otherwise—when the last entry has been re-
moved from S;—the collected joined tuples are finally yielded in the order “joined”-
“inherited” (1. 32-34).
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HSF [H; v; pre; ancestor] (e) Cc1 c2 C3 Di D2 C4 D3
HSF [H; v; pre; descendant] (¢)  B1 B2 C3 c4
HSF [H; v; post; descendant] (e) B1 Cc3 C4 B2

e HSF [H; v; post; ancestor] (e) C1 c2 D1 D2 C3 D3 C4

Figure 5.3: Applying a Hierarchy Staircase Filter to an example input.

5.2.6 Hierarchy Staircase Filter

Syntax. Hierarchy Staircase Filter [H;v; g, a] (¢), where H is a hierarchy index, v is a
Node attribute name, ¢ € {pre, post}, and a € {ancestor, descendant}. The input is of
type e : {T}, for some tuple type T with a field v : Node!l. It is expected to be ordered
by v in g-order. The output is of the same type as the input.

Functionality. The filter produces a subset ¢/ C e in the same order as the input. It
removes any tuple  that is covered by another tuple ' whose node is either equal
to t.v or on the axis g4, that is, H.axis(t'.v, t.v) € {a,self}. The effect is that the nodes in
the output form a “staircase” in the pre/post plane: both the preorder ranks and the
postorder ranks of the nodes form a monotonically increasing sequence.

Example. Figure 5.3 shows a version of our example hierarchy with a second root (22).
We apply HSF to a selection of the nodes that excludes (a1). For each of the four cases
of HSF, the figure shows the nodes sorted in the appropriate order (preorder or post-
order), and marks the nodes that pass the respective filter.

As we already mentioned in §5.1.4, the Staircase Filter is an important optimization
for semi and anti joins. To our knowledge, the ideas have originally been examined sys-
tematically for the Staircase Join [41], a work in the context of XML /XPath processing.
Consider the following example:

SELECT u.Node FROM T u
WHERE EXISTS ( SELECT % FROM T v WHERE IS_DESCENDANT(v.Node, u.Node) AND ¢(v.Node) )

A plan leveraging HSF would be:

i eo < Hierarchy Index Scan [H; vy; pre; { }; true] ()

2 e < Hierarchy Index Scan [H; v; pre; { }; ¢] ()

s ey < Hierarchy Staircase Filter [H; v5; pre; descendant] (1)

+ e3 < Hierarchy Merge Join [H; vp; v1; pre; {ancestor }; X (ez, eo)
The presence of HSF does not affect the result, but it improves performance by remov-
ing tuples that are “superfluous” for the join from the input as early as possible.
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Algorithm. The algorithms for the four different cases are largely straightforward. In
the pseudo code, |e| > 0 is assumed for simplicity. If the input is empty, the output is
trivially empty as well.

In the pre/ancestor case, a tuple t is excluded from the output if there is another
t' € e with H.axis(t'.v,t.v) € {ancestor, self}.

operator Hierarchy Staircase Filter [H; v; pre; ancestor] (e)

yield ¢[0]
7, t' < e[0] // previous output tuple
fort € efl..|
if H.is-before-post(t'.v, t.v) // preceding axis
yield ¢
ot

In the pre/descendant case, a tuple f is excluded from the output if there is another
t' € e with H.axis(t'.v, t.v) € {self, descendant}.

operator Hierarchy Staircase Filter [H; v; pre; descendant] (e)

teT, ' 1, // previous input tuple
fortee
if H.is-before-post(t'.v, t.v) // preceding axis
| yield ¢
th <« t
if tv#tw
‘ yield t

The post/descendant case is structurally similar to the pre/ancestor case:

operator Hierarchy Staircase Filter [H; v; post; descendant] (e)

yield ¢[0] // previous output tuple
t': 1, ' < el0]
fort € efl..|
if H.is-before-pre(t'.v,t.v) // preceding axis
yield ¢
<t

Due to the nature of postorder, post/ancestor is the most complicated case. Because
we cannot be sure whether the currently inspected tuple is already the “uppermost”
node or whether an even higher ancestor is going to appear (such as the root itself),
we need to keep the seen tuples on a stack and delay yielding them until we have
processed all of the input. We can, however, safely remove any descendants from the
stack at the time we push a new tuple.

operator Hierarchy Staircase Filter [H; v; post; ancestor] (e)
S : Stack ()
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fortce
while S # () A ~H.is-before-pre(S.top().v, t.v) // descendant or self axis
| S-pop()
S.push(t)
forte S
| yield ¢

Note how these algorithms also filter out duplicate v values, as tuples on the self axis
will not pass the “is-before” checks.

The time complexity of these algorithms is in O(|e|). Their space complexity is in
O(1), except for the post/ancestor case, which is in O(]e|).

5.2.7 Structural Grouping: Overview

In this overview we discuss various approaches for the unary structural grouping sz f

and binary structural grouping X +: f operations we defined in §5.1.5 and §5.1.6.

Join-Group. A generic approach for X is to treat 6 as an opaque join predicate with
partial order properties, and stick to a sort-based join-group—-aggregate plan: sort both
inputs e; and e, in either preorder or postorder according to 6, then perform a sort-
based left outer join e [t] >y ep[u], and finally use sort-based unary grouping to com-
pute the result.

Join-Group [6; x : f](e1,e2) :=
e1 < Sort [0] (e1)

ep < Sort [0] (e2)

es < Join [0] (e1[t1], e2[t2]) // sort-based
Group [t1.%; x : f] (e3) // sort-based

This requires a non-equi join operator that retains the order of e¢; and deals appropri-
ately with the fact that some tuples may not be comparable using 6. Unfortunately,
the standard sort-based merge join supports only equi joins. If we make no further
assumptions about ej, e;, and 6, we can only use some variant of Nested Loop Join,
making the time complexity an unattractive O(|e1| - |ez|). We refer to this approach by

“Join-Group.”

HM]J-Group. When X" and T" are used for hierarchical computations, where 6 and <
operate on NODE fields, the underlying hierarchy index H can and should be leveraged.
A significant improvement over the generic Join-Group approach is to use a sort-based
Hierarchy Merge Join. Alternatively, a Hierarchy Index Join can be used if e, is compat-
ible, that is, if e, is the hierarchical base table T itself and can be enumerated through a
Hierarchy Index Scan. We refer to the variant of Join-Group based on Hierarchy Merge
Join by “HM]J-Group.”
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HG and HMG]. The two mentioned approaches keep implementation efforts low by
reusing existing operators. However, they cannot evaluate the structural recursion of I,
and they suffer from the efficiency issues we already noted in §2.2.4: They inherently
need to materialize and process all < join pairs rather than just the <: pairs during
query evaluation, and they are unable to reuse results from covered tuples.

We therefore propose four new special-purpose operators: Hierarchy Merge Group-
join for binary structural grouping ', and Hierarchical Grouping for unary structural
grouping I', each in a top-down and a bottom-up variant. The top-down variants re-
quire the inputs to be sorted in preorder, the bottom-up variants in postorder; this
order is retained in the output.

The relational algebra definitions of binary and unary structural grouping apply the
given aggregation function f to different bags of input tuples. In the pseudo code for
HMG]J and HG, we use an abstract data type Aggregate to represent such a bag X. It
supports the self-explanatory operations add(u), merge(X’), and clear(). While pro-
cessing their inputs, the HMGJ and HG algorithms create one Aggregate instance X
per tuple t € e, assemble the appropriate input tuples in it, and pass it to the given
aggregation function f(X) or f(t, X) in order to obtain t.x. In the actual query-specific
implementation of an Aggregate and its operations, significant optimizations may be
possible depending on the given f function, as we discuss in §5.2.10.

5.2.8 Hierarchy Merge Groupjoin

Syntax. Hierarchy Merge Groupjoin [H; vi;v2;6; A; x @ f] (e1,e2), where H is a given
hierarchy index, v; and v, are Node attribute names, ¢ € {pre, post} is the input order,
A is a set of hierarchy axes, and x : f is a name/expression pair.

f must be a scalar aggregation function of type {12}, — N for some type N. The
inputs e; and e, must have a Node field named v and v5, respectively. Formally, ¢; : {T7; };
for a type T; that has a field v; : Node!. The inputs are required to be sorted by v; in
g-order. The output is of type {7 o [x : N]};, and has the same order as ¢;.

Algorithm. The HMG] algorithms evaluate structural grouping X' (§5.1.5). They
come in a bottom-up variant that handles ¢ = post and A = {self, descendant}, and a
top-down variant that handles ¢ = pre and A = {ancestor, self}. The following pseudo
code shows the basic framework for both variants. Overall, the logic is reminiscent of
a left outer Hierarchy Merge Join A (§5.2.5).

operator Hierarchy Merge Groupjoin [H; v1;v2;6; A; x @ f] (e1,€2)
S1 : Stack ([v; : Node'?, X : Aggregate(t),i : int])

Sy : Stack (1)

p:int, p <0

X : Aggregate(n)
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fort] € e;

if 51 # <> N Sl.top().l/l =t
[, X, ] < Sy.top()
yield t o [x : f(X)]
continue

X.clear()

(collect input)

yield t; o [x : f(X)]

Sl.push([tl.vl,X, ‘SQH)

Two stacks are used: Analogously to Hierarchy Merge Join A, stack S, stashes pro-
cessed e, tuples that may become relevant as join partners. Stack S; collects processed
nodes v; from e; with the corresponding aggregates X of matched e, tuples for reuse.
Variable i refers to a position on S, and is needed in the top-down case.

For each t; € e; (1. 6) we either reuse X from a previous equal node (l. 7-10) or
assemble X via the (collect input) block, which differs for the top-down and bottom-
up cases. Finally an output tuple is produced and X is memorized on S;.

The bottom-up variant (postorder inputs) essentially performs a join on the descen-
dant or self axes with left outer join semantics.

(collect input) — bottom up:
while S; # () A —H.is-before-pre(S;.top().vq, t1.v1)
[, X', ] <= S1.pop()
X.merge(X')
while S, # () A —H.is-before-pre(Sy.top().v2, t1.v1)
| X.add(S;.pop())
while p # |e;|
tr < eap]
if th.vp =t 1
‘ X.add(tz)
if ~H.is-before-post(t,.va, t1.v1)
‘ break
if —H.is-before-pre(tp.vz,t1.11)
‘ X.add(tz)
else
| S.push(tz)
p++

The algorithm consists of three steps: The first loop (1. 16) removes all covered descen-
dant entries from S; and merges their aggregates into X using the merge() operation.
This operation is the key to effectively reusing partial results as motivated in §2.2.4.
The second loop (1. 19) adds relevant matches on the descendant or self axes from S
to X. The third loop (l. 21) advances the right input e, up to the first postorder succes-
sor of v1. Any encountered t; either is a postorder predecessor or has tr.vp = vy; if to
is also a preorder successor, it is a descendant. Descendant or self matches are added

138



32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

5.2 Physical Algebra Operators

straight to X (I. 28), whereas preceding tuples are stashed on S; (1. 30).
The top-down variant (preorder inputs) joins on the ancestor or self axes:

(collect input) — top down:
while S; # () A H.is-before-post(Sy.top().v, t1.v1)
| S1pop()
jrint, j <0
if 51 # ()
[, X', ]] < S1.top()
X.merge(X')
while j # |S,| A H.is-before-post(t1.v1, S2[j].v2)
X.add(S:1j])
JH+
pop S2[j], - -, Sa-top()
while p # |es|
ty < 62[p]
if trvr = t.1g
X.add(tz)
Sy.push(t,)
if —H.is-before-pre(tp.vz,t1.11)
break
if —H.is-before-post(ty.v2, t1.v1)
X.add(tz)
Sy.push(t,)

p++

A peculiarity of the top-down case is that S; and S entries may be consumed multiple
times and therefore cannot be immediately popped from the stacks. S; and S, are
maintained in such way that they comprise the full chain of ancestor tuples from e;
and e relative to v;. Field i on S; establishes the relationship to S;: For an S; entry
[v, X, 1], the bag X incorporates all matches for v, corresponding to the S, range [0, 1]
(i.e., from the bottom to position i, exclusively). If there is another S; entry [v/, X', 7]
below, then v/ is the covered ancestor of v, and X consists exactly of X’ plus the S, tuples
at positions [i’, i[.

Maintaining these invariants requires four steps: First (1. 33), obsolete preceding en-
tries are popped from S;. Second (1. 36), any remaining entry on Sy is an ancestor, so
its aggregate X’ is reused. Third (l. 39), any additional ancestors t, that were not al-
ready in X' (starting from position j) are added to X. Then, the remaining S, tuples
from positions j to top are preceding and therefore obsolete (1. 42). Finally (1. 43), ez is
advanced up to the first preorder successor of v1; in the process, tuples on the ancestor
or self axes are added to X and Sy, whereas preceding tuples are ignored.

The two algorithms we discussed have left outer join semantics and include the self
axis. They can be adapted for other axes (child/parent and the non-self variants) as
well as inner joins analogously as described for Hierarchy Merge Join in §5.2.5.
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5.2.9 Hierarchical Grouping

Syntax. Hierarchical Grouping [H;v;¢; A; x : f] (e), where H is a hierarchy index, v is
a Node attribute name, ¢ € {pre, post} is the input order, A is a set of hierarchy axes,
and x : f is a name/expression pair.

The input is of type e : {T},, where T is a tuple type with a v : Node! field, and e is
ordered by v in postorder (bottom up) or preorder (top down).

The output is of type {7'};,, where T/ := T o [x : N]. It has the same order as e.

Algorithm. This HG algorithms handle unary structural grouping with structural
recursion. In a single pass through the input e, HG effectively issues the following call
sequence for each tuple t:

X.clear()
X.add(u) for each u <: t
yield to [x: f(t, X)]

The following pseudo code shows the basic framework for both variants of HG:
operator Hierarchical Grouping [H;v;¢; A;x : f] (e)
S : Stack ([v : Node, u : T/, X : Aggregate(7)])
X : Aggregate(1’)
fortce
if S# () ANS.top().ov =t
| skip // reuse previous X
else
X.clear()
(collect input)
yield t' <+ to[x: f(t X)]
S.push([tw, ', X])

The stack S (line 2) manages previously processed tuples u and their computation
states, that is, u.x and the corresponding aggregate X for potential reuse. For each
input tuple t (I. 4) the algorithm first checks whether t.v matches the previous node; in
this case, it reuses X as is. (This step can be omitted if v is known to be duplicate-free.)
Otherwise, the (collect input) block (I. 9) maintains the stack and collects the tuples X
covered by t. Then the algorithm computes f(t, X), constructs and yields an output
tuple and puts it onto the stack together with X for later reuse.
Regarding “collect input” let us first consider the bottom-up case (postorder input):

(collect input) — bottom up:
while S # () A —H.is-before-pre(S.top().v, t.v)

[+, u, Xyu] < S.pop()

X.add(u) // leverage X, if possible!

Since the input e is in postorder, previously processed tuples on S, if any, are post-
order predecessors and as such on the descendant and preceding axes relative to t.v,
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in that order when viewed from the top of stack (whereas upcoming tuples from e
are postorder successors and thus will be on the ancestor or following axes). Therefore,
the covered tuples X we need for t are conveniently placed on the upper part of S.
The “while” loop (1. 13) collects and removes them, as they will no longer be needed.
Any remaining S entries are preceding and irrelevant to t—as preorder and postorder
predecessors—but might be consumed in a later iteration.

Let us now consider the top-down case (preorder input):

(collect input) — top down:
while S # () A H.is-before-post(S.top().v, t.v)
| S.pop()
i£S # ()
for [v,u, X,] € upper part of S where v = S.top().v
| X.add(u) // leverage X, if possible!

S may, when viewed from the top, contain obsolete preceding tuples, then relevant
covered ancestor tuples to add to X, then further non-immediate ancestors which may
still be needed in a future iteration. The “while” loop (1. 17) first dismisses the preceding
tuples. If there is an entry left on top of S (. 19), it is a covered ancestor u <: t, and
the “for” loop (1. 20) collects it and further tuples below with equal v (if not distinct
in e). Due to the tree-structured data flow, there cannot be any further covered tuples.
Unlike in the bottom-up case, we cannot pop the covered entries after adding them
to X, since they may still be needed for upcoming following tuples (e. g., a sibling of v).

Note that we do not need any explicit checks for <: in this algorithm—the covered
tuples are identified implicitly. Note also that in 1. 15 and 21, the full X, state cor-
responding to u.x is available to the add() operation. This state may be needed for
non-trivial computations where u.x alone does not provide enough information, as
we discuss in §5.2.10. In case it is not needed, we do not need to keep the X objects
(marked in teal in the code) on the stack at all. Likewise, we may include only the
tields of u that are actually accessed by f to minimize memory consumption.

5.2.10 Structural Grouping: Further Discussion

Recall from §5.1.5 and §5.1.6 that the Hierarchical Grouping operator is primarily
used for evaluating RECURSIVE expressions on hierarchical windows, and the Hierarchy
Merge Groupjoin operator is used for non-recursive expressions (via self-grouping e X
e) as well as certain classes of join-group—aggregate statements. Handling further de-
tails of hierarchical windows—such as different variants of window frame and EXCLUDE
clauses—would require further additions to the algorithms; in particular, tuples with
equal Node values must be identified and handled as a group. As these adaptions are
straightforward, we omit their discussion.

Inline Computations. The following optimization is crucial to the practical perfor-
mance of HMG]J and HG: While their pseudo code literally collects the input tuples to
the aggregation function f into a bag X, we can often avoid such buffering altogether
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by evaluating the function on the fly. To this end the query compiler has to generate
specific code in-place for the four different Aggregate operations:

@ X.clear() @ X.add(u) @3 Xmerge(X') @ f(tX).

Consider the rollup Expression 1b from Figure 5.1 (p. 118): Rather than a list of tu-
ples, the actual state of X would be a simple partial sum x : N, and the Aggregate
operations would boil down to

@x+0 @x<+x+ux @Grx+Xx @x+tx

These definitions work with both HG and HMG]. For a structurally recursive com-
putation with HG, consider Expression 4c: Here the state remains the same as for
Expression 1b, but operation @ becomes x < x + u.Weight  u.x.

Eliminating the bag of tuples X like this is possible whenever either the scalar x value
itself or some other data of O(1)-bounded size can adequately represent the required
result information of a sub-computation. This characterization roughly corresponds
to the classes of distributive (e.g. COUNT, MIN, MAX, and SUM) and algebraic aggregation
functions (e. g. AVG, standard deviation, and “k largest/smallest”) identified by Gray et
al. [38].

There are of course also SQL expressions, such as ARRAY_AGG or DISTINCT aggregates,
for which we have to actually maintain the bag X literally, or some state of size @(|X]).
Consider for example COUNT(DISTINCT Weight): To evaluate this using either HG or
HMG], the Aggregate has to maintain a set of distinct Weight values. But even then,
our mechanism for reusing the results of sub-computation can provide certain opti-
mization opportunities. Maintaining the distinct Weight values could for example be
speeded up by employing an efficient set union algorithm for the merge() operation.

Complexities. With the optimization opportunities discussed in the previous para-
graph in mind, let us consider the time and space complexities of HMGJ and HG.

If the computation is indeed done inline as discussed, the size of the Aggregate
objects and the times of their operations are actually in O(1). Under this assumption,
the time and space complexity is O(|e|) for HG, and O(le1| + |ez2|) for HMG].

However, if the computation cannot be inlined, we fall back to literally collecting
the respective input tuples in the Aggregate objects. Our algorithms then essentially
degenerate to merge joins, and their time/space complexities become O(|e1| + |ez2| +
le1 M ez).

To establish these asymptotic complexities, an amortized analysis is needed in order
to argue that the inner loops of the HMGJ and HG algorithms do not contribute to the
overall complexity. Regarding Hierarchical Grouping (algorithm on p. 140), observe
that the outer “for” loop pushes each e tuple once onto S (so |S| < |e|), whereas
the inner “while” loops remove one S entry per iteration; their bodies can thus be
amortized to the respective pushes. Regarding Hierarchy Merge Groupjoin (see p. 138),
the loop bodies of 1. 21 and 1. 43 are executed |e;| times in total, regardless of the outer
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loop; at most |e;| and |ez| tuples are pushed onto S; and S, respectively; and since the
other loops pop either an S; or S; entry per iteration, an analogous argument applies.

5.2.11 Hierarchy Rearrange

Syntax. Hierarchy Rearrange [H;v;¢ — ¢’] (¢), where H is a hierarchy index, v is a
node attribute name, and ¢ — ¢’ is either “pre — post” or “post — pre.”

The input must have a Node field v. Formally, e : {7}, for some tuple type T with a
field v : Node!!. The input is required to be sorted by v in ¢-order.

The output is of type {7}, and sorted by v in ¢’-order.

Functionality. To sort a table of nodes in preorder or postorder, we can always use
an ordinary Sort operator with is-before-¢() as comparison predicates:

Sort [<] (e), where t; < tp <= H.is-before-pre(t;.v, tr.v).

However, if the input happens to be already sorted in either postorder or preorder,
the Hierarchy Rearrange operators can exploit that order to perform the same sorting
tasks more efficiently.

Remarks. The main use case of HR is as a “glue” operator to combine preorder-based
and postorder-based operators such as HMJ, HMG]J, and HG in a plan.

To understand how the algorithms work in principle, note that the postorder sequence
of the nodes in a hierarchy is somewhat comparable to the reverse preorder sequence
in that a node appears before any of its ancestors. The difference is that in postorder
the children of each node (and with them their subtrees) are arranged in their original
order, whereas in reverse preorder they are reversed. Compare, for instance, the post-
order (left) and reverse preorder (right) sequences of our familiar example hierarchy:

(01),(02)(C3) (D34{C4)}B2HAY

To convert a general input e from preorder to postorder, we therefore have to delay
yielding a tuple ¢ until all its descendants have been processed. This reverses the “ver-
tical” order of the input. At the same time, we need to make sure that all immediate
descendants of the tuple t remain in their original order. This way we keep the “hor-
izontal” order intact. The algorithms we discuss below achieve this by stashing their
input tuples on a stack and carefully unwinding this stack at the point when the re-
spective descendants (in the pre — post case) or ancestors (in the post — pre case)
have been processed.

Algorithm for “pre — post.” This case is simple and efficient:

i operator Hierarchy Rearrange [H; v; pre — post] (e)
2 S :Stack (T)
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s fortce
while S # () A H.is-before-post(S.top().v, t.v)

| yield S.pop()
S.push(t)
. while S # ()
s | yield S.pop()

IS

o

o

The algorithm unconditionally stashes each input tuple ¢ on the stack S. But first, the
inner loop (1. 4-5) pops and yields any tuples whose node v is on the preceding axis
with respect to t.v. The effect of performing this loop at each iteration is that runs of
tuples in preceding—following relationships (such as a run of siblings) will be yielded
in their originally encountered order, whereas runs of tuples in ancestor-descendant
relationships remain on the stack until all their descendants have been processed, and
are then popped in reverse order. In other words, the “horizontal” order is maintained
but the “vertical” order is reversed, which results in the desired postorder.

However, the pseudo code as shown also reverses the relative order of runs of tuples
with equal v values (i. e., in self relationships). If this is not desired, the inner loop needs
to be refined so as to first identify those runs and yield them in their original order.

The runtime complexity of this operator is in O(Je|). An attractive property is that
e is pipelined at least partially. The worst-case space complexity is in O(le|) as well.
This worst case happens, for example, when all v values are equal. However, if we
assume that all nodes are distinct, then the stack size |S| is bounded by the height of
the hierarchy H, since S then forms a run of tuples in ancestor—descendant relationships
at any point.

Algorithm “post — pre.” This case is comparatively involved. Due to the nature of
postorder, pipelining is very limited; for instance, the root node of a hierarchy appears
last in postorder but first in preorder. Since the algorithm cannot know whether it has
already seen the “highest” ancestor in a run of tuples, it must buffer and analyze its
whole input first before it can yield the first output tuple.

i operator Hierarchy Rearrange [H; v; post — pre] (e)
2 S Vector ([t : T,cov : int])

s fortee

" if S # () AS.top().tv =tv

5 ¢ + S.top().cov

6 S.top().cov + |S| —1

7 S.push([t, c])

8 continue

o cov < |S]

10 while cov # 0 A ~H.is-before-pre(S[cov — 1].t.v, t.v)
1 | cov < S[cov — 1].cov

12 S.push([t, cov])

s (enumerate tuples on S)
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The algorithm stashes each input tuple on the vector S, which is built up like a stack but
also accessed in a random manner. For each tuple ¢ it identifies the range of previously
seen tuples that are “covered” by t, that is, on the self or descendant axes with respect
to t.v. The covered ranges are represented by the “cov” fields on the vector: cov is
the index of the first (lowest) covered entry on S; that is, for each i, entry S[i] covers
entries S[S[i].cov, i[. In other words, the tuples S[cov, i[ are on the self or descendant axes,
whereas the tuples S[0, cov| are on the preceding axis with respect to S[i].v. The block
l. 9—11 determines cov for ¢t by hopping over S backwards (skipping any transitively
covered entries). If, however, t.v equals the previously processed node, special care has
to be taken (l. 4-8). The entry for ¢ then steals the cov value from the previous tuple u,
whose cov value is adjusted to “empty range.” This helps us identify runs of tuples
with equal v values later on: In each such run S[iy, i}, the uppermost tuple S[i»| covers
the other tuples S[iy, ip[ in addition to the descendants, whereas each tuple in S[i7, ip|
covers only itself.

With the collected coverage information the (enumerate tuples on S) block can fi-
nally enumerate the output in the desired order. It effectively performs a preorder
traversal of the constructed vector:

(enumerate tuples on S):
Q : Stack (int)
for ¢ < |S|;¢ # 0;¢ < S|c].cov
o
Q.push(c)
hile Q ()
¢ < Q.pop() // current subtree: ¢
cov «— S[c].cov // limit for traversal
d+c
if ¢/ # cov
while ¢’ # 0 A (S[¢’ —1].t.v = S[c].tw)
-
for j € [c/, (]
| yield S[j].t
for ¢/; ¢’ # cov; ' < S[c'].cov
c'—-

Q.push(c’)

The stack Q stores the indexes of remaining S entries to visit. The first loop (1. 16—
18) initializes Q with the “top-level” tuples that are not covered by any other tuple.
The main loop (1. 19) repeatedly picks the top-most tuple c on Q to visit. The tuples
belonging to the subtree of S[c].v can be found in the range S[S[c].cov,c|. The loop
1. 22-25 first identifies the range [¢/, ¢] of equal nodes. S[c] and its equal nodes are then
yielded in the original order (I. 26—27). The loop 1. 2830 then enumerates c’s directly
covered entries backwards and pushes them onto Q (similar to 1. 16-18). This has the

g
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effect that these entries will be visited subsequently in their correct (original) order.
In an actual implementation of this algorithm, it may be beneficial to not actually
copy the input tuples onto S. Instead, the input can be materialized, so that S only
needs to store the node v and a pointer to the actual tuple. This approach improves
cache efficiency if the tuples are large.
As another optimization, we can flush the stack early whenever the previous node
was a root. To this end, insert an is-root() check after 1. 8:

if S # () A H.is-root(S.top().t.v)
(enumerate tuples on S)
S+ ()

5.3 Further Related Work and Outlook

This section points to relevant related work with regard to query processing on hier-
archical data. We also outline several open problems in the context of our framework
that would be interesting for future work.

Query Execution and Pipelining. Throughout this chapter we assumed a bottom-up
push-based model of query execution, as described in [76]. This model allows algo-
rithms which process their input in a single pass—such as our HIJ, HMJ, HMG]J, and
HG operators—to “pipeline” the tuples in the sense that the relevant attribute values
(in particular, the Node values) can potentially remain in processor registers during exe-
cution instead of being materialized in memory. With engines that compile query plans
to native machine code, these algorithms can deliver excellent performance. However,
binary operators can inherently pipeline only one of their inputs and always have to
materialize the other input. (Our operators by convention materialize their right input.)

In the pull-based iterator model [37], both inputs would be accessed through an it-
erator interface with methods open(), next(), close(), et cetera. We can adapt our algo-
rithms to this model by simply rewriting the outer loops over e; and the accesses to e;
in terms of iterators. Although the iterator abstraction limits performance due to func-
tion call overhead, it is conceptually elegant in that both inputs of binary operators
are handled uniformly. When they are accessed strictly sequentially, they can also be
“pipelined” in the sense that all tuples are considered just in time without any upfront
materialization.

In theory, the performance gains through pipelining can be maximized (and the
overall memory usage reduced) by choosing the bigger input as the pipelined input
and materializing the smaller input. However, some inherent asymmetries in our join
algorithms (HIJ, HM]J, HMG]J) complicate matters: swapping the inputs and inverting
the join condition does more than just swap the pipelined /materialized roles: it usually
requires using a different variant of the algorithm with different properties that may
impact the rest of the query plan. One therefore wants the query optimizer to be aware
of the plan-relevant characteristics of the different variants of each algorithm, and to
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also reflect their performance differences in the cost model. Studying these issues and
how they affect algorithm selection is a possible direction of future work.

Operators on Tree-Structured Data. Since XML documents are inherently hierarchi-
cal and commonly stored in XML-enhanced relational databases in the form of tables
(see §2.3), algorithms for the efficient processing of queries on tree-structured data
were also studied in that context. These are sometimes referred to as structural or
tree-aware join operators. Examples are MPMG]JN [118], tree-merge and stack-tree [53],
Staircase Join [41], and Twig?Stack [19]. Similar to our algorithms, they in general work
on ordered inputs, use logic reminiscent of merge self-joins, and leverage an available
(though usually hard-wired) tree encoding. [19] notably also works with bottom-up
processing on postorder inputs, whereas other operators (e.g. [53]) usually require
their inputs to be in document order (i. e., preorder).

Beyond binary structural joins, powerful path and tree pattern matching operators
were proposed in the XML context; for example, TwigStack [11] and variations [51]
for handling so-called twig joins. Translated to the SQL world, these operations could
be characterized as n-way joins based on a tree-shaped pattern. While such complex
patterns are comparatively easy to express in XPath, they are beyond our requirements
for handling hierarchical data in RDBMS.

Although they are a fruitful source of inspiration, not all techniques from the XML
world fit into our setting. Most of the more sophisticated join operators were designed
to work directly on appropriately pre-processed and indexed XML documents. In con-
trast, our operators are not restricted to the hierarchical base table itself; they can be
applied to arbitrary input tables containing a NODE field. As indexing the inputs on the
fly seems infeasible, we rely only on the hierarchy index of the base table. Many of
the proposed techniques are not applicable in this setting. As an example, we consider
Staircase Join [41]. This operator performs an XPath axis step given a set of context
nodes. It achieves high performance using sophisticated techniques to skip over ir-
relevant nodes. However, these techniques require direct access to the indexed XML
document table, which needs to be encoded using the pre/post labeling scheme and
physically sorted in preorder. In terms of SQL and our algorithms, an axis step is
comparable to a right semi-join between a table of context nodes and the hierarchical
base table, with duplicate elimination on the result (DISTINCT). For queries of this type,
Staircase Join could be roughly emulated by combining a Hierarchy Index Join with
a Staircase Filter on the left input. However, we expect the share of queries that will
benefit from this optimization to be rather limited in the SQL context—as opposed to
XPath, where they are routine.

Further Applications. We noted earlier that many algorithms from the literature
were originally hard-coded against specific labeling schemes. As our algorithms are
formulated in terms of a small set of index primitives, they are generic in the sense that
we can plug in arbitrary indexing schemes in the backend. This ensures a clean sep-
aration between the physical operators and the layer of index implementations. Thus,
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an interesting direction of future work would be to redesign some of the more sophis-
ticated algorithms from the literature in terms of our index interface. As an example,
the following pseudo code shows an adaption of the mentioned Staircase Join for the
descendant axis:

i function staircasejoin_desc(doc, context)

2 for each successive pair (c1,c2) in context
3 ‘ scanpartition_desc(cy, c2)

4 ¢ < last node in context

5 n < end of doc

6 scanpartition_desc(c, )

i+ function scanpartition_desc(cy, c2)

2 for (¢ < H.pre-next(c1);c # ¢2;¢ < H.pre-next(c))
3 if H.is-before-post(c, c1)

4 ‘ yield c

5 else

6 | break // skip

As Staircase Join relies only on pre/post traversal and axis checks, converting the al-
gorithm from the original definition (algorithms 2 and 3 in [41]) is particularly easy.
However, such an adaption should be possible for other existing algorithms as well.
This way our framework of indexing schemes and query processing algorithms could
potentially be leveraged in a much broader range of database systems and applications,
XPath processing being just one example.

Techniques for Grouping and Aggregation. Our algorithms HMGJ and HG per-
form a particular kind of grouping on relational tables. Therefore, relevant related
work comes from the extensive literature on efficiently evaluating GROUP BY in SQL.
Commonly, either sort-based or hash-based methods are used [37]. Similar to ordinary
sort-based grouping, our operators rely on ordered inputs and are order-preserving.

Groupjoin aka. binary grouping [15, 65, 74] improves join-group—aggregate plans by
fusing X and I', which allows the engine to avoid materializing the intermediate join
result. While [74] discusses mainly hash-based equi-groupjoins, [65] and [20] also con-
sider the non-equi case. This case is more comparable to our setting, although identi-
tying the groups is more involved with structural grouping. [20] discusses a method
based on so-called 0-tables, which enable reusing the results from “covered” groups
and are roughly comparable to the stacks our operators are based on.

GROUP BY CUBE and ROLLUP can be viewed as constructs for multi-dimensional hierar-
chical grouping, although they work only on a specific form of “denormalized” tables
(see §2.3.5). [38] discusses approaches to implement these constructs. The naive ap-
proach is to execute 2* separate aggregation operations and collect their results using
UNION. A more sophisticated approach uses a dedicated single-pass operator that is able
to reuse results of lower levels. This idea is similar in spirit to our approach. MD-Join
[15] is another kind of groupjoin for evaluating CUBE, which is also able to reuse results
from finer-grained groupings for coarser-grained groupings.
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Windowed Tables [116] are another powerful way of grouping in SQL that resembles
a “self-groupjoin.” Their efficient evaluation has received surprisingly little attention
from the research community. [58] is a recent guide with a focus on modern multi-core
architectures. Alas, techniques for standard windowed tables cannot easily be adapted
to our hierarchical windows due to their unique semantics.

Estimation and Statistics for Hierarchical Data. Being able to precisely estimate the
output sizes of individual plan operations is a highly important basis for cost-based
query optimization. In connection with queries on hierarchical data, cardinality esti-
mation comes into play when a hierarchy predicate such as “H.depth(v) < 3” is used
to filter tuples; when filtering hierarchy operators are used, such as Staircase Filter,
or Index Scan with additional predicates; and most importantly, for the output of a
hierarchy join, taking into account the axis and the type of join.

Cardinality estimation is already difficult for ordinary predicates and equi joins. For
hierarchy joins the estimation errors tend to be even less predictable. Simple statistics
for estimating equi join results—such as the number of distinct key values in the two in-
puts—are less useful for hierarchy joins. For example, consider a join on the descendant
axis where one distinct NODE value is joined with a table of leaves. If the left input node
happens to be the root, the join can easily degenerate into a cross product, but it could
as well be empty if it happens to be a leaf itself. Furthermore, any specific formula
for estimation would have to incorporate knowledge or assumptions on the hierarchy
structure. A hierarchy of N nodes might contain only roots and thus be extremely flat,
but it might also be unusually deep (e.g., more than 8 levels) or even a single linear
chain of child nodes (H.height(T) = N). A pragmatic model for cardinality estimation
would be to assume a basic regular structure where each node has a fixed number of
k children, and to set k to the average number of children in the actual data. Based
on such a model, formulas could be stated to estimate, for instance, the total number
of descendants for a (known) set of nodes. While such hand-crafted heuristics might
work well in sane cases, more elaborate models for cardinality estimation are desirable,
such as path query synopses [119]. Techniques such as sampling and re-optimization
[107] would be useful in the context of hierarchical data as well. This is an interesting
line of future work.

A related topic are statistics on hierarchical tables. To support cost estimation, one
wants to be able to efficiently gage compact but useful summarized data about the
structure of a hierarchy at bulk-build time, and update the information at regular in-
tervals. For example, if we know only the minimum, average, and maximum number
of children of the (non-leaf) nodes—three integers that can be collected during a single
hierarchy traversal—we can already compute a reasonable estimate of the cardinality
of an is-parent() join. The hierarchy index interface itself already provides access to
interesting measures: For example, the higher the average depth() or size() of a set of
nodes, the less join partners they will presumably have in a join on the descendant axis.

Yet another challenge is cost estimation, where the query optimizer estimates the CPU
and memory access costs of physical operators in order to assess alternative plans.
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With hierarchy operators the true costs do not only depend on the chosen algorithm
but also on the type of hierarchy index. While our index interface offers certain asymp-
totic complexity guarantees, the observable runtime costs of the primitives may differ
heavily between different indexing scheme. For example, PPPL can answer most prim-
itives straight from the label and makes node() a no-op, whereas other schemes deal
with variable-length labels and complex auxiliary data structures. To account for these
differences, one could enhance the cost model by (statically) assigning an appropri-
ate CPU and memory access cost to each index primitive. The costs of a particular
algorithm would then be computed in terms of the input cardinalities and the index
primitives it uses. This is another worthwhile topic for future work.

Plan Generation and Rewriting. In §4.1.4 and §5.1.2 we already explored most of
the relevant equivalences and properties of our hierarchy functions and predicates. In
future work, it will be interesting to examine further rewrite rules on plan level regarding
the different physical operators, like the rewrites between binary and unary structural
grouping we discussed in § 5.1.7 as an example. Such rewrites are not trivial to perform,
but they allow the engine to leverage the available physical operators as effectively as
possible and thus can enable high performance gains.

Another challenge is to deal with hierarchical sorting effectively. Queries on hierar-
chies often request the output to be sorted. Most of our operators also require sorted
inputs in preorder or postorder, and some of them retain certain orders in the output.
Once the data has been sorted in the plan, subsequent operators may therefore benefit
as well. The query optimizer should leverage these properties by employing explicit
Sort operations using the is-before-pre() and is-before-post() primitives; where possi-
ble, Hierarchy Index Scan operators on the base table to establish the desired order
in the first place; chains of order-preserving operators to retain the order, once estab-
lished; and in particular, Hierarchy Rearrange when a conversion from preorder to
postorder, or vice versa, is necessary. Thus, techniques such as maintaining interesting
orders for query plans [94] become particularly relevant for queries on hierarchies.

Enhanced Index Scans. Hierarchy Index Scan (§5.2.1) is a critical operator: it pro-
vides the access path to the hierarchical table and also serves as the basis of Hierarchy
Index Join. It therefore seems worthwhile to further enhance its functionality. In § 5.2.1
we already outlined an approach to handle certain ¢ filters implicitly by delimiting
the scan range upfront. This idea can be extended to further types of predicates, in
particular axis checks where ¢ = (H.axis(v,vp) € A) for a constant vy and a set of
axes A, and arbitrary disjunctions thereof. However, many common predicates such
as dq < H.depth(v) < d, cannot be handled by simply adjusting the overall scan range.
For such predicates, significant speedups might still be achieved via fine-granular skip-
ping over index ranges that cannot possibly fulfill the predicate, in the spirit of Stair-
case Join [41]. Further potential could be unlocked by integrating HIS more deeply
with the underlying indexing scheme. For example, a hypothetical index maintaining
lookup tables of the roots and leaves could handle predicates such as H.is-leaf(v) and
H.is-root(v) by simply traversing over the available tables.
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A related topic is about evaluating certain expressions of L incrementally during the
scan in order to avoid explicit per-node index calls (as the basic Map operator would
do). The idea is to call the index primitive ¢; only once to obtain its initial value e;(c1)
at the begin of the scan range, then derive subsequent values from the previous value
on each pre or post traversal step performed by the scan. Functions that can in princi-
ple be computed incrementally are pre-rank(), post-rank(), depth(), is-root(), height(),
and—by peeking at the node ahead—is-leaf(). This technique would make the evalu-
ation of such functions a matter of a few simple arithmetics per scanned node—even
for dynamic indexes where they would otherwise involve costly algorithms.

Parallel Algorithms. While our operators are generally efficient in terms of both
asymptotic complexities and “constant factors,” they might be confronted with huge
data sets especially in analytic applications. Parallelizing the algorithms is therefore an
interesting line of future work. Consider the hierarchy join operation as an example. A
helpful property of (inner) joins is that one input side can in principle be chunked and
freely processed by parallel workers. A simple approach for a parallel Hierarchy Merge
Join (and similarly, HIJ) would thus be to materialize the right input e, upfront as usual,
then partition the left input e; and run the single-threaded algorithm HM]J (e}, e;) on
each sorted partition e] against e. If the output order is irrelevant, HMJ (unlike HMGJ)
does not strictly need e; to be globally sorted; each worker can sort its partition by v;
individually. If a consolidated output table must be produced, the individual outputs
can simply be concatenated.

Note that for each ¢} partition the whole right input e, is potentially relevant. Scan-
ning e, multiple times will significantly increase the total amount of work performed
(e.g., in terms of is-before() calls) over the single-threaded case. The major challenge
therefore is to optimally divide the work in order to maximize the gains from concur-
rent processing. Splitting the (left) input into equal-sized chunks is not sufficient, as the
actual amount of work on the chunks may differ greatly due to a kind of “skew” that
is inherent to many hierarchy operations. Consider a basic join e; Me; on the descen-
dant axis: Input tuples from e; whose associated nodes are close to the root will match
with many tuples from e, whereas leaf nodes may not find any join partners at all.
When we divide ¢; into partitions ¢!, a desirable goal is to balance the actual amounts
of work O(|ej| + |ej Xey|) as far as possible. To achieve a reasonable distribution, it
may well be worthwhile to perform a first quick pass through the data to assess the
skewedness for the purpose of partitioning. Alternatively, work stealing schemes such
as the morsel-driven approach of [57] can elegantly circumvent many of the issues.

Besides the challenging problem of partitioning, the situation is even more compli-
cated for HSEF, HMG]J, HG, and HR, where each result tuple can have data dependen-
cies to the previously processed nodes. A worker on partition j may depend on results
from partition j — 1 to be able to complete its work. Consider the bottom-up variant of
Hierarchical Grouping, which is designed to reuse partial results from previous tuples.
Suppose we are running HG against our familiar example hierarchy, assuming it has
already been (globally) sorted in postorder and split into two halves as follows:
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(01, (02 ---------- -(a1)
TR TN

Two workers could work on the two chunks in parallel to a certain degree. For exam-
ple, worker 1 can fold nodes and into (81), and worker 2 can fold into (c4).
However, due to the data dependencies indicated by the dashed edges, both are unable
to complete their work: Worker 1 cannot output (81), (01), or (02), because they are cov-
ered by upcoming nodes, and worker 2 cannot process (c3) before (b1) and (D2) are ready.
The workers can, however, easily detect these data dependencies: In the bottom-up HG
case, worker j simply needs to check whether the last node of partition j — 1 (@2 in
our example) is a descendant of its currently processed node. A promising approach
for stack-based algorithms like HG would thus be to let each worker run a modified
HG algorithm on its partition, which processes all nodes that can be folded as usual,
but detects and marks nodes that are on either end of a data dependency. Each worker
would then end up with a stack of “incomplete” nodes that need further processing.
For our example this would look as follows:

s = ({ev,©,E0}, {ov}, {@d})  S? = (cs, {@3), o)}, B2, AT, {@)})

Here, sets of nodes indicate partially folded subtrees. These results cannot be yielded
to the parent operator yet, as the dotted nodes from the second partition depend on
them. Worker 2 just marks these dotted nodes on the stack without processing them.
After both workers finish, a subsequent single-threaded merge step needs to pick up
their unfinished stacks, finish the processing, and yield the actual output tuples.

In sane cases, the workers can be expected to complete a decent amount of work in
parallel before the non-parallel merge step takes over: Assuming a regular hierarchy
structure, perfectly equal-sized partitions, and only distinct nodes in the input, the size
of the stacks is proportional to the hierarchy height . Thus, the number of elements to
merge is bounded by the number of partitions times /. Unfortunately, one can as well
construct insane hierarchy structures for which parallelization is inherently impossi-
ble. A practical solution would have to detect such cases and fall back to non-parallel
processing. These ideas could be applied to binary operators such as HM] as well.
Further research is needed to develop robust algorithms, study their properties, and
assess their benefits against the sequential algorithms.
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In this chapter we demonstrate the feasibility of our proposed framework for hierar-
chical data by means of an experimental evaluation, based on a prototypical execution
engine that implements its key components. We conduct a series of experiments with
synthetic and real-world data, covering both small and extremely large datasets in or-
der to gain insights into caching effects and scalability. Our experiments in particular
comprise the query primitives of the hierarchy index interface described in §4.1.2, the
bulk-loading algorithms of §4.6, and the physical algebra operators of §5.2. With re-
spect to indexing, we concentrate on those hierarchy indexing schemes we recommend
as a default choice in §4, which includes a member of our own family of indexing
schemes, the BO-tree. Where feasible, we compare our framework to state-of-the-art al-
ternative approaches as well as common ad-hoc solutions, such as recursive common
table expressions operating on adjacency lists.

6.1 Evaluation Platform

The platform for our experiments is a standalone single-threaded execution engine
written in C++. It allows us to hand-craft query plans based on a push-based physical
algebra as described in the previous chapter. All hierarchy operators we discussed
in §5.2 by design fit into this execution model. In addition to these operators, we
implemented all SQL data types, as well as simple but reasonably efficient text-book
algorithms of the essential operators of relational algebra. The base data is stored
column-wise without further compression (nor dictionary encoding).

Through careful use of C++ templates, no virtual function calls are necessary in the
hot paths and heavy inlining and low-level optimizations can be performed by the com-
piler. GCC 5.2.1 with -03 is able to translate query plans constructed from the physical
algebra into efficient machine code, where no operator boundaries are apparent within
the code fragments representing the different pipelines. Thus, the friction losses due to
the physical algebra abstractions are minimal, and the resulting code is comparable in

Results from experiments based on our research prototype were previously published in [8], [31], [9],
[32], [33], and [10]. In particular, experiments §6.3.1, §6.3.4, and §6.3.7 were partially covered in [9];
experiments §6.3.2 and §6.3.3 were also covered in [32] and [33]; and experiments §6.3.5, §6.3.6, and
§6.3.8 were also covered in [10]. While this chapter does not include all of the previously published
results, it provides an extended discussion of those experiments covered, and updates the reported
numbers to reflect the most recent state of our prototype. Furthermore, all measurements are obtained
from a single machine, which differs in some of our previous publications. However, these differences
do not affect any of the conclusions we draw from our evaluation.
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quality to what hand-written code would emit. According to a few micro-benchmarks
we conducted it is also in the same order of magnitude as the single-threaded per-
formance of modern engines such as HANA Vora [91]. This renders our execution
engine a simple yet flexible and meaningful experimentation platform for evaluating
our framework and in particular our proposed physical algebra operators.

Our test machine runs Ubuntu 15.10 and has two Intel Xeon X5650 CPUs at 2.67 GHz
(6 cores, 2 hyperthreads each), 12 MB L3 cache, and 24 GB RAM. Our experiments are
generally single-threaded and ensure that all data fits into RAM.

6.2 Test Data

For several of the experiments we use a hierarchical table HT with a schema similar to
the one in Figure 2.3 (p. 17):

CREATE TABLE HT (

Node NODE PRIMARY KEY, - - size is index-dependent
ID CHAR(8) UNIQUE, - - 8bytes
PID CHAR(8), - - 8bytes
Weight TINYINT - - 1byte
Payload BINARY(p) -~ phbytes

)

Each tuple has a primary key Node, a unique ID and a Weight randomly drawn from
the small domain [1,100]. The PID column stores, for each node, the ID of the parent
row. We use it only in query plans based on RCTEs. The table is stored column-wise
and clustered by Node in preorder. There is a unique hash index on ID.

In the experiments we assess the performance on varying hierarchy sizes by varying
the table size |HT| exponentially from 10° to 107 to also cover loads that by far exceed
processor cache capacity. Already at |[HT| = 10° all indexes exceed L3 cache, yielding
“worst case” uncached results. Regarding the hierarchy structure, we use the following
test hierarchies:

* BOM (N): The structure of this hierarchy models a real-world bill of materials
table. It is derived from a materials planning dataset of a large SAP customer.
The original size is in the range of 10° nodes, and the average height of the
individual trees is 10.3. The overall shape of the hierarchy is fairly regular and
has no particularly challenging distortions. To expand the size to up to N = 107
nodes, we remove or replicate trees in such a way that the essential structural
properties of the original hierarchy, especially the overall height, are preserved.

* BOM(N,s): For experiments involving subtrees of a specific size, we derive a
family of hierarchies BOM (N, s) containing N nodes like BOM (N), but with a
different shape: All children of the super-root T are trees of size s. We obtain
each tree by choosing a random subtree of size at least s from BOM (N) and then
removing random nodes to downsize it to s. Using BOM (N, s), we are able to
easily pick random subtrees of size s among the children of T.
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e Regular (N, k,s): To be able to control and vary the size, depth, and “width” of
the overall hierarchy while maintaining a homogeneous structure, we use an
artificially generated hierarchy structure in some experiments. Regular (N, k, s) is
a forest of N nodes in total, where each inner node is assigned exactly k children.
Each tree in the forest is limited to s nodes in total. This way increasing N results
in further trees of size s being added, but does not affect the total height of the
forest. The height is controlled via k.

Regarding the hierarchy index, we cover the main indexing schemes we suggest in § 4.3
as well as a few additional alternatives of interest:

¢ PPPL: The simple Pre/Post/Parent/Level labeling scheme, which we fully de-
scribe in § 4.4. PPPL does not support any of the update primitives and thus is
feasible only for read-mostly analytic scenarios, where the hierarchy is loaded
once and changed rarely, if ever. As all query primitives boil down to very cheap
O(1) arithmetics directly on the cache-resident Label objects, this is as fast as a
hierarchy index can get. Measurements with PPPL thus indicate the upper per-
formance bounds.

® BO-Tree: The BO-Tree indexing scheme outlined in §4.5. We use a configuration
with mixed block sizes and gap back-links, which we recommend as a good trade-
off following our study in [33]. The BO-Tree indexing scheme is highly dynamic
and at the same time robust against unfavorable “skewed” update patterns. This
makes it a good all-round fit for dynamic OLTP scenarios. However, its merits
come at a cost: Due to its elaborate structure—where each Label has links to two
entries in the B'-tree structure—the query primitives become computationally
non-trivial O(log |HT|) operations, and accessing the index blocks incurs addi-
tional cache misses. Comparing the measures of BO-Tree to those of PPPL thus
gives us a good hint of the overhead to expect from a sophisticated dynamic
index structure.

* Ordpath: We also implemented and measured the Ordpath labeling scheme as
described in [79] (see also § 4.2.4). Here a Label stores a binary-encoded root path.
The labels (NODE column) are indexed by a standard B-tree. Path-based schemes
such as Ordpath generally support dynamic OLTP scenarios well, although their
query primitives are slowed down by the variable-size labels, and, in comparison
to BO-Tree, they are somewhat less robust and less flexible regarding complex
updates (cf. [33]). We nevertheless include the measurements due to the popular-
ity of path-based labeling schemes in commercial systems.

¢ Adjacency is an indexing scheme implementation which emulates the trivial ad-
jacency list scheme. The Label object stores a pair (ID,PID) of integers. There is
a (unique) hash index on ID and another (non-unique) hash index on PID. This
scheme is very widespread in practice due to its simplicity. However, it does not
efficiently support the query primitives nor the complex update primitives of
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a full-blown hierarchy indexing scheme. Nevertheless, we implemented the in-
dex interface as far as possible, and include the numbers as an indication of the
performance of RDBMS which do not adopt indexed hierarchical tables.

* DeltaNI: We also include our DeltaNI indexing scheme [31] as another example
of a sophisticated index-based scheme, although it has not been a focus of this
thesis. As a versioned index that is able to handle time-travel queries, it unsur-
prisingly comes with significant overhead in comparison to the other contenders.
However, as mentioned in §4.2.5, DeltaNI can be useful in scenarios featuring
temporal hierarchies.

This selection includes two proper “dynamic” indexing schemes. As § 4.2 shows, there
is actually a much wider range of dynamic schemes to choose from. Each of them will
of course exhibit more or less different characteristics. For example, by replacing the
BO-Tree by the O-List and tweaking the back-link representation and the block sizes,
query performance could be further boosted. An O-List with a sufficiently large block
size outperforms BO-Tree in queries by roughly 50%, although it also becomes less
robust in dealing with skewed insertions and relocations of large subtrees and ranges.
That said, a systematic comparison of dynamic indexing schemes is not our focus in
this chapter. For more detailed insights we refer to our study in [32].

6.3 Experiments

In the following subsections we present the individual experiments we conducted.
Each of these experiment focuses on a particular aspect of our framework.

6.3.1 Hierarchy Derivation

As a starting point, we evaluate the performance of building a hierarchy from scratch
based on a table in the adjacency list format. This demonstrates the performance of
the bulk-building process we described in §4.6.

Setup. To obtain the source data for bulk-building, we create a table Source in the
adjacency list format. We assess the performance on varying input table sizes by scal-
ing Source from N = 10% to 10”. The table contains an ID primary key column and a
PID column referencing the superordinate part. Both are of type INTEGER. The ID col-
umn is populated with generated IDs, and the PID column is populated so as to reflect
the structure of our BOM (N) hierarchy. Additionally there is a 16 byte Payload field,
which models data attached to the nodes that is to be included in the hierarchical table.
Deriving a hierarchy from Source is expressed as follows using our SQL extensions:
SELECT Node, ID, Payload
FROM HIERARCHY (USING Source JOIN PARENT p ON PID = p.ID SEARCH BY ID SET Node)

We assume table Source to be already materialized in memory, so that Step 1 of the
process described in § 4.6.3 (see p. 97) is skipped. For the initial outer self-join (Step 2.1
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in §4.6.4, p. 98) we use a hash-based algorithm. Step 2.2 involves sorting by ID, for
which we use a (single-threaded) standard library algorithm. In this case there is no
explicit START WHERE clause that would need to be handled (Step 2.3).

For purposes of comparison, we measure the time of a recursive common table ex-
pression over Source using semi-naive evaluation. This RCTE “discovers” the hierarchy
structure in the source table through iterative joins over the ID-PID association:

WITH RECURSIVE RCTE (ID, Payload) AS (
SELECT ID, Payload FROM Source WHERE PID IS NULL
UNION ALL
SELECT v.ID, v.Payload
FROM Source v JOIN RCTE u ON v.PID = u.ID

)
SELECT * FROM RCTE

Such a recursive join could be used to implement the alternative iterative approach to
the adjacency list transformation, as outlined in § 4.6.5. Note that the measured RCTE
does not perform duplicate elimination and thus cannot detect and eliminate cycles.
Adding corresponding logic would make it considerably slower. Note also that ID and
PID are processing-friendly INTEGER columns rather than, for example, VARCHAR columns
which one often encounters in practice; this also benefits the iterative approach. The
join algorithm we use for the RCTE is hash-based, just as for the HIERARCHY () statement.

Observations. Figure 6.1 displays the measurements. The shown times comprise all
steps 1—4 of evaluating the HIERARCHY () statement. The right-most bar shows the time
of the RCTE as an approximation of the mentioned iterative bulk-building approach.

The differences between the indexing schemes are not surprising. The static PPPL
indexing scheme can be constructed with extremely low overhead (see the algorithm
in §4.6.2). The overhead for BO-Tree is also quite moderate due to the efficient bulk
construction algorithm of the underlying B*tree. DeltaNI takes around twice as long
for constructing its non-trivial index structure based on binary trees, which are not
particularly memory-efficient. Ordpath involves a comparatively costly manipulations
of its variable-length strings during B*-tree construction.

Most importantly, we see that—regardless of the chosen indexing scheme—bulk-
loading a hierarchy index is considerably faster than the RCTE, especially so for large
and deep hierarchies. The main reason for this is that the RCTE performs repeated
(iterative) joins, whereas bulk-loading involves only a single self-join on the (complete)
source table. The runtime of the RCTE is therefore proportional to the height of the
loaded hierarchy (which in the case of the BOM (N) hierarchy is 10.3). Therefore, in
this case—where no START WHERE clause was given—the iterative approach can be con-
sidered inferior to the non-recursive approach of evaluating a HIERARCHY () statement.

In Figure 6.2 the individual parts of the process are broken down further for the
PPPL indexing scheme. Note that only steps 3 and 4 are index-specific (and as such the
reason for the performance differences in Figure 6.1). Due to the minimal overhead of
PPPL, the measurements of Step 3 essentially indicate the best achievable performance
of the generic build() algorithm. The breakdown unveils the most expensive steps
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Figure 6.1: Experimental results for §6.3.1.

Step N =10* 10° 10° 107
1—2.1 Join 624ps  5.6ms  73.2ms 1129ms
2.2-2.4 Sort 6541s 9.1ms 119.2ms 1234ms
2.5 Edge List Transformation 136ps 2.6ms  69.5ms  962ms
3 build() 347HMS  3.9ms  46.7ms  390ms
4 Populate NODE column 17218 0.3ms 1ms 10ms
1—4 HIERARCHY () Total 1933 pS  21.5mS 310ms 3725ms

Figure 6.2: Experimental results for §6.3.1 — Breakdown of HIERARCHY () steps.

of the process: the initial hash-based self join (Step 2.1) and the subsequent sorting
(Step 2.2). The actual Edge List Transformation and the build() algorithm are both
cheaper than the join. Note, however, that in commercial RDBMS the join and sort
operations can be expected to be further optimized and even parallelized. But even
without further optimizations, we can safely conclude from the absolute numbers that
the bulk-building process we propose in § 4.6.3 can deliver satisfying performance for
even very large input sizes.

Memory Utilization. The memory utilization of the different indexing schemes is
another consideration to make when choosing a suitable scheme. The following table
compares the memory utilization for the case |[HT| = 107 in bytes per hierarchy node:

PPPL | BO-Tree | Ordpath | DeltaNI | Adjacency
clean | 48.1 50.6 27.0 90.6 81.4
dirty - 66.1 33.9 211.2 81.4

The first row “clean” shows the memory consumption immediately after bulk building.
These sizes include the NODE column and the auxiliary data structure, but not the other
columns of HT. The space required by our configuration of BO-Tree is comparatively
high due to the employed gap back-links, which add 8 bytes per node: 2 bytes per key in
the index entry and in the label, times two because each node has a lower and an upper
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bound. The size could be reduced by modifying the configuration; for example, 1-byte
gap keys could be used, or pos back-links, which require only 2 extra bytes. The BO-
Tree block size B is also a factor: smaller blocks incur a certain (small) overhead over
larger ones. Ordpath is remarkably compact, as it stores only one path label as opposed
to two bound labels. Note, however, that the ordpaths in all our tests contained almost
no carets, so this represents a favorable case for this scheme. The sizes for DeltaNI are
constantly large, since its auxiliary data structure is based on space-costly binary trees
with parent pointers. The high memory requirements of Adjacency are mainly due to
its two hash indexes.

Another issue concerning dynamic indexes is that the memory utilization, and conse-
quently the performance, degrades slightly when performing update operations. The
“dirty” row in the table shows what the memory utilization would be if the identical
hierarchy structure had been constructed via N individual inserts at random positions.
(Note this is not applicable to PPPL.) Especially DeltaNI is affected by this issue. Par-
ticularly unfavorable “skewed” insertions can blow up the sizes of certain susceptible
indexing schemes (in particular, containment-based variable-length labeling schemes)
even more dramatically. Refer to [33] for more details on these effects.

6.3.2 Index Primitives for Queries

The goal of this experiment is to gain insights into the performance of different query
primitives for the indexing schemes under consideration. These primitives are the
building blocks for the algorithms we evaluate in the remainder, and as such influ-
ence their performance significantly. Since our focus is on query performance, we pre-
clude update primitives. For an in-depth study that focuses on updates and compares
various dynamic indexing schemes, we again refer the reader to our publication [33].

Setup. For this experiment our table HT is populated again with the BOM (N) hier-
archy of sizes 10* to 107. We assess the query primitives node(), is-before-pre(), is-
before-post(), axis(), is-parent(), depth(), and is-leaf(). They are invoked repeatedly with
randomly selected Node objects of the hierarchy—Label objects in case of node(). We
assume that the Node objects are already available, so the measured times of the primi-
tives other than node() do not include the time of obtaining them first via node().

The measurements of the node() primitive, in particular, indicate the time it takes to
retrieve a Node handle of the index structure given a Label object from the NODE column.
For BO-Tree, node() essentially executes entry(!) using the location strategy. For PPPL,
it involves a lookup in the pre-to-rowid[] index to make the corresponding row ID
available for fast access. For Ordpath, it essentially performs a B-tree search for the
label. For DeltaNI, node() involves a non-trivial process to “warp” the nested intervals
bounds of the node to the most recent point in time using the auxiliary data structure,
which consists of a pair of binary trees (see [31]).
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Figure 6.3: Experimental results for §6.3.2.
Observations. Figure 6.3 displays the measurements for [HT| = 107. To further

demonstrate the accompanying caching effects, Figure 6.4 shows the average number
of cache misses per operation (but omits some of the primitives for brevity).

We first observe that the naive Adjacency indexing scheme fails to offer robust query
performance, as is to be expected. While some queries such as is-parent() are fast,
other important queries such as axis() and depth() are unacceptably slow. Also unsur-
prisingly, the static PPPL indexing scheme is hard to beat in terms of query perfor-
mance. Ordpath also performs quite well, although it is outperformed by BO-Tree in
some cases. The heavy-weight DeltaNI appears to perform astonishingly well on most
queries, but this is only the case because all the complexity is hidden in node(), which
DeltaNI must perform every time before it executes a query primitive.

Considering the node() primitive in particular, BO-Tree and order indexes in general
benefit a lot from their fast back-link mechanism. This makes node() an O(1) operation
and in practice involves around 2 cache misses. In contrast, labeling schemes such as
Ordpath (but not PPPL) in general have to perform more costly O(log N) B-tree key
searches, which involve over 10 cache misses per lookup.

PPPL and Ordpath (and labeling schemes in general) can answer certain query prim-
itives by touching only their Label objects. As the Label objects are readily loaded in
cache, they show less than 0.5 cache misses for these primitives. Of course, the actual
spent CPU cycles are much higher for Ordpath, which performs non-trivial operations
on the binary-encoded ordpaths. This is most strongly visible with is-parent() and
depth(), where it always compares the complete path strings.

In contrast to PPPL and Ordpath, as a block-based order index, BO-Tree touches
the auxiliary data structure to evaluate any of the index primitives, and thus suffers
at least 1 extra cache miss per invocation (around 1-3 cache misses according to Fig-
ure 6.4). This effect is particularly pronounced in this experiment. As we select the
argument nodes randomly and thus also access the auxiliary data structure at random
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Figure 6.4: Experimental results for § 6.3.2 — Average number of cache misses per call.

positions, the relevant index blocks will rarely be in cache. In this regard, this experi-
ment is a worst-case scenario for BO-Tree in comparison to the labeling schemes. For
query primitives where all indexing schemes inherently need to access their auxiliary
index structure, labeling schemes show more cache misses and BO-Tree becomes more
competitive. The is-leaf() primitive, for instance, requires a B-tree index access for la-
beling schemes (except for PPPL). Another example are traversal primitives, which we
examine in the next experiment.

To assess the scalability of the indexing schemes, we also conduct the measurements
on smaller hierarchies of size 10°,10°, and 10%. Figure 6.5 shows the results. (The query
primitives we omit in this figure show a comparable behavior.) Regarding is-before-
pre() and depth(), indexing schemes accessing the auxiliary index structure suffer be-
tween 10° and 10°, where L3 cache size is reached. This is due to the mentioned extra
cache misses, as these primitives are invoked with randomly chosen node arguments.
The drop for node() is comparable for all indexing schemes, as they all need to access
the auxiliary index structure. However, BO-Tree slows down only moderately between
10 and 107 nodes due to its O(1) node() algorithm, while other indexes drop further.

Apart from these details, all considered indexing schemes scale quite well on almost
all query primitives, and therefore can be used for even very large hierarchies.

6.3.3 Hierarchy Traversal

Our previous experiment does not exercise the traversal primitives pre-next() and post-
next(), as these primitives are never called in isolation in a query. Their main use is
through Hierarchy Index Scan (HIS) or Hierarchy Index Join (HIJ) in order to navigate
over the hierarchy.

Setup. In this experiment we use the same setup as in §6.3.2. We execute the follow-
ing query Q3.1:

SELECT ROWID() FROM HT ORDER BY PRE_RANK(Node)
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Figure 6.5: Experimental results for §6.3.2 — Scalability.

The query plan consists of a single full Hierarchy Index Scan, which uses pre-next() to
move over the hierarchy in preorder. It enumerates the row IDs of the nodes, but does
not materialize them. No column of the table HT is touched except for (potentially) the
NODE column. We do not report separate measurements for postorder, since traversal
via post-next() works fully analogously for all indexing schemes under consideration.

Besides the performance of HIS, we measure another example query @3.2, which
uses a Hierarchy Index Join to self-join the hierarchical table HT on the descendant
axis and additionally evaluates the depth() of each descendant:

SELECT u.Node, v.Node, DEPTH(v.Node)
FROM HT AS u JOIN HT AS v ON IS_DESCENDANT(v.Node, u.Node)

WHERE IS_ROOT (u.Node)
ORDER BY PRE_RANK(u.Node), PRE_RANK(v.Node)

The plan using Hierarchy Index Join is:

eo < Hierarchy Index Scan [H; vq; pre; { }; H.is-root(v1)] ()

0(t, t) := (H.axis(tp.vp,t1.v7) = descendant)

e1 < Hierarchy Index Join [H; v; 0;; pre]| (o)

ey < Map [d : H.depth(1;)] (e1)

Generally, the performance of HIJ varies with the sizes of the subtrees that are scanned
for each tuple from its (left) input. We therefore make these sizes variable: For s ranging
from 20 to 213, we generate a BOM (N, s) hierarchy structure. Then we use the children
of the super root T for the join input eg. The first HIS in the plan therefore does not
contribute to the measured execution times. As HIJ essentially executes a partial index
scan for each input tuple to enumerate the s entries in the respective tree, we refer to
these measurements by “Q3.2[s].”

This instance of HIJ represents an important query pattern and thus can give us a
hint of the performance we can expect of queries involving index scans in their plans.
Note the depth() primitive is exercised in a different way than in § 6.3.2, where we mea-
sured the query primitives in isolation and called them on random individual nodes.
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Figure 6.6: Experimental results for §6.3.3.

Here, memory locality effects regarding the auxiliary data structure come into play
due to the systematic traversal. This benefits in particular block-based indexes such
as BO-Tree, since the relevant blocks will often be in cache already. depth() therefore
becomes a comparatively cheap operation.

Observations. Figure 6.6 shows scalability measurements of Q3.1 and Q3.2[1024]
with varying hierarchy size |HT|, as well as measurements of Q3.2 [s] at |[HT| = 107
with varying scan size s. The plotted measure is the number of scanned tuples—i.e.,
calls to pre-next()—per second.

Scans generally access the hierarchy index in a predictable pattern. Therefore, we
intuitively expect the initial cursor() call of an index scan to be the most expensive
individual operation, as it always incurs a cache miss. The subsequent traversal via re-
peated pre-next() calls is very prefetching-friendly and will thus often incur few further
cache misses. This explains why all indexing schemes benefit from larger scans s in the
graph to the right. We can further confirm this intuition by looking at the respective
average number of cache misses per pre-next() call:

Q3.1
PPPL 0.13
BO-Tree 0.04
Ordpath 0.09
DeltaNI 0.39
Adjacency | 0.75

For PPPL, BO-Tree, and Ordpath there are virtually no cache misses during the scan.
When we look at the results for the pure scan 3.1, Ordpath is fastest. This is not
surprising, as it simply performs a scan over the B-tree which already arranges the
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labels in preorder. BO-Tree performs a scan through its underlying B*-tree-based data
structure, which also benefits a lot from the mentioned locality effects. PPPL is slower
than Ordpath and BO-Tree in this experiment, as it has to simultaneously access the
Node column and its pre-to-rowid[] index. That said, its absolute performance is still
very good. Adjacency is very slow, as its hash indexes have to be repeatedly accessed
to determine the child nodes to be subsequently scanned. DeltaNI is even slower; it
pays the price of a full-blown versioned indexing scheme.

When we look at the more complex query Q3.2 featuring the additional depth() call,
things change noticeably. Ordpath suffers hard from its variable-length labels and the
more expensive depth() primitive that involves counting the elements in the ordpaths.
depth() becomes even more expensive for Adjacency, which has to perform traversals
through the auxiliary data structure to determine the number of nodes on the respec-
tive root paths.

Regarding the scalability with respect to |HT]|, there is a slight penalty when the
hierarchy cannot fit into L3 cache any more. But in general, the performance drops
less significantly in comparison to the analogous measurements of § 6.3.2. This is again
due to the predictable patterns the data structures are accessed in, which particularly
benefits the indexing schemes that are based on a block-based auxiliary data structure:
BO-Tree as well as Ordpath with its B-tree of labels.

We conclude that both recommended indexing schemes PPPL and BO-Tree offer ro-
bust and high performance at raw index scans and at queries featuring scans as build-
ing blocks. Since HIS and HIJ are core operators of common query plans, outstanding
query performance can be anticipated.

6.3.4 Hierarchy Joins

In this experiment we assess the performance of our join algorithms Hierarchy Merge
Join (HM]) and Hierarchy Index Join (HIJ).

Setup. For this experiment we again use the hierarchical table HT as described in
§6.2 and vary its size [HT| from 10° to 10°. Due to the large output sizes of the test
queries we preclude |[HT| = 107. The hierarchy structure is the generated forest struc-
ture Regular (JHT|, k, s), where each tree is given s = 10* nodes and each inner node
exactly k children. To assess the influence of the hierarchy shape, we compare very
deep trees (k = 2) trees to very shallow trees (k = 32). With k = 2 we get a total
hierarchy height / of approximately 13.2, whereas for k = 32 we get h ~ 3.6. Since in
a Regular hierarchy the majority of nodes is on the lowest levels, the average level of
the nodes is 11.4 and 2.89, respectively.

We assess four queries. Query Q4.1 performs an inner self join on the descendant or
self axes over the complete hierarchy and lists the ID pairs of the matching nodes:

SELECT t.ID, u.ID FROM HT t JOIN HT u ON IS_DESCENDANT_OR_SELF(u.Node, t.Node)

We assume the input table to be readily available in memory. To mask out the effects of
accessing and sorting the required columns of HT, which is in column-oriented format,
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we pre-process the input table as follows: First, we pre-materialize a row-oriented
input table Inp with the columns ID and Node. Second, we use Map to convert the
Node column (which contains Label objects) to a column v of Node objects. This way
we avoid having to insert node() calls into some of the assessed query plans, which
would put them at a disadvantage against plans that don’t require Node objects. Third,
we order the table by Node in preorder as required by the respective query plans.

We use different alternative plans to compare HM], HIJ, Nested Loop Join (NLJ),
and an RCTE-based solution. Each plan projects only the required t.ID and u.ID fields,
and the time for result materialization is included in the measurements. The plans are:

(HMJ A)

(HM] B)

(HIJ-1)

(HIJ-2)

(NLJ)

(RCTE)

A plan based on HMJ A:
e1 < Hierarchy Merge Join A [H; t.v; u.v; pre; {self, descendant}; X] (Inp|t], Inp[u])
e < Map [t.ID, u.ID] (1)

A plan based on HM] B:

e1 < Hierarchy Merge Join B [H; u.v; t.v; pre; {ancestor, self };X] (Inp[u], Inp|[t])

ey < Map [t.ID, u.ID] (1)

Note the HM]J-based plans are only possible because the table Inp is already
sorted accordingly.

A plan based on HIJ:

e1 < Hierarchy Index Join [H; v,; H.axis(vy, t.v) € {self, descendant};> pre| (Inp[t]);

ey < Map [u : HT[H.rowid (v, )]; t.ID, u.ID] (e1)

An alternative plan based on HIJ with an inverted join direction:
e1 < Hierarchy Index Join [H; v¢; H.axis(v¢, u.v) € {ancestor, self};> pre| (Inp|u]);

ey < Map [t : HT[H.rowid(v;)]; t.ID, u.ID] (eq)

A plan based on NLJ:
e1 < Nested Loop Join [H.axis(u.v, t.v) € {self, descendant}; | (Inp[t], Inp[u]);
e < Map [t.ID, u.ID] (1)

An equivalent plan based on a semi-naive least fixpoint operator. It works on
the ID and PID columns of HT and mimics a solution based on SQL’s recursive
CTEs, under the assumption that efficient IS_PARENT joins are possible. The SQL
definition of the RCTE is as follows:
WITH RECURSIVE RCTE (t_ID, u_ID) AS (

SELECT ID, ID FROM HT

UNION ALL

SELECT a.t_ID, b.ID FROM RCTE t JOIN HT u ON u.PID = t.u_ID
) SELECT = FROM RCTE

The plan uses a hash-based algorithm to evaluate the JOIN.
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Query Q4.1* assesses the overhead of large ID keys. The plans are the same as for
Q4.1, but the ID and PID fields are of size 32 bytes instead of 8 bytes. This increases
the sizes of the input table Inp and of the join result, but also the intermediate re-
sults—especially with the RCTE-based plan.

Query Q4.2 performs the same type of join as Q4.1, but with smaller, filtered left
and right inputs. To this end we prepare two disjunct subsets Leftinp and RightInp of
HT by filtering it by Weight in such way that a random 20% of the nodes is retained.
We again pre-materialize these two tables in row format and order them by Node in
preorder. The SQL definition of Q4.2 is:

SELECT t.ID, u.ID
FROM LeftInp t JOIN RightInp u ON IS_DESCENDANT_OR_SELF(u.Node, t.Node)

The HM]J-based and NL]J-based plans are analogous to the plans of Q4.1, except that
LeftInp and RightInp are used as inputs rather than two times Inp. The modified HIJ-
based plans are as follows:

(HIJ-1) e < Hierarchy Index Join [H; v,,; H.axis(vy, t.v) € {self, descendant};>; pre] (LeftInp|t]);
ey < Map [u : HT[H.rowid (v, )]; £.ID, u.ID] (e1)
e3 < Join [r.ID = u.ID; ] (RightInp[r], )

(HIJ-2) eq < Hierarchy Index Join [H; v¢; H.axis(vt, u.v) € {ancestor, self};; pre| (RightInp[u]);
e < Map [t : HT[H.rowid(v4)]; tID, u.ID] (e1)
e3 < Join [L.ID = t.ID; X (LeftInp[l], e3)

The limitations of HIJ force us to add additional semi joins to filter for RightInp or
LeftInp after performing the actual hierarchy joins. For these Join instances we use a
hash-based algorithm. An analogous filter has to be added for the RCTE-based solu-
tion. The modified SQL definition of the RCTE for Q4.2 is:

WITH RECURSIVE RCTE (t_ID, u_ID) AS (
SELECT ID, ID FROM LeftInp
UNION ALL
SELECT a.t_ID, b.ID FROM RCTE t JOIN HT u ON u.PID = t.u_ID
)
SELECT * FROM RCTE WHERE u_ID IN (SELECT ID FROM RightInp)

Finally, query Q4.2/semi is a variant of Q4.2 which features a left semi join:

SELECT t.ID FROM LeftInp t
WHERE EXISTS ( SELECT * FROM RightInp u
WHERE IS_DESCENDANT_OR_SELF(u.Node, t.Node) )

The HMJ-based and NL]J-based plans are analogous to the plans of Q4.2 except that
t = X and only t.ID is projected. The HIJ-based plans can not take advantage of the
semi variants of HIJ, as the filtering for IDs in Rightlnp and LeftInp needs to happen
after the actual join. Therefore, the only difference to the HIJ-based plans for Q4.2 is
in the final projection after the semi join, which has to eliminate duplicates (DISTINCT
semantics) using an order-based algorithm.
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Figure 6.7: Experimental results for §6.3.4.
Observations. Figure 6.7 shows the measured results. The y axis displays the execu-

tion time of the queries divided by the size of the output table; in other words, the
number of joined tuples per second. We measured NLJ only for [HT| = 10* due to its
quadratically increasing runtimes. The output sizes are:

Result Size
|[HT| = 10* |HT|=10°> |HT|=10°
Q4.1, Q4.1% k=2 113.644 1.136.440  11.364.400
k=32 28.912 289.120 2.891.200
Q4.2 k=2 5.035 50.578 554.640
k=32 2.453 24.335 255.451
Q4.2/semi | k € {2,32} 1.921 18.860 190.114

The red lines indicate the speed of copying a precomputed result table tuple by tuple.
This is a physical upper bound for the achievable performance.

Considering Q4.1 and Q4.1* HIJ is generally fastest. It is followed closely by HM] B
(roughly 2-3 times slower), which in turn noticeably outperforms HM] A (roughly 2
times slower). The RCTE-based solution is an order of magnitude below HIJ, and the
NLJ-based plan is another order of magnitude below the RCTE.

When comparing the dynamic BO-Tree to the static PPPL index, we see almost no
differences for the HIJ-based plans, as both indexes are very efficient at scans. With the
HM]J-based plans we clearly see the effects of the more complex is-before-¢() implemen-
tations of a dynamic index. While they are almost for free with PPPL, the non-trivial
implementations of BO-Tree incur noticeable CPU costs. The effect is strongest with
the NLJ-based plans, as NL] performs the most is-before checks. Note our BO-Tree in
the experiments is freshly loaded. In practice, the internal structure of most dynamic
indexes tends to degrade somewhat from incremental updates, as we saw in §6.3.1
when comparing the index sizes. This will also have a slight effect on performance in
practice. That said, the slow-down of BO-Tree is quite tolerable overall. Interestingly,
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the O(log |HT|) complexity of the index primitives is barely visible in the measure-
ments. Theoretically, increasing the hierarchy size |HT| should slow down BO-Tree
further against PPPL; however, the figures are practically indifferent to |HT|. For the
chosen block-based BO-Tree index, the logarithmic complexity does not matter much
in practice. One reason for this is that the height of the BO-Tree grows extremely slowly,
so the complexity can in practical terms be considered constant. Another reason is the
favorable data locality in the ordered inputs: the nodes involved in is-before checks
are usually close in terms of pre/post distance. Therefore, the relevant BO-Tree blocks
will be in cache, and most checks can even be answered by considering only one leaf
block hosting both nodes.

As the input sizes are equal to |[HT| (or 20% of |HT| in case of Q4.2 and Q4.2*) and
the output sizes are also largely proportional to |HT|, our chosen y axis allows us
to get an indication of the scalability of the different query plans with respect to the
hierarchy size. The figures confirm the linear asymptotic complexities of HM]J and HI]J,
and the quadratic complexity of NLJ makes this plan infeasible for [HT| = 10° and
higher. Still, HM] and HIJ are slowed down slightly for higher hierarchy sizes, which
can be attributed to the increased memory traffic. That slowdown is even higher for the
RCTE, as that plan produces significantly bigger intermediate results. At |[HT| = 10°
and k = 2 there is a particularly pronounced slowdown, where the L3 cache seems to
become ineffective. This also explains the differences we see when comparing Q4.1* to
Q4.1. The inputs and outputs are identical in these queries; the only difference is the
larger keys and thus the increased memory traffic. All the effects of increasing |HT|
are thus more pronounced in Q4.1%.

When comparing k = 32 against k = 2, one has to take into account that decreas-
ing the hierarchy height also decreases the average number of join partners in our
setting—and thus the size of the total join result. The smaller result is the reason for
the slight speedup of k = 32 over k = 2. It also means the negative caching effects
noted with k = 2 and higher hierarchy sizes are somewhat damped for k = 32. The
RCTE-based plan gains a lot from the flatter hierarchy, as fewer iterations are needed.

Looking at Q4.2, we first notice that HIJ and RCTE are at a big disadvantage now,
as they have to perform late filtering using an additional hash join. NL] is speeded up
significantly, as it has to deal with only 20% of the original input sizes and thus suf-
fers less from its quadratic asymptotic complexity. The performance of HM] remains
(roughly) comparable. Note that both the input sizes and the join result sizes change
over Q4.1; therefore, a direct comparison of the performance to Q4.1 is difficult.

Looking at Q4.2/semi, we see that both HMJ and NL] become more effective in
comparison to Q4.2 due to their specialized semi join variants. (We did not implement
HIJ and RCTE against Q4.2/semi. In general, HIJ benefits in the left semi join case,
but is inherently unable to handle right semi joins. The RCTE-based plan requires an
additional a-posteriori semi join or selection for the filter, and thus would be slowed
down even further. This is another inherent disadvantage of RCTEs.)

Overall, we can conclude that both HIJ] and HM]J have their respective ideal scenarios
where they deliver the best possible performance. Both easily outplay the suboptimal
RCTE-based and NL]-based alternatives by up to two orders of magnitude.
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6.3.5 Hierarchical Windows

In this experiment we assess the bare performance of hierarchical windows.

Setup. The basic setup is the same as for § 6.3.4. In addition to HT we pre-materialize
an input table Inp as described below. Then we run Statement IV from §3.3.5 with
various expressions from Figure 3.7 on Inp:

SELECT Node, expr FROM Inp
WINDOW td AS (HIERARCHIZE BY Node TOP DOWN),
bu AS (HIERARCHIZE BY Node BOTTOM UP)

Queries Q5.1 to Q5.4 differ in which expression expr they evaluate:

* Queries Q5.1 and Q5.2 compute Expression 1a bottom up and top down, respec-
tively, and represent non-recursive computations.

expr = SUM(Value) OVER bu  (Q5.1)

expr = SUM(Value) OVER td (Q5.2)

¢ Query Q5.3 computes Expression 4c and represents a structurally recursive com-
putation.

expr = RECURSIVE DOUBLE (Value + SUM(Weight * x) OVER bu) AS x

* Query Q5.4 computes a count/distinct aggregate bottom up and features a com-
paratively expensive duplicate elimination.

expr = COUNT(DISTINCT Weight) OVER bu

The aggregate state X of Q5.4 requires a data structure for duplicate elimination. We
maintain the distinct Weight values in a local array that spills to a hash table on the
heap once its fixed capacity of 128 values is exceeded.

For each of these queries we measure alternative plans. All plans work on the same
input Inp, which associates all nodes of HT with values as the computation input. Inp
is prepared a priori as follows: We select the contents of HT (thus, |Inp| = |[HT|), add a
randomly populated field Value of type INT, and run Map to obtain a column v of Node
objects from the Label objects of the Node field. Then we project (in row format) the
required fields for the respective query: [v, Value] for @5.1/Q5.2, [v, Value, Weight] for
Q5.3, and [v, Weight] for @5.4. Finally we sort the data in either preorder or postorder
as needed by the respective plan. The measurements thus show the bare performance
of the respective operators without any pre- or post-processing—in particular, with-
out sorting—but including the materialization of the query result. We compare the
following alternative plans, where applicable:

(a) the straight translation into

Hierarchical Grouping [H; v; post; {descendant}; x : expr| (Inp); — for window bu

Hierarchical Grouping [H; v; pre; {ancestor}; x : expr| (Inp); — for window td

169



6 EXPERIMENTAL EVALUATION

(b) the alternative
Hierarchy Merge Groupjoin [H; t1.v1; tp.1p; post; {descendant}; x : expr| (Inp[t1], Inp[t2])
Hierarchy Merge Groupjoin [H; t1.v1; tp.1p; pre; {ancestor }; x : expr| (Inp[t1], Inp|[t2]);

(c) the equivalent HMJ-Group approach of §5.2.7 with a preorder-based Hierarchy
Merge Join (variant HM] A);

(d) the equivalent Join-Group approach of §5.2.7 with a Nested Loop Join.

Comparing Plan b to Plan a shows us the overhead of using e " e instead of I'(e) for
a non-recursive computation. Plan ¢ can be considered state of the art and a natural
baseline for the comparison against our native I' and X algorithms, as explained in
§5.2.7. Plan d, the Join-Group approach, will often be the only option when an encod-
ing such as PPPL is hand-implemented in an RDBMS without further engine support.
Like in § 6.3.4, we furthermore consider two plans based on a semi-naive least-fixpoint
operator to mimic a RCTE-based solution using iterative IS_PARENT joins:

(e) lterative uses iterative hierarchy merge joins on the parent axis to first compute
all < pairs bottom up (Q5.1) or top down (Q5.2), analogously to §6.3.4. Then it
performs the actual computation using sort-based grouping.

(f) lterative* additionally applies “early grouping” within each iteration, an optimiza-
tion inspired by [82]. This early grouping can also be sort-based, as the hierarchy
merge join conveniently retains the input order.

This gives us a hint of the performance that can be expected from an exceptionally
well-optimized RCTE or from a hand-crafted iterative stored procedure. We commonly
see such procedures in real-world applications that are based on trivial adjacency list
tables. However, plans e and f are no general solutions; they work in our setup only
because all nodes from the hierarchical table HT are also present in Inp.

Note also that plans b to f work only for non-recursive computations. Thus, we can
evaluate Query Q5.3 only with Plan a.

Observations. Figure 6.8 shows the execution times, normalized with respect to the
number of processed elements |Inp|. As in §6.3.4, the red line indicates the speed of
copying a precomputed result table, which is approximately 37.6M per second.

In @5.1-3 with PPPL, the Hierarchical Grouping operator is remarkably close to this
bound (around 25.4M per second, or 67%). That non-recursive computations using
HG (Q5.1a) are not slower than recursive ones (Q5.3a) comes at no surprise, since the
algorithm is identical. For both HG and HMG]J, the top-down algorithms (Q5.2ab) are
slightly slower than the bottom-up algorithms (Q5.1ab), as they cannot dismiss covered
tuples as early and thus inherently issue more index calls. The duplicate elimination of
Q5.4 is costly—both HG and HMG]J become roughly 3 to 4 times slower over the trivial
arithmetics of Q5.1-3. When comparing e " e to I'(e) over all queries (Q5.1-4ab), we
see the latter is on average around 32% faster. The overhead of binary grouping stems
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from evaluating e twice (which in this case is a table scan) and from the extra index
calls needed to associate e; and e; tuples.

The HMJ-Group approach (Plan c) is significantly slower than HMG]J, mostly in
bottom-up Q5.1 (for instance, around 11 times slower at k = 2) but also in top-down
Q5.2 (around 3.5 times at k = 2); the gap grows with the hierarchy height. HMJ-Group
is somewhat handicapped at Q5.1, as the hierarchy merge join algorithm we use in
the plan is preorder-based. As preorder is more natural to top-down computations,
HM]J-Group performs noticeably better at Q5.2. Interestingly, the HMJ-Group-based
Plan c is not slowed down as much as the others at Q5.4 versus Q5.1. Apparently, the
intermediate join dominates the costs so that the subsequent processing-friendly sort-
based grouping does not matter much. Correspondingly, the overhead over HMG]J is
smaller at Q5.4, though still noticeable.

The iterative solutions are generally slow. Early aggregation helps much in the
bottom-up case, where lterative* even approaches HMJ-Group at [HT| = 10°. In the
top-down case, however, early aggregation does not help to reduce the intermediate
result sizes, as IS_PARENT is an N : 1 join; here, the (minor) savings over lterative come
from saved arithmetic operations by reusing results of previous iterations.

Regarding dynamic (BO-Tree) versus static (PPPL) indexes, the more complex is-
before-¢() implementations of the former are again clearly noticeable, as in §6.3.4. The
slowdown is most visible with the top-down Q5.2, where more is-before checks are
issued inherently.

As we also saw in §6.3.4, increasing the hierarchy size |HT| does not significantly
slow down BO-Tree in spite of the O(log |HT|) complexity of the index primitives.
HM]J-Group and lterative are much more sensitive to [HT| due to their growing inter-
mediate results.

If we consider the hierarchy shape—deep k = 2 versus flat k = 32—we see that
lterative and lterative* are very sensitive—unsurprisingly, as their time complexity is
proportional to h—whereas HG and HMG] are practically indifferent. The intermedi-
ate join result of HMJ-Group is somewhat proportional to /4, so it is also affected to
some extent (factor 2-3).

Note that the above experiments assess only e; X" e, where e; = ¢y, that is, a unary
hierarchical window setup. We also conducted measurements where e; # e, with
varying |e;| and |ez| sizes. However, as we found the results to be fully in line with the
complexity O(|e1| + |e2| + |e1 X ez|) of HMGJ, we do not separately report them.

Overall, the results exhibit the robust linear space and time complexities of our op-
erators for hierarchical windows, and again highlight their merits over conventional
approaches. Furthermore, they confirm the known “groupjoin advantage” also for the
hierarchical case—in line with the reports on hash-based equi-groupjoins of [74].

6.3.6 Hierarchical Sorting

In this experiment we compare plans based on Sort to plans based on Hierarchy Re-
arrange (HR). Recall that the HR operator consumes an input that is already sorted in
preorder or postorder and employs a stack-based algorithm to convert it to the respec-
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Figure 6.8: Experimental results for §6.3.5.

tive other order. Its advantage over Sort is that it allows for pipelining to some degree.
Here we investigate the potential of these “order-based” sorting algorithms.

Setup. Queries Q6.1 and Q6.2 work directly on the hierarchical base table and access
only the Node field. They simply select all nodes and sort them in either postorder
(Q6.1) or preorder (Q6.2):

SELECT Node, ROWID FROM HT ORDER BY [POST_RANK(Node) | PRE_RANK(Node) ]

For each query we compare four different ways to do the sorting. Like in §6.3.4
and §6.3.5, we first do some preprocessing work on HT that is not included in the
time measurements: We use Map to convert the Node column of HT to a column v of
corresponding Node objects. We project only the row ID and v fields and materialize
the result in a table Inp. For some of the plans we need a preorder-sorted copy Inp-pre
of Inp and a postorder-sorted copy Inp-post, which we also prepare and materialize
ahead. In the bottom-up case Q6.1, the four plans are:

(a) A simple e; < Scan(Inp-post).

(b) Using Hierarchy Rearrange on the preorder-sorted copy of Inp:

e1 < Hierarchy Rearrange [H; v; pre — post] (Inp-pre)

(c) Performing a full sort of Inp:

e1 < Sort [<] (Inp) where t; < t; := H.is-before-post(t;.v, t,.v)

(d) Enumerating the HT tuples in the desired order using an index scan:

e1 < Hierarchy Index Scan [H; v; post; { }; true] (HT)
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In the top-down case Q6.2, the plans are identical, except that the preorder and postor-
der roles have to be swapped. Note that Plan d works only for these particular queries,
as we are working directly on HT instead of an arbitrary input table.

Beyond 6.1 and @6.2, which allow us to assess the peak performance of the differ-
ent sort methods, it is also interesting to see how these operators interact with other
operators in a more “useful” query. To this end, queries Q6.3 and Q6.4 perform a
hierarchical computation based on a bottom-up and a top-down window, respectively.

SELECT Node, SUM(Value) OVER w
FROM Inp WINDOW w AS (HIERARCHIZE BY Node [BOTTOM DOWN|TOP DOWN])

These queries are closely comparable to Q5.1 and Q5.2 of §6.3.5, and thus give us an
indication of the additional costs when the input is not already in the required order.
The Value field is generated upfront as described in §6.3.5. The plans we compare are
just as for Q6.1 and Q6.2, except that an additional Hierarchical Grouping operator is
applied to the sorted output e, and in case of Plan d an additional Map operator is
needed to bring in the Value field. The HG operator is identical in all plans for Q6.3:

Hierarchical Grouping [H; v; post; {descendant}; x : sum(Value)] (e1)

In the top-down case Q6.4, the descendant axis becomes the ancestor axis, accordingly.

Observations. From the results in Figure 6.9, we first see that dynamic indexes suffer
from their more expensive is-before() calls, which are heavily exercised for sorting. Un-
surprisingly, this affects full sorting (Plan c) in particular. Apart from that, we observe
that full sorting is less expensive than one may expect—roughly 3 times slower than
Plan a with PPPL—considering that our algorithm is not multithreaded. Leveraging
an index scan (Plan d) also helps a lot, but is of course possible only when working
directly on the hierarchical table. Most interestingly, the “order-based sorting” of Hier-
archy Rearrange (Plan b) is greatly superior to a full Sort, especially in the bottom-up
PPPL case: HR closely approaches the “perfect” speed of Plan a, where no sorting is
performed at all. This can be explained by the favorable data locality in the already
preorder-sorted inputs.

The pre-sorted scenario (Plan a) of 6.3 and Q6.4 is closely comparable to our setup
for @5.1 and @5.2. When comparing the numbers for the HR- and HIS-based plans
to Plan a, we notice only a moderate slowdown. The push-based query execution
model allows our HR and HIS operators to efficiently pipeline their results into the
subsequent Hierarchical Grouping operator, which effectively hides parts of its costs.
As a full pipeline breaker, Sort (Plan c) is again at a disadvantage in that regard.

On a higher level, these results also mean that our hierarchy operators that consume
postorder inputs are not actually restricted to only postorder; by adding Hierarchy
Rearrange operators, they can be applied to preorder inputs as well at only moderate
extra costs. This also applies to the preorder-based (top-down) algorithms, although
HR is somewhat less effective in these cases due to the more complicated logic and
additional buffering that is necessary for post-to-pre conversion.
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Figure 6.9: Experimental results for §6.3.6.

6.3.7 Pattern Matching Query

In this experiment we examine the performance to expect from basic structural pattern
matching queries. Our test query is similar to the SQL statement of Figure 3.1 (p. 36):
SELECT a.ID, a.Payload, b.ID, b.Payload, c.ID, c.Payload
FROM HT a
JOIN HT b ON IS_DESCENDANT(b.Node, a.Node)
JOIN HT ¢ ON IS_DESCENDANT(c.Node, b.Node)
WHERE a.Weight IN (...) AND b.Weight IN (...) AND c.Weight IN (...)
The three WHERE conditions are chosen to be quite selective; each selects a different,
random 5% of the tuples.

Setup. We use the hierarchical table HT with the Regular (N, k, 10*) hierarchy struc-
ture, and set the size of the Payload field to 16 bytes. Thus, the size of a result row
containing three CHAR(8) keys and three payload fields is 72 bytes.
We compare three plans. In the plans we use three select conditions ¢,(t), ¢,(t), and
¢c(t) according to the query above. Plan a is based on a Hierarchy Index Join:
aq  Scan [Node,, ID,, Payload ,, Weight, | (HT)
ap « Select [¢4] (a1)
a3z < Map [v, : H.node(Node, )] (a2)
aby < Hierarchy Index Join [H; vj,; H.axis(vy, va) = descendant;; pre| (a3)
aby <— Map [b : HT[rowid(v})];ID, : b.ID, Payload, : b.Payload, Weight,, : b.Weight] (ab;)
absz < Select [¢b] (ﬂbz)
abcq < Hierarchy Index Join [H; v; H.axis(v, vp) = descendant; ; pre| (abs)
abcy < Map [ID,, Payload., Weight_| (abc;) — analogous to ab,
abcs < Select [¢.] (abcy)

While the plan omits it for ease of presentation, our actual implementation of the three
plans takes care to actually access the attributes ID, Payload, and Node at the latest
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possible occasion, that is, only after performing the filtering by Weight. For example,
the ab, operation is actually split into two Map operators, one before and one behind
the Select operator abs. Also note that in a real-world schema there might conceivably
be an index on the filter attribute (Weight), which could be used as an alternative
access path to HT and further speed up this query.

Plan b is based on a Hierarchy Merge Join:
ay to a3 like in Plan a
by < Scan [Nodey, ID;, Payload,, Weight, | (HT)
by < Select [¢y] (D7)
bz < Map [v;, : H.node(Nodey)] (b7)
c1 to c3 analogous to a7 to a3 and by to bs
ab < Hierarchy Merge Join [H; vy; v,; pre; {ancestor }; | (b3, a3)
abc < Hierarchy Merge Join [H; vc; vy,; pre; {ancestor };X] (c3, ab)

We applied a number of optimizations to this plan: First, the selections have been
pushed further downwards than in the HIJ-based Plan a, making Plan b bushy. Second,
Plan b takes advantage of HT being clustered and enumerated by the table scans in
preorder. (If HT were not clustered, additional Sort operators would be needed prior
to the HM]J operators, or alternatively, HT could be accessed via HIS.) Third, the plan
demonstrates how two HM] operators can be chained together by leveraging their
sorted output. No additional sorting in between the HMJ operators is needed. Fourth,
we changed the join axis to ancestor and swapped the join arguments in order to enable
the more efficient HM] A/pre algorithm.

For comparison, Plan ¢ evaluates an RCTE that produces the equivalent result. The
SQL statement of the RCTE is largely similar to the one shown in Figure 2.5. We omit
the lengthy plan, as it is essentially a direct translation of the SQL query statement. It
features two semi-naive evaluation steps: First it applies filter ¢,, then it joins down-
wards via the ID-PID association to obtain all descendants, then applies filter ¢, then
joins downwards again, and finally applies filter ¢.. The used algorithm for the joins
within the RCTEs is again a hash join.

Observations. Figure 6.10 shows the runtimes of the plans with different hierarchy
indexes, sizes |HT| from 10° to 107, and shapes k € {2,32}. The times are normalized
with respect to |HT]|, that is, they show the runtime per 1000 input nodes, which ex-
hibits the scalability properties of the different plans. Plan c is index-independent and
measured on the plain table (ID and PID instead of Node). With our test data the sizes
of the result sets are as follows:

Hierarchy Size |[HT| | 10* 10°  10° 107
Result Size (k = 2) 62 424 3556 48988
Result Size (k = 32) 4 8 63 873

From the figure we see that the HIJ-based Plan a is slightly superior to the HM]J-based
Plan b for all indexes except DeltaNI. This difference is amplified with flat hierar-
chies (k = 32), where the HM]J-based Plan b is up to three times slower. This may be
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Figure 6.10: Experimental results for §6.3.7.

surprising, as the HIJ-based plan cannot reduce its input sizes as early as the bushy
HM]J-based plan. However, for flat hierarchies the intermediate join results will not
be as large anyway, so the early reduction of intermediate result sizes in the bushy
HM]J-based plan cannot play out its advantages in this particular query.

At both the HIJ- and the HM]J-based plans, Ordpath and DeltaNI perform painfully
worse than the other indexes; this is explained by the is-before-g() checks of HM]J,
which are particularly costly for Ordpath due to its variable-length labels. HIJ relies
on the cursor() and pre-next() primitives, which in turn are expensive for DeltaNI.

Regardless of the index type, both Plans a and b easily outperform the RCTE-based
Plan c—for a hierarchy as large as |HT| = 10° it is by a factor of over 30 slower than the
HIJ-based Plan a. Furthermore, Plan c scales poorly with respect to |[HT|, which renders
it infeasible for size |[HT| = 107. This difference stems from a fundamental problem of
RCTEs: Regardless of the selectivity of the filters, the recursive join inherently iterates
over the complete hierarchy and yields large intermediate results, only to find that most
of these results are irrelevant as the nodes do not match the pattern. By contrast, HIJ
and HM]J do not need to enumerate whole subtrees to find matching nodes. With
HM]J in particular, the predicate can be pushed down in the plan and only nodes that
already meet the filter conditions participate in the join in the first place.

We conducted analogous measurements where we compared CHAR(8) keys in the ID
and PID columns with CHAR(32) keys. The following table shows the runtimes of the
various plans with CHAR(32) keys, and the respective slowdown over CHAR(8). As the
effects are more visible with deep hierarchies, we report only the numbers for k = 2:

[HT| Index Time of Plan a Time of Plan b
108 BO-Tree 03ms +25.1% 0.3ms +5.6%
. PPPL 03ms +23.4% 02ms —18.4% T Time of Plan d
10°  BO-Tree 27ms +20.5% 2.8ms +4.0% vi
10 23.3ms  +94.5%
PPPL 23ms +36.3% 2.1ms —8.2% 105 258.4ms  +90.0%
10° BO-Tree | 383ms +18.7% | 504ms  +3.4% 106 | 4923.6ms 16649 /°
PPPL 33.1ms +36.8% 27.3ms +2.2% ’ =%
10’ BO-Tree | 421.0ms +22.4% | 516.4ms +4.5%
PPPL 396.0ms +47.2% | 277.0ms +1.9%
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6.3 Experiments

The advantages of the bushy HMJ-based Plan b are now amplified; it it less affected by
the larger key type than the HIJ-based Plan a, where the slowdown is roughly between
20% and 35%. These numbers reveal one more general advantage of hierarchical tables
over adjacency lists with RCTEs: Hierarchy operators such as HIJ and HM] work on
the system-managed NODE column and auxiliary data structure, whereas RCTEs on
an adjacency list table necessarily work on the user-prescribed ID/PID columns. A
processing-unfriendly key type hurts the performance of RCTEs. This issue disappears
with hierarchical tables. With the additional handicap for Plan c in this scenario, Plans
a and b now outperform the RCTE by up to two orders of magnitude.

6.3.8 Complex Report Query

Having assessed hierarchical windows in isolation, we next look at a complete query
featuring hierarchical windows, namely the report query we studied in §3.6.5 (p. 60).
At the heart, it performs a bottom-up rollup as Q1 in §6.3.5, but with additional “stress
factors” such as additional non-hierarchy joins, multiple hierarchical windows (bottom-
up and top-down), carrying along payload, sorting the result in preorder, and comput-
ing Dewey-style paths.

Setup. We again use our hierarchical table HT. We choose |HT| = 10* and the hier-
archy structure Regular <104, k,s), which contains a single tree (s = 10%) with a moder-
ate height (k = 8). We emulate a setting where the input values are attached to only a
subset of the hierarchy HT, namely the leaf nodes. To this end we prepare a table Inp
containing p% of the 8751 leaf nodes of HT, which are randomly chosen. Inp already
has a field v of the corresponding Node objects.

We measure different hand-optimized plans. In all plans, the depth filter on the
output nodes, ¢ := (H.depth(v) < 3), is fully pushed down and handled directly by
an ordered index scan of HT. The following operation is common to all plans:

HT, < Map [v : H.node(Node)] (Scan [¢] (HT)).
The following common operations appear in multiple plans:

t
HT(fp)OS + Sort [<is—before-post] (HT¢) Inppre < Sort [<is-before-pre] (Inp)
HTgre < Sort [<is-before-pre] (HT¢) InppOSt < Sort [<is-before-post] (Inp)

Plans a and b use our I" and X" operators. Plan a unions together the input table Inp
and the hierarchical table HT and runs " on the union table:

e < Merge Union [<is—before—post] (HTgOSt/ IHPPOSt)

ey < Hierarchical Grouping [H; v; post; {descendant}; x : sum(Value)] (e1)
e3 < Select [¢] (e2)

ey < Hierarchy Rearrange [H; v; post — pre]| (e3)

es < Hierarchical Grouping [H; v; pre; {ancestor}; (p, Path) : ...] (e4)
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The Merge Union is an efficient sort-based algorithm. The Select for ¢ “undoes” the
union and retains only the output tuples we are interested in. The final HG handles
both top-down computations: the contribution percentage p and the Dewey string Path.
It also preserves the order of its input, which yields the result in the desired preorder.

Plan b uses a Hierarchy Merge Groupjoin between HT and Inp and thus does not
need a Merge Union:

e1 < Hierarchy Merge Groupjoin [H; t.v; u.v; post; {self, desc.}; . . ] (HTgOSt[t],IinOSt[uD
ey < Hierarchy Rearrange [H; t.v; post — pre] (e7)
e3 < Hierarchical Grouping [H; t.v; pre, {ancestor}; (p, Path) : ...] (e2)

For Plan ¢ we assume the hierarchical table model without our syntax extensions for hi-
erarchical windows and without our operators HG and HMG] for structural grouping.
It relies on Hierarchy Merge Join, that is, the HMJ-Group approach.

e1 + Hierarchy Merge Join [H; t.v; u.v; pre, {descendant}; 2 (HTgre[t],Inppre[u])
ey < Group [t.v; x : sum(u.Value)] (e1)

e3 < Materialize(e;)

ey < Hierarchy Merge Join [H; t.v; py.v; pre; {parent}; X] (e3[t], e3[p1])

e5 < Hierarchy Merge Join [H; p1.v; p2.v; pre; { parent}; ] (eq, e3]p2])

e¢ < Map [(p,Path) : .. .] (es)

The grouping is sort-based. Lacking our syntax extensions, a lot of manual “SQL labor”
is involved: The upper three levels are assembled via two left outer is-parent() joins,
yielding the first parent p; and the second parent p,. Then the final Map operator
constructs the path strings and computes the contribution percentages by hand from
p2, p1, and t.

With Plan d we emulate a hand-implemented static PPPL-like labeling scheme. Lack-
ing engine support, it has to rely on nested loop joins, that is, the Join-Group approach.

ey + Nested Loop Join [H.axis(u.v, t.v) € {descendant, self}; X] (HT[t], Inp[u])
ey < Group [t.v; x : sum(u.Value] (eq)

e3 < Materialize(e;)

eq < Nested Loop Join [H.is-parent(p1.v, t.v); ] (e3[t], e3[p1])

e5 < Nested Loop Join [H.is-parent(pa.v, p1.v); X (es, e3[p2])

e¢ < Map [(p,Path) : .. .] (e5)

e7 < Sort [<is—before—pre] (66)

For Plan e, we assume again the adjacency list model and a hand-written stored pro-
cedure which does an iterative fixpoint computation (like lterative in §6.3.5). After the
bottom-up computation it uses a PID IS NULL filter and three hash joins to determine
the upper three levels for the result and to fill in the p and Path fields.

Although Plans d—e appear to be severely handicapped versus a—c, they are repre-
sentative of the state of the art in real-world applications we encountered. In particular,
an approach based on the adjacency list model (Plan e) is very common in practice.
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Figure 6.11: Experimental results for §6.3.8.

Observations. Figure 6.11 shows the measured query throughput over varying p.
The big performance gaps we have seen in some of the previous experiments are now
less pronounced due to a damping effect of the other involved relational operators.
In particular, a big pain point in this query is the expensive sorting of Inp, which
turns more expensive the bigger p gets. This performance issue could be alleviated
by employing a parallel sorting algorithm. Nevertheless, we still see the merits of our
proposed syntax and algorithms for hierarchical computations: Both T' (Plan a) and X
(Plan b) handle the query quite reasonably. As the Hierarchy Merge Groupjoin more
naturally fits the binary nature of this query (and obviates the Merge Union needed to
prepare the input for " in Plan a), Plan b significantly outperforms Plan a in this case.
The advantage of having dedicated operators HMGJ and HG over plain HMJ-Group
(Plan c) is again clearly visible, although less pronounced than in §6.3.5 due to the
damping effect of the sorting. Plan d is painfully slowed down by the employed nested
loop joins, though still faster than Plan e, which always has to perform an iterative join
through the complete hierarchy. This renders it constantly slow, regardless of the actual
input size p.

The numbers show a clear benefit of having dedicated operators for hierarchical
computations (Plans a and b versus Plan c). They also show that Plans d and e are not
just unwieldy hand-crafted solutions and unsatisfactory in terms of expressiveness;
they also cannot hold up with our framework in terms off efficiency.

6.4 Summary

Altogether, our experiments touch on all major components of our proposed frame-
work, and thus give a good indication of the performance one can expect in practice.
Our assessment of index primitives for queries (§6.3.2) shows that the interface for
hierarchy indexes can be implemented highly efficiently even with dynamic schemes.
The proposed standard schemes—PPPL for static scenarios and BO-Tree for dynamic
scenarios—perform well throughout all disciplines. Beyond its query performance, BO-
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Tree with mixed block sizes is also an excellent all-round index structure with robust-
ness for all update operations; it therefore should be the first choice when the update
pattern is unknown. Its performance can be optimized further by choosing the simpler
O-List index structure, a different back-link representation, or a different block size, as
we discuss in our paper [33].

Besides the index primitives, our experiments also assess the performance character-
istics of our essential operators HIS, HIJ, HM], HMGJ, HG, and HR, both in isolation
as well as in complex plans for typical pattern matching and hierarchical computa-
tion queries. They show that our framework clearly outperforms any solution based
on adjacency list tables and recursive stored procedures or RCTEs. In fact, the query
plans are often so fast that they would outperform an RCTE-based approach even if
we perform a full bulk-build prior to executing them. For example, with 107 nodes, if
we execute Plan a from §6.3.7 together with the bulk build (assessed in §6.3.1), the
speedup over the RCTE is still more than a factor of 5. Of course, the ultimate goal of
every legacy application should be to migrate from derived hierarchies to hierarchical
base tables, so that bulk-building is never necessary. Still, our results show that even
applications that conceptually derive a hierarchy for every query will be able to achieve
considerable performance gains.
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Conclusions and Outlook

Working with hierarchies in relational databases has always been complicated. None
of the conventional solutions we surveyed were able to fully meet the typical require-
ments that we identified in the applications of SAP and beyond. These requirements
call for a holistic approach that seamlessly integrates relational and hierarchical data
on the levels of the data model, the query language, and the backend of the database
system, while retaining the philosophy of the relational data model.

Our solution is to represent hierarchies by means of an abstract NODE data type and
to provide the necessary language extensions to define, manipulate, and query hier-
archies in a user-friendly way. Many formerly complicated tasks are thus greatly sim-
plified: Developers are no longer burdened with physical design considerations, as a
simple abstract data type replaces any hand-crafted tree encoding schemes. Expressive
language constructs turn convoluted blocks of SQL text into concise and intuitive state-
ments. The task of choosing a suitable indexing scheme that balances storage utiliza-
tion, support for updates, and query performance is handed off to the system, which
also makes it easy to adapt an evolving application to changing workloads throughout
its lifetime. Altogether, these simplifications promise a boost in developer productiv-
ity and maintainability. In addition, the sophisticated indexing and query processing
techniques we employ at the backend make sure that performance and scalability are
not compromised along the way. These features do not only benefit green-field applica-
tions; they are also made available to existing applications through facilities for deriv-
ing hierarchies from existing data and for bulk-loading hierarchy indexes efficiently.
This allows legacy applications to gradually push hierarchy-handling logic that for-
merly lived in the application layer down to the database layer, and thus benefit as
well from the productivity and performance gains that our framework brings along.

Our research prototype already shows promising evidence of the mentioned merits
over conventional approaches. As part of our cooperation with SAP, an “industrial-
grade” proof-of-concept prototype was also developed in collaboration with members
of the HANA team. It is especially pleasant to see that at the time of writing, the tech-
nology has already been made publicly available to users of both the HANA Database
and the SAP Vora engine (see “HIERARCHY function” in [90], and [91, 92]). The HANA
platform has from an early stage on been envisioned as a flexible query processing
environment to accommodate data of different degrees of structure, and our concept
of hierarchical tables fits well in this spirit. We hope that this will open the doors for
conducting broader user studies and gaining first-hand customer feedback, which can
eventually inspire further research and development around our framework.
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Outlook. In this thesis we already exploit many of the opportunities our hierarchical
table model provides both from a language perspective (NODE as a “syntactic handle™)
and from a backend perspective (indexing the NODE column and leveraging it during
query evaluation). But further enhancements are always possible. Two especially rich
areas of open problems we already covered earlier are about concurrency control (see
§4.7) and query optimization and processing on hierarchical data (see §5.3). We conclude
this thesis by outlining a few further promising ideas for future work.

Benchmarking. The aforementioned customer-available version of our framework will
ideally enable us to collect experiences with a wider range of real-world hierarchical
data sets and application patterns, and thus unveil areas for further improvement. It
would be a promising endeavor to condense the most typical patterns into a compact
benchmark suite in the spirit of the well-known TPC benchmarks [103]. Such a suite
can be very helpful in motivating and driving future research in the area.

Other database systems. While our prototype was implemented with an eye towards
modern engines based on memory-resident tables and a push-based query execution
model, the techniques could in principle be adapted to other RDBMS architectures.
With the exception of our SQL-based language extensions, we would in fact expect
most components of our framework—such as the indexing schemes and the algorithms
for query processing—to be applicable as well to a broader range of non-relational sys-
tems, such as XML or graph databases. For example, it should be possible to implement
an XPath engine [110] entirely in terms of our low-level index interface. Such extended
application areas could possibly be explored in the future.

Features. Many extensions to our feature set are conceivable, but they should ideally
be motivated by realistic use cases. A few ideas are to add further syntax for customiz-
ing how window frames are formed in hierarchical computations (e.g., to take into
account the sibling order); to allow users to add functionality by defining custom oper-
ations on the NODE type; or to generalize SQL’s ROLLUP feature to work with hierarchical
tables. The latter would benefit the tightly constrained applications that use ROLLUP or
MDX today, as discussed in §2.3.10 and §2.3.5. A further challenge are multi-dimensional
computations: While we considered only the single-dimensional case, generalizing hi-
erarchical windows and rollups to two or more NODE fields should be possible.

Hierarchical and temporal data. To keep historic states of data available for analytics or
auditing purposes, business applications routinely use temporal tables, where one or
more system time or application time dimensions are modeled using SQL’s PERIOD con-
struct [49, 55]. When a hierarchical dimension is defined on a temporal table, the result
is a temporal hierarchy. The hierarchy may arrange multiple instances of the same logical
entity at different time periods, as if each edge was labeled with a certain validity pe-
riod. Such hierarchies are strict trees only as long as they are restricted to a single point
in time; when viewed over all periods they are general graphs. Advanced queries on
temporal hierarchies may involve both dimensions simultaneously and even span over
intervals of time; for example: “Perform a hierarchical sales rollup and determine the
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point in time with the maximum sales total.” These queries are very hard to evaluate
efficiently, as indexes and algorithms are conventionally designed for either hierarchi-
cal or temporal data, but not both (but see [31, 69, 88, 120]). Although this topic was
beyond our scope, our design takes care that a temporal table is conceptually and syn-
tactically not hindered from having a hierarchical dimension as well. It can therefore
be integrated with the functionality of PERIOD in the future.

Non-strict hierarchies. We handle non-strict hierarchies in a minimalistic but concep-
tually clean way by transforming them into trees at hierarchy derivation time. That
said, our NODE model could in principle accommodate general acyclic directed graphs
“natively”: one could use graph indexes to store them and generalized algorithms to
query them. There are some major challenges, though. Syntactically, it is not obvious
how the edges (which become distinct entities) could be accessed in a concise and
effective way without violating the look and feel of SQL. Semantically, issues would
arise with tree-based hierarchy functions and predicates and the ambiguous data flow
in hierarchical computations. Moreover, it is uncertain whether such support would
have any selling point against dedicated graph stores and their more purpose-built
query interfaces, which is why we did not pursue these ideas further (see also §2.2.2).

Adaptivity. In § 4.3 we proposed a simple static selection method for indexing schemes.
A more sophisticated system could conceivably adapt during the lifetime of the hierar-
chical table. It might, for example, take the current workload into account and decide
to switch between indexes on demand. For slowly changing hierarchical tables, a static
indexing scheme could be used when the table is first loaded and at times where no
updates happen, but it might be converted to a query-optimized dynamic index type
as soon as some updates are performed. The conversion costs could be kept moderate
by leveraging the highly efficient build() operation. Even more sophisticated forms of
adaptivity are conceivable: An adaptive index might replicate certain table columns
that are accessed frequently in conjunction with the nodes. This would enable more
index-only queries and thus further boost performance.

Recursive Common Table Expressions. There are certain situations where the features for
RCTEs and hierarchical tables could interact. On the one hand, an RCTE operating
on a hierarchical table could be accelerated if the system could deduce the kind of
traversal that is being performed and then leverage the available hierarchy indexes
accordingly. On the other hand, an RCTE could produce a hierarchical table from its
“recursion tree” as a by-product. To do so, the semi-naive algorithm would have to
keep track of the parent rows that spawned each of the generated rows at the time the
join with the recursive table is evaluated. This feature would enable applications to
initially use an RCTE to explore an unknown graph, but subsequently switch to the
more comfortable tools for hierarchies to analyze and work on the resulting tree.

A
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