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ABSTRACT

The research into automatic cartographic mapping is a cur-
rent topic due to today’s availability of high resolution remote
sensing data. In order to get as much reliable information
as possible, it is recommendable to fuse different image data
of the same scene. No matter if the images are acquired by
different sensors, from different directions (i.e. multi-aspect
data), or are multi-temporal, a careful fusion is required. In
this paper we present a high-level decision fusion based on
Bayesian network theory developed for automatic road ex-
traction from multi-aspect SAR data. First, the Bayesian net-
work theory is briefly introduced, followed by the process of
developing the fusion for the road extraction: 1) Formulating
the problem by means of a Bayesian network 2) Learning by
estimating up conditional probabilities. Results of the fusion
tested on TerraSAR-X data are presented. In the end the po-
tential of the Bayesian network fusion for automatic mapping
of cartographic features are discussed.

Index Terms— Bayesian networks, SAR, multi-aspect
data, fusion, road extraction

1. INTRODUCTION

The availability of high resolution remote sensing data of
urban areas has increased enormously in the recent years.
Not only optical but also recently launched synthetic aperture
radar (SAR) sensors have reached a new dimension in terms
of resolution and offers new potential for urban area map-
ping. Detailed information, not only building structures, but
even cars, traffic lights, and crash barriers can be extracted.
In order to get as much information as possible out of urban
scenes, it is advisable to utilize different images of the same
scene. Previous research has shown that a combination of
images acquired by different sensors [1], multi-temporal data
sets [2], and fusion of images taken from different directions,
so called multi-aspect images [3], can improve the results
of urban mapping. Each image combination faces different

challenges. Often the extracted information from each single
image is not only complementary and redundant but, depend-
ing on the level of complexity, also contradicting. Due to
the high level of details in urban areas, it is often not recom-
mendable to do direct fusion on pixel-level. Instead a careful
fusion on decision-level, which is able to not only combine
different information but also to estimate the uncertainty of
the extracted information, can be applied. Bayesian network
theory has here turned out to be especially useful.

In this paper, we present a fusion strategy based on
Bayesian network theory which fully exploits the capabilities
of multi-aspect SAR data [4][5]. Previous research has shown
that multi-aspect SAR data indeed improves the result of road
extraction [6][7]. The first part of this paper briefly explains
the Bayesian network theory (see Sect. 2). The second part
presents the fusion (see Sect. 3) itself, where the focus is on
its structure and learning. Section 4 contains the results of
the fusion tested on TerraSAR-X data. The fusion strategy
was in the first place developed for multi-aspect SAR data,
but we will also show that it can easily integrate additional
information such as optical images or GIS (see Sect. 5).

2. BAYESIAN NETWORK THEORY

Bayesian network (BN) theory originates from the classi-
cal Bayesian inference theory. The BN U is a set of nodes
U = {X1, ..., Xn}, which are connected by a set of arrows
A = {(Xi, Xj) |Xi, Xj ∈ U, i 6= j} in a directed acyclic
graph [8]. Nodes represent the variables (i.e. temperature
of a device, gender of a patient or feature of an object) and
the arrows symbolizes the causal dependencies among the
variables. Variables may have discrete or conditional states.
If there is an arrow from node Y to node X; this means that
Y has an influence on X. Y is called the parental node and
X is called the child node. X is assumed to have n states
x1, . . . , xn and P (X = xi) is the probability of each certain
state xi. Let P (u) = P (x1, . . . , xn) be the joint probability
distribution of the state values x. For being a Bayesian net-



work, U has to satisfy the Markov condition, which means
that a variable must be conditionally independent of its non-
descendents given its parents. P (x1, x2, ..., xn) can therefore
be defined as

P (x1, x2, ..., xn) =

n∏
i=1

P (xi|pa(Xi)) (1)

where pa(Xi) represent the parents states of node Xi.
Often one is interested in which state a certain node is,

the so called hypothesis variable. The estimation is done by
means of known or partly known variables, information vari-
ables. Evidence can flow both upwards and downwards. In-
formation coming from a parental node are called causal evi-
dence while diagnostic evidence enter via a child node.

3. BAYESIAN NETWORK FUSION

Bayesian networks express causal relationships and enable us
to model data similar to a human’s reasoning process. By
applying Bayesian network to fusion of remote sensing data
for object extraction, one need to start by analyzing the avail-
able information, i.e. searching for the information variables.
That means to identify what features (pixels, image primi-
tives, textural patterns, etc.) are extractable and estimate their
reliability and which information is needed for estimating the
state of the hypothesis variable. The development of a fu-
sion contains the following steps; 1) Analysis of the problem
in order to find information and hypothesis, 2) The set up of
a Bayesian network structure, which means finding depen-
dencies/independencies among the information and hypoth-
esis variables and modeling the flow of information among
the variables, and 3) The learning, which is carried out by es-
timation of conditional probability functions and conditional
probability tables.

In this paper the process is exemplified by describing a fu-
sion for road extraction from multi-aspect data in the context
of cartographic mapping.

3.1. Fusion for road extraction from multi-aspect SAR
images

The fusion presented in this paper was aimed to adapt an al-
ready existing road extraction system [9][10] to multi-aspect
SAR data. The road extraction system is based on explicit
modeling which makes it especially convenient to apply
Bayesian network to the fusion. More information on how
the fusion is integrated into the road extraction system can be
found in [4].

3.1.1. Set-up of the Bayesian network structure

The main input to the fusion is not only the information ex-
tracted from the image (in this case a dark and bright line
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Fig. 1. Bayesian network for road extraction from two multi-aspect images.
Superscript 1 and 2 refers to image 1 versus image 2. The nodes are the
following: Y : The hypothesis variable, i.e. object in the real world, G:
Sensor geometry, D: Extracted dark line primitive, Bleft: Extracted bright
line primitive on the left, Bright: Extracted bright line primitive on the right,
X: Attributes of D and B
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Fig. 2. For each state of Y , a detailed image model is required, from
which the probability of expecting states of D, Bleft and Bright can be
modeled. S is the expected width of the shadow caused by the trees. W
are thresholds representing maximum and minimum width which are related
to the line extraction settings. The state vegetation is here divided into two
groups, since the line extractor is assumed to behave differently for the two
groups.

extraction) but also the image model, i.e. how roads usu-
ally appear in high resolution SAR data. A reasoning step
is modeled, which describes the relation between the ex-
tracted object, nearby high objects and the sensor geometry.
For instance an extracted road oriented in the looking angle
of the SAR sensor (range) is considered more reliable than
other detections closer to azimuth. Furthermore information
about neighboring high objects (local context information)
is integrated since these objects can be detected by a bright
line extraction. Examples of neighboring high objects are
trees and buildings. By incorporating this into the reasoning
step, contradicting hypotheses (e.g. detection of a road in the
first image, detection of parallel shadow and layover regions
caused by neighboring high objects in the second image)
can be solved. The reasoning step is modeled as a Bayesian
network by setting up rules and defining a priori knowledge.

The line extraction is based on Steger’s differential ap-
proach as also applied in [10] which is able to detect both



dark and bright linear features. In high resolution SAR data,
not only roads are detected by the dark extraction, but also
linear shadow regions and clutter (false alarms) due to veg-
etation. Many gaps occur as well as the over-segmentation
is high, meaning that the intermediate results contain a high
uncertainty. The incorporation of bright features enables us
to include layover, which is a necessity for the reasoning step.
Crucial is as well the sensor geometry information and relates
to the assumption that if there are high trees next to the road,
in some geometries the road can actually be detected, in other
merely the shadow or bright scattering from the vegetation
appears. The resulting Bayesian network with a list of the
nodes can be seen in Fig. 1. The information nodes are the
attributes of the line primitives, X , the sensor geometry, G,
and to some extent the dark (D) and the bright line primitives
B, i.e. detected or not. Hence information flow both up- and
downwards in the system. All the three variables D, Bleft,
and Bright are treated as independent of each other. They are
partly hidden nodes, since the states are not completely visi-
ble. Y and G are connected through incoming evidence from
their child nodes.

The node D contain the following states; (d1:ROAD,
d2:SHADOW, and d3:FALSE ALARMS). The states can be
distinguished by their significant attributes (such as intensity,
length and straightness). The bright line extraction is able
to detect local context information such as bright scattering
and layover effects caused by buildings (b1:BUILDINGS),
vegetation (b2:VEGETATION), or crash barriers or vegeta-
tion nearby the highway lanes (b3:HIGHWAYS). Also these
three classes can be separated from each other by means
of significant attributes. Node Y has in total ten different
states, consisting of both road classes (e.g. y1:OPEN ROAD,
y2:HIGHWAY, y3:ROAD WITH VEGETATION NEARBY - LEFT
SIDE, etc.) and non-road classes (e.g. y6:HIGH VEGETATION,
y8:BUILDING, y10:CLUTTER), etc.). The non-road classes are
included in order to sort out falsely extracted dark primitives
that belong to shadows caused by high objects, or belong to
simply clutter.

3.1.2. Conditional probabilities

The learning is carried out by estimating conditional prob-
abilities between the nodes. The link between the detected
line primitive and their attributes P (D|X) and P (B|X), was
quantified by setting up a ”‘classifier”’. This was done by
estimating each separate likelihood by a probability density
function fitted to histograms obtained by a training data set
(1̃000 dark, 100 bright linear features) [5]. There was no
significant correlation between the attributes meaning that the
likelihoods P (X|dj) and P (X|bj) is the product of each sep-
arate likelihood for each attribute. Optical data and maps were
used as reference.

The links expressing the relation between the existing ob-
ject Y , the sensor geometry G and the extracted line primi-

tives D and B, (P (D|G, Y ), P (B|G, Y )) are far more com-
plex. It needs to consider the image model considering differ-
ent sensor geometries, which practically mean that for each
state of Y , one need to analyze how this object will appear
in the SAR image for all kind of different sensor geometries
[5]. The complexity of the task is exemplified by Fig. 2 and it
gets clear why it must be defined whether the bright feature is
detected on the left (Bleft) or on the right side (Bright) of the
dark line segment. Furthermore the link must also consider
the performance of the line extractor as well as the perfor-
mance of the ”‘classifier”’, i.e. what is the probability that
a possible state of Y , acquired by a certain sensor geome-
try, is detected by the line extractor, and if detected, what is
the probability that the line primitive is assigned to a certain
state of D and B. The performance of the line extraction was
carried out by comparing the results of the line extractor with
reference data, and thereby the knowledge that the line extrac-
tion sometimes fail (i.e. many gaps) is included. The train-
ing data was randomly separated into one training set and one
testing set. The first one was used for the definition of the con-
tinuous probability density functions (i.e. building the ”‘clas-
sifier”’) and the second one was used for a classification error
matrix (i.e. evaluating the ”‘classifier”’). These error matri-
ces give information about how well the classification works
for each state of D and B.

4. RESULTS

The fusion was tested on TerraSAR-X data (high resolution
spotlight mode, multi-look ground range detected) acquired
in ascending and descending orbits in March 2009. The anti-
parallel scenes show an area in Garching, close to Munich,
Germany. The result of the classifier can be seen in Fig.3(a)-
(b) and the final result excluding the non-road states after fu-
sion in Fig. 3(d). The results were compared to manually dig-
itized reference data. The fusion turned out to be especially
successful by identifying highways (user’s accuracy: 77%),
but had some problems by roads with high vegetation nearby
(user’s accuracy:9%). This seems to be a consequence of a
mis-classfication of the bright features into highways, which
is an indication of improperly learning. In contrary to the
scene from where the training data was collected, the vegeta-
tion nearby the roads in this scene have similar characteristics
as vegetation close to highways (long and regular shape). The
overall completeness of finding roads was 77%. The over-
all correctness of 44% is expected to rise as soon as the ex-
tracted line primitives and their assessment through the fusion
is included in a network generation as presented in [9]. Iso-
lated falsely classified line primitives will then be sorted out.
Considering the high error rate by the line extraction and that
the fusion only delivers an intermediate result, the correctness
and completeness are indeed reasonably good values.
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quent fusion (c). The results after fusion based on the Bayesian network was
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5. DISCUSSION AND FUTURE CONCEPTS

Despite the complexity of learning, the Bayesian network the-
ory is optimal for this kind of work. The decisive point is
that Bayesian network enables us to realize a complex im-
age model within a probabilistic framework. Furthermore we
are able to include the uncertainty of the line extraction as
well as the ”‘classifier”’ as a learning step. The proposed
Bayesian network offers us the ability to easily integrate ad-
ditional data, for instance GIS information or remote sensing
data from other sensors, such as optical data. In case of GIS
data, the information should be integrated as prior informa-
tion, (e.g. ”‘What is the rate of constructing new roads per
year?”’ or ”‘X% of existing road network remain from one
year to an other”’). Any information extracted from optical

data is able to be included through child nodes. The learn-
ing can be carried out in a similar way as presented in this
work. An additional advantage of formulating the fusion in
the frame of Bayesian network is that the output is not a def-
inite classification, merely each line feature obtain an uncer-
tainty value of being a road or not. The output of the fusion
has therefore a high potential to be integrated in a network
generation step based on Markov random field as in [6] or in
the framework of conditional random fields [11].

A Bayesian network requires a complete probabilistic
model and dependent on the amount of variables and states,
the set-up of the system as well as the learning can be very
time-consuming. But as long as the task is not too complex,
Bayesian network theory has indeed due to its flexibility
the potential of being the framework for future urban object
extractions from remote sensing data.
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