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Abstract 

We present a model that resolves the gravity field of Mars down to km-scales: Mars Gravity 

Model 2011 (MGM2011). MGM2011 uses Newtonian forward-modelling and the MOLA 

(Mars Orbiter Laser Altimeter) topography model to estimate the short-scale gravity field 

(scales of ~3 km to ~125 km). Combined with a reference gravity field and the satellite-

tracking model MRO110B2, MGM2011 provides surface gravity accelerations and vertical 

deflections over the entire Martian surface at 3 arc-min resolution.  MGM2011 is beneficial 

for gravity field simulation, inversion and statistics, as well as engineering-driven applications 

such as topographic mapping and inertial navigation. 
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1. Introduction 

Over the past 15 years, international space agencies have placed a strong emphasis on the 

exploration of Mars, most notably through high-resolution mapping of its topography (e.g., 

Smith et al., 2001; Gwinner et al., 2010) and observing its external gravity field (e.g., 

Lemoine et al., 2001; Marty et al., 2010; Konopliv et al., 2011).  To date, Mars gravity field 

determination efforts are commonly based on orbit analysis of artificial Martian satellites.  

Attenuation of gravity signals at satellite orbit altitude limits the resolution of such models to 

spatial scales of ~100 km.  Opposed to this, the topography of Mars has been accurately 

measured at a spatial resolution that exceeds that of gravity by ~2-3 orders of magnitude.  

Over much of the planet’s surface, topography is available at km-scales and finer (e.g., Smith 

et al., 2001; Gwinner et al., 2010). 

The topography is known to be a main contributor of short-wavelength signals to the 

gravity fields of Earth (e.g., Forsberg and Tscherning, 1981), the Moon (e.g., Goossens et al., 
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2011) and the terrestrial planets (e.g., Wieczorek 2007).  On Earth, topography models are 

routinely used in gravity field modelling (Forsberg and Tscherning, 1981; Nagy et al., 2000; 

Torge, 2001), and gravity field refinement (Pavlis et al., 2007; Hirt et al., 2010).  On the 

Moon, topography data was shown to be a valuable source in estimating the short-scale 

gravity field (Hirt and Featherstone, 2011). 

Here we model the Mars short-wavelength gravity field (in terms of gravity, geoid, 

vertical deflections) for the first time down to scales of ~3 km based on the high-resolution 

MOLA (Mars Orbiter Laser Altimeter) global topography (Smith et al., 2001) and Newtonian 

forward-modelling (e.g., Nagy et al., 2000).  The Newtonian gravity field solution is 

combined with a reference gravity field and the satellite-derived MRO110B2 model 

(Konopliv et al., 2011), thus providing a more complete description of the Martian gravity 

field: Mars Gravity Model 2011 (MGM2011).  

 

2. Data sets 

We use the global topography model from the MOLA instrument (Smith et al., 2001), 

operated on the MGS (Mars Global Surveyor) spacecraft between 1998 and 2001.  MOLA 

topography is based on ~600 million altimetry ranges extending over most of the Martian 

surface.  The along-track spacing of MOLA altimetry footprints is 0.3 km, with an average 

across-track spacing of 4 km at the equator (Smith et al., 2001). The MOLA grid of 

planetocentric radii of the topography at 1/64° resolution (~1 km at the equator) is available 

through the Planetary Data System (http://pds-geosciences.wustl.edu, product name MGS-M-

MOLA-5-MEGDR-L3-V1.0).  As a spherical harmonic representation of the topography, we 

use the MarsTopo719 model (Wieczorek, 2007) (http://www.ipgp.fr/~wieczor/SH/SH.html, 

model MarsTopo719.shape), to reduce the long-wavelength signals from MOLA. 

To describe the long-wavelength gravity field of Mars, the 110-degree spherical 

harmonic potential model MRO110B2 (Konopliv et al., 2011) is chosen.  MRO110B2 is the 

latest Martian gravity field from the Jet Propulsion Laboratory, based on 8.5 years of MGS 

and 6 years of Odyssey Doppler and range tracking data.  MRO110B2 also incorporates 2 

years of low-orbiting Mars Reconnaissance Orbiter (MRO) tracking data, which is why its 

spatial resolution is an improvement over earlier models (Konopliv et al., 2011).  MRO110B2 

is available as a set of fully-normalised coefficients via (http://pds-geosciences.wustl.edu, 

product name jgmro_110b2_sha.tab). 
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3. MGM2011 Development 

MGM2011 is composed of three constituents: First, a reference gravity field is introduced to 

take into account the height-dependent gravitational attraction of Mars, as approximated by a 

rotating mass-ellipsoid of homogeneous density.  Second, the gravitational potential model 

MRO110B2 serves as a source for medium- to long-wavelength Mars gravity field structures.  

Third, beyond the resolution of the potential model, Newtonian forward-modelling estimates 

the fine structure of the gravity field, as implied by the high-resolution MOLA topography.  

This approach parallels the successful construction of surface gravity accelerations on Earth 

(Hirt et al., 2011a) and the Moon (Hirt and Featherstone, 2011).  All MGM2011 constituents 

are computed in terms of 1/20° global grids (~3 km resolution at the equator). 

3.1 Reference gravity field 

The concept of the equipotential ellipsoid, an integral part of the Geodetic Reference System 

1980 (Moritz, 1980) used in Earth geodesy, is adopted here to provide the reference for 

MGM2011.  By convention, we use the following set of four defining parameters, the semi-

major axis a, semi-minor axis b, the product of the gravitational constant and the planetary 

mass GM and the angular velocity of planetary rotation ω. These define the geometry and 

gravitational attraction of a bi-axial equipotential ellipsoid of Somigliana-Pizzetti type 

(Moritz, 1980; Torge, 2001, chapter 4).  To establish the Mars Geodetic Reference System 

(MGRS), we use the numerical values for a, b, GM and ω (Table 1), as published by Ardalan 

et al. (2010).  Their a and b-values provide a best fit between the Mars geoid and ellipsoid, in 

that, they minimize the geoid-ellipsoidal separation in a least-squares sense and keep other 

Mars gravity field functionals (e.g., gravity disturbances, vertical deflections) small.  

Following Moritz’s formalism given in Appendix A1, the MGRS geometric and 

physical constants were derived from the four defining parameters.  The MGRS defining and 

derived constants (Table 1) are used for the computation of the normal gravity (Appendix A2) 

at the topography of Mars, as represented by the MOLA-3D locations.  Because the normal 

gravity field accounts for the ellipticity of Mars, we subtract the MGRS zonal harmonics (to 

order 10, Table 1) from the corresponding coefficients of the MRO110B2 potential model 

(Appendix A3). 

We acknowledge other numerical values to define a MGRS are available in the 

literature, e.g., the ellipsoid parameters of the International Astronomical Union (IAU), aIAU 

=3396190 m and bIAU
 =3376200 m (cf. Seidelmann et al., 2002, p. 103) that define a best-

fitting ellipsoid with respect to the Mars topography. Here we prefer the Ardalan et al. (2010) 

parameters (Table 1) over the IAU constants because they keep MGM2011 gravity field 



quantities (geoid, gravity disturbances, and vertical deflections) smaller. Computation of 

alternative Mars reference gravity fields, e.g., based on the IAU ellipsoid parameters, is 

straightforward with the equations given in the Appendix.  

 

Fig. 1.  Reduction rates (black) and cross-correlation coefficients (red) between topography-

implied gravity TOPg  and MRO110B (solid) and MRO110B2 (dotted) gravity MROg  . 

Reduction rates computed from100% [ ( ) ( )] / ( )TOP TOP MRO TOPRMS g RMS g g RMS g⋅ − − ). 

 

3.2 Potential model  

To initially assess the short-scale quality of MRO110B2, and of MRO110B (a constraint 

variant published by Konopliv et al., (2011)), we have computed band-limited gravity from 

the MarsTopo719 topography model.  Global 1/4°-resolution grids of MarsTopo719 were 

created for a range of 5-degree wide spectral bands (e.g., harmonic degrees 31 to 35), 

converted to gravity TOPg using Newtonian forward-modelling (see Section 3.3 and Pavlis et 

al. 2007) and compared with MRO110B2 gravity MROg  at the same locations and spectral 

bands over the entire surface of Mars.  To analyse the (global) agreement between TOPg  and 

MROg , we use reduction rates (RRs), see Fig. 1.  RRs quantify the extent the RMS (root mean 



square) signal strength of TOPg  is reduced (‘explained’) by the MRO110B gravity MROg .  RRs 

are most sensitive to indicate the strength of topography-generated gravity signals TOPg  

captured by potential models. 

For each 5-degree spectral band, Fig. 1 shows the correlation between TOPg  and MROg , 

and RRs, which are at the level of ~40 % to harmonic degree 70 and drop below 20% beyond 

degree 85, showing that topography signals are not sufficiently captured anymore.  As input 

model for MGM2011, we chose MRO110B2 because it better represents topography signals 

than the more constrained MRO110B (Fig. 1).  The attenuated MRO110B2 information 

beyond degree 85 is not used.  MRO110B2 gravity field functionals (gravity disturbances and 

vertical deflections) were evaluated in spectral band 2 to 85 at the 3D locations (latitude, 

longitude, planetocentric radii) of the MOLA topography (see Appendix A3) using an 

adaption of the harmonic_synth software (Holmes and Pavlis, 2008) 

3.3 Newtonian forward-modelling 

The spherical harmonic topography, MarsTopo719, expanded to degree 85, was subtracted 

from the MOLA 1/64° elevation model, yielding a residual terrain model (RTM, Forsberg, 

1984).  The MarsTopo719 model thus serves as a spectral filter (e.g., Hirt, 2010) to reduce 

those signals from MOLA that are delivered by MRO110B2.  The RTM represents a grid of 

mass-prisms, providing rich high-frequency information on the expected Martian gravity field 

at scales shorter than ~125 km.  Newtonian forward-modelling (Forsberg, 1984; Nagy et al., 

2000; Pavlis et al., 2007; Hirt, 2010; Hirt et al., 2010) was applied to convert the Mars RTM 

elevations to 3 arc min grids of gravity disturbances, geoid and vertical deflections, see 

Appendix A4. We denote the forward-modelled gravity field functionals MRTM85 (Mars 

RTM with the spectrum to degree 85 removed). 

The forward-modelling procedure was carried out through numerical integration with 

a variant of the TC software (Forsberg, 1984) using a uniform mass-density of ~2900 kg m-3 

for the topography.  This is the average value of mass-densities of Martian crust ranging 

between 2700 to 3100 kg m-3 used by Wieczorek and Zuber (2004).  MRTM85 functionals 

are only estimates of the high-frequency Martian gravity field, and based on the assumptions 

of uncompensated and constant-mass density topography. Given that the (uncompensated) 

topography is thought to be the dominant source of short-scale planetary gravity fields 

(Wieczorek, 2007; Hirt et al., 2010; Goossens et al., 2011; Hirt and Featherstone, 2011) we 

infer that MRTM85 is a reasonable approximation of the short-scale Martian gravity field (see 

also Sect. 5) within the following limitations. 



 Long-wavelength topographic features of Mars’s topography were found to show 

isostatic compensation (e.g., Neumann et al., 2004, Fig. 6 ibid). For Earth, Torge (2001, p340), 

states that topographic “loads of several 10 to 100 km dimensions are supported by the 

strength of the lithosphere and are not isostatically compensated”, suggesting that the shorter 

the scales of topographic features, the better will be the support through the crust (see also 

Watts 2001, p. 176). In light of the ~40-50 km strong Martian crust (e.g., Wieczorek, 2007) 

we conclude that the crustal support of Mars’s topography will be increasingly better the 

shorter the spatial scales while there is scope for compensation effects at longer spatial scales, 

say 100 km, which are not modelled by MRTM85. 

Our constant mass-density assumption of 2900 kg m-3 is a simplification of the actual 

mass-density distribution of Mars’s lithosphere.  Based on spectral analyses of Martian 

topography and gravity, McGovern et al. (2002) estimated mass-densities for individual 

regions of Mars.  They found a best-fitting value of 2900 kg m-3 (used here for MRTM85) for 

the transfer function between topography and gravity (aka admittance) over several regions of 

Mars, see also Neumann et al. (2004).  McGovern et al. (2002) suggests mass-densities of up 

to ~3150 kg m-3 over the Tharsis Montes region, and values possibly as low as ~2000 kg m-3 

over the Northern parts of Valles Marineris. Regional mass-density variations, as suggested 

by e.g., McGovern et al. (2002) and Neumann et al. (2004) are not taken into account here 

because we do not have accurate maps of their locations, depths and extents to hand.  We 

believe that our forward-modelled gravity effects will agree reasonably well with the real 

Martian gravity field where the actual mass-density is close to our assumption.  Conversely, 

larger discrepancies will be present where the actual deviates strongly from our assumed 

mass-density. A refined forward-modelling that incorporates regionally varying mass-

densities, and also the polar ice caps, remains for a future task should these 3D models 

become available to us. 

 

4. Results 

4.1. Gravity acceleration 

The variation of MGM2011 gravity accelerations over the entire Martian surface is shown in 

Fig. 2a.  Gravity accelerations are the sum of the three input components MGRS normal field 

(Fig. 2b), MRO110B2 gravity disturbances in spectral band 2 to 85 (Fig. 2c) and MRTM85 

Newtonian gravity (Fig. 2d).  MGM2011 gravity disturbances (Fig. 3) are the sum of 

MRO110B2 and MRTM85 gravity.  From Table 2, the average surface gravity acceleration is 

3.72076 m/s2 with a global variation range of ~0.059 m/s2 or 1.6 %.  MGM2011 gravity 



accelerations are maximum at the bottom the Jojutla crater (81.6°N, 169.3°W) in the low-

lying Northern plains and minimum at the rim of Arsia Mons (8.4°S, 121.4°W), the 

southernmost of the Tharsis shield volcanos.  

 

 
Fig. 2. (a) MGM2011 surface gravity accelerations, (b) MGM2011 3D-normal gravity field, 

evaluated at the elevations of the topography above the MGRS ellipsoid surface, (c) 

MRO110B gravity disturbances (spectral band 2 to 85, evaluated at the radii of the 

topopgraphy), (d) MRTM85 gravity, Units are m s–2 (panels a, b) and mGal (panels c, d). 

Mollweide projection centred at 0° longitude. 

 

From Fig. 2d, Newtonian forward-modelling resolves the expected gravity field 

signatures of impact craters and other topographic features at spatial scales shorter than ~125 

km.  This is also seen from a comparison between Figs. 2c and 3.  MRTM85 amplitudes are 

often at the 100 mGal-level.  Over the entire planet, the MRTM85 gravity disturbance 

strength is ~41 mGal (Table 2).  Lemoine et al. (2001, p. 23370) estimated ~9 mGal RMS for 

Martian gravity signals beyond harmonic degree 60.  However, the MRO11B2 RMS gravity 

signal is ~23 mGal in band 61 to 85. Our results suggest that short-scale gravity signals 

(beyond degree 60) were underestimated by a factor ~5 in Lemoine et al. (2001) in the past. 

MGM2011 gravity can be used for Mars gravity field simulation, as required for the 

design of future high-resolution Mars satellite gravity mapping mission (e.g., gradiometry).  



MGM2011 can be used as an a priori model for inversion of present and future spacecraft 

gravity data, for future landing missions, e.g., prediction of surface gravity and the local 

vertical at prospective landing sites, and Mars gravity field statistics.  Given that MRTM85 

relies on the assumptions of uncompensated and constant mass-density topography, 

MGM2011 cannot be used for direct geological interpretation. 

 

 
Fig. 3. MGM2011 free-air gravity disturbances (in mGal), Mollweide projection centred at 0° 

longitude 

 

4.2 By-products 

MGM2011 by-products are MRTM85 geoid undulations and vertical deflections (Table 3). 

The MRTM85 geoid undulations exhibit signals of 2.3 m RMS with amplitudes of some 10 m 

in places.  MRTM85 can be added to MRO110B2 or any other Mars spherical harmonic 

model for geoid refinement beyond harmonic degree 85.  Applications might be in high-

resolution topographic mapping (Gwinner et al., 2010), where the geoid takes the role of a 

height reference surface, specifically in local analyses of gravity-driven mass movements. 

MGM2011 vertical deflections, the sum of MRO110B2 and MRTM85 vertical 

deflections apply to the surface of Mars and are provided in terms of North-South and East-

West components with respect to the projected surface normal of MGRS (Table 3).  The 

magnitude of the MGM2011 total vertical deflections over the entire Martian surface is shown 

in Fig. 4.  Maximum values in excess of 1000 arc seconds are found near 18°N, 136°W, West 



of Olympus Mons.  The knowledge of vertical deflections, as delivered by MGM2011, may 

be important for future precision inertial navigation at or over Mars (cf Grejner-Brzezinska 

and Wang, 1998; Jekeli, 2001). 

 

Fig. 4. MGM2011 total vertical deflections ( 2 2NSDoV EWDoV+ ) in arc seconds. 

Mollweide projection centred at 0° longitude. 

 

5. Model assessment 

The MGM2011 construction is validated implicitly because it is based on the same tried and 

tested principles used successfully in the construction of surface gravity accelerations on 

Earth (Hirt et al., 2011) and the Moon (Hirt and Featherstone, 2011).  The comparison 

between TOPg  and MROg  (Fig. 1) provides a check on the Newtonian forward-modelling 

procedure used to create MRTM85.  Direct MGM2011 validation with ground-truth 

observations is not possible.  To indirectly evaluate MGM2011, we have performed an as-

close-as-possible replication on Earth as planet with dense ground-truth data sets available 

(Hirt et al., 2011b). The replication uses exactly the same modelling approach with identical 

assumptions and most similar parameters, and, importantly, uses topography-implied gravity 

at scales of ~125 to ~3 km to augment satellite-only gravity.  

Comparison of the MGM2011-replication with six dense ground-truth data sets 

(gravity, geoid, vertical deflections) over Europe and North America show that the 

MGM2011 modelling approach improves satellite-only gravity models in rugged terrain.  The 



improvement is most significant for gravity (55% to 67%), substantial for vertical deflections 

(30% to 50 %) and notable for geoid undulations (~12% and 47 %).  As a limitation of the 

short-scale modelling technique, information on isostatic compensation or local mass-density 

anomalies are not conferred by the residual topography, while those signals originating from 

the uncompensated topography are modelled reasonably well over regions where the actual 

mass-density is close to our constant density value. Because the correlation between gravity 

and topography is higher for Mars than Earth at ~100-km-scales (e.g., Wieczorek, 2007; Hirt 

et al., 2011b), it is reasonable to conclude that the MGM2011-approach is effective at 

approximating Mars’s short-scale gravity field, specifically over the rugged southern 

hemisphere.  

In order to assess the impact of the MGRS defining parameters a and b on the 

MGM2011 surface gravity accelerations we have repeated the MGM2011 development in its 

entirety based on the IAU Mars ellipsoid parameters aIAU and bIAU (see Section 3.1). 

Comparison of this alternative solution with MGM2011 gravity accelerations (based on the 

MGRS parameters in Table 1) showed a RMS agreement smaller than 1 mgal. Given that the 

MGRS and IAU ellipsoid parameters differ by ~760 m (major axis a) and ~1500 m (major 

axis b), the choice of the reference system parameters a and b has no significant impact on the 

constructed surface gravity. 

 

6. Concluding remarks 

MGM2011 is the spectrally most complete estimation of the external Martian gravity field to 

date.  Forward-modelling was used to estimate the expected high-frequency gravity field.   

MGM2011 can be applied in Mars gravity field modelling (background model for the 

inversion of spacecraft data, simulation studies for future high-resolution satellite gravity field 

missions and statistical analysis), though it is not recommended for direct geological 

interpretation. MGM2011 is beneficial for engineering-driven applications (mapping, landing 

spacecraft and near-surface inertial navigation), which are the foundation of geophysical data 

acquisition. The MGM2011 model (including input data sets) is freely available at 

www.geodesy.curtin.edu.au/research/models/mgm2011. 
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ppendix  

 

A1 Computation of the MGRS reference gravity field 

Four defining constants [a (semi-major axis of the reference ellipsoid), b (semi-minor axis), 

GM (product of the gravitational constant and the planetary mass) and ω (angular velocity of 

the planetary rotation)] are used to derive the MGRS geometric and physical constants based 

on the formulas in Moritz (1980, 2000).  The geometric flattening is 

a bf
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=           (A1) 

the first numerical eccentricity is 

2 2a be
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and the second numerical eccentricity is 
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The physical constants are the ratio of the centrifugal acceleration to normal gravity at the 

planetary equator 
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is an auxiliary parameter.  The other even zonal harmonics 4J  to 10J of the reference ellipsoid 

are computed recursively from 
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where n  is the spherical harmonic degree.  The un-normalized 2nJ -coefficients are converted 

to fully-normalized coefficients by 
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Finally, another auxiliary parameter  
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is required to compute normal gravity at the equator 
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of the reference ellipsoid.  Numerical values for the MGRS defining and derived constants are 

listed in Table 1.  Computation of alternative reference gravity fields, e.g., based on the IAU 

ellipsoid parameters (Seidelmann et al., 2002), is straightforward with the above equations. 

 

A2 Computation of normal gravity at 3D-locations 

The spherical coordinates, comprising ϕ  (planetocentric latitude), λ (planetocentric 

longitude) and r (planetocentric radius) describe the 3D-locations of Mars’s topography, as 

represented by MOLA.  The planetodetic (geodetic) latitude φ , required to compute normal 

gravity at MOLA 3D-locations is obtained through (e.g., Torge 2001, p 95) 

2
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.         (A12) 

Normal gravity 0 ( )γ φ  at the surface of the MGRS ellipsoid at φ  is computed from (Moritz 

2000, p 132) 
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To compute normal gravity at the MOLA 3D-locations (ϕ , λ , r ), a second-order series 

expansion is applied (e.g., Torge 2001 p. 110) 
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which is independent of the planetocentric longitude λ . The ellipsoidal heights h of the 

MOLA topography related to the MGRS ellipsoid are computed by subtracting the MGRS 

ellipsoidal radii ( )er ϕ  
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(cf. Claessens 2006, p19) from the planetocentric radii of the MOLA 3D-locations: 

( )eh r r ϕ≈ − .          (A17) 

 

A3 Potential model evaluation 

Let M be the maximum spherical harmonic degree, MROGM and MROa the MRO110B2 model-

specific constants, and MRO
nmC  MRO

nmS  the fully-normalized MRO110B2 spherical harmonic 

coefficients of degree n and order m.  Because the MRO110B2 model-specific constants 

( MROGM = 4.2828374526 × 1013 m3 s–2 and MROa = 3396000 m) differ from the respective GM 

and a values of the MGRS (cf. Table 1), the coefficient transformation 
n

MRO MRO
nm nm MRO MRO nm

GM aC C C
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 
δ = − ⋅ ⋅ 

 
      (A18) 

(e.g., Smith 1998, Eq. 5 ibid) was used to make the zonal harmonics nmC  of the MGRS 

compatible with those of the MRO110B2 potential model. The term δ nmC  denotes the 

MRO110B2 zonal harmonic coefficients with the zonal harmonics of the MGRS removed.  

Equation (A18) is evaluated for the first five even zonal harmonics 2,0C  to 10,0C  of the 

MGRS.  

 

The spherical harmonic series expansions used to evaluate MRO110B2 functionals were 

derived from the disturbing potential T (Torge 2001, Eq. 6.4) 
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yielding gravity disturbances gδ , North-South ξ  and East-West η   vertical deflections: 
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where (sin )nmP ϕ  are the fully-normalized associated Legendre functions of degree n, order m, 

and (sin )nmP ϕ′  is the first derivative of (sin )nmP ϕ .  The series expansions in Eqs. (A19 to 

A22) were evaluated with the MRO110B2 coefficients to M =85 at Mars’s surface, as 

represented through the 3D-MOLA topography (ϕ ,λ , r ).  

 

A4 Newtonian forward-modelling 

Newtonian forward-modelling was applied to convert the MOLA residual topography to 

topography-implied gravity field functionals.  The required MOLA residual terrain model 

(MRTM) was constructed by subtracting a harmonic reference surface from the MOLA 

planetocentric radii ( , )r ϕ λ : 

0 0
( , ) ( , ) ( cos sin ) (cos )    

M n
RTM

nm nm nm
n m

z r HC m HS m Pϕ λ ϕ λ λ λ ϕ
= =

= − +∑∑     (A23) 

where the nmHC  and nmHS  are the coefficients of the spherical harmonic reference surface 

MarsTopo719 to M=85.  Our Newtonian forward-modelling procedure treats MRTMz  as 

heights of right-rectangular mass-prisms being ‘building blocks’ of the residual topography 

(Forsberg, 1984).  The gravitational potential of the prisms is evaluated using analytical 

closed-form expressions, and the effects of all mass-elements within some radius around the 

computation point are superposed to obtain the gravity effects implied by the entire residual 

topography (below).   

 

The equations used to convert the MRTMz elevations to gravity field functionals: geoid MRTMN , 

gravity disturbances MRTMgδ , vertical deflections MRTMξ (North-South component), 
RTMη (East-West component) read in planar approximation (after Forsberg, 1984; Nagy et al., 

2000; Hirt, 2010 and Hirt et al., 2010) 

2 2 2

1 1 1

1

2 2 2
1 1 1

ln( ) ln( ) ln( )

tan tan tan
2 2 2

|||

| | |x y z

MRT

x

k

z

M

y

GN xz z c yz x c zx y c

x yz y zx z xy
xc yc zc

ρ
γ

− − −

= + + + + +

− − −

∑
   (A24) 
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where G ≈ 6.673×10-11 m3 kg-1 s-2 denotes the Universal Gravitational constant, ρ the mass-

density of the residual topography (here 2900 kg m-3) and γ ≈ 3.72 m s-2 mean gravity 

acceleration of Mars, ( , , )x y z  are planar coordinates, c the distance between the 

point ( , , )x y z from the origin of the coordinate system (0,0,0) (cf. Nagy et al., 2000).  The 

variables (x,y,z) are substituted by the corner coordinates of the prism 1 1 1 2 2 2( , , , , , )x y z x y z . We 

use 1z = 0 and 2z  = RTMz , so that the prism heights 2 1z z−  represent the MOLA residual 

elevations.  The values 1 1 2 2( , , , )x y x y  are computed from the planetocentric coordinates of the 

computation point ( , )Pϕ λ  and of the prism ( , )Qϕ λ  under evaluation using a simple spherical 

projection (after Forsberg, 1984) 

1
2 ( ) cos
360 2Q P Px R π λλ λ ϕ∆

= − −        (A28) 

2
2 ( ) cos
360 2Q P Px R π λλ λ ϕ∆

= − +        (A29) 

1
2 ( )
360 2Q Py R π ϕϕ ϕ ∆

= − −         (A30) 

2
2 ( )
360 2Q Py R π ϕϕ ϕ ∆

= − +         (A31) 

with R = 3389500 km as the mean radius of the Mars, λ∆  and ϕ∆  define the horizontal 

dimensions of the prism.  A vertical shift of the prisms as a function of the distance between 

prism and computation point is applied to account for the effect of planetary curvature (cf. 

Forsberg, 1984, p. 111).  The summation of gravity effects is performed over k prisms within 

some radius (here 400 km) around the computation point beyond which the addition of mass 

elements makes no significant difference (see Forsberg, 1984; Hirt, 2010).   

 

The term hc is termed the harmonic correction and applied to gravity disturbances MRTMgδ  as 

a correction for computation points located inside the residual topography (i.e., 0MRTM
Pz < ), cf. 

Forsberg and Tscherning (1981) 
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       (A32) 

The harmonic correction is required because the gravity potential is non-harmonic inside the 

gravitating masses.  Equation (24) solves this problem by condensing the residual masses in a 

“mass-plane just below the station” (Forsberg and Tscherning, 1981, p. 7846).   

 

For computation points at high latitudes (| Pϕ |≥ 70°), we rotated the RTM grids and 

computation points towards the equator, allowing us to conveniently circumvent 

computational issues at high latitudes (e.g., use of planar coordinates, increasing number of 

prisms due to meridian convergence and selection of prisms within a given radius).  The 

Newtonian forward-modelling procedure, was carried out over 25.92 million points covering 

the entire surface of Mars. 

 

A5 MGM2011 functionals 

MGM2011 functionals are the sum of MRO110B2 and the forward-modelled MRTM85 

components 
2011MGM MRO MRTMg g gδ δ δ= +         (A33) 

2011MGM MRO MRTMξ ξ ξ= +         (A34) 
2011MGM MRO MRTMη η η= +         (A35) 

and MGM2011 surface gravity accelerations are the sum of normal gravity ( , )hγ φ  and 

MGM2011 gravity disturbances 
2011 2011 ( , )MGM MGMg g hδ γ φ= + .       (A36) 
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Table 1 Defining and derived constants of the Mars Geodetic Reference System MGRS 

Defining constants (exact) Value 

semimajor axis a   3395428 m  

semiminor axis b   3377678 m 

gravitational constant times mass GM   4.2828372 × 1013  m3 s–2 

Rotational angular velocity ω   7.0882181 × 10–05 rad s–1 

Derived geometric constants  

Geometric flattening f   5.227617843759 × 10–3   

Reciprocal flattening 1/f   1.912917183099 × 102   

First eccentricity squared e2   1.042790769920 × 10–2   

Derived physical constants  

Normal gravity at equator γa   3.708754657884 m s–2 

Normal gravity at pole γb   3.731907392737 m s–2 

Geodetic parameter m   4.568250121143 × 10–3   

Dynamic form factor J2   1.955484200411 × 10–3   

Coefficient C2,0 –8.745191202090 × 10–4   

Coefficient C4,0   2.719280814521 × 10–6   

Coefficient C6,0 –1.217355067691 × 10–8    

Coefficient C8,0   6.522150395570 × 10–11   

Coefficient C10,0 –3.884319022342 × 10–13   
Note: Parameter m is the ratio of the centrifugal acceleration to normal gravity at equator. Coefficients C2,0 to 

C10,0 are fully-normalized spherical harmonic coefficients of the MGRS. 

 

Table 2 Descriptive statistics of MGM2011 surface gravity and MGM2011 free-air anomalies 

and of the three input componentsa. Units in 10-5 ms-2 = 1 mGal. 

Field/component Min Max Mean STDb 

MGM2011 surface gravity acceleration  368381 374259 372076 1115 

MGM2011 free-air gravity disturbances -1107 2905 4 161 

Normal gravity field 365966 374343 372072 1148 

MRO110B2 gravity (band 2 to 85) -774 2951 5 155 

MRTM85 Newtonian gravity -956 705 -1 41 
aInput components are MRTM85, MRO110B (band 2 to 85) and normal gravity.  
bSTD = Standard deviation. 

 



Table 3 Descriptive statistics of MRTM85 geoid and MGM2011 vertical deflections (DoV) 

and their input componentsa 

Field/component Min Max Mean STD 

MRTM85 geoid [m] -39.0 39.9 0.0 2.3 

MGM2011   N-S DoV[″] -896 942 5 52 

MRO110B2  N-S DoV [″] -907 696 5 49 

MRTM85     N-S DoV[″] -399 382 -0 17 

MGM2011   E-W DoV[″] -1074 829 0 63 

MRO110B2  E-W DoV[″] -837 739 0 62 

MRTM85     E-W DoV[″] -338 285 0 15 

MGM2011 total DoV  [″] 0 1074 63 52 
aInput components for MGM2011 vertical deflections are MRTM85 and MRO110B (band 2 to 85). N-S = North 

South, E-W = East-West 
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