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Abstract:  Gravity anomaly reference fields, required e.g. in remove-compute-restore (RCR) 

geoid computation, are obtained from global geopotential models (GGM) through harmonic 

synthesis. Usually, the gravity anomalies are computed as point values or area mean values in 

spherical approximation, or point values in ellipsoidal approximation. The present study 

proposes a method for computation of area mean gravity anomalies in ellipsoidal 

approximation (‘ellipsoidal area means’) by applying a simple ellipsoidal correction to area 

means in spherical approximation. Ellipsoidal area means offer better consistency with GGM 

quasi/geoid heights. The method is numerically validated with ellipsoidal area mean gravity 

derived from very fine grids of gravity point values in ellipsoidal approximation. Signal 

strengths of (i) the ellipsoidal effect (i.e., difference ellipsoidal vs. spherical approximation), 

(ii) the area mean effect (i.e., difference area mean vs. point gravity) and (iii) the ellipsoidal 

area mean effect (i.e., differences between ellipsoidal area means and point gravity in 

spherical approximation) are investigated in test areas in New Zealand and the Himalaya 

mountains. The impact of both the area mean and the ellipsoidal effect on quasigeoid heights 

is in the order of several centimetres. The proposed new gravity data type not only allows 

more accurate RCR-based geoid computation, but may also be of some value for the GGM 

validation using terrestrial gravity anomalies that are available as area mean values. 
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1. Introduction 

 

Regional gravimetric geoid and quasigeoid models are frequently computed using the 

remove-compute-restore (RCR) technique (e.g., Featherstone et al., 2004; Sjöberg, 2005). 

The basic idea of the RCR approach is the combination of terrestrial gravity observations and 

a global geopotential model (GGM), serving as a reference to provide the long- and medium-

wavelength components of Earth’s gravity field. In RCR-based computations, the GGM-

implied gravity anomalies are subtracted from the terrestrial gravity observations, yielding a 

set of residual gravity anomalies (‘remove’).  These are transformed to residual quasi/geoid 

heights via Stokes’s integral (‘compute’) and added to GGM-implied geoid heights 

(‘restore’).  Clearly, for precise application of the RCR technique, mutual consistency among 

the GGM-implied gravity anomaly field and quasi/geoid heights is an important prerequisite:  

The GGM-implied gravity anomaly field should be rigorously equivalent to the GGM-

implied quasi/geoid heights. This is because any inconsistencies among these two fields 

contaminate the RCR quasi/geoid solution.   

 

The present paper focuses on the accurate computation of the GGM gravity anomaly 

reference field. The computation of GGM quasigeoid heights is rather uncritical using the 

well-known Bruns equation (see e.g., Heiskanen and Moritz, 1967, p. 293). For subtleties in 

the computation of GGM geoid heights see, e.g., Rapp (1997) or Smith (1998). In terms of 

spatial representation and level of approximation, the computation of GGM gravity anomalies 

from spherical harmonic synthesis is ambiguous (see also details in Section 2): 

 

First, GGM gravity anomalies can either be computed at discrete locations (point gravity) or 

as mean values over small area elements such as 1 min x 1 min cells (area mean gravity). 

The difference between area mean and point gravity anomalies is herein called the area mean 

effect. In Stokesian integration, the (continuous) gravity anomaly field is usually 

approximated by an equidistant grid composed of small area elements of stepwise-constant 

gravity anomalies. Often, area mean gravity anomalies are considered to be a better 

representation of average gravity across an area element than point gravity anomalies (see 

also Heiskanen and Moritz, 1967, p. 118). Also, because terrestrial gravity is commonly 



prepared in terms of area mean values (e.g., Featherstone et al., 2001, Claessens et al., 2011), 

the GGM gravity anomaly field should be provided in the same way.  Naturally, GGM point 

gravity anomalies, subtracted from area mean terrestrial gravity, would introduce 

inconsistencies in the remove step of a RCR quasi/geoid computation.  

 

Second, GGM gravity anomalies from spherical harmonic synthesis can be computed either 

in spherical approximation or ellipsoidal approximation. The term ellipsoidal effect is used 

here to denote the difference between gravity anomalies in ellipsoidal and spherical 

approximation. Ellipsoidal approximation is the more rigorous way for computation of GGM 

gravity anomalies, so as to avoid one spherical approximation effect in the quasi/geoid 

computation (e.g., Claessens, 2006). In other words, GGM ellipsoidal gravity anomalies 

approximate observed gravity anomalies more closely than those in spherical approximation.  

 

The ellipsoidal effect of gravity anomalies has been studied by, e.g., Jekeli (1981), Cruz 

(1986), Gleason (1988), Vaníček et al. (1999) and Hipkin (2004), and is sometimes also 

called “the ellipsoidal correction to the spherical approximation”. It should be noted that in 

the derivations of Jekeli (1981) and Cruz (1986), the ellipsoidal correction is split into two 

separate contributions that compensate for the fact that: 1) the partial derivative along the 

ellipsoidal normal is approximated by a partial derivative in the radial direction, and 2) that in 

spherical approximation the generally applied Somigliana-Pizetti reference gravity field (a 

spheroidal reference field) is approximated by an isotropic reference field  (e.g., Heck, 1991). 

These two contributions are combined into one ellipsoidal correction here. Vaníček et al. 

(1999) use two ellipsoidal corrections too, but in their derivation the first of the two 

corrections also includes a so-called deflection error (Claessens 2006). Therefore, the 

ellipsoidal corrections of Vaníček et al. (1999) are not exactly compatible with our definition. 

 

Taking into account both aspects of gravity representation (point values versus area means 

and spherical versus ellipsoidal approximation), it is desirable to compute the GGM gravity 

anomaly field in terms of area mean values in ellipsoidal approximation. However, with 

algorithms implemented in state-of-the-art spherical harmonic synthesis software such as 

harmonic_synth (Holmes and Pavlis, 2008), GGM gravity anomalies can be computed either 

as spherically approximated point values or area mean values, or, as point values in 

ellipsoidal approximation. As an immediate consequence, either the ellipsoidal effect or the 



area mean effect will cause inconsistencies in the remove-step of RCR-based geoid 

computations. 

 

The present study investigates the computation of a new gravity field representation, the area 

mean gravity anomaly in ellipsoidal approximation (herein abbreviated to ellipsoidal area 

means). Section 2 provides the necessary mathematical background to compute GGM gravity 

anomaly fields in different approximations and spatial representations. A novel yet simple 

approach to compute ellipsoidal area means is introduced in Section 3. The approach 

combines point gravity anomalies in ellipsoidal and spherical approximation and area mean 

gravity anomalies in spherical approximation. Numerical verification results of the ellipsoidal 

area mean computation approach are found in Section 4. Also, an analysis of the signal 

patterns and amplitudes of the area mean and ellipsoidal effect is presented in Section 4, 

allowing for a better understanding of both effects. For this purpose, the state-of-the-art GGM 

EGM2008 (Pavlis et al., 2008) is used as data source. Then, we study the impact of the 

different GGM gravity anomaly types on quasigeoid heights, using Stokesian integration with 

a deterministically modified kernel (Featherstone et al., 1998). Finally, conclusions are 

drawn in Section 5. 

 

As an alternative strategy to using ellipsoidal area means in GGM reference fields, it is also 

possible to apply an ellipsoidal correction to the terrestrial gravity observations (Vaníček et 

al., 1999). Importantly, the ellipsoidal effect need to be accounted for only once: either in the 

terrestrial observations [ie., Vaníček et al. (1999) approach] or in the GGM gravity anomaly 

reference field, as is proposed here.  In both instances, ellipsoidal corrections are best 

computed from a GGM.  In the Vaníček et al. (1999) approach, the ellipsoidal corrections can 

be applied to gravity observations before area means are computed.  However, it is 

potentially more efficient to directly compute area means of ellipsoidal gravity anomalies or 

ellipsoidal corrections from the GGM, which is the approach taken here.  Our approach 

represents a strategy to account for the ellipsoidal effect and area mean effect on gravity 

anomalies at the same time. 

 

2. Computation of GGM reference gravity fields 

 



We assume that computation points (e.g., arranged in an equidistant grid) are given in terms 

of (ellipsoidal) geodetic coordinates latitude ϕ, longitudeλ  on the ellipsoid surface, i.e., 

ellipsoidal height h = 0. To evaluate spherical harmonic synthesis expansions, spherical polar 

coordinates (r distance between the computation point and geocentre, θ  geocentric co-

latitude and λ  geodetic longitude) are required. For the transformation between geodetic and 

spherical coordinates we refer to the standard geodetic literature, e.g., Torge (2001); Jekeli 

(2006). 

 

A global geopotential model (GGM), such as EGM2008 (Pavlis et al., 2008), provides a set 

of fully-normalised spherical harmonic coefficients nmC , nmS  along with the two model-

specific scaling parameters GM (geocentric gravitational constant) and a (semi-major axis). 

We use the standard spherical harmonic series expansion to compute the disturbing potential 

T  (e.g., Torge, 2001, p. 215; Holmes and Pavlis, 2008): 
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with n denoting the degree and m the order of the harmonic coefficients and nmax is the 

maximum degree of evaluation (2190 in case of EGM2008). (cos )nmP θ are the fully-

normalised associated Legendre functions (e.g., Torge, 2001, p. 71) which depend on the 

geocentric co-latitude θ  of the computation point.  The term nmCδ  = 
GRS

nm nmC C−  indicates a 

subtraction of the low-degree even zonal harmonics 
GRS
nmC of the GRS80 (Geodetic Reference 

System 1980) reference gravity field from the nmC  zonal harmonic coefficients of EGM2008 

(a detailed explanation is given by, e.g., Smith, 1998).    

 

The point gravity anomaly in spherical approximation is obtained from the well-known 

fundamental equation of physical geodesy which relates the disturbing potential T to gravity 

anomalies (e.g., Torge, 2001, p. 259): 
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The spherical approximation is evident here as the partial derivative of the disturbing 

potential T is formed with respect to the normal direction of the sphere (radius r).  

 

The point gravity anomaly in ellipsoidal approximation can be computed using the 

generalised fundamental equation of physical geodesy (Grafarend et al., 1999; Claessens, 

2006, p. 39) with the higher-order terms neglected: 
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with γ  reference gravity (at the ellipsoid) and / hγ∂ ∂  the vertical gradient of the reference 

gravity, cf. Torge (2001, p. 110). Importantly, the partial derivative of the disturbing potential 

T is in the direction of the ellipsoidal normal h. The quantity /T h∂ ∂  is computed as a 

function of the radial derivative /T r∂ ∂ and the co-latitudinal derivative /T θ∂ ∂  (Claessens, 

2006, p. 89): 
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with er the ellipsoidal radius (i.e., distance from the computation point to the geocentre) and 

φ  the difference between geocentric and geodetic co-latitude, cf. Claessens (2006, p. 18-20; 

p. 89). The analytical expressions for the computation of the derivatives /T r∂ ∂  and 

/T θ∂ ∂ are found, e.g., in Holmes (2002, p. 16) or Wolf (2007, p. 10). 

 

For the computation of area mean gravity anomalies in spherical approximation, average 

values T  of the disturbing potential are needed. These can be computed via integration over 

small area elements (e.g., 5 min x 5 min spatial extension), after Wenzel (1985, p. 34), and 

Holmes (2002, p. 133): 
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Here, ,W Eλ λ are the meridians and ,N Sϕ ϕ the geodetic parallels bounding the area element in 

Western, Eastern, Northern and Southern direction, respectively. Upon insertion of Eq. (1) 

into Eq. (5), the solution of integral equation (5) involves the integration of fully-normalised 

associated Legendre functions (cos )nmP θ  (cf. Paul, 1978), and integration of Fourier 

coefficients cos ,sinm mλ λ  (cf. Wenzel, 1985, p. 141). A complete solution for evaluation of 

Eq. (5) is derived in Holmes (2002, chapter 7). Area means of the radial derivative of the 

disturbing potential can be found using the same integration of fully-normalised associated 

Legendre functions and Fourier coefficients. 

 

Area mean gravity anomalies in spherical approximation are obtained through modification 

of Eq. (2), after Wenzel (1985, p. 34): 
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Note that the bar is used here and in the remainder of this study to distinguish point and area 

mean gravity field quantities. The state-of-the-art spherical harmonic synthesis software 

harmonic_synth (Holmes and Pavlis, 2008) allows computation of GGM point gravity 

anomalies either in spherical approximation (Eqs. 1,2), in ellipsoidal approximation (Eqs. 

1,3,4), or, as area means in spherical approximation (Eqs. 5,6). However, the capability to 

compute area mean gravity in ellipsoidal approximation is not implemented. This is because 

the co-latitudinal derivative /T θ∂ ∂ present in Eq. (4) would require the integration of the 

derivatives of associated Legendre functions with respect to the co-latitude, which cannot be 

performed by application of Paul’s (1978) algorithm. The next section suggests simple 

methods that can be used to calculate area mean gravity anomalies in ellipsoidal 

approximation. 

 

3.  Strategies to compute ellipsoidal area means 

 

There are (at least) two simple ways capable of providing an estimate of area mean gravity 

anomaly values in ellipsoidal approximation. The first approach (herein called the three-grid-

approach) is based on the idea to correct spherically approximated area mean gravity 



anomalies by the ellipsoidal effect (i.e., the difference of gravity in ellipsoidal and spherical 

approximation).   

 

The second approach, herein called the fine-grid-approach, is based on the computation of a 

very fine grid of ellipsoidal point gravity anomalies (e.g., at a resolution that is, say, 100 

times better than the desired resolution) and to average the fine grid to the target grid 

resolution, giving estimates of ellipsoidal area means. However, as GGM reference fields 

used in modern RCR-based geoid modelling often consist of several million grid points with 

a spatial resolution of 1 min (e.g., Claessens et al., 2011; Featherstone et al., 2011), such fine 

grids would have to be made up of some 100 million points at which the spherical harmonic 

expansions would have to be evaluated. We consider the related computational efforts too 

prohibitive for routine RCR-based geoid computation. Nevertheless, the fine-grid-approach is 

of value here, as it is capable of providing independent estimates of ellipsoidal area means 

over smaller areas (say, some square degrees), serving as a ‘check’ on the first approach. 

 

We propose the three-grid-approach for ellipsoidal area mean computation. The method is 

based on the assumption that the ellipsoidal effect of GGM gravity anomalies is fairly 

independent of the spatial representation of the gravity (area mean or point values), provided 

that the area size is sufficiently small, say, a few arc minutes. In other words, we presume 

that the difference between area means in spherical and ellipsoidal approximation is almost 

equal to the difference between point values in spherical and ellipsoidal approximation 

 

ell sphell sphg g g g∆ −∆ ≈ ∆ −∆         (7) 

with  

 

ellg∆  = area mean value in ellipsoidal approximation (unknown), 

sphg∆  = area mean value in spherical approximation (Eq. 6), 

ellg∆  = point value in ellipsoidal approximation (Eq. 3) and 

sphg∆  = point value in spherical approximation (Eq. 2). 



From Eq. (7), a solution for the computation of ellipsoidal area means ellg∆  follows 

immediately: 
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Estimates of ellipsoidal area means are obtained from three gravity grids (therefore ‘three-

grid-approach’), that are computed with the existing publicly available spherical harmonic 

synthesis software harmonic_synth (Holmes and Pavlis, 2008). Spherically approximated 

area mean values of gravity anomalies sphg∆  are computed in a first step. In a second step, 

two further grids are computed, one gravity anomaly grid of point values in spherical 

approximation sphg∆  and one in ellipsoidal approximation ellg∆ . The differences between 

both point value grids is applied as correction to the area mean value grid, yielding estimates 

of  gravity anomaly area means in ellipsoidal approximation ellg∆ . Confirmation of the 

validity of Eqs. (7) and (8) is obtained from a numerical validation experiment described in 

Section 4.1. 

 

4. Numerical tests 

 

4.1 Verification of the three-grid-approach 

In order to demonstrate that the proposed three-grid-approach is capable of providing 

sufficiently precise estimates of ellipsoidal area means ellg∆ ,  a numerical test was performed 

for a 2° x 2° alpine test area located on the South Island of New Zealand (Fig. 1A). In this 

area, both the ellipsoidal effect and the area mean effect reach maximum values in the order 

of 0.5 mGal (shown later). The test not only compares ellipsoidal area means ellg∆  from the 

fine-grid-approach and three-grid-approach, but also illustrates features of the ellipsoidal and 

area mean effect. The visualisation of gravity anomaly area means in spherical approximation 

sphg∆  gives an impression of the roughness of the gravity anomaly field in the 2° x 2° test 

area (Fig. 1B).   

Table 1 gives an overview of the GGM gravity anomaly grid computations performed with 

the harmonic_synth software (Holmes and Pavlis, 2008). Any of the grid computations use 

the current state-of-the-art GGM EGM2008 (Pavlis et al., 2008) in the spectral range of 



2..2160 and the zero-tide system. One grid provides gravity anomaly point values ellg∆  on a 

very fine grid of 3˝ resolution. Because of (i) the fact that EGM2008 offers a resolution of ~5 

min of gravity field structures and (ii) the high resolution (21 x 21 = 441 values per 1´ cell) of 

the fine grid, averaging of the fine grid into 1 min x 1 min cells is considered yielding 

reasonable estimates of ellipsoidal area means. These can be used for verification of the 

three-grid-approach.  Importantly, the boundaries of the 1 min x 1 min cells exactly match 

those of the spherically approximated area means sphg∆   from Eq. (6). 

The main features of the area mean effect (differences sphsphg g∆ −∆ ), cf. Fig. 2A, are high-

frequency patterns with wavelengths of ~20 km and amplitudes of up to 0.5-0.7 mGal (Table 

2). The maximum amplitudes occur in those areas where the EGM2008 gravity anomaly field 

is locally maximum and minimum, these are the summit regions and depressions in the 

EGM2008 gravity anomaly field (compare with Fig 1B). In such regions, the point values do 

not closely enough approximate the 1 min area mean values.  As such they are either under- 

or overestimates of the area mean gravity values.  Naturally, at coarser grid resolutions than 1 

min, the area mean effect on gravity will become larger. 

Fig. 2B shows the ellipsoidal effect (differences ell sphg g∆ −∆ ) in terms of point gravity 

values. The difference plot exhibits patterns of up to 0.6 mGal with longer wavelengths than 

the area mean effect. The descriptive statistics of both effects are found in Table 2. In a 

‘classical treatment’ of the reference gravity field, at least one of both effects would 

propagate into the residual gravity anomaly field, causing inconsistencies in RCR-based 

quasi/geoid computation. 

The ellipsoidal area mean effect (differences among gravity anomaly area means ellg∆  in 

ellipsoidal approximation, as obtained from the three-grid-approach, and point gravity values 

sphg∆  in spherical approximation) is shown in Fig. 3A. The depiction shows how the area 

mean and ellipsoidal effect superimpose, resulting in somewhat larger amplitudes than either 

effect individually (see also Table 2). 

Finally, residuals among ellipsoidal area means from the three-grid-approach and the fine-

grid-approach 
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are shown in Fig. 3B. The residuals, which reflect a combination of the errors in both 

approaches, are found to be very small (RMS 0.002 mGal, maximum values of 0.015 mGal, 

cf. Table 2). This provides strong evidence of the correctness of both approaches to compute 

ellipsoidal area means. In addition, the good mutual agreement confirms our above 

assumption that the ellipsoidal effect is similar for area means and point values (cf. Section 

3). 

Because the verification experiment is restricted to one selected test area, it cannot be 

concluded that the method provides good enough accuracy everywhere on Earth. However, 

due to the topography present in our test area (see Fig. 1A) it is reasonable to assume that the 

proposed method does reach a similar performance in many other regions with comparable or 

less topography. 

4.2. Assessment of maximum signal strengths 

 

The second part of the numerical tests deals with assessment of the maximum signal strengths 

(i.e., amplitudes and RMS) of the ellipsoidal and area mean effect for different regions. We 

have selected test areas in New Zealand and in the Himalaya mountains. The ruggedness of 

the New Zealand test area is representative for many other rugged areas (e.g., European Alps) 

while the Himalaya area allows a ‘worst case’ assessment of the gravity field effects. For 

both test areas (boundaries are given in Table 3 caption), EGM2008 was used  in the spectral 

range 2..2160 to compute gravity anomaly grids in terms of point values in spherical and 

ellipsoidal approximation (Eqs. 2,3) and area means in spherical and ellipsoidal 

approximation (Eqs. 6,8). The grid resolutions are 1 min, 2 min and 4 min, so as to evaluate 

the impact of the sampling. 

  

Table 3 reports the descriptive statistics of the area mean effect ( sphsphg g∆ −∆ ), the 

ellipsoidal effect ( ell sphg g∆ −∆ ), and the ellipsoidal area mean effect ( sphellg g∆ −∆ ).  Within 

the same test area, the ellipsoidal effect is fairly independent of the grid resolution used. The 

amplitudes are about 0.6 mGal for the New Zealand test area and reach maximum values of 

~1.6 mGal in the high Himalaya mountains. The RMS is found to be generally small (~0.1 

mGal for New Zealand and ~0.2 mGal for the Himalayas).  A similar analysis has been 

published by Hipkin (2004) based on evaluation of EGM96 (Lemoine et al., 1998) to degree 

360. Globally, Hipkin (2004) found values of the ellipsoidal effect ranging between -0.84 to 



1.15 mGal and a standard deviation of 0.07 mGal. The differences between Hipkin’s and our 

figures reflect mainly the fact (i) that the spectral range of degree 361 to 2160 is not included 

in Hipkin’s values and (ii) the mountainous test areas used in our study. 

 

As expected, the grid resolution strongly influences the amplitudes of the area mean effect. 

For New Zealand, the maximum amplitudes steadily increase from ~0.7-0.8 mGal (at 1 min), 

~3 mGal (at 2 min) to the level of ~10 mGal at 4 min grid resolution. For the Himalaya 

mountains, the effects are even more pronounced (~4 mGal, ~15 mGal and ~60 mGal for 1 

min, 2 min and 4 min grid resolution, respectively). This shows that the mean gravity 

anomaly across the area elements deviates stronger from point values with decreasing grid 

resolution. 

 

Again, in the ‘classical’ treatment of the GGM gravity anomaly reference field, at least one of 

both effects would reduce the level of consistency of the gravity and height anomaly 

reference fields. Particularly with grid resolutions of 2 min (and coarser), the area mean effect 

reaches magnitudes, which may not be negligible in practice. Ellipsoidal area mean gravity 

values – as introduced in Section 3 – can be used to account for both effects at the same time. 

 

4.3 Effect on quasigeoid undulations 

 

4.3.1 Use of NZGeoid09 observed gravity 

 

The third numerical test focuses on the propagation of the ellipsoidal effect and area mean 

effect of gravity anomalies into quasigeoid heights. New Zealand is selected as test area and a 

data set consisting of area means of terrestrial gravity anomalies NZg∆  is used for this test.  

This data set was also used as input data for the computation of the recent gravimetric 

NZGeoid09 model of New Zealand (Claessens et al., 2011). It was interpolated from 

observed land and sea gravity to a 1 min x 1 min grid [see Claessens et al. (2011) for details 

of the computation procedure]. The New Zealand terrestrial gravity data set NZg∆   is here 

utilised for a series of RCR-quasigeoid computations with the GGM gravity anomaly 

reference field prepared in four different ways (Sections 2 and 3): (i) point values in spherical 

approximation sphg∆ , (ii) area mean values in spherical approximation sphg∆ , (iii) point 



values in ellipsoidal approximation ellg∆  and (iv) area mean values in ellipsoidal 

approximation ellg∆ . In any of the four variants, EGM2008 was used as GGM reference 

model within spectral degrees 2..2160 (as was the case with the computation of NZGeoid09). 

 

For the transformation of residual gravity anomalies (i) sphNZg g∆ −∆ , (ii) NZ sphg g∆ −∆ , (iii) 

ellNZg g∆ −∆  and (iv) NZ ellg g∆ −∆  to residual quasigeoid undulations ζ, we used the Curtin 

in-house software FFT1Dmod. This software performs Stokesian integration using a 

deterministically modified kernel (Featherstone et al., 1998) and the 1D fast Fourier 

transform integration technique (Haagmans et al., 1993). The integration parameters of the 

Featherstone et al. (1998) modified kernel were chosen equal to those used in the 

computation of NZGeoid09: degree of modification L=40° and integration cap size 0ψ =2.5°.  

See Claessens et al. (2011) for the optimisation tests that were performed as a justification of 

the parameter selection. The residual quasigeoid undulations ζ  computed from sphNZg g∆ −∆  

were then compared against the residual quasigeoid undulations ζ obtained from the three 

residual gravity data sets  NZ sphg g∆ −∆ , ellNZg g∆ −∆  and NZ ellg g∆ −∆  , respectively. 

Consequently, the differences exhibit the impact of the GGM reference field variants on the 

results of RCR-based quasigeoid computations. 

 

Fig. 4A and B show the differences between the residual gravity fields sphNZg g∆ −∆  and 

NZ sphg g∆ −∆   (= area mean effect) and the differences between sphNZg g∆ −∆  and 

ellNZg g∆ −∆ (= ellipsoidal effect). The two effect grids clearly differ in terms of spectral 

content, as already seen in Fig. 2A and 2B. The area mean effect (Fig. 4A) exhibits short-

wavelength patterns while the ellipsoidal effect (Fig. 4B) features long- and medium-

wavelength structures. The maximum signal strengths, however, are approximately the same 

for both effects.  

 

The area mean effect on residual quasigeoid heights  

 
am
NZδζ  = ζ ( sphNZg g∆ −∆ ) – ζ ( NZ sphg g∆ −∆ )     (10) 

 



varies between -4 and 3 mm (Fig. 4C, and Table 5).  The ellipsoidal effect on the quasigeoid 

  
ell
NZδζ =  ζ ( sphNZg g∆ −∆ ) – ζ ( ellNZg g∆ −∆ )     (11) 

 

shows amplitudes between -12 and 31 mm (Fig. 4D, and Table 4). The ellipsoidal effect has a 

much stronger impact on the quasigeoid heights because of its medium-wavelength patterns: 

In Stokesian integration, even small amplitudes of 0.1-0.2 mGal accumulate quickly to 

quasigeoid signals at the cm-level, because larger areas of cells are subject to similar gravity 

effects.  The amplitudes of the ellipsoidal effect are significant for cm-quasigeoid modelling. 

Though the area mean effect is of little relevance with the grid resolution used here (1 min) it 

will exhibit larger amplitudes with coarser grid resolutions.  

 

4.3.2 Direct transformation of GGM gravity differences to quasigeoid heights 

 

As an alternative to the above experiment, we used FFT1Dmod for a direct transformation of 

(i) area mean effect  sphsphg g∆ −∆  (Fig. 4A) and (ii) the ellipsoidal effect ell sphg g∆ −∆  (Fig 

4B) to quasigeoid heights ζ( sphsphg g∆ −∆ ), ζ( ell sphg g∆ −∆ ), respectively.  Using the same 

Stokesian integration parameters as before, the resulting quasigeoid heights are almost the 

same as the ones depicted in Figs 4C and 4D [The RMS of the differences ζ( sphsphg g∆ −∆ ) 

and am
NZδζ  is 0.3 mm and those of the differences ζ( ell sphg g∆ −∆ ) and ell

NZδζ is 0.5 mm]. Given 

that Stokesian integration is a linear mathematical operation, this result is within the 

expectations. It corroborates the correctness of the previous results in Section 4.3.1. 

 

As a final test,  we applied the Stokesian integration to all of the gravity anomaly differences 

listed in Table 3, yielding the quasigeoid equivalent of (i) the area mean effect ζ( 

sphsphg g∆ −∆ ), (ii) the ellipsoidal effect ζ( ell sphg g∆ −∆ ) and (iii) the ellipsoidal area mean 

effect ζ( sphellg g∆ −∆ ) for the test areas New Zealand and Himalayas at grid resolutions of 1, 

2 and 4 min. From Table 5 it is seen that both the area mean and ellipsoidal effect can reach 

signal strengths at the cm-level in mountainous areas when a grid resolution of 2 min (or 

coarser) is used. With 1 min grids, the ellipsoidal quasigeoid effect is still at the cm-level, 



while the impact of the area mean effect on the quasigeoid heights may be negligible in 

practice. 

 

It should be noted that the study by Hipkin (2004) also investigated how the ellipsoidal effect 

translates into quasi/geoid heights. In contrast to our study, Hipkin applied the method of 

spherical harmonic analysis to convert a global grid of the ellipsoidal effect on gravity 

anomalies into a spherical harmonic representation. He then converted the spherical harmonic 

coefficients of the ellipsoidal gravity effect to geoid heights (cf.  Hipkin 2004, p. 176) and 

found amplitudes of ~0.6-0.7 m and a standard deviation of ~0.2 m (cf.  Hipkin 2004, p. 177).  

 

However, Hipkin’s results are not in contradiction to the cm-amplitudes of the ellipsoidal 

quasigeoid effect reported in Table 5. Contrary to Hipkin (2004), our analysis and results are 

based on Stokesian integration using a modified integration kernel (Featherstone et al., 1998) 

along with a cap size 0ψ =2.5°. The limitation of the integration area acts as a high-pass filter 

(cf. Vaníček and Featherstone, 1998) that reduces the influence of any long-wavelength 

signals in the gravity anomalies. Importantly, this procedure also reduces the ellipsoidal 

effect which possesses significant power in the long-wavelengths (cf. Hipkin, 2004, p. 176). 

In other words, Stokesian integration with modified kernels suppresses large parts of the 

ellipsoidal effect, which can be considered a desirable side effect.  If Stokesian integration 

with the unmodified (original) Stokes’s kernel (e.g., Torge 2001, p.282) and a cap size 

0ψ =180° was used to convert a global grid of ellipsoidal gravity effect to quasi/geoid heights, 

the ellipsoidal effect would fully propagate into the quasi/geoid solution, akin to Hipkin’s  

results. 

 

5. Conclusions and recommendations 

 

This study investigated different ways to compute gravity anomaly reference fields from a 

GGM and introduced a new approach for the computation of gravity anomaly area means in 

ellipsoidal approximation. This approach is based on the idea to correct area mean gravity 

anomalies in spherical approximation by the ellipsoidal effect. The proposed method, called 

the three-grid-approach, works because the difference among point gravity data in ellipsoidal 

and spherical approximation is largely independent of the data type (area mean or point 

value). The results were verified by ellipsoidal area mean values obtained from a very fine 



grid of point values of gravity anomalies in ellipsoidal approximation, that was sampled 

down and compared with results from the three-grid-approach. The mutual agreement was 

below 2 μGal (RMS), giving a strong indication of the high precision of both computations.  

The proposed approach to compute GGM gravity as ellipsoidal area means is straightforward 

from a computational perspective, solely requiring the computation of three gravity anomaly 

grids. This can be done by means of the publicly available spherical harmonic synthesis 

software harmonic_synth without modifying the code. 

 

As a second aspect of this study, amplitudes and patterns of the ellipsoidal effect and area 

mean effect were analysed for regions with different topography, helping to assess signal 

strengths of both effects. It was found that the ellipsoidal effect may exhibit amplitudes of 

~0.5 mGal for rugged terrain with maximum values of about 1.5 mGal in the high Himalaya 

mountains. These values are largely independent of the grid resolution.  The maximum 

amplitudes of the area mean effect and ellipsoidal effect are similar for 1 min grids. With 

coarser grid resolution, however, the area mean effect may exhibit signals of up to several 

mGal, depending on the ruggedness of the gravity field. While high-frequency patterns are 

the dominant feature of the area mean effect, long- and medium-wavelength structures 

prevail in the ellipsoidal effect grids. 

 

Given the variety of error sources a gravimetric geoid computation may be affected by (e.g., 

Featherstone et al., 2001), a reference field preparation in terms of ellipsoidal point values 

will mostly be sufficient when high-resolution 1 min grids are used. It is the high grid 

resolution that keeps the impact of the area mean effect small.  It was shown that – with 2 

min grid resolution or coarser – both the area mean and the ellipsoidal effect may translate 

into quasigeoid effects at the cm-level in rugged terrain.  In a ‘classical’ reference field 

preparation (either in terms of gravity area means in spherical approximation or point gravity 

in ellipsoidal approximation), at least one of the effects would propagate into the RCR 

quasigeoid solution. The proposed gravity representation ‘ellipsoidal area means’ accounts 

for the ellipsoidal and area mean effect at the same time. This avoids contamination of the 

gravity anomaly reference field in a systematic manner, by error patterns visible in Fig. 4.  

 

The ellipsoidal area means approach may also be of some value for the validation of GGMs 

(e.g., space-collected models from recent satellite gravity field missions) from observed 

surface gravity if available in terms of area mean values. GGM ellipsoidal area mean gravity 



anomalies are expected to approximate area means of observed surface gravity more closely 

than any of the other three representations (GGM ellipsoidal point values, GGM spherical 

area means, or GGM spherical point values), allowing better GGM validation. 
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Fig. 1. A: Topography of the test area Southern Alps, New Zealand (from the Shuttle Radar Topography 

Mission SRTM global elevation model, cf. Jarvis et al., 2008) (units in m), B: EGM2008  area mean values 

sphg∆  (1´ cells, degree 2..2160) in spherical approximation in the test area. (units in mGal). 
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Fig. 2. A: Area mean effect (differences sphg∆ – sphg∆  between area mean values and point values of gravity 

anomalies, both in spherical approximation). B: Ellipsoidal effect (differences ell sphg g∆ −∆  among gravity 

anomalies in ellipsoidal and in spherical approximation, both in terms of point values). Units in mGal. 
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Fig. 3. A: Ellipsoidal area mean effect (differences sphellg g∆ −∆ ). B: Differences ellg∆ (three-grid- approach)  

MINUS  ellg∆ (fine-grid-approach). Units in mGal. Note the different scales used for panel A and B.
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Fig. 4. A: area mean gravity effect [= residual gravity anomaly field differences sphNZg g∆ −∆  MINUS 

( NZ sphg g∆ −∆ )];  B: ellipsoidal gravity effect [= residual gravity anomaly field differences sphNZg g∆ −∆  

MINUS ( ellNZg g∆ −∆ )];  C: area mean quasigeoid effect am
NZδζ  D: ellipsoidal quasigeoid effect ell

NZδζ . Units 

in mGal in panels A and B, and m in panels C and D. 



 

Table 1.  Grid specifications for the verification of the three-grid-approach in the computation area bounded by 

167° ≤ λ ≤ 169° and -46°≤ ϕ ≤-44°. 

Gravity type Eq. res Number of points Required for  

ellg∆  (3) 3˝ 2401x2401 fine-grid-approach 

ellg∆  (3) 1´ 121x121 three-grid-approach 

sphg∆  (2) 1´ 121x121 three-grid-approach 

sphg∆  (6) 1´ 121x121 three-grid-approach 

 

Table 2. Descriptive statistics of the area mean effect sphsphg g∆ −∆ , the ellipsoidal effect ell sphg g∆ −∆  (in 

terms of point values), the ellipsoidal area mean effect sphellg g∆ −∆  and the residual differences  
3grids

ellg∆  

(three-grid-approach) MINUS  
finegrid

ellg∆ (fine-grid-approach) in the computation area bounded by 167° ≤ λ ≤ 

169° and -46°≤ ϕ ≤-44° (units in mGal). 

Effect Min Max Mean RMS 

sphsphg g∆ −∆  -0.671   0.681   0.0008 0.1446 

ell sphg g∆ −∆  -0.617   0.298   0.0265 0.1806 

sphellg g∆ −∆  -0.810  0.760   0.0274 0.2345 

3grids finegrid

ell ellg g∆ −∆  -0.018   0.014    0.0000      0.0016 



 

Table 3.  Descriptive statistics of area mean effect sphsphg g∆ −∆ , the  ellipsoidal effect ell sphg g∆ −∆  and  

and the ellipsoidal area mean effect sphellg g∆ −∆  on GGM gravity anomalies in the New Zealand (165 ° ≤ λ ≤ 

185° and -50°≤ ϕ ≤-30°) and Himalaya mountains (80° ≤ λ ≤ 100° and 25°≤ ϕ ≤ 45°) test areas at various grid 

resolutions (units in mGal). 

 

Grid 

resolution 

Effect New Zealand Himalaya mountains 

Min Max RMS Min Max RMS 

1 min 
sphsphg g∆ −∆  -0.88 0.71 0.04 -4.18 3.72 0.32 

 ell sphg g∆ −∆  -0.62 0.58 0.09 -1.64 1.47 0.21 

 
sphellg g∆ −∆  -0.87 0.86 0.10 -5.07 3.38 0.39 

2 min 
sphsphg g∆ −∆  -3.48 2.78 0.14 -16.49 14.53 1.27 

 ell sphg g∆ −∆  -0.62 0.58 0.09 -1.63 1.44 0.21 

 
sphellg g∆ −∆  -3.44 2.90 0.17 -17.05 14.23 1.29 

4 min 
sphsphg g∆ −∆  -12.16 10.62 0.55 -63.29 51.51 4.86 

 ell sphg g∆ −∆  -0.62 0.55 0.09 -1.62 1.40 0.21 

 
sphellg g∆ −∆  -12.17 10.74 0.56 -63.85 51.09 4.87 

 
 

Table 4. Area mean effect, ellipsoidal effect and ellipsoidal area mean effect of the GGM-reference field on the 

quasigeoid heights. Statistics refers to land points of New Zealand; units in m. 

Effect Min Max Mean RMS 

Area mean effect  am
NZδζ   -0.004 0.003 0.000 0.001 

Ellipsoidal effect    ell
NZδζ  -0.012 0.031 0.010 0.012 

Ellipsoidal area mean effect    

ζ ( sphNZg g∆ −∆ )–ζ ( NZ ellg g∆ −∆ ) 

-0.013 0.031 0.010 0.012 

 



Table 5.  Descriptive statistics of area mean quasigeoid effect ζ( sphsphg g∆ −∆ ),, the ellipsoidal quasigeoid 

effect ζ( ell sphg g∆ −∆ ) and the ellipsoidal area mean quasigeoid effect ζ( sphellg g∆ −∆ ) in the New Zealand 

and Himalaya mountains test areas at various grid resolutions (units in mm). 

 

Grid 

resolution 

Effect New Zealand Himalaya mountains 

Min Max RMS Min Max RMS 

1 min ζ( sphsphg g∆ −∆ ) -4 3 0.2 -16 12 1.3 

 ζ( ell sphg g∆ −∆ ) -12 30 9.9 -66 67 16.0 

 ζ( sphellg g∆ −∆ ) -13 31 9.9 -73 69 16.0 

2 min ζ( sphsphg g∆ −∆ ) -14 9 0.8 -62 47 5.0 

 ζ( ell sphg g∆ −∆ ) -12 30 9.9 -66 67 16.0 

 ζ( sphellg g∆ −∆ ) -18 33 9.9 -112 84 16.8 

4 min ζ( sphsphg g∆ −∆ ) -51 35 3.1 -239 172 19.4 

 ζ( ell sphg g∆ −∆ ) -12 30 9.9 -66 67 16.0 

 ζ( sphellg g∆ −∆ ) -54 39 10.4 -281 178 25.2 

 


