

DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES

Michael Meindl(1), Rolf Dach(1), Stefan Schaer(2), Urs Hugentobler(3), Gerhard Beutler(1)
(1)Astronomical Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland, Email: meindl@aiub.unibe.ch

(2)Swiss Federal Office of Topography swisstopo, Seftigenstr. 264, P.O. box, 3084 Wabern, Switzerland
(3)Technische Universität München, Arcisstr. 21, 80333 München, Germany

ABSTRACT

Upcoming next-generation Global Navigation Satellite
Systems (GNSS) and planned updates of existing
systems call for multi-GNSS capable analysis tools.

The development or extensive update of a scientific
multi-GNSS software is a demanding task. In a first step
a list of requirements is compiled, taking into account
not only scientific but also technical needs. In the
following conceptual phase the fundamental software
architecture and a set of basic design principles are
specified. The last step is the actual programming of the
software.

The update of the Bernese GPS Software (BSW) to full
multi-GNSS capability is presented as real life example
for realizing the design principles in a software package.

1. INTRODUCTION

To scientifically profit the most from the availability of
different Global Navigation Satellite Systems (GNSS), a
combined and fully consistent analysis of tracking data
from all systems is essential.

This approach is already followed at the Center of Orbit
Determination in Europe1 (CODE) since May 2003 for
the analysis of data from the American Global
Positioning System (GPS) and the Russian Global
Navigation Satellite System (GLONASS). CODE is one
of the International GNSS Service (IGS) Analysis
Centers (AC). Reference [1] is a detailed status report
on CODE’s GNSS processing. All computations at
CODE are performed using the Bernese GPS Software
(BSW).

The Bernese GPS Software is a scientific analysis tool
for GNSS data and is developed at the Astronomical

1 CODE is a joint venture of the Astronomical Institute
of the University of Bern (AIUB, Switzerland), the
Swiss Federal Office of Topography (swisstopo,
Wabern, Switzerland), the Federal Agency for
Cartography and Geodesy (BKG, Frankfurt am Main,
Germany), and the Institut für Astronomische und
Phsyikalische Geodäsie of the Technische Universität
München (IAPG/TUM, Munich, Germany).

Institute of the University of Bern (AIUB). In its present
version [2] the BSW can process two-frequency carrier
phase and pseudorange observations from GPS, as well
as GLONASS. Satellite laser ranges can be analyzed,
too, but are not further considered in the scope of this
work.

The planned inclusion of upcoming GNSS (e.g., the
European Galileo system) in the BSW has given cause
for an outright redesign of the software package.

A list of scientific, as well as technical requirements for
a multi-GNSS software is compiled. Subsequently, the
fundamental software architecture and basic design
principles and concepts are defined. The design is not
only dictated by the list of needs, but also by available
infrastructure such as programming language.

The update of the BSW to full multi-GNSS capability is
presented as example for developing a scientific multi-
GNSS software package. The implications of realizing
the defined design principles are presented.

2. REQUIREMENTS FOR A MULTI-GNSS
ANALYSIS SOFTWARE

The first step in developing (or expanding an existing
package to) a multi-GNSS ready scientific analysis
software is to define a set of requirements. New features
offered by upcoming or modernized GNSS do not only
demand for scientific but for technical requirements,
too. The list of requirement is not static but subject to
change during the development process. However, the
most important points are considered and presented in
the following sections.

2.1. Scientific Requirements

A quite obvious but nevertheless important innovation
offered by new and updated GNSS is transmitting
navigation signals on more than two frequencies (as is
the case now for GPS and GLONASS). Established
linear combinations (LC) may be formed with varying
frequencies and a multitude of new LCs with more than
two components may be formed. These possibilities are
interesting for, e.g., data pre-processing, ambiguity
resolution, and parameter estimation.

Figure 1: Observable selection in the BSW.

Fig. 1 shows the reworked observable selection panel of
the BSW to illustrate the various possibilities to form
linear combinations.

Another novelty is offered by exchanging observation
data using the Receiver Independent Exchange Format
(RINEX) in Version 3.xx as described in [3]. With this
format, the tracking technology of receivers finds its
way in the data analysis. This is important for the
combination of data from receivers of different types
and from different manufacturers. But even one and the
same receiver may use diverse tracking technologies,
e.g. for different GNSS or satellite models. The correct
handling of all resulting biases becomes possible.

The maximum number of visible satellites and global
coverage is improved. In a combined multi-GNSS
analysis the number of available observations increases
and may help the estimation of certain parameter types,
such as Earth orientation parameters (EOP).

Different orbital characteristics (e.g., revolution period)
of additional satellite constellations may help to identify
and understand, e.g., periodic variations in time series of
estimated parameters. For investigations in this area a
GNSS-specific parameter setup is interesting, e.g., to
keep the EOP separate for each GNSS and analyse
differences between the spectra in resulting time series.

A lot of new applications and possibilities will be found
in future, some of them yet unforeseeable. Nevertheless,
several basic requirements can be compiled:

- easy and flexible handling of linear combinations of
observations with two or more components,

- consideration of receiver tracking technology types,
especially correctly dealing with all resulting biases,
such as differential code biases (DCB), inter-system
biases, and initial phase biases,

- correct and consistent combination of observation
data from single- and multi-GNSS receivers,

- single- or multi-GNSS analysis in all possible
combinations (GPS-GLONASS combined, Galileo-
GLONASS combined, Galileo only, etc.) without
preferences for a specific system,

- fully consistent analysis of all involved GNSS on
observation as well as on normal equation level.

- offer extensive statistics for each parameter type
(e.g., contributing GNSS) to allow studies of the
influence of GNSS-specific frequencies on resulting
time series (e.g., the sidereal day in GPS derived
time series as for instance reported by [4]).

The above list offers a lot of interesting fields of
scientific research. It represents the minimum needs for
a competitive scientific multi-GNSS analysis software.

2.2. Technical Requirements

Besides the highlighted scientific aspects, the inclusion
of new GNSS and updated systems entails a number of
technical problems, too. These are mainly caused by
two things.

Any modern multi-GNSS software must be open for
future developments (which may already be drafted),
without the need of a recurrent software redesign. This
is especially important for file format definitions.

The second point is a massively increasing number of
satellites, observations, and parameters (to name only a
few). For example, the inclusion of a fully deployed
additional GNSS in the CODE IGS processing would
add about 1100 parameters to be estimated2, raising the
total number by about 20% with respect to the current
analysis situation using data from GPS and GLONASS
(49 satellites) collected by 240 stations. The necessary
inclusion of new tracking station will significantly raise
these numbers, too. Problems with respect to memory
requirements, file size, and computation speed may be
follow-up consequences.

To satisfy the technical needs of multi-GNSS capability,
the following requirements should be met:

- very flexible and easy expandable file formats,

- easy inclusion of new models and parameter types
in the software,

- unproblematic inclusion of new GNSS (like the
European Galileo) and system updates (e.g., GPS
modernization),

- easy inclusion of additional linear combinations and
tracking technologies,

- generic observation type and carrier frequency
handling,

- flexible parameter setup (GNSS-specific, satellite-
specific, etc.),

2 30 satellites with 18 orbit parameters, and 19 antenna
parameters, each. Additional introduced ambiguities are
not considered in this context.

- maintain an easy expandability of the software with
new programs or program parts,

- no hardwired limitations (e.g., number of satellites),

- rigorous dynamic memory management.

Besides the implications on the software architecture,
demands are made for the used programming language.
An object oriented approach may be preferred but is not
imperative. If compatibility with existing code must be
maintained (e.g., if new functionality should be
implemented in an existing software) the selection of
the programming language is limited. However, some
basic high-level capabilities like a dynamic memory
management are absolutely mandatory.

3. SOFTWARE ARCHITECTURE AND DESIGN
PRINCIPLES

Before programming a complex software package (or
updating an existing one), the fundamental software
architecture and some basic design principles must be
specified. Starting point for these considerations are the
available infrastructure, programming environment, and
in particular the list of requirements as compiled in the
previous section.

Fig. 2 shows a conceptual software design for the new
BSW realizing high modularization, expandability, and
flexibility. The main processing programs should be
kept as independent from external factors as possible
(indicated by the dashed line). They communicate with
the “outside” world only via well defined interface
routines (big black arrows). Shared data, specifications,
file formats, and definitions are organized and
encapsulated in core modules together with the
respective functions. External files are always converted
to software inherent formats for internal use. The
graphical user interface (GUI) is a separate program part
and kept independent from the processing programs.

In
te
rf
a
c
e
s

Core modulesGUI

In
te
rf
a
c
e
s

Processing
programs

Figure 2: Software design diagram.

Three basic design principles have been found to be
especially important to satisfy the list of requirements
and to realize the software architecture, namely

- the concept of modularization,

- full independence from external formats, and

- high flexibility and expandability.

These basic principles should be strictly adhered to, thus
guaranteeing a comprehensible and consistent software
design.

3.1. Modularization

The software should be highly modularized to be able to
react on yet unforeseen developments without rewriting
the complete software package.

All processing programs depend on various specialized
core modules. The processing programs only realize the
mathematical models for, e.g., data screening, parameter
setup, or normal equation manipulation. In particular,
they do not contain any GNSS-specific information
whatsoever.

The core modules, however, contain all the shared data,
definitions, and information needed by the processing
programs to fulfil their respective tasks. This includes
GNSS-specific information (such as number and
frequency of carriers), receiver-specific information
(e.g., available tracking technology, trackable systems),
observable definitions (like creation rules for linear
combinations), and general information like time system
definitions. Fig. 3 gives an overview of the most
important core modules of the redesigned BSW.

The processing programs can access the module data
only by using dedicated interface routines. These access
routines are defined and coded in the corresponding
core modules. The programs do not need knowledge of
implementation details, only the interfaces must be
readily available.

Global identifiers and definitions

Satellite systems

Observation techniques
Time systems
Clock types

�

�

�

�

General information

Data types

Methods

Receiver information

Read receiver information

Query functions
Return all supported observation types

Return observation type following priorities

�

�

�

�

�

Receivers

Data types

Methods

Linear combination factors

Read satellite frequency information

Return frequency/wavelength of obs types
Return factors for linear combinations

�

�

�

�

Frequencies

Data types

Methods

Corresponding internal representations

Read/write external files

ASCII/binary conversion of internal files
File type specific routines

�

�

�

�

Interfaces (RINEX, ...)

Global identifiers and definitions

Data types

Methods

Carriers
Measurement types

Observation types
DCB code types (P, C, ...)

Linear combinations
External names

Linear combination

Query functions
Translation external/internal naming

Integrity check routines
Create linear combination of observations

�

�

�

�

�

�

�

�

�

�

�

Observation types

Figure 3: Configuration of the BSW core modules.

This approach greatly facilitates new implementations,
especially of new frequencies and linear combinations.
As long as the interfaces do not change, only the
corresponding core modules must be adapted and the
changes are at once available throughout the whole
software.

3.2. Independence From External Formats

Another important principle is the independence of the
processing programs from external factors. The main
programs are using solely software internal file formats
and naming conventions. Data is exchanged between
single programs via internal file formats, too.

Information from external files (e.g., observation data
from RINEX files, Earth orientation parameters) is
converted to a software internal file format using a
collection of dedicated interface routines (converters).
File format specifications, definitions, and conversion,
access, and manipulation routines are encapsulated in
corresponding modules.

External nomenclature (e.g., the observation codes as
defined in the RINEX 3.xx format) is translated by the
interface routines (usually during a conversion step) to a
set of internal global identifiers. These are defined in the
core modules and used in all programs.

In case of changes or updates of foreign file formats or
nomenclature, only the corresponding module must be
adapted. As long as the interfaces do not change,
external file formats do not have any direct effect on the
central processing programs.

Another advantage may be seen in the fact that internal
file formats may already be prepared for future
applications.

Nomenclature for software output files (such as the
abbreviations for observation types) are defined in core
modules, too. They can be accessed by processing
programs only via the interface routines. Thus, a
consistent naming for all output files is guaranteed.
Should it be necessary to change, e.g., the name of a
linear combination, only one module must be changed.

3.3. Flexibility and Expandability

In view of future developments and increasing pace of
scientific innovations in the field of GNSS and space
geodetic techniques, special attention should be paid to
flexibility and expandability of the software package.

There should be no (or at least as few as possible)
hardwired limitations such as array sizes, file lengths, or
maximum dimensions (e.g., of satellites, stations, etc.)
in the software. This calls for a highly dynamic memory
management made possible by coding in a modern
programming language. Without these hardwired
limitations, however, it is left to the developer to foresee
a number of security mechanisms to keep the memory
usage and computation time in reasonable limits.

As a further consequence, internal file formats and the
corresponding interface routines should be as generic,
flexible, and expandable as possible. Files are stored in
binary format if file size and time critical access play an
important role, otherwise ASCII format is preferred.
Easy human readability of ASCII files should be
maintained wherever possible but not at the expanse of
storable information.

Fig. 4 shows the redesigned DCB file of the BSW as
one example of a flexible and open file format. It offers
a variety of bias types (differential, absolute, relative)
for an arbitrary combination of stations, satellites, and
systems. Freely selectable code types, flags, and time
windows add additional flexibility. The file is kept in
ASCII format to maintain readability and facilitate
exchange and publication of the contained information.

The graphical user interface of the software is separated
from the actual processing programs. A dedicated GUI
program displays option panels, reads the user input and
prepares information for further usage. The processing
programs gain access to user input (e.g., selected files
and options) only by a set of input subroutines. These
input routines may already validate the user input thus
minimizing errors during the actual program run. A
redesign of the GUI or implementation of new options
does not necessitate changes in the processing programs
(of course the programs must eventually be adapted to
make use of the new option).

Different code types (e.g., P1, C1, P2, C2) Optional time windows or reference epochsSpecial flags (e.g., Abs, Rel)

Various DCB types

GNSS

single satellites

single stations

station/GNSS-

combinations

station/satellite-
combinations

�

�

�

�

�

Figure 4: Redesigned DCB file format of the BSW.

4. PRACTICAL EXAMPLE

The implications of realizing the previously presented
design principles are demonstrated using the upgrade of
the Bernese GPS Software to multi-GNSS capability as
real life example.

The Bernese GPS Software is a scientific software tool
to analyze GNSS observation data. It was developed at
the AIUB back in the mid 1980s and is ever since
updated and improved. The basic design, however, was
never changed considerably. The current release is
Version 5.0 [2]. The BSW was originally coded in
FORTRAN-77, since 2000 all developments are solely
made in Fortran 903. Fig. 5 shows chronologically the
creation dates and programming language of the BSW
programs. The solid line gives the total number of
programs contained in the BSW package (103 as of
September 2009).

The BSW was initially designed to process two-
frequency carrier phase and pseudorange data from
GPS. In 1999, GLONASS capability was added (cf. [5])
by adapting and updating the already existing software
structures and algorithms. Cum grano salis, GLONASS
was treated as a “GPS with some peculiarities”. This
approach was possible, as GLONASS is quite similar to
GPS in terms of system design and applicable models
and algorithms. A crucial point was the two-frequency
design of GLONASS.

Upcoming next-generation GNSS and improvements of
existing systems offer more than two frequencies and
new observables. In addition, the number of satellites,
observations, and parameters to be estimated rises
significantly. All these points render a straight-forward
implementation, as followed for GLONASS, virtually

3 FORTRAN-77 and Fortran 90 are not object oriented
programming languages. However, they are widely used
within the scientific community.

impossible. A radical software redesign was necessary,
following the principles from the previous sections.

The update comprises obvious tasks like redesigning
and implementing the complete frequency, observation,
and linear combination part; redesigning a multitude of
file formats, corresponding interface, access, and
conversion routines; adapting all programs to the new
file formats; ensuring RINEX 3.xx conformity.

But a lot of additional work load is generated by
secondary (not so obvious) issues like adapting and
controlling all output files, error and warning messages,
and format statements due to new observation types,
linear combinations, and an increased number of
satellites, observations, and parameters; enabling an
arbitrary number of GNSS in the programs (e.g., loops
and control structures must be generalized); customizing
the GUI to enable all new features and updating all
corresponding help files; adapting output extraction
programs to new formats.

Finally, all the technical issues must be considered, too.
Work-intensive examples are switching from a static to
a fully dynamic memory management; removing all
hardwired dimension limits; consequently making use
of modern programming features like function and
operator overloading.

For the redesign of the Bernese GPS Software, about 50
from 103 programs, 800 from 1200 subroutines, 15 file
formats, and most GUI panels and output files must be
changed, updated, or rewritten.

Including the conceptual and design phase, the resulting
effort is estimated to be about six man-years.

5. SUMMARY AND OUTLOOK

With several projected next-generation GNSS, updates
of existing systems, and new innovations in satellite
navigation, the need of scientific multi-GNSS analysis
software packages arises.

A list of requirements for a modern GNSS analysis tool
was composed and presented. Attention was turned not
only to scientific but also to technical issues. Of course,
the list of requirements is always subject to change and
matures with the software development process and
innovations in the field of GNSS data processing and
observation modelling. Conceptual considerations of the
software design followed, based on the list of
requirements. The fundamental software architecture
and several basic design principles were presented and
discussed.

The update of the Bernese GPS Software to full multi-
GNSS capability was used as an example of actual
development work. Necessary steps and changes were
addressed, drawing special attention to a lot of work-
intensive secondary issues. The overall effort for the

0

1

2

3

4

5

6

7

8

9

10

85 90 95 00 05year

pr

og
ra

m
s

0

20

40

60

80

100

120

to
ta

l #
 p

ro
gr

am
s

F90 F77 overall

 Figure 5: BSW programs creation dates and
programming language.

update was estimated to be about six man-years. This
new updated multi-GNSS version of the BSW will
replace the current release in near future.

In summary, it was shown that the development of a
multi-GNSS software for scientific purposes is a very
demanding and costly task; but nevertheless a task being
well worthwhile, opening up a variety of interesting
scientific research fields.

6. REFERENCES

1. Dach, R., Brockmann, E., Schaer, S., Beutler, G.,
Meindl, M., Prange, L., Bock, H., Jäggi, A. &
Ostini, L. (2009). GNSS processing at CODE: status
report. Journal of Geodesy 83(3-4), 353-366.

2. Dach, R., Hugentobler, U., Fridez, P. & Meindl, M.
(Eds) (2007). Bernese GPS Software Version 5.0,
Astronomical Institute, Universtiy of Bern, Bern,
Switzerland.

3. Gurtner, W. & Estey, L. (2007). RINEX - The
Receiver Independent Exchange Format Version 3.00
Online at http://igscb.jpl.nasa.gov/igscb/data/format/
rinex300.pdf (as of 25. August 2009).

4. Ray, J., Altamimi, Z., Collilieux, X. & van Dam, T.
(2008). Anomalous harmonics in the spectra of GPS
position estimates. GPS Solutions 12(1), 55-64

5. Habrich, H. (1999). Geodetic Applications of the
Global Navigation Satellite System (GLONASS) and
of GPS/GLONASS Combinations, Ph.D. dissertation,
Astronomical Institute, University of Bern, Bern,
Switzerland.

