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Abstract

A feasabiltiy study by Pail et al. (2011b) showed that GOCE satellite’s (’Gravity field
and steady-state Ocean Circulation Explorer’) gradiometer data (SGG) in combination with
its GPS derived orbit data (SST-hl) can be used to stabilize and reduce the (error) striping
pattern in temporal (bi-monthly) GRACE satellite (’Gravity Recovery and Climate Experi-
ment’) gravity field estimates.

In the thesis, monthly and bi-monthly gravity fields for the year 2009 and 2010 are esti-
mated on the basis of a combination of full GRACE SST-ll with full GOCE SGG normal
equations. In contrast to the study of Pail et al. (2011b) focus is given to the impact of
the gradiometer measurements, and whether they, solely, can improve the monthly GRACE
estimates. Used GRACE normal equations from the Astronomical Institute at the University
Bern (AIUB) are assembled up to d/o 60. Monthly GOCE SGG normal equations shall be
assembled within the thesis to maximum possible d/o using the software package at the
Institute for Astronomical and Physical Geodesy (IAPG), located at the Techische Univer-
sität München (TUM). For this purpose a semi-automatic outlier detection algorithm was
implemented. The combinations are achieved by a variance component estimation and are
investigated spatially in terms of equivalent water heights and spectrally with degree vari-
ances and degree standard deviations. Further, a method to statistically describe the extend
of the the striping error in the monthly fields by means of a global RMSE is developed.
Besides, the performance of gradients originating from the old and the new L1B processor is
evaluated in the combinations.

Estimating monthly GOCE SGG gravity fields at high resolution (>d/o 150) is found to
be a difficult task. In the investigated period stable normal equation systems could only
be assembled for seven months, using old gradients, and three months, using re-processed
gradients. Among those, some show remaining error structures which could not be removed
in the outlier detection, as taking out more epochs perpetually led to instable normal equa-
tion systems. The officially released re-processed gradients show higher values in gradient
anomalies for many epochs regarding GOCO02s, which lead to more outliers compared to
the old gradients. Therefore, re-processed gradients do not show to advantage, as expected.
The analysis of the striping error in the monthly and bi-monthly combinations and the com-
parison to GRACE-only solutions shows, that the error cannot be reduced significantly using
GOCE SGG observations. The best result could be achieved for June 2010 where the RMSE
reduction amounts from 2 - 7% at different degrees. In this month the GRACE solution is
found to be extraordinary weak, which would explain the improvement due to GOCE SGG
data. In the other months the reduction of the stripes hardly exceeds the 1% boundary at
all degrees.



Kurzfassung

Eine Studie von Pail et al. (2011b) zeigt, dass die Messungen des Gradiometers (SSG)
an Bord des Satelliten GOCE ("Gravity field and steady-state Ocean Circulation Explorer")
in Kombination mit den GPS-bestimmten Bahnstörungen (SST-hl) benutzt werden können,
um zwei-monatige Schwerefeldlösungen der Satellitenmission GRACE ("Gravity Recovery
and Climate Experiment") zu stabilisieren und den Streifenfehler zu verringern.

In dieser Arbeit werden GRACE SST-ll Beobachtungen mit GOCE SGG Beobachtungen
über ein- und zwei-monatige Zeiträume der Jahre 2009 und 2010 auf Normalgleichungsebene
kombiniert. Im Gegensatz zur Studie von Pail et al. (2011b), in der auch GOCE SST-
hl (GPS) Beobachtungen mit in die Kombination eingeflossen sind, wird in dieser Arbeit
nur der Einfluss der Gradiometerbeobachtungen untersucht. Verwendete GRACE Normal-
gleichungen stammen aus dem Astronomischen Institut der Universität Bern (AIUB) und
besitzen eine Auflösung von sphärisch-harmonischem Grad 60. Die Aufstellung monatlicher,
möglichst hochaufösender GOCE SGG Normalgleichungen ist Teil der Arbeit und konnte
am Institut für Astronomische und Physikalische Geodäsie (IAPG) der Technischen Univer-
sität München (TUM) mit der dort entwickelten Software durchgeführt werden. In diesem
Zusammenhang wurde ein semi-automatischer Algorithmus zur Ausreißersuche für GOCE
Gradienten implementiert. Die auf Basis einer Varianz-Komponenten-Schätzung bestimmten
Kombinationen werden räumlich in äquivalenter Wasserhöhe und im Spektralraum auf Basis
von Gradvarianzen untersucht. Eine speziell entwickelte, statistische Methode auf Basis eines
globalen RMSE ist in der Lage, den Fehler in den monatlichen Feldern zu quantifizieren. In
der Arbeit soll zudem das Ausmaß der Verbesserung durch die neue L1B Prozessierung in
den Kombinationen untersucht werden.

Die Schätzung von monatlichen, hochauflösenden (>G/O 150) Schwerefeldlösungen rein
aus Gradientenbeobachtungen stellt sich als eine schwierige Aufgabe heraus. In dem un-
tersuchten Zeitraum konnten stabile Normalgleichungen nur für sieben Monate unter Ver-
wendung von altem Gradienten und drei Monate unter Verwendung von reprozessierten Gra-
dienten aufgestellt werden. Unter diesen befinden sich auch einige, in denen keine vollkom-
men fehlerfreie Lösung möglich war, da die Herausnahme weiterer, vermeintlicher Außreißer
stets zu einer Instabilität der Systeme führte. Die offiziellen, re-produzierten Gradienten
zeigen nicht das erwartete Ausmaß an Verbesserung in den Lösungen, da signifikant weniger
Beobachtungen in die Schätzung eingehen. Dies ist auf eine erhöhte Anzahl von Ausreißern,
die auf Basis von Gradienten Anomalien bezüglich GOCO02S detektiert werden, zurück-
zuführen.
Die Untersuchung des Streifenfehlers in den kombinierten ein- und zwei-monatigen Feldern
zeigt bezüglich reiner GRACE Felder keine signifikante Verringerung bzw. Verbesserung.
Bestenfalls, im Monat Juni (2010), kann der RMSE Wert um 2-7 % für unterschiedlich-
hohe Auflösungen reduziert werden. Eine plausible Erklärung dafür ist die verhältnismäßig
schlechte GRACE Lösung in diesem Monat. In anderen Monaten ist durch die Kombination
mit GOCE SGG kaum mehr als 1% RMSE Verringerung zu beobachten.
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Part I

Introduction

1 Motivation

GRACE is the satellite which today can observe temporal gravity variations globally with the
highest spatial resolution. Furthermore, it provides the only observation technique which is
able to resolve the variations temporally and spatially in a way that it becomes interesting for
analysis in hydrology, climatology, oceanography, and related fields. Hence, an improvement
of the performance of GRACE regarding the detection of time variable signals would be a real
benefit not only from a geodetical perspective, but also for all applications relying on GRACE
data.
The core idea for the improvement arises from the fact that the GRACE anisotropic errors
significantly evolve from the GRACE observation configuration (along-track ranging) and not
from the observations themselves. Full covariance propagation to a GRACE variance-covariance
matrix gives evidence that the striping pattern already becomes visible in the geoid height errors
at a spherical-harmonic degree and order of 30 to 40 (see, e.g, Pail et al. (2011b), and Mayer-
Gürr and Kurtenbach (2010)). GOCE, another satellite measuring the gravitational potential,
is actually dedicated to observe the static part of the Earth’s gravity field, and has not been
designed to resolve temporal time variable gravity signals (see ESA (1999)). One of the strengths
of GOCE, however, lies in its highly isotropic error behavior. In this sense, GOCE gradient data
is complementary to GRACE and may improve GRACE temporal gravity field estimates by
reducing the striping pattern in affected spherical harmonic coefficients, as Pail et al. (2011b)
already showed in a case study.

2 Temporal gravity variations from space

Beginning in the 1980’s, the observation of gravity from space started a new era in the detection
of temporal gravity variations. In contrast to ground-based gravity measurements with gravime-
ters, which can provide local (point-wise) measurements of gravity variations with a very high
accuracy at high temporal sampling intervals, satellite-based measurements provide information
about large-scale variations of the entire Earth. Of course, even today, satellites do not reach the
accuracy of ground-based measurements simply due to thefact that the gravitational potential
V decreases inversely with the distance r to Earth following V ∼1

r
(see Heiskanen and Moritz

(1967)). Thus, a satellite is sensitive to the gravity signal at satellite height, which is of a much
lower magnitude than it is at the Earth’s surface.

The first observations of time variable gravity signals based on satellites were given by Satellite
Laser Ranging (SLR), ground based measurements to satellites evaluating the traveltime of a
laser beam. Remarkable results have been achieved by SLR tracking of the two NASA satellite
missions launched in 1976 (LAGEOS)1 and 1993 (LAGEOS II) 1. However, due to the flight
height of about 6000 km over ground, SLR measurements could mainly provide information
about the temporal variation of the strongest acting signal, the Earth’s changing oblateness
(which mainly is expressed by the C20 coefficient). Apart from that, only information of a few

1LAGEOS 1/2 : http://ilrs.gsfc.nasa.gov/satellite_missions/list_of_satellites/lag1_general.html
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other low-frequency harmonics could be derived (see Wahr (2007)).

The next important satellite in chronological order which was able to gather information about
the Earth’s gravitational field was the German mission Challenging Microsatellite Payload
(CHAMP), launched in 2001 2. The gravity field solutions from this mission are based on
the analysis of kinematic orbits, which are derived from GPS phase measurements. An ac-
celerometer on board of the satellite could for the first time correct the disturbing effect of
non-gravitational forces. The mission significantly contributed to the knowledge of the static
part of the gravity field up to a spherical harmonic degree of about 60. In contrast, most geo-
physical signal spectra are below the CHAMP error level, and monthly results do not seem
to reflect physically meaningful gravity variations, even for the lowest harmonics (see Sneeuw
et al. (2005)). However, some studies show that under certain circumstances temporal gravity
variations can be extracted from CHAMP observables in the low harmonics. An investigation
of 2.5 years of CHAMP data by Reiberger et al. (2005) showed that temporal gravity variations
derived from CHAMP are restricted to longest wavelengths (degree/order 4, half wavelength
5000 km) and time resolutions of more than three months. Prange (2010) presents sophisticated
procedures which may enable the detection of most prominent seasonal gravity signal (e.g., in
the Amazonas river basin) with a low resolution up to spherical-harmonic degree 10.

In 2002, the Gravity Recovery And Climate Experiment (GRACE) mission consisting of two
satellites, which are still in operation, was launched jointly by NASA, DLR (Deutsches Zentrum
f ur Luft und Raumfahrt) and GFZ (Deutsches GeoForschungsZentrum) 3. Due to it’s innova-
tive and unique satellite-to-satellite tracking technique in low-low mode (SST-ll ) and its low,
near-polar orbit (see section 7), this mission can provide monthly global gravity field solutions
up to a maximum spherical harmonic degree of 120. This equals to a spatial resolution for
monthly fields of about 170 km on the Earth’s surface. Hence, GRACE was the first mission to
provide profound, globally consistent information about temporal changes of the Earth’s gravity
field. GRACE gravity field products find application in current analysis of global and regional
mass (re-)distribution in the fields of climatology, hydrology, geophysics and cryosphere studies.
Generally, the mass variations caused by the continental water cycle are the dominant signal
component after subtracting contributions from the atmosphere and the oceans. This makes
hydrology to the primary area of application (Werth et al. (2009)). However, GRACE gravity
solutions suffer from an erroneous striping pattern which is caused by the satellite-to-satellite
tracking only in along-track direction and aliasing effects resulting from high-frequency mass
variations signal. These effects lead to anisotropically correlated noise of the potential coeffi-
cients and require adequate filtering and decorrelation techniques for the reconstruction of mass
signal (see section 7.3).

The latest gravity field satellite mission to follow GRACE is ESA’s Gravity field and steady-state
Ocean Circulation Explorer (GOCE) mission, launched in 2009 4. This mission is dedicated to
the determination of the static part of the gravity field using GPS and the first satellite-borne
gradiometer ever flown, which facilitates direct measurements of gravity gradients along three
axes (see section 8).

2CHAMP : http://op.gfz-potsdam.de/champ/
3GRACE : http://www.csr.utexas.edu/grace/
4GOCE : http://www.esa.int/SPECIALS/GOCE/index.html
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The question whether GOCE is able to contribute to the estimation of time variable gravity
fields has been a topic of research since the mission’s acceptance. Before the operational phase
of GOCE Jarecki et al. (2005) dealt with investigations on the necessity of de-aliasing of tem-
poral gravity changes in GOCE gradiometric data. The study is based on simulations of the
impact of (model derived) mass variations in different earth parts (Atmosphere, Hydrosphere,
Cryosphere and Solid Earth) on the radial GOCE gradiometer component Vrr. Their analyses
show that modeled hydrological and ice mass changes are neither critical for GOCE gradients
in terms of amplitude (< 1mE) nor do the timescales of the changes fit into the gradiometer’s
measurement bandwidth (5 · 10−3 Hz to 1 · 10−1 Hz, see ESA (1999)). In the same way, modeled
gradients from oceanic and atmospheric mass changes as well as changes due to ocean and solid
Earth tides are below the gradiometer’s performance, regarding spectral considerations. In con-
clusion, a reduction of geophysical effects which are causing mass and gravity fluctuations in the
system Earth is not necessary for GOCE gradients, because their impact is negligible. However,
de-aliasing can lead to an improvement of the stochastic behaviour of the gradiometer. In an-
other study by Peters et al. (2001) similar results with focus on the impact of atmospheric mass
changes only could be achieved. In simplified estimations of the PSD’s of daily gravitational
signals mapped into GOCE-like gradients, they found the influence generally to be under the
GOCE error PSD. But they also found that the removal of the effects are necessary as small
parts of the effects may be sensed and show potential for systematic errors when it comes to the
determination of the static part of the gravity field. Especially affected are the along-track and
radial gradient components.

A first analysis on the potential improvement of time variable GRACE gravity field estimates
through GOCE was done by Pail et al. (2011b). The study is based on real observations and
aims to determine (1) the contribution of GOCE data to GRACE fields and (2) whether stand-
alone time variable solutions from GOCE orbit information are solvable. In the investigations
focus is given to the fact that the error structure in GRACE is highly anisotropic, whilst the
error structure of the GOCE gradiometer is isotropic. Additionally the authors expect GOCE to
deliver some valuable information because they found that signals from geophysical models tend
to be underestimated in terms of amplitude. They show that GRACE is able to resolve time
variable signal (in areas of Greenland, Ganges, Amazon) up to degree 50-60, but the striping
effect start already at degree 30 - 40. Hence, the reduction of the striping pattern through an
inclusion of GOCE might improve the time variable solution in this domain. In core, the analysis
of a pure bi-monthly GRACE solution in comparison to a combined bi-monthly GOCE (SGG
+ SST-hl) and GRACE solution for the months November and December 2009 show, that the
GRACE striping pattern can be reduced significantly between the degrees 30 and 40. However,
the high impact of GOCE may partly be due to the fact that the quality of the GRACE solution
in the observed two months was worse than usual because GRACE flew a 7-days sub-cycle.

3 Aims of thesis

In this thesis the impact of GOCE gradiometer observations on GRACE monthly and bi-monthly
gravity field estimates shall be investigated. As shown above, it has been proven that GOCE
gradiometer (SGG) data together with GOCE GPS (SST) data can improve GRACE SST tem-
poral gravity estimates. The role of the gradiometer solely, however, remains unclear. For this
purpose monthly and bi-monthly GOCE SGG normal equations shall be assembled for the year
2010 from ESA’s officially released gradient products. The positive or negative contributions
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of those normal equations when combined with corresponding monthly or bi-monthly GRACE
normal equations shall be examined. GRACE normal equations used for the combination are
provided by the Astronomical Institute in Bern. In the investigation special attention is given
to the impact of GOCE L1B processing in the combination. The performance of GOCE gravity
gradients processed according to a newly developed enhanced procedure (Stummer et al. (2011))
is compared to the performance of gradients originating from the old procedure.
GOCE SGG normal equations shall be processed according to the time-wise strategy because
it is the only GOCE processing procedure not including external information. This is essential
because including external information would make the determination of the true impact of the
gradiometer impossible.

In the context of the investigations it shall be dealt with the following questions:

− Can GOCE SGG normal equations be assembled for monthly periods?

− Can GOCE SGG help to improve monthly and bi-monthly GRACE gravity field estimates?

− Is there additional benefit due to the new L1B - processing strategy?

− Is the striping pattern inherit to GRACE solutions reduced significantly due to GOCE
gradiometer data?

− Can we get rid of the necessity to apply de-striping procedures? Is there benefit for regional
analysis of water storage changes?

− How can the quality of monthly GRACE solutions and accordingly the extent of the
striping error be assessed and quantified?

− Is there benefit only for weak GRACE solutions? To what extent is the 7-days sub-cycle
degrading the GRACE solution?

In order to find answers to these questions it will be proceeded in the following way :

In part II a general understanding of gravity variations of the Earth’s gravity field is provided to-
gether with the basics for globally modeling temporal gravity variations in a spherical-harmonic
approach. Common methods to evaluate spherical-harmonic gravity field estimates in spatial
and spectral domain are presented, likewise.
Part III introduces both satellite mission concepts and typical gravity recovery methods. In this
context the GRACE error type is described together with some de-aliasing and de-striping meth-
ods to cope with it. Further, outlier detection methods for GOCE gradients and regularization
approaches which are both needed to process GOCE SGG gravity field estimates are presented.
Then the software used to process GOCE gradient data following the time-wise method is ex-
plained. In the end of this part two methods which find application in the combination of GOCE
SGG with GRACE SST normal equations, a least-squares parameter elimination and a variance
component estimation, are introduced.
In part IV the initial data sets and single steps which are needed to get from the given data-sets
to the combined GOCE SGG - GRACE SST gravity field solutions are described. Hand-in-
hand with the methodological description, in each step preliminary results and arising issues are
discussed. Finally, the resulting combined monthly and bi-monhtly gravity field solutions are

10



presented and analyzed qualitatively as well as quantitatively.
In part V the results are summarized and a conclusion is drawn regarding the initially posed
questions and aims.
At the end of the thesis the references, a list of frequently used abbreviations, a list of figures
and a list of tables is appended together with some large figures and tables.
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Part II

Modeling temporal gravity variations on Earth and

gravity field parameters

In this part of the thesis not only a common understanding of temporal gravity variations on
Earth and its sources shall be given, but also the basics for modeling and visualizing global
temporal gravity variations are introduced. First, in section 4 the reasons for changes in the
gravity field of the Earth are described, and the different sources are categorized by their tem-
poral behavior. Second, in section 5 the basic mathematical model for describing gravity and
gravity variations in a global approach, the spherical harmonic series expansion, is introduced.
The model allows the expression of the gravity field in terms of different gravity functionals
which are introduced likewise. In section 6 common parameters for describing gravity signal
and errors in the frequency domain, so called degree variances, are defined.

4 The Earth’s gravity field and its temporal variations

Changes of the Earth’s gravitational field do either refer to processes related to the gravita-
tional attraction of sun and moon (and other planets) or to mass transports within geophysical
fluids. Direct tides resulting from the gravitational attraction of other celestial bodies appear
at different periods (most dominant: diurnal and semi-diurnal period), spatial scales and with
a magnitude up to 10−7g, where g denotes the mean gravity acceleration (see Torge (1980) in
Peters et al. (2001)). Meanwhile, direct tides are very well known and can be eliminated from
measurements using tide models (see Peters (2007)). Therefore, direct tides will be neglected
from all upcoming discussions although they are omnipresent. The effect of tidal deformation
produced by tidal forces on solid Earth, ocean, and atmosphere, and the processes in geophysical
fluids, however, will be considered.

In principle, all mass transports and all density changes below, at, and above the Earth’s surface
cause a change in the Earth’s gravity field. But not all of those processes are relevant considering
up-to-date measurement accuracies and observation techniques. Table 1 gives an overview of
sources causing gravitational variations regarding their spatio-temporal characteristics and their
magnitude, expressed in geoid heights. In the following, the individual processes will be classi-
fied by their temporal behavior as suggested by Peters (2007), and their effects are explained:

Instantaneous and irregular variations
Earthquakes and volcanic eruptions are the most prominent sources for variations of this class.
As they appear instantaneously, they cannot be modeled, and gravitational variations always
refer to the pre-event and post-event state of the gravity field. Locally, significant changes in
the gravitational field can be measured. (c.f Peters (2007))
Today, there exist various studies that show that GRACE is sensitive for earthquakes, e.g., for
the Sumatra-Andaman earthquake (see, e.g, Han et al. (2006), and Chen et al. (2007)).

Daily up to yearly periodical variations
Referring to table 1 all variations caused by tidal deformation, atmosphere, ocean and continen-
tal hydrology can be found within daily up to yearly periods.

12



Source, Spatial Dominant Dimension in Geoid
Process Scale [km] Periods Heights [mm]

Solid-earth 50 - 5000 daily, semi-daily 100 - 150
and ocean tides semi-monthly

Atmosphere 20 - 2000 yearly, seasonal, daily 15

Ocean currents 100 - 1000 yearly, seasonal 10
Ocean surface 100 - 1000 decades 1 - 3 p.y.

Continental water 10 - 8000 yearly, seasonal 10 - 12
Cryosphere 100 - 1000 seasonal, decades 1 - 3 p.y.

Earthquakes 10 - 1000 single events 0.5
Volcanic Eruptions 10 - 100 single events 0.5

Glacial isostatic 1000 - 10000 secular 1 - 2 p.y.
adjustment

Plate tectonics >500 secular ?
Core and Mantle >5000 secular 0.005

Table 1: Temporal gravity variations and their characteristics (Peters, 2007) (modified)

Among those, the most dominant impact on the gravitational field is given by tidal deformation
and ocean tides with 100 − 150[mm] geoid height variation. Due to the attraction of sun and
moon, the solid Earth body and the ocean surface is deformed following the periods of their
ephemerids. In principle, also atmosphere masses are affected by the attraction. Due to the
low density of the atmosphere, the gravitational impact is smaller. Nowadays, solid Earth tides
as well as pole tides can be sufficiently modeled for most applications using relatively simple
models (see IERS Conventions (Petit and Luzum, 2010)). Pole tides is an effect that describes
the polar motion induced (centrifugal force) additional ocean tides, and is of minor amplitude.
Polar motion is the movement of the celestial pole around the figure axis of the earth (conven-
tional pole) and is dominated by the 14-month Chandler wobble period and annual variations.
Ocean tides, however, require a more complex modeling, but models also reach high spatial res-
olutions (0.25◦ to 0.125◦). In polar regions, the lack of altimeter measurements leads to a poor
accuracy of those models of around 10 cm. Coastal areas are likewise determined with poorer
quality in ocean models, due to more complex currents and uncertainties regarding water depth,
water temperature and salinity. Also, altimetry delivers less valuable information in coastal
areas because the technique faces issues, such as restrictions due to the swath width.

One order of magnitude below the tidal effects are gravity variations caused by mass transports
in the atmosphere, ocean and continental hydrosphere. The mass signals from these compo-
nents are dominated by an annual and a semi-annual period. The three components are deeply
connected within the hydrological circle, which is mainly driven by solar radiation. Processes
like evaporation, precipitation, water storage (e.g., clouds, ground water, soil moisture, water
bodies, ice) account for most gravitational variations. Furthermore, atmosphere and ocean show
strong interaction, as parts of the atmospheric loading are compensated by the ocean.
Gravity variations from those components can be subdivided into the direct effect of mass at-
traction and the indirect (smaller) effect of mass loading (loading effect). Loading leads to a
deformation of the body of the solid Earth, which leads to a change in the gravity field.
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In the atmosphere processes like humidity changes, wind, evaporation and precipitation cause
mass transport and change the gravity field with daily, seasonal and yearly periods. In the
ocean water mass changes due to currents, and in- and outflow cause variations with annual
and seasonal periods. Often, because of heavy interactions between ocean and atmosphere,
both components are investigated together and modeled in coupled models (oceanic models re-
quire atmospheric parameters as input). Continental hydrosphere describes the cosmos of water
stored in surface water bodies (e.g., lakes and rivers), ground water, soil humidity, snow and ice
canopy as well as water stored in plants. A lot of efforts have been made to describe the Earth’s
hydrosphere in models. Differences between the models exist, e.g., models like GLDAS (Global
Land Data Assimilation Center), LaD (Land Dynamics Model), CPC (Climate Prediction Cen-
ter) and WGHM (Water Gap Hydrology Model) do not all include all kinds of continental water
storage. Further, hydrological models do not reach the temporal (< 1 day) and spatial resolu-
tion (< 1◦) of atmosphere and ocean models. Often snow masses in Antarctic or Greenland are
missing completely due to rare observations in these areas. However, within regional analysis
of water storage changes within river catchments the models show good correlation with water
storage changes derived from GRACE measurements (c.f. Peters (2007)). Furthermore, hydro-
logical models can be improved using GRACE data, as shown in Güntner (2008).

Long periodic and secular variations
This group of mass variations comprises effects related to changes of the cryosphere and to ef-
fects underneath the Earth’s surface. All the effects have in common that they lead to changes
in the gravity field which can only be recognized as trends in measurements over many years.
Melting and accumulation of ice masses influences the sea level and lead to the post-glacial
rebound of the elastic Earth body (glacial isostatic adjustment (GIA)). The changes of glacial
ice masses mainly go in hand with the global, cyclic changes of warm periods and ice ages with
periods of one or more millenniums. When glaciers are melting and the surface load is reduced,
the Earth’s surface bounces upwards slowly and leads to almost secular changes in the gravity
field. The consequence of the melting of ice masses on land is an augmentation of the water
mass in the oceans. There is evidence that the sea level within such a cycle can change for more
than 100 meters. Note, that the sea level change is caused by mass variations in the ocean and
thermal expansion.
The processes underneath the surface which can lead to mass variations are mantle convection,
plate tectonics and processes within the Earth’s core. Those effects happen in timescales of
millions of years and they are most relevant for the state of the static part of the gravity field.
(see Peters (2007))

5 Spherical harmonic series expansion and gravity functionals

The Newtonian gravity potential V of the Earth can be described as series of dimensionless
spherical harmonic coefficients C̄nm and S̄nm of degree n and order m. It can be retrieved from
the coefficients with the series expansion

V (λ, φ, r) =
GM

R

∞
∑

n=0

(
R

r
)n+1

n
∑

m=0

P̄nm(cos(φ))[C̄nmcos(mλ) + S̄nmcos(mλ)] (1)

for any point on and above the Earth, where λ, φ and r is the triplet of spherical coordinates,
R is the semi-major axis of the Earth, GM denotes the gravitational constant times the mass
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of the Earth; P̄nm are the normalized associated Legendre functions of degree n and order m
(see, e.g., Heiskanen and Moritz (1967)). Due to the fact that the coefficients of the series
are dimensionless, any other gravity field functional (e.g., gravitational acceleration or gravity
gradients) can be derived by the choice of the right dimensioning factors and transfer coefficients
(see Peters (2007)).
Changes in the gravitational field ∆V over the period t can be described likewise as changes in
the spherical harmonic coefficients ∆C̄nm and ∆S̄nm. In a general so-called Eulerian approach,
these changes can be regarded as density distribution variations ∆ρ of the Earth over time, from
which the spherical coefficients can be retrieved following the equation

∆C̄nm(t)

∆S̄nm(t)

}

=
1

2n + 1

1

M

∫∫∫

Σ
(

r

R
)n∆ρ(φ, λ, r, t)P̄nm(cos(φ))

{

cos(mλ)
sin(mλ)

}

dΣ (2)

(see Wahr and M. (1998)). Under simplifying assumptions that all mass redistributions happen
in a thin layer of thickness H << R, the surface density change ∆σ can be introduced as the
product of the layer’s height H and the density ∆ρ. Then the direct gravitational attraction of
the surface mass accounts for changes in the potential through

∆C̄nm(t)

∆S̄nm(t)

}

=
3

4πRρ̄(2n + 1)

∫∫

σ
∆σ(φ, λ, t)P̄nm(cos(φ))

{

cos(mλ)
sin(mλ)

}

dσ (3)

following equation 2, where 4/3πGρ̄ ≈ M and ρ̄ is the constant mean density of the Earth.
However, the indirect effect of the surface mass, which loads and deforms the underlying solid
Earth, is not yet included in equation 3. This indirect effect leads to a lowering of the bigger
direct effect. Using the Love numbers k′

n of degree n for surface loadings, which express the
elastic behavior of the Earth, the total effect of surface masses on the potential can be described
by

∆C̄nm(t)

∆S̄nm(t)

}

=
3(k′

n + 1)

4πRρ̄(2n + 1)

∫∫

σ
∆σ(Φ, λ, t)P̄nm(cos(φ))

{

cos(mλ)
sin(mλ)

}

dσ (4)

(cf. Wahr and M. (1998)). Equation (4) and (1) then give a simplified model for changes of the
gravitational potential due to surface mass changes.

Temporal gravity changes, as well as surface mass changes, from GRACE satellite data can be
derived from the observed changes in the spherical harmonic coefficients ∆C̄nm(t) and ∆S̄nm(t).
They can be obtained by the subtraction of the spherical harmonic coefficients of a mean (sta-
tionary) gravity field from the gravity field coefficients estimated from (GRACE) gravity obser-
vations over a certain period of time. In the case of GRACE coefficients can be estimate already
from one month of data (hence the temporal resolution of GRACE is one month) and mainly
seasonal changes and trends can be detected in the gravity field.

5.1 Geoid heights and gravity anomalies

Geoid heights and gravity anomalies are the typical gravity functionals in geodesy which are
used to describe the gravity on Earth. The geoid describes the equipotential surface which
approximates the mean sea level and can be considered as a hypothetical ocean covering the
whole earth at rest (without any dynamics). Geoid heights N define the geometrical height of
the geoid above a reference ellipsoid at any point on earth. Gravity anomalies ∆g = g − γ
describe the difference between the measured gravity g and the normal gravity γ (c.f. Heiskanen
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and Moritz (1967)).

Both, geoid heights and gravity anomalies are derived from the disturbing potential T = W − U ,
where W denotes the (real or observed) gravity potential (incl. centrifugal potential) of the Earth
and U describes the normal potential. The normal potential is the potential of a reference el-
lipsoid and is described by 4 gravitational parameters, e.g., by the geodetic reference system
of 1980 (GRS80). Sound explanations on the derivation of both functionals from the disturb-
ing potential in spherical harmonic notation are for example given by Hofmann-Wellenhof and
Moritz (2006) and Torge (2003). Here only the basic formulas shall be given.

The disturbing potential T at the point P in spherical harmonic notation can be written as

TP =
GM0

R

∞
∑

n=2

(

R

rp

)n+1 n
∑

m=0

P̄nm(cos(φp))
[

δC̄nmcos(mλp) + δS̄nmsin(mλp)
]

(5)

where rp, φp and λp describe the spherical coordinates of the point P and δC̄nm / δS̄nm the
residual coefficients after subtraction of the coefficients of the normal potential. The expansion
starts at degree n = 2, because a perfect consistency of the masses of the normal ellipsoid and
the Earth’s body and identical centers of gravity are presumed.

The geoid heights N are related to the disturbing potential by Bruns formula which reads

N =
T

γ
(6)

and in spherical harmonic notation the geoid heights can be expressed in spherical approximation
by

NP = R
∞

∑

n=2

n
∑

m=0

P̄nm(cos(φp))
[

δC̄nmcos(mλp) + δS̄nmsin(mλp)
]

(7)

for any point P on the surface of the Earth (rp = R).

Gravity anomalies ∆g can be written as

∆g = gP − γQ (8)

and denote the difference of the measured gravity gP at a point P on the Earth’s surface and
the normal gravity γQ on the reference ellipsoid. The relation to the disturbing potential T is
then given by

∆g = −∂T

∂R
+

1

γ

∂γ

∂R
T. (9)

Expressed in spherical harmonic notation the gravity anomalies read

∆g =
GM

R2

∞
∑

n=2

(n − 1)
n

∑

m=0

P̄nm(cos(φp))
[

δC̄nmcos(mλp) + δS̄nmsin(mλp)
]

(10)

for any point P on the geoid (rp = R).

16



5.2 Equivalent water heights

In order to treat hydrological and oceanic gravity variations, we usually do not use functionals
like geoid heights or gravity anomalies, but rather equivalent water heights (EWH) are used.
They actually describe the pressure p, which acts on a certain area through the gravitational
attraction g of a water layer of height h and density ρwater (p = h · ρwater · g) (see Wahr and
M. (1998)). The unit of EWH is normally chosen as millimeters of water column [mm WC] or
surface density [ kg

m2 ] where

1[mmWC] =
1kg

1m2
(11)

with a water density ρwater of 1000 [ kg
m3 ]. If water height changes ∆κ in mm are available globally

(from models or satellite observations), spherical coefficient changes can be computed as follows:

∆C̄nm

∆S̄nm

}

=
3

4πRρ̄(2n + 1)

∫∫

σ
∆κ(φ, λ, t)P̄nm(cos(φ))

{

cos(mλ)
sin(mλ)

}

dσ (12)

Likewise, the EWH changes ∆κ can be retrieved from the potential coefficient changes by the
spherical harmonic synthesis

∆κ(φ, λ, r) =
Rρ̄

3

∞
∑

n=0

(2n + 1)
n

∑

m=0

P̄nm(cos(φ))[∆C̄nmcos(mλ) + ∆S̄nmcos(mλ)] (13)

as shown by Wahr and M. (1998). The inclusion of the coefficients of degree n = 0 and n = 1
requires a discussion. The C00 coefficient, when investigating gravity changes of the entire sys-
tem Earth, does not change, as it represents the total Earth’s mass. However, looking at just
one component of the system, e.g., the oceans, the mass is not constant as the ocean exchanges
water with the atmosphere. Consequently, here, changes ∆C̄00 in the gravity are possible. The
values of the n = 1 coefficients are proportional to the position of the Earth’s center of mass
relative to the chosen coordinate system. All those terms are zero, under the assumption that
the instantaneous center of mass always coincides with the coordinate system’s origin. Again,
looking just at one component, the terms do not vanish. For example, the redistribution of
ocean masses can change the center of mass of the ocean (c.f. Wahr and M. (1998)).

With equations 12 and 13, equivalent water heights can also be interpreted as the height of a
water layer above a certain area, which needs to be removed or restored to explain a certain
change in gravity. Throughout the thesis, when EWH find application, the variations in n = 0
and n = 1 coefficients are set to zero, because those terms are not provided for GRACE solutions.

6 Gravity signal and error parameters

In this section other methods for the description of gravity fields and gravity field changes are
introduced, which do not refer to the spatial domain like the gravity functionals described in
previous sections.
Different signal and error parameters for gravity fields on the basis of spherical harmonic coef-
ficients (see section 5) are defined, which play an important role in the validation and quality
assessment of gravity field solutions.
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6.1 Degree variances

Assessing coefficients per degree allows a much better interpretation than the visualization of all
spherical coefficients. Degree variance as described in Gruber (2011) are based on a degree-wise
summation of the squared spherical harmonic coefficients. Degree variances c2

n describing the
signal (energy) content of a gravity field per degree n are given by

c2
n(C̄nm, S̄nm) =

n
∑

m=0

(C̄2
nm + S̄2

nm). (14)

In order to relate degree variances to other gravity functionals, scaling factors have to be intro-
duced, e.g., degree variances for geoid heights [m] are given by

c2
n{N} = R2 c2

n(C̄nm, S̄nm) (15)

where R is the radius of the Earth.

The error behavior of a gravity field model can likewise be expressed through degree variances
of the formal errors σ2 of the coefficients (error degree variances) :

c2
error,n(C̄nm, S̄nm) =

n
∑

m=0

(σ2(C̄nm) + σ2(S̄nm)). (16)

Other related error parameters based on degree variances are cumulative error degree variances,
omission error and commission error. The cumulative error degree variances are the accumulated
sum of error degree variances up to a certain maximum degree N . The commission error is the
cumulative geoid error up to a certain degree. The omission error describes the loss of signal
which is caused by the omission in terms of a spherical harmonic series expansion beyond a
maximum degree N . All the signal of a hypothetical series expansion from degree N + 1 up to
infinity is then defined as omission error

c2
omission,N =

∞
∑

n=N+1

n
∑

m=0

(C̄2
nm + S̄2

nm). (17)

Signal degree variances can also be retrieved from models and serve as a good first quality
indicator when compared to calculated degree variances. Model degree variances can be derived
from Kaula’s rule which is given by

c2
n =

1.6 · 10−10

n3
(18)

while there exist more complex models like the Tscherning/Rapp model (see Gruber (2011)),
which shall not be explained here.

6.2 Degree (error) median

The degree median is one method to overcome the problem of polar gaps in gravity field models
due to imperfect global data acquisition, when it comes to the illustration of gravity fields in
terms of degree variances (c.f. Sneeuw (2000)). The coefficient in the center of value-sorted
coefficients per degree is taken as representative (median) value.
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This parameter is only applicable to the absolutes of the variations of coefficients (Peters (2007)).
This means one usually subtracts the coefficients of a reference gravity model in order to get the
variations of the coefficients to the reference. If the reference gravity model is known to be of
higher quality, the variations show the error of the investigated gravity coefficients. Computing
the degree median out of the absolute values of the errors results in the degree error median.

6.3 Degree standard deviation

In order to visualize the differences between a gravity field and a reference field (e.g. from
ICGEM) the degree standard deviation is a practicable parameter. It computes the standard
deviation of the coefficient differences per degree under inhibition of the polar gap problem,
which is inherent to GOCE observables. The degree standard deviation is defined in Pail et al.
(2012) as

σn =

√

√

√

√

1

2(n − mmin,n) + 1

N
∑

m=mmin,n

[(C̄nm − C̄ref
nm )2 + (S̄nm − S̄ref

nm )2] (19)

with the spheric harmonic coefficients C̄ref
nm and S̄ref

nm of a reference field and the minimal order
mmin,n, which is not affected by the polar gap any more. The rule of thumb for the undistorted
minimal order

mmin,n = Θ0 ∗ n (20)

where Θ0 denotes the size of the polar gap (π
2 − I, I : satellite inclination) in radians, is defined

in Sneeuw and Gelderen (1997). The polar gap of GOCE mission (I = 96.70◦) accounts for
Θ0,GOCE = 6.7◦ (see also section 8.4).
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Part III

The satellite missions GOCE and GRACE and related

gravity recovery methods

In this part the mathematical background and tools for retrieving the Earth’s gravity potential
and its temporal variations in terms of a spherical harmonic analysis from the measurements of
both satellites shall be provided.
First, the GRACE mission concept and the measurement principle is presented (see section 7).
In this context three possible ways of deriving gravity from GRACE via a generalized orbit
determination problem, the single satellite approach (see section 7.2.1), the baseline approach
(see section 7.2.2), and the celestial mechanics approach (see section 7.2.3) are introduced. Then
the reasons for the erroneous striping pattern in GRACE solutions and one simple method to
cope with it, Gaussian smoothing, are explained.
Second, the mission concept of GOCE (see section 8) and gravity recovery from the observables
with three different approaches, the direct approach (see section 8.2.1) , the time-wise approach
(see section 8.2.2), and the space-wise approach (see section 8.2.3) are presented. Different
methods to treat with outliers in GOCE gradient timeseries are given in section 8.3. In section 8.4
regularization methods for dealing with the GOCE-type ill-posed normal equations are described.
The working principle of GOCE SGG processing software used at IAPG is explained in section
8.5.
In the end of this part the formulas of a variance component estimation (see section 9) for
optimally combining GRACE and GOCE normal equations and the formulas for a least-squares
parameter elimination (see section 10) are given.

7 GRACE

7.1 GRACE mission concept

The GRACE satellite mission was jointly launched by NASA and the German Space Agency
DLR in March 2002. The design of the mission, which consists of two identical satellites following
each other in a distance of about 220km in an altitude of less than 500 km, makes it very useful
for the observation of time variable gravity. The core instrument on board of each satellite is a
microwave (K-band) ranging system, which is able to continually measure the distance between
the two satellites with a very high accuracy. The microwave satellite-to-satellite tracking system
(SST-ll) guarantees relative positioning with an uncertainty of less than 1

100 of the thickness of
human hair (less than a micron). As the distance between both satellites is heavily related to the
current attraction and acceleration of each satellite in the gravity field of the Earth, temporal
and spatial gravity changes can be detected analyzing the distance variations. Additionally,
the GRACE satellites are equipped with an accelerometer accounting for the measurement
and correction of non-gravitational forces (e.g., atmospheric drag) in post-processing. Further,
each spacecraft has an on-board GPS receiver, which delivers the orbital position and orbital
movement in the global GPS reference frame. The GPS satellite-to-satellite measurements (SST-
hl) themselves can be used to solve for low gravity field harmonics and to stabilize the SST-ll
solutions in this domain.
All this raw data, called Level-1 data, is made commonly available and may be used to solve for
gravity fields. Further, several project-related processing centers such as the Center for Space
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Research (CSR) at the University of Texas, the GeoForschungsZentrum (GFZ) in Potsdam or
the Jet Propulsion Laboratory (JPL) provide spherical harmonic solutions of monthly averaged
gravity fields (up to d/o = 120), called Level-2 data. (see Wahr (2007))

7.2 Gravity recovery from GRACE observables

Generally, gravity field parameters are retrieved from GRACE Level-1 observables (see section
7) using various forms of a generalized orbit determination problem.
The orbit determination problem is following the equation of motion of a low orbiting satellite
including all perturbing accelerations (see, e.g., Jäggi et al. (2009) or Jäggi et al. (2010)) which
reads in the inertial frame as

r̈ = −GM
r

r3
+ f1(t, r, ṙ, q1, ..., qd), (21)

together with a set of initial conditions rk(t0) = rk (E1, ..., E6; t0), k = 0, 1 where Ei with
i ∈ [1, 2, ..., 6] describe the 6 Keplerian elements for epoch t0. GM denote the gravitational
constant times the mass of the Earth, and qj with j ∈ [1, 2...3] are additional unknown dynamical
parameters. Among those perturbing accelerations which act on a low earth orbiter (LEO) we
find the gravity field parameters. The gravity field parameters refer to the series of normalized
spherical harmonic coefficients described in Heiskanen and Moritz (1967) from degree 2 up to
degree 90.

7.2.1 Single satellite approach

In the single satellite approach described in Jäggi et al. (2009) first pseudo-observations are
determined from precise point positioning as a time series of epoch-wise coordinate triplets of
kinematic positions and its error estimates (covariance information). Then normal equations are
set up for the unknown gravity field coefficients on a daily basis with the pseudo-observations
weighted according to their covariance information. This is done using equation 21 simplified
to an orbit improvement process where the actual orbit rj(t) with j ∈ {a, b} of each of the two
satellite A and B is expressed as a truncated Taylor series of the form

rj(t) = rj0(t) +

nj
∑

i=1

δrj0(t)

δpji
∆pji +

nc
∑

i=1

δrj0(t)

δpci
∆pci (22)

with respect to the ni unknown arc-specific orbit parameters pji and to the nc unknown grav-
ity field coefficients pci (see Jäggi et al. (2010)). Applying numerical integration techniques,
observation equations can be formulated which are needed to set up the normal equations in
a standard least-squares adjustment approach. Obtained normal equations can then be accu-
mulated to weekly, monthly and annual systems and can be inverted to retrieve the spherical
harmonic coefficients and full covariance information. To be precise, only corrections to an a
priori static gravity field are estimated in the approach.

7.2.2 Baseline approach

A slight modification to this method is given by the baseline approach (see Jäggi et al. (2009)),
where differenced GPS observables are used to generate the LEO positions together with its
covariance information. This procedure can provide kinematic orbits with a few mm precision
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and reduced-dynamic orbits with sub-mm precision in an extended Kalman filter environment
or with similar techniques. The method qualitatively shows independence regarding the chosen
reference trajectory needed for reduced-dynamic orbits.
In both above described approaches K-band data serves as independent, direct source of vali-
dation for the kinematic distance between both GRACE A and B. K-band range residuals can
be used in order to determine systematic errors of the kinematic orbit determination and to
separate those errors from systematic errors occurring during gravity field recovery.

7.2.3 Celestial mechanics approach

Another method to retrieve the Earth’s gravity field parameters using both GRACE observations
types is the Celestial Mechanics Approach. Here, the inter-satellite K-band range-rate measure-
ments (SST - ll) are used as observations and the GPS-derived kinematic positions (SST - hl)
are introduced as pseudo-observations in a generalized orbit determination problem (see Jäggi
et al. (2010)). On the basis of a priori orbits, daily normal equations for both types of (pseudo-)
observations are set up into independent systems. A differential orbit improvement process with
the actual distance ra(t)−rb(t) between both satellites A and B may be expressed as a truncated
Taylor series of the unknown parameters. The Taylor expansion follows the expression

ra(t) − rb(t) = ra0(t) − rb0(t)

+
na
∑

i=1

δra0(t)

δpai
∆pai

−
nb
∑

i=1

δrb0(t)

δpbi

∆pbi

+
nc
∑

i=1

δra0(t) − δrb0(t)

δpci
∆pci

(23)

and is used to formulate the observation equations for the least-squares adjustment (see Jäggi
et al. (2010)). Finally, combined systems from SST-hl and SST-ll are created for each daily arc.
After a pre-elimination of arc-specific parameters the combined systems can be again accumu-
lated to daily, monthly and annual systems. Inversion of the system can be done without any
regularization.

Within the Celestial Mechanics Approach as proposed by Jäggi et al. (2010) GRACE accelerom-
eter data is neglected and short-term mass variations are not included in the models. However,
these model shortcomings are both compensated to a big part by the introduction of empirical
parameters, so called pseudo stochastic pulses.

Other spherical harmonic approaches exist (e.g. see Jekeli (1999), Visser et al. (2003), Han et
al.(2005) and Schmid et al. (2006) in Wahr (2007)) but are not further explained here. Apart
from spherical harmonic approaches there exist also so called mascon solutions. Those mascons
refer to uniformly spread mass anomalies of consistent shape at the Earth’s surface and are often
used to estimate regional mass anomalies reducing leaking effects. (c.f Wahr (2007))

For further details on the gravity recovery methods for GRACE the author recommends the
cited publications.
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7.3 GRACE error structure and its handling

GRACE monthly gravity field solutions suffer from erroneous stripes when explored spatially
e.g. in geoid heights. Two error sources for those stripes can be classified.
First, the GRACE observation type - the along track ranging (SST-ll) - leads to a highly
anisotropic error structure in the error estimates obtained in the gravity recovery procedure.
Rigorous covariance propagation to the full GRACE variance-covariance matrix of the monthly
ITG-GRACE2010s model to different maximum degrees could show that the striping pattern
already occurs at degrees 30 to 40 (Pail et al., 2011b). There it is stated, that error estimates
only reflect the GRACE measurement type and the orbit configuration, so a significant part of
the stripes is related to it and not to the observations themselves (right-hand side of the normal
equation system).
Second error source for the stripes is aliasing of short periodic signal (e.g. , from atmosphere or
ocean) affecting the true observations (right hand side). The twin satellites mainly sense grav-
ity along their orbit, thus the measurements reflect the instantaneous gravity on Earth at the
time the satellites pass. Without correction (using geophysical models) in so called de-aliasing
procedures, those effects alias into the monthly fields.

When it comes to retrieving mass variations, e.g., the ones of hydrological nature from GRACE
monthly spherical harmonic solutions, the spherical harmonic coefficients can not be used right
away. For example the analyses of hydrological mass variations in large river catchment areas
(scales of 500km) afford clean monthly fields in these spatial scales. The corresponding coef-
ficients at that degrees (d/o 30 to d/o 40), however, suffer from the striping pattern due to
the GRACE error structure. Thus the spherical harmonic coefficients of the GRACE gravity
field solution need to be subject to certain procedures in order to overcome the signal distortion
through short periodic signals (aliasing) and the anisotropic error behavior. In section 7.3.1
the general principle of eliminating aliasing effects is described exemplary by the GFZ GRACE
data processing. Section 7.3.2 is dedicated to some known de-striping and decorrelation filter
techniques.

7.3.1 Dealiasing

As explained above, short periodic gravity fluctuations need to be removed within the GRACE
data processing in a de-aliasing procedure. The sources for those variations generally are tides,
and variations in atmosphere, oceans, and continental water storage (see section 4). Seasonal
gravity variations are not corrected for because GRACE monthly fields shall help to determine
the latter.
In Gruber and Flechtner (2007) the overall GRACE data analysis and the principle of GRACE
de-aliasing for the monthly GFZ GRACE Satellite-only Model (GSM) (release 01 to 04) is ex-
plained. Within the processing the time variable gravity variations are interpreted as disturbing
forces acting on the satellites. Those forces need to be known, externally, in order to be corrected
for. Geophysical models can provide the necessary potential coefficients, describing the impact
of the disturbing forces. Different tide models find application in the de-aliasing, accounting for
direct tides, ocean tides, solid Earth tides and pole tides (all explained in 4). The variations
of atmosphere and ocean are corrected for in terms of potential coefficients derived from the
ECMWF (European Center for Medium Range Weather Forecast) atmosphere models and the
OMCT (Ocean Model for Circulation and Tides) ocean models. Those potential coefficients are
better known as the atmosphere and ocean de-aliasing level-1B products (AOD1B). Details on
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their calculation and usage are found in Flechtner (2007) (AOD1B product description docu-
ment).

7.3.2 De-striping – filter techniques

According to Werth et al. (2009) in their sound evaluation of GRACE filter tools from a hydro-
logical perspective, filtering of GRACE spherical harmonic coefficients aims at three different
benefits: 1) Smoothing the original data to a lower spatial resolution. Neglecting suppression
of high resolution coefficients is indispensable, knowing that noise is rising towards higher de-
grees. Furthermore, evaluation of water mass changes is mostly done in large-scale river basins,
hence a high resolution is not necessary. 2) Removal of the striping artifacts of GRACE gravity
data. The artifacts are the result of an-isotropically correlated noise in the coefficients. Needed
decorrelation techniques can be interpreted as filters. 3) Minimizing the leakage error. The term
leakage refers to signal outside the region of interest leaking inside and to signal variability inside
the region, which both need to be damped. Filters can be characterized in terms of (an-)isotropic
behavior, degree and order dependence, and inclusion of decorrelation methods. In their study
Werth et al. (2009) evaluated six different filter methods which find usage in the calculation of
GRACE terrestrial water storage (TWS) changes for correspondence with TWS changes from
various hydrological models. Different filter techniques deal differently with GRACE error and
leakage effects. The selection of an appropriate filter method mainly is a balance of remaining
satellite errors and spatial resolution. Besides, the optimal choice may vary for different basin
size, shape, and location as well as signal type and intensity (c.f. Werth et al. (2009)).

Gaussian smoothing, a very simple and commonly used filter, and its spherical harmonic pre-
sentation shall be introduced here. In Wahr and Molenaar (1998) the application of this filter
to GRACE data is described based on the filter coefficients presented by Jekeli (1981). Jekeli’s
Gaussian averaging function W (α) (normalized that the global integral of the averaging function
equals 1) can be written as

W (α) =
b

2π

exp [−b(1 − cos(α))]

1 − e−2b
(24)

where α denotes the angle from the filter core to another point on the Earth’s surface in radians.
The distance on the Earth’s surface in meters can be calculated via the semi-major axis a of the
Earth’s body by a · α. The parameter b defines the strength of the smoothing inversely by the
filter radius r following

b =
ln(2)

1 − cos(r/a)
(25)

where r is the distance on the Earth’s surface where the averaging function has dropped to half
of its value.
The degree dependent smoothing coefficients Wn (normalized that the global integral of the
averaging function equals 1) can be computed recursively with the relation

Wn+1 = −2 n + 1

b
Wn + Wn−1 (26)

where n is the spherical harmonic degree. The low degree filter coefficients can be derived by

W0 =
1

2π
(27)
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and

W1 =
1

2π
[
1 + e−2b

1 − e−2b
− 1

b
]. (28)

Other GRACE filter techniques exist, e.g., degree and order dependent filters by Swenson and
Wahr (2002), an empirical decorrelation method by Swenson and Wahr (2002), time dynamic
filter by Seo et al (2006), and a decorrelation method by Kusche (2007). They are all investigated
in Werth et al. (2009). Details on these filters are not given here but can be found in the cited
literature.

8 GOCE

8.1 GOCE mission concept

The GOCE satellite mission, which delivers data since November 2009, is the first core satellite
mission defined in ESA’s Living Planet program (ESA (1999)). The mission aims to determine
the stationary part of the Earth’s gravity field - geoid heights and gravity anomalies - globally
with a very high accuracy and spatial resolution. Therefore, it flies at a very low altitude of
260 km (to sense a greater gravitational attraction) on a sun-synchronous orbit (inclination of
96.7◦) 5. The scientific goal is the determination of gravity anomalies with an accuracy of 10−6ġ
(which corresponds to 1 mgal) and the geoid with 1 − 2 cm accuracy, with a spatial resolution
of better than 100 km half wavelength (ESA (1999)). The newly derived gravity information
is complementary to data of other gravity field satellite missions and thus is of importance for
science and applications concerning various Earth processes (e.g., solid earth physics, oceanog-
raphy, geodesy and glaciology) (see Gruber et al. (2009)).
The core instrument on board of the spacecraft to measure gravity is a 3-axis satellite gravity

gradiometer (SGG) (see figure 1), which is a unique technique in space. It consists of three
pairs of orthogonally mounted accelerometers in 50 cm distance with their axes approximately
arranged in along track (x-axis), cross track (y-axis) and radial (z-axis) direction. This gradiome-
ter allows the direct measurement of the second order derivatives of the gravitational potential
- the differences of the accelerations acting at the locations of the accelerometers - along the
above defined axes. The differences stem from the fact that the gravitational signal along the
orbit is influenced by all attracting earth masses (e.g. mountains, valleys, ocean ridges, etc.)
and the accelerometers are sensitive enough to measure the variation of this attraction over a
distance of 50 cm (ESA, 1999). Non-gravitational attraction (e.g., air drag) is ideally eliminated
in the differences (differential mode accelerations), because all accelerometers inside the gra-
diometer are affected by the same non-gravitional attraction. Further, the direct measurement
of the linear disturbing accelerations (common mode accelerations) allows the instantaneous
compensation (and minimization) of the drag effect with the satellite’s drag-free control system
via ion-thrusters. Due to the fact, that each accelerometer suffers of one less sensitive axis, the
arrangement of the accelerometers was done in a way, that the diagonal components Vxx, Vyy

and Vzz of the gravity tensor and the off-diagonal component Vxz can be determined with high
precision (Gruber et al., 2009). Among the three main diagonal components, however, the
Vzz component performs worse by a factor of two due to yet unknown reasons (see Pail et al.
(2011a)). The off-diagonal tensor elements Vxy and Vyz can only be determined with lower pre-
cision (Gruber et al., 2009) and are in consequence not used for gravity recovery (see Pail et al.
(2011a)). The gradiometer measurements are very precise only within the systems measurement

5http://www.esa.int/SPECIALS/GOCE/SEMD304XQEF_0.html
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Figure 1: Scheme of GOCE gradiometer with 6 accelerometers and the axes defined in the Gra-
diometer Reference Frame (GRF); solid arrows denote the sensitive axes of the accelerometers,
dashed arrows denote the less sensitive axes;

bandwidth between 5 and 100 mHz and therefore require adequate filtering before usage (see
Pail et al. (2011a)).
With the on-board GPS receiver the satellite is equipped with a second, complementary gravity
sensor device (similar to the CHAMP mission, see section 2). The information gathered from
the GPS receiver accounts for the long-wavelength part of the gravity field, which lies outside of
the measurement bandwidth of the gradiometer. From a joint analysis of both on-board gravity
sensor devices the GOCE-only gravity field models can be derived (see section 8.2.1, 8.2.2 and
8.2.3).

8.2 Gravity Recovery from GOCE observables

GOCE gravity recovery can be done independently for both on board gravity sensor concepts,
the satellite-to-satellite tracking in the high-low mode (SST-hl) via GPS receivers and the satel-
lite gravity gradiometer (SGG), but is mostly done in combination as they are complementary.
The data of the SST-hl sensor only accounts for low frequencies of the gravitational field. In
contrast, the high frequencies of the gravity field can be determined from the gravity gradient
tensor measured with the SGG.

For the SST-hl observables gravity recovery can be realized via orbital analysis. Similar to
GRACE (or CHAMP) type SST-hl observables gravity field coefficients can be estimated from
GOCE type SST-hl observations using techniques like the single satellite approach as described
in section 7.2. Alternatively, the GOCE type SST-hl can be solved with the energy conservation
approach or energy integral method, which are not further explained here.
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As defined in the GOCE mission selection manuscript (see ESA (1999)) three complementary
techniques have been foreseen and were later implemented by the European GOCE Gravity
consortium (EGGc) to compute a gravity field from GOCE type observations: the direct method
(DIR), the time wise method (TIM) and the space wise method (SPW). They mainly differ in
usage of the SST-hl observations, in modeling the stochastic behavior of the gradiometer, in the
general computional domain (time or space), spatial resolution, inclusion of external information
and in combination of the information of the two sensor concepts. In the sections 8.2.1, 8.2.2,
and 8.2.3 the principle and characteristics of these methods will briefly be outlined.

8.2.1 Direct method (DIR)

Within the direct method gravity recovery is based on different approaches for the individual
releases. In release 1, which shall be explained here, the least-squares solution of the inverse
problem is done with a Cholesky decomposition (see Bruinsma et al. (2010)). EIGEN-51C served
as a priori model for the SST processing and as background model for the SGG processing. The
SST processing and SST normal equation set-up relies on an orbit determination problem based
on dynamic orbit computation in an iterative least-squares adjustment (up to d/o 120). The
noisy SGG observations are filtered using a band pass filter aiming to suppress signal outside
the measurement bandwidth to less than 0.1mE. From the filtered SGG observations normal
equations are derived for each SGG component in a single step (up to d/o 240). Normal equations
for both data types are computed in daily (24h) manner and before inversion the normal equation
batches are stacked together for the whole period. For optimal combination, the information
of the yy-component and the SST matrix is down-weighted by a factor of 0.5 empirically. The
solution of the DIR-method requires a spherical cap regularization, which constrains the solution
in the unobserved polar caps to the used a priori model (EIGEN-51C) (see Pail et al. (2011a)).
It was shown (see Gruber et al. (2011)) that the models from this approach outperform others
above degree 150 when it comes to comparisons with terrestrial gravity data, due to the fact
that this information is already contained in the EIGEN-51C prior model.

8.2.2 Time-wise method (TIM)

The main goal of the time-wise method is to derive a gravity field model which is independent of
any external or a priori information (see Pail et al. (2010)). One difference to the DIR method
is that the SST processing is done via the energy integral method (up to d/o 100) which reduces
the available information in the low degrees by a factor of

√
3, when used in a unique scalar

equation. Again, in order to be independent from any biases towards a GRACE prior model,
not the reduced dynamic orbits (SST_PRD) but the kinematic orbit positions (SST_PKI) are
used, which show a worse performance. The SGG data in this approach is filtered regarding its
entire spectra using an ARMA filter model, which corresponds to a complete decorrelation of
the signal. The disadvantage is that those filter models are complex and require longer warm-up
periods, so more data remains unused. Within the approach a so called tuning machine, which
iteratively solves the field in an approximation, delivers optimum regularization and weighting
parameters, SGG ARMA filter models and undetected outliers. With the filtered main diagonal
gradients Vxx, Vyy and Vzz the full normal equations are assembled (up to d/o 224). SGG and
STT normal equations are combined using variance component estimation (see section 9) and
regularized using two approaches before solving. (c.f. Pail et al. (2011a))
A pure GOCE-only field, as derived from the TIM approach, offers the possibility to discover
inconsistencies regarding comparisons to gravity fields derived from other satellites and terres-
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trial gravity data. However, as GRACE information is missing, the models from this approach
show a significantly lower performance in the low frequencies (see Pail et al. (2011a)).
In the last decades, efforts have been made to make use of the sensor fusion concept of the satel-
lite with its complementary sensor data, in order to achieve a GOCE-only gravity field model.
According to Pail et al. (2010) various approaches have been proposed to handle the demanding
numerical and computational task evolving from the enormous normal equation systems of the
SGG observation type. A gravity field complete up to degree and order 250 requires to solve
63.000 unknown spherical harmonic coefficients, which leads to the inversion of a normal equa-
tion matrix of about 30 GB size. A software solving this task in a parallel processing strategy
using the time-wise method on a Linux-PC cluster is described in section 8.5.

8.2.3 Space-wise method (SPW)

The concept of the space-wise approach (see Migliaccio et al. (2010)) differs with respect to
the above mentioned approaches, as a gravity model is derived from previously gridded gravity
gradients. In this approach spatial correlations are exploited by modeling the signal covari-
ance as a function of distance in a multi-step collocation procedure. Prior to the collocation, a
low-frequency estimate of the gravitational potential is retrieved from the SST data using the
energy conservation approach. In this step, however, the estimated potential has to be adapted
according to the error spectrum of a prior model. This constraint becomes necessary due to
unfiltered common mode accelerations.
For the multi-step collocation the following procedure is applied: First, the time-series of gradi-
ents is filtered along the orbit with a Wiener filter in order to reduce the highly correlated noise
of the gradiometer. Second, a spherical grid is interpolated by means of collocation on satellite
height. The collocation can also be interpreted as a second, spatial filter stage, because data
points close to each other are averaged to a grid point. Note, that gradients in the collocation
process are reduced by the SST prior model because collocation is applied to local, overlapping
patches of 20◦ x 20◦. Finally, a harmonic analysis by numerical integration is performed to derive
the geopotential coefficients. These coefficients are transformed to synthesized observables again,
and the space-wise procedure is repeated until convergence. Due to computational reasons, the
full covariance matrix is derived by a Monte Carlo simulation using only 400 samples.

8.3 Outlier detection methods for GOCE gravity gradients

GOCE gravity gradients, as measured by the satellite’s on board gradiometer, are affected by
stochastic errors, systematic errors and outliers. The stochastic errors of GOCE gradiometry,
the colored noise, can be very well modeled and is taken into account differently in different
approaches of gravity field recovery (see section 8.2, and Pail et al. (2011a)). Systematic errors,
which can include biases and scale factor errors, are corrected for in an external calibration
step (see Bouman et al. (2005)). Outliers are searched for in the so-called gravity field analysis
pre-processing step of the HPF. However, remaining undetected outliers can seriously affect the
accuracy of the derived gravity field coefficients (see Kern et al. (2005)). Bouman et al. (2005)
show that a gravity field solution can be degraded by up to twenty times due to undetected
outliers. Hence, for the purpose of gravity field computation from GOCE GG outlier detection
algorithms are indispensable.
A variety of methods exist to cope with outliers in GOCE GG. Sound discussions of different
outlier detection algorithms for GOCE GG are given, e.g., by Bouman et al. (2005) or Kern
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et al. (2005). Here, only methods used or discussed within the thesis and in the TIM gravity
recovery approach (see 8.2.2) shall be presented.

8.3.1 Tracelessness condition

The tracelessness condition is better known as the Laplace equation, according to which the
gravitational potential is a harmonic function outside of the attracting masses (Heiskanen and
Moritz (1967)). This physical property of the gravity gradients means, that the sum of the
diagonal elements of the gravity tensor (Vxx,Vyy,Vzz) should be zero. This condition can be
expressed for GOCE GG by

Vxx + Vyy + Vzz = 0. (29)

According to Bouman et al. (2005) the tracelessness condition is a sensitive but ambiguous
method, because it cannot be discriminated from which gradient component the outlier arises.

8.3.2 Gravity gradient anomalies

Gravity gradient anomalies are derivations of the measured GGs to GGs generated from a global
Earth gravity field model along the orbit positions (see Bouman et al. (2005)). Again a threshold
can be defined to detect outliers in the epoch-wise gravity gradient anomalies. Alternatively, a
w-teststatistic can be introduced as detection criteria (see Bouman (2004)). Generally, also the
median value has to be subtracted in order to cope with scale factor errors and biases. In a
more advanced approach, the differences can also be weighted with the sum of errors.
An advantage of this method is that all gravity components can be checked individually and
point-wise. A drawback of the method is that the gradients derived from the model may be
of low accuracy compared to GOCE GG, which makes the method less sensitive (see Bouman
et al. (2005)).

8.4 Regularization

Regularization in least squares estimation problems is a method to stabilize the inversion process
of an ill-posed normal equation matrix. GOCE normal equations happen to be ill-posed because
of various reasons.
In particular, the sun-synchronous orbit of the satellite with an inclination angle of 96.7◦ leads to
a polar observation gap. As the spherical harmonic base functions used to describe the geopo-
tential on Earth are of global support, the matrix of normal equations tends to be ill-posed,
leading to a weak determination of the low-order coefficients (see Metzler and Pail (2005)). The
effect is a strong oscillation of the geopotential (or other gravity functionals) in the polar ar-
eas. It is estimated, that a loss of 13 to 14 significant digits in numerical stability result from
the polar gap problem for a spherical harmonic least-squares solution complete up to d/o 250.
In contrast, the downward continuation only accounts for a loss of seven significant digits for
a satellite’s altitude of 250 km. In their analyses of the polar gap issue and its influence on
spherical harmonics, Sneeuw and Gelderen (1997) found the zonal and near-zonal coefficients to
be affected and distorted. The developed rule of thumb for the spectral region affected by the
distortion is given with equation 20 in section 6.3.
Other reasons for ill-posed normal equation matrices may be inhomogeneous data distribution
or the introduced stochastic model of the measurements (see Yi (2011)).
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Several regularization approaches exist for ill-posed least squares problems. In standard ap-
proaches like the Tikhonov regularization (of different order) or the Kaula regularization usually
a diagonal regularization matrix R is added to the normal equation matrix AT PA, in order to
stabilize the solving process following the expression

x̂ =

(

AT PA + αR

)−1

AT Pl (30)

(Metzler and Pail (2005)). The regularization parameter α controls the impact of the regular-
ization, and its determination is a crucial task in the regularization procedure, as an optimal
balance between regularization and data fitting has to be found. Metzler and Pail (2005) pro-
vide a list of different methods to find an optimum regularization parameter. The regularization
matrix R on the other side enables individual weighting of the parameters.
In the case of Tikhonov (Tikhonov, 1963) (without going into further detail) the regularization
matrix is filled on the diagonal with degree n dependent terms following

rij = δij , (31)

rij = δijn(n + 1) (32)

and
rij = δijn

2(n + 1)2 (33)

for Tikhonov of first (31), second (32) and third (33) order (see e.g. Metzler and Pail (2005)).
The parameter rij denotes the element in row i and column j of the R-matrix and δij is the
Kronecker symbol.

In the case of a Kaula regularization the constraining is based on a degree variance model, and
the elements of the regularization matrix correspond to the inverse Kaula rule (see equation 18)
following

rij = δijn
4. (34)

Instead of a variance model, variances derived from any existing satellite-borne geopotential
model can be used to fill the diagonal of the regularization matrix, likewise.
However, a constraining based on the described methods influences the total solution in space
domain.

In order to avoid a signal damping two regularization approaches exist which are tailored to
GOCE case ill-posed normal equations. The first one is an order dependent Kaula regulariza-
tion, which is applied only to coefficients affected by the polar gap. The method is basically
derived from a combination of equation 34 and equation 20, which defines the maximum order
mreg per degree n which is affected by the polar gap. Then, the elements rij of the regularization
matrix R can be written as

rij =

{

n4(mreg − m)p if i = j and m ≤ mreg

0 otherwise
(35)

(see Metzler and Pail (2005)), where the term (mreg − m)p represents an order dependent
weighting, with an empirically derived value p. The weighting leads to maximum regularization
impact in zonal coefficients and decreases the impact continuously with increasing order.
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Figure 2: Coefficients of a spherical harmonic analysis which are affected by the order dependent
Kaula regularization (in red) as expressed by equation 35, for inclination I=96.7◦

Figure 2 shows in red color the spherical harmonic coefficients Cnm and Snm (up to d/o 224)
which are affected by the order dependent Kaula regularization approach.

The second regularization method which has specifically been designed to stabilize GOCE NEQ
is the Spherical Cap Regularization Approach (Metzler and Pail (2005)). Without going into any
detail, the approach principally is forcing the geopotential at the poles towards a low-frequency
gravity signal defined exclusively in the polar region. No external a-priori information needs
to be included in this approach, as GOCE observation themselves can be used for a low-degree
model, because the missing data in the polar regions does not have a significant effect on a
low-resolution GOCE-only solution.

8.5 GOCE time-wise processing at IAPG

Solving the very normal equations which appear in retrieving spherical harmonic coefficients
from gravity gradients measured by the GOCE on-board SGG is a computationally costly task.
The software for assembling and solving those normal equations developed at the Institute of
Astronomical and Physical Geodesy (IAPG) at the Technische Universität München (TUM)
therefore falls back on the Leibniz Supercomputing Center (LRZ) in Munich, which provides
the relevant infrastructure. The software is very similar to the method used for the generation
of TIM gravity models (see section 8.2.2) in the frame of the High-Level Processing Facility
(HPF), the ESA funded project for scientific processing of GOCE data. Details on HPF’s grav-
ity field processing and more information on the software can be found , e.g., in Pail et al. (2005).

The gravitational potential V of the Earth is computed in terms of spherical harmonic co-
efficients C̄nm and S̄nm as defined in Heiskanen and Moritz (1967) up to a certain maximal
degree Nmax of the series expansion described by equation 1 in section 5. The implemented
software is able to solve gravity fields up to degree/order 720, which means a spatial resolu-
tion of approximately 30 kilometers. Further, the computation includes the estimation of a full
variance-covariance matrix which reflects the true error behavior of the solution.
The software consists of various sub-programs and is conceived in a modular manner that allows
the investigation of intermediate results and an adaption to the data input. Figure 3 shows
the overall architectural design, main components and comprised programs with their data in-
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and outputs for solving the normal equation system. In the diagram data is colored in gray,
programs are blue, and processes running on the LRZ environment are orange. The five main
components of the software are briefly explained in the following:

goceINPUT.f90
This program reads the official ESA GOCE data products GO_CONS_EGG_NOM_2_, GO_
CONS_SST_PRD, and GO_CONS_SST_PRM and writes the values of relevant quantities
into specified input files, as they are needed by the program goceNEQ. The period for which
data is assembled into files can be defined explicitly. It uses the sub-modules neq_gocevars,
neq_globalvars, neq_io and neq_orbit. The first two modules provide all necessary variables,
neq_io provides routines for preparing and reading the official GOCE data products. The modul
neq_orbit accounts for the synchronization of orbit and gradient data and provides functions for
an interpolation of the orbit postions to the gradiometer measurement epochs. The quantities
extracted from each product are listed in table 2.

Product name Product contents

GO_CONS_EGG_NOM_2_ 6 gravity gradients
(xx-, yy-, zz-, xy-, xz- and yz-component)

4 quaternions (rotation ITRF/GRF)
flag

GO_CONS_SST_PRD reduced-dynamic orbit positions
(x-, y-, z-coordinate)

GO_CONS_SST_PRM 4 quaternions (rotation ERF/ ITRF)

Table 2: ESA data products needed for the time-wise processing software at IAPG (serve as
input for goceINPUT.f90 )

startNEQcreation_goce
This script prepares the computation and the assembling of the normal equations before it sends
serial jobs (batch-jobs) to the LRZ. It splits the normal equation matrix into a number of com-
putationally feasible parts, so that the whole system can be set-up in independent batch-jobs
running the program goceNEQ.f90.

goceNEQ.f90
This program assembles the normal equation system and provides a description file (containing
the sorting of coefficients), an AT PA -file (normal equation matrix) and an AT Pl -file (right
hand side). As external input an input file containing the gradient observations generated by go-
ceINPUT.f90, a filter file and a gap file are needed. The gap file accounts for all the data epochs
which shall be excluded due to failure of the measurement system. The filter-file defines an auto-
regressive moving-average (ARMA) filter which copes with the colored noise of the gradients
and filters the gradients and the columns of the design matrix A over their entire spectra. As
the filters are auto-regressive, they need to be fed with a period of data-points before they work
correctly. Those periods, where the filter does not work correctly and the corresponding epochs
are not taken taken into account for gravity recovery, is called warm-up time. The warm-up time
of the filters typically lies between 1500 and 3000 data epochs and can be critical for the quality
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Figure 3: Architectural design and data flow of the time-wise software package at IAPG
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for the gravity field as it leads to loss of information. Details on filter design of such filters taking
into account the GOCE gradiometer inherited stochastic behavior can be found, e.g., in Stetter
(2012). The normal equation system is assembled by serial processing of normal equation parts
of computationally feasible size in single batch-jobs as defined in the program startNEQcreation.

ConnectNEQ.f90
ConnectNEQ.f90 brings together the individual parts of the normal equation system by assem-
bling the results of the LRZ batch jobs (=normal equation parts) into one normal equation
matrix and the right-hand side.

SolveNEQ.f90
In this part of the software, the normal equations are solved on the parallel computing environ-
ment of LRZ (SLURM-jobs), as the inversion of the AT PA matrix is not feasible for a single
processor. The outputs are the spherical harmonic coefficients of the gravitational potential of
the Earth and their formal errors expressed by the variance-covariance matrix.

9 Variance component estimation

Variance component estimation (VCE) is a method aiming to achieve an optimal combination
of different types of satellite data for gravity field determination in terms of a spherical har-
monic analysis. In core, weighting factors, so called variance components, are estimated for
each measurement type before they are applied to the normal equations. If the normal equation
systems are ill-conditioned, prior information in terms of regularization can be introduced op-
timally at the same time. For this thesis, an approach for the combination of satellite gravity
gradiometry (SGG) data as measured by GOCE (see section 8) and gravity observations from
satellite-to-satellite tracking (SST) as delivered by GRACE (see section 7) is needed. As the
SGG observation type suffers from an ill-conditioning of the normal equations due to the polar
gap, the inclusion of prior information is necessary. Koch et al. (2002) as well as Brockmann
et al. (2010) deliver fast approaches for VCE in case of GOCE SGG and GRACE SST on the
basis of normal equations with u unknown parameters of the kind

(ωgoce AT PAgoce + ωgrace AT PAgrace + ωreg Preg) β

= ωgoce AT Plgoce + ωgrace AT Plgrace + ωreg Pregµreg

(36)

where AT PAi denotes the u x u normal equation matrix and AT Pli is the u x 1 right-hand side
of the different observation types i=[goce,grace]; β is the vector of unknown parameters of size
u x 1. The parameter ωi is the weighting factor of the different observation types, µreg is the
u x 1 vector of prior information (e.g. regularization) and Preg the corresponding regularization
matrix of size u x u.

The weighting parameters ωi with i ∈ {goce, grace, reg} can be retrieved from the variance
components σ2

i of each observation type as follows:

σ2
i =

1

ωi
=

Ωi

ri
=

Ωi

ni − ui
(37)
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The partial redundancies of each observation type ri are the difference of the number of obser-
vations ni and unknowns ui. The weighted square sum of residuals Ωi equals

Ωi = v̂i
T Piv̂i = (Aiβ̂ − li)

T Pi(Aiβ̂ − li) (38)

where Ai is the design matrix of size n x u and li is the n x 1 vector of observations. Ωi can also
be estimated using the squared, weighted sum of observations lT Pli following the expression

Ωi = βT AT
i PiAi β − 2 βT AT

i Pili + lTi Pili (39)

for i = [goce, grace]. In the case of the prior information, we can write the residuals v̂reg as

β̂ − µreg and get
Ωreg = v̂T

regPreg v̂reg. (40)

As shown in Koch and Kusche (2002) the partial redundancies can be estimated through

ri = ni − trace(
1

σ2
i

AT
i PiAi N−1), i ∈ {goce, grace} (41)

rreg = u − trace(
1

σ2
reg

Preg N−1) (42)

where N denotes the combined normal equation matrix (left hand side of equation 36). With
equation 36 to 42 the variance components σ2

i for i ∈ {goce, grace, reg} can be computed iter-
atively. Starting from approximate values one iterates until the variance components converge.
It was shown, that not more than five iterations should be necessary (see Koch and Kusche
(2002)) to obtain optimal weighting parameters using the above described approach.

10 Least - squares parameter elimination for normal equations

In order to reduce a Gauss-Markov model to a number of parameters of interest a parameter
elimination can be applied to the normal equations. In this thesis normal equation systems of
different size will be combined, and therefore a reduction of the number of parameters is relevant
for the bigger system. Further, the parameter elimination greatly reduces computational effort,
which generally increases cubical with the number of parameters. The normal equations for
a spherical harmonic analyses derived from GOCE SGG have a spherical harmonic degree of
more than 60 (up to a maximum of 250 for this observation type, see section 8) and need to be
adapted to the spherical harmonic degree of the GRACE SST normal equations. Here, GRACE
SST normal equation systems (see section 11.1) of a maximum degree nmax,grace = 60 will
be investigated, which accounts for (Nmax,grace + 1)2 = 612 = 3721 coefficients of a spherical
harmonic series expansion.
The general procedure for a parameter elimination of a Gauss-Markov model with n observations
and u unknown parameters of kind

l + v = Aβ (43)

where l denotes the n x 1 observation vector, v is the n x 1 vector of residuals, A is the n x u
design matrix and β is the u x 1 vector of unknown parameters, is described, e.g., in Pail (2004).
In this approach observations can be correlated and of different accuracy. First of all, the design
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Figure 4: Scheme of normal equation matrix AT PA and corresponding right-hand side AT Pl
showing the division into parts which is relevant for the parameter elimination procedure

matrix A can be divided into the part A1 (size n x u1) containing the remaining parameters β1

and the part A2 (size n x u2) containing the parameters β2 to be eliminated following

A = {A1|A2} , β =

[

β1

β2

]

(44)

where u1 is the number of remaining parameters β1 and u2 is the number of parameters β2 to
be eliminated. It is shown that the reduced normal equation matrix of remaining parameters
ĀT

i PĀ1 of size u1 x u1 is given by

ĀT
1 PĀ1 = AT

1 PA1 − AT
1 PA2 (AT

2 PA2)−1 AT
2 PA1 (45)

The reduced n1 x 1 right-hand side ĀT
1 P l̄ can be computed using the expression

ĀT
1 P l̄ = A1Pl − AT

1 PA2(AT
2 PA2)−1AT

2 Pl (46)

with the reduced vector of observations l̄, which follows:

l̄ = l − A2(AT
2 PA2)−1AT

2 Pl. (47)

Figure 4 schematically shows where the relevant parts of the AT PA and AT Pl matrix described
by equations 45 and 46 are located.

Following equation 45 and 46 the remaining parameters β1 can be retrieved by solving the
reduced normal equations as

β1 = (ĀT
1 PĀ1)−1 ĀT

1 P l̄ (48)
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Part IV

Estimation and analysis of combined monthly and

bi-monthly fields from GOCE and GRACE

11 Description of data

In this thesis GRACE and GOCE satellite data of the year 2010 and of two months in the
year 2009 was gathered. Both satellite missions observe the gravity field of the Earth, how-
ever, measurement techniques differ as described in chapters 7 and 8. In the case of GOCE,
officially released data products of the European Space Agency (ESA) and an at IAPG inter-
nally produced gradient data set were used. From the provided gravity gradients, orbits, and
attitude information, normal equations can be assembled. In the case of GRACE, fully set up
normal equations from the Astronomical Institute of the University of Bern (AIUB) were made
available.

11.1 GRACE data

GRACE data utilized for this research was provided by AIUB in terms of fully set up normal
equations for every month of the year 2010, and the last two months of the year 2009. Hence,
no data screening or editing could be done. Deduced gravity field representations range up to
spherical harmonic degree/ order 60. However, coefficients of degree 0 and 1 are not parame-
terized. Apart from a reduction of tidal effects from tide-models, no other reduction regarding
time variable effects has been applied.

The provided files contain the normal equation matrix AT PA, the right hand side AT PL and
the spherical harmonic coefficients of a 6-year GRACE-only solution (AIUB-6YR). The field de-
scribed by the AIUB-6YR coefficients was subtracted from the observations before the normal
equations were assembled. AIUB-6YR can be regarded as the static part of the Earth’s gravity
field because it reflects the mean gravity over 6 years. Thus, only a residual part of the gravity
field of the Earth, which is assumed to be the time variable effect, is reflected by the values in
the AT Pl vector. In order to combine the normal equations with GOCE normal equations, the
static field has to be re-introduced into the AT Pl vector as described in section 12.1.

In the appendix, the illustrations 31 to 33 show the given GRACE gravity field solutions com-
plete up to spherical harmonic degree and order 60 that were solved directly from the normal
equations. All 11 fields are illustrated in terms of gravity anomalies and show only the residual,
time variable part (after removal of the coefficients of a static field). Cleary, the striping aret-
facts as well as temporal gravity anomalies in hydrologically active areas (e.g. amazon basin)
become visible.

11.2 GOCE data

Data from the GOCE mission utilized for combination with GRACE is mainly taken from
officially released data products of ESA’s High-Level Processing Facility (HPF), which is re-
sponsible for the generation of gravity field products and final GOCE orbits from level-1b (L1B)
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data. L1B means continuously quality-monitored data sets, which have been corrected, inter-
nally calibrated and converted to physical meaning by the Payload Data System (PDS) and the
Calibration and Monitoring Facility (CMF) (Koop and Gruber, 2009). The two HPF products
which find application in this research are listed below:

GO_CONS_EGG_NOM_2_

GO_CONS_SST_PSO_2_

The GO_CONS_EGG_NOM__2 product consists of externally calibrated and corrected grav-
ity gradients in the GRF. In order to transform the gradients into the inertial reference frame
(IRF), 4 attitude quaternions are provided coevally. In addition, all temporal corrections which
have been applied to the gradients are given for each of the 6 tensor components. They account
for direct tide, Earth tide, ocean tide, pole tide and non-tidal corrections. Further, calibration
parameters (scale factors), error estimates for all GG components and flags are given. Flags
refer to data epochs expected to be outliers or to periods where data gaps have been filled by
interpolation. For synchronization of the observations to the orbit positions the GPS time of
each measurement epoch is equally provided.
In the year 2011, the L1B data processing was updated due to the development of an enhanced
processing strategy (Stummer et al., 2012). In connection with the new processing strategy, the
GO_CONS_EGG_NOM_2_ product was re-processed regarding the entire mission’s lifetime.
The changes in the new L1b processor mainly comprise an improved method to reconstruct the
angular rates and a new method for the determination of the gradiometer’s internal attitude.
Further, the new processing strategy enables a combination of all simultaneously available star
sensor data and the application of time-variable scaling factors in the calibration procedure.
Those changes account for a global and regional improvement of the SGG gravity field solutions
(Pail et al., 2012). Spectrally considered, largest improvements can be found at the medium to
low frequencies and at the frequencies of the orbit revolution rates (see Stummer et al. (2011,
2012)).

Within the thesis, three different kinds of gradients find application. Gradients from the old
and the new L1b-processor and an in-house gradient product, computed at IAPG according to
the new L1B processing strategy. In the following the re-processed gradients will be referred to
as new or re-processed (repr), whilst in-house stands for the IAPG gradients. The in-house gra-
dients are only available for November and December 2009, while old and reprocessed gradients
are available for the entire mission’s lifetime.

The GO_CONS_SST_PSO product contains the Precise Science Orbits (PSO) which are avail-
able in terms of reduced-dynamic orbits (GO_CONS_SST_PRD) and kinematic orbits GO_
CONS_SST_PKI ) represented in the earth-fixed reference frame (EFRF). Additionally, a ro-
tation matrix in the form of 4 corresponding quaternions for each epoch is given for the trans-
formation of the orbits into the ITRF. The orbits are provided in terms of a times series of
3D-positions and 3D-velocities with a sampling rate of 1 second in the case of PKI orbit, and 10
seconds in the case of PRD orbits. Both refer to GPS time as underlying time system. Within
the research, only PRD orbits are used, because a 10 second sampling is enough for the interpo-
lation of the satellites positions to the gradiometer measurement epochs (as described in section
8.5).

More details on the GOCE data products can be found in Koop and Gruber (2009).
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11.3 Consistency regarding time variable gravity signals

A combination of two gravitational data sets from different sources requires an adequate cali-
bration, and at the same time an equal treatment of disturbing signals. Consequently, it has to
be inspected whether this consistency is given for GRACE SST-ll and GOCE SGG data utilized
in this research:

Calibration for GOCE is done internally, in the L1B processing step, and externally to state-of-
the-art gravity models. The determined scale factor has already been applied to the GG in the
GO_CONS_EGG_NOM_2_ product (Koop and Gruber, 2009). The utilized GRACE data
can be regarded calibrated due to the long lifespan of the mission and experience regarding the
processing of its data.
As mentioned in the previous sections 11.1 and 11.2, GRACE and GOCE observations are both
corrected for tidal signals, which is assumed to be done in an equivalent way. Additionally,
GOCE data has been corrected for non-tidal effects. Those non-tidal effects account for atmo-
spheric, oceanic, hydrological and ice annual mass variations (Koop and Gruber, 2009). In spite
of the fact that those non-tidal time variable effects are about 7 orders of magnitude below the
measured signal, and thus their contribution to the gravity field solution might be negligible,
the corresponding delivered correction from the GO_CONS_EGG_NOM_2_ product is re-
introduced into the GGs. This is done via a simple addition of the equivalent components for
each measurement epoch aiming to overcome this remaining inconsistency regarding GRACE
(see equation 51 on page 42).

12 Methodology and processing

In this section the overall methodology and individual processing steps are described in order to
derive monthly and bi-monthly combined gravity fields from GRACE SST-ll and GOCE SGG.
The combination is done on the basis of normal equations from both observation types. Such a
combination generally is performed by adding up the involved normal equation matrices and the
corresponding right-hand sides, as the problem in the normal equations is given in a linearized
form.

Figure 5 shows the overall workflow for the combination of GOCE and GRACE data (green /
yellow rectangles) and the processing steps (blue prisms). GRACE normal equations have to
pass through a pre-processing step (PP) which consists of a re-ordering of the normal equation
parameters and the re-introduction of a previously reduced static gravity field into the normal
equations (see section 12.1). To get from GOCE gradients to GOCE SGG normal equations three
major processing steps have to be performed (see section 12.2). First, non-tidal signal (NTS)
is re-introduced into the corrected (EGG_NOM_2_) gradients (see chapter 12.2.1). Second,
outliers in the gradient time-series are detected and flagged in an outlier detection (OD) pro-
cedure (see chapter 12.2.2). Third, normal equations are assembled as described in chapter
12.2.3. Since GOCE SGG normal equations are expanded at least to spherical harmonic de-
gree/order 150, they are very memory consuming (around 8.5 GB), and a reduction to spherical
harmonic degree/order 60 is performed prior to the combination with GRACE normal equations.
A least-squares parameter elimination (PE) procedure provides that the reduction will not lead
to spectral leakage effects due to the truncation of the spherical harmonic series at a lower
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Figure 5: Overall processing scheme for the combination of GRACE SST and GOCE SGG data
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Figure 6: Schematic illustration of the transition from AIUB-like ordering of parameters to
IAPG-like ordering

frequency (see chapter 12.2.5). The parameter elimination requires a previous regularization
(REG) of the GOCE SGG normal equations, which are ill-conditioned because of orbit induced
polar observation gaps (see chapter 12.2.4). Finally, the combination is conducted applying a
variance component estimation (VCE), which estimates optimal weights for the combination
based on the stochastic models of both normal equations (see section 12.3). Since the error in
GRACE is not purely stochastic but as well highly systematic (stripes), the weights derived
from a variance component estimation might not reflect the optimum weighting. Therefore,
the weight of GOCE normal equations is gradually de- and increased by small values, and the
effect is investigated in the combinations. The combined normal equations are in the following
analyzed in space and sectral domain regarding their signal and their error behavior (see section
12.4 and 13).

12.1 GRACE data pre-processing

GRACE data as described in section 11.1 has to be subjected to two major processing steps
prior to the combination with GOCE. The collating sequence of those two steps is irrelevant :

(1) The parameters of the normal equation matrix AT PA and the vector AT Pl from AIUB have
to be adapted to the sorting of coefficients in GOCE SGG normal equations which originate
from IAPG. Figure 6 schematically shows the transition from Bern-like ordering to IAPG-like
ordering. The reordering of IAPG (GOCE SGG) normal equations is likewise possible but
computationally more intensive.

(2) The static field AIUB-6YR has to be re-introduced into the normal equations. First of all,
the residual field is solved according to the expression

βres = (AT PA)−1 · AT Pl (49)

where the vector βres represents the spherical harmonic coefficients of the residual field. In the
next step, the coefficients βAIUB of the static field AIUB-6YR is added to the residual coefficients
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and the full AT Pl vector is retrieved by

AT Plfull = (AT PA) · (βres + βAIUB). (50)

12.2 GOCE data pre-processing

Following the scheme illustrated in figure 5, five major processing steps can be determined in
order to get from GOCE gradient products to normal equations feasible for a combination with
GRACE normal equations.

12.2.1 Inclusion of non-tidal time variable signal

As explained in section 11.3, data of the GOCE mission has to be made consistent to GRACE
data by re-introducing the provided non-tidal corrections to the GGs, in a first step. Non-
tidal corrections (NTC ) are re-introduced into the corrected gravity gradients (GGcor) by a
component-wise summation for all gravity tensor components following

GGcomponent = GGcor
component + NTCcomponent (51)

where GG represents the gradient containing the non-tidal signal. The NTC can be found in
columns 48 to 51 of the official ESA EGG_NOM_2_ products in 1

s2 .

12.2.2 Outlier detection

In a second step, GOCE gradients are screened for outliers. Erroneous epochs are gapped out in
the timeseries. The algorithm for finding and flagging outliers is based on thresholds applied to
gradient anomalies, which can be computed with the software tool at the IAPG (see section 8.5).

In the study, the gradient anomalies are differences of filtered EGG_NOM_2_ gradients ∂2

∂s2 V fil,obs

(with non-tidal signal re-introduced) and filtered gradients ∂2

∂s2 V fil,model retrieved from the
ICGEM 6 listed gravity model TIM_R3 along the orbit positions. The filter applied to the
GGs is an auto-regressive moving-average filter as described in section 8.5, which suppresses the
noise in the GGs. The TIM_R3 gravity model is a GOCE-only solution based on approxi-
mately 1 year of data (in a timespan of 1.5 years). The inversely retrieved gradients from this
model are assumed to represent the GOCE observations perfectly. Consequently, the expected
value for the gradient anomalies E[∆d2V

ds2 ] is zero, following the expression

E[∆
∂2V

∂s2
] =

∂2V fil,obs

∂s2
− ∂2V fil,model

∂s2
= 0 (52)

where the middle part denote the differences between observed and model GGs.

The first step in the outlier detection is a screen for coarse outliers. Coarse outliers are de-
fined on basis of a modified tracelessness condition (see section 8.3) as

(∆
∂2

∂s2
Vxx)2 + (∆

∂2

∂s2
Vyy)2 + (∆

∂2

∂s2
Vzz)2 > 100 [mEötvös] (53)

6ICGEM Homepage: http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html (June 2012)
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where the left side of the equation is the trace of a gravity tensor consisting of gravity gradient
anomalies. Instead of pure GGs, filtered gravity gradient anomalies are used for the trace
calculation.
In a second step, each single component (xx, yy, zz and xz) is scanned separately for outliers
by applying a threshold directly on the filtered gradient anomalies. The algorithm is partly
adapted by the method developed by Weyjong Yi (see Yi (2011)). The threshold is determined
individually for each component by a multiple of the standard deviation within the gradient
anomaly time-series. For the computation of the standard deviation neglecting the initially
detected coarse outliers becomes necessary in order to achieve constant and reasonable values.
If an outlier is detected, 40 data epochs before and 300 data epochs after the actual outlier
are taken out in order to avoid erroneous signal potentially following the outlier. After major
outliers the signal can be found oscillating severely around zero. Figure 7 shows the described
behavior in the Vzz component of the gradient anomalies in March 2010. In such cases, more
than the 300 data points after the outlier were taken out, manually.

Figure 7: Major outlier in Vzz component of gradient anomalies of March (2010)

Figures 8 to 11 exemplary show the results of the outlier detection algorithm for January 2010.
The blue time-series shows the gradient anomalies of the component. All values exceeding the
red threshold line are considered as outliers. Epochs marked with green balks are previous
detected coarse outliers. Used thresholds in all months with available old gradient data of the
year 2010 are set between 5 - 9.5 mEötvös (see table 3). Those values account for 6.5 to 7.5
times the standard deviation of the components per month.
In the statistics of table 3 the parameter flagged epochs refers to all the epochs which were
kicked out by (a) initially flagged epochs and (b) gapped epochs , as well as to (c) all epochs
which can not be taken into account because of the warm-up period of the filters (see section
8.5). For most months the total amount of flagged epochs ranges between 1 and 6 % of all
epochs. March 2010, however, seems to be a bit worse with 14% flagged epochs. Note, that
every gapped epoch is followed by a warm-up period of the filter accounting for 1500 epochs in
the year 2010, which make up for most flagged epochs. Figure 12 underlines the extent of the
filter warm-up time. The upper plot shows the time-series of the filtered trace of the gradient
anomalies together with flags and gaps (red balks) and warm-up epochs (green), while the bar
diagram shows the contingent of each of the three effects in percent (initially flagged epochs:
0.2% ; gapped epochs: 0.4%; warm-up epochs: 2.05% ).
Regarding the new (re-processed) gradients, significantly more outliers were detected by the al-
gorithm. Table 4 gives an overview on the results of the outlier detection for the first 6 months
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month jan feb mar apr mai jun oct nov dec

flagged 1.5 4.75 14.69 2.36 6.92 2.66 3.16 0.83 3.6
epochs [%]

remaining 28.87 10.75 20.60 29.29 26.32 29.13 27.12 29.75 28.69
data [days]

threshold
Vxx [mEötvös] 7.45 6.89 8.23 7.32 7.07 7.08 7.32 7.85 6.64
Vyy [mEötvös] 6.15 5.85 6.20 6.08 5.77 5.63 6.48 6.54 5.62
Vzz [mEötvös] 6.51 6.08 9.34 6.35 6.12 5.99 6.37 6.38 5.85
Vxz [mEötvös] 9.12 8.45 9.06 8.78 8.28 8.32 8.68 9.20 8.16

Table 3: Monthly (2010) outlier statistics for (old) GOCE gravity gradients after applying the
outlier detection algorithm

month jan feb mar apr mai jun

flagged epochs [%] 21.40 20.43 32.73 44.60 27.09 20.43
remaining data [days] 23.34 8.98 18.47 9.42 17.50 20.69

xz - excluded:
flagged epochs [%] 15.86 18.31 28.43 37.51 14.03 13.95

remaining data [days] 24.98 9.22 19.65 10.62 20.63 22.37

threshold
Vxx [mEötvös] 8.14 7.73 8.38 7.68 7.41 7.45
Vyy [mEötvös] 6.07 6.02 5.97 5.97 5.57 5.51
Vzz [mEötvös] 10.71 9.96 9.26 10.08 9.27 9.41
Vxz [mEötvös] 12.30 13.16 12.33 12.63 11.41 10.80

Table 4: Monthly (2010) outlier statistics for reprocessed (new) GOCE gravity gradients after
applying the outlier detection algorithm
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Figure 8: ∆ ∂2

∂s2 Vxx (January 2010) : Filtered gradient anomalies with respect to TIM3 (with
old gradients)

Figure 9: ∆ ∂2

∂s2 Vyy (January 2010) : Filtered gradient anomalies with respect to TIM3 (with
old gradients)

in the year 2010. About 20 - 44 % of all data-points in the monthly period have to be taken out
(filter warm-up considered). Without evaluating the xz-component, the outliers can be reduced
to 15 - 37 %. This shows that the xz-component causes around 25 - 30 % of the total number of
flagged epochs and is therefore considered not worth to be evaluated at all in the gravity recovery
process, as more valuable information comes from the more important components xx, yy and
zz. The thresholds for all components calculated from the standard deviations of the gradient
anomalies range from 5 - 13 mEötvös and are generally higher than the thresholds computed for
the old gradients (see table 3). In figure 13, exemplary, the time-series of the filtered trace of
gradient anomalies of January 2010 (upper plot) shows that the anomalies obviously are worse
than those with the old gradients (compare with figure 12). The lower plot shows, that on the
one hand significantly more outliers have been detected (around 2%, 2nd red balk). On the
other hand, the rise in outliers causes a tremendous rise in the epochs kicked out by the filters,
as each gapped epoch is followed by 1500 warm-up points. Similar results were achieved for all
the other months when screening for outliers in the new gradients.
This behavior is not fully understood because it is shown e.g. by Stummer et al. (2012, 2011),
Pail et al. (2012) that the reprocessing of the gradients should lead to a significant better be-
havior. Meanwhile there is evidence that the algorithm within the official, new L1B - processor
does not work 100 % correct. The issue is currently investigated by ESA and the HPF.
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Figure 10: ∆ ∂2

∂s2 Vzz(January 2010) : Filtered gradient anomalies with respect to TIM3 (with
old gradients)

Figure 11: ∆ ∂2

∂s2 Vxz(January 2010) : Filtered gradient anomalies with respect to TIM3 (with
old gradients)

Figure 12: Trace of filtered gradient anomalies and flagged epochs (January 2010) using old

gradients
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Figure 13: Trace of filtered gradient anomalies and flagged epochs (January 2010) using new

gradients

In the last step of the outlier detection the normal equations are set up excluding the newly
retrieved outliers, and monthly gravity fields are solved for a visualization in space domain (geoid
heights and gravity anomalies). In these functionals undetected outliers become visible in terms
of regional error structures and aliasing. In the case the outlier detection appears insufficient,
data is screening again starting from step two with a reduced threshold. Additionally, the
filtered gravity gradient anomalies are specifically scanned for potential erroneous epochs in the
erroneous regions, manually.

12.2.3 Assembling of normal equations

The assembling of the normal equations consists of the generation of an AT PA matrix and an
AP T l vector according to the time-wise method (see section 8.2.2 and Pail et al. (2010)). The
computation is conducted using the above described software at IAPG which requires parallel
processing on the linux-cluster environment of LRZ (see section 8.5).
Ideally, intending to get the maximum gravity information, monthly normal equations are as-
sembled to the highest spherical harmonic degree/order which is possible with respect to the
available data epochs per month. A rule of thumb used for the definition of the maximum degree
Nmax for a monthly GOCE gravity field solution is chosen by

Nmax =
α

2
(54)

where α denotes the number of revolutions the GOCE satellite passed during one month. Assum-
ing that one day approximately accounts for 16 revolutions, the maximum spherical harmonic
d/o can easily be computed using the number of remaining data epochs after outlier detection
and the filtering. Referring to table 3 and 4 which list the remaining data epochs for all oper-
ational GOCE months of the year 2010 for old and re-processed gradients, the corresponding
maximum degrees are listed in table 5 for monthly and in table 6 for bi-monthly solutions.
With rising maximum degree the computational effort for assembling and inverting the normal
equation matrix increases dramatically as shown in table 7. At a maximum degree of 180 the
AT PA matrix holds approximately 8.5 GB and its assembling on the described environment
(see section 8.5) takes around 2 days.
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Month Jan Feb Mar Apr May June Oct Nov Dec

old gradients 180 60 150 180 180 180 180 180 180
new gradients 180 60 150 80 160 180 - - -

Table 5: Maximum degree of monthly GOCE gravity field solutions for all operational GOCE
months of the year 2010

Month Nov + Dec (2009) May + June (2010)

old gradients 224 180
new gradients - 180

in-house 224 -

Table 6: Maximum degree of bi-monthly GOCE gravity field solutions for all operational GOCE
months of 2009 and 2010

12.2.4 Regularization and solving GOCE SGG NEQs

In order to solve the monthly GOCE normal equations a constraining becomes necessary, be-
cause the normal equations are strongly ill-posed mainly due to the polar gap (see section 8.4).
Constraining or regularization is a delicate topic because it means inclusion of external informa-
tion which later makes it difficult to distinguish between the impact of real GOCE information
and other information, when it comes to analyzing combined GOCE-GRACE solutions. Actu-
ally, a regularization is not necessary for a combination of GOCE NEQs with GRACE NEQs,
because the GRACE NEQs are generally not ill-posed. However, the combination with GRACE
is conducted with GOCE NEQ systems of degree/order 60 due to computational reasons. This
requires an adequate parameter elimination of the GOCE NEQs which is not possible without
regularization when all the information of the high degrees shall be maintained (see section
12.2.5).

The regularization applied to GOCE NEQs is an order dependent Kaula regularization (see 8.4)
of selected groups of coefficients in the AT PA matrix, which are affected by the polar gap. This
constraining enables the inversion of the AT PA matrix following equation 30 (section 8.4), and
thus gravity coefficients can generally be retrieved from monthly pure GOCE SGG NEQs. The
regularization parameter for monthly solutions is set to 10 (α = 10), which is an empirically
defined value.

The regularization also makes an inspection of monthly GOCE solutions possible prior to the
combination with GRACE. The inspection of the monthly fields e.g. in terms of gravity anoma-
lies is needed for the iterative outlier procedure (see step 2 in section 12.2). During the iterative
outlier detection it becomes obvious, that monthly GOCE-only solutions are very sensitive to
gapping. Generating a clean solution up to the above defined maximum degrees (see table 5) is
difficult, as taking out a few hundred more data epochs in the outlier gapping procedure can lead
to an unstable NEQ system. For example, it was tried to remove remaining outlier structures
in the monthly solution of November 2010 by taking out 241 more epochs (out of a total of 2.6
million observations). The consequence was that the system became unsolvable. In October
480 additional outliers (out of 2.4 million observations) led to the same effect. Therefore, some
monthly fields regionally show minor or big error structures which could not be removed even by
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Nmax Memory [MB]

60 110.8
100 832.5
120 1714.9
150 4159.1
180 8586.3
224 20141.0

Table 7: Memory demand for the normal equation matrix at different maximum degrees in mega
byte

iterative outlier detection (see section 13.3), others remain unsolvable. Table gives an overview
on all monthly available and successfully solvable monthly gravity field solutions with old, new
and in-house gradients. An x denotes a solvable solution and when data sets were not available
or used, corresponding fields in the table are marked with n.a. (not available). Bi-monthly
solutions could be retrieved for November and December of the year 2009 and for May and June
of the year 2010.

Year 09 09 10 10 10 10 10 10 10 10 10
Month Nov Dec Jan Feb Mar Apr May June Oct Nov Dec

old x x x - x - x x x x x

new - - x - - - - x n.a. n.a. n.a.

in-house x x n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Table 8: Solvable monthly GOCE SGG solutions (x) for different gradient data sets

12.2.5 Parameter elimination

In the last step before the combination with GRACE, GOCE SGG normal equations are reduced
to GRACE NEQ size (spherical harmonic degree/order 60) by means of a parameter elimination
following the procedure described in section 10. The reduction is not a crucial prerequisite for
a combination with GRACE, but it was necessary regarding the time frame of this research as
the parameter elimination greatly reduces computational effort and NEQs become invertible on
an usual PC. GOCE normal equations are assembled up to maximum possible degree regarding
the available observations per month, which is a necessary prerequisite in order to avoid spectral
leakage problems in the gravity field solutions. The parameter elimination introduces the infor-
mation of the higher-order parameters, which shall be reduced, into the lower-order parameters,
without information loss.

The result of the parameter elimination is shown exemplary for the month January (2010)
for a GOCE SGG solution initially assembled up to d/o 180 in figure 14. One can see the degree
error median w.r.t the GOCO02S signal of the not-reduced solution (d/o 180) in red and the
reduced solution (d/o 60) in blue. As indicated by the dashed-magenta line, which shows the
median of the coefficient differences of the two solutions, the differences are far below the differ-
ences to GOCO02S. This result is a proof for the validity of the parameter elimination process,
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as the reduced solution basically shows the identical behavior concerning EGM2008.

Figure 14: Degree error median (w.r.t. GOCO02S) of the GOCE SGG solution of January 2010
complete up to d/o 180 (red) and its reduced equivalent, with parameters > d/o 60 eliminated
(blue); the dashed line (magenta) indicates the median of the coefficient differences

Figure 15: Degree (error) variances of the GOCE SGG solution of January 2010 complete up
to d/o 180 (red) and its reduced equivalent, with parameters > d/o 60 eliminated (blue); the
dashed line (magenta) indicates the differences between the signal variances; the dashed blue
and red line indicate the error degree variances of both solutions

In the same way the degree variances in figure 15 validate the parameter elimination process. It
displays the signal variances and the variances of the formal error of the GOCE SGG January
2010 solution, complete up to d/o 180 (solid red line), and of its equivalent reduced to d/o 60
(solid blue line). The difference (dashed magenta line) is 5 orders of magnitude below the signal.
The formal errors (blue and red dashed lines) also show identical behavior.
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12.3 Optimal combination of GOCE and GRACE on basis of normal equations

The optimal combination between the GOCE SGG normal equations and the GRACE SST-ll
normal equations is done by means of a variance component estimation as described in section
9. The variance component estimation is the final step to derive combined normal equations
after successful pre-processing of GRACE and GOCE normal equations (see figure 5). Formula
36 on page 34 simplifies to

(ωgoce AT PAgoce + ωgrace AT PAgrace) β

= ωgoce AT Plgoce + ωgrace AT Plgrace

(55)

because the regularization is already applied to the ill-posed GOCE SGG normal equations prior
to the parameter elimination. Hence, two weight factors ωgoce and ωgrace are estimated.

Since the lT Plgrace value as received from AIUB does only contain the observations that reflect
the residual part of the field (the static field AIUB-6YR has been subtracted), the full value
has to be restored. This can be done using the coefficients βAIUB of the 6 year static GRACE
solution following the expression

lT Plfull = lT Plres + βAIUB (AT PAgrace) βAIUB. (56)

The variance component estimation is an iterative process, where the estimated weights are con-
tinually improved regarding the combined solution. Initial values for both variance components
σgoce and σgrace are set to 1. First, normal equations are combined using the initial weights. Af-
terwards, the combined system is inverted and new weights are estimated based on the retrieved
parameters. Then the new weights are used for combination and the system is inverted again.
This is done until the solution converges and the estimated variances are close to 1 again.
It could be shown that the process works correctly as not more than 5 iterations are necessary
for a perfect convergence of the variances. Tables 12 and 13 on page 88 show the variances
after each iteration step for old and re-processed gradients, respectively. The convergence of

the variance component estimation expressed by
σ2

grace

σ2
goce

for all monthly solutions is also shown

in figure 16. The combined solution hardly changes already after the third iteration.

Looking at the final relative weights of GOCE SGG and GRACE normal equations in the
combinations, one can see directly the minor impact of GOCE gradiometry in the solutions.
The GOCE SGG normal equations are down-weighted relatively to GRACE normal equations
by factors ranging from 0.0003 to 0.1 (see last columns of appended tables 12 and 13 on page
88. Those values are corrected for an initial a-priori scaling difference of 5.00E-12 between both
types of normal equations. The down-weighting generally appears correct, as formal errors of
the gradiometer in the spectral domain up to spherical harmonic d/o 60 exceed formal errors
of the GRACE observation type, and we expect GOCE only to contribute marginally to the
total solution. However, a variance component estimation only accounts for weighting according
to the stochastic error models of the involved normal equations. GRACE is suffering from
severe stripes in its monthly and bi-monthly gravity field estimates (see section 7) which are
highly systematic and are not totally expressed within the formal errors. Thus, the variance
component estimation might not lead to an optimally combined solution taking into account
the real GRACE error. Nevertheless, it can be assumed that the variances from the estimation
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Figure 16: Convergence of variance component estimation for all monthly solutions

process are a good starting point. In the following, therefore, not only combinations with
weights originating directly from the variance component estimation, but also combinations
with gradually increased or decreased relative weights are investigated.

12.4 Quality evaluation methods for gravity field estimates

The aim of the thesis is to determine whether GOCE gradients can contribute positively to
GRACE monthly and bi-monthly solutions. The investigations shall specifically indicate whether
the striping in the combined solutions can be reduced. Therefore a method is needed which is
able to express the quality of the combined gravity field and the severeness of the stripes.
Generally, the analyses of gravity field estimates can be done in spatial domain through func-
tionals, and in spectral domain, by directly investigating the coefficients. The most common
methods for a spatial analyses are given in section 5. They allow the visualization of the gravity
field in terms of different gravity functionals, such as geoid heights, gravity anomalies, and equiv-
alent water heights. All of the three functionals express the gravity in the estimated solution
w.r.t a static reference. Geoid heights show the deviations from the normal potential in terms
of meters geoid height, while gravity anomalies show the deviation to the normal acceleration
in m

s2 (see section 5.1). Equivalent water heights express the deviations to a static gravity model
in terms of meters water column (see section 5.2).
In spectral domain degree variances allow an investigation of the signal (energy) content and
the error regarding a static reference per degree of the spherical-harmonic series (see section 6).
In the same way the degree median and the degree standard deviations are tools to express the
deviation to a static reference field per degree (see section 6.2 and 6.3).
All methods listed above, generally can express the quality and the deviation from a static ref-
erence field, but they do not solely express the extend of the striping. The normal potential
and the static reference field which serve as a reference for the methods do not account for the
temporal gravity changes of the investigated month. Therefore, temporal gravity variations may
be interpreted as part of the striping error in those methods.
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In order to avoid misinterpretation due to time variable gravity signal, a method is introduced
here, where the temporal signal is eliminated prior to the investigation of the striping error. The
temporal gravity signal for this approach is approximated by lowpass-filtering of the GRACE
field to be investigated. The result of the filtering is a smoothed solution, that does not contain
stripes any more. The filtered field then serves as reference for comparisons, as it reflects the
gravity signal of the month better than a static reference field.
Figure 17 shows (a) an unfiltered monthly GRACE solution, (b) the same monthly GRACE
solution, filtered by an isotropic Gaussian filter with a radius of 500km, and (c) the differ-
ence between both - the filtered and the unfiltered - solutions. In the sub-figure (c) only the
stripes remain, while all temporal large-scale gravity signal is not contained. Excluding the time
variable monthly signal enables an inter-monthly comparison of the stripes in GRACE solutions.

For the quantification of the extent of the striping error in a monthly GRACE or combined
GRACE-GOCE solution a global root mean square error (RMSE) value is introduced. Con-
sidering a global grid containing the errors σr,c of a gravity field solution in equivalent water
heights, the RMSE is expressed as

RMSE =

√

√

√

√

(

∑R
r=0

∑C
c=0 ω(φr)σ2

r,c
∑R

r=0

∑C
c=0 ω(φr)

)

(57)

where r is the current row and c is the current column of a grid with the size R x C. The errors
σr,c (=striping error) of a gravity field solution can be obtained by subtracting a smoothed
solution, as described above (see also subplot (c) in figure 17). The parameter ω(φr) denotes a
weighting function of the kind

ω(φr) = cos(φr) (58)

where φr is the geographic latitude which corresponds to the current row r of the grid point. The
weighting is introduced because of the meridian convergence. Error values at higher latitudes are
down-weighted in the total RMSE according to the smaller area comprised by the corresponding
grid point.

13 Results

In this section, first, GRACE SST-ll (only) solutions and GOCE SSG (only) solutions are eval-
uated regarding their quality. This is necessary to better understand the behavior and the
contribution of GOCE in joint GRACE - GOCE gravity solutions. The combined solutions are
investigated on monthly (see section 13.3.1) and bi-monthly (see section 13.3.2) basis, after-
wards. All investigations, however, are restricted to months where solvable GOCE SGG normal
equations could be assembled (see table 8 on page 49).

13.1 GRACE SST-ll gravity field solutions

The monthly GRACE gravity field solutions obtained from AIUB are visualized in space domain
in figures 31, 32 and 33 on page 81. The striping errors in the gravity anomalies reflect the typical
error type (see section 7.3). The months November and December 2009, and May and June 2010,
seem to be affected more severely than the other months regarding the density and amplitude
of the stripes. In the months October and November 2010 the striping errors seem to be most
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Figure 17: GRACE monthly solution: Equivalent water heights evaluated up to spherical har-
monic d/o 30 with C20 excluded in meters; (a): unfiltered solution; (b): filtered solution; (c):
difference of solutions
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Figure 18: Degree standard deviation of monthly GRACE solutions w.r.t. GOCO02S

dominant around +30◦and -30◦latitude.

From the degree standard deviations with respect to the reference model GOCO02S in figure 18
it becomes obvious that all solutions loose quality significantly from degree 40 onwards. This is
where the striping error becomes more severe. Between degree 20 and 40 the coefficients show
the smallest deviations to the reference model. In this spectral range, the striping error is not so
severe and time variable signal can be determined. In the degrees below 20, the relatively higher
deviations mainly originate from the time variable signal which can be measured there (and not
striping error). The large standard deviation for the C20 coefficient shows that the oblateness
of the Earth is determined weakly in GRACE fields from AIUB, generally. The month June
2010 shows poor accuracy, as its standard deviations exceed the others between degree 30 and 45.

The two bi-monthly GRACE solutions investigated in this thesis are shown in figure 34 on page
83 in terms of gravity anomalies. They were obtained by addition of normal equations of the two
consecutive months. Their standard deviations with respect to GOCO02S in figure 19 proove
that the November+December solution is better regarding the May+June solution. Between
d/o 12 to 40 the bi-monthly solution of 2009 shows less deviations to the static reference than
the 2010 solution, which may be due to time variable effects. From degree 40 onwards, however,
the 2009 solution outperforms the other. This is also reflected in the gravity anomalies (figure
34) where the May+June 2010 solution shows a more severe striping error.
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Figure 19: Degree standard deviation of bi-monthly GRACE solutions regrading GOCO02S

The characteristics of the single GRACE solutions of figure 18 and 19 is also reflected in the
values of the global RMSE, which can be obtained using the procedure described in section
12.4. Table 9 shows the RMSE values (in cm of EWH) of GRACE solutions which were used
for combinations, when evaluated at different degrees. The month June, followed by the month
May, show the highest RMSE values over all degrees and the highest average. Those are the
months (as identified above) which suffer most from the striping error. December 2009 and
January 2010 happen to be the months with lowest RMSE values, which is consistent to their
characteristics in the degree standard deviations of figure 18. The RMSE value of the two bi-
monthly solutions is significantly lower than that of their corresponding monthly solutions. The
November+December period behaves better than the May+June period, below d/o 50. This
indicates that the striping error is reduced in accumulated GRACE solutions.

To get the full picture of the quality of the GRACE solutions the formal errors are given degree-
wise in figure 20. It shows that the coefficients at low degrees and orders can be better determined
(apart from C20) and that the error is rising towards the higher degrees. The months November
and December of the year 2009 show very similar characteristics that differ from the rest of
the months. Until d/o 12 they exceed the error level of the other months (as well as for d/o
16). Between d/o 12 and 45 they are within the accuracy of the other months and loose quality
again from d/o 45 onwards. The special behavior of the error in both months may be due to a
different orbit configuration. GRACE flew a 7-day sub-cycle in November and December of the
year 2009, which might slightly decrease the quality within both months (Pail et al., 2011b).

56



���� ���� ���� ���� ���� ���� ����

���

�	
��� ��� �� ��� ���� ���� ��� ����

�	
�� ���� ���� ��� ����� ��� �� ����

�	
��� ��� ���� ����� ����� ����� ��� �����

�	
�� ����� ���� ����� ����� ����� ���� ����

�	
�� ����� ����� ����� ����� ���� ����� ����

�	
� ����� ����� ��� ���� ����� ����� �����

�	
��� ����� ��� ����� ����� ���� ���� ����

����� ����� ���� ����� ����� ����� �����

����

�
��� ��� ��� ��� ��� �
����� �������

 ����!�

Table 9: Global RMSE values [cm EWH] of selected monthly and bi-monthly GRACE-only
solutions at different degrees

However, the weak performance does neither not show up in the degree standard deviations,
nor in the error degree medians (w.r.t. GOCO02S). Interestingly the weak performance of the
months June and May 2010, which has been observed in the standard deviations (see figure 19),
is reflected in the formal errors, as the solutions show higher errors compared the others in the
mid-wavelengths.

13.2 GOCE SGG gravity field solutions

Appended figures 35 to 41 (on pages 83 to 86) show gravity anomalies of GOCE-only solutions
with old gradients regarding the reference model GOCO02S (visualizations exclude coefficients
below d/o 20) together with corresponding coefficient differences to GOCO02S. All monthly
solutions clearly show the polar gap effect in both types of visualization. Gravity anomalies in
areas north of +80◦and south of -80◦latitude show relatively big differences (<-1 m

s2 / >+1 m
s2 )

to GOCO02S. In the same way the coefficient differences indicate the polar gap problem, as
near-zonal coefficients are badly determined (orange / red ridge in the middle of the triangles).
In the triangles one can also see the slightly worse determination of very low frequencies (below
degree 20), which is inherent due to the gradiometer’s specifications (see section 8). Those badly
determined coefficients are excluded from the gravity anomaly visualizations.
The GOCE-only solutions of the months March, October and November with old gradients,
however, show regional error structures of erroneous observations, that could not be gapped out
(see section 12.2.4 ). The coefficients from these months generally show a worse performance in
high degrees and in the near-zonal area. The March solution additionally suffers from a problem
affecting the near-sectorial coefficients, leading to symmetric error structures in the geoid. These
errors make the usage of those months for GOCE-GRACE combinations questionable.
An investigation of the long wavelength parts show north-south arranged large-scale error struc-
tures in the geoid representations of all months, as shown in figure 21.
The figure exemplary shows the geoid differences of the June 2010 GOCE-only solution to
GOCO02S in the Australia/Oceania region, only considering selected coefficient groups. In the
upper left image the geoid differences of the coefficients are starting from d/o 30, in the other
images the starting degree is continually augmented by 5. In solutions starting above degree
40 the north-south error structures vanish. This large scale errors of a magnitude of up to 40
cm indicate that no improvement of GRACE solutions is to be expected due to GOCE SGG
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Figure 20: Formal errors of investigated monthly GRACE solutions
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Figure 21: GOCE SGG geoid differences over Australia to GOCO02s for June 2010 in dependence
of different coefficient groups (in meters)
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Figure 22: Degree standard deviations w.r.t GOCO02S of all monthly obtained GOCE SGG
solutions excluding the polar gap

observations in the degrees/orders lower than 40.

In a joint spectral analysis the qualitative characteristics of the solutions and the differences
between the different used gradient products (old, new, in-house) in the obtained GOCE-only
SGG solution become visible. Figure 22 shows the degree standard deviations with respect to
GOCO02S of all monthly GOCE SGG solutions excluding coefficient groups affected by the
polar observation gap. Four conclusions can be drawn from the illustration:

(1) The solutions based on old gradients show dominant peaks with high deviations from the
reference model which occur at multiples of the orbit frequency (16, 32, ...) of GOCE satellite.
(2) The GOCE SGG solution of December 2009 (red dashed line) based on in-house gradients
outperforms the other solutions regarding the entire observed spectrum, by far. (3) The monthly
solutions based on new (re-processed) gradients do not show the extent of improvement which
can be observed with the in-house gradients (which are as well generated with the new process-
ing strategy). However, the solutions with reprocessed gradients still perform better than their
monthly equivalents based on old gradients over big parts of the spectrum (especially for June).
Most probably, the impact of the new processing strategy does not show to advantage due to a
significant larger number of flagged observations in the outlier detection procedure (see table 4
in section 12.2.2). (4) The monthly solution of October 2010 (cyan solid line) shows the biggest
deviations to GOCO02S. This finding is consistent to the gravity anomalies of that month (see
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Figure 23: Degree standard deviations w.r.t GOCO02S of all monthly obtained GOCE SGG
solutions

figure 39 on page 85), which show large error structures.

Conclusions (3) and (4) have to be modified when looking at the standard deviations without
excluding coefficients affected by the polar gap (see figure 23):
(3) The monthly SGG solutions based on reprocessed gradients perform better than the corre-
sponding solutions with old gradients over big parts of the spectrum, only, if coefficients affected
by the polar gap are not considered. Probably, the polar gap issue is more severe in solutions
based on reprocessed gradients due to less observations. (4) October and November 2010 are
affected most by the polar gap issue, starting already at d/o 16 and d/o 25, respectively.

13.3 Combined gravity field solutions from GRACE and GOCE

In this section the investigated monthly combined gravity field solutions from GRACE SST-ll
and GOCE SGG data are presented. Each combination has been performed (1) with weighting
factors obtained by the variance component estimation (see section 12.3), and (2) with weights
differing from the variance component estimation by up to 2 orders of magnitude. The test of
different weights is necessary to cope with the fact, that the VCE only accounts for the stochastic
error models of both involved normal equations (see section 12.3). It is checked whether better
or worse results are achieved when continually augmenting or decreasing the relative weight
(until the best result is found). The best result is defined in terms of the lowest global RMSE
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value (eq. 57 on page 53) with respects to a smoothed GRACE-only solution (of the month to
be investigated).
Generally, all combined solutions are compared to the corresponding GRACE-only solutions. A
combined solution is considered improved (= less affected by the striping error) when the RMSE
is smaller than the value of the GRACE-only solution. To validated the RMSE the solutions
and their (coefficient) differences are also visualized spatially in terms of EWH. Additionally,
the degree (error) median with respect to GOCO02S serves as third analysis method.

13.3.1 Monthly combined solutions

Table 10 shows the seven monthly combinations which have finally been conducted on the basis
of the best available GOCE SGG gravity solutions. No combinations have been analyzed for the
months March, October and November 2010 because of the poor quality of their SGG solutions
(see section 13.2).

Month gradient Nmax,GOCE

data set

December 2009 old 180
in-house 180

January 2010 old 180

May 2010 old 180

June 2010 old 180
new 180

December 2010 old 180

Table 10: Monthly combined GRACE + GOCE SGG solutions, used gradient data sets and
maximum degrees

Combined solutions of December 2009

In December 2009 combinations could be achieved using the old and the in-house SGG gradient
data set. Appended tables 14 and 15 on page 90 show the results of the RMSE values (in terms of
EWH) for all checked weights at different maximum degrees. The column at the very right gives
the best achieved RMS improvement [in %] of the combined solution regarding the GRACE-only
solution per degree for all weights. The values indicate that, at best, an improvement of 1%
(at d/o 45) can be achieved with in-house gradients, and 0.6% with old gradients (at d/o 45).
However, at all other degrees GOCE SGG data seems to corrupt the GRACE solution in com-
bined solutions at the investigated weights, as the RMSE exceeds the one of the GRACE-only
solution. The tables also show that continually down-weighting GOCE SGG normal equations
reduces the RMSE values.

Combined solution of January 2010

In January 2010 the combinations on the basis of the old gradients indicate that there is hardly
any improvement due to GOCE SGG data. Looking at the best achieved RMSE improvements
(right column of table 16 on page 92) one finds that they are below 1 % for all degrees. The
weights for which the best results are achieved are close to the weights estimated by the vari-
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Figure 24: Comparison of a GRACE-only with the combined GRACE + GOCE SGG (new
gradients) solution in terms of EWH [m] (at d/o 40); a smoothed GRACE-only solution with
filter radius r=500km has been subtracted from the solutions

ance component estimation (bold letters) for degrees 30 to 45. At higher degrees the GOCE
SGG data seems to corrupt the combined solutions more severely, and the variance component
estimation gives too much emphasis to GOCE SGG normal equations.

Combined solution of May 2010

Table 17 (right column) shows that old GOCE SGG gradients can, at best, improve the solution
by less than 1 % in terms of the global RMSE value. The highest improvements can be achieved
in high degrees (> d/o 50). The relative weights at which those values could be achieved in-
dicate that GOCE SGG normal equations gained a too high weight in the variance component
estimation.

Combined solutions of June 2010

For the month June 2010 combined solutions of GRACE with GOCE SGG solutions on the
basis of old and of new (re-processed) gradients could be investigated. The results of the RMSE
calculation in the combinations at different degrees and for different weights are shown in table
18 for old and in table 19 for new gradients (page 94). The weights from the variance component
estimation (in bold letters) seem to reflect the optimum weighting between GOCE and GRACE
normal equations quite well, especially for combinations including new gradients, looking at the
computed RMSE values.
With old gradients improvement can be achieved above d/o 30, with a maximum of nearly 2%
at d/o 45. With new gradients the RMSE improvement starts at d/o 30 with little improvement
of almost 1% and reaches highest values between d/o 45 and d/o 60. Here, the RMSE value
could be reduced by 4.5 - 7% due to a combination with GOCE SGG data. Figure 24 show the
GRACE-only solution on the left and the combined GOCE+GRACE SGG solution (using the
weights which showed best results) on the right in terms of equivalent water heights evaluated
at to d/o 40. In this images the influence of SGG data is hardly visible. The differences of both
solutions in figure 25 highlight the structure and the regional occurrence of the improvement.
Figures 26 and 27 show the solutions and their differences evaluated at d/o 50.

The differences for d/o 40 show that the improvement really turns out to be in the structure
of stripes. However, the grade of stripe reduction differs regionally (with maximum in the
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Figure 25: Difference of the GRACE-only and the combined GRACE + GOCE SGG (new
gradients) solution in terms of EWH [m] (at d/o 40)

Figure 26: Comparison of a GRACE-only with the combined GRACE + GOCE SGG (new
gradients) solution in terms of EWH [m] (at d/o 50); a smoothed GRACE-only solution with
filter radius r=500km has been subtracted from the solutions

Figure 27: Difference of the GRACE-only and the combined GRACE + GOCE SGG (new
gradients) solution in terms of EWH [m] (at d/o 50)
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Figure 28: Coefficient differences between the GRACE-only and the combined GRACE + GOCE
SGG (old gradients) solution

south-east of South America), and they hardly reach more than ±5 cm amplitude. Considering
the amplitude of the striping error in GRACE-only solutions at this degree (which is about
±30 cm), this improvement appears rather low. Note that in the area of largest differences
(South-America) the differences show stripes, where in the GRACE-only solution there are no
stripes. Hence, this structure comes from the GOCE SGG solution and might be erroneous signal
degrading the solution, rather than improving it. Looking at the differences of the GRACE-only
and the GOCE SGG solution at d/o 50, one sees stripes over parts of Africa and South America.
Those are areas, where the inclusion of GOCE SGG data leads to a reduction of the striping
error. The oceans and other continents are covered by a more or less isotropic structure. There,
GOCE SGG data does not lead to a positive impact but rather seems to distort the solution.
This shows that the impact of GOCE SGG data is hardly at the edge to be degrading the
solutions in large areas. The suspicion that there is also bad influence of GOCE SGG errors
is substantiated also in the coefficient differences between the combined and the GRACE-only
solution in figure 28 (with old gradients). The coefficient differences show that the SGG inherit
spectral bands at the orders 16 and 32 that are related to the orbit repeat frequency alias into
the solution. This is a clear sign for degradation regarding the pure GRACE solution. The spec-
tral bands vanish when looking at differences to GRACE-only coefficients regarding a combined
solution using new gradients in figure 29.

Combined solution of December 2010

The RMSE values for GRACE-only and for the combined GRACE + GOCE SGG (old gradi-
ents) solution of December 2010 are listed in appended table 20 on page 96. Best combinations
- meaning the lowest RMSE values - can be achieved using the weights directly obtained by the
variance component estimation for d/o 30 to d/o 45. Here including GOCE SGG leads to an
improvements below 1% of the RMSE with respect to the pure GRACE-only solution. Above
d/o 45 the weights from the variance component estimation are very close to the weights which
bring the lowest RMSE value. In that spectral domain the combination gains by increasing the
weight for GOCE normal equations. In that context the RMSE can be reduced by a maximum
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Figure 29: Coefficient differences between the GRACE-only and the combined GRACE + GOCE
SGG (new gradients) solution

of 1.3%.

13.3.2 Bi-monthly combined solutions

Table 11 lists the four investigated bi-monthly gravity field combinations. In the following each
of the combinations is analyzed.

Period gradient Nmax,GOCE

data set

November + December old 224
2009 in-house 224

May + June old 180
2010 new 180

Table 11: Bi-monthly combined GRACE + GOCE SGG solutions, used gradient data sets and
maximum degrees

Combined solutions of November and December 2009

For the bi-monthly period November to December 2009 combinations with the old and the in-
house gradients could be achieved. Appended tables 21 and 22 on page 97 show the obtained
RMSE values (in terms of EWH) for all checked weights at different maximum degrees. The
column at the very right gives the highest achieved RMS improvement [in %] of the combined
solution with respect to the GRACE-only solution per degree for all weights. The combinations
show that, independently of the used gradient data sets, the RMSE improvement does not ex-
ceed 2.4%. At most degrees the RMSE could be reduced by around 1% due to the impact of
GOCE SGG data. At higher degrees (> d/o 40) the in-house gradient solutions seems to perform
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Figure 30: Differences between the GRACE-only and the combined GRACE + GOCE SGG
(new gradients) solution of May and June 2010 at d/o 40

better than the one based on old gradients, but the contrary at lower degrees. Generally, the
weights from the variance component estimation (in bold numbers) do not reflect the optimal
combination, as GOCE normal equations tend to be down-weighted too much.

Combined solutions of May and June 2010

Regarding the combined solution for the period May and June 2010, significant differences be-
tween the combinations using old and new gradients can be observed. Appended tables 23 and
24 on page 99 show the RMSE values obtained by the solutions based on different weights at
different degrees. While the maximum improvements of the RMSE at different degrees stays
below 1 % using old gradients for the combination, the improvement is between 2 and 3 % for
new gradients. However, in both cases the weights from the variance component estimation (in
bold letters) are not consistent to the optimal weighting considering the (lowest) RMSE values
per degree.
A lower RMSE value in the combination, however, does not necessarily mean a reduction of
the stripes. In figure 30 the striping error in the GRACE-only and its alleged reduction in
the combined solution is explored over a region covering the African continent. The image on
the left shows the differences of the GRACE-only gravity solution to a smoothed GRACE-only
solution in terms of meters EWH. In the middle the differences of the combined solution to the
same smoothed GRACE-only solution are plotted. In some regions the striping error seems to
be reduced, in others the striping seems to be more severe. The differences of the GRACE-only
to the combined solution indicate that the impact of GOCE does not only affect or reduce the
stripes, respectively. The right image shows that the differences between both solutions show a
northwest-southeast structure and do not follow the north-south aligned structure of the stripes
in the GRACE-only solution.
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Part V

Conclusion

In this part of the thesis the results are summarized and the findings are formulated. Within
the thesis in total seven combinations of GRACE SST and GOCE SGG normal equations on
monthly basis and four on bi-monthly basis, all complete up to degree and order 60 of the spher-
ical harmonic series, have been performed. GRACE SST normal equations could be acquired
from the Astronomical Institute at the University Bern (AIUB). GOCE SGG normal equa-
tions were assembled using the software at the Institute for Astronomical and Physical Geodesy
(IAPG), which is following the GOCE time-wise processing strategy (TIM). Computations were
performed on the environment of the Leibnitz Rechenzentrum (LRZ) in Munich. For this pur-
pose an outlier detection algorithm for GOCE gradients has been designed and implemented.
In this context it could be studied up to which extent it is possible to derive monthly gravity
field estimates only from GOCE gradiometer measurements. The combination of GOCE SGG
and GRACE SST normal equations was conducted by means of variance covariance estimation.
Further, it was systematically analyzed whether altering the weights from the variance com-
ponent process can improve the impact of GOCE SGG in the combination. This allowed an
evaluation of the performance of the variance component estimation. In order to investigate and
evaluate the quality of the retrieved combinations, especially the extent of the stripes, a method
based on the calculation of a global RMSE value has been implemented. The evaluation of the
combinations was further based on the comparison to pure GRACE-only solutions in order to
determine benefits evolving from GOCE SGG observations.
The joint analysis of all gathered monthly and bi-monhtly GRACE-ll and GOCE SGG gravity
field solutions and their combinations could be summarized in 6 key conclusions:

• Assembling of monthly and bi - monthly GOCE SGG normal equations

Using old gradients (EGG_NOM_2_ products before re-processing), seven out of the
nine operational months in the year 2010 were solvable. Among those only two (June
and December) show no erroneous structure at all in their gravity anomaly representa-
tions. Three months (January, May, November) show minor error structures, two months
(March, October) show large errors. These errors could not be removed in the outlier
detection procedure, as taking out more outliers led to an ill-conditioning of the whole
system. Hence, retrieving gravity field estimates from GOCE gradiometer observations
on monthly basis using the time-wise method is a difficult task. Stable systems with a
resolution of <135 km half-wavelength (spherical-harmonic d/o >150) are only possible
if enough observations are available during the month. The month February 2010 simply
does not have sufficient observations (8 days) to deliver a solution. For the month April
no usable gravity field solution could be computed although the amount of remaining ob-
servations after the outlier procedure (29 days) lies in the order of months where solutions
could be achieved. The reason for this remains unclear.
With the new gradients (re-processed EGG_NOM_2_ products according the new pro-
cessing strategy) even less solutions were invertible. The new gradients are found to suffer
occasionally from a problem in the xx- , zz- and xz- tensor components that leads to high
values (>10 mEötvös) in filtered gravity gradient anomalies with respect to GOCO02S.
Consequently, in the first half of 2010 solely solutions for the months January, May and
June could be retrieved. The reason for this is that in comparison to old gradients far
more outliers were detected. Due to the outliers and the filtering procedure, which is
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inherent to the TIM method and leads to additional data loss due to the warm-up periods
of the filters, up to 20% less observations were used for the gravity field estimation, than
with old gradients. It has to be mentioned, that a more advanced outlier strategy (e.g.
interpolating over small outliers) could downsize the problem that is related to the data
loss during the warm-up periods. Because of the data loss, however, the benefits of the
new processing strategy do not show advantage in all coefficients of the retrieved solutions
(January, May, June). Near-zonal coefficients seem to be of poorer accuracy in the case
of the new gradients. In contrast coefficients outside of the polar-gap affected wedge show
a lower standard deviation than those derived from old gradients. The in-house data set,
which comprises gradients originating from the new processing strategy, delivers the best
gravity field estimates from GOCE SGG observations, because the amount of outliers is
not augmented compared to old EGG_NOM gradients.
Regarding their quality and accuracy all GOCE SGG monthly and bi-monthly gravity field
estimates are found to be far below their corresponding GRACE gravity field estimates
up to d/o 60, which is consistent to the formal errors of both measurement types. This
could be, e.g., proven by the degree standard deviations w.r.t GOCO02S. Apart from the
in-house gradients, the best monthly GOCE SGG solutions show almost twice (1.5 for in-
house) the error level of the worst GRACE monthly solution at d/o 60 in terms of degree
standard deviations even when excluding the coefficients affected by the polar gap. Addi-
tionally, monthly GOCE SGG solutions are found to suffer from large scale north-south
arranged error structures (with amplitude of ±40cm geoid height) below degree and order
40. From this perspective, improvement of GRACE solutions in this spectral domain does
not seem feasible.

• Quality of monthly and bi-monthly GRACE SST-ll gravity field estimates

The analysis of 11 monthly and bi-monthly GRACE SST-ll solutions in the years 2009
and 2010 show that they differ regarding the severeness of the striping error which is
inherent to the GRACE satellite-to-satellite along-track measurement system. Generally
the striping error is less severe in bi-monthly solutions. This can be found by analyzing
the global RMSE at different degrees. The average RMSE values over all degrees show
that the striping is reduced by 26 up to 47 % for Mai and June, respectively, (and 31% for
December 2009) regarding their bi-monthly equivalent.
The 7-day sub-cycle of GRACE satellite in the months November and December 2009 does
not degrade the quality of the gravity field estimate between d/o 12 and 45 according to a
spectral analysis in terms of degree standard deviations and degree medians with respect to
GOCO02S. However, the formal errors retrieved for both months in the estimation process
indicates that the gravity field estimates loose quality regarding the other months below
d/o 12 and from d/o 45 onwards. The months June and May are affected most by the
erroneous striping pattern, given by their high RMSE and degree standard deviations.

• Contributions of GOCE SGG observations to monthly and bi-monhtly GRACE

gravity field estimates

GOCE SGG observations are found to contribute positively to monthly as well as to bi-
monthly GRACE SST-ll gravity field solutions only marginally (if at all). A systematic
analysis of 7 monthly and 4 bi-monthly combined GRACE SST - GOCE SGG gravity
field estimates at different weightsshows that the reduction of the stripes hardly exceeds
1% in terms of a global RMSE evaluated at different degrees. An improvement in terms
of a reduced RMSE value of maximum 2 - 7 % could only be observed for the monthly
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solutions June 2010 with new gradients (1 - 2% with old gradients). This result is plausible
as the GRACE solution of June is of poorest quality (compared to the other observed
solutions), and a positive impact of GOCE gradiometer data in that month seems most
likely. However, a spatial analysis shows that the reduced RMSE value in the combination
is not directly linked to a reduction of the stripes. Wide areas seem to be distorted
anisotropically, and the reduction of the stripes seems to be rather coincident. Further in
an area south-east of South America stripes seem to be introduced into the solution by
the gradiometer data.
The new reprocessing strategy is not showing advantage significantly in the combined
solutions, even in combinations with the in-house gradients, which are found to deliver
best GOCE SGG gravity estimates.

• Analysis of water mass storage changes from combined GOCE SGG and GRACE

SST-ll fields

Due to the fact that there is hardly any reduction of GRACE error evolving from a com-
bination with GOCE SGG data, additional benefits cannot be expected for the regional
analysis of water storage changes.

• Assessment of the extent of the striping error

The extent of the striping error can be well assessed and quantified with the developed
RMSE method. This was shown in the joint analysis of the GRACE-only solutions in
terms of their degree standard deviations with respect to GOCO02S and their gravity
anomaly representations. All three methods show consistency regarding the quality of the
observed GRACE months.
However, it turned out that little RMSE changes (<5%) do not necessarily mean a re-
duction of the striping error. In those cases a separate inspection of the striping error in
spatial domain is suggested.

• Evaluation of the variance component estimation

The variance component estimation is found to not necessarily giving the optimum weight-
ing factors for a combination of GRACE SST-ll and GOCE SSG monthly and bi-monthly
normal equations. In some cases the global RMSE values indicate that the (striping) error
in combined gravity field solutions is lower when using weights which slightly differing
from those of the variance component estimation. This may be due to the fact that a vari-
ance component estimation only takes into account the stochastic error behavior of both
measurement types. The error which is inherent to the GRACE monthly and bi-monthly
estimates in contrast comprises highly systematic (stripes) parts. In the same way GOCE
SGG solutions up to d/o 180 suffer of an (less severe) systematic error due to truncation
of the series expansion and the resulting underparametrization of the gravity signal.
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Part VI

Outlook

In contrast to the finding, that it is not worth to combine GOCE gradiometer information, solely,
with GRACE monthly and bi-monthly gravity field estimates, there are benefits when GOCE
SST-hl observations are used at the same time. During the research it could be shown in tests
with a bi-monthly GRACE solution (November + December 2009) that the inclusion of GOCE
SGG together with GOCE SST-hl leads to a significant reduction of the stripes. The results of
the tests validate the findings of the study by Pail et al. (2011b), and indicate that there might
be a significant reduction of the stripes even above d/o 45. This reinforces the suspicion that
GOCE satellite can serve as a valuable additional information source, in order to improve the
knowledge about changes in the Earth’s gravity field.
However, there are many remaining questions, especially regarding the benefits of such a combi-
nation. Today, it has been shown that there are positive contributions of GOCE in a bi-monthly
combination, but there has been no systematic study examining whether similar results can be
achieved for other bi-monthly periods and for monthly periods. In their investigations Pail et al.
(2011b) mention that it is possible to find the same results in monthly combinations but deliver
no analysis. More on monthly combinations will be found in the proceedings of the 2012 IAG
Symposium in Venice (Springer), which will be published soon.
An analysis of the benefits of the combination with both GOCE observation types for one of the
most prominent GRACE applications, the determination of terrestrial water storage changes
(TWSC), is missing as well. For example it would be interesting to investigate whether smooth-
ing and filtering procedures can be reduced to some extent due to the observed stabilization
by GOCE observations, and whether, in consequence, hydrological signals (or other geophysical
signals) can be better separated out.
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Appended Figures

Figure 31: GRACE gravity anomalies November and December 2009 in [ m
s2 ]
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Figure 32: GRACE gravity anomalies January to June 2010 in [m
s2 ]

Figure 33: GRACE gravity anomalies October to December 2010 in [ m
s2 ]
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Figure 34: GRACE (bi-monthly) gravity anomalies November+December 2009 and May+June
2010 in [ m

s2 ]

Figure 35: January 2010
GOCE SGG-only gravity anomaly differences and coefficient differences to GOCO02s (coeffi-
cients below spherical harmonic degree 20 are excluded from the visualization )
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Figure 36: March 2010
GOCE SGG-only gravity anomaly differences and coefficient differences to GOCO02s (coeffi-
cients below spherical harmonic degree 20 are excluded from the visualization )

Figure 37: May 2010
GOCE SGG-only gravity anomaly differences and coefficient differences to GOCO02s (coeffi-
cients below spherical harmonic degree 20 are excluded from the visualization )
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Figure 38: June 2010
GOCE SGG-only gravity anomaly differences and coefficient differences to GOCO02s (coeffi-
cients below spherical harmonic degree 20 are excluded from the visualization )

Figure 39: October 2010
GOCE SGG-only gravity anomaly differences and coefficient differences to GOCO02s (coeffi-
cients below spherical harmonic degree 20 are excluded from the visualization )
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Figure 40: November 2010
GOCE SGG-only gravity anomaly differences and coefficient differences to GOCO02s (coeffi-
cients below spherical harmonic degree 20 are excluded from the visualization )

Figure 41: December 2010
GOCE SGG-only gravity anomaly differences and coefficient differences to GOCO02s (coeffi-
cients below spherical harmonic degree 20 are excluded from the visualization )
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Table 14: December 2009: RMSE for combined gravity field solution for different relative
weights of GRACE SST-ll and GOCE SGG normal equations at different d/o of the
spherical harmonic expansion
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Table 15: December 2009 (in-house): RMSE for combined gravity field solution for dif-
ferent relative weights of GRACE SST-ll and GOCE SGG normal equations at different
d/o of the spherical harmonic expansion
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Table 16: January 2010: RMSE for combined gravity field solution for different relative
weights of GRACE SST-ll and GOCE SGG normal equations at different d/o of the
spherical harmonic expansion
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Table 17: May 2010: RMSE for combined gravity field solution for different relative
weights of GRACE SST-ll and GOCE SGG normal equations at different d/o of the
spherical harmonic expansion

93



��������

����������� ���

������

��		
��
�������� ������� ������� ������

� ������� ������� ������� ������ �������	�����

� ������� ������� ������� ������

� ������� ������� ������� ������

� ������� ������� ������� ������

� ������� ������� ������� ������

� ������� ������� ������� ������

� ������� ������� ������� ������

� ������� ������� ������� ������

� ������� ������� ������� ������

�����


��		
��
�������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� ����� ���	��������

� ������� �������� �������� �����

� ������� �������� �������� ������

� ������� �������� �������� ������

� ������� �������� �������� ������

�����

��		
��
�������� �������� �������� ������

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� ����� ��
��������


� ������� �������� �������� �����

� ������� �������� �������� ������

� ������� �������� �������� ������

� ������� �������� �������� �������

� ������� �������� �������� �������

����


��		
��
�������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� ����� ��	�����
���

� ������� �������� �������� �����

� ������� �������� �������� ������

� ������� �������� �������� �������

���
�

��		
��
�������� �������� �������� ������

� ������� �������� �������� �����

� ������� �������� �������� ����� ���������	��

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� ������

� ������� �������� �������� ������

� ������� �������� �������� �������

� ������� �������� �������� �������

� ������� �������� �������� �������

���



��		
��
�������� �������� �������� �������

� ������� �������� �������� �����

� ������� �������� �������� ����� �����
�	�	�


� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� ������

� ������� �������� �������� �������

� ������� �������� �������� �������

� ������� �������� �������� �������

� ������� �������� �������� ��������

�����

��		
��
�������� �������� �������� ������

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� �����

� ������� �������� �������� ����� ������������

� ������� �������� �������� �����

� ������� �������� �������� ������

� ������� �������� �������� �������

� ������� �������� �������� ��������

� ������� �������� �������� ��������

���������

��!∀
	#��∃�	%&
�
∋(���)

����	∗��+����,−	#∀!�∗
�∃∀
�.�
&�	%&


���
/�0.∋#���∗


�1�2
�����

�
�3�

2
�4��

�
�5� ������∋∗!6 7	((�.�∗+�

Table 18: June 2010: RMSE for combined gravity field solution for different relative
weights of GRACE SST-ll and GOCE SGG normal equations at different d/o of the
spherical harmonic expansion
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Table 19: June 2010 (repr): RMSE for combined gravity field solution for different
relative weights of GRACE SST-ll and GOCE SGG normal equations at different d/o
of the spherical harmonic expansion
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Table 20: December 2010: RMSE for combined gravity field solution for different relative
weights of GRACE SST-ll and GOCE SGG normal equations at different d/o of the
spherical harmonic expansion
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Table 21: November+ December 2009: RMSE for combined gravity field solution for dif-
ferent relative weights of GRACE SST-ll and GOCE SGG normal equations at different
d/o of the spherical harmonic expansion
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Table 22: November+ December 2009 (in-house): RMSE for combined gravity field so-
lution for different relative weights of GRACE SST-ll and GOCE SGG normal equations
at different d/o of the spherical harmonic expansion
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Table 23: May + June 2010: RMSE for combined gravity field solution for different
relative weights of GRACE SST-ll and GOCE SGG normal equations at different d/o
of the spherical harmonic expansion
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Table 24: May + June 2010 (repr): RMSE for combined gravity field solution for different
relative weights of GRACE SST-ll and GOCE SGG normal equations at different d/o
of the spherical harmonic expansion
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