
Citation: Hirt C, Featherstone WE, Claessens SJ (2011) On the accurate numerical 
evaluation of geodetic convolution integrals, Journal of Geodesy, 85(8): 519-538. doi: 
10.1007/s00190-011-0451-5.  

  



On the accurate numerical evaluation of geodetic convolution 
integrals 
 
C. Hirt 
Western Australian Centre for Geodesy & The Institute for Geoscience Research 
Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia 
Fax: +61 8 9266 2703; Email: c.hirt@curtin.edu.au  
 
W.E. Featherstone 
Western Australian Centre for Geodesy & The Institute for Geoscience Research 
Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia 
Fax: +61 8 9266 2703; Email: w.featherstone@curtin.edu.au  
 
S.J. Claessens 
Western Australian Centre for Geodesy & The Institute for Geoscience Research 
Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia 
Fax: +61 8 9266 2703; Email: s.claessens@curtin.edu.au  
 
Abstract  

In the numerical evaluation of geodetic convolution integrals, whether by quadrature or 
discrete/fast Fourier transform (D/FFT) techniques, the integration kernel is sometimes 
computed at the centre of the discretised grid cells.  For singular kernels - a common case in 
physical geodesy - this approximation produces significant errors near the computation point, 
where the kernel changes rapidly across the cell.  Rigorously, mean kernels across each 
whole cell are required.  We present one numerical and one analytical method capable of 
providing estimates of mean kernels for convolution integrals.  The numerical method is 
based on Gauss-Legendre quadrature (GLQ) as efficient integration technique.  The 
analytical approach is based on kernel weighting factors, computed in planar approximation 
close to the computation point, and used to convert non-planar kernels from point to mean 
representation.  A numerical study exemplifies the benefits of using mean kernels in Stokes’s 
integral.  The method is validated using closed-loop tests based on the EGM2008 global 
gravity model, revealing that using mean kernels instead of point kernels reduces numerical 
integration errors by a factor of ~5 (at a grid-resolution of 10 arc minutes).  Analytical mean 
kernel solutions are then derived for 14 other commonly used geodetic convolution integrals: 
Hotine, Eötvös, Green-Molodensky, tidal displacement, ocean tide loading, deflection-geoid, 
Vening-Meinesz, inverse Vening-Meinesz, inverse Stokes, inverse Hotine, terrain correction, 
primary indirect effect, Molodensky's G1 term and the Poisson integral. We recommend that 
mean kernels be used to accurately evaluate geodetic convolution integrals, and the two 
methods presented here are effective and easy to implement. 

Keywords: Convolution integrals, mean kernel, point kernel, numerical integration, Gauss-
Legendre quadrature, kernel weighting factor 
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1 Introduction 

Convolution integrals play an important role in geodesy, amongst many other disciplines.  
For instance, they establish the connection between numerous functionals of the Earth’s 
external gravitational field (e.g., Schwarz et al. 1990), but are also used in ocean tide loading 
computations (e.g., Bos and Baker 2005).  Convolution integrals can be computed by 
quadrature techniques (e.g., Lehmann 1997; Huang et al. 2000) in the space domain or by 
Discrete/Fast Fourier Transform (D/FFT) techniques in the frequency domain (e.g., 
Haagmans et al. 1993; Schwarz et al. 1990), but this is only a computational preference since 
both techniques are inevitably subject to approximation. This is because numerical 
integration requires discretisation of the observations or other data (herein called the 
functional) over small-as-possible surface elements (herein called cells) (cf. Heiskanen and 
Moritz 1967, p117; Torge 2001, p284).  For each cell, it is necessary to utilise representative 
estimates of both the functional and the integration kernel.  In general, this requires not only 
the functional, but also the kernel to be averaged over the surface area of each cell 
(Heiskanen and Moritz 1967, p119).  In other words, mean values of both the functional and 
the kernel across each cell are required. 

Sometimes, the point value of the kernel is evaluated at the centre of the cell, but – as 
we will show here – this may be a coarse approximation, especially for the singular 
convolution integrals commonly encountered in geodesy and other areas.  Particularly in the 
close vicinity of the computation point, the kernels in convolution integrals may change 
rapidly across the cell and can therefore not be approximated through centre-of-cell values 
with sufficient accuracy (Vaníček and Krakiwsky 1986, p543, Strang van Hees 1990, p238).  
Beyond a certain distance from the computation point, most geodetic kernels are reasonably 
constant over a cell so that centre-of-cell kernel values are a good enough approximation.  
However, if the kernel behaves in a rapidly varying way in other areas of the integration 
domain, then the techniques presented here should also be considered. 

Centre-of-cell kernel values may be sufficiently accurate if a suitably dense grid of 
the functional is used.  Densification of the functional field can be achieved through 
interpolation prior to the numerical integration.  However, this approach is not treated in the 
present paper because the additional computational requirements due to the grid densification 
may be significant compared to the mean kernel computation strategies presented here. 

As further justification, a recent textbook on geodesy does not fully acknowledge the 
necessity for the computation of mean kernel values by saying “For this purpose [of 
numerical integration], either a set of gridded point anomalies is formed from the observed 
[gravity field] data […] or mean values over surface blocks delineated by meridians and 
parallels are calculated.  The latter case also requires the integration of the Stokes or 
Vening-Meinesz function over the block.” (Torge 2001, p284).  However, also the first case 
requires the kernel to be integrated over the block, so as to avoid an unnecessary 
approximation (cf. Heiskanen and Moritz 1967, p119, Vaníček and Krakiwsky 1986, p543).  



In many studies concerned with the numerical evaluation of geodetic convolution 
integrals, the necessity for whole-of-cell mean values of the kernel (herein abbreviated to 
mean kernels) is rarely acknowledged, or at least the details of the computational algorithms 
are omitted or glossed over.  Exceptions are, e.g., Strang van Hees 1990; de Min 1994, who 
developed analytical approaches to compute mean kernels of Stokes’s function (also see 
Kearsley 1986; de Min 1996; Featherstone and Olliver 1997; Boyarksy et al. 2010).  
Numerical approaches for accurate evaluation of geodetic integrals were described, e.g., by 
Alberts and Klees (2004) and van Gysen (1994).  Alberts and Klees (2004) used Gaussian 
quadrature for evaluation of airborne gravity integrals and van Gysen (1994) describes a 
spline quadrature approach for evaluation of Stokes, Vening-Meinesz and terrain-related 
integrals. Other examples of works with focus on numerical integration methods for geodetic 
integrals are Klees (1996) and Lehmann (1997). 

Here we present and compare two general approaches for the improved numerical 
evaluation of convolution integrals by using mean kernels.  This can be applied to both 
quadrature and D/FFT techniques.  Initially, the paper sets a framework for the evaluation of 
geodetic convolution integrals and describes the numerical and analytical mean kernel 
integration in a generalised manner (Sect. 2).  As the numerical integration method, we use 
the efficient Gauss-Legendre quadrature (also see Appendix A1).  The analytical integration 
method is based on the concept of kernel weighting factors, which are derived based on 
planar kernel approximations.  In Sect. 3, a case study is presented for the accurate evaluation 
of Stokes’s integral.  This investigates the computation of mean kernel values for Stokes’s 
integral through analytical and numerical integration methods, and the results of both 
methods are compared to each other and to point kernels.  It relies on closed-loop tests with 
assumed error-free data to demonstrate the importance of mean kernels.  Section 4 then 
presents the analytical solutions for the mean kernel computation for 14 additional geodetic 
convolution integrals.  If an integral has been omitted from this list, then mean kernel values 
can be obtained using the principles presented herein.  

2 A generalised analytical approach for mean kernel computation 

2.1 Basic form of convolution integrals 

Many convolution integrals establish a relation between a functional ( , )f ϕ λ  that is available 
at points Q over a certain integration domain, and a target quantity ( , )P Pe ϕ λ  at a 
computation point P.  In generalised form and spherical approximation (as is often still used 
in many areas of geodesy), the convolution integral is (after van Gelderen 1991) 

( , ) ( , ) ( )P Pe k f Y d
σ

ϕ λ ϕ λ ψ σ= ⋅∫∫        (1) 

where k is some constant, σ is the integration domain (often the surface of a whole sphere) 
and dσ  are infinitesimally small surface compartments.  The quantity ( )Y ψ  denotes the 
integration kernel, which is a function of the spherical distance ψ  between computation point 
P and integration point Q.  The kernel ( )Y ψ  is mostly computed with closed-form 



expressions, but series expansions can also be used provided they are of sufficient accuracy.  
The spherical distance ψ  can be computed via (Strang van Hees 1990, p236): 

2 2 2sin sin sin cos cos
2 2 2

P Q P Q
P Q

ϕ ϕ λ λψ ϕ ϕ
− −     = +    

     
    (2) 

with ( , )P Pϕ λ  being the spherical coordinates of the computation point P and ( , )Q Qϕ λ  the 

spherical coordinates of the data point Q.  Alternatively to Eq. (2), the spherical cosine rule 
can be used, but which is subject to larger rounding errors for very small ψ. 

Practically, convolution integrals are evaluated numerically by means of summation 
of the products ( , ) ( )Q Qf Yϕ λ ψ⋅  over small-as-practically-possible yet finite cells, the size of 

which is often dictated by the spatial resolution of the functional under consideration.  The 
discretisation of the Earth’s surface is usually achieved by means of graticules along 
meridians and parallels, giving a subdivision into a total of n small, approximately 
rectangular cells iq  (Heiskanen and Moritz 1967, p118): 

1
( , ) ( , ) ( )

i

n

P P
i q

e k f Y dϕ λ ϕ λ ψ σ
=

= ∑∫∫ .       (3) 

However, other approaches have been used, such as concentric rings (Hammer 1939; 
Heiskanen and Moritz 1967, p118; Kearsley 1986) or map-projected grid lines (e.g., Hipkin 
1988).  Discretised numerical evaluation of Eq. (3) demands that both ( , )f ϕ λ  and ( )Y ψ  be 
integrated over each cell iq  so as to obtain the most representative values.  Frequently, the 

whole continuous functional ( , )f ϕ λ  is not available and mean values if  are computed as 

(weighted) average of the functionals available for the cell iq .  Therefore, the fully 
discretised convolution integral degenerates to (after Heiskanen and Moritz 1967, p118): 
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with  

'( ) cos
i

i i Q
q

d Y d Yψ σ ϕ ϕ λ= ≈ ∆ ∆∫∫ .       (5) 

where iY  is the mean value of the integral kernel across the area approximated with 

cos Qϕ ϕ λ∆ ∆  of cell iq  and 'Qϕ  is the latitude of the centre point 'Q  of the cell.  In the 

sequel, the index i will be dropped for kernels as it is clear that these refer to single cells.  The 
computation methods for the mean values if  of the gravity field functionals are not within 



the scope of the present study.  See, e.g., Tscherning (2003) for theoretical aspects of mean 
functional values and, e.g., Featherstone et al. (2010) and Claessens et al. (2011) for recent 
practical computations of mean gravity anomalies.  

2.2 The necessity for mean kernels 

From Eq. (5), it follows that mean kernel estimates Y  need to be utilised for each cell.  
Sometimes, the kernel ( )Y ψ , evaluated at the centre of the cell iq , is introduced as a first-
order estimate for the mean kernel 

( )Y Y ψ≈ ,          (6) 

but this is an approximation, which can be too crude at times.  According to Heiskanen and 
Moritz (1967, p119), such a centre-of-cell approximation is admissible under the condition 
that the integral kernel is “reasonably constant over the compartment”.  However, in the 
inner zone (this is the neighbourhood of the computation point), where many singular kernels 
vary rapidly across the cell, this centre-of-cell approximation is not sufficiently accurate.  For 
these cells, the mean kernel Y  must be calculated as an integral mean over the whole cell 
(e.g., Vaníček and Krakiwsky 1986, p543).   

For a cell iq  of size of λ∆  by ϕ∆ , bounded by meridians 1 2,λ λ  and parallels 1 2,ϕ ϕ  

( 1 2λ λ<  and 1 2ϕ ϕ< ), the mean kernel value is formally computed from (after Vaníček and 
Krakiwsky 1986, p543; de Min 1994): 

2 2

1 1

1( ) ( ) cosY u Y d d
λ ϕ

λ λ ϕ ϕ

ψ ϕ ϕ λ
σ = =

=
∆ ∫ ∫        (7) 

where u= 1 1 2 2( , , , )λ ϕ λ ϕ  is a vector containing the corner coordinates of the cell iq , ψ is the 

spherical distance between the computation point ( , )P Pϕ λ  and the integration point ( , )ϕ λ  

under evaluation and 'cos Qσ ϕ ϕ λ∆ = ∆ ∆  is the (approximated) surface area of the cell.  The 

cell boundaries u are computed from: 
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Basically, there are two different strategies capable of providing mean kernel estimates: 

• Numerical integration of the kernel ( )Y ψ  over a cell iq  is relatively straightforward.  

The kernel ( )Y ψ is computed at a number of evaluation points across the cell iq . The 
arithmetic or weighted average of these evaluations represents a numerical estimate for 
the mean kernel ( )Y u in cell iq .  One of the most efficient numerical integration 
techniques is the Gauss-Legendre quadrature technique, which uses a weighted average 
of appropriately selected evaluation points (see Sect. 2.3 and appendix A1).   



• Analytical integration: Because closed-form expressions of geodetic kernels are often 
nested combinations of trigonometric and logarithmic functions, the main difficulty in 
analytical integration arises from finding the antiderivative (cf. de Min 1994), if 
possible at all.  However, planar approximations of the geodetic kernels can be 
analytically integrated in most cases.  They are utilised here to derive so-called kernel 
weighting factors, which allow conversion from point values of the non-planar geodetic 
kernel to mean values (Sect. 2.4) 

2.3 Numerical mean kernel computation through Gauss-Legendre quadrature 

For the numerical computation of cell-mean kernels, a range of numerical integration 
methods can be used, such as the rectangular method, Simpson’s method, Monte Carlo 
integration, Gauss-Legendre Quadrature and others (e.g., Stark 1970; Abramowitz and 
Stegun 1972; Conte and de Boor 1972, Stoer and Bulirsch 1980, Hamming 1986).  The 
mean-value theorem for integration is routinely used to estimate an upper bound of the error 
committed in the numerical integration.  

Gauss-Legendre Quadrature (GLQ) is used here because it belongs to the most 
efficient numerical integration techniques (e.g., Stark 1970, Sormann 2009), in that, only a 
small number of evaluation nodes is needed for a rapid convergence against the ‘true’ mean 
value.  In the geodetic context, GLQ has been applied, e.g., by Alberts and Klees (2004) and 
Lehmann (1997) for the evaluation of surface integrals; by Asgharzadeh et al. (2007), Wild-
Pfeiffer (2008) and Sampietro et al. (2007) for forward modelling of gravity effects generated 
by geometric bodies, and by Makhloof and Ilk (2008) for the computation of truncation 
coefficients in gravimetric terrain effect computations. 

 GLQ uses specially selected evaluation points at which the geodetic integral kernel is 
computed and weighted to give highly-accurate mean kernel estimates.  The evaluation points 
are the zero-crossings of the Legendre polynomials (e.g. Hamming 1986, p455), transformed 
to the integration domain [ 1 2λ λ ] × [ 1 2ϕ ϕ ].  GLQ numerical mean kernels are computed 
through (see Appendix A1 for a derivation): 

 , ' , '
1 1

1 ( ( , ))
n m

GLQ i j P P Q j Q i
i ji j

Y w w Y
w w

ψ ϕ λ ϕ λ
= =

= ∑∑∑
     (9) 

where n=m is the quadrature degree, iw , jw  are the so-called Gaussian weights and 

( ' , 'Q i Q jϕ λ ) are the evaluation points, the locations of which correspond to the zero-crossings 

of the Legendre polynomials (see Appendix A1 and Fig. 1).  The computation of the 
Gaussian weights iw , jw  and of the coordinates ( ' , 'Q i Q jϕ λ ) is detailed in Appendix A1.  For a 

GLQ quadrature degree n, a total of n2 point evaluations of the geodetic kernel ( )Y ψ  are 
carried out.  The convergence behaviour of GLQ mean kernels is further investigated in our 
case study on Stokes’s integral (Sect. 3). 

2.4 Analytical mean kernel computation through kernel weighting factors 



A pragmatic approach to the analytical computation of cell-mean values of any arbitrary 
kernel ( )Y ψ  uses the planar approximation of the convolution integral, in the vicinity of the 
computation point for rapidly varying kernels.  For many geodetic convolution integrals, 
planar forms have already been published (e.g., Schwarz et al. 1990; Sideris and Li 1993; El 
Habiby 2007) and these will be utilised here to aid in finding analytical expressions for mean 
kernels; if not, new derivations are presented (Sect. 4).  Importantly, we do not use the planar 
approximations as a substitute for the spherical kernels; the only purpose of the planar forms 
is to facilitate the conversion from point to cell-mean kernels. 

The approach presented next is an extension of the works of Strang van Hees (1990) 
and de Min (1994); also see Featherstone and Olliver (1997).  To yield mean kernel 
estimates, Strang van Hees (1990) and de Min (1994) analytically integrated the planar 
approximation of Stokes’s function.  Strang van Hees (1990) used a 1D-analytical integration 
(1D-AI) approach, assuming square-shaped cells, while de Min (1994) presented a 2D-
analytical integration (2D-AI) approach that is more generalised.  Here, we adopt the 2D-AI 
that properly accounts for the possibility of rectangularly shaped cells in areas of high 
latitude, giving more accurate results (Sect. 3.5).  The 2D-AI is combined with the kernel 
weighting factors (ratio between mean and point kernels) introduced by Strang van Hees 
(1990).   

For the planarisation, we introduce right-rectangular coordinates ( , )x y  that describe 
distances between the computation point P and the data points Q in planar approximation, 
while also accounting for meridional convergence: 

( ) cos ,

.
Q P Q

Q P

x
y

λ λ ϕ

ϕ ϕ

= −

= −
         (10) 

The origin of the right-rectangular coordinate system is the computation point P.  Let us 
further introduce the kernel ( , )K x y  as the planar approximation of the (usually spherical) 
kernel ( )Y ψ  in the integration domains where it must be adapted.  In planar approximation, 

mean kernel values ( )K v  are obtained as integral means across the cell (after Vaníček and 
Krakiwsky 1986, p543; de Min 1994): 

2 2

1 1

1( ) ( , )
x y

x x y y

K v K x y dxdy
b = =

= ∫ ∫         (11) 

where vector v= 1 1 2 2( , , , )x y x y contains the boundaries of cell iq  relative to the computation 
point P: 

1 ' 1 ' '

2 ' 2 ' '
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2 2
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2 2

Q P Q P Q

Q P Q P Q

y x

y x

ϕ λϕ ϕ λ λ ϕ

ϕ λϕ ϕ λ λ ϕ

∆ ∆
= − − = − −
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= − + = − +

     (12) 



The surface area of cell iq  in planar approximation is 2 1 2 1( )( )a x x y y= − − . As opposed to 
the often-spherical integral kernel ( )Y ψ , antiderivatives ( , )F x y  can be found (shown later) 
for the planar kernel ( , )K x y , allowing us to solve Eq.  (11) as: 

2
2

1
1

1( ) ( , )
xy

y x
K v F x y

a
=         (13) 

Importantly, our strategy is not to use planar mean kernel values ( )K v  as a complete 

substitute for mean kernels ( )Y u over the entire integration domain.  This is because the 
planarisation deteriorates the accuracy of the numerical integration at some distance from the 
computation point.  Instead, we apply the following ‘trick’ that accurately gives mean kernels 

( )Y u , while simultaneously preserving the characteristics of the original kernel ( )Y ψ .  

Applying a trivial multiplication, the mean kernel ( )Y u  is 

( )( ) ( )
( )

Y uY u Y
Y

ψ
ψ

=   , ( ) 0Y ψ ≠       (14) 

where ( ) / ( )Y u Y ψ is a factor expressing the ratio between the whole-of-cell-mean and centre-
of-cell point value kernel for cell iq .  This factor is termed the kernel weighing factor, also 
known as the integration weighting factor (cf. Featherstone and Olliver 1997, Strang van 
Hees 1990).  

The kernel weighting factor can analogously be computed in planar approximation, 
which is ( ) / ( , )K v K x y .  In cases when the planar kernel ( , )K x y  is a reasonably good 
approximation of ( )Y ψ  near the computation point P, the kernel weighting factors 

( ) / ( )Y u Y ψ  and ( ) / ( , )K v K x y  for a given cell are almost identical: 

( ) ( )
( ) ( , )

Y u K v
Y K x yψ

≈ .         (15) 

Confirmation of the validity of Eq. (15) will be obtained from the numerical tests in Sect. 3.   

Rearranging Eq. (15) allows convenient conversion from point kernels ( )Y ψ  to mean 

kernels ( )Y u  

( )( ) ( )
( , )

K vY u Y
K x y

ψ≈ .         (16) 

Consequently, kernel weighting factors ( ) / ( , )K v K x y  represent an efficient aid to scale from 

point kernels ( )Y ψ  to mean kernels ( )Y u , without the necessity to analytically integrate 
( )Y ψ  (see the numerical study in Sect. 3). It should be emphasised that the planar 



approximations are merely used as auxiliary means in the computation of kernel weighting 
factor and not as substitute for the original kernel. 

3 Case-study example: Stokes’s integral 

From a range of convolution integrals (cf. Sect. 4), we have selected Stokes’s integral for our 
case study, not only for reasons of convenience, but also because it is a commonly used 
geodetic convolution integral.  However, exactly the same principles can be applied to the 
other integrals in Sect. 4, or any other convolution integral for that matter.  The aims of this 
case study are to: (i) exemplify and validate the numerical and analytical computation of 
mean kernels, (ii) investigate the characteristics of mean kernels, and (iii) present closed-loop 
test results demonstrating that the computation of mean kernels does play a key role in the 
accurate numerical evaluation of convolution integrals.  

3.1 Stokes’ integral 

Stokes’s integral establishes the relation between gravity anomalies g∆  over the globe and 
the disturbing potential T at a point, which is converted to the geoid undulation N by Bruns’s 
formula.  Convolution integration of continuously given gravity anomalies g∆ , available for 
(infinitesimally) small compartments dσ , over the whole surface of the Earth σ  gives in 
spherical approximation (Heiskanen and Moritz 1967, p94): 

( )
4
RN g S d

σ

ψ σ
πγ

= ∆ ⋅∫∫         (17) 

where R is the mean Earth radius and γ  is normal gravity.  Stokes’s kernel ( )S ψ , or any 
modification thereof, takes the role of a weighting function for the gravity anomalies 
depending on their spherical distance ψ  from the computation point.  In closed form, 
Stokes’s kernel depends on ψ  by (Heiskanen and Moritz 1967, p94): 

21( ) 6sin( / 2) 1 5cos 3cos ln[sin( / 2) sin ( / 2)]
sin( / 2)

S ψ ψ ψ ψ ψ ψ
ψ

= − + − − + . (18) 

Stokes’s kernel is defined for 0 <ψ ≤π  but is singular for ψ = 0.  Notwithstanding, it is 
possible to compute the weight for the cell centred to the computation point (also called 
innermost zone) by alternative methods (Heiskanen and Moritz 1967, p122; Haagmans et al. 
1993, p240).  

Importantly, for small ψ of up to a few arc-degrees, Stokes’s kernel is dominated by 
its first term, which can be approximated as: 

1 1 2( ) .
sin( / 2)

stS ψ
ψ ψ

= ≈         (19) 

This approximate relation is used below as an aid in the analytical computation of mean 
kernels (also see Sect. 4). 



3.2 Analytical computation of mean Stokes kernels 

3.2.1 One-dimensional integration 

Based on 1D-AI across the cell, Strang van Hees (1990) published a simple analytical 
solution to compute estimates of mean kernels.  Using the crude approximation of Stokes’s 
kernel Eq. (19) in the inner zone, Strang van Hees (1990, p238) derived a simplified kernel 
weighting factor  

2ln
2SvHW ψ ψ δ

δ ψ δ
 +

=  − 
         (20)  

to convert point Stokes kernels ( )S ψ  to mean Stokes kernels SvHS  by 

( )SvH SvHS W S ψ= ,         (21) 

where δ  denotes the size of a square-shaped cell and ψ is the spherical distance between the 
innermost zone and the centre of the cell under evaluation.  For example, for a 1 arc-min cell 
adjacent to the innermost zone in the North-South-direction (ψ = δ  =1), the Strang van Hees 
factor SvHW  is 1.0986.  The Strang van Hees factor SvHW  was used for the computation of 
mean kernel estimates by Featherstone and Olliver (1997) in a study on validation of Stokes-
based geoid computation software.   

 An underlying assumption in Strang van Hees’s (1990) approach is regular cells of 
equal side length δ .  Since mean gravity anomaly data are usually provided in terms of 
latitude-longitude grids, this condition only holds at and near the equator.  Due to meridional 
convergence, such grid cells become a spherical rectangle at some distance from the equator.  
To work with grids at arbitrary latitudes, δ  must be approximated in some way, e.g., through 
ϕ∆  or λ∆ cosϕ.  Using δ = ϕ∆  in Eq. (20) is problematic insofar as cells adjacent to the 

innermost zone in the East and West directions, the denominator 2ψ - ϕ∆  becomes 0 (i.e., 
singular) at ±60 deg latitude (and negative for |ϕ| > 60 deg), preventing the computation of 

SvHW .  This problem could be circumvented by using, e.g., δ  = λ∆ cosϕ, but this is a coarse 
approximation in that it violates the rectangular-shaped cell requirement. 

3.2.2 Two-dimensional integration 

To more rigorously account for the [potentially] rectangular shape of ϕ∆ , λ∆  grid cells, 
mean kernel values are computed by means of the 2D-AI, shown in Sect. 2.4.  For the 2D-AI 
of mean Stokes kernels ( )S u , the planar approximation ( , )SK x y  of Stokes’s kernel ( )S ψ  is 

required.  With the 2/ψ approximation [Eq. (19)] and planar approximation of the spherical 

distance 2 2x yψ ≈ + , the planar Stokes kernel ( , )SK x y  reads: 



 
2 2

2( , )SK x y
x y

≈
+

 .        (22) 

where ( , )x y  are the planar coordinates of the evaluation point Q relative to the computation 
point P, as introduced in Eq. (10).  For a cell bounded by v= 1 1 2 2( , , , )x y x y , the mean kernel 

( )SK v  in planar approximation is computed using Eq. (13), to give: 

22 2 2
= = 11 1 1

1 1 2 1 1 2 2 2

1 1( ) = ( , ) = ( , )

1 [ ( , ) ( , ) ( , ) ( , )]

xx y y
S S S yx x y y x

S S S S

K v K x y dxdy F x y
x y x y

F x y F x y F x y F x y
x y

∆ ∆ ∆ ∆

= − − +
∆ ∆

∫ ∫
 (23) 

where x y∆ ∆  is the surface area of the cell and ( , )SF x y the antiderivative of the planar kernel 

( , )SK x y .  The antiderivative ( , )SF x y  is given by (de Min 1994): 

2 2 2 2( , ) 2[ ln( ) ln( )]SF x y x y x y y x x y= + + + + +  .    (24) 

With the weighting factor W = ( ) / ( , )S SK v K x y  [Eq. (16)], point Stokes kernels ( )S ψ  are 

converted to mean Stokes kernels ( )S u  by: 

( ) ( )S u WS ψ=           (25) 

where the vector u= 1 1 2 2( , , , )λ ϕ λ ϕ  contains the coordinates of the cell corners.  This 
transformation is possible because the first term in Stokes’s kernel (Eq. 18) is dominant in the 
inner zone.  Importantly, there is no need to analytically integrate the (complete) Stokes 
function to obtain analytical mean kernels. 

3.3 Numerical computation of mean kernels 

3.3.1 Computation variants 

GLQ (Sect. 2.3 and Appendix A1) is used as the first numerical integration method to yield 

whole-of-the cell estimates GLQS  of Stokes’s kernel: 

 , ' , '
1 1

1 ( ( , ))
n m

GLQ i j P P Q j Q i
i ji j

S w w S
w w

ψ ϕ λ ϕ λ
= =

= ∑∑∑
     (26) 

with n=m is the degree of the quadrature, iw , jw  are the Gaussian weights and ( ' , 'Q i Q jϕ λ ) are 

the zero-crossings of the Legendre polynomials, transformed to the integration domain 
[ 1 2λ λ ] × [ 1 2ϕ ϕ ].  For the computation of the Gaussian weights iw , jw  and of the coordinates 

( ' , 'Q i Q jϕ λ ) see Appendix A1.  



As a second method, a rectangular integration method, is included for comparison 
purposes.  This method, called herein equidistant numerical integration (ENI), is based on 
equally spaced evaluation points.  In comparison to GLQ, the kernel function values are not 
weighted.  The spacing between adjacent evaluation points is n-1 λ∆  in the East-West-
direction (n-1 ϕ∆  in the North-South-direction), and the distances of the outermost evaluation 
points from the cell boundary are (2n)-1 λ∆  and (2n)-1 ϕ∆ , respectively.  The arithmetic 
average of the n2 point kernel values (Eq. 18), as computed at the equally spaced evaluation 
points, is used as numerical mean kernel estimate: 

ENIS = ' '2
1 1

1 2 1 2 1( ( , , , ))
2 2

n n

P P Q Q
i j

i n j nS
n n n

ψ ϕ λ ϕ ϕ λ λ
= =

− − − −
+ ∆ + ∆∑∑ ,  n ≥ 1.  (27) 

 

Fig 1 Arrangement of evaluation points across the cell as a function of parameter n. Top: 
GLQ. Bottom: ENI. 

Figure 1 shows the arrangement of the GLQ and ENI evaluation points across the cell 
as a function of parameter n, ranging from 1 to 6.  Any cell shown represents the two-
dimensional integration domain [ 1 2λ λ ] × [ 1 2ϕ ϕ ].  Both methods have in common that the 

evaluation points never coincide with the cell boundaries 1 2, ,λ λ 1 2,ϕ ϕ .  In case n=1, the 
evaluation point is located at the cell centre and both methods are identical, which is 
degeneration to the approximation of using just the centre-of-cell point kernel as mean kernel 
estimate.  For n ≥ 2, the GLQ point arrangement deviates from the equally spaced ENI 
evaluation points, showing the locations of the (transformed) zero-crossings of the n-th order 
Legendre polynomial (cf. Appendix A1).   

To analyse the convergence behaviour of both methods, Eqs. (26) and (27) were 
evaluated as a function of n, ranging from 1 (centre-of-cell case) to 100, for a 1 arc-min cell 
in the direct vicinity of the innermost zone. Figure 2 shows the convergence error, given by   

/
ref

GLQ ENI GLQ
ref
GLQ

S S
S

ε −
= ,        (28) 



i.e., the relative differences of the mean kernel estimates with respect to a ‘reference’ mean 

value 
ref
GLQS  obtained from GLQ for n = 1000.  As expected, the finer the subdivision of the 

cell with evaluation points, the better the approximation of the ‘reference’ mean kernel value 
through the numerical mean kernel estimate of both methods (Fig. 2).   

GLQ offers substantially better convergence behaviour than ENI.  For instance, with a 
total of n2 = 9 evaluation points, GLQ mean kernel estimates fall below an arbitrary 
convergence threshold of ε = 10-4, while the ENI mean kernel estimates require about n2 ≈ 
1000 evaluation points for a similar level of approximation.  With n2 ≈ 100 evaluation points, 
GLQ mean kernel estimates approximate the reference value better than ε = 10-10, [more 
than] good enough for any practical application of geodetic integrals, while the ENI method 
reaches onlyε = 10-3.  This convergence experiment shows the superiority of the GLQ 
method over (unweighted and) equally spaced evaluation points, as it is the case with ENI.  
Therefore, GLQ is recommended for the numerical mean kernel computation and will be 
used throughout the sequel.  

 

Fig 2 Convergence error ε  (Eq. 28) as a function of the number of evaluation points n2. 
‘Reference’ mean kernel value = 7279.97437550 (from a degree n = 1000 GLQ, i.e., 
1,000,000 evaluation points). This test cell is located 1 arc-min North of the innermost zone. 
Kernel = Stokes’s, grid resolution = 1 arc-min, innermost zone latitude = -35 deg. 

3.3.2 Convergence behaviour 

For the practical application of GLQ numerical mean kernels, it is useful to define a 
convergence threshold.  A simple estimation of a suitable convergence threshold is as 
follows:  For remove-compute-restore (RCR) geoid computation, we assume that residual 
geoid undulation resN , computed from residual gravity anomalies resg∆ , is 5 m or smaller.  



[Given that resN  have a global RMS of ~2.5 m when a degree-20 reference field is removed, 
this assumption will cover the extreme case of most practical geoid computations.]  Then, a 
convergence error of ε =10-4 for the mean kernel at any cell of a gravity grid would translate 
into a geoid undulation of 0.5 mm [Eq. (17)].   

Depending on the spectral content of resg∆ with a high-degree reference field removed 

(e.g., 360 or 2190), the resN  will even be smaller, and so is the impact of the mean kernel 
convergence error on the geoid undulation.  We therefore consider a convergence threshold 
of ε =10-4 to be mostly acceptable for Stokes-based geoid computation, particularly when a 
high-degree reference field is removed.  The same threshold was proposed by de Min (1994).  
In the extreme case where Stokes integration is used without removing a reference field 
contribution from the gravity anomalies, the global geoid signal is ~30 m on average. This 
would require the use of a convergence threshold of ε =10-5 (Sect. 3.5). 

 

Fig 3 Convergence behaviour of GLQ numerical mean kernels.  For cells located 1, 3, 10, 30, 
60 and 120 arc-min North of the innermost zone, the convergence error between numerical 
mean kernel values and the reference value is shown as a function of the number of subcells 
used.  The six reference values originate from GLQ quadrature degree n = 1000. Kernel = 
Stokes’s, grid resolution = 1 arc-min, innermost zone latitude = -35 deg. 

The convergence behaviour of Stokes’s GLQ numerical cell-mean values is further 
analysed as a function of the cell distance ψ  from the innermost zone and the number of 
evaluation points n2 (Fig. 3).  Depending on the spherical distance ψ  between the cell and 
innermost zone, different GLQ degrees n are required for the estimates to fall below the 
threshold of 10-4 to 10-5.  In the direct vicinity of the innermost zone,  quadrature degrees n = 
3 to 5 (9..25 evaluation points) are required.  At 10-30 arc-min from the innermost zone, n = 
2 is required per cell.  At 30 arc-min and beyond, the centre-of-cell approximation (cf. Fig. 3, 



n =1) is good enough to meet the 10-4 criterion. Beyond 60 arc-min, the mean kernel 
approximation error is ~10-5 when using centre-of-cell kernels.  The convergence curves in 
Fig. 3 demonstrate that the computational requirements for GLQ numerical mean kernels are 
very low.  Our experiment here can easily be replicated for other integral kernels (cf. Section 
4). 

3.4 Comparison of the mean kernel computation methods 

Insight into the characteristics of mean kernels and the agreement between the two analytical 
solutions (Sect. 3.2) and the numerical solution (Sect. 3.3) is provided by a simple series of 
2D kernel computations.  For a regular 1 arc-min grid and an innermost zone latitude of Pϕ  = 

–35°, two-dimensional arrays of Stokes’s kernel were prepared in terms of (a) point values, 
(b) mean values from the GLQ numerical approach [Eq. (26)] withε =10-5, (c) the 1D-AI 
approach with δ = λ∆ cosϕ, [Eqs. (20) and 21)], and (d) the 2D-AI approach [Eqs. (22)-(25)].   

The point kernel array is shown in Fig. 4a and the relative differences between the 
GLQ numerical mean and point kernel in Fig. 4b, expressed as a percentage.  Figs. 4c and 4d 
show the relative differences between the 1D-AI and 2D-AI mean kernels and the GLQ mean 
kernels, which can be interpreted as approximation errors resulting from the analytical 
methods.  The innermost zone contribution originates from the Haagmans et al. (1993, p. 
240) solution and is thus the same for all kernel arrays.   

From Fig. 4b, the largest differences of ~5–6 % between mean and point kernels 
occur at the cells adjoining the innermost zone.  Within a 2 arc-min radius, the differences are 
about 1–2 % and quickly decrease to below 1 % beyond.  [The same results can also be 
deduced based on Fig. 3, from function values for n2 = 1].  Furthermore, the 2D-AI and GLQ 
numerical solutions are in good agreement (Fig. 4d), while the 1D-AI solution deviates (Fig. 
4c).  This is particularly visible for cells along the central parallel where the 1D-AI results 
differ from the numerical and 2D-AI solution by as much as ~9%.  However, this is not 
unexpected, recalling that the 1D-AI solution presumes square-shaped cells (Sect. 3.2.1), 
while the other mean kernel computation methods take into account the actual cell geometry.   

 



Fig 4 a: Point values of Stokes’s kernel, b: differences between GLQ numerical mean and 
point kernels, c: differences between 1D-AI and GLQ mean, d: differences between 2D-AI 
and GLQ mean. Differences are given in percent.  Each panel shows a 11 x 11 cell array of 1 
arc min x 1 min cells, centred on the innermost zone. Parallel of innermost zone is -35 deg.   

The percentage differences between the 2D-AI and GLQ numerical Stokes’s mean 
kernels are shown for a larger area (61 x 61 arc-mins) with a different scaling in Fig. 5.  The 
differences are largest near the innermost zone (~2 ×10-4), and are otherwise below or well 
below 10-4.  Most likely, they reflect the approximation errors of the 2D-AI mean kernel 
computation.  We consider this to be a satisfactory agreement between the two independent 
approaches.  

 

Fig 5  Percentage differences between 2D AI mean and numerical mean Stokes kernels for 61 
x 61 cells centred on the innermost zone.  Grid resolution = 1 arc min, central parallel = -35 
deg.   

 

Further insight into the characteristics of mean kernels is gained by a series of 
comparisons for various latitudes Pϕ  of the central meridian ranging from 0° to 70°.  What 
we term the mean kernel effect (i.e., the differences between GLQ numerical mean and point 



kernels) is shown in Fig. 6 as a percentage. [The 2D-AI mean kernels exhibit a very similar 
behaviour so are not depicted].  The differences gradually change from patterns with equal 
symmetry in North-South and East-West directions at the equator to patterns that exhibit two 
symmetry directions at high latitudes.  This indicates that the point kernel approximation will 
also introduce numerical integration errors that increase with latitude.  

 

 

Fig 6 Percentage differences between the numerical mean and point kernels with latitude (0°, 
20°, 35°, 45°, 55° and 70°).  Each panel shows 11 x 11 kernel arrays centred on the innermost 
zone.  For latitude = 70°, the maximum differences are -16.4 % (the cells adjoining the 
innermost zone).  Cell size = 1 arc min x 1 arc min, kernel = Stokes. 

 

Fig 7 Detailed results of the numerical mean kernel for 70° latitude.  Left: Cell adjoining the 
innermost zone in the Western direction.  Right: Cell adjoining the innermost zone in the 



Northern direction.  Note: Both cells have a pronounced rectangular shape due to meridional 
convergence.  Cell size = 1 arc min x 1 arc min. 

The mean kernel values are not always larger than point kernel values.  Higher than 
~43° in latitude, negative values occur in the central parallel direction, which become more 
pronounced towards the poles.  At 70° latitude, the differences are as large as –16.4%.  The 
reason for these negative differences is meridional convergence affecting the cell geometry, 
which is further explained by Fig. 7, showing dense grids of point kernel values over two 
cells adjacent to the innermost zone.   

For the cell West of the innermost zone (Fig. 7, left), the mean kernel is 16.4 % 
smaller than the point value at the cell centre.  For the cell North of the innermost zone (Fig. 
7, right), the mean kernel is 9 % larger than the point kernel.  The behaviour of mean kernels 
visible in Figs. 6 and 7 demonstrates that the 1D-AI approach by Strang van Hees (1990) is of 
less use to model the complex 2D difference patterns that occur between mean and point 
kernels at some distance from the equator.  Difference patterns very similar to those  shown 
in Fig. 7 are found for other grid resolutions, e.g. 0.1 arc min and 10 arc min.  

3.5 Numerical closed-loop tests 

To assess the performance of the mean kernel approaches presented in Sects 3.2 and 3.3, 
closed-loop tests were performed based on the EGM2008 (Pavlis et al. 2008) global 
geopotential model (GGM).  The idea behind a closed-loop test is to use self-consistent pairs 
of gravity GGMg∆  and geoid heights GGMN , which are derived from the same disturbing 
potential T (see e.g., Torge 2001, pp 215, 271 and 272 for the equations), for practical testing 
of Stokes’s integration (cf. Tziavos 1996; Novák et al. 2001; Featherstone 2002).  

We assume that the GGMg∆ , GGMN  pairs are self-consistent, in that, (hypothetically) 
error-free numerical evaluation of Stokes’s convolution integral would exactly reconstitute 
the geoid height GGMN  from the gravity anomalies GGMg∆ .  Naturally, any errors in the 
numerical evaluation of Stokes’s integral [e.g., due to the kernel type (point or mean values), 
discretisation of gravity anomalies, errors in the software implementation, limited 
computational precision, etc…] will cause differences between GGMN  and N( GGMg∆ ) from 
Eq. (17).  The main advantage of such a closed-loop test is that the results are not ‘swamped’ 
by noisy comparison data (e.g., observed GPS/levelling and gravity data).  As a disadvantage, 
the GGM-implied GGMg∆  and GGMN data is always band-limited due to the limited model 
resolution (maximum degree M), as such only capable of approximating the ‘real’ terrestrial 
gravity field to some extent.  With EGM2008, however, a GGM is now available that very 
closely approximates Earth’s gravity field over most regions (e.g., Newton’s Bulletin 2009).   

The sole parameter varied in our closed-loop tests is the mean kernel computation 
strategy, in the following ways: (i) point kernel, (ii) GLQ numerical mean (~10-5), (iii) 1D-AI 
mean, and (iv) 2D-AI mean.  Our closed-loop tests use EGM2008 on a global 10 arc-min grid 
(1080 × 2160 cells) within the spectral band 2…360.  The 10 arc-min grid resolution was 



selected such that the shortest wavelength components of the degree 21...360 truncation are 
not under-sampled. For the harmonic synthesis of GGMg∆  and GGMN , we used a slightly 
altered version of harmonic_synth.f (Holmes and Pavlis 2008).  The synthesis was performed 
in full spherical approximation, i.e., at the surface of a sphere with constant radius R = 
6378137 m, and in terms of coordinate grids equally spaced in terms of geocentric latitude.  
The same constant radius was used in the numerical evaluation of Stokes’s integral [Eq. 
(17)].  As a consequence, both the harmonic synthesis and the numerical integration are based 
on the same level of spherical approximation. 

For the numerical evaluation of Stokes’s integral, we use the in-house software 
FFT1Dmod2010 at the Western Australian Centre for Geodesy, which makes use of the 1D 
FFT approach (Haagmans et al. 1993).  A predecessor version was used for the computations 
of AUSGeoid09 (Featherstone et al. 2010) and NZGEOID09 (Claessens et al. 2011).  The 
computation approaches described in Sects. 3.2 and 3.3 were implemented in 
FFT1Dmod2010, allowing inter-comparisons between the mean kernel variants.  For the 
practical computations, we used the iVEC high-performance computational facility 
(http://www.ivec.org/), allowing us to accelerate the numerical tests. 

Table 1 reports the descriptive statistics from the closed-loop tests.  The differences 
using point kernels and GLQ mean kernels are shown in Fig. 8 (the results using 2D-AI are 
very similar so not shown).  The point kernel shows a global RMS of ±67 mm (Fig. 8a), 
while the GLQ numerical mean and 2D-AI mean kernels exhibit the lowest global RMS 
values of about ±14 mm (cf. Fig. 8b).  The equivalent performance of the numerical mean 
and 2D-AI mean kernels provides some evidence of the correctness of the results, and 
confirms indirectly the validity of Eq. (15).  From Table 1, it follows that the 1D-AI mean 
kernel breaks down for irregular (rectangular) cell geometries.  In conclusion, the numerical 
tests demonstrate the benefits of using mean kernels from 2D-AI or GLQ numerical 
integration. 

Table 1 Descriptive statistics of closed-loop geoid differences GGMN  – N(
GGM

g∆ ) for the 
global test area -89.9167 °≤ ϕ ≤89.9167 ° and -179.9167 ° ≤λ ≤179.9167 ° (1,080 ×2,160  = 
2,332,800 points, 10 arc-min resolution, EGM2008 2..360 truncation, GGMN  min/ max/ 
mean/ RMS:    -106.47/   86.65/  -0.81  /  28.99 m ).  Units in m. 

Kernel type Min Max Mean RMS 

Point ( centre-of-cell) -0.477    0.890    0.005   0.069 

10-5 GLQ numerical mean  -0.230    0.383    0.000   0.014 

1D-AI  mean -0.336    0.911    0.005   0.070 

2D-AI mean -0.221    0.433    0.000   0.014 

 



 

Fig 8 Closed-loop GGMN  – N( GGMg∆ ) geoid differences.  a) results of Stokes’s integration 
using point kernels, b) results of Stokes’s integration using GLQ mean kernels.  Mollweide 
projection (centred to 0°  longitude, meridians 30° apart), Units in metres.  



4 Mean kernel computation for other geodetic integrals 

This section attempts to provide a compendium of analytical solutions to the computation of 
mean kernels for a variety of other geodetic integrals.  The grouping is neither done 
according to the techniques used to collect the observations, nor in terms of the target 
quantity.  Instead, we arrange the integrals that are represented by similar or identical 
functions in the inner zone.  This is pragmatic because the approximations are identical or 
similar, and so are the antiderivatives ( , )F x y .  The antiderivatives ( , )F x y are given in Sect. 
4.7, which are the key for the analytical mean kernel computation as stated in Sect. 2 and 
shown in Sect. 3.   

We follow the conventions used in Sect. 2.  Quantities with over-bars denote mean 
values of the cell, ψ  is the spherical distance between the computation point P, and the data 
point Q under evaluation.  The rectangular coordinates ( , )x y  are the planar coordinates of 
the evaluation point Q relative to computation point P [Eq. (10)].  Vector u= 1 1 2 2( , , , )λ ϕ λ ϕ  

denotes the cell boundaries in terms of spherical coordinates and v= 1 1 2 2( , , , )x y x y  denotes the 
cell boundaries in planar coordinates.   

 We acknowledge that the deflection-geoid (Sect 4.2) and Vening-Meinesz and inverse 
Vening-Meinesz integrals (Sect 4.3) are not strictly defined as convolution integrals, because 
they are dependent on azimuth α .  Nonetheless, these integrals can be accurately evaluated 
with the analytical and numerical methods described in this paper. 

4.1 Stokes-type integrals 

These kernels have similar asymptotic representations for small values of ψ , which is /c ψ , 
where c denotes a constant that may be different for the individual integrals (cf. Table 2).   

4.1.1 Hotine’s integral 

Hotine’s integral (Hotine 1969, p311; also see Zhang 1993) establishes the relation between 
the geoid undulation N  and gravity disturbances gδ : 

 = ( )
4
RN A gd

σ
ψ δ σ

πγ ∫∫        (29) 

where 

1 1( ) = ln 1
sin( / 2) sin( / 2)

Aψ
ψ ψ

 
− + 

 
   (30) 

Because the first term in Stokes’s integral 1 ( )stS ψ  is the dominant term near the computation 
point P, the planar approximation ( , )AK x y  of Hotine’s kernel is identical with that of 

Stokes’s kernel [Eq. (22)]: i.e., ( , )AK x y = ( , )SK x y . 



4.1.2 Eötvös’s integral 

Eötvös’s integral (e.g., Zhang 1995) describes the relationship between the gravity anomaly 
g∆  and the vertical gradient of the disturbing potential rrT : 

 = ( )
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where 
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Again, the planar approximation of Eötvös’s kernel ( , )BK x y  is the same as Stokes’s kernel: 

( , )BK x y = ( , )SK x y . 

4.1.3 Green-Molodensky integral 

The Green-Molodensky integral is used to compute surface density ρ  from gravity 
anomalies g∆  (Hotine 1969, p346): 

2
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     (34)  

This kernel can be approximated by 6 /ψ  near the innermost zone.  In planar approximation, 
the Green-Molodensky kernel reads: ( , )GK x y =3 ( , )SK x y . 

4.1.4 Tidal displacement integral 

This establishes the relation between ocean tide height Z and a change in geoid undulation 
Nδ  that can be computed using (Vaníček and Krakiwsky 1986, p602): 

 ( )
2
WG RN L Zd
g σ

ρδ ψ σ≈ − ∫∫   (35) 

where G  is the Newtonian gravitational constant, Wρ  the density of water and g gravity, and  

 1/2( ) (1 cos )L ψ ψ −= − .  (36) 

A planar approximation is derived using the approximation 21 cos 0.5ψ ψ− ≈  for small ψ: 



2 2

1 1 1( , ) ( , )
0.5 2L SK x y K x y

x y
≈ =

+
. (37) 

The planar approximation ( , )LK x y  differs from Stokes’s ( , )SK x y  by a constant factor of 

1/( 2 ). 

4.1.5 Ocean tide loading integral 

According to Bos and Baker (2005), the gravity ocean tide loading (OTL) effect OTLgδ  can 
be computed using: 

( )OTL W
gg F Zd
M σ

δ ρ ψ σ= ∫∫   (38) 

where g is average gravity at the Earth’s surface, M is mass of the Earth, Wσ  is density of 
water, Z is the ocean tide (a complex number).  The kernel ( )F ψ  is the gravity Green’s 
function:  

' '

0
( ) ( 2 ( 2) ) (cos )n n n

n
F n h n k Pψ ψ

∞

=

= + − +∑  (39) 

where ' ',n nh k  are the load Love numbers of degree n and (cos )nP ψ  is the Legendre 
polynomial of degree n.  Those parts of ( )F ψ  that are independent of the load Love numbers 
can be expressed – after a correction accounting for the height of evaluation – in closed-form 
as (Bos and Baker 2005): 
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ψψ
ψ

+
= −

+ +
  (40) 

with /p h R= , h is the height of evaluation.  A planar approximation ' ( , )FK x y  for '( )F ψ  is 
found for the case h = 0, where Eq. (40) simplifies to '( ) 0.5 /F ψ ψ≈ −  near the computation 
point, allowing the analytical computation of mean kernel values (cf. Sect. 4.7).  The planar 
approximation ' ( , )FK x y  is related to the one for Stokes’s function by: ' ( , )FK x y = 

−0.25 ( , )SK x y .   

 For the case h ≠ 0, the planar approximation of Eq. (40) is not straightforward.  
However, the computation of mean kernel estimates is still possible by applying the 
numerical integration method described in Sect 2.3. 

 

4.2 Deflection-geoid integral 



This can be used for computation of geoid undulations N  from vertical deflections ( , )ξ η , 
which are typically available from satellite radar altimetry.  The deflection-geoid integral 
reads (Hwang 1998, p307): 

 = ( )( cos sin )
4
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σ
ψ ξ α η α σ

π
′ +∫∫  (41) 

where 

 ( ) = cot( / 2) 3 / 2sin( )C ψ ψ ψ′ − + . (42) 

and the quantity α  denotes the azimuth from the computation point to the data points.  The 
kernel ( )C ψ′  is approximated by 2 /ψ−  in the inner zone.  In planar approximation, Eq. (41) 
reads: 
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with the planar kernel elements 
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4.3  Vening-Meinesz-type integrals 

4.3.1 Vening-Meinesz’s integral 

This describes the computation of vertical deflections ( , )ξ η  from gravity anomalies g∆  
(Vening-Meinesz 1928, Heiskanen and Moritz 1967, p114, Torge 2001, p283): 
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which is the derivative of Stokes’s kernel ( )S ψ  with respect to ψ .  The planar 
approximation of ( )V ψ  is (Schwarz et al.  1990, p496, El Habiby 2007): 
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where the elements of the planar kernels read: 
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4.3.2 Inverse Vening-Meinesz integral 

This converts vertical deflections ( , )ξ η  to gravity anomalies g∆  (e.g., Hwang 1998, p306): 
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g H d
σ

γ ψ ξ α η α σ
π

′∆ +∫∫  (49) 

where  

 
2

cos( / 2) cos( / 2)[3 2sin( / 2)]( ) =
( / 2) ( / 2)[1 sin( / 2)]2sin 2sin

H ψ ψ ψψ
ψ ψ ψ

+′ − +
+

. (50) 

The ( )V ψ  and ( )H ψ′  kernels have the same asymptotic representation of 22 /ψ−  in 
the inner zone.  In planar approximation, the inverse Vening-Meinesz formula reads: 

 = ( , ) ( , )
4 H Hg K x y K x y dxdyξ η

σ

γ ξ η
π ′ ′∆ +∫∫  (51) 

The planar kernels of the Vening-Meinesz and inverse Vening-Meinesz integral are identical: 
( , )HK x yξ
′  = ( , )VK x yξ  and ( , )HK x yη

′  = ( , )VK x yη . 

 

4.4 Inverse Stokes-type integrals 

4.4.1 Inverse Stokes integral 

The inverse Stokes integral (also called Molodensky’s integral) yields gravity anomalies g∆  
from geoid undulations N (Molodensky et al. 1962 p341, Zhang 1993, p43, Torge 2001, 
p285): 

 = ( )( )
16P Pg N E N N d

R R σ

γ γ ψ σ
π

∆ − − −∫∫  (52) 

with PN  the geoid undulation of the computation point and N  geoid undulation of the data 
points.  The Molodensky kernel reads in closed-form: 

 
3

1( ) =
( / 2)sin

E ψ
ψ

. (53) 



Using approximate relations [Eqs. (19) and (22)], the planar approximation ( )EK ψ  is: 

 2 2 3/2( , ) = 8( )EK x y x y −+ . (54) 

4.4.2 Inverse Hotine integral 

A similar integral is the inverse Hotine integral (also called the modified Molodensky 
integral) that converts geoid undulations N to gravity disturbances gδ  (Zhang 1993, p43): 

 = ( )( )
16P Pg N E N N d

R R σ

γ γδ ψ σ
π

+ − −∫∫  (55) 

For the kernel ( )E ψ  and its planarisation ( , )EK x y , see Eqs. (53) and (54). 

 

4.5 Terrain-related geodetic integrals 

Three important representatives of terrain effect integrals are the gravimetric terrain 
correction TCc , the primary indirect effect on the geoid indN  and Molodensky’s G1 term.  
These integrals are evaluated by means of digital elevation data.   

4.5.1 Terrain correction integral 

The planar approximation of the gravimetric terrain correction TCc  reads (e.g., Forsberg 
1984; Forsberg 1985; Torge 2001, p265, Schwarz et al. 1990):  

 21= ( )( )
2TC Pc G T l H H dxdy

σ
ρ −∫∫  (56) 

where ρ  is the [often-assumed constant] mass-density of the topography, PH  is the terrain 
height of the computation point, H  the terrain height of the data points, and:  

 2 2 2 3/2
3

1( ) = = ( )T l x y z
l

−+ + . (57) 

In less elevated terrain, T(l) is approximated linearly by (Schwarz et al. 1990, Torge 2001, 
p265):   

 2 2 3/2( , ) = ( )TK x y x y −+ . (58) 

If the 3D separation between the computation and functional points is used in 
mountainous terrain [Eq. (57) instead of Eq. (58)], the analytical solution of the kernel is 
obtained in analogy to that of the planar Poisson integral kernel (Eq. 64). 

4.5.2 Primary indirect effect integral 



The indirect effect of Helmert's second condensation reduction on the geoid can be expressed 
in planar approximation by (e.g., Vaníček and Kleusberg 1987; Sideris and She 1995): 

 2 3 3= ( )( )
6ind P P

G GN H T l H H dxdy
σ

π ρ ρ
γ γ

− − −∫∫  (59) 

where the kernel is the same as in Eq. (56). 

4.5.3 Molodensky’s G1 term integral 

In the computation of quasigeoid heights ζ via Stokes’s formula from gravity anomalies g∆ ,  
a correction called Molodensky’s G1-term is applied to the gravity anomalies g∆  (Torge 
2001, p 290): 

1( ) ( )
4
R g G S d

σ

ζ ψ σ
πγ

= ∆ + ⋅∫∫ .  (60) 

Molodensky’s G1-term is computed from (Heiskanen and Moritz 1967, p 310): 

 
2

1 0( )( )
2 P
RG T l H H gdxdy

σπ
= − ∆∫∫    (61) 

where the kernel function T given in Eq. (57) with 0 2 sin( / 2)l R ψ= .  Hence, the planar 

approximations are also identical.  It is acknowledged that other representations of the 1G -
term exist (e.g., Moritz 1980; Val’ko et al. 2008).  However, because the integral kernel of 
those other representations is the same as in Eq. (62), mean integral kernels can be obtained 
in complete analogy to the previous terrain effect integrals.  The same holds for the 
Molodensky 2G -correction term, which is given, e.g., by Val’ko et al. (2008).   

 

4.6 Poisson integral  

Poisson's integral is used for the upward continuation of gravity given on a boundary surface.  
The spherical approximation reads (Hotine 1969, p323, Torge 2001, p293, El Habiby 2007):  

 
2 2 2( )= ( )

4P
R r Rg T l gd

r σ
σ

π
−

∆ ∆∫∫  (62) 

where Pg∆  is the upward-continued gravity anomaly at point P , g∆  are gravity anomalies 
on the boundary surface, r is the  distance between centre of sphere R and point P  outside 
the sphere.  The planar approximation of Eq. (62) is (Bláha et al. 1996):  

 0
1= ( , )

2P Dg z K x y gdxdy
σπ

∆ ∆∫∫  (63) 



with 

 2 2 2 3/2
0( , ) = ( )DK x y x y z −+ +  (64) 

and constant 0z  denoting elevation (e.g., flight height). 

4.7 Antiderivatives: discussion and examples  

For any of the geodetic convolution integrals described above, Table 2 summarises the 
respective asymptotic representations, the elements of the planar kernel ( , )K x y  and their 
antiderivatives ( , )F x y .  Table 2 provides the information necessary to analytically compute 
mean kernel estimates for the accurate evaluation of the integrals in the inner zone.  The 
antiderivative for the planar Stokes kernel has been published by de Min (1994, p42) and for 
the terrain correction by Forsberg (1984, p49).  

 Following the general concept in Sect. 2 and the example given in Sect. 3, analytical 
mean kernel computations are three-step procedures:   

1. The planar kernel ( , )K x y  is analytically integrated using the antiderivative ( , )F x y  
over a given cell bounded by coordinates v= 1 1 2 2( , , , )x y x y .  This gives mean values of 

the kernel ( )K v  in planar approximation.   

2. The planar kernel is evaluated at the centre of the cell, giving point kernel values 
( , )K x y  in planar approximation.   

3. Kernel weighting factors ( ) / ( , )K v K x y  are applied to convert the point kernels to 
mean kernels.   

For terrain effect kernels (which are available in planar form), the kernel mean values ( )K v  
in planar approximation can be directly used as a replacement of the point values ( , )K x y .  
From Table 2, the geodetic kernels considered are represented in the inner zone through three 
different asymptotic functions: inverse distance (~1/ψ ), inverse square distance (~ 21/ψ ) 

and inverse cubic distance (~ 31/ψ  or ~ 31/ l );the higher the order of the asymptotic function, 
the larger the differences between mean and point kernels near the innermost zone. 
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Fig 9 Kernel weighting factors ( ) / ( , )K v K x y  for a) Stokes, b) Vening-Meinesz ξ- 
component, c) Vening-Meinesz η-component, d) Terrain correction, e) deflection-geoid ξ- 
component, f) deflection geoid η-component.  Latitude of central parallel is -35°, grid 



resolution is 1 arc-min.  Each pannel shows the innermost 11 x 11 cells centred on the 
computation point.  The innermost zone contributions are set to zero. 

 

To further illustrate this behaviour for some of the geodetic integrals compiled in 
Table 2, some kernel weighting factors ( ) / ( , )K v K x y  were computed and are shown in Fig. 
9.  For Stokes’s function (Fig. 9a), the maximum kernel weighting factor is 1.06, showing 
that point and mean kernels differ by as much as 6%.  For Vening-Meinesz’s kernel, the 
maximum kernel weighting factors are even larger (15%).  Relatively small maximum 
differences between mean and point kernels are found for the deflection-geoid kernel (about 
2%).  The terrain effect kernel weighting factors are as large as 50% near the innermost zone 
(Fig. 9d), which is related to the high-order of the asymptotic representation (cf. Featherstone 
and Olliver 1997). 

 

5 Summary, conclusions and recommendations  

We investigated the computation of whole-of-cell mean values of integration kernels in 
geodetic convolution integrals and demonstrated their benefits with a detailed geodetic case-
study on the numerical evaluation of Stokes’s integral.  The analytical approach computes 
kernel weighting factors through a 2D analytical integration of the integral kernel over the 
surface area of the cell.  The 2D analytical integration is performed with aid of planar 
approximations of the integral kernel.  Kernel weighting factors are used to convert point to 
cell mean values of the non-planar kernel.  The numerical approach is based on Gauss-
Legendre quadrature (GLQ).  This efficient numerical integration technique evaluates the 
kernel function at the zero-crossings of the Legendre polynomials and applies a special 
weighting scheme to yield accurate mean kernel estimates.  It was shown that the 
computational requirements in GLQ are very low, i.e., 4-9 evaluations per cell are necessary 
to obtain sufficiently accurate mean kernels. 

Mean kernels are a key issue in the accurate numerical evaluation of geodetic and 
other convolution integrals, as was demonstrated exemplarily by closed-loop tests for 
Stokes’s integral (Sect 3.5).  These tests were based on self-consistent sets of EGM2008 
gravity anomalies and geoid heights.  Compared to point kernel results, GLQ numerical and 
2D analytical integration of mean kernels reduced the closed-loop RMS differences by a 
factor of ~5.  The case study also assessed the performance of 1D and 2D analytical 
integration, showing the deficiencies of the 1D technique. 

Any of the mean kernel approaches described here approximate ‘true’ mean kernels to 
some extent.  With numerical mean kernels, the level of approximation is related to the finite 
number of evaluation points.  With analytical mean kernels, the approximation originates 
from the planarisation of the kernel in the vicinity of the computation point.  However, the 
equally good performance of the numerical and 2D analytical integration mean kernel gives 



strong evidence that these approximations are acceptable for accurate practical evaluation of 
convolution integrals. 

As a general recommendation, mean kernels should be routinely preferred over point 
(centre-of-cell) kernels to accurately evaluate convolution integrals.  The numerical and the 
2D analytical integration approach are well-suited mean kernel computation methods.  Both 
are easy to implement in geodetic convolution integral software and the additional 
computation time is very low.  Such a use of mean kernels avoids one unnecessary 
approximation in the numerical evaluation of convolution integrals. 
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Appendix A1: Gauss-Legendre quadrature 

Gauss-Legendre quadrature (GLQ; also abbreviated to Gaussian quadrature) is a numerical 
integration method that is suited to the approximate solution of definite integrals (e.g, Stark 
1970).  GLQ is one of the most efficient numerical integration methods, i.e., it needs a very 
small number of evaluation points for a rapid convergence of the numerical integration 
estimates (e.g., Sormann 2009).  GLQ uses specially selected evaluation points ix , at which 

the function f(x) is evaluated, and applies weights iw  to the function value ( )if x  (Stoer and 
Bulirsch 1980).   

Detailed descriptions of GLQ techniques are available in the mathematical literature 
(e.g., Stark 1970; Abramowitz and Stegun 1972; Conte and de Boor 1972; Engels 1980; Stoer 
and Bulirsch 1980; Hamming 1986).  Here we summarise GLQ for numerical evaluation of 
1D and 2D functions.  The description is similar to the one given by Wild-Pfeiffer (2008).  
Finally, the 2D GLQ is adapted for the computation of geodetic mean kernels. 

 

A1: 1D Gauss-Legendre quadrature 



Within the unit interval [-1 1], the integral of a function ( )f x  can be approximated by 
Gauss’s quadrature formula (Abramowitz and Stegun 1972, p 887) 

 
1

*

11

( ) ( )
n

i i
i

f x dx w f x
=−

≈∑∫         (A1) 

where n is the quadrature degree, *
iw  are weights and ix  is the i th zero-crossing of the n-th 

order Legendre polynomial ( )nP x .  The weights are computed by (e.g., Abramowitz and 
Stegun 1972, p887) 

 *
2 2'

2
(1 )[ ( )]i

i n i

w
x P x

=
−

        (A2) 

where ' ( )nP x is the first derivative of the n-th Legendre polynomial, which can be obtained 

from well-known recursive relations. The zero-crossings ix  of the Legendre polynomial can 
be found by solving for the eigenvalues of the symmetric tridiagonal Jacobi matrix (e.g., 
Golub and Welsch 1969), or by application of Newton-Raphson iteration on asymptotic 
approximations (e.g., Lether and Wenston 1995).  The zero-crossings ix  and weights *

iw  can 
be computed using publicly available software (e.g., van Winckel 2004).  Table A1 lists the 

*
iw  and ix  values for  quadratures with  n = 1 to 7. 

For the numerical evaluation within an arbitrary integration interval [a b], the integral 
of the function ( )f x is approximated by (Abramowitz and Stegun 1972, p 887): 

 
1

( ) ( )
b n

i i
ia

f x dx w f s
=

≈∑∫         (A3) 

where the transformed zero-crossings is  of the Legendre polynomials and weights iw  are 
computed through linear mapping from unit interval [-1 1] to interval [a b] (after Abramowitz 
and Stegun 1972): 

 
2 2i i

b a b as x− +
= +         (A4) 

 *

2i i
b aw w−

=          (A5) 

Table A1 Zero crossings ix  and weights *
iw  for Gauss-Legendre quadratures to degree 7 (cf. 

Abramowitz and Stegun 1972, p 916; Stark 1970 p 224). Values rounded to 10 decimals. 

Degree of quadrature n zero crossings ix  weights *
iw  

1 1x  = 0.0000000000 *
1w = 2.0000000000 



2 2x− = 1x = 0.5773502692 * *
1 2w w= = 1.0000000000 

3 3x− = 1x = 0.7745966692 

2x =0.0000000000 

* *
1 3w w= = 0.5555555556 

*
2w  =0.8888888889 

4 4x− = 1x = 0.8611363116 

3x− = 2x =0.3399810436 

* *
1 4w w= = 0.3478548451 

* *
2 3w w= = 0.6521451549 

5 5x− = 1x = 0.9061798459 

4x− = 2x = 0.5384693101 

3x =0.0000000000 

* *
1 5w w= = 0.2369268851 

* *
2 4w w= = 0.4786286705 

*
3w =0.5688888889 

6 6x− = 1x = 0.9324695142    

5x− = 2x = 0.6612093865    

4x− = 3x =0.2386191861    

* *
1 6w w= = 0.1713244924 

* *
2 5w w= = 0.3607615730 

* *
3 4w w= = 0.4679139346 

7 7x− = 1x = 0.9491079123    

6x− = 2x = 0.7415311856    

5x− = 3x =0.4058451514    

4x =0.0000000000       

* *
1 7w w= = 0.1294849662 

* *
2 6w w= =  0.2797053915 

* *
3 5w w= = 0.3818300505 

*
4w =0.4179591837 

 

A2: 2D Gauss-Legendre Quadrature  

When applied to 2D numerical integration, GLQ is sometimes also named cubature (e.g., 
Stroud 1971, Engels 1980).  Using the unit square [-1 1] × [-1 1] as the integration domain, 
the double integral of the function ( , )f x y  is approximated as (Stroud 1971, Wild-Pfeiffer 
2008): 

 
1 1

* *

1 11 1

( , ) ( , )
n m

i j i j
i j

f x y dxdy w w f x y
= =− −

≈∑∑∫ ∫       (A6) 

where  n is the degree of the cubature in x, m is the degree of the cubature in y (for simplicity, 
we use n = m), ix  is the i -th zero-crossing of the n-th order Legendre polynomial ( )nP x , iy  is 

the j -th zero-crossing of the n-th Legendre polynomial ( )nP y  and *
iw , *

jw  are the weights 



(Eq. A2 and Table A1).  In analogy to the 1D case, the integral of the function ( , )f x y can be 
computed for arbitrary integration domains [a b] × [c d] using 

 
1 1

( , ) ( , )
b d n m

i j i j
i ja c

f x y dxdy w w f s t
= =

≈∑∑∫ ∫       (A7) 

where is , jt  are the (transformed) zero-crossings and weights iw , jw . The quantities it  and 

jw  are obtained through [cf. Eqs (A4-A5)]: 

 
2 2j j

d c d ct y− +
= +         (A8) 

 *

2j j
d cw w−

=          (A9) 

Finally, the 2D GLQ is slightly modified so that it can be used in the numerical 
computation of cell-mean values of Stokes’s function and other geodetic kernels.  As 
integration domain [a b]× [c d], we use [ 1 2λ λ ]× [ 1 2ϕ ϕ ], bounding the cell under evaluation.  
The 2D function ( , )f x y  is the geodetic kernel function ( )Y ψ , which depends on the 
spherical distance ψ  [being a 2D-function of the computation point ( ,P Pϕ λ ) and evaluation 

point ( ' , 'Q i Q jϕ λ ), cf. Eq. 2].  The 2D GLQ for numerical computation of whole-of-cell mean 

kernels then reads: 

 
2 2

1 1

, ' , '
1 1

1( ) cos( ) ( ( , ))
n m

i j P P Q j Q i
i ji j

Y d d w w Y
w w

λ ϕ

λ ϕ

ψ ϕ ϕ λ ψ ϕ λ ϕ λ
= =
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  (A10) 

where the evaluation points ( ' , 'Q i Q jϕ λ ) located inside the integration domain [ 1 2λ λ ] × [ 1 2ϕ ϕ ]. 

The coordinates ( ' , 'Q i Q jϕ λ ) are computed as a function of the cell boundaries ( 1 2, ,λ λ 1 2,ϕ ϕ ) 

and as a function the zero-crossings ix , jy  of the n-th order Legendre polynomial through: 

 

2 1 2 1
'

2 1 2 1
'

2 2

2 2

Q i i

Q j j

x

y

λ λ λ λλ

ϕ ϕ ϕ ϕϕ

− +
= +

− +
= +

       (A11)  

The weights iw jw  are computed as a function of the cell boundaries ( 1 2, ,λ λ 1 2,ϕ ϕ ) and as a 

function of *
iw , *

jw  (Eq. A2): 

 

*2 1

*2 1

2

2

i i

j j

w w

w w

λ λ

ϕ ϕ

−
=

−
=

        (A12)  



It should be noted that the numerical integration result from Eq. (A10) is divided by the sum 
of the weights i jw w  applied, so that the cell-mean value of Stokes function is obtained (and 

not a volume).  The required GLQ parameters ix , *
iw  (and jy  , *

jw , respectively) can be 

computed with existing software.  Examples are the routine gauleg (Numerical Recipes in 
C, Press et al. 2002, p 152; Numerical Recipes in Fortran, Press et al. 2003, p 145), and the 
Matlab function lgwt (von Winckel 2004).  
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