
Dynamic Software Updating of IEC 61499
Implementation Using Erlang Runtime

System

Laurin Prenzel, Julien Provost

Technical University of Munich, Safe Embedded Systems,
85748 Garching bei München, Germany

(e-mail: laurin.prenzel@tum.de, provost@ses.mw.tum.de)

Abstract:
Dynamic Software Updates (DSU) permit to decrease downtimes caused by updates or bug
fixes and thus increase productivity, which is an ever present target during development of
industrial production systems. This study implements a compiler to transform an IEC 61499
model into executable code for the Erlang Runtime System (ERTS) which natively features
DSU, and investigates its feasibility. As a case study, a small production plant is implemented
and updated on-the-fly with new features and safety fixes. This case study shows that DSU by
using the ERTS is feasible. However, additional information for the update structure, content
and schedule is required from an external source.

Keywords: Dependable manufacturing systems control; Discrete Event systems in
manufacturing; Flexible and reconfigurable manufacturing systems

1. INTRODUCTION

Current industrial automation plants are controlled by
programmable logic controllers (PLCs), soft-PLCs or
industrial PCs (IPCs). Although the programming interface
remains unchanged, using a software-based PLC or an
IPC enables the implementation of methods that were
impractical on a hardware-based PLC. One of these new
methods is Dynamic Software Updating (DSU).

There have been endeavors to implement Dynamic Software
Updating in numerous fields (Seifzadeh et al. (2013)). Since
the lifetime of a production facility can be very long, it
is inevitable to eventually update its software. This may
include the implementation of new features, an increase in
performance, or simple bug fixes. Depending on how severe
this change is, the update of the facility may be unfeasible
due to downtimes caused by the shutdown, update and
restart phases of the plant. By using DSU, modifications of
the model can still be prepared offline and follow the same
modeling procedure, but the downtime can be drastically
decreased and in the best case completely eliminated, thus
increasing the productivity of the plant over the life cycle.

In this paper, the feasibility of DSU for production
automation will be demonstrated by implementing it
with the functional programming language Erlang and
the Erlang Runtime System. Originally developed in the
telecom industry for distributed, highly available systems,
Erlang facilitates the use of finite state machines and DSU.

Although it is generally possible to manually program
an industrial automation plant in Erlang, this is not
? This research was partially supported by the German Federal
Ministry for Economic Affairs and Energy (BMWi ZIM project
ZF4304702BZ6) at the Technical University of Munich.

the intention of this paper. Since production plants were
traditionally controlled by PLCs, the IEC 61131 standard
defines specific languages for this purpose (IEC 61131-3
(2003)). In 2005, the IEC 61499 standard for function blocks
for distributed control systems was published (IEC 61499-1
(2012), Zoitl and Lewis (2014), Vyatkin (2007)) and will
be used in this paper.

The approach of this study would permit companies to use
DSU without introducing a new programming language
to the workflow. Furthermore, this study investigates the
additional information needed to enable DSU on an IEC
61499 implementation. The case study shows that by using
DSU the non-reactive time during an update can be reduced
to approximately 20ms on a small-scale system.

The remainder of the paper is structured as follows: Section
2 presents a theoretical outline over the two main elements
used in this paper: the IEC 61499 standard and the Erlang
programming language and Runtime System. Section 3
describes the actual implementation of the IEC 61499
standard in the Erlang Runtime System and how DSU
can be achieved in practice. This is followed by the use case
in section 4. Finally, the case study and future extensions
are discussed.

2. BACKGROUND

This section introduces the main components of this study:
the IEC 61499 standard and the Erlang programming
language and Runtime System.

2.1 IEC 61499 Standard

The IEC 61499 standard is the successor of the IEC 61131
standard for programmable logic controllers (PLC). It

Fig. 1. Example of IEC 61499 function block network,
generated with 4diac (Strasser et al. (2008))

describes the use of function blocks with a separated
event and data flow for distributed control systems by
combining graphical aspects (function blocks) with text
elements (algorithms) (IEC 61499-1 (2012), Zoitl and Lewis
(2014), Vyatkin (2007)). Parts of a function block network
are depicted in Figure 1.

Function Blocks Several types of function blocks (FBs)
can be used to encapsulate the functionality. The basic FB
is controlled by an Execution Control Chart (ECC), which
schedules the execution of algorithms and the transmission
of outgoing events when triggered by incoming events. The
ECC behaves like a Moore machine, i.e. actions only depend
on the current state. Other FBs can be used to structure
the application (composite FB, subapplication block) or to
introduce other functionality (service interface FB) but will
not be considered in this study. The IEC 61499 standard
does not strictly specify a language for the algorithms.

Input/Output Connections The FBs are organized in an
application where their event and data inputs and outputs
are connected. Data connections have to be unambiguous,
i.e. a data input can only be connected to one data output.
In order to refresh a data input, it has to be associated with
an incoming event by using the with-qualifier. A data input
without a with-qualifier is constant. Likewise, data outputs
need a with-qualifier to specify when they are updated.
Although data and event flows are separated, data can only
be updated with an event.

The events are passed to the ECC in the order they were
received. If an event does not match an outgoing transition
condition of the current state, the event is discarded and
the ECC waits for the next event. Transition conditions
may consist of an event and a data condition.

2.2 Erlang and the Erlang Runtime System

Erlang is a functional programming language that was
developed for communication and network services. It is
capable of spawning and sustaining a large number of
lightweight processes that can communicate, store data and
execute code. The properties of the process are defined by
the module from which it is spawned. The Erlang Runtime
System (ERTS) takes care of scheduling and managing the
processes (Armstrong (1996),Armstrong et al. (2016)).

Open Telecom Platform The Open Telecom Platform
(OTP) contains so called behaviours that were formalized
from common applications. Generic parts of the code are
stored in the behaviour, while the callback module contains
only what is necessary specifically for this module.

gen fsm Behaviour The OTP behaviour gen fsm imple-
ments a finite state machine. The user may define the prop-
erties of the state machine by creating the callback module.
It can be split into two parts: The first part contains
general functions, such as how to handle synchronous or
asynchronous calls and how the process is started, updated
and terminated.

The second part characterizes the transition functions,
consisting of the name of the current state, a guard, an
action, and the target state. During operation the events
are compared to the transition functions of the current
state and if there is no match, they are put back to be
evaluated later. Alternatively, by including a self-loop-type
transition function that always finally matches, events
can be discarded after evaluation. Because the action is
attached to the transition, gen fsm state machines are
Mealy machines. Listing 1 depicts a generic example of
a transition function for a gen fsm state machine with a
self-loop-transition.

Listing 1. gen fsm transition function example
s t a t e (event , StateData) −>

% Action
{next s ta t e , NextState , NewStateData} ;

s t a t e (, StateData) −>
{next s ta t e , s ta te , StateData} .

Dynamic Software Updating The OTP contains a frame-
work for Dynamic Software Updating (or Hot Code Loading
as termed in Erlang). The update procedure is coordinated
by the release handler. A release consists of applications
that are built from Erlang modules. Releases and applica-
tions have specific files defining what modules to use.

Additionally, there are files specifying what processes to
start, stop or update during an up- or downgrade of a
release or application (appup and relup-files). The release
handler uses these files to coordinate the update.

Updating a process is done in 4 steps:

(1) Suspend the process
(2) Load the new module, transform the internal state

and upgrade to the new module
(3) Remove the old module
(4) Resume the process

Suspended processes can receive messages but cannot react
to them. They will instead be kept in the mailbox. The
process has to be suspended if the internal state is modified
to prevent a change of state during the update. The Erlang
Runtime System allows the loading of two versions of a
module, an old and a current version. When a new module
is loaded, the other one switches from current to old. The
processes continue running the old version until they are
told to switch. The internal state is then transformed via a
code change function that has to be implemented in the
new version of the callback module.

In case the update does not change the internal state but
is just a code extension, suspension is not necessary and
the process can just switch from old to current code.

Connection Table Function Block Table

Erlang Template

Code_Change Functions

Generic Functions Callback Functions Code_Change Functions

IEC61499 XML Function Blocks IEC61499 XML Application

Code Generation Internal Data

Automatic Code Generation

Erlang Module

Update

Automatic Code UpdateUpdate Schedule

Manual GenerationIEC61499 Export

States, Interface,

Algorithms, Transitions

Fig. 2. Flow chart of code generation and update procedure

3. IMPLEMENTATION

Before the code generation can be automated, the trans-
formation protocol between the IEC 61499 model and the
Erlang implementation has to be defined:

• Every instance of a IEC 61499 function block can be
represented by an Erlang process and its ECC can be
implemented with the OTP behaviour for finite state
machines (gen fsm).

• IEC 61499 Moore machines can be translated into
Erlang gen fsm Mealy machines by moving the algo-
rithm from the state to the transition.

• Since the IEC 61499 does not strictly specify the lan-
guage of the algorithm, the algorithms were restricted
to basic instructions in Erlang.

• IEC 61499 data and event flows can be merged
since data can only be updated with an event. If
an event updates multiple data inputs coming from
different function blocks, the corresponding event can
be rerouted to collect all necessary data on its way.

Once the general transformation protocol is selected, a
software tool to translate IEC 61499 models to Erlang
modules is implemented.

3.1 Automatic Code Generation

In order to generate code from the IEC 61499 model it has
to be exported. The standard defines an XML-format that
can be used for this purpose. Individual XML-documents
for the function blocks and the applications that contain
the necessary information are created.

The code generation process flow is depicted in Figure
2. The IEC 61499 XML application file contains the
information about the instances of function blocks and
their connections. The resulting connection table consists
of the sender, recipient, message and trigger event for every
event connection. In case data flows have to be considered,

this table can be edited to redirect the event flow to fetch
the corresponding data and add it to the message.

Once it is known which function blocks are used in the
application, the IEC 61499 XML function block file is read
and analyzed to obtain the interface, algorithms, states and
transitions of a specific function block. This leads to the
generation of the Erlang Callback Functions that are finally
inserted into a prepared Erlang Template. The template
supplies the generic parts for all callback modules, such as
start and terminate functions.

For every function block instance, one Erlang module is
generated. In this study, the modules are started manually,
but Erlang enables the use of supervisors to automatically
spawn processes. This will be considered in future work.

For an update, the code change functions have to be
supplied as well. These functions are currently created
manually.

3.2 Dynamic Software Updating / Hot Code Loading

The process of updating an operational plant consists of
two parts: the offline preparation and the online update.

In this study, the system will be upgraded manually
to demonstrate the feasibility of upgrading a running
system without having to generate complete releases
and applications. Nonetheless, the updating procedure is
identical to how the integrated release handler performs
an update (as described in section 2.2.3).

Offline Preparation This phase includes the generation of
the new code version and planning of the update procedure.

The user decides for every process whether it will be kept,
terminated or updated in the new version. Kept processes
are not influenced by the update. If it is updated, the
internal state of the process is transformed and transferred
to the new process.

Y

X

pos2 pos1 home

Fig. 3. Evaluation platform overview

Once the update structure and content is created, an
update schedule specifies the order of starting, updating
and terminating. This leads to the generation of relup and
appup files.

If the update is too severe and internal states are not
compatible, it may be more efficient to terminate the old
FB and create a new one.

Online Update The update can then be applied to the
plant. The updating procedure of the plant looks like this:

(1) Compile modules
(2) Start new modules
(3) Suspend all processes from module to be updated
(4) Load, update and resume processes
(5) Repeat from 3 until all modules are updated
(6) Terminate old processes

Plant operation is uninterrupted during the first two steps.
Suspension of a process will prohibit it from reacting to
incoming events, but the events are stored in the mail box
for later use. Simple updates (code extensions) may not
require suspension. After all processes are updated, the
plant is again fully functional. This non-reactive time takes
place in the matter of milliseconds and is thus much shorter
than usual downtimes.

If interruptions are undesirable, the update can be sched-
uled to be executed only at specific positions, for example
in idle states or when a new workpiece is introduced.

4. USE CASE

4.1 Evaluation Platform

The test platform consists of a portal crane that moves
workpieces from the input position to multiple stations (see
Figure 3). There are 3 actuators (X-axis, Y-axis, magnetic
lock) and 8 sensors (3 light sensors, 5 position switches).
The actuators and sensors are controlled by 3 different
remote input output modules (RIOMs) that are addressed
via a Modbus TCP protocol. Other communication proto-
cols could be used in Erlang by linking a C/C++ library
to a process.

Three manually programmed Erlang processes were put in
place to cyclically set and read the coils and send events
to their subscribers. These processes could be embedded
in the IEC 61499 model as Service Function Blocks.

cycle

pick-place

x_axislock y_axis

RIOM Control

Fig. 4. Function block layout model 1

START idle s1

s2

s3

s4

moveHome

pickup

movePos1

release

upd & [1,1]

cnf_home

cnf_pickup

cnf_pos1

cnf_release

1

Fig. 5. Execution Control Chart for ’cycle’ FB of model 1

4.2 Model

For the use case of dynamically updating a production
plant during operation, two models had to be implemented:
a flawed model and an improved version.

The first model (Figure 4) consists of 5 function blocks.
Three function blocks control the movement in the X- and
Y-direction and the locking mechanism. One intermediate
block controls the process of picking up and putting
down pieces. The cycle block manages the overall cyclical
behavior of the plant. Its ECC is depicted in Figure 5. This
model reacts to the arrival of a new workpiece by picking
the workpiece up and putting it down at the first machine.

The second model improved the procedure by waiting for
the station to be free, utilizing the second machine, and
returning to the home position after delivery instead of
waiting at the machine. This change was introduced by
expanding the ECC of the top cycle block (Figure 6). A
decision point was introduced where the crane waits for a
clearance from the stations. The function block controlling
the X-direction was replaced by three individual blocks for
the three available positions (Figure 7). This lead to a total
of 7 function blocks. The intermediate block responsible
for the pickup and release process remained unaffected.

4.3 Erlang Code Generation

The software presented in this study reads the IEC 61499
model and returns equivalent Erlang modules. Those
modules are then compiled and started manually. Finally,
the cyclically executed RIOM control blocks can be started,
connecting the Erlang implementation to the real plant.

START idle s1

s2

s3

s4

moveHome

pickup

movePos1

release

upd & [1,1]

cnf_home

cnf_pickup

cnf_pos1

cnf_release

1

dec_point

s6 movePos2

cnf_pos2

s5 moveHome

wait

upd & [1,1]

cnf_home

upd & [3,0]

upd & [2,0]

Fig. 6. Execution Control Chart for ’cycle’ function block of model 2

cycle

pick-place

y_axislock

RIOM Control

x_axis

home

x_axis

pos1

x_axis

pos2

Fig. 7. Function block layout model 2

Following the execution of the first model, an update is
modeled as described in section 3.2. Figure 7 shows the
structure of the update and which blocks are affected. Grey
boxes are kept and will not be changed. Dashed boxes are
new or affected by the update.

There are two important differences between modeling the
first version and modeling an update.

• Blocks that are selected to be updated or that have the
same role in the new application must be registered
under the same name. If the block is new to the
application, it must have a unique name.

• If a function block is updated, the internal state of
the ECC may have to be transformed. In this study,
no internal variables were used and only the current
state of the ECC was transformed.

The internal state transformation is implemented by the
code change functions. They can be generated from a table
describing which state in ECC1 will be transformed to
which state in ECC2. If the internal state is more complex,
the code change functions are more complicated as well.

In this study, ECC2 contains additional states and a
modified transition structure, but the states already defined
in ECC1 are still linked to the same functions. Therefore,
no special code change functions had to be implemented.

4.4 Plant Operation and Update

The plant operation can be split into five steps:

(1) Starting of the first model
(2) Running of the first model
(3) Offline generation of new code
(4) Update

(a) Compile modules
(b) Start new modules
(c) Suspend process to be updated
(d) Load, update and resume process
(e) Terminate old processes

(5) Running of second model

In the first step, the code is compiled and started. After
this, the plant is available to be used.

Whenever the user has generated a new code version and
wants to update the system, he will at first compile and
start the new processes. In this scenario, a controller for the
third RIOM as well as the three blocks controlling the X-
direction were started. Since the old blocks are unaffected
by this, the system continues its normal execution.

Once the new modules are started, the cycle block is
updated. Therefore, it is suspended, the new version is
loaded, the internal state is updated and finally it is
resumed. At last, the blocks that are no longer needed
are terminated. In this scenario, the old controller for the
X-direction is shut down.

Update Time Because the process cannot react during
suspension, it was crucial to investigate the suspension
duration. In this study, the suspension time amounted to
approximately 20ms, which is well below the cycle time of
100ms.

Suspension duration is critical for processes directly con-
trolling the RIOMs, as it may delay a time-sensitive answer
(for example stopping a motor). In this use case the updated
process did not have any critical states. Starting the new
processes for the X-direction before the old process is
terminated was uncritical, as the behavior is redundant
and superfluous events are dropped by the ECC.

5. DISCUSSION & FUTURE WORK

This study presented an initial approach to update a
production plant during operation. This concept will be
extended in future applications.

5.1 Implementation of IEC 61499 in Erlang

The software presented in this paper implements only a
subset of all available features of the IEC 61499 standard
and of the Erlang programming language and Runtime
System. This could be expanded by the following features:

• IEC 61499: data flows, internal data, subapplication
blocks, resources

• Erlang: appup-/relup files, supervisors, nodes

It is important to note that, currently, algorithms must be
programmed in Erlang. Although the IEC 61499 does not
strictly specify the language of the algorithms, the most
common language is Structured Text (ST). Transformation
of ST code to Erlang would have to deal with the different
programming paradigms involved. Basic expressions such
as setting internal data or basic calculations can be
transformed easily, whereas transforming complicated
algorithms requires more effort to preserve the initial
behavior of the algorithm.

Currently, the IEC 61499 standard does not feature Dy-
namic Software Updating. Consequently, it does not contain
the required terminology. In this study, the necessary in-
formation, i.e. the update structure, content, and schedule,
was supplied manually.

5.2 Updating with Erlang

Erlang was designed for highly reliable and available
systems. Nevertheless, using Erlang is not sufficient to
create a reliable system. Designing a dynamic software
update requires additional thought and care.

To ensure the consistency of an update, the following three
elements have to be supplied by the user:

• Update Structure: The user has to decide which
function blocks to keep, update or remove.

• Update Content: The internal state has to be trans-
formed by the code change functions.

• Update Schedule: It is necessary to determine a
schedule for the update, including the order and how
blocks are updated (i.e., if they have to be suspended).

Ideally, the generation of this information would be auto-
mated as much as possible. In most situations, the update
will depend on the user’s intentions and the user should thus
be assisted. A tool could, for example, compare two versions
of code, propose a schedule, and automatically create relup
files, appup files and code change functions based on pref-
erences set by the user. Setting those preferences requires
expert knowledge about the existing implementation and
the plant behavior. To avoid issues during the update, the
user has to choose a safe order for suspending, starting and
stopping the processes. In this study, names of instances
must be consistent throughout the update, as they are used
to register the Erlang process.

In case the update fails, Erlang can return to the pre-
vious version. Nevertheless, the update should be tested
extensively prior to the update.

No matter how these three elements are generated, the
combination of DSU and industrial automation yields
additional issues. Most importantly, to consistently update
the internal state of a process, it has to be suspended
during the state transformation. Suspended processes may
only collect incoming messages in their mailbox but may
not react to them until they are resumed. This can cause
hazardous behavior in critical states, for example when
a motor is running. If interruptions are undesirable, the
update can be scheduled to be executed only in safe states.
In the case study presented in this paper, the non-reactive
suspension time amounts to 20ms, which is well below the
cycle time and therefore not an issue. Its scalability will
be investigated in future work.

6. CONCLUSION

This paper demonstrated the possibility of updating a
production plant during operation. The goal was to let
the user program the system in a common programming
language for production plants, in this case the IEC 61499
standard for distributed industrial automation systems.
The resulting function block network was then translated
automatically to be executable by the Erlang Runtime
System. Erlang was designed for systems with requirements
on high availability and natively enables Dynamic Software
Updating.

This implementation presents a currently available and
simple solution to reduce the downtime due to updates
that could be improved and expanded in the future.

REFERENCES

Armstrong, J., Virding, S., and Williams, M. (2016). Erlang
user’s guide and reference manual. http://erlang.org/
doc/reference_manual/introduction.html.

Armstrong, J. (1996). Erlang - a survey of the language and
its industrial applications. In Proc. INAP, volume 96.

IEC 61131-3 (2003). Programmable controllers - Part 3:
Programming languages. International Electrotechnical
Commission, 2 edition.

IEC 61499-1 (2012). Function blocks - Part 1: Architecture.
International Electrotechnical Commission, 2 edition.

Seifzadeh, H., Abolhassani, H., and Moshkenani, M.S.
(2013). A survey of dynamic software updating. Journal
of Software: Evolution and Process, 25(5), 535–568.

Strasser, T., Rooker, M., Ebenhofer, G., Zoitl, A., Sunder,
C., Valentini, A., and Martel, A. (2008). Framework for
distributed industrial automation and control (4diac). In
2008 6th IEEE International Conference on Industrial
Informatics, 283–288. IEEE.

Vyatkin, V. (2007). IEC 61499 function blocks for
embedded and distributed control systems design. ISA-
Instrumentation, Systems, and Automation Society.

Zoitl, A. and Lewis, R.W. (2014). Modelling Control
Systems Using IEC 61499. 59. IET.

