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Abstract In geodesy and geophysics, spherical-harmonic techniques are popular for modelling to-7

pography and potential fields with ever-increasing spatial resolution. For ultra-high degree spherical8

harmonic modelling, i.e. degree 10000 or more, classical algorithms need to be extended to avoid9

under- or overflow problems associated with the computation of Associated Legendre Functions10

(ALFs). In this work two quadrature algorithms - the Gauss-Legendre (GL) quadrature and the11

quadrature following Driscoll/Healy (DH) - and their implementation for the purpose of ultra-high12

(surface) spherical harmonic analysis of spheroid functions are reviewed and modified for appli-13

cation to ultra-high degree. We extend the implementation of the algorithms in the SHTOOLS14

software package (v2.8) by 1) the X-number (or Extended Range Arithmetic) method for accurate15

computation of ALFs and 2) OpenMP directives enabling parallel processing within the analysis.16

Our modifications are shown to achieve feasible computation times and a very high precision: a17

degree-21600 band-limited (=frequency limited) spheroid topographic function may be harmoni-18

cally analyzed with a maximum space-domain error of 3 x 10−5 m and 5 x 10−5 m in 6 h and 1719

h time using 14 CPUs for the GL and for the DH quadrature, respectively. While not being inferior20

in terms of precision, the GL quadrature outperforms the DH algorithm in terms of computation21

time. In the second part of the paper, we apply the modified quadrature algorithm to represent -22

for the first - time gridded topography models for Earth, Moon and Mars as ultra-high degree series23

expansions comprising more than 2 billion coefficients. For the Earth’s topography, we achieve a24

resolution of harmonic degree 43,200 (equivalent to ∼ 500 m in the space domain), for the Moon25

of degree 46,080 (equivalent to ∼ 120 m) and Mars to degree 23,040 (equivalent to ∼ 460 m).26

For the quality of the representation of the topographic functions in spherical harmonics we use the27

residual space domain error as an indicator, reaching a standard deviation of 3.1 m for Earth, 1.9 m28

for Mars and 0.9 m for Moon. Analysing the precision of the quadrature for the chosen expansion29

degrees, we demonstrate limitations in the implementation of the algorithms related to the deter-30

mination of the zonal coefficients, which, however, do not exceed 3 mm, 0.03 mm and 1 mm in31

case of Earth, Mars and Moon, respectively. We investigate and interpret the planetary topography32
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spectra in a comparative manner. Our analysis reveals a disparity between the topographic power33

of Earth’s bathymetry and continental topography, shows the limited resolution of altimetry-derived34

depth (Earth) and topography (Moon, Mars) data and detects artifacts in the SRTM15 PLUS35

data set. As such, ultra-high degree spherical harmonic modeling is directly beneficial for global36

inspection of topography and other functions given on a sphere. As a general conclusion, our study37

shows that ultra-high degree spherical harmonic modeling to degree ∼ 46, 000 has become possible38

with adequate accuracy and acceptable computation time. Our software modifications will be freely39

distributed to fill a current availability gap in ultra-high degree analysis software.40

Keywords Spherical Harmonic Analysis · Quadrature · Gauss-Legendre · Driscoll/Healy ·41

Topography · Digital Elevation Model · Earth · Mars · Moon42

1 INTRODUCTION43

1.1 Motivation44

The application of spherical harmonic modeling has a long tradition in Earth and planetary sciences45

such as geodesy and geophysics (see e.g. Sneeuw (1994), Wieczorek (2007), Balmino et al (2012),46

Wieczorek (2015)). The representation of a function (e.g. gravity field functionals, topography,47

magnetic field strength, etc.) on a spheroid planet in spherical harmonics (SH) can be used to (1)48

explore the spectral constituents of a global function (e.g. through global power spectral densities),49

(2) spherical harmonic modeling (e.g. combination of satellite data and/with terrestrial data (Pail50

et al, 2011)), (3) enable transforms in the spectral domain (e.g. spectral forward modeling of the51

topographic potential (Claessens and Hirt, 2013)) or (4) to interpolate between discrete points. The52

two mathematical processes to expand a function in the spatial domain into spherical harmonics, i.e.53

spherical harmonic coefficients (SHCs), and vice versa are known as the spherical harmonic analysis54

(SHA) and the spherical harmonic synthesis (SHS), respectively.55

Today, many space-borne observation techniques are delivering high-resolution global data sets (i.e.56

ten metres to a few hundreds of metres in terms of global topographic data sets : TanDEM-X57

(Bartusch et al, 2008) surveyed the Earth with 12 m resolution, LOLA (Smith et al, 2010) surveyed58

the Moon with up to 30 m resolution). Further, there is an environmentally- and politically-driven59

growing demand for geophysical and environmental modeling. In consequence, the requirements60

for spherical harmonic computations concerning (1) spatial resolution, (2) numerical accuracy and61

(3) computational aspects such as memory and computation times steadily increase. For ultra-62

high degree (i.e. spherical harmonic degrees of 10,800 and beyond) spherical harmonic synthesis,63

free software has become available with the Matlab-based Graflab by Bucha and Janák (2013).64

However, as far as the ultra-high degree SHA is concerned, there is demand to review the existing65

SHA methods, eventually providing suitable SHA algorithms and software with ultra-high degree66

capability to the scientific community.67

1.2 Past work68

The Fast Fourier Technique (FFT) (Walker, 1996) for spherical harmonic analysis is a method of69

choice as it allows efficient evaluation of integrals in the frequency domain (with transformations70

between spatial and frequency domain). The most important prerequisite for the FFT is that the71

data is sampled on a regularly arranged grid. In general, a spherical harmonic analysis using FFT72

can be performed by numerical integration (=quadrature) following certain sampling theorems or73

by Least-Squares (LSQ) techniques (Sneeuw, 1994). The advantage of the latter is that it is the74

only SHA technique that allows stochastic modeling and hence is capable of delivering variance-75

covariance information for the estimated spherical harmonic parameters. The major drawback of76

the LSQ technique is that for ultra-high spherical harmonic degrees the normal equations become77

extremely large and require large-scale computational resources for its inversion (see e.g. Fecher et al78

(2013)). In comparison, quadrature techniques are more efficient to handle, as they usually (only)79

require a number Fast Fourier Transforms and series expansions (see also 2.1).80
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The theoretical foundations and derivations of quadrature techniques for SHA are well known. For81

a sound overview on most common methods and related literature see Sneeuw (1994), Claessens82

(2006), Driscoll and Healy (1994)). Few work exists on the implementation of ultra-high resolution83

spherical harmonic analysis techniques. Recently, some works were published that comprise spherical84

harmonic computations up to degree 10,800 at maximum (Gruber et al, 2011; Abrykosov et al, 2012;85

Balmino et al, 2012), which is the lower limit of the degree range taken into consideration in this86

work.87

In Balmino et al (2012) 1 arc-min topography is analysed ”by a standard quadrature method ap-88

plied to 1’ x 1’ equiangular mean values, and accelerated by the Longitude Recursion-Partial Sums89

algorithm”. Numerical stability of the computed integrals of Associated Legendre Functions (ALFs)90

above degree and order (d/o) 2700 is achieved by the authors by multiple application of a normaliza-91

tion factor which prevents overflow with respect to the IEEE limitations on real numbers (Balmino92

et al, 2012). Abrykosov et al (2012) analyse a 1 arc-min gravity anomaly grid. The work relies on93

the 2D-FFT method by Gruber et al (2014) that circumvents shifts of the FFT base by latitude94

dependent phase lags, which occur when data is given in geodetic latitudes and cannot be treated95

efficiently by an FFT algorithm. The computation of ALFs in Gruber et al (2011, 2014) is based on96

Fourier expansions of associated Legendre functions (Hofsommer and Potters, 1960), modified as97

described in Gruber (2011).98

The cited works and this work deal with the harmonic transformation based on spherical harmonic99

base-functions. With respect to the rotationally flatness of most planets, the use of ellipsoidal har-100

monics (EH) is possible likewise (see e.g. Dassios (2012)). EH may even seem more natural, however,101

ellipsoidal harmonic tools are not (yet) widely used.102

1.3 This work103

This paper primarily deals with the computational realization and validation of two numerical quadra-104

ture techniques for ultra-high resolution (surface) spherical harmonic analysis (≥ degree 10,800):105

the Gauss-Legendre quadrature and the quadrature based on Driscoll/Healy’s sampling theorem.106

As a second aspect we exemplify the application of the methods to ultra-high resolution planetary107

topography. We make use of the implementation of both techniques in the Fortran (F90)-based108

SHTOOLS v2.8 package (http://SHTOOLS.ipgp.fr/) written by Mark Wieczorek. The relevant109

routines are extended here with (1) stable algorithms for the computation of the fully-normalized110

Associated Legendre Functions based on the extended range arithmetic approach (Fukushima, 2012)111

and (2) parallel processing using OpenMP standards. First, the newly derived routines are validated112

in a closed loop environment of consecutive analysis and synthesis up to spherical harmonic degree113

21600 (later during application the routines are validated indirectly up to degree 46080). Then the114

routines are used to investigate the characteristics and differences in spectral energy of the planetary115

topography of Earth and Mars as well as the Moon’s body up to ultra-fine scales based on SRTM15116

PLUS and the available PDS (Planetary Data System) data sets. Major motivation for the analysis117

of the high-resolution topography is that surface spherical harmonic coefficients of different powers118

of the topography may be used to forward-model the gravitational potential in the spectral (i.e.119

the spherical harmonic) domain (see e.g. Rummel et al (1988); Wieczorek (2007); Balmino et al120

(2012); Claessens and Hirt (2013); Hirt and Kuhn (2014)) at scales far beyond the resolution of121

gravity-capturing satellite missions such as the Gravity and steady-state Ocean Circulation Explorer122

(GOCE) (ESA, 1999), for Earth, or the Gravity Recovery and Interior Laboratory (Grail) (Lemoine123

et al, 2014), for the Moon.124

The paper is outlined as follows: Section 2 briefly introduces the spherical harmonic series expansion125

and recapitulates the basic theory of numerical quadrature. In section 3 the modifications for making126

the previously introduced algorithms suitable for ultra-high degree SHA by extending the SHTOOLS127

package is described. Computation times, allocated memory and precision of the algorithms is dis-128

cussed in section 3.2 and 3.3. In section 4 the procedures are applied to planetary topography129

models of Earth, Mars and Moon (section 4.1), revealing their spectrum up to degree and order130

43200, 23040 and 46080, respectively. The application of our procedures is described in section 4.2,131
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and the results and the overall performance are discussed in section 4.3 and 4.4, respectively. Finally,132

we summarize the main findings of this work and give an outlook on future work in section 5.133

2 THEORY134

2.1 Spherical Harmonic Analysis by Quadrature135

Quadratures here denote methods that translate a function on a spheroid into its spectral con-136

stituents w.r.t. the spherical harmonic base-functions by means of numerical integration. It is thus,137

in a more general view, a spherical harmonic analysis procedure such as SHA based on least-squares138

(Sneeuw, 1994) or collocation techniques (Moritz, 1978; Arabelos and Tscherning, 1998). Sneeuw139

(1994) showed that an approximate quadrature can be derived from the least-squares collocation140

formulation. For fundamental mathematical relations concerning spherical harmonic analysis see141

e.g., Hofsommer (1957); Colombo (1981) and Sneeuw (1994).142

Following the explanations in Sneeuw (1994), in continuous space the harmonic coefficients Cnm143

and Snm may be defined by the two integrals144 {
Am(θ)
Bm(θ)

}
= 1

(1 + δm0)π

∫ 2π

0
f(θ, λ)

{
cosmλ
sinmλ

}
∂λ (1)

145 {
C̄nm
S̄nm

}
= 1 + δm0

4

∫ π

0
P̄nm(cos θ)

{
Am(θ)
Bm(θ)

}
sin θ∂θ (2)

where f is the function on a sphere with spherical coordinates θ (co-latitude) and λ (longitude),146

P̄nm are the fully-normalized associated Legendre functions of the first kind with147

δm0 =
{

1, m = 0,
0, m 6= 0.

}
. (3)

The spherical harmonic degree and order are n and m, respectively, while ∂λ and sin θ∂θ are the148

differentials indicating the integration variables.149

Eq. 1 and Eq. 2 can directly be translated into discrete space, giving the basic formulas for an150

approximate quadrature (here modified after Sneeuw (1994))151 {
Am(θi)
Bm(θi)

}
= si

1
N (1 + δm0 + δmL)

2N−1∑
j=0

f(θi, λj)
{

cosmλj
sinmλj

}
(4)

152 {
C̄nm
S̄nm

}
= 1 + δm0

4

N∑
i=1

P̄nm(cos θi)
{
Am(θi)
Bm(θi)

}
(5)

where N denotes the number of latitude parallels (the equation holds for an equiangular grid, with153

2N − 1 meridian parallels) and si is a weight which is proportional to the sine of the co-latitude154

(akin to the sinθdθ term in Eq.2). The weights may be seen as a means to account for the meridian-155

convergence-implied distortion of the scaling in each latitude parallel.156

2.1.1 Approximate quadrature157

According to Sneeuw (1994) the weights si may be chosen as158

si = π

N
sin θi, (6)

or159

si = 2∑N
k=1 sin θk

sin θi (7)

and, inserted into Eq.5 and Eq. 4, may be used as formula for an approximate quadrature. However,160

the weights in Eq. 6 and 7 do not account for the fact that some of the base functions, namely161
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the Legendre functions, loose their orthogonality in the discrete case (Sneeuw, 1994), and thus,162

applied in the quadrature, yield approximate values for the harmonic coefficients only. Two (known)163

possibilities to ensure the orthogonality of the discretised Legendre functions by certain weighting164

and sampling schemes are presented in section 2.1.2 and 2.1.3, leading to an exact harmonic retrieval165

of spherical functions by numerical integration.166

2.1.2 Exact quadrature through Driscoll/Healy167

Following the quadrature based on Driscoll and Healy’s (DH) algorithm (Driscoll and Healy, 1994),168

the geographic data has to be provided on a regular (quadratic) grid of [2nmax + 2 × 2nmax +169

2] = [N × N ] grid points, where nmax is the maximum spherical harmonic degree (and order)170

of the coefficients. with latitude parallel sampling of ∆θ = 180◦/N and meridian sampling of171

∆λ = 360◦/N or on a larger (truly) equiangular grid ([N × 2N ]) with ∆θ = ∆λ = 180◦/N .172

The additional information in the larger grid is ignored by the algorithm, however, grids dimensioned173

with N × 2N are often used by global geographic data sets and therefore might be the more174

practicable grid size. The number of samples, N , must be even for this type of quadrature and175

the spherical harmonic expansion is exact if the function represented by the grid is band-limited to176

degree nmax = N/2 − 1. More precisely, the algorithm is based on the fact that ”a function, whose177

Fourier transform has bounded support, may be recovered “from its uniformly arranged samples178

”with a frequency a least twice the bounding frequency “(Driscoll and Healy, 1994).179

To account for the fact that the sample points near the poles are closer to each other than they180

are near the equator, latitude-dependent sample weights are introduced (Driscoll and Healy, 1994),181

achieving orthogonality of the base functions. The weights ai are given in Driscoll and Healy (1994)182

(eq. 9, p. 216) as183

ai = 4π 2
√

2
N

sin (πi
N

)
N/2∑
l=0

1
2l + 1 sin ((2l + 1)πi

N
) for i = 0, ..., N − 1 (8)

where the factor 4π additionally is introduced into the original equation, as Driscoll and Healy (1994)184

use unity normalized spherical harmonics and the quadrature is based on 4π - normalised spherical185

harmonics (as is common in geodesy). Then the coefficients Am and Bm within Driscoll and Healy’s186

method for an equiangular grid become187 {
Am(θi)
Bm(θi)

}
=
√

2
π

ai

2N−1∑
j=0

f(θi, λj)
{

cosmλj
sinmλj

}
=
√

2
π

ai

{
Re (Fm (f (θi, λ1...λ2N−1)))
−Im (Fm (f (θi, λ1...λ2N−1)))

}
(9)

and with Eq. 9 inserted into Eq. 5 the surface spherical harmonic coefficients my be retrieved. The188

variable Fm denotes the complex valued Fast Fourier Transform which is computed for each ith189

latitude parallel of the gridded functional f(θi, λi...λ2N−1) and contains the Fourier coefficients190

(real (Re) and imaginary (Im) part of Fm). The back- and forward Fourier transformations are191

possible because of the periodicity of the function described by each latitude parallel and because192

of the orthogonality of the sine and cosine functions (c.f. Sneeuw 1994).193

Note that due to the oversampling needed for the algorithm N or 2N complex Fourier coefficients194

are computed (for a quadratic or an equiangular grid, respectively) for each parallel, of which only195
N
2 − 1 (= nmax = mmax) are used. All frequencies n > N

2 − 1 are simply discarded as they would196

lead to aliasing.197

2.1.3 Exact quadrature through Gauss-Legendre198

Following the Gauss-Legendre-Quadrature (GLQ) (or second Neumann method in Sneeuw (1994)),199

an irregular grid ([nmax + 1 × 2nmax + 1] = [N × 2N − 1]) with equidistant sam-200

pling along latitude parallels and variable sampling along meridians is established. On the meridians201

grid points are at the zero-crossings of the associated fully-normalized Legendre Polynomials, i.e.202

P̄nmax+1,m=0 (cos θi) := 0. This grid is referred to as Gauss-Legendre grid or Gauss-Neumann grid203
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(Sneeuw, 1994).204

Neumann’s latitude dependent quadrature weights wi (also called Legendre weights) ensure that the205

orthogonality of the discrete Legendre functions is guaranteed and are given, e.g. by Krylov (1962)206

in Sneeuw (1994)207

wi = 2
(1− cos (θi)2)

(
P

′
nmax+1(θi)

)2 for i = 0, ..., N − 1, (10)

where P ′ is the first derivative of the Legendre Polynomial with respect to θ. Then the coefficients208

Am and Bm within the GLQ become209 {
Am(θi)
Bm(θi)

}
= 2 wi

2N−1∑
j=0

f(θi, λj)
{

cosmλj
sinmλj

}
= 2 wi

{
Re (Fm (f (θi, λ1...λ2N−1)))
−Im (Fm (f (θi, λ1...λ2N−1)))

}
(11)

and with Eq. 11 inserted into Eq. 5 the surface spherical harmonic coefficients may be retrieved.210

The quadrature is exact when the function on the sphere is band-limited to degree nmax = N − 1.211

3 COMPUTATIONAL ASPECTS212

This section describes the implementation of the above algorithms for high degree SHA under213

computational and numerical aspects. Starting point for the realisation are existing (open-source)214

Fortran (F90) routines (http://SHTOOLS.ipgp.fr/) for both quadrature rules (DH and GLQ) in215

the SHTOOLS v2.8 package. The package written by Mark Wieczorek consists of a compilation of216

F90 routines dedicated to spherical harmonic computations (e.g. transformations, multitaper spec-217

tral analysis).218

In SHTOOLS the implementation of the two quadrature algorithms given above by Eq. 9 and 11 in-219

serted in Eq. 5 is done in a very efficient manner by (1) employing FFT for the evaluation of the sum220

over longitude-dependent cosine and sine arguments in each latitude parallel and by (2) exploiting the221

symmetry of the Legendre Polynomials and ALFs about the equator (Pnm(cos θ) = Pnm(cos−θ)).222

Due to the latter measure ALFs are computed only once for corresponding latitude parallels on the223

northern and southern hemisphere. In effect, the loop for the summation in Eq. 5 halves (upper sum-224

mation index then is N/2 + 1), leading to significant acceleration of the quadratures. Additionally,225

the ALF computation is embedded in the routines, which is time-saving as multiple initializations226

are omitted and no calls to external modules/routines are necessary (see SHTOOLS routines: SHEx-227

pandDH.f90, SHExpandGLQ.f90).228

3.1 Computation of ALFs229

The key aspect facilitating numerically accurate spherical harmonic computations up to ultra-high230

degree and order is numerical stability in the evaluation of the fully normalised associated Legendre231

functions to ultra-high degree. In contrast to the fully-normalized associated Legendre Polynomials232

(P̄n0), the ALFs (P̄nm with m 6= 0) are numerical inaccurate when evaluated with standard recursion233

formulas for high spherical harmonic degree and order. In the SHTOOLS package the computation234

of the associated Legendre functions is realized via the modified forward-column method (Holmes235

and Featherstone, 2002). This method is a modification of the standard forward column recursion236

which prevents over-/underflow of the ALFs (held in double precision variables) by applying a scaling237

factor of 1−280 at the beginning of the recursion. This modification allows the stable computation238

of Legendre Polynomials to degree 2700 (Holmes and Featherstone, 2002).239

Aiming at higher degree computations, we incorporated the Extended Range Arithmetic (ERA)240

approach (Fukushima, 2012), also known as Xnumber approach, for the computation of fully nor-241

malised ALFs, instead. In theory, the ERA allows the stable evaluation of ALFs up to arbitrary degree242

and order. Within the algorithm under- overflow problems are omitted by extending the exponent243

of floating point numbers, keeping the numbers in the numerical range of ordinary double precision244

(REAL∗8) numbers. The ALF algorithms by Fukushima (2012) for the computation of the sectorial245
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Fig. 1 Identity error I0 (Eq. 13) of the implemented ALF algorithm for various maximum degrees per latitude parallel.
Note that the green and blue curves are very close together.

and tesseral ALFs are complemented by a standard forward column method for the computation of246

the zonal Legendre Polynomials (which are unaffected by over-/underflow issues at ultra-high de-247

grees). The zonal (m = 0) fully normalized Legendre Polynomials Pn follow the recursive description248

e.g. given in Holmes and Featherstone (2002) as249

P0 = 1
P1 =

√
3 sin θ

Pn = Pn−1 ·
√

(2n+ 1)(2n− 1)
n

· cos θ − Pn−2 · (n− 1) ·
√

2n+ 1
n ·
√

2n− 3
, for n > 1.

(12)

To verify the accuracy of the implemented ALF algorithm, tests with exact identities that represent250

certain sums of ALFs may be used (see e.g. identity tests provided in Holmes and Featherstone251

(2002); Fukushima (2012)). We use the identity error defined by252

I0 =
∑M
n=0

∑n
m=0 Pnm(cos θ)2

(M + 1)2 − 1 (13)

(c.f. Holmes and Featherstone (2002)), where the square-sum over all ALFs up to a certain maximum253

degree M for any θ in the interval −90◦ < θ < 90◦ must equal (+1)2. Our tests (Fig. 1) show that254

for M = 2190, 21600, 43200 and 46080 the error stays well below 1−10 for θ > 5◦ and below 1−8
255

for polar latitudes (θ < 5◦). Note that for accurate computation of the identity error in Eq. 13 the256

variable holding the squared ALFs must be of quadruple precision (REAL*16).257

We acknowledge other methods exist for the numerically stable computation of ALFs at ultra-high258

degree (see e.g., Balmino et al (2012) or Gruber (2011)), which could be considered for implemen-259

tation too.260

261
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Fig. 2 Scheme of the general program structure of the SHTOOLS quadratures (applies for GLQ and DH) showing
the location of the implemented OpenMP parallel loop directive in this work

3.2 Parallelisation and computation times262

Ultra-high degree spherical harmonic computations require efficient parallel computation techniques.263

The reason is that the number of parameters and ALFs to be estimated or computed increases in264

quadratic manner with the maximum degree, by (nmax + 1)2. Simultaneously, the size of the grid265

increases quadratically, as raising the degree requires a finer sampling of the function to be analysed266

by the quadrature. An overview on the number of parameters, ALFs and grid points together with267

related memory allocation are given in table 1 for selected spherical harmonic degrees. A degree-268

21600 SHA thus requires the computation of 466.6 million spherical harmonic parameters and the269

same number of ALFs per latitude. Even when taking into account the symmetry of the ALFs to the270

equator a total of ∼ 1013 or ∼ 5 · 1012 SHCs and ALFs need to be computed within the implemen-271

tation of Driscoll/Healy’s quadrature and the Gauss-Legendre quadrature, respectively. These large272

numbers already suggest that using a single CPU is hardly sufficient for high-degree quadratures.273

Therefore, we make use of the OpenMP Application Program Interface (API) (www.openmp.org),274

which provides a flexible interface for certain CPU directives, enabling shared-memory parallel pro-275

gramming for multiple platforms in C/C++ and Fortran.276

In a first attempt we make use of the OpenMP Parallel Loop directive, which allows to share time-277

consuming loops among a predefined number of threads, i.e. CPUs. There are generally two major278

loops needed, one outer loop over all orders m and on inner loop over all degrees n > m, when it279

comes to the computation of all sectorial and tesseral SHCs associated to a certain latitude (and280

to its symmetrical counterpart) in Eq. 5 together with Eqs. 9 or 11. The parallel regions are em-281

bedded directly into the SHTOOL quadrature (and synthesis) routines (SHExpandGLQ.f95, SHEx-282

pandDH.f95, MakeGridGLQ.f95, MakeGridDH.f95) and embrace the computationally costly double283

loop (Fig. 2). Within the outer loop the ALF routine is called nmax − 1-times to calculate a vector284

containing all ALFs of the same order m, which is then multiplied with the corresponding Fourier co-285

efficients (or with the corresponding spherical harmonic coefficients in case of SHS routines) within286

the inner loop over all degree n for n > m. The resulting (nmax − 1) + (nmax − 1) · (nmax)/2287

operations per latitude (e.g. ∼ 233.3 million operations for nmax = 21600) are shared between the288

allocated CPUs.289

With this kind of parallel processing, computation times of the GLQ quadrature could be reduced290

approximately by a factor of 6 and by a factor of 13 of the time needed by a single CPU using291

8 and 14 CPUs, respectively. In the case of using the DH algorithm in the quadrature, the paral-292

lelisation reduces to a fifth and a thirteenth of the time needed by a single CPU using 8 and 14293
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Fig. 3 Computation times for spherical harmonic analysis using the Gauss-Legendre quadrature (GLQ) and the
Driscoll/Healy quadrature (DH) as a function of maximum recovered degree and allocated CPUs

CPUs, respectively. Absolute computation times of both algorithms are illustrated in Fig. 3. The294

CPU time (=computation time times number of used CPUs) of the here investigated SHA methods295

are significantly lower compared to e.g. the method suggested by Gruber et al (2011). A degree and296

order 10800 analysis in Gruber et al (2011) (c.f. table 1) takes ≈ 170 CPU hours (in a 16 thread297

environment), while it takes ≈ 8 CPU hours using the here implemented GLQ-quadrature (in a 14298

thread environment).299

We note that at degree 2160 the computation times are about 8 times longer compared to the300

original SHTOOLS quadrature routine which is based on the standard forward column recursion (47301

seconds vs 376 seconds). The significant prolongation owes to 1) using the X-number routines for302

the computation of the ALFs, which are approximately a factor 2 more time consuming than the303

modified forward-column recursion (personal comm. Fukushima 2015), and to 2) calling an external304

routine for the computation of the X-number ALFs. In the original SHTOOLs implementation, the305

ALF computation is embedded in between the lines of the quadrature routine which means initiali-306

sation of parameters is only done once (and not m times) and storage of ALFs in large arrays is not307

required.308

In a second attempt, we tried to assign a single core directly to the processing of a whole latitu-309

dinal parallel. This approach turned out to be not feasible because within each latitudinal parallel310

the CPUs have to update the array holding the SHCs. As the different CPUs may write (update)311

an allocated memory within the array at the same time, data integrity is not ensured. The OMP312

attribute clauses for shared variables, like ATOMIC or REDUCTION, would ensure this kind of in-313

tegrity. Those attributes, however, only work for scalar variables. The variable holding the SHCs is314

an array of dimension [2, nmax + 1, nmax + 1], and thus the attributes are not applicable here.315

3.3 Precision of implemented algorithms316

The implemented DH (section 2.1.2) and GLQ (section 2.1.3) quadratures are exact algorithms,317

only, when applied to a band/frequency-limited function that is discretised ( or sampled) in the318

correct manner. In order to validate both algorithms we use band-limited variants of Earth’s relief319

(topography and bathymetry), and perform two consecutive analysis and synthesis to create a320

closed loop experiment. First, DEM elevations are resampled according to the respective algorithms’321

sampling scheme (described above) by means of a 2D-interpolation (cubically). The obtained grids322
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nmax Gauss-Legendre (GLQ) Driscoll and Healy (DH)
2, 160 3.09 x 10−9 2.6 x 10−9

10, 800 2.10 x 10−6 1.58 x 10−6

21, 600 2.63 x 10−5 4.89 x 10−5

Table 2 Maximum absolute space-domain error of closed loop experiments with band-limited variants of Earth’s
topography using the GLQ and the DH quadrature algorithm; units are in metres

are harmonically analysed via the implemented extended SHTOOLS quadratures. The computed323

spherical harmonic coefficients can then be used to create band-limited grids of DH or GLQ kind324

up to degree 21600, via another synthesis. The synthesis step is validated externally with the freely325

available GrafLab-Software (Bucha and Janák, 2013), a MATLAB-based synthesis for ultra-high326

spherical harmonic expansions. Our implementation of the synthesis based on SHTOOLS (see above)327

is in very good agreement with GrafLab, and errors in the space domain do not exceed 2x10−6 m328

at degree/order 21600.329

The numerical precision of the quadratures given by the maximum absolute error of analysis and330

consecutive synthesis of the created band-limited topography function in the space domain is given331

in table 2 for selected maximum spherical harmonic degrees nmax. The maximum residual errors332

of both approaches (GL and DH) are in the same order of magnitude, not exceeding 5 x 10−5 m333

even at maximum degree 21600. This suggests that the implementation is well suited for ultra-high334

degree spherical harmonic analysis. Error patterns in the residuals are shown and discussed in section335

4.4.1 and 4.4 up to maximum degree 46080.336

4 APPLICATION TO PLANETARY TOPOGRAPHY337

In this section the implementation of the GLQ quadrature (section 3) is applied to planetary topog-338

raphy of different resolution and features, followed by a discussion of computational aspects and339

interpretation of results.340

4.1 Data341

The two planets Earth and Mars as well as the Earth’s Moon are found to be suited to extensively342

test the numerical quadrature algorithms described in section 2.1, mainly because high- resolution343

shape functions are available in public data sets, covering the bodies’ surfaces in their entirety.344

Additionally, the bodies show very different characteristics and surface features at large, medium345

and small scales (Wieczorek, 2007). On Earth we have the clear and unique distinction between346

continents (topography) and oceans (bathymetry) along with plate margins accompanied by (active)347

rift, subduction and uplift zones. On Mars we find a unique dichotomy - an asymmetry between low348

elevations in the northern and high elevations in the southern hemisphere - as well as large impact349

basins, rifts and the monumental regional peaks of the Tharsis volcanoes near the equator. Next350

to the Tharsis volcanoes located is the highest peak known as Olympus Mons, reaching almost 22351

km (Wieczorek, 2007). The Lunar topography, with its heavily cratered farside and comparatively352

smooth nearside (reasoned by the young basaltic material and the Moon’s Earth-bound rotation), is353

home to the largest known impact structure in the solar-system: the giant South Pole-Aitken impact354

basin on the southern farside hemisphere with a total relief of over 10 km within a region of 2000355

km diameter (Wieczorek, 2007). At the same time the central processes being responsible for the356

morphology are very different due to the very different outer conditions and forces present in the357

respective planetary system. Among others, the processes leading to unique surface structures are:358

exposure to solar radiation, existence and composition of atmosphere, tectonic and volcanic activity,359

existence of water and gravity.360

Planetary topographic data sets are provided in terms of digital elevation models (DEMs) and361

have been used in spherical harmonic analyses in the past. To our knowledge the maximum degree362

of available SHCs does not exceed 10800 for Earth, 2600 for the Moon and 2600 for Mars. The363



12 Moritz Rexer1, Christian Hirt2,1

Planet Degree SHC Data Set Reference Topographic Data
Earth 10800 Earth2014 Hirt and Rexer (2015) SRTM30plus v9, Bedmap2,

SRTM v4.1, GBT v.3
Earth 10800 ETOPO1 Balmino et al (2012) ETOPO1
Moon 2600 LOLA2600p Wieczorek (2015) LOLA
Mars 2600 MarsTopo2600 Wieczorek (2015) MOLA

Table 3 Existing works on high-degree spherical harmonic analysis of planetary topography; SRTM: Shuttle Radar
Topography Mission; GBT: Greenland Bedrock Topography; PDS: Planetary Data System; LOLA: Lunar Orbiter
Laser Altimeter ; MOLA: Mars Orbiter Laser Altimeter;

corresponding data sets and references are listed in table 3.364

Within the publicly provided data sets there generally exist limitations or inconsistencies which365

are independent of the provided data resolution. Those may e.g. be related to the technique of366

measurement and blur our knowledge about the surface elevations of a planet. On Earth, for example,367

we have large differences between the quality of topographic elevations and seafloor (=bathymetric)368

elevations. The first of which can be measured with various terrestrial/airborne/spaceborne sensors,369

while the latter is sensed directly only via local-scale ship soundings and determined globally indirectly370

via ties to the altimetric gravity field (Smith and Sandwell, 1994). According to Sandwell et al (2014)371

more than 50 % of the ocean is more than 10 km away from the next direct depth measurement.372

The highest resolution gravity field over the oceans is derived from satellite altimetry and available373

models reach ∼ 1′ (∼= 2 km) resolution (Andersen et al, 2013; Sandwell et al, 2014) at best. However,374

the actual resolution in these models is dependent on the spacing (or density) and the orientation375

of the satellite altimeter ground-tracks. The available new altimeter data sets of CryoSat-2 and376

Jason-1 have a ground-track spacing of 2.5 km and 7.5 km (Sandwell et al, 2014), respectively.377

When combined with altimeter data of older satellites (Geosat and ERS-1) the gravity data can378

be used to retrieve seamounts between 1 and 2 km height (Sandwell et al, 2014). But due to the379

attenuation of the shorter wavelength gravity signals, the estimation of bathymetric heights from380

gravity works best in the wavelength-band from 12 km to 160 km (Sandwell et al, 2014), which381

means it is of lower quality at scales < 12 km. Further, the quality of the estimates decreases with382

the thickness of the seafloor (Sandwell et al, 2014).383

On Mars and Moon the actual resolution also is dependent on the across-track spacing of the384

laser altimeters ground-tracks, and higher-resolution data products are released as soon as the385

measurement density is good enough that there are some samples per pixel accumulated (Neumann,386

2010). However, the track density is lowest near the equator and highest towards the poles due to387

the (near) polar orbit. Owing to this fact, there exist gaps of up to 12 km between neighboring388

profiles at the equator in case of Mars. In the data products, these gaps are filled with interpolated389

values (Smith et al, 2003).390

Further, deviations from the orbital inclination of 90◦ inherent to most orbiters leads to non or391

poor observations in polar regions (see (Farr et al, 2007) and (Tachikawa et al, 2011) for Earth or392

(Smith et al, 2003) for Mars) and can only partly be compensated by other missions or observation393

techniques.394

4.1.1 Earth’s Topography and Bathymetry395

Earth’s topography and bathymetry here is taken from the first version of the SRTM15 PLUS396

data set (ftp://topex.ucsd.edu/pub/srtm15_plus/). It is the 15 arc-second nominal resolu-397

tion (∼ 0.5 km) successor of the well-known 30 arc-second topography/bathymetry maps SRTM30398

PLUS (Becker et al, 2009). SRTM15 PLUS contains a new combination of SRTM, ASTER and399

CryoSat-2 ice sheet data over land and is based on SRTM30 PLUS v11 over the oceans’ bathymetry.400

The SRTM30 bathymetry was derived, in principle, from the anomalous gravity field as sensed by401

various satellite altimeters and was calibrated and augmented locally by ship sounding data ag-402

gregated over 40 years time (Smith and Sandwell, 1994). The bathymetric data in areas devoid403

ship-sounding has a resolution of ∼ 12 km with a maximum resolution of 2 km, rather than the404

nominal 500 m resolution of SRTM15 PLUS (cf. Sandwell et al (2014), and Section 4.1). For more405



Ultra-high degree surface spherical harmonic analysis 13

details on the creation of the bathymetry and its accuracy the reader is referred to (Smith and406

Sandwell, 1994; Sandwell et al, 2014; Marks et al, 2010).407

The elevations and depths are given in terms of orthometric heights (in metres) relative to the408

EGM96 geoid, which is referenced to the WGS84 ellipsoid and which in good approximation rep-409

resents the mean sea level.410

411

As the SRTM15 PLUS data refers to geodetic latitudes it has to be transformed to geocentric
latitudes in order to be used by the quadratures correctly. This is done by a 2D- spline interpolation
using the simple relation

tan Θ = a2

b2 tan φ (14)

(see, e.g., Torge (2001), p.95) between the spherical co-latitude Θ and the geodetic co-latitude φ,412

where a is the semi-major and b the semi-minor axis of the underlying ellipsoid, which is GRS80413

(Moritz, 2000) in this case.414

Further, we found 6, 194, 174 NaN (not-a-number) flagged pixels in the SRTM15PLUS data set415

(0.17% of all pixels). We filled these data gaps with SRTM30PLUS information in order to get to416

a truly complete (=global) topography/bathymetry data set for Earth.417

4.1.2 Martian Topography418

The topography model for Mars originates from the Mars Orbiter Laser Altimeter (MOLA) which419

was part of the Mars Global Surveyor (MGS) mission. The MGS orbiter was operated between 1998420

and 2006 in a near polar orbit (inclination = 93◦). We use the Mission Experiment Gridded Data421

Record (GDR) - digital topographic maps that are generated from the altimeter observation data422

accumulated over the entire primary mission - made available via NASA’s Planetary Data System423

(PDS) (Smith et al, 2003). The maps are sampled at 128-pixel-per-degree (∼ 460 m). The MOLA424

topography is referenced to an areoid, defining a surface of constant (gravitational and rotational)425

potential (12652804.7 m2/s2 as the mean value at the equator at an average radius of 3396.000426

km) (Smith et al, 2003). The areoid may be calculated by the Goddard Mars Gravity Model GGM-2B427

(Lemoine et al, 2001) evaluated to degree and order 50 (Smith et al, 2003). The MOLA topogra-428

phy then is the difference between the real planetary radius and areoid at a certain planeteocentric429

longitude and latitude (IAU2000 coordinate system).430

In case of Mars, the polar regions (> +88◦ and < −88◦ latitude) are not covered by the gridded431

data products of 128-pixel-per-degree due to the spatially limited availability of MOLA observa-432

tions. Therefore we used the 64-pixel-per-degree elevation product in the polar regions instead,433

and oversampled it by means of a bi- cubical interpolation to reach a nominal global resolution of434

128-pixel-per-degree.435

4.1.3 Lunar Topography436

The lunar topography originates from the Lunar Orbiter Laser Altimeter (LOLA) instrument of the437

Lunar Reconnaissance Orbiter (LRO) mission (Smith et al, 2010). The orbiter circulates the moon438

on a polar orbit since mid-2009. We use the NASA PDS Gridded Data Record’s digital elevation439

model with 256-pixel-per-degree resolution (∼ 120 m), provided in terms of an equidistant cylindrical440

map (Neumann, 2010). The elevations are referenced to a reference sphere of 1737.4 km radius.441

A planeto-potential topography, i.e. physically meaningful heights, similar to the Earth’s and the442

Martian case could be derived for the Moon by subtracting a selenoid model from the planetary443

radius. The selenoid (=lunar geoid) can be derived from any potential model for the Moon.However,444

this is not required for the purpose of the present study.445

4.2 Processing446

For the spherical harmonic analysis of the planetary topography we choose the Gauss-Legendre447

quadrature as described and tested in section 2.1.3 and 3.2 . Both, the GLQ and the DH algorithm448
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Planet Sampling Harmonic Topographic Data
[ pixelsdegree ] [arc-sec] [m] degree

Earth 240 15 ∼ 500 43200 SRTM15 PLUS v1
Mars 128 28.125 ∼ 460 23040 MOLA
Moon 256 14.0625 ∼ 120 46080 LOLA

Table 4 Spatial Resolution (sampling), maximum harmonic degree and sources of the data used in the spherical
harmonic analysis of planetary topography (see also section 4.1) in this work; SRTM: Shuttle Radar Topography
Mission; LOLA: Lunar Orbiter Laser Altimeter ; MOLA: Mars Orbiter Laser Altimeter;

Fig. 4 Degree variances of planetary topography: Earth’s topography and bathymetry in black, Earth’s topography
(ocean values set to zero) in light blue, Earth’s bathymetry (continental values set to zero) in magenta, Lunar
topography in red and the Martian topography in green; unit on y-axis is meters squared.

would be qualified for this task in terms of precision (see section 3.3), but because of comparatively449

long computation times the DH method is not efficient for ultra high degrees (> 10800), see section450

3.2 and Fig. 3).451

The spectral bandwidth of the real topography is unlimited, the recoverable spherical harmonic band-452

width of the topography, however, is limited by its discretisation(section 2.1). Thus the sampling of453

a discrete topographic function defines the degree of truncation in the spherical harmonic analysis454

(and leads associated truncation errors, see section 4.3). The sampling and the associated maximum455

recoverable degree of each topographic data set (section 4.1) are listed in table 4. In order to apply456

the Gauss-Legendre quadrature the latitude parallels have to coincide with the zero-crossings of the457

Legendre Polynomials (Eq. 12). This was achieved by bi-cubically interpolating topographic height458

values at the respective latitudes using Matlab’s intrinsic 2D-interpolation method (cubic interpo-459

later).460

461

4.3 Results and discussion462

The harmonic analysis reveals the spectral composition of Earth’s topography and bathymetry to463

degree 43200 (=500 m half-wavelength), of the Martian topography to degree 23040 (=460 m half-464

wavelength) and of the Lunar topography to degree 46080 (=120 m half-wavelength). The degree465



Ultra-high degree surface spherical harmonic analysis 15

Fig. 5 Degree variances of planetary topography by associated spatial scale (half-wavelength in kilometres): Earth’s
topography and bathymetry in black, Earth’s topography (ocean values set to zero) in light blue, Earth’s bathymetry
(continental values set to zero) in magenta, Lunar topography in red and Martian topography in green; unit on y-axis
is meters squared.

variances are given in Fig. 4 and 5, as a function of harmonic degree and of the half-wavelength466

(=spatial resolution), respectively. At the same time re-expanding the calculated harmonic coeffi-467

cients to a grid - sampled in the same manner as the input-grid - allows evaluation of the accuracy468

of the implemented GLQ quadrature for the different maximum degrees in a closed loop scenario469

(Fig. 6, 10, 12).470

4.3.1 Spectra of planetary topography models471

The topography of each planet exhibits different spectral energy towards ultra-short scales and the472

degree variances also reveal different decay of the topographic signal with harmonic degree (Fig. 4).473

Notably, it is Earth that has highest topographic energy beyond degree ∼ 1900 (black curve), ex-474

ceeding the Moon’s topographic energy by almost 2 orders of magnitude at degree 43200. The major475

part of this short-scale energy is associated with Earth’s continental topography. This can be seen476

from the harmonic analysis of the continental topography only (by setting all values below sea level477

to zero: light blue curve) and of the bathymetry only (by setting all values above sea level to zero:478

magenta curve). Bathymetry makes up most of the power in the black degree variance curve up to479

degree ∼ 4000, whereas continental topography dominates Earth’s spectral harmonic power beyond480

this degree. Adding the degree variances of the magenta and the light blue curve would lead to the481

full (topography and bathymetry) signal and result in the black curve (4).482

The spectral properties of the martian and lunar topography are comparatively even (until degree483

23040). The lunar degree variance curve (red) intersects with the martian curve (green) near degree484

4000, having more power beyond this degree. Due to the limited grid resolution of the topographic485

data of Mars, only half of the spherical harmonic degrees could be recovered compared to the other486

two planets.487

Translating the spherical harmonic degrees into spatial scales using each planet’s natural half-488

wavelength (Fig. 5), allows to compare the spectral power in the degree variances of the different489

planets more intuitively, at the level of metric scales. Among the three bodies, the Moon’s topog-490

raphy possesses the highest energy over all spatial scales, indicating that its planetary relief has a491
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higher variability (and thus roughness). Especially, at spatial scales of ∼ 80 km to ∼ 200 km there492

are several pronounced topographic features on the Moon (craters of similar size). This is to be seen493

in the degree variances of the lunar topography, which remain at the level of ∼ 10x104m2, while the494

power of the other topography models (Earth and Mars) steadily decreases in this spectral band.495

In the lunar topography, this spectral bands represents several large-size Class 1 craters classified496

as TYC-type by (Wood and Anderson, 1978), e.g. Tycho (86 km diameter), Aristoteles (87 km497

diameter), Langrenus (132 km diameter) or Humboldt (207 km diameter). Those TYC craters are498

attributed multiple tiers of terraces, crenulated rim crest, large flat floor and a central peak (Wood499

and Anderson, 1978). Compared to Earth, also the Martian topography possesses more power at500

low and medium scales. Only below scales of 1.5 km the Martian topographic variability is below501

that of Earth’s.502

Compared with the topographic spectra of Moon and Mars, which show a very smooth decay (Fig.503

4), the decay of Earth’s topographic spectrum slows down in the band from ∼ 30 km down to ∼ 10504

km (degree ∼ 600 and 2160). Further, near degree 2160 a sudden drop in the power of the degree505

variances (see Fig. 4) or a change in tilt of the black curve (see Fig. 5), respectively, becomes visible.506

This behavior is attributable to the bathymetry component of the SRTM15PLUS model, which is507

seen from the inter-comparison of the three Earth power spectra (black vs. blue vs. magenta curve).508

We interpret the change of tilt at degree 2160 (∼ 9−10 km ∼ 4−5 arc-minutes) to indicate the limit509

of the full resolution of bathymetric depth data (the seafloor mapping is not complete anymore at510

shorter spatial scales). This is supported by the assessment of the bathymetric resolution in section511

4.1.512

Note that the absolute power of the degree variances also depends on the sphere-aeroid and the513

sphere-geoid-separation, respectively, which has been treated differently for the planets or not at514

all in case of the Moon (see section 4.1). However, this effect is relevant only at long and medium515

spatial scales because the model- underlying geoid models are of rather smooth nature (maximum516

degree is 360 for SRTM30PLUS and 50 for MOLA).517

518

4.3.2 Analysis of Earth’s topography to d/o 43200519

For Earth, the topography could be harmonically analysed to degree 43200. Using the computed520

SHCs for SHS, we can compare the resulting 15” x 15” grid with the SRTM15 PLUS input topog-521

raphy (Fig. 6: upper and middle plot). The standard deviation of the differences is about 1 m (RMS522

= 3.06 m) in the space domain. Much of the differences (here further denoted as residual error523

but also found denoted as representation error by Balmino et al (2012)) occurs in high elevated or524

rough terrain (e.g. in the Himalayas with amplitudes of about ±50 m, see middle plot in Fig. 7),525

whereas flat terrain (e.g. Australia) shows very small residual errors. Interestingly, apart from the526

mid-oceanic- ridges at the floor of the oceans, also linear residual error patterns become visible over527

the oceans. These linear errors seem to coincide with the ship routes that contributed the sounding528

data which was used to calibrate the SRTM15 PLUS bathymetry (Fig. 8). Obviously, these ship529

tracks create sharp edges in the modelled bathymetric surface. A much higher sampling frequency530

and higher degree in the analysis would be needed to be adequately represent those features in531

spherical harmonics. These residual errors together with the residual errors that appear in the areas532

of steep slopes (mountains, trenches) are here classified as truncation errors.533

The minimum and maximum residual SHA/SHS error (−2447.31 m and 3498.47 m, respectively)534

is very high compared to the analysis of Mars and Moon (see further down). Importantly, they are535

the result of artifacts with sharp edges (or single pixel errors) detected in the SRTM15PLUS data536

set (Fig. 9) and are no sign for deficiencies in the quadrature algorithm.537

538

4.3.3 Analysis of the Martian topography to d/o 23040539

For Mars, the topography could be harmonically analysed to degree 23040 with a truncation error540

of about 0.4 m in terms of STD (RMS = 1.94 m) in the space domain (Fig. 10: upper and middle541

plot). High residual errors are found around the highest elevated peaks (but not directly over the542
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Fig. 6 Earth’s topography and bathymetry (upper plot), closed loop residuals with input topography after the first
spherical harmonic analysis and synthesis (middle plot) and residuals of the anaylsis and synthesis of a band-limited
input topography (to degree 43200); unit is metres.
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Fig. 7 Earth’s topography (left plot), closed loop residuals with respect to input topography after the first spherical
harmonic analysis and synthesis (middle plot) and residuals of the anaylsis and synthesis of a band-limited input
topography (right plot) to degree 43200 over a selected region over the Himalayas; unit is metres.

Fig. 8 Bathymetry over parts of the pacific ocean as contained in SRTM15PLUS (left) and the SHA/SHS residual
error over this region (right), clearly depicting the ship- sounding tracks; unit is metres.

peaks), at the edges of some of the impact craters and along the deep rift valley such as the east-543

west aligned Vallis Marineris. The minimum and maximum errors are −1335.80 m and 937.75 m,544

respectively, less than in Earth’s case.545

Investigating different spectral bands of the MOLA topography by SHS, reveals a sightly inclined546

striping in the MOLA data (with ∼ 5 − 10 m amplitude in the spectral band 17280...23040, Fig.547

11). The stripes are also visible in the spectral band 11541...17279 (not shown here). Most probably548

the stripes are related to the ground tracks and ground coverage of the MOLA/MGS orbiter and549

illustrates the domain where MOLA DEM offers full resolution. Observation gaps existing between550

neighboring ground- tracks are filled by interpolation (Smith et al (2003) and see also section 4.1)551

and might thus be an explanation for the visible inconsistencies.552

4.3.4 Analysis of the Lunar topography to d/o 46080553

For Moon, the topography could be harmonically analysed to degree 46080 with a standard deviation554

of about 0.2m (RMS = 0.91 m) in the space domain (Fig. 12: upper and middle plot). The residuals555

on Moon show less co-location with topographic rough features (such as impact craters) and are556

generally of lower amplitude compared to those of the other planets analysed in this work. However,557

we find the amplitudes of the residuals slightly rising towards the poles.558

By performing a synthesis in various spectral bands, we find certain bands affected by striping. In559

contrast to the striping in the MOLA data set, the stripes in LOLA data are north-south aligned560

and thus in along-track direction of the LRO spacecraft, that was navigated on a polar orbit. In the561
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Fig. 9 Upper row: Area of minimum SHA/SHS residual error (−2447.31 m) in the SRTM15PLUS data set; Bottom
row: Area of maximum SHA/SHS residual error (3498.47 m) in the SRTM15PLUS data set (note that some of the
pixels on the island were NaNs and are filled by SRTM30PLUS values, see section 4.1.1); unit is metres.

band 23081...34620 the stripes have amplitudes at the 5− 15 m level (Fig. 13), indicating the limit562

in the resolution for the LOLA data.563

MOLA/MGS has an inclined orbit and thus also the stripes are inclined against the north-south564

direction. We suspect the reason for LOLA and MOLA stripes to be of similar kind, and, to be565

related to the ground-track/ coverage of the laser altimeters.566

4.4 Quadrature performance at ultra-high degrees567

4.4.1 Accuracy and truncation errors of the analysis of planetary topography568

The accuracy of the quadrature is not critically deteriorated by the choice of a higher spherical569

harmonic degree (see also section 3.3), as the Moon’s much higher resolved topography is much570

better represented in spherical harmonics than Earth’s topography. Instead, by interpreting the571

residuals (=differences to input topography shown in the middle plots of Fig. 6, 10 and 12) as572

truncation error, we learn that the choice of a higher harmonic degree in case of the Lunar topography573

(and the finer sampling intervals of the grid) leads to a lower truncation error (as expected). Taking574

the global topographic function’s standard deviations as indicator for the overall roughness of a575

planet’s topography, the Moon shows the highest variability (STD= 865.33 m), followed by Mars576

(STD=303.73 m) and Earth (STD= 261.96 m). Although Earth features the smoothest surface on577

average, it shows the highest truncation error.578

Further we find that the accuracy of the quadrature locally is dependent on the topographic surface579

function itself, i.e. smoothness/roughness of the terrain, because the residuals coincide with the580
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Fig. 10 Martian topography (upper plot), closed loop residuals with input topography after the first spherical harmonic
analysis and synthesis (middle plot) and residuals of the anaylsis and synthesis of a band-limited input topography
(to degree 23040); unit is metres.
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Fig. 11 Elevations around Olympus Mons obtained from a analysis and synthesis of MOLA data in the spectral band
0...23040 (left) and 17280...23040 (right); the green arrows indicate the direction of the visible striping pattern; unit
is metres.

locations of mountains, steep slopes or edges (such as the ship sounding data tracks in Earth’s581

bathymetry). This was also found by Balmino et al (2012).582

4.4.2 Precision of the quadrature at ultra-high degrees583

The residuals of each topographic input grid with respect to the topographic grid synthesized from its584

computed spherical harmonic coefficients reveal the quality (i.e. accuracy) by which the topographic585

surface functions are represented in the spherical harmonic domain through the GLQ quadrature586

(section 4.3.2, 4.3.3 and 4.3.4), and may be interpreted as truncation errors 4.4.1.587

By performing another harmonic analysis and synthesis using band-limited topographic input grids588

of the three planets (obtained by synthesis using the SHCs from the initial SHA), we can investigate589

the precision of the GLQ quadrature in closed loop manner (similar to the experiments done for the590

DH and the GLQ algorithm in section 3.2 up to degree 21600). The results - space domain residual591

errors - are shown in the bottom plot of figure 6, 10 and 12. The absolute amplitudes of the errors592

(Earth: < 3 mm; Mars: < 0.03 mm; Moon: < 1 mm) suggest that the GLQ algorithm works very593

precise even at the ultra-high harmonic degrees and that the precision is not the limiting factor for594

the application of the algorithm to planetary topography in this work.595

All residual plots from band-limited input topography reveal a striping pattern along latitude parallels,596

which is interrupted by white areas (indicating less or no errors) that show some obvious correlation597

to the topography. Similar striping patterns can be investigated for using the DH algorithm instead598

(not shown here). This striping is entirely non-critical for the application to digital elevation data of599

the planetary topography done here, nevertheless it deserves some close-up investigation. In case of600

Earth, this pattern can be characterized as follows: ocean and continental areas of about ±2000 m601

elevation are free of the striping pattern; higher or lower elevated areas are affected by the striping.602

Thus, the floor of the large oceans (except for the ridges), the Himalayas, but also Olympus Mons on603

Mars are covered by striping. Due to the strict east-west alignment of the striping pattern, the error604

must originate from the zonal harmonic coefficients. Those are, e.g., dependent on the Legendre605

Polynomials (LPs). However, the LPs are determined accurately using exact identities (see section606

3.1). Nevertheless, at very high or very low elevated points the algorithm must be at the edge of607

arithmetic over/-underflow, setting the limits for the precision of the quadrature and leading to the608

characteristic error patterns in the spatial domain. This may be an issue for extremely high-resolution609

quadratures (e.g. up to some hundred thousands of degrees) some day in the future.610

5 SUMMARY AND OUTLOOK611

In this work, two known algorithms - the Gauss-Legendre quadrature and the quadrature following612

Driscoll/Healy - and their implementation for the purpose of ultra-high ( surface) spherical har-613
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Fig. 12 Lunar topography (upper plot), closed loop residuals with input topography after the first spherical harmonic
analysis and synthesis (middle plot) and residuals of the anaylsis and synthesis of a band-limited input topography
(to degree 46080); unit is metres.
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Fig. 13 Elevations around Tycho crater obtained from a analysis and synthesis of LOLA data in the spectral band
0...34620 (left) and 23081...34620 (right); the green arrows indicate the direction of the visible striping pattern; unit
is metres.

monic analysis of spheroid functions were presented in detail. We extended the implementation of614

the algorithms found in the SHTOOLS software package by 1) the X-number (or Extended Range615

Arithmetic) method for accurate computation of ALFs and 2) OpenMP directives enabling parallel616

computing for feasible computation times. A degree 21600 quadrature (of a degree 21600 band-617

limited topographic function) that involves the computation of over 466 x 106 parameters, shows618

a precision of at least 3 x 10−5 m and 5 x 10−5 m in the space domain for the GL and DH algo-619

rithm, respectively. Sharing the degree-21600 quadrature between 8 or 14 CPUs, the computation620

times could be reduced approximately to a sixth (to ∼ 12.1 h) or a thirteenth (to ∼ 5.9 h) of the621

single-thread time in case of the GL algorithm and to a fifth (to ∼ 49.5 h) or thirteenth (to ∼ 16.9622

h) of the single-thread time in case of the DH algorithm. Hence, the Gauss-Legendre algorithm623

can be considered computationally more effective, although neither algorithm is inferior in terms of624

numerical precision.625

The implementation of the GL-quadrature was then used to harmonically analyse the Earth’s topog-626

raphy and bathymetry (from the SRTM15 PLUS data set) to degree 43200, the Martian topography627

(from MOLA data products) to degree 23040 and the Lunar topography (from LOLA data prod-628

ucts) to degree 46080. The retrieved spherical harmonic coefficients gave spectral insights into the629

different short and ultra-short wavelength characteristics of the topography of the three bodies.630

Degree variances reveal that the power (variability) of the Moon’s topography is significantly larger631

compared to the planets at all spatial scales (at least down to a half-wavelength of 500 m), especially632

below scales of 200 km. The representation of the Earth’s bathymetry (only) and topography (only)633

in terms of degree variances reveal irregularities in the bathymetry data of SRTM15 PLUS data set.634

The bathymetric degree variance curve exhibits a change in the decay of the spectral power around635

degree 2160, which indicates the limit of full resolution in contemporary bathymetry data, based on636

inversion of gravity from satellite altimetry. Neglecting these irregularities, we find the ocean floors637

making up most of the Earth’s topographic variability at scales above 5 km and the continental638

topography making up most power below scales of 5 km (∼ degree 4000) .639

Importantly, the residuals and the ultra-high bands of the spectral representation may also be used640

to reveal artifacts and systematics/characteristics of the observation techniques used for the creation641

of the elevation data. In case of SRTM15 PLUS, ship-tracks become clearly visible in the bathymetry642

and an artifact over Antarctica and the Arctic ocean was detected. In case of MOLA and LOLA,643

the synthesis of certain spectral bands (e.g. 2160 to 10800) reveals the ground tracks of the orbiters644

that carried the laser altimeters.645

The accuracy of the representation of the planets’ topography in spherical harmonics was investi-646

gated in terms of residual errors in the space domain. The global STD of the residuals are 3.06 m647

for Earth (d/o 43200), 1.94 m for Mars and 0.91 m for Moon. Apart from the rather high residuals648

in case of Earth, the results corroborate that choosing a higher degree in the analysis minimizes649

the truncation error. Among others, artifacts and ship-track edges in the SRTM15 PLUS data set650
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might be responsible for comparatively high residuals in the case of Earth. The residuals in all cases651

generally show a high correlation with the topography and most errors are found over areas of steep652

(or rough) terrain (e.g. mountains, trenches, crater edges). Investigation of the quadrature precision653

for the three cases of high-degree spherical harmonic analysis in closed loop manner shows east-west654

aligned stripes (caused by the zonal coefficients) which are pronounced in high and low elevated655

areas at the 1x10−7 m level, with the absolute errors not exceeding 3 mm for Earth, 0.03 mm for656

Mars and 1 mm for the Moon.657

As the key conclusion, both algorithms and their implementation are suitable for efficient and accu-658

rate ultra-high degree spherical harmonic analysis of spheroidal functions, tested here up to degree659

46080. The Gauss-Legendre algorithm outperforms the Driscoll/Healy algorithm in terms of com-660

putation times and therefore is preferable.661

The extension of the algorithms for solid spherical harmonic analysis (e.g. of a functional of the grav-662

itational field) is possible and would certainly extend the applicability of the algorithms in geophysics663

and geodesy.664
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