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Abstract 

 

 

Some studies have suggested the importance of modelling the Earth radiation that reaches 
GPS satellites, an effect that is not currently included by most of the Analysis Centres that 
contribute to the computation of the IGS (International GNSS Service) Final Orbits. It is also 
thought that Earth radiation could be partially responsible for the observed bias between SLR 
(Satellite Laser Ranging) and GPS (Global Positioning System) measurements, known as 
the GPS – SLR orbit anomaly. Furthermore this bias sets the actual limits for the accuracy 
that can be achieved in the computation of the GPS orbits. 

In this thesis several models of different complexity are developed, in particular models for 
Earth radiation that reaches the satellites and models of the satellite structure that interact 
with the radiation coming from the Earth. The complete development of these models is 
given in the thesis together with deep analysis about the differences of the models. For the 
interested person, the programs for the computation of the acceleration due to Earth 
radiation pressure are also provided. 

The computed acceleration is also introduced in the computation of GPS orbits. First the 
perturbing acceleration is used for a very simple study case where a general understanding 
of the effect of Earth radiation on the orbits can be acquired. Second the perturbing 
acceleration is introduced in the Bernese GPS Software for the computation of GPS orbits as 
done by CODE (Center for Orbit Determination in Europe). The effects on the orbits are 
studied per revolution and per year. 

The computed orbits using the Bernese GPS Software are compared with SLR 
measurements, to have an external validation. Doing that a reduction of the GPS – SLR orbit 
anomaly is obtained, leading to a potential subcentimeter accuracy of the orbits.  

Finally as Earth radiation and satellite models of different complexity were tested, it is 
possible to give a recommendation of the key factors for an adequate but simple modelling of 
Earth radiation pressure for GPS satellites. 
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1 Introduction 

 

 

 

 

1.1 Motivation 

 

 

One of the most used satellite systems, with important applications for navigation, positioning 
and geodesy is the GPS. According to Seeber (2003): “The NAVSTAR GPS ( NAVigation 
System with Time And Ranging Global Positioning System) is a satellite-based radio 
navigation system providing precise three dimensional position, navigation and time 
information to suitably equipped users.”  To compute a position on the Earth’s surface, the 
positions of at least four satellites are used together with the travelled distance of the signal 
from the satellite’s antenna to the receiver. A good description of how GPS works can be 
found in Misra and Enge (2001). 

In the case of GPS, the better the positions of the satellites are known, the higher the 
precision that can be achieved on Earth for positioning. One of the GPS users with higher 
demands is the geodetic community, especially those dealing with the Terrestrial Reference 
Frame or the motion of the tectonics plates. For these applications the International GNSS 
Service (IGS), that can be considered as the highest precision international civilian GPS 
community, provides Final Orbits with accuracy better than cm5 , Dow et al. (2005). These 
orbits are computed, as explain by Schaer et al. (2009), using direct observations from the 
satellites to reference stations on Earth, together with force models that include the principal 
perturbations to the orbit. Such perturbations are in decreasing order of magnitude: low 
terms of geopotential, attraction of Sun and Moon, solar radiation pressure, solid Earth and 
ocean tides and finally general relativity.  

An independent way to test the accuracy of Final Orbits is by using a different measurement 
system. This has been done using Satellite Laser Ranging (SLR), since two GPS satellites 
are equipped with laser retro reflectors. The accuracy of SLR measurements is mm65 − , so 
they can be taken as ground truth, see for example Seeber (2003) for an overview of this 
technique. As more SLR measurements were available, a consistent bias of cm54 −  
became evident, which has been called the GPS – SLR orbit anomaly. Urschl et al. (2008) 
and Ziebart et al. (2007) have found indications that this bias could be due to the Earth 
radiation impacting the satellites, an effect that is currently not included in the modelling of 
Final Orbits.  

Consequently there is an increasing interest of the scientific community that uses GPS to 
know: which is the impact of the Earth radiation on these satellites? Moreover if the effect is 
not negligible would be desirable to know: which are the key parameters for an adequate but 
simple modelling of this effect? 
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1.2 State of the Art 

 

 

There are many works from different teams of scientist around the world related to the topic 
of this thesis. These works can be classified into four different main subtopics: 

- SLR validation of GPS orbits, computation of orbit residuals between the two 
systems. 

- Models for the Earth radiation reflected and emitted from the Earth. 

- Satellite models mainly for solar radiation pressure. 

- Effect of Earth radiation pressure on satellites. 

Also a very good review of literature of similar topics is done Sibthorpe (2006), so we also 
refer to it for the more interested reader. 

Now concerning the SLR validation of GNSS orbits, Urschl et al. (2008) say that: 

“The GPS range residuals show a mean bias of -3 to -4 cm. This bias is already known from 
previous studies, but its origin still remains unexplained.” 

In this last work together with Urschl et al. (2005), very interesting results were obtained 
suggesting that the origin of this bias, also known as GPS – SLR orbit anomaly, could come 
from the not accurate modelling of radiation pressure, especially the Earth radiation 
impacting the GPS satellites. Some of these results are presented in Section 1.3 and they 
can be considered as the main inspiration for the realization of this thesis. Here we just 
mentioned two publications, however the number of works related to this topic is very large 
and they started around 1994, when the GPS orbits reached centimetre accuracy. 

Some ways of modelling have been proposed by the scientific community to deal with the 
albedo of the Earth. For example Qiu et al. (2003) calculated the reflected radiation of the 
Earth through observations taken by telescopes of the Earth radiation reflected by the Moon. 
Some attempts have been made to give an analytical solution to the Earth radiation reaching 
artificial satellites, like Borderies and Longaretti (1990).  

However we have chosen to model the Earth radiation in a computational way where one 
assumes some properties of the surface of the Earth (reflectivity and emissivity) and the 
radiation reaching the satellites is computed in a numerical way. This approach fully 
coincides with the one of Knocke et al. (1988). Following also a very similar methodology 
Bandheri and Bak (2005) and Ziebart et al. (2004) calculate the Earth irradiance reaching 
different satellites by using reflectivity and emissivity data from Earth observing satellite 
missions like TOMS (Total Ozone Mapping Spectrometer) and CERES (Clouds and Earth’s 
Radiant Energy System).  

The last works described for the Earth radiation model all use the assumption that the Earth 
is a Lambertian sphere, it means all the radiation is reflected or emitted in a diffuse way, and 
therefore there is no consideration of specular reflection. A more sophisticated model, 
constructed by Martin and Rubincam (1996), to study the effect of the albedo of the Earth on 
the LAGEOS I satellite, takes into account data of the phase function provided by the ERBE 
(Earth Radiation Budget Experiment) mission, this data is a function of the scene type, 
weather and the relative location of the surface element, satellite and Sun. 
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Regarding the satellite models, one can find in the literature many works dealing with the 
interaction of the satellites with solar radiation pressure, which for some satellites is a very 
considerable perturbation. Therefore these existing models can be extrapolated and applied 
for the case of Earth radiation interacting with GPS satellites. 

Fliegel et al. (1992) and Fliegel and Gallini (1996) have made public the optical properties 
and dimensions of the different GPS satellites (Block I, Block II and Block IIR), together with 
the physical description of the effect of radiation on the surface of the satellites. Using the 
information provided by them it is then possible to construct realistic satellite models to deal 
with radiation pressure; in particular they constructed the ROCK models for solar radiation 
pressure that became a standard inside the geodetic community. 

Following a similar technique as the one described above, the team leaded by Ziebart, at the 
University College London, have developed very sophisticated tools for dealing with non- 
conservative forces acting on different satellites. They do not do simplifications on the 
satellite structure and can take into account almost every non-conservative force or effect 
one could think of. 

In a different approach where GPS measurements are fitted and use to construct radiation 
pressure models, we find the empirical models developed by Springer et al. (1999) and Bar-
Server and Kuang (2004), which are capable of achieving GPS orbits with centimetre 
accuracy in the respective programs they use: the Bernese GPS Software and the GIPSY-
OASIS Software Package. Furthermore the solar radiation pressure models are often 
combined in these software packages with the estimation of radiation pressure parameters to 
improve the performance of the orbit accuracy, see for example Beutler et al. (1994). 

The combination of Earth radiation models with satellite models have been already done by 
some authors, for example for the specific case of spherical satellites (like LAGEOS I). 
Martin and Rubincam (1996), Knocke et al. (1988) and many others have provided deep 
studies of the effects of this perturbation on the position of these satellites. 

More recently Ziebart et al. (2007) study this perturbation for GPS satellites using a simple 
box-wing model. The results are promising since a reduction of the GPS – SLR orbit anomaly 
is observed for few days of GPS orbits. They say that the Earth radiation pressure together 
with an acceleration due to the thrust of the navigation antennas can reduce the bias by 
about mm21 . Davis and Trask (2007) also say that possibly the laser retro reflector array 
(LRA) may be shifted closer to the Earth by around mm11  for PRN05 and mm13  for 
PRN06, which would reduce the bias by 32 and mm34  for these two satellites (the only 
ones in the GPS constellation that carry LRA). 

Finally it can also be mentioned that in future studies planned by our team, the impact of 
albedo modelling on geodetic time series will be studied. Also there are plans to participate in 
an experiment with other teams coordinated by Ziebart to further study the effect of modelling 
Earth radiation pressure on the GPS – SLR bias. This just tells that the work presented here 
is on-going work and many questions still remain open or new question are being generated 
in the present. 
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1.3 Scientific Questions 

 

 

Taking into account what has been written in the last pages, the scientific questions we 
intend to answer in this thesis are the following: 

1) Which is the magnitude and behaviour of the acceleration due to Earth radiation 
pressure acting on GPS satellites?  

2) Is this acceleration negligible or it is worth to include it in the current modelling of 
GPS orbits?   

3) Is this perturbation in the orbit capable of producing a radial shift in the orbits and if it 
does why?  

4) Can this perturbation produce a similar pattern as the one observed between SLR 
measurements and GPS orbits (Figure 1.1)? 

5) Which are the key factors for an adequate but simple modelling of the effect of Earth 
radiation on GPS satellites? 

6) Is the GPS – SLR orbit anomaly reduced in a long term by including this acceleration 
on the computation of real GPS orbits? 

Note that Ziebart et al. (2007) have already partially answer the questions 1), 2), 3) and 6), 
however their study was limited to few days of data and to only one Earth radiation and 
satellite model. On the other hand in this study we deal with per orbit and per year 
perturbations, testing at the end the different Earth radiation and satellite models with a 
complete year of real GPS orbits and SLR measurements. Moreover we test models of 
different complexity, to acquire a good and deep understanding of the impact of Earth 
radiation on GPS orbits.  

 

 
Figure 1.1 Color-coded SLR range residuals in cm minus mean value for the GPS satellites PRN05 

and PRN06, derived from CODE final orbits. Source Urschl et al. (2008) 
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The questions 4) and 5) have not yet been mentioned in the literature so they are accounted 
to be new contributions, especially for the scientific community that uses GPS data with very 
high requirements of accuracy. By the other hand for questions 1), 2), 3) and 6) we have 
intended to go deeper as the previous studies, by testing several models and by using longer 
test periods.    

 

 

 

1.4 Chapter Overview 

 

 

Chapter 2 and 3 are devoted to the development of the Earth radiation and satellite models, 
respectively. In both chapters models of different complexity are deeply studied. The 
combination of these models will lead us to find the answers to the first two scientific 
questions. 

On Chapter 4 we will include the acceleration from relative simple models as perturbation 
acting on a Kepler orbit. This will give a general understanding of the effect of the 
acceleration on GPS orbits and will give answers to questions 3) and 4). 

Finally the models of different complexity will be included into the Bernese GPS Software 
(Chapter 5). There we will be able to compute the effect of Earth radiation on real GPS 
orbits. Using the same software, the comparison with SLR measurements will be done and 
with this last step questions 5) and 6) are addressed.  

Some general recommendations for an adequate but simple modelling of Earth radiation 
pressure for GPS satellites are given in the Conclusions (Chapter 6). Finally the Appendix 
provides the Matlab programs of the Earth radiation and satellite models, as well the program 
to combine both models which computes the acceleration acting on the satellites.  
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2 Earth Radiation Model 

 

 

 

 

2.1 Introduction 

 

 

One of the main objectives of this thesis is to study the effect of the Earth radiation on the 
orbit of GPS satellites. Therefore one of the fundamental quantities to compute is the 
acceleration due to Earth reflected and emitted radiation for GPS satellites. For this purpose 
we will construct four different Earth radiation models (ERM): 

- ERM-A: analytical Earth radiation model for constant albedo. 

- ERM-N: numerical Earth radiation model for constant albedo. 

- ERM-LAT: numerical Earth radiation model for latitude dependent albedo. 

- ERM-CERES: numerical Earth radiation model with satellite data. 

These models will in general give the irradiance of the Earth at a certain satellite altitude and 
relative positions of satellite, Earth and Sun. The irradiance which units are Watt per square 
meter combined with the satellite models (Chapter 3) will give the acceleration acting on the 
satellites due to the Earth radiation. The computation of the irradiance is therefore a key 
factor in this chapter. 

For the computation of the Earth radiation model some general assumptions are made: 

- The Earth surface reflects radiation as a Lambertian sphere. Therefore the reflected 
radiation can be represented by a simple phase function, see for example Qiu et al 
(2003) and Borderies and Longaretti (1990). This assumption is also used by Ziebart 
et al (2004) for the specific purpose of computing the irradiance for GPS satellites. 

- The total albedo of the Earth is assumed to have a value of 3.0 , see for example 
Kiehl and Trenberth (1997) for a comparison of different values of Earth’s albedo. 

- There is conservation of energy for the Earth as a whole, which means that all the 
energy from the Sun that is intercepted by the Earth, must go back to space either as 
reflected or emitted radiation. 

- Since the GPS satellites are at relative large distance from the Earth and therefore 
receive radiation from around %38  of the Earth’s surface, see Eq. (2.26), we 
assumed in general average values. We use an average radius of the Earth, we 
consider it to be a sphere and the radiation to be reflected or emitted at its surface. 

For more information on the albedo of the Earth and the energy transport on it, we refer to 
Taylor (2005) and Lindsey (2008).   
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2.2 Mathematical Model 

 

 

2.2.1 Lambertian Surface 

 

In order to construct a radiation model of the Earth, assuming that its surface (or 
atmosphere) behaves like a Lambertian surface, in this section crucial concepts from 
Astronomy and Radiometry, based on the books of Karttunen et al. (1996)* and Boyd (1983) 
are intruced. The first book is a guide to construct the reflected irradiance from a flat 
Lambertian surface, see Eq. (2.8). The second book gives the conventional radiometric 
quantities, see Table 2.1.  

The albedo or more specifically the bond albedo α  is the ratio of reflected radiant power 

reflΦ  to incident radiant power inΦ , at all wavelengths and in all directions: 

 
.

in

refl

Φ
Φ

=α  
(2.1) 

The radiant power or flux Φ , which unit is Watt, is the rate at which radiant energy is 
transferred from one region to another by the radiation field, as defined by Boyd (1983). 
Therefore the reflected radiant power from a surface is simply inrefl Φ=Φ α  and the 
irradiance at a satellite (or observer) distance d , for radiation that is reflected isotropically, 
should be  

 
.

4 2d
E refl

refl π
Φ

=  
(2.2) 

 

Table 2.1 Radiometric quantities and units 

Quantity Symbol Definition Unit 

Radiant energy Q  ∫Φdt  J  

Radiant energy density u  dVdQ  3mJ  

Radiant power or flux Φ  dtdQ  W  

Radiant exitance M  dAdΦ  2mW  

Irradiance E  dAdΦ  2mW  

Radiance L  ΩΦ ddAd proj
2  srmW 2  

Radiant intensity I  ΩΦ dd  srW  

                                                

* Some of the symbols used by Karttunen et al. (1996) were changed in order to adjust to the 
radiometric conventions and to have a consistent notation throughout this Thesis. 
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However the radiation is in general reflected anisotropically, and the irradiance must be 
corrected by a factor ( )θΨC  depending on the phase angle θ  to the surface normal. 

( )θΨ  is called the phase function, it describes the reflecting properties of a given surface 
and it can be computed as the radiant intensity at the given angle θ  divided by the radiant 
intensity at normal incidence. For the specific case of a Lambertian surface, the radiant 
intensity is given by ( ) ( ) θθ cos0II = , so it follows that the phase function is 

 
( ) [ ]

( ]



∈
∈

=Ψ
ππθ

πθθ
θ

,20

2,0cos

if

if
 

(2.3) 

and the normalization constant C  is such that 

 ( )
,1

4 2
=

Ψ∫

d

dSC
S

π

θ
 

 
(2.4) 

where the integration is extended over the surface of a sphere of radius d . This implies that 
all the radiation reflected from the surface is found somewhere on the surface of a sphere.  

To compute the normalization constant C  for a Lambertian surface, first we solve the 
integral from (2.4) as 

 ( ) ( ) ,sincos2sin2
2/

0

22

0

2
∫∫∫ ==Ψ=Ψ

ππ
πθθθπθθθπθ ddddddS

S

 
(2.5) 

so we get 4=C  and the reflected irradiance can be written as 

 ( )
.cos

4 22 ininrefl
dd

C
E Φ=ΦΨ= θ

π
αα

π
θ

 
(2.6) 

The incident radiant power is given by AEsunin =Φ  for a surface A  perpendicular to the Sun 
incident radiation, where 21367 mWEsun ≈  is the irradiance from the Sun at the Earth 
distance also known as solar constant, see Taylor (2005). If the Sun radiation is not 
perpendicular to the surface, but forms an angle γ  (Figure 2.1) with the surface’s normal, the 
incident radiant power is be given by 

 .cosγAEsunin =Φ  (2.7) 

   

 

 

 

 Figure 2.1 Lambertian surface  
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Finally the reflected irradiance at a satellite distance d , for a given incident angle γ  of Sun 
radiation and for a given angle θ  of reflected radiation, is 

 
AE

d
E sunrefl γθ

π
α

coscos
2

=  
(2.8) 

valid for 0cos ≥θ  and 0cos ≥γ . This result can be integrated over a sphere of radius d  
and one should get the incident radiant power times the bond albedo: 

 .cos insun

S

reflrefl AEdSE Φ===Φ ∫ αγα  (2.9) 

 

 

2.2.2 Reflected Radiation 

 

The Earth´s atmosphere reflects part of the radiation coming from the Sun, for simplification 
we may assume that this radiation is scattered back to space by a sphere covered by a 
Lambertian surface. In order to account for the amount of radiation scattered back in a 
specific direction, we solve the problem of a Lambertian sphere.  

 

Analytical Solution 

Until now we considered the irradiance for a given surface element. The next step is to 
construct a sphere formed by many of these surfaces, whereby each surface has a specific 
orientation to the Sun and to the satellite. 

First an approximate solution will be computed where two main assumptions are made. The 
first one implies that the distance d  from the surface elements to the satellite is constant (i.e. 
the radius of the Earth is negligible respect to the distance d ) and the second one that the 
vector of the satellite direction r̂  from a given surface element is also constant. This is 
interesting since it is possible to obtain an analytical solution, which is not the case when no 
approximation is used.  

For solving the problem first the result obtained in (2.8) for the reflected irradiance in a given 
direction θ  is used. Also three main vectors are defined: a vector in the satellite direction r̂ , 
a vector in the Sun direction ŝ  and a normal vector n̂  to the surface element, given by 

 ( )
( )
( ).cos,sinsin,cossinˆ

0,sin,cosˆ

0,0,1ˆ

ϑϕϑϕϑ
ψψ

=
=
=

n

s

r

 

 
(2.10) 

 

The vectors together with the angles ϕϑ,  and ψ  are shown in Figure 2.2. The first two 
angles are used to define the position of the surface element on the sphere, while the angle 
ψ  gives the relative orientation of satellite, Earth and Sun. 
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 Figure 2.2. Geometry for Lambertian sphere  

 

Coming back to the angles of incident radiation γ  and reflected radiation θ , we have 

 

( ).cossinˆˆcos

cossinˆˆcos

ϕψϑγ
ϕϑθ

−=⋅=
=⋅=

ns

nr
 

(2.11) 
 

With the last equations the reflected irradiance for a specific direction, Eq. (2.8), becomes 

 ( ) ,coscossin2
2

dAE
d

dE sunrefl ϕψϕϑ
π

α −=  
(2.12) 

 

which is then integrated over the illuminated part of the sphere visible to the satellite, using 

 

,0,2/,...,2/,,...,0

sin2

πψππψϕπϑ
ϕϑϑ

≤≤−==
= ddRdA E  

(2.13) 
 

where ER  is the mean radius of the Earth. The integral of Eq. (2.12) is given by 

 
( ) ( )∫ ∫∫

−

−==
π π

πψ

ϑϕϑϕψϕϑ
π

αψ
0

2/

2/

22
2

sincoscossin ddRE
d

dEE Esunreflsat  
(2.14) 

 

which is possible to integrate for ϑ  and ϕ  separately: 

 

3

4

4

3sinsin3
sin

0 0

3 =−=∫ ∫
π π

ϑϑϑϑϑ dd  
(2.15)  

 
( ) ( )( ) ( )( ).sincos

2

1
cos2cos

2

1
coscos

2/

2/

2/

2/

ψψψπϕψψϕϕϕψϕ
π

πψ

π

πψ

+−=+−=− ∫∫
−−

dd  
(2.16) 

And combining the results we get 

 ( ) ( )( ),sincos
3

2
22

ψψψπ
π
αψ +−=

d

EA
E sunE

sat  
(2.17) 

with 2
EE RA π=  being the area intersected by the radiation coming from the Sun and the total 

incident radiant power intersected by the Earth is sunEtotalin ER 2π=Φ − . Qiu et al. (2003) also 
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obtained that Eq. (2.14) holds for 32πψ ≤  (where the Lambertian assumption holds) in the 
case of Earth radiation that reaches the Moon. 

The quantity ( )ψsatE  gives the total irradiance due to the albedo of the Earth as a function 
only of the angle ψ  and a certain distance d . The distance d  has been taken until now just 
as a constant. To determine it correctly we need to consider that the integral of ( )ψsatE  over 
the surface S  of the sphere of radius hRr Esat += , with h  the satellite altitude, must be 
equal to the total reflected radiant power totalrefl−Φ  of the Earth: 

 ( ) .totalin

S

sattotalrefl dSE −− Φ==Φ ∫ αψ  (2.18) 

 Using for the computation of the integral  

 ( ) ,,...,0,sin2 2 πψψψπ =+= dhRdS E  (2.19) 

we rewrite Eq. (2.18) as 
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(2.20) 

which can be divided into three integrals: 
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(2.21) 

and together we have 
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(2.22) 

so it is demonstrated that d  must be equal to hRE +  so Eq. (2.18) is satisfied. This can be 
also simply obtained by considering that as ERh >>  we have ERhhd +== . 

Finally we can write the irradiance vector in the satellite direction r̂  due to the total albedo of 
the Earth α , depending only on the relative position of satellite, Earth and Sun (angle ψ ) 
and on the satellite altitude h , as 

 ( )
( )

( )( )r
hR

EA
hE

E

sunE
sat ˆsincos

3

2
,

22
ψψψπ

π
αψ +−

+
=

�
 

(2.23) 

which is valid only for ERh >> . 
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Numerical Solution 

In the case that no approximation is used, meaning that the actual direction and distance 
from the surface element to the satellite is used, the solution is no longer analytical, but it can 
be computed numerically. Again Eq. (2.8) is used giving the irradiance in the direction of the 
satellite from a surface element: 
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 ≥≥
=

else

andifedAE
dEd

sun

refl

0

0cos0cosˆcoscos
2

γθγθ
π
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�

 

 
(2.24) 

 

with ne ˆˆcos ⋅=θ  and ns ˆˆcos ⋅=γ . The vectors n̂  and ŝ  do not change with respect to the 
previous section.  Additionally the vector  ( ) nRhRd EE ˆ0,0, −+=

�

 and the vector of the 
satellite direction from a surface element ê , which is computed as dde

��

=ˆ , are defined. 

In Figure 2.3 r̂  and ⊥r̂  are used to indicate the satellite or radial direction r̂  and the non-
radial direction ⊥r̂ . In the case of the analytical solution the new defined ê  and r̂  were 
identical. But for the numerical solution we distinguished between the satellite direction r̂  
and the satellite direction from a surface element ê . In the same figure the angle β  is used 
to indicate the part of the Earth visible by the satellite. In the case of GPS satellites 
( kmh 20000= ) and considering kmRE 6371= , we have 

 ( )( ) .76cos 1 °≈+= − hRR EEβ  (2.25) 

With this angle the area of the sphere seen by GPS satellites can be computed. According to 
Boyd (1983) the area is given by 

 2sin4 2 βπ EGPS RA =  
(2.26) 

and as the area of the whole Earth is 24 ERπ , the GPS satellites see around %38  of the total 
Earth’s surface. 

Now for the integration of reflEd
�

 the integration limits of (2.13) can be simply changed due to 
the condition used in (2.24) to 

 

.0,2/,...,2/,,...,0

sin2

πψππϕπϑ
ϕϑϑ

≤≤−==
= ddRdA E  

(2.27) 

 

 

Figure 2.3. View from ẑ  of Figure 2.2 
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And the integral of reflEd
�

 over the illuminated part of the Earth visible to the satellite, which 
gives the irradiance at the satellite altitude, is given by 

 ( )
( ) .ˆ,

ˆ,

ˆ

ˆ

∫

∫
⊥⋅=

⋅=

⊥
rEdhE

rEdhE

reflrsat

reflrsat

�

�

ψ

ψ
 

 
(2.28) 

satE
�

 has been separated into the radial and the non-radial components. The component 
perpendicular to the plane satellite – Earth – Sun vanishes as the integral is performed, since 
the illumination is symmetric in this axis for constant albedo. Note that (2.28) is no longer 
trivial to solve analytically, but the result can be easily computed in a numerical way. In an 
analytical approach Borderies and Longaretti (1990) have solved (2.28) just for the special 
case when the satellite do not see the border of reflected Sun light and emitted infrared 
radiation, for GPS this means for °< 14ψ  or °> 166ψ , see Figure 2.3. 

Moreover this mathematical model of the albedo of the Earth also coincides with the one 
used by Bhanderi and Bak (2005), with the only difference that they do not consider a 
constant albedo of the Earth, but they get the albedo α  for each surface element from 
satellite data. This model will be further explained in 2.3.1 Earth Albedo Toolbox and 
compared with the model just described here.  

Finally one can compute the integral of satE
�

 over the surface S  of the sphere of radius 
hRr Esat += , which gives the radiant power intersected by the Earth times the total albedo of 

the Earth. This integral is computed using (2.19) and the radial component of the irradiance 
vector: 

 ( ) ., ˆ totalin

S

rsattotalrefl dShE −− Φ==Φ ∫ αψ  (2.29) 

 

 

2.2.3 Emitted Radiation  

 

The radiation power coming from the Sun that is intersected by the Earth can be computed 
as sunE EA , with 2

EE RA π= . A fraction of this radiation is immediately reflected in the visible 
part of the spectrum, while the other fraction is absorbed and later reemitted as infrared 
radiation over the total surface of the Earth that has an area of 24 ERπ , see Taylor (2005). 
Considering that a fraction α  of the incoming radiation is reflected, the equivalent to the 
solar constant of the Earth at its surface can be written as 

 ( )
.

4

1
sunearth EE

α−=  
(2.30) 

 

Assuming that the Earth emits this radiation as a Lambertian sphere, one ends up with 
similar integrals as before, with the difference that now there is no dependency on the angle 
ψ  satellite – Earth - Sun. Therefore we distinguish again between an analytical and a 
numerical solution. 
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Analytical Solution 

Starting with Eq. (2.6), one can write the irradiance from a surface element at the satellite 
distance d  and direction θ , as 

 ( )
.cos

4

1
2

dAE
d

dE sunemit θ
π

α−=  
(2.31) 

 

The angle θ  is given by (2.11) and the differential of area by (2.27). emitdE  is integrated over 
the part of the sphere visible for the satellite at infinity and we get 
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(2.32) 
 

Here ( )ψsatE  is used to indicate that the irradiance is in a specific direction, although ( )ψsatE  
is constant with no dependency on ψ .  

The integral over the surface of the sphere of radius hRr Esat += , can be computed as 
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(2.33) 

where we see clearly that d  must be equal to hRE + , like in the case of the model for 
reflected radiation. 

Finally the irradiance at the satellite altitude h  due to the Earth’s emitted radiation is 
expressed as 

 ( ) ( )
( )

r
hR

EA
hE

E

sunE
sat ˆ

4

1
,

2+
−=
π
αψ

�
 

(2.34) 
 

which is valid only for ERh >> . 

 

Numerical Solution 

If no approximation is used and following the same steps as for the Lambertian sphere, we 
start with (2.31), the emitted irradiance in the satellite direction from a surface element: 
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1
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(2.35) 

 

The integral of emitEd
�

 over the part of the sphere visible to the satellite, is now 

 ( ) ∫ ⋅= rEhE emitrsat ˆ, ˆ

�
ψ  (2.36) 
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for constant albedo and it should hold that 

 ( ) ( ) .1ˆ totalin

S

rsattotalemit dSE −− Φ−==Φ ∫ αψ  (2.37) 

 

 

2.2.4 Earth Radiation Model 

 

The models for reflected and emitted radiation of the Earth are combined, by simply adding 
the results of sections 2.2.2 and 2.2.3. This gives two complete models of the Earth’s 
irradiance, an analytical but approximate one (ERM-A) and a model where no approximation 
is used but has to be computed numerically (ERM-N). The resulting models are presented 
here together with a summary of the main quantities needed to compute them. Both models 
depend just on three main parameters that are written in Table 2.2. 

The dependency on α  is not explicitly written in the albedo models since its value for the 
Earth is around 3.0=α  and instead just ( )hEsat ,ψ

�
 was written. However plots are made for 

different values of α , h  and ψ . 

Moreover the angle ψ  satellite – Earth – Sun can be simply computed as 

 

sunsat

sunsat

rr

rr
��

�� ⋅
=ψcos

 

(2.38) 

where satr
�

 and sunr
�

 are the positions of satellite and Sun, both in an Earth centred reference 
system. 

Furthermore it is important to note that the integral of both models over the surface of the 
sphere of radius hRr Esat +=  is, as expected, the initial incoming radiant power from the 
Sun: 
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totalintotalout

totalintotalin

S

sattotalout dSE

−−

−−−

Φ=Φ

Φ−+Φ==Φ ∫ ααψ
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(2.39) 

 

 

Table 2.2 Earth radiation models parameters 

Parameter Symbol Unit 

Earth’s albedo α  - 

Satellite altitude h  m  

Angle satellite – Earth - Sun ψ  rad  

 

 



 22 

ERM-A: Analytical Earth Radiation Model 
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(2.40) 
 

 

ERM-N: Numerical Earth Radiation Model 
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(2.41) 

 

With: 
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(2.42) 
 
 
 

(2.43) 
 
 

 

πψππϕπϑ
ϕϑϑ

≤≤−==
=

0,2/,...,2/,,...,0

sin2 ddRdA E  
(2.44) 

 

Table 2.3 Earth radiation models quantities 

Quantity Symbol Definition Unit 

Solar constant sunE  1367 2mW  

Earth’s mean radius ER  3106371×  m  

Earth’s disc area EA  2
ERπ  2m  

Satellite or radial direction vector r̂  ( )0,0,1  - 

Non-radial direction vector ⊥r̂  ( )0,1,0  - 

Sun direction vector ŝ  ( )0,sin,cos ψψ  - 

Normal to surface element vector n̂  ( )ϑϕϑϕϑ cos,sinsin,cossin  - 

Surface to satellite distance  d  ( ) nRhR EE ˆ0,0, −+  m  

Surface to satellite direction vector ê  dd
��

 - 

Radiation incident angle γ  ( )ns ˆˆcos 1 ⋅−  rad  

Radiation reflection angle θ  ( )ne ˆˆcos 1 ⋅−  rad  
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Plots of Earth Radiation Models 

In the following figures the plots of the analytical and numerical Earth radiation models are 
presented. As independent variable always the angle ψ  satellite – Earth – Sun was used. 
However the results of both models for different values of albedo and satellite altitude were 
also plotted in order to study the general behaviour of them.  

In Figure 2.4 the Earth radiation models are plotted for a GPS satellite altitude of km20000  
and different values of the total albedo of the Earth. Note that always the numerical model 
has a bigger peak than the analytical one for values close to °= 0ψ . Furthermore as the 
integral (2.39) of both models over ψ  should be the same, we see as the analytical model is 
in general smother than the numerical one and for albedo equal to zero both models are 
identical. The plots emphasize that the radial component of the models is the most dominant 
one and the negative sign of the non-radial component just indicates that the irradiance is in 
the direction ⊥− r̂ .  

In Figure 2.5 the Earth radiation models are plotted for a total albedo of 3.0=α  and different 
satellite altitudes. The plots are ordered with increasing altitude and it can be immediately 
seen that the irradiance decreases with the distance of the satellite to the Earth. One can 
also note that the difference between the analytical and the numerical model decreases as 
the satellite altitude increases, something expected since the analytical model was 
constructed to be valid only for ERh >> . For the case of a satellite in a LEO orbit the 
difference between both models becomes more important since the approximation made in 
the analytical model is no longer valid. To know how good the analytical model is compared 
to the numerical one, we can compute the relative mean difference between both models as 
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(2.45) 

where ERME  is the magnitude of the irradiance vector and dS is given by Eq. (2.19). 

 

 

 

 

 Figure 2.4 Earth radiation models for satellite altitude 
kmh 20000=  and different albedo values 
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Figure 2.5 Earth radiation models for albedo 3.0=α  and different satellite altitudes: (a) kmh 100= , 

(b) kmh 1000= , (c) kmh 10000= , (d) kmh 20000= , (e) kmh 35000=  and (f) kmh 100000=  

 

Let us now focus just on Figure 2.5(d), where we have the Earth radiation models for albedo 
equal to 3.0  and a GPS satellite altitude. In this case the relative mean difference between 
the analytical and the numerical model is %002.0=∆ ERM  with total minimum and maximum 
values of %3.8−  and %1.6 , this means the analytical model already provides a reasonable 
approximation.  

Finally note that the irradiances just computed here, can already be used in Chapter 3 for the 
computation of the acceleration acting on the satellite due to the radiation of the Earth.   
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2.3 Validation of Earth Radiation Model  

 

 

In the Earth radiation models of the previous section, the albedo of the Earth was considered 
to be constant and with a total value of 3.0 . Only by using this assumption it was possible to 
obtain an analytical solution of the Lambertian sphere. But in the numerical model one can 
change the terms α  and ( )α−1 , for reflected and emitted irradiance, by reflectivity and 
emissivity coefficients dependent on latitude and longitude. Then equations (2.42) and (2.43) 
can be then written as 

 ( )

( )







 ≥
=







 ≥≥
=

else

ifedAE
dEd

else

andifedAE
dEd

sun

emit

sun

refl

0

0cosˆcos
4

,

0

0cos0cosˆcoscos
,

2

2

θθ
π

λϕε

γθγθ
π

λϕρ

�

�

 

 
 

(2.46) 

where ϕ  and λ  are used to indicate latitude and longitude. The reflectivity is given by 
( )λϕρ ,  and emissivity by ( )λϕε , . Note that in the previous section the albedo α  was used 

as a global value for the Earth, therefore one could assume, that all the energy intercepted at 
one place of the Earth must be reflected or emitted at the same place, so there is 
conservation of energy. In reality the conservation of energy is global but not local since 
there is a big transport of energy on the Earth, for example from the equator to the poles. So 
it follows that 

 ( ) ( ).,1, λϕελϕρ −≠  (2.47) 

Whether this dependency of the reflectivity and emissivity is important for the irradiance of 
the Earth that is received by GPS satellites, is a question that will be addressed in the 
following pages. Some of the reasons to find out the importance of this dependency are: 

- The poles reflect more radiation as the equator. 

- Land and ocean have different reflectivity and emissivity. 

- Clouds have high reflectivity and can be found mainly over certain areas of the Earth. 

In order to account for these effects, first the numerical Earth radiation model is compared 
with the Earth Albedo Toolbox software, see Bhanderi (2007), and second data from satellite 
measurements is used to construct reflectivity and emissivity as a function of latitude. 

The models can be compared as in (2.45) by using the following equation: 
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(2.48) 

where REFE  is the irradiance magnitude from the model used as reference. 
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2.3.1 Earth Albedo Toolbox 

 

The Earth Albedo Toolbox, developed by Bhanderi (2007), computes the irradiance of the 
Earth for a given position of satellite, Earth and Sun. It considers just the reflected radiation 
of the Sun, since the main purpose of the Earth Albedo Toolbox is to be used for Earth and 
Sun sensors which determine the satellite attitude. To compute the irradiance it uses the 
mathematical model described by Bhanderi and Bak (2005), which coincides with the 
numerical Earth radiation model ERM-N.  

Therefore by comparing directly the ERM-N model, for reflected radiation and constant 
albedo with the outcome of the Earth Albedo Toolbox, one can see the difference on the 
reflected irradiance of the Earth for GPS satellites. 

The Earth Albedo Toolbox uses reflectivity data from the TOMS (Total Ozone Mapping 
Spectrometer) project, see McPeters (2009). With this data one can produce for example 
maps of mean reflectivity and standard deviation for a complete year, see Figure 2.6. 

 

 
Figure 2.6 TOMS reflectivity data, (a) mean and (b) standard deviation for 2004 
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Figure 2.7 Reflectivity (mean ± standard deviation) as a function of (a) latitude and (b) longitude, from 

TOMS 2004 data 

 

From Figure 2.6(a), one of the first things to note is the big dependency of reflectivity with 
latitude, therefore in Figure 2.7 the mean reflectivity as a function of latitude and longitude is 
plotted, using the values of the 2004 annual mean. It can also be seen that land and ocean 
have different characteristics but the dependency of reflectivity is not as high compared with 
latitude.  

The plot of standard deviation, Figure 2.6(b), shows the temporal variability of reflectivity over 
one year. The continents in the northern hemisphere for example present high variability, 
while the area of the desert in Africa or the Poles have low change over one year. Also 
oceans show less variability than the continents. Probably by plotting monthly averages one 
could see clear seasonal changes of the reflectivity. 

Coming back to Figure 2.7, where the mean reflectivity for latitude and longitude is plotted 
together with the standard deviation, we see that there is high variability for low and medium 
latitudes while for the poles there is a low change of reflectivity. Furthermore the dependency 
with longitude is constant and with a value around 22.0 . This does not mean that the total 
albedo of the Earth has this value. If one computes it using Eq. (2.9) where the irradiance is 
integrated over the surface of a sphere of radius hRE + , one would find for two different 
positions of the Sun (Figure 2.8 and Figure 2.9) total albedo values of 2841.0  and 3263.0 . 
This is logical since for the second case the latitude of the Sun is higher and the high values 
of the reflectivity have as a consequence that the irradiance increases and therefore also the 
total albedo of the Earth. 

To evaluate how the spatial distribution of the reflectivity (Figure 2.6) affects the irradiance 
received by GPS satellites, we compare the irradiance obtained from the Earth Albedo 
Toolbox with the one computed using the ERM-N model with constant albedo of 3.0 . This is 
done for all the satellite positions and for two Sun positions, these results are shown in 
Figure 2.8 and Figure 2.9, where we can see already that the orders of magnitude and the 
shape of the models are similar. The plots are so smooth since the GPS satellites see a big 
part of the Earth, Eq. (2.26), and all the reflected irradiance is integrated at the location of the 
satellite. 
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 Figure 2.8 Reflected irradiance from (a) Earth Albedo Toolbox and        
(b) ERM-N at GPS altitude, Sun position °=°= 0,0 λϕ  

 

 

 

 

 

 Figure 2.9 Reflected irradiance from (a) Earth Albedo Toolbox and       
(b) ERM-N at GPS altitude, Sun position °=°= 0,5.23 λϕ  
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Although the shape and orders of magnitudes of the computed irradiances are similar, the 
mean differences between both models are %2.6  and %4.12−  for the Sun at °= 0ϕ  and 

°= 5.23ϕ  respectively. However the maximum and minimum differences are around %40± . 
These differences are just for the reflected irradiance but still are very large, furthermore we 
just took into account mean annual data and the changes of reflectivity, Figure 2.7(a), are 
also not small.  

As the differences between the ERM-N and the Earth Albedo Toolbox are large, we will not 
continue further with the analysis of the errors but we will rather focus into improving our 
Earth radiation model, for this purpose we will use another set of satellite data which 
provides both reflectivity and emissivity as a function of latitude and longitude. 

 

 

2.3.2 Model with Latitude Dependent Albedo  

 

After seeing that the spatial distribution of reflectivity has a considerable impact on the 
irradiance received by the GPS satellites, we proceed here to improve our Earth Radiation 
Model. For that purpose we use data from the CERES (Clouds and Earth’s Radiant Energy 
System) project, see Wielicki et al. (1996), to compute the irradiance received by GPS 
satellites. We use already processed data (level 3) which can be easily transformed in 
reflectivity and emissivity, this data comes as monthly averages in a grid of °×° 5.25.2 .   

CERES together with ERBE (Earth Radiation Budget Experiment) data, see Barkstrom 
(1984), have been already used by Ziebart et al. (2004), to compute the irradiance received 
by GPS satellites. The approach followed by them is to use all the available data so almost 
no error is introduced, while what we do is to fit polynomials over latitude and over time of the 
year, to have a simplified model that still gives the irradiance at the satellite altitude with a 
small error.   

In the following we will use data mainly from 2007 since this is the year for which we have 
also used real GPS and SLR measurements. However the approach developed in this study 
can be used for any year of satellite data. 

More specifically, for the person interested in computing similar results, the CERES data 
used here, see Kusterer (2009), has the following specifications: 

- ERBE-like Geographical Averages (ES-4). 

- Terra -FM1, Edition 2. 

- 2.5 Degree Regional, Monthly (Day) Averages, Total Sky. 

- Quantities: Albedo and Longwave Flux. 

In general the reflectivity is obtained directly and is called Albedo in the CERES data, but we 
will continue here using the reflectivity term to avoid confusion with the quantities discussed 
before in this chapter. The emissivity is computed as ( ) sunLW EE4, =λϕε , see Eq. (2.30), 
with LWE  the Longwave Flux from CERES data and 21367 mWEsun ≈  the irradiance from 
the Sun at the Earth distance. 

 



 30 

 
Figure 2.10 CERES data, (a) reflectivity and (b) emissivity for July 2007 

 

As an example we present reflectivity and emissivity data for July 2007 in Figure 2.10. The 
first thing we can note is the strong dependency with latitude of both quantities, see also 
Figure 2.6. For the rest of the year the plots are not shown, instead the mean reflectivity and 
emissivity as a function of latitude for all months are plotted in Figure 2.11. 

In these figure we first can appreciate how the reflectivity and emissivity curves are shifting in 
latitude along the year, where the maximum shift is for the winter and summer months, 
plotted in blue and red. Also note how the curves are more separated in the northern 
hemisphere, this is because there is more land than ocean in this hemisphere and the land 
can change its properties faster than the ocean.  

On the right side of Figure 2.11 we have fitted a first order harmonic expansion to reflectivity 
and emissivity data as a function of latitude:  

 ( )
( ) .sincos

sincos

sincos

sincos

ϕεϕεελε
ϕρϕρρλρ

++=
++=

const

const  
(2.49) 
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Figure 2.11 Reflectivity as a function of latitude, (a) monthly data, (b) fitted data. Emissivity as a 

function of latitude, (c) monthly data, (d) fitted data 

 

A least squares adjustment was used together with a weighted of the measurements with 
ϕcos , since the area of an sphere decreases in this way with the latitude. These functions 

were chosen because they are simple and have high correlation coefficients ( R ) with respect 
to the data, see Figure 2.12. However note that the change of the curves around °= 0ϕ  
cannot be modelled with this kind of fit. It must be mentioned that a very similar idea was 
used by Knocke et al. (1988) where just latitude dependent harmonic functions are fitted by 
least squares adjustment to seasonally averaged Earth radiation budget data. 

In Figure 2.12 the coefficients of Eq. (2.49) are plotted for the 12 months of the year. First let 
us note that the correlation coefficients (Rmonth) for the reflectivity are above 90.0  while for 
the emissivity they are above 98.0 . That the emissivity is better modelled than the reflectivity 
is advantageous, since the emitted radiation has a bigger impact in the computation of the 
irradiance. It should also be mentioned that higher order harmonic expansions have been 
implemented with some improvement in the correlation coefficients, but almost none in the 
irradiance that reach GPS satellites. Furthermore we see how these coefficients clearly 
change over the year, so again we can fit another function in this case over the Day of Year 
(DOY) and is just a coincidence that a suitable function, for all the coefficients of Eq. (2.49), 
is of the form 

 ( ) ( ) ( )3652sin3652cos DOYCDOYBADOYCoeff ππ ++=  (2.50) 
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Figure 2.12 Coefficients for Eq. (2.49), for (a) reflectivity and (b) emissivity as a function of the Day of 

Year (DOY) 

 

These fitted polynomials are plotted with solid lines in the same figures, where we see that 
although the fit is not perfect, it follows the shape of the coefficients over the year, with mean 
correlation coefficients of 94.0  for the reflectivity and 96.0  for the emissivity.  

We have also done tests with another year of data (2001) and the variation and orders of 
magnitude of these coefficients are very similar as a function of the Day of Year, so in other 
words Figure 2.12 is almost the same for different years of CERES data.  

This kind of model has then a high potential since we are able to describe the average 
properties of reflectivity and emissivity of the Earth for a complete year with three numbers 
( )CBA ,,  for each of the six coefficients of Eq. (2.49), which leads to a total of just 18 
numbers (Table 2.4). 

 

Table 2.4 Annual coefficients for reflectivity and emissivity, for 2007 and 2001 

Annual Coefficients: 2007A  2007B  2007C  2001A  2001B  2001C  

constρ
 0.7395 0.0557 0.0214 0.7479 0.0577 0.0220 

cosρ
 -0.5378 -0.0595 -0.0263 -0.5435 -0.0611 -0.0244 

sinρ
 -0.0049 0.0629 0.0114 -0.0040 0.0672 0.0126 

constε
 0.4476 -0.0355 -0.0155 0.4462 -0.0321 -0.0068 

cosε
 0.3210 0.0316 0.0146 0.3213 0.0257 0.0034 

sinε
 0.0084 -0.0400 -0.0149 0.0079 -0.0428 -0.0193 
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2.3.3 Comparison of Models 

 

Approaching the end of this chapter we have already constructed four complete Earth 
radiation models and now the natural thing to do is to compare them, see Figure 2.13. 

In the previous section the question has been posed, whether the simplification of the 
CERES data is good enough to compute the irradiance from Earth received by GPS 
satellites. To address this question we proceed as for the Earth Albedo Toolbox. But for the 
present case a more extensive analysis of the errors is done, taking now into account the 
reflected and emitted radiation.  

The error analysis is as follows: the irradiance for all possible GPS satellite positions 
( °±= 55ϕ  since GPS orbit inclination is °55 ) is computed, for  

- The first day of each month (worst fit of the data). 

- Twelve possible longitudes of the Sun, every 30°.  

- Four radiation models ERM-A, ERM-N ERM-LAT and ERM-CERES. 

We have called ERM-LAT, the model with reflectivity and emissivity dependent on latitude, 
while the model that includes all the CERES data, for longitude and latitude, has been called 
ERM-CERES.  

 

 

 

 

 Figure 2.13 Irradiance at GPS altitude for August 2007 
and Sun longitude °−= 90λ . (a) ERM-CERES, (b) 

ERM-LAT, (c) ERM-N and (d) ERM-A 
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Figure 2.14 Comparison of (a) ERM-LAT, (b) ERM-N, (c) ERM-A with ERM-CERES. Left column: 

minimum difference, central column: mean difference and right column: maximum difference 

 

From the four computed models (see example of Figure 2.13), we take the differences of the 
first three with respect to ERM-CERES and compute the mean difference using Eq. (2.48). 
Also we extract the minimum and maximum of the differences. This is done for each 
irradiance matrix for all satellite positions for a specific month and longitude of the Sun. The 
results are shown in Figure 2.14. 

Starting with the difference between the analytical model with constant albedo (ERM-A) and 
the irradiance computed using CERES data (ERM-CERES), we see a clear structure of the 
error over the months (maximum and minimum plots), related to the latitude of the Sun. 

In the case of the numerical model with constant albedo we have differences in the same 
order of magnitude as for ERM-A. Here we also see some dependency of the error with the 
time of the year but also with longitude of the Sun. The differences between ERM-A, ERM-N 
and ERM-LAT were computed in Table 2.5. 

The model with reflectivity and emissivity dependent on latitude gives the smallest errors, as 
expected, from the three models. It is also important to mention that the errors shown in 
Figure 2.14, do not originate from a bad choice of functions to model the mean of reflectivity 
and emissivity over the latitude, but simply from the longitude dependency of these 
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quantities. For ERM-LAT we see a strong dependency of the error with the time of the year 
as well with the longitude. If this error must be further decreased the answer is to fit a 
function over latitude and longitude of the CERES reflectivity and emissivity data. For 
example a spherical harmonics expansion of low degree and order, should decrease more 
the difference between models.  

Finally regarding the ERM-LAT we should recall that the mean maximum and minimum error 
of this model compared to the ERM-CERES is as low as %5.3  (Table 2.5). This means that 
for most of the possible position of satellite and Sun, the error remains below this value. This 
accuracy was achieved by using only 18 numbers to model a whole year of reflectivity and 
emissivity data. As mentioned before this simplification is possible since the GPS satellites 
are at far distance from the Earth, such that they receive the irradiance from a major part of 
the Earth’s surface. As consequence the irradiance arriving to the satellites is averaged. 

 

Table 2.5 Summary of Earth radiation models 

ERM Mathematical 

Model 

Reflectivity & 

Emissivity 

Mean 

Error 

Min. 

Error 

Max. 

Error 

Respect to 

ERM-CERES Numerical CERES data - - - - 

ERM-LAT Numerical Lat. dependent %1.0  %2.3−  %7.3  ERM-CERES 

ERM-N Numerical Constant %1.2  %7.6−  %8.10  ERM-CERES 

   %0.2  %3.5−  %0.9  ERM-LAT 

ERM-A Analytical Constant %6.1  %4.7−  %0.14  ERM-CERES 

   %5.1  %9.6−  %3.12  ERM-LAT 

   %0.0  %3.8−  %1.6  ERM-N 
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2.4 Discussion and Outlook 

 

 

Having compared the different models constructed within this chapter we can identify from 
Table 2.5 that the analytical and numerical models for constant albedo behave almost the 
same with respect to the model that includes CERES data. Therefore the more interesting 
cases to be tested in the following are: ERM-A, ERM-LAT and ERM-CERES, the last one 
being our reference model. 

Regarding the reference model some possible improvements to it have been identified and 
which are worth to test in future work, but are out of the scope of this Thesis. Specifically the 
assumption that the Earth behaves approximately as a Lambertian sphere, as seen by GPS 
satellites, should be proofed. For example oceans at certain angles reflect directly the 
radiation coming from the Sun acting like a mirror (specular reflection) and not like a perfect 
diffuse reflector  

Borderies and Longaretti (1990) give a small discussion with respect to the specular or 
diffuse reflection of the Earth, saying that the specular reflection can be more expected from 
calm seas or lakes, while clouds, snow fields and the continents all tend to produce diffuse 
reflections and it is estimated that the specular albedo of the Earth is about %10 of the total 
Earth albedo. With other arguments the conclusion is that the Earth radiation pressure may 
be calculated to acceptable accuracy using a diffuse reflection model, as it was done in this 
chapter. 

On the other hand to see the effect of not using a diffuse reflection model of the Earth, one 
could use a similar approach as Martin and Rubincam (1996), who take into account effects 
of Earth albedo on the LAGEOS I satellite. For this purpose they use data of the phase 
function provided by the ERBE mission, this data is a function of the scene type, weather and 
the geometry of the surface element, satellite and Sun. Doing this there is no longer a need 
of the simplification assumed here of a Lambertian phase function. 

Furthermore we took into account seasonal changes of the reflectivity and emissivity, but not 
faster changes than one month e.g. clouds change fast in time, so it could be interesting to 
see if there is and effect due to this in the irradiance received by GPS satellites. 

The reason why these last improvements were not implemented is because they are 
considered to be small effects, since the GPS satellites are far enough from the Earth to see 
a big part of it and therefore they receive an average of irradiance. For example Ziebart et al. 
(2004) and Qiu et al. (2003) have also considered the Earth to be a Lambertian sphere, for 
computing the Earth irradiance at GPS distance and at Moon distance, respectively.  

As a conclusion we can say that although the constructed models are not perfect, they take 
into account the major contributors for computing the irradiance received by GPS satellites 
and further improvements should add details to the models, but should not change the shape 
or orders of magnitude of them. Therefore we have useful models to get a good 
understanding of the effect of Earth radiation on GPS satellites. 
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3 GPS Satellite Model 

 

 

 

 

3.1 Introduction 

 

 

In this chapter we focus on the construction of simple satellite models exposed to the 
radiation coming from the Earth. This radiation will then produce acceleration acting on the 
satellites. First we discuss how the photons interact with the surface of the satellite. 
Introducing some concepts from the work of Montenbruck and Gill (2000) we have: 

“A satellite that is exposed to solar radiation experiences a small force that arises from the 
absorption or reflection of photons. In contrast to the gravitational perturbations, the 
acceleration due to solar radiation depends on the satellite’s mass and surface area.” 

In this study we are interested in Earth radiation rather than in Sun radiation, but the 
concepts are exactly the same. From the last chapter we have the irradiance vector ERME

�
 at 

a given satellite position. Only in this Introduction we will denote the irradiance as Φ , to keep 
the notation used by Montenbruck and Gill (2000). The irradiance can then be expressed as 

 

tA

E

∆
∆=Φ  

(3.1) 

which is the energy E∆  that passes through an area A  in a time interval t∆ . Then from 
Beutler (2005) we have that quantum mechanics says that each photon of frequency ν  and 
wavelength νλ c=  (where c is the speed of light in vacuum) carries the energy 

 νhE =  (3.2) 

and carries an impulse of 

 

c

E
p =  

(3.3) 

where Jsh 341062.6 −×=  is the Planck’s constant. Accordingly, the total impulse of an 
absorbing body that is illuminated by the Earth changes by 

 
tA

cc

E
p ∆Φ=∆=∆  

(3.4) 

during the time t∆ . This means the satellite experiences a force  

 
.A

ct

p
F

Φ=
∆
∆=  

(3.5) 
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The momentum transferred per time unit onto a unit surface in a radiation field is also called 
radiation pressure 

 
.

c
P

Φ=  
(3.6) 

With Eq. (3.5) and the developments done in the following section we will be able to compute 
the force acting on the satellite by knowing the irradiance from the Earth, the area and the 
optical properties of the surfaces. 

Concerning the shape of the satellite, an initial so called “cannon-ball model” is sometimes 
used as first approximation. One just assumes the satellite to be a sphere with certain 
average cross section and optical properties. A next step is to consider the satellite as a box-
wing, the box representing the bus and the wing the solar panels. Looking at Figure 3.1 we 
see that a box-wing is already a quite good approximation of the satellite structure, in 
particular for GPS satellite since all the types of satellites manufactured until now have a 
similar shape compared to the Block II shown below. 

For constructing a satellite model a natural choice of a reference system is body-fixed one. 
The reference system that one sees in Figure 3.1 is described in Fliegel et al. (1992) as:  

“The +Z direction is towards the Earth and therefore along the SV (space vehicle) antennas. 
The SV is manoeuvred so that the Sun is in the SV plane of symmetry and so that the angle 
between the Sun and the antennas is always between °0  and °180 . When the angle is less 
than about °14 , the Sun is eclipsed. The +X is positive towards the half plane that contains 
the Sun, and +Y completes a right-handed system and points along one of the solar panels 
center beams. Thus the surface on which the antennas are mounted is called the main body 
+Z side.” 

This body-fixed reference system is almost the same as the one introduce in the previous 
chapter, see (Figure 3.3), where the radial direction r̂  just points in the -Z direction, while the 
non-radial direction ⊥r̂  is the same as +X. Finally the direction vector 3̂r  completes the right 
handed system and is equivalent to –Y. 

 

 
Figure 3.1 Navstar Block II Spacecraft. Source Güller (2009) 
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3.2 Mathematical Model 

 

 

In this section we give the mathematical and physical background for the satellite models 
which receive the radiation coming from the Earth. We will construct here two types of 
satellite models, a box-wing model where the body of the satellite plus the solar panels are 
considered and a cannon-ball model where average properties of the satellite are assumed. 
Furthermore we distinguish for the box-wing model between two solutions:  

- An analytical solution that will give explicit formulas for the acceleration acting on the 
satellites with the main assumption that the radiation from the Earth is just radial, 
analogous to the Earth radiation analytical model, see (section 3.2). 

- A numerical solution where we consider the actual direction of the radiation coming 
from each surface element of the Earth and reaching each satellite surface, 
analogous to the Earth radiation numerical model, see (section 3.3). 

The basic formulation for the analytical and numerical models is the same and is given in the 
following. 

 

 

3.2.1 General Radiation Pressure Model 

 

Based on the general radiation pressure models described by Fliegel et al. (1992) and 
Hugentobler (2008), we construct a simple box-wing model of GPS satellites as follows: 

- Just the face of the satellite pointing to the Earth (+Z side), the solar panels (front and 
back) and the solar panels masts are taken into account. Smaller elements are not 
considered since their contribution to the force model should be also small. 

- Shadowing effects of satellite components to other components, energy that is 
absorbed and reradiated as heat and reflection and absorption of radiation between 
components, are effects that are not considered since they are assumed to be small.  

- The angular distribution of sunlight reflected from each surface is approximated as 
the sum of two beams, one perfectly diffuse (Lambert scattering) and other purely 
specular, according to Fliegel et al. (1992). 

- The attitude of the satellites is assumed to work perfectly and is simply given by the 
+Z side (where the navigation antennas are located) pointing always to the Earth and 
the front of the solar panels pointing always to the Sun, see Figure 3.2. 

The radiation pressure model, described by Fliegel et al. (1992), is defined by giving each 
surface of a spacecraft its shape (whether flat or cylindrical), the area, and two optical 
parameters: the reflectivity (ν ), ranging from 0  (black) to 1 (white); and the specularity ( µ ), 
ranging from 0  (diffuse) to 1 (specular).  
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Figure 3.2 Attitude and geometry for box-wing model 

 

With the area of a flat surface indicated by A , the total mass of the satellite M , the angle θ  
between the incoming Earth radiation and the normal to the surface, the irradiance from the 
Earth E  and the speed of light c , together with incoming Earth radiation plus the specularly 
and diffusely radiation, it is possible to write three acceleration components for each surface, 
again according to Fliegel et al. (1992): 

- “The ‘normal’ component is perpendicular to the surface. It is produced by the normal 
component of the incoming radiation plus the recoil from the specularly reflected 
beam.” 

- “The ‘shear’ component is tangent to the surface and away from the Sun. It is 
produced by the tangential component of the incoming radiation minus the 
momentum carried away by the specularly reflected beam.” 

- “The ‘diffuse’ component is in the same direction as the ‘normal’ but the effect of this 
Lambert diffuse reflected radiation perpendicular to the surface is only two-thirds of 
the so called “normal” (the specularly reflected) component.” 

The formulas for these three components are given by 

Normal 

 ( ) ,ˆcos1 2 n
c

E

M

A
f N θµν+=
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(3.7) 

Shear 
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(3.8) 
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Diffuse 

 ( ) .ˆcos1
3

2
n

c

E

M

A
f D θµν −=
�

 
(3.9) 

In the last equations, one cosine factor is produced by the foreshortening by perspective of 
the area of the surface presented to the Earth; the other sine and cosine factors show the 
resolution of the force components either normal to the surface or (for the shear acceleration) 
tangent to it. The directions normal n

�
 and tangential t

�
 are illustrated in Figure 3.2. 

These equations can be written by another set of optical parameters after Hugentobler 
(2008), which are the fraction of absorbed photons α , the fraction of reflected photons ρ  
and the fraction of diffusely scattered photons δ . With these parameters we get: 

Absorbed photons 
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Reflected photons 
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Diffusely scattered photons 
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(3.12) 

By taking the projection of these last equations onto the normal and tangential directions, the 
relationship between the two sets of optical parameters and therefore of the equations can 
be found as 

 

( )µνδ
µνρ

να

−=
=

−=

1

1

 

 
(3.13) 

and it can be checked that 

 1=++ δρα  (3.14) 

since each incident photon must fall exactly into one of these three categories. 

 

 

3.2.2 Box-Wing Analytical Model 

 

A simple analytical box-wing model for GPS satellites can be constructed by adopting the 
approximation that the radiation coming from the Earth is assumed to be purely radial; this is 
in general not true but still a good approximation. As the irradiance is just radial, the 
acceleration can be decomposed into two components, a radial component and a non-radial 
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component. Furthermore the acceleration can be described just as function of the angle ψ  
satellite – Earth – Sun. 

Let us now write the equations (3.7) to (3.9) in terms of the angle ψ  for the radial r̂  and non-
radial ⊥r̂  directions shown in Figure 3.2, where we can also distinguish two cases of the 
relative position of satellite, Earth and Sun. In the first one for 20 πψ <≤ , the radiation of 
the Earth is received in the back side of the solar panels and we have ψθ = . For the second 
case ( πψπ <≤2 ) the radiation is received in the front side of the solar panels and it should 
hold that ψπθ −= . 

From Figure 3.2 we also see that the bus (+Z side) is always perpendicular to the Earth and 
for the solar panels masts the same can be considered, while for the solar panels the relative 
position to the Earth is varying during one revolution. Therefore we split the equations in two 
parts: 

Bus and solar panels masts 
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Solar panels 
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Introducing the respective acceleration components in equations (3.16) and (3.17), together 
with the considerations that (3.17) should be negative for πψπ <≤2  and the implication of 
(3.18) for the trigonometric functions, one can find after rearranging some terms the 
following: 

Solar panels 
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Also note that using the other set of optical parameters, defined in (3.13), the last equations 
have even a simpler form:  
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where we have also introduced (3.15) and made the distinction between the satellite bus 
area busA  and the solar panels area solA .These last formulas together with the irradiance E  
computed with the Earth radiation models from the last chapter, give the acceleration acting 
on GPS satellites due to the emitted and reflected radiation of the Earth and depend just on 
the characteristics of the satellite and the angle ψ  satellite – Earth - Sun.  

 

 

3.2.3 Box-Wing Numerical Model 

 

The radiation coming from the Earth is in general not only radial, in fact the radiation can 
deviate from the radial direction around °14 , see Eq. (2.25), where the angle β  indicates the 
part of the Earth visible by the satellite, so one computes °=−° 1490 β . Using the radiation 
coming from the full disc of the Earth one can not get simple formulas, like (3.21) and (3.22), 
just depending on the angle satellite – Earth – Sun, therefore the solution is computed in a 
numerical way.  

A procedure how to compute the satellite acceleration on a box-wing model will be given 
here, where we use the same body-fixed reference system used for the analytical model, 
with the radial direction r̂ , the non-radial ⊥r̂  and a direction 3̂r  which is orthogonal to the 
previous ones and completes the right handed system. The procedure is describe for the 
back side of the solar panels, it means for 20 πψ <≤ , however the procedure is general 
and works in the same way for the front side of the solar panels as well for the satellite bus, 
with just small differences between them.  

Let us start by considering an irradiance vector in the body-fixed reference system and the 
normal to the surface vector in the same reference system (Figure 3.3), given by 
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 Figure 3.3 Solar panel geometry for the 
numerical box-wing model 
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With these two vectors we can define an auxiliary vector â  perpendicular E
�

 and n̂ , then we 
can also define the tangent direction vector t̂ , both vectors are given by 

 ( )
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EnEa

×=
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��

 
(3.24) 

Now the normal and tangent vectors in equations (3.7) to (3.9) are completely defined. The 
angle between the incoming Earth radiation and the normal to the surface is  

 ( ) .ˆcos EnE
��

⋅=θ  (3.25) 

Note that the tangent direction vector must be tangential to the surface of the solar panels, 
however the pointing direction of it is different to what it was considered in the analytical 
case. Furthermore it can be seen from Figure 3.3 that E

�
, n̂  and t̂  are in the same plane. 

With the previous definition one can compute the acceleration acting on the solar panels 
surface by applying equations (3.7) to (3.9), and summing up the accelerations acting on the 
body-fixed reference system from the irradiance vectors coming from different places of the 
Earth. 

Although it is not possible to give analytical formulas as (3.21) and (3.22), the implementation 
of the irradiance from the full disc of the Earth is not much more complicated as just 
considering irradiance in the radial radiation. One just has to take care if the irradiance is 
reaching the front or the back of the solar panels, specially when °<<° 10476 ψ , it means 
when the solar panels are close to parallel with the radial direction and can be illuminated 
from both sides simultaneously. For the more interested reader we refer to the program code 
provided in the Appendix.  

Finally for the satellite bus, the computation is simpler since °= 0ψ  and it does not change 
its orientation with respect to the Earth. Also note how important the angle ψ  is, that alone 
can completely define the attitude of the satellite. 

 

 

3.2.4 Cannon-Ball Model 

 

From equations (3.21) and (3.22) we can construct a very simple cannon-ball model by just 
averaging the magnitude of the acceleration over the angle ψ  and using an albedo of 3.0  for 
the irradiance computation. Doing that we simply have 
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(3.26) 

where ballC  is a constant which is determined numerically and gives the average dimensions 
and optical properties of the GPS satellites. This type of model has no variation but the one 
of the irradiance from the Earth, so the acceleration has the same shape of the irradiance but 
multiplied by a scaling factor. 

The data needed as an input for the box-wing and cannon-ball models proposed here is 
given in the following section, while the plots of the accelerations are shown in section 3.4. 
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3.3 Dimensions, Optical Parameters and Masses 

 

 

We present in this section the data used to for the satellite models, based mostly on the 
publications of Fliegel et al. (1992) and Fliegel and Galini (1996), who got the dimensions 
and optical parameters of the components directly from the manufactures of the GPS 
satellites, Rockwell International for Block I and Block II and Lockheed Martin for Block IIR. 
Regarding the Block IIA satellites, it is reported that their properties are very similar to Block 
II. We just present here part of the data, the one that is necessary to construct the box-wing 
model for the radiation coming from the Earth. 

 

Table 3.1 Main dimensions and optical parameters (visible and infrared) for GPS satellites 

GPS satellite Area [ 2m ] Specularity 

VISµ   

Reflectivity 

VISν   

Specularity 

IRµ  

Reflectivity 

IRν  

Block I (Mass kg500  )      

+ Z side 510.1  75.0  86.0  50.0  20.0  

Solar panel masts 470.0  85.0  85.0  50.0  20.0  

Solar panels front 583.5  85.0  23.0  50.0  20.0  

Solar panels back 583.5  5.0  11.0  50.0  20.0  

Block II (Mass kg885 )      

+ Z side 881.2  20.0  56.0  50.0  20.0  

Solar panel masts 985.0  41.0  52.0  50.0  20.0  

Solar panels front 866.10  85.0  23.0  50.0  20.0  

Solar panels back 866.10  5.0  11.0  50.0  20.0  

Block IIR (Mass kg1100 )      

+ Z side 750.3  0  06.0  50.0  20.0  

Solar panel masts 320.0  85.0  85.0  50.0  20.0  

Solar panels front 600.13  85.0  28.0  50.0  20.0  

Solar panels back 600.13  5.0  11.0  50.0  20.0  

TEST (Mass kg1000 )      

+ Z side 000.5  0  13.0  0  13.0  

Solar panel masts 0  - - - - 

Solar panels front 000.15  50.0  20.0  50.0  20.0  

Solar panels back 000.15  50.0  20.0  50.0  20.0  
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Table 3.2 Parameters for GPS satellites (cannon-ball) 

GPS satellite ][ 2 kgmMA  ballC  

Block I 01513.0  8876.0  

Block II 01667.0  8551.0  

Block IIR 01606.0  8134.0  

TEST 02000.0  8174.0  

 

For the back of the solar panels (Block models) the reflectivity was computed as εν −= 1 , 
with ε  the emissivity the value reported for this surface. The specularity is then calculated 
from (3.13) and (3.14) assuming that the fraction of reflected and scattered photons is the 
same, so in general the back of the solar panels absorb most of the radiation. 

The data given in Table 3.1 was calculated for the visible part of the spectrum, but we also 
need the same data for the infrared part or even better specularity and reflectivity as a 
function of the wavelength. However this data is not available directly for the GPS satellites. 
Consequently a big assumption we made in the case of TEST models is that the coefficients 
given for the visible region of the spectrum are also valid for the infrared one, this simple 
TEST model uses realistic optical properties that were assumed before having access to the 
more accurate data, it is presented because it was initially used for some of the simulations 
done in the later chapters. 

For the Block I, II and IIR we did further investigations to find specularity and reflectivity for 
the infrared, however this is not simple since currently there are many types of materials 
used for the construction of space vehicles and some of the materials are designed to help to 
the thermal control of the satellite, see for example Pisacane and Moore (1994), 
consequently the materials have different properties for visible and infrared radiation. 
Looking at the emissivity values reported by Henninger (1984), one finds the emissivity of the 
GPS solar panels in the infrared to be 80.0=ε  which is equal to the fraction of absorbed 
photons, as before it is assumed that the fraction of reflected and scattered photons is the 
same. Doing that one gets 20.0=IRν  and 50.0=IRµ , and for the rest of the satellite 
structure the same values are assumed, further studies if possible should try to improve this. 

If one wishes to enhance the performance of the model, one could estimate radiation 
pressure parameters, during the orbit computation, by the fitting of real GPS observations 
using polynomials of the type (3.21) and (3.22) . See for example Springer et al. (1999) for a 
solar radiation pressure model of GPS satellites using this technique. Then if we assume that 
the only quantities that are not well known are the optical properties of the surfaces, we have 
just three parameters to estimate: 

- busC : mean of optical properties of the satellite bus, valid interval [ ]66.2,1  

- :solδ  diffusely scattered photons from solar panel, valid interval [ ]1,0  

- :solρ  reflected photons from solar panel, valid interval [ ]1,0  

Moreover it should hold that 1≤+ solsol ρδ  and they give mean optical properties of front and 
back solar panels, for the visible and infrared radiation. To separate the front and back of 
solar panels, then simply five parameters instead of three must be estimated. 



 47 

3.4 Acceleration acting on GPS Satellites 

 

 

3.4.1 Acceleration due to Earth Radiation 

 

 
Figure 3.4 Acceleration on GPS satellites due to reflected visible radiation (left) and emitted infrared 

radiation (right) from the Earth. (a)(b) Cannon-ball model, (c)(d) box-wing analytical model, (e)(f) box-
wing numerical model. Solid line -> radial acceleration, dashed line -> non-radial acceleration 
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The acceleration acting on GPS satellites due to Earth radiation can be now computed and 
the results are shown in Figure 3.4 using the numerical Earth radiation model for constant 
albedo of 3.0 . Since in the previous section we have separated the surface properties for the 
visible and for the infrared, the same is done here for the accelerations. 

Moreover the accelerations for the satellite types Block I, Block II, Block IIR and TEST are 
plotted. Block I satellites do not form part of the constellation any longer, however we can 
see that the acceleration is similar to the other two types of satellites, this means that all 
satellites have a similar area to mass ratio MA .  

In Figure 3.4 also we have plotted separately the different satellite models: cannon-ball, box-
wing analytical and box-wing numerical. Note that the acceleration of the cannon-ball simply 
follows the curve of the Earth radiation model Figure 2.5(d), while for the box-wing models 
there is a more interesting behaviour of the acceleration.   

Regarding the components of the acceleration for the box-wing models, we see that the 
radial has its minimum at °= 90ψ  , which is expected since at this point the least radiation of 
the Earth is intersected by the satellites . The maximum of the radial component as expected 
is at °= 0ψ  and °= 180ψ . 

 In the case of the non-radial component we see a maximum and a minimum around 
°= 35ψ  and °= 145ψ . Looking at Figure 3.2 is obvious that for 20 πψ <≤  the non-radial 

component should be positive, while for πψπ <≤2  negative. Note that this last component 
can be around %15  of the radial component for some ψ  angles; moreover this non-radial 
acceleration will influence directly the along-track and cross-track directions, giving non 
negligible effect in these directions. 

In the case of the box-wing numerical model, the main difference compared to the analytical 
one is for °<<° 10476 ψ , which was expected since the discontinuity of the acceleration of 
the analytical model for °= 90ψ  should vanish, something closer to what happens in reality 
when the satellite receives radiation from the full disc of the Earth and not from a source 
point of radiation. 

 

 

3.4.2 Acceleration due to Antenna Thrust 

 

The thrust produced by the navigation antennas give a constant radial acceleration and as a 
consequence a potential shift of the acceleration in this direction. According to Ziebart et al. 
(2004), we have the following: 

“GPS satellites emit between 70  and 80 watts of power along the antenna bore sight in the 
process of transmitting the L1 and L2 carrier waves. Now, the force, in newtons, due to the 
absorption of photons from an incident radiation flux ( E ) is given by cEF =  where E  is 
measured in watts per metre squared and c  is the speed of light in vacuum, expressed in 
metres per second. Hence, by Newton’s third law when a signal of power (W ) is emitted 
there is an equal and opposite reactive force acting along the negative direction of the 
antenna bore sight.” 
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The resulting acceleration in then given by: 

 
.ˆ

Mc

W
f r =  

(3.27) 

Considering an emitted power of 80 watts by the antenna, the acceleration for the different 
satellite types is:  

Block I: 210103.5 sm−×  Block IIR: 210104.2 sm−×  

Block II: 210 /100.3 sm−×  TEST: 210107.2 sm−×  

Adding the accelerations due to the visible and infrared radiation, together with antenna 
thrust, gives the total acceleration acting on GPS which is plotted in Figure 3.5(a) for the 
case of the numerical box-wing model.  

 

 

3.4.3 Acceleration due to Sun Radiation 

 

For comparison the acceleration due to Sun radiation acting on GPS satellites is plotted, as 
described by Fliegel et al. (1992) and Fliegel and Galini (1996), in Figure 3.5(b). There the 
acceleration is plotted as a function of the angle of the Sun in the body-fixed reference 
system, in other words the angle in the plane ZX in Figure 3.1. Note that the Sun must 
remain in this plane since the Y-axis points along one of the solar panels centre beams, thus 
is always perpendicular to the direction of incident Sun radiation.  

The change of acceleration that one sees is only due to rotation of the satellite bus, since the 
solar panels remain always perpendicular to the Sun and they just give the constant shift of 
the curves. This variation of the acceleration is around 29109.6 sm−× for Block II and 

29103.8 sm−×  for Block IIR, while the change of acceleration on this satellites due to Earth 
radiation can reach up to 29105.1 sm−× . 

 

 
Figure 3.5 Acceleration on GPS satellites due to (a) Earth radiation plus antenna thrust and              

(b) Sun radiation 
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3.5 Discussion and Outlook 

 

 

3.5.1 Magnitude of the Acceleration 

 

Although the acceleration on GPS satellites due to Earth radiation is on average just %2  of 
the solar radiation pressure, when we look at the change of acceleration due to Earth 
radiation it can reach maximum values of %21  (Block II) and %18  (Block IIR) of the variation 
of acceleration due to Sun radiation. This means that potentially there is a mismodelling of 
this amount by no considering the Earth radiation on the radiation pressure models of GPS 
satellites. This potential mismodelling alone justifies the effort of including the Earth radiation 
as a perturbing acceleration in the modelling of GPS satellites orbits. 

An interesting effect on the GPS satellites of the same order of magnitude ( 29100.1 sm−× ) 
as the effect of Earth radiation, is the Y-bias which is an acceleration acting on the Y-axis 
(Figure 3.1) probably because a small misalignment of the solar panels to the Sun, see for 
example Springer et al. (1999). However the acceleration due to Earth radiation can not 
explain the Y-bias, since the first one is constrained in the plane ZX of Figure 3.1 or the 
plane radial non-radial of Figure 3.2, so the component in the Y-axis is very small or zero. 

Another effect that is also interesting are the eclipses, since the acceleration due to Earth 
radiation is greatest precisely during eclipse season, when the satellite, Earth and Sun are 
aligned, because at some point of the orbit the angle ψ  reaches small values and as a 
consequence the acceleration acting on the satellites is bigger, see Figure 2.5(d).  

These last two effects, the Y-bias and the eclipse season, are not further studied during this 
thesis since outreaches the objectives of it. The last two paragraphs just try to highlight the 
importance of modelling Earth radiation for GPS satellites and give the opinion of the author 
on potentially interesting research topics. 

Finally regarding still the order of magnitude of the acceleration here computed 
( 29105.1 sm−× ), one can notice that it is bigger than effects of thermal re-emission on GPS 
satellites. For example Duha et al. (2006) have computed this acceleration and it is in the 
order of 21210100 sm−× , it means around %7.6 of the one due to Earth radiation, this again 
confirms the importance of including the Earth radiation in the computation of GPS orbits. 

 

 

3.5.2 Other Radiation Pressure Models 

 

A simple model for the albedo radiation pressure was proposed by Beutler et al. (1994), 
which is similar to the model described in this chapter, but with the satellite model and the 
Earth radiation model written together. More specifically for the radiation coming from the 
Earth, their model is as the numerical Earth radiation model for constant albedo, considering 
just the reflected radiation but no emitted radiation.  
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For the satellite model they also use a box-wing model similar to our numerical box-wing 
model. However by analysing the formulas provided by them it seems that not all the optical 
properties of the satellite surfaces were considered, it means the fraction of photons that are: 
absorbed, reflected or diffusely scattered, see equations (3.10) to (3.12). 

Moreover Beutler et al. (1994) using the simple model for albedo radiation pressure 
estimated radiation pressure parameters. However the estimated parameters did not seem to 
improve further the orbit or the albedo acceleration was already absorbed by the parameters 
used by the solar radiation pressure model, which at this point were around 9 parameters. 

Also an interesting solar radiation pressure model, where parameters are estimated from 
several years of GPS measurements, was made by Bar-Server and Kuang (2004). They find 
coefficients that better fit the GPS orbits of no eclipsing satellites and the number of 
estimated coefficients is around 12, doing that it is reported a considerable improvement of 
the orbits.  

The article of Bar-Server and Kuang (2004) provides an interesting comparison of two types 
of current approaches to deal with the solar radiation pressure for GPS satellites: 

“The ‘ground –model’ approach is based on pre-launch models and measurements of the 
spacecraft optical and thermal properties. The ‘empirical’ approach uses the observed orbital 
motion of the spacecraft to infer the solar radiation forces (and other forces) acting on the 
spacecraft.” 

Taking into account that the model developed by Bar-Server and Kuang (2004) is an 
‘empirical’ one, they finish the article with a comparison between both approaches: 

“The ‘ground-based’ design process is carried out by modelling the spacecraft as a collection 
of components, each with its own shape, size, optical and thermal characteristics. Given the 
nominal mission profile and orbital geometry, the process employs various ray tracing, finite 
element and finite difference techniques to simulate the effects of impinging photons on the 
spacecraft, and derive the solar radiation model.” 

This process is described as complicated but the result is usually fairly good if the spacecraft 
in-orbit behaviour does not deviate from the nominal. For example Ziebart et al. (2003, 2004, 
2005) have developed very interesting tools to take into account complex satellite structures, 
where in principle small details can be included and they consider other effects as heat flow 
inside the spacecraft, shadowing of different elements and reflection effects between 
elements. The results they got are very promising and their satellite models seem to take into 
account almost everything that one could think of, when dealing with non-conservative forces 
acting on satellites. 

However there are some deficiencies of the ‘ground-based’ models as pointed out by Bar-
Server and Kuang (2004): 

“The in-orbit satellite behaviour may deviate from the nominal. Misorientation, bending and 
flexing of structures are quite common. For example, the non-nominal Y bias force can be 
attributed to solar array misalignment and to a yaw bias. Also, actual aging effects may 
deviate significantly from the model. The actual accuracy of the model can only be roughly 
estimated …” 
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While for the ‘empirical’ model some advantages are seen: 

“It reflects the actual in-orbit behaviour. It is more accurate and it directly accounts for the 
combined radiation pressure of all spacecraft components. It provides a tool for learning 
about actual in-orbit behaviour of satellites and for flagging and monitoring problem 
satellites.” 

And by the other hand the author of this thesis also sees some disadvantages of the 
‘empirical’ models. For example in most of the cases the polynomials used to find the 
radiation pressure parameters are based on trial and error and are proposed just on the 
basis of which fits best the data, therefore they are not based on clear physical models of 
satellite structure, optical properties or irradiance coming from the Sun or the Earth. As a 
consequence of the polynomials that are used, from the estimated coefficients one cannot 
easily extract physical properties of the satellite, for example optical properties or the attitude 
of the spacecraft. 

In this chapter we have developed a satellite model for radiation coming from the Earth and 
we have not intended to do a similar one for the radiation coming from the Sun. However the 
differences between both models are small, being for the GPS satellites the relative 
orientation the main one. As mentioned before for the case of Sun radiation, the solar panels 
are always perpendicular to it and what is changing the acceleration is the rotation of the 
satellite bus around the Y-axis, as the satellite is orbiting the Earth. While for the case of 
radiation coming from the Earth the orientation of the satellite bus remains fixed but the solar 
panels are rotating. 

Also our box-wing model falls evidently into the category of ‘ground-based’ models just 
discussed above. However we have also discussed the possibility of estimating radiation 
pressure parameters using for example equations (3.21) and (3.22). In this case the 
estimated coefficients have a clear physical meaning of the satellite optical properties and 
the corresponding polynomials are derive just using the satellite structure and attitude. But a 
problem that one can almost immediately identify is that if one estimates radiation 
parameters (as proposed here) for the acceleration due to Earth radiation, combined with a 
purely empirical solar radiation pressure model, probably the coefficients will be either 
absorbed by the solar empirical model or will not give a clear physical meaning. 

 

 

3.5.3 Further Improvement 

 

The main error that is considered to be still remaining in the box-wing satellite models, is the 
lack of information of the surface properties in the infrared, if more information is available a 
natural step is to incorporate this properties into the model. To overcome this problem 
another possibility is to estimate radiation pressure parameters. 

Considering the arguments previously exposed, the author thinks that the best way to 
estimate radiation pressure parameters would be with a ‘semi-empirical’ model whose 
polynomials are found from ‘ground-based’ models. In this case one knows with enough 
accuracy the irradiance from Earth and Sun and the satellite structure, remaining as 
parameters to estimate optical properties and attitude. These parameters could be also 
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constrained to some of the a priori knowledge that we have about them. This is exactly what 
has been proposed here for the Earth radiation, estimating a minimum of three parameters. 

As a simple exercise let us think of a solar radiation pressure model, where we considered 
the structure to be a simple box-wing model, how many parameters do we need then to 
estimate? Let us consider that for each surface we need 2 optical parameters. Then for the 
bus we can consider we have 3 different types of surfaces, +Z side, -Z side and other sides 
(±Y and ±X), note that the ±Y sides are poorly illuminated by the Sun. Then with the solar 
panels we have a total of 8 parameters to be estimated. We could also consider a small 
misalignment of the satellite attitude for example in the Y-axis, so we need one extra 
parameter. In total one could estimate around 9 parameters which in principle would give 
information on some physical properties of the satellite.  

Now considering the Earth radiation pressure model, one could use some of the parameters 
estimated from the solar pressure model or do an estimation using both models, as we 
propose the parameters to be the optical properties of the surfaces, they are the same for 
both Earth and Sun radiation models. 

Finally it can be said that although the box-wing satellite models constructed here have not 
reached perfection and some improvements can be clearly seen. The more detailed or 
elaborate modelling is not expected to change the behaviour of the acceleration or its orders 
of magnitude. 
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4 Perturbation on Kepler Orbit 

 

 

 

 

4.1 Introduction 

 

 

4.1.1 Numerical Integration 

 

After the development and computation of the Earth radiation and the GPS satellite models, 
we can use the acceleration resulting from the combination of both models to study the effect 
of it on a simple Kepler orbit. The only forces that are considered are the gravitational 
attraction of the Earth (as a uniform perfect sphere) and the computed acceleration due to 
Earth radiation. In other words in the equation of motion of the two body problem, we 
introduce a perturbing acceleration: 
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Where r
�

 is the satellite position vector from the geocenter given in an inertial reference 
system, 2312106005.398 smGM ×=⊕ is the product of the gravitational constant G  and the 
mass of the Earth ⊕M  (assuming the mass of the satellite to be negligible compared to the 
mass of the Earth) and the perturbing acceleration vector due to the Earth’s radiation is 
denoted by the symbol Ef

�

.  

To solve equation (4.1) we use one of the numerical integration tools provided in the Matlab 
Software, for example ODE45 has enough accuracy for the study of our problem. 
Furthermore we make use of the method of Cowell for the orbit integration, see Gruber 
(2008). The basic idea is that the equation of motion is integrated stepwise using rectangular 
coordinates and is rewritten in two first order differential equations: 
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with v
�

 the satellite velocity vector.  

It must be clarified that the orbit integration process is a complex issue with many works 
devoted just to it, see for example the books of Beutler (2005) and Montenbruck and Gill 
(2000) for more extended treatments of this topic. However we will see later in this chapter 
that the simple orbit integration procedure of a Kepler orbit with a small perturbing 
acceleration can give us a good but simple understanding of the general effects of Earth 
radiation on the GPS satellite orbits.  
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Table 4.1– Keplerian orbital elements for PRN06 

Semimajor axis 

][kma  

Eccentricity 

e  

Inclination 

[deg]i  

RAAN 

[deg]Ω  

Argument of perigee 

[deg]ω  

26560.699  0.0062068  53.5060  155.9994  282.1291 

 

In the next chapter, with the purpose of having a more precise computation of the effect, we 
will make use of the Bernese GPS Software, see Beutler et al. (2009), which can take into 
account almost all perturbations acting on the orbits, using very sophisticated integration 
tools and with the incorporation of real GPS measurements.  

The example computed in this chapter refers to the GPS satellite PRN06, whose initial 
conditions of the equation of motion are given in Table 4.1, one of the GPS satellites that can 
be tracked by SLR stations. The information of the satellite is provided by Kelso (2009), for 
the day 154 of 2009. Five of the Keplerian elements are in the last table while the sixth 
Keplerian element, the perigee passing time, is assumed to be zero. The simulation is 
carried out for one year and the starting position of the Sun coincides with the Vernal 
Equinox. 

Since in this chapter we only want to acquire a general understanding of the perturbation 
caused by Earth radiation on the GPS orbits, we have chosen to use the simplest Earth 
radiation and satellite models: the analytical Earth radiation model (constant albedo) 
combined with the cannon-ball or analytical box-wing TEST models. Looking at the results 
obtained in Chapter 3 we know that although there is a difference between the analytical 
Earth radiation model and our most realistic one (using CERES data), the general behaviour 
of the models is the same. However in the case of the satellite models, it is necessary to 
consider both the cannon-ball and box-wing models since the differences between them are 
large, see for example Figure 3.4, while the difference between the Block type or TEST 
satellite is small. 

The study of the more complex Earth radiation and satellite models will be done in the next 
chapter, when we will study the effect of Earth radiation on real GPS orbits using the 
Bernese GPS Software. 

 

 

4.1.2 Reference Systems 

 

The equation of motion of the satellite (4.1) is valid only in an inertial reference system, 
therefore one uses a space fixed Earth centred one, where the Z axis points in the direction 
of the North Pole, the X axis is along the Vernal Equinox and the Y axis completes the right 
handed system, see Figure 4.1. This reference system is quasi inertial since the Earth 
rotates around the Sun and also the Sun rotates around the galaxy centre, but it can be 
assumed inertial for the study of our problem. 
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Figure 4.1 Space fixed Earth centred reference system 

 

In Figure 4.1 three of the Keplerian orbital elements are explicitly shown for an arbitrary 
satellite: the right ascension of the ascending node (RAAN) Ω , the argument of perigee ω  
and the inclination i . The perigee passing time can be related to the true anomaly ν , while 
the semimajor axis a  and eccentricity e  which are related to the shape of the elliptical orbit 
are not shown. Moreover the argument of latitude of the satellite is computed as νω +=u . 

We can also see in Figure 4.1 the position of the Sun in the space fixed Earth centred 
reference system, with 0β  the Sun elevation angle above the orbital plane of the satellite and 

u∆  the argument of latitude of the satellite with respect to the argument of latitude of the 
Sun. Finally the obliquity of the ecliptic is given by °= 45.23ε . 

The results of the orbit integration will be not shown in the space fixed Earth centred 
reference system but rather in a reference system moving with the satellite and with a 
specific orientation with respect to the satellite orbit, which is more convenient for the study 
of orbit perturbations. This reference system is constructed as follows: 

Radial direction 

 ,ˆ rrr
��=  (4.3) 

 

 
Figure 4.2 Orbital reference system 
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Cross track or normal direction 

 ,ˆˆ vvrn
��×=  (4.4) 

Along track or tangential direction 

 .ˆˆˆ rnt ×=  (4.5) 

Note that the along track direction coincides with the velocity direction for perfect circular 
orbits, while the cross track direction is always perpendicular to the orbital plane. This orbital 
reference system is shown in Figure 4.2, there we see again the angles 0β   and u∆  which 
give the relative orientation of the satellite orbit with respect to the Sun. Note that the angle 
ψ   between satellite, Earth and Sun, that we have used in the previous two chapters to 
describe the Earth radiation and satellite models can be calculated simply as 

 .coscoscos 0 u∆= βψ  (4.6) 

This simple relationship between the previous angles guided us to change slightly the initial 
conditions for the orbit integration process and instead of starting when the perigee passing 
time or the true anomaly are at zero, we start at °=∆ 0u . This selection of initial conditions is 
important and will give us later a simple understanding of the problem. The orbit integration is 
carried out over one year, so the Sun completes one revolution around the satellite orbit, but 
the integration process is initialized every revolution such that for °=∆ 0u  the position and 
velocity vectors of the perturbed orbit (numerically integrated) and the Keplerian orbit 
(analytically integrated) are exactly the same. 

The computation of 0β  and u∆  as a function of time can be done by assuming the orbits of 
satellite and Sun to be circular, then one finds the intersection of the two circles for a given 
set of orbital elements and for a specific time of the year. The explicit computation is not 
written here but for the interested reader, it is a recommended and interesting exercise of 
spherical trigonometry.  

Figure 4.3 shows the sun elevation angle as function of the number of revolutions for the 
specific GPS orbit described in Table 4.1. Note that the curve is not a simple trigonometric 
function like sine or cosine, but of course it is periodic over one year. Furthermore when the 
maximum of the curve reaches high values one sees a triangular shape of it (Figure 4.3) and 
when the maximum reaches lower values the shape of the curve is smother (not shown). 

 

 
Figure 4.3 Sun elevation angle over one year 
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4.1.3 Recapitulation 

 

Before proceeding with the results that we have in this chapter, let us summarize what we 
are capable to compute at this point of the Thesis: 

- Irradiance using four different Earth radiation models (Chapter 2) of increasing 
complexity for a given satellite and Sun positions. 

- Acceleration using three different satellite models (Chapter 3) of increasing 
complexity, for a given irradiance vector and relative position of satellite, Earth and 
Sun. 

- Relative position of Sun and satellite for a simple GPS unperturbed orbit over one 
year, as described in this Introduction. 

One can think of this list as program subroutines, the first two are available in the Appendix. 
The only computation missing now is a program that combines the Earth radiation and 
satellite models in a consistent way and computes the acceleration acting on the satellites for 
any given satellite and Sun positions (also provided in the Appendix). Note that for computing 
Figure 3.5(a) this last computation was already used. With these three relative small 
subroutines (around 400 lines in total) which are capable of computing the acceleration on 
satellites due to Earth radiation, it is expected that the person interested can implement and 
use them standalone or inside more sophisticated software packages. 

Finally with respect to the structure of this chapter we will proceed as follows: 

- The on-orbit acceleration acting on the example GPS satellite is computed for the 
simplest Earth radiation and satellite models. 

- The perturbed orbit is computed by numerical integration for the selected Earth 
radiation and satellite models to study the general behaviour of the perturbation. 

- A new reference orbit is constructed to get radial residuals in a GPS like orbit 
estimation process, in order to get an understanding of the effect of the perturbation 
on the radial direction. 

These last steps will be done having in mind the Satellite Laser Ranging (SLR) technique 
that can measure very precisely satellite orbits especially in the radial direction. Furthermore 
as describe in the introduction of this thesis, currently a radial bias exists between SLR 
measurements of GPS orbits and the orbits computed by the International GNSS Service 
(IGS). Moreover the cause of this bias has been suggested by some studies to be related to 
the Earth radiation impacting the GPS satellites.  
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4.2 On-Orbit Acceleration 

 

 

4.2.1 Per Revolution Acceleration 

 

In Figure 4.4 the acceleration over one revolution is plotted for the cannon-ball and box-wing 
models, for two different Sun elevation angles, see also Figure 4.3. For angles °<∆≤ 900 u  
and °≤∆<° 360270 u  the satellite is above the illuminated part of the Earth so the 
acceleration comes from the effect of reflected visible and emitted infrared radiation, while for 

°<∆<° 27090 u  the acceleration is mainly due to the emitted infrared radiation of the Earth. 

Regarding the components of the acceleration, the radial one is what we already got in 
Chapter 3, but now for the box-wing model we have an interesting behaviour of the along 
track and cross track components, which will be further discussed in the following section. 

 

 
Figure 4.4 Acceleration over one revolution. Left: cannon-ball model. Right: box-wing model. 

Top °= 8.190β . Bottom °−= 8.740β  
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4.2.2 Per Year Acceleration 

 

The results of computing the acceleration for the cannon-ball and box-wing models over one 
year are shown in Figure 4.5, note the difference in magnitude between both models. On the 
other hand there is a big correlation of the accelerations for both models with respect to the 
Sun elevation angle, for example by comparing with Figure 4.3 one can see that for high Sun 
elevation angles the acceleration decreases and vice versa, also noticeable in Figure 4.4.  

After plotting the acceleration over one revolution and over one year, we find a short periodic 
variation of the acceleration ( u∆  angle) and a long periodic variation ( 0β  angle), therefore a 
very interesting way to plot the acceleration is as a function of these two angles. The results 
for the radial acceleration of the cannon-ball and box-wing models are shown in Figure 4.6 
and the along track and cross track accelerations of the box-wing model are plotted in Figure 
4.7. Note in these figures that the maximum Sun elevation angle is °±= 750β . Furthermore 
the consistent behaviour of the accelerations in this system just show that we have found 
possibly the simplest set of variables to describe the acceleration acting on the satellites due 
to Earth radiation. Also note that these figures as a function of 0β  and u∆  show all the 
details of the accelerations over one year and per revolution. 

The radial accelerations of the cannon-ball and the box-wing model, have both the maximum 
at the daylight side of the Earth ( °= 00β  and °=∆ 0u ), while at the dark side of the Earth 
( °= 00β  and °=∆ 180u ) we find a different behaviour of the satellite models, with a 
minimum for the cannon-ball model and a local maximum for the box-wing model. This 
difference of the models is a key factor that brings us closer to explain the characteristic 
pattern of the SLR – GPS radial residuals obtained by Urschl et al. (2008), see Figure 1.1. 

The along track and cross track accelerations (Figure 4.7) have a clear behaviour depending 
also on the position of the Sun respect to the satellite. We see a twice per revolution 
perturbation of the along track components and a once per revolution perturbation for the 
cross track component, with a change of sign according to the Sun elevation angle sign for 
the latter one. 

 

 

 

 

 Figure 4.5 Acceleration as a function of number of revolutions for                 
(a) cannon-ball and (b) box-wing models 
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 Figure 4.6 Radial acceleration as a function of 0β  and u∆  for                    

(a) cannon-ball and (b) box-wing models 

 

 

 

 

 

 

 

 

 Figure 4.7 (a) Along track and (b) cross track acceleration as a function of 

0β  and u∆ for the box-wing model 
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4.3 Perturbation on Kepler Orbit 

 

 

4.3.1 Per Revolution Perturbation 

 

The perturbed orbit is numerically integrated as described in the introduction of this chapter, 
the results of the integration are plotted in Figure 4.8 in the form of residuals: perturbed orbit 
minus initial Kepler orbit. Note that for the orbit integration we use the initial conditions from 
the Kepler orbit, therefore the perturbation is zero for °=∆ 0u . With respect to the magnitude 
of the effect, for one revolution we have a maximum of m1.0  in the radial component of the 
position and around m5.0−  in the along track component, while in the cross track we do not 
see a significant effect. 

In contrast to Figure 4.4 we show here the effect for just one Sun elevation angle, however 
the effect on the position and velocity is similar as for the acceleration. The perturbation 
decreases as the sun elevation increases. 

 

 

Figure 4.8 Orbit perturbation over one revolution for °= 8.190β . Left: cannon-ball model.           

Right: box-wing model. Top: position. Bottom: velocity 
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Something very interesting to observe is that although the acceleration acting on the satellite 
is largest in the radial direction, the effect on the position is the largest in the along track 
direction over one revolution of the satellite. One can generally explain this behaviour 
through Kepler’s Third Law: 

 GMan =32  (4.7) 

 

 

Figure 4.9 Perturbed Keplerian orbital elements over one revolution for °= 8.190β .                   

Dashed line: cannon-ball model. Solid line: box-wing model  
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where Tn π2=  is the mean motion of the satellite given in srad , with T  the period of the 
orbit and a  the semimajor axis of the orbit. One can also relate the mean motion to the 
velocity of the satellite (for circular orbits) by nav = , therefore a positive change in the radial 
direction (increase of a ) implies a decrease of the mean motion and consequently of the  
velocity of the satellite in the along track direction, which will also decrease the position in the 
along track direction in an accumulative way as we can see in Figure 4.8. Consequently what 
we have is that a radial acceleration has a direct impact in the radial position but also an 
indirect one in the along track direction. 

In Figure 4.9 we plot the Keplerian orbital element of the perturbed orbit minus the ones of 
the unperturbed orbit, there we can also see clear differences between the cannon-ball and 
box-wing models. For example the change of semimajor axis for the box-wing model is very 
different compared to the change for the cannon-ball model, not only in magnitude but also in 
the shape of the curve. For the other elements the differences are less pronounced, the 
inclination and right ascension of the ascending node in the case of the cannon-ball model 
remain zero since for this model there is no cross track accelerations. 

The argument of perigee and the true anomaly seem to be totally opposite to each other but 
in fact the sum of them (in radians) multiplied by the semimajor axis gives the position 
change in the along track direction, which will be an important factor in the next section. 

The results we have until now are interesting since we can see the effect of the Earth 
radiation on a typical GPS satellite orbit for two different satellite models. However they are 
of limited use because we want to study if the acceleration due to Earth radiation can or not 
be responsible for the observed radial bias derived from SLR measurements of GPS orbits. 
Consequently, in order to continue with the study of the GPS – SLR orbit anomaly and to get 
a general understanding of it, we have to construct a different unperturbed reference orbit. 

 

 

4.3.2 Unperturbed Reference Orbit 

 

As mentioned in the last paragraph, we will construct an unperturbed reference orbit, so we 
are able to simulate SLR measurements of GPS satellites and compare them to a realistic 
GPS reference orbit. The construction of an appropriate reference orbit is equivalent to the 
problem of finding a set of initial conditions for the perturbed orbit, since it is clear that at the 
beginning of the integration process the perturbed and the unperturbed orbit are not 
necessarily the same. Both process of finding the initial conditions of the perturbed orbit or, 
as in our case, an equivalent unperturbed reference orbit are not trivial.  

In this chapter as we are mainly concern to have a general understanding of the effects of 
Earth radiation on GPS satellite orbits we adopt the approach of constructing an unperturbed 
reference orbit, something that will imply general but realistic assumptions on how the SLR 
and GPS measurements work. On the other hand in the next chapter, we will work with the 
Bernese GPS Software, which uses sophisticate tools to find appropriate initial conditions 
since the orbits of the satellites are estimated from force models and by fitting real GPS 
measurements from many ground stations around the world. 



 65 

 

 

 

 Figure 4.10 GPS single differences. Range 
difference: blue -> positive, red -> negative  

 

 

The perturbed orbit, computed in the last section, contains the perturbation due to Earth 
radiation acting on the satellites, it is then considered as the ‘true’ orbit and can be related to 
the orbit that SLR would measure. With respect to the SLR measurements we just assume 
that they are mainly accurate in the radial direction since basically the system measures the 
time that a laser pulse takes between being transmitted, reflected at the satellite and 
received back at a ground station. We refer to Seeber (2003) for more information about 
SLR. 

The unperturbed orbit once it is transformed into an adequate reference orbit can be 
assumed to be similar to the orbit derived from GPS measurements. Here one main 
assumption is that the along track position of the satellite can be measured to higher 
accuracy compared to the radial direction.  

When single differences are formed from GPS measurements by differencing the 
observations of the same satellite acquired at both ends of a baseline formed by two 
receivers, see Hugentobler and Steigenberger (2008), it is possible to reduce or eliminate 
common errors like the one of the satellite clock. However by looking at Figure 4.10, one 
sees that an orbit error in the radial direction causes the same sign of range change for two 
ground stations and could be easily absorbed by the clock of the satellite that at some point 
has to be estimated. On the other hand, an error in the along track direction causes a 
different sign for the range change of the same stations and could not be simply absorbed by 
the satellite clock. 

Also since the direction of motion of the satellite is basically the same as the along track 
direction, the geometry of the satellite with respect to the stations on the Earth changes fast 
in this direction, another reason to assume that the position in the along track direction 
should be well known. 

The last two paragraphs lead to the next assumption that the mean motion of the satellite is 
very well determined. This is a key issue for the construction of the reference orbit since it 
implies that the mean motion of the perturbed orbit and the reference orbit should be the 
same. It also means that although the orbits derived from GPS measurements can be biased 
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in the radial direction, in the along track direction should not exists a bias or in general should 
be much smaller as the one of the radial direction. 

Taking into account the arguments just given for the construction of an unperturbed 
reference orbit, we proceed to find the average Keplerian orbital elements of it as follows: 

- The eccentricity, inclination, right ascension of the ascending node and argument of 
perigee are given just by the average of the same elements of the perturbed orbit 
over one revolution. 

- The semimajor axis of the reference orbit is found by changing the semimajor axis of 
the reference orbit, such that this orbit and the perturbed one have the same average 
mean motion. 

- The true anomaly is changed such that it coincides in average with the one of the 
perturbed orbit, doing that we can obtain orbit residuals mainly in the radial direction. 

As it can be seen the change of semimajor axis corresponds to the assumption we made for 
GPS orbits while the change of true anomaly is to simulate SLR measurements available just 
in the radial direction. Specifically how the computation is done will be explain in the 
following. 

 

Change of Semimajor Axis 

To obtain how much we must change the semimajor axis of the reference orbit, we use the 
partial derivatives of Kepler’s Third Law to get the effect a change of mean motion would 
have in the semimajor axis: 
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(4.8) 

In here no sub index is used for the reference orbit, while K  is used for the unperturbed 
Kepler orbit and P  for the perturbed one. 

Then the change of mean motion KPn∆  between the perturbed and unperturbed orbits can 
be found by using the change of the argument of latitude KPu∆ , which as mentioned before 
multiplied in (radians) by the semimajor axis gives the change in the along track component 
of the position, see Figure 4.8. Then we fit a linear function depending on the time to KPu∆ , 
the slope of this line is then simply an average of KPn∆  given in radians per second. Note 
that this slope, according to Figure 4.8 is negative, giving as a consequence a positive 
change of the semimajor axis. 

 

Change of True Anomaly  

In order that the true anomaly of the reference orbit coincides in average to the one of the 
perturbed orbit, we compute it in the following way  

 
PPP ωωνν −+=  (4.9) 

where pω  is the average argument of perigee of the perturbed orbit. 
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Note that the reference orbit is an unperturbed one and the corresponding Keplerian orbital 
elements change from one revolution to another. The residuals between the perturbed and 
the reference orbit are shown in Section 4.3.4. 

 

 

4.3.3 ∆GM⊕⊕⊕⊕ Perturbed Orbit 

 

Considering just the assumption that the mean motion of the perturbed and reference orbits 
should be the same, one can think of the effects on Kepler’s Third Law for a specific (just in 
radial direction) acceleration. Proceeding as in (4.8) but for 0=∆ KPn  and 0≠∆ ⊕GM  we find 
the semimajor axis of the perturbed orbit due to a change of ⊕GM : 
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Moreover ⊕∆GM  can be found from the unperturbed equation of motion of the satellite by 
introducing a change of the acceleration Efr

�
ɺɺ =∆  on it: 

 .2
EK frGM
�

−=∆ ⊕  (4.11) 

Note that the change of the semimajor axis is always negative (for outwards acceleration) 
and therefore the semimajor axis of the perturbed orbit is smaller than the one of the 
unperturbed orbit. In other words we apply a radial acceleration to the satellite and the effect 
is a contraction of the orbit, something not intuitive and possible due to the way GPS 
measurements and orbit determination works. Furthermore we can compute radial residuals 
even easier than in the last section since the change of mean motion was set to be zero, 
then the ⊕∆GM  perturbed orbit and the unperturbed Kepler orbit should coincide in the along 
track direction and can be directly compared, the results will be shown in the following pages. 

Note that the new orbits just constructed here, the unperturbed reference orbit and the 

⊕∆GM  perturbed orbit, intend to give a general understanding of the effect of Earth radiation 
on GPS orbits and not necessarily fulfil the equation of motion or are totally physical correct. 
However the assumption made here to construct them, specially the invariance of the mean 
motion, will be partially confirmed in the next chapter. 

 

 

4.3.4 Per Year Radial Residuals 

 

The orbit residuals, specially the radial residuals, obtained between the perturbed orbit and 
the unperturbed reference orbit are presented in this section. Also in the figures the radial 
residuals between the ⊕∆GM  perturbed orbit and the unperturbed Kepler orbit are included. 
Therefore we have two simple methods to compare SLR-like (albedo) with GPS-like (no 
albedo) orbits, obtaining a general understanding of the effect of Earth radiation on GPS 
satellites orbits. It is assumed that the SLR-like orbit is closer to a true orbit, while the GPS-
like is an estimated orbit. The residuals should be understood as SLR minus GPS orbits. 
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 Figure 4.11 Orbit residuals for cannon-ball model as function of 
number of revolutions, using (a) reference and (b) ⊕∆GM  orbits   

 

 

As it can be seen in Figure 4.11 and Figure 4.12, by using both methods we obtained a 
negative shift of few centimetres in the radial residuals, this result coincides in sign and order 
of magnitude with the GPS – SLR orbit anomaly which is around cm5− . This result alone 
indicates that the Earth radiation is a key factor contributing to the bias between GPS and 
SLR orbits.  

The radial residuals, both for the cannon-ball and the box-wing model, have a strong 
dependency with the Sun elevation angle (Figure 4.3), with the largest residuals for low Sun 
elevation angles and vice versa. In Figure 4.11 and Figure 4.12 we see some difference 
between the satellite models but we do not see an important difference between the two 
comparison methods used, however more important differences are noted when the 
residuals are plotted as function of the 0β  and u∆ . 

 

 

 

 

 Figure 4.12 Orbit residuals for box-wing model as function of 
number of revolutions, using (a) reference and (b) ⊕∆GM  orbits   
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 Figure 4.13 Radial residuals for cannon-ball model as a function of 0β   and 

u∆ , using (a) reference and (b) ⊕∆GM  orbits 

 

 

 

 

 

 Figure 4.14 Radial residuals for box-wing model as a function of 0β   and u∆ , 

using (a) reference and (b) ⊕∆GM  orbits 
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Figure 4.12(a), as expected, is the only one where orbit residuals in the along track and 
cross track directions are obtained. Note that at least the cross track component is correlated 
with the acceleration in the same direction that was plotted in Figure 4.5(b). 

The radial residuals are plotted as function of the 0β  and u∆  in Figure 4.13 and Figure 4.14, 
where a clear dependency of the residuals with the relative position of the Sun can be seen. 
It is also evident that there is a strong once per year and once per revolution dependency of 
the residuals. Furthermore these figures remain basically the same independently on the 
chose of initial conditions of the Kepler orbit (Table 4.1) as along as they belong to GPS 
satellites. 

First let us focus on the differences between the approaches used to compare the orbits. In 
general the residuals obtained by using the ⊕∆GM  perturbed orbit are totally correlated to 
the acceleration plotted in Figure 4.6. On the other hand the residuals obtained by the 
unperturbed reference orbit are rather more complicated, these residuals are considered to 
be more correct around °=∆ 180u  and less as the satellite is in the beginning or end of the 
orbit, since we used simple averages to get the Keplerian orbital elements of the reference 
orbit. Therefore what we see in Figure 4.13(a) and Figure 4.14(a) close to °=∆ 0u  and 

°=∆ 360u  is considered to be an effect on how the reference orbit was constructed, this is 
corrected in the next chapter with the Bernese GPS Software since it calculates the initial 
conditions of the perturbed orbit by least squares adjustment. 

Now regarding the differences between the satellite models we find something similar to 
what was found in Section 4.2.2, that we see a similar behaviour of both models around 

°=∆ 0u  and °=∆ 360u  while the radial residuals around °=∆ 180u  are completely different, 
having for the box-wing model an additional height reduction at the dark side of the Earth 
caused by the Earth infrared radiation acting on the solar panels.  

Note that radial residuals obtained by using the box-wing model have great correspondence 
to Figure 1.1 where the SLR - GPS residuals obtained by Urschl et al. (2008) are shown, 
while when comparing with the results of the cannon-ball model, the curvature of the 
residuals have a different sign.  

With the simple numerical orbit integration used in this chapter and the two methods for orbit 
comparison between SLR-like and GPS-like orbit, we have gained a good general 
understanding of our problem and have two main conclusions: 

- The Earth radiation acting on GPS satellites can produce a negative radial shift in the 
same order of magnitude as the GPS – SLR orbit anomaly. 

- The use of a box-wing satellite model is a key factor to explain the peculiar pattern 
observed in the residuals between SLR and GPS orbits. 
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5 Impact on Real GPS Orbits 

 

 

 

 

5.1 Introduction 

 

 

5.1.1 Bernese GPS Software 

 

In the last three chapters we have developed different Earth radiation and GPS satellite 
models, that together produce a specific acceleration perturbing the orbits of these satellites, 
furthermore it has been demonstrated (using a simple example) that this acceleration can 
produce a peculiar pattern similar to the one observed in the residuals between SLR 
measurements and GPS orbits. All this was done using simple tools; the three main Matlab 
subroutines to compute the desired acceleration are provided in the Appendix of this Thesis. 

In this chapter we will include the mentioned subroutines in one of the most sophisticated 
software to process GPS data, the Bernese GPS Software, see Dach et al. (2007) and 
Beutler (2009), with the purpose of studying the impact of Earth radiation on real GPS orbits, 
like the ones generated by CODE (Center for Orbit Determination in Europe). More 
specifically we use the same orbit estimation used by CODE, see Beutler et al. (1994) and 
Steigenberger et al. (2009). 

Note that the Bernese GPS Software is a very complex program which contains many 
thousands of lines of code, therefore for more information about it we refer to Dach et al. 
(2007). Also the whole process for the estimation of GPS orbits, like the ones published by 
the IGS, is very complex so we refer to Beutler et al. (1994) and Schaer et al. (2009). Some 
generalities about the orbit estimation used in here are: 

- GPS observations from 190 IGS stations around the world are used. 

- The force models include the principal perturbations of the orbit. In order of 
magnitude the perturbations are: low terms of geopotential, attraction of Sun and 
Moon, solar radiation pressure, solid Earth and ocean tides and finally general 
relativity. In addition we include here the acceleration due to Earth radiation. 

- The equation of motion (4.1), where Ef
�

 would include (in this case) all the 
perturbations mentioned above, is numerically integrated and fitted to the real GPS 
observations through a least squares adjustment. 

More specifically, cleaned single difference files with fixed ambiguities from the CODE 
contribution to the IGS reprocessing, see Steigenberger et al. (2009), were used to 
determine daily GPS orbits for different albedo models estimating six orbital parameters and 
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five empirical solar radiation pressure parameters as well as one stochastic pulse in the 
middle of the arc. This is done using GPS observations for the year 2007 

Additionally a reference orbit which does not include Earth radiation pressure will be 
computed. Also orbits are computed with and without an a priori solar radiation pressure 
model. The results will be given as residuals between the different orbits, in order to obtain 
the effect of the perturbation and to identify the key components for an adequate modelling of 
the Earth radiation acting on GPS satellites.  

Once the new orbits are computed (for the selected models) they are compared using SLR 
measurements from several stations around the world. The comparison is done as follows: 
SLR measurements minus GPS orbits. The SLR measurements are only available for 
PRN05 and PRN06, since these GPS satellites are currently the only ones equipped with 
laser retro reflectors arrays (LRA), therefore the results will be presented only for these two 
satellites.  

It must be also mentioned that the results presented here with the Bernese GPS Software 
are possible due to the tools already developed by the Institute of Astronomical and Physical 
Geodesy at the Technical University of Munich. 

 

 

5.1.2 Selection of Models 

 

 

Table 5.1 Selection of Earth radiation and satellite models 

Test # Abbreviation Earth Radiation Model Satellite Model 

ALB-R E0-S0-R None None 

ALB-0 E0-S0 None None 

ALB-1 E1-S1 Analytical ( 3.0=α ) Cannon-Ball 

ALB-2 E2-S1 Numerical ( 3.0=α ) Cannon-Ball 

ALB-3 E2-S2 Numerical ( 3.0=α ) Box-Wing Analytical 

ALB-4 E3-S2 Latitude dependent Box-Wing Analytical 

ALB-5 E4-S2 CERES data Box-Wing Analytical 

ALB-6 E4-S2-B CERES data Box-Wing Analytical (Block specific) 

ALB-7 E4-S3-B CERES data Box-Wing Num. (Block specific) 

ALB-8 E4-S3-BA CERES data Box-Wing Num. (Block specific + Antenna) 

ALB-9 E4-S3-BA-R CERES data Box-Wing Num. (Block specific + Antenna) 

A priori ROCK model 
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The number of possible model combinations that can be tested at this point is not small, let 
us remember that we have four different Earth radiation models, three different satellite 
models, plus we can choose if we use the same simple optical properties for all satellites or if 
they are block specific and we can turn on or off the antenna trust. In total there is a 
maximum of 482234 =×××  possibilities. It is clear that we do have to test all of them to 
identify the key factors that are essential for an adequate modelling of the Earth radiation 
acting on GPS satellites.  

We have then selected different Earth radiation and satellite models by adding one level of 
complexity for each test, see Table 5.1. In total we thus have to perform only nine different 
tests. Differences between the results of successive tests then show the impact of the 
respective model update.  

Additionally we have also computed orbits that include an a priori solar radiation pressure 
model, the ROCK model (R), see Fliegel et al. (1992) and Fliegel and Gallini (1996). This last 
test is given by ALB-9 with a corresponding reference orbit without Earth radiation pressure 
given by ALB-R.   

 

 

 

5.2 On-Orbit Acceleration 

 

 

The acceleration acting on the GPS satellites PRN05 and PRN06 is plotted in Figure 5.1 for 
eight selected models (Earth radiation and satellite models) and just for one specific orbit. 
Note that the Sun elevation angle ( 0β ) is different for both satellites and therefore the 
magnitude of the acceleration also differs, see also Figure 4.4. Furthermore the acceleration 
is given in radial, along track and cross track components as described in the previous 
chapter.  

Already here in the plots of accelerations for the selected models, we can see the factors that 
contribute most to the acceleration. First of all note that the different Earth radiation models 
do not have a drastic effect on the acceleration, while the change of the curves comes mostly 
from the different satellite models. Adding the solar panels to the satellite model (E2-S2) 
changes the picture drastically as the satellite’s cross section as seen from the Earth varies 
much during one satellite revolution. Moreover also by including block specific optical 
properties we see another change of the curves and finally if the acceleration due to antenna 
thrust is included, there is an additional radial shift of the acceleration. Note that the use of a 
numerical box-wing model compared to the analytical one mostly modifies the acceleration 
just around °=∆ 90u  and °=∆ 270u . 
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Figure 5.1 Example of on-orbit acceleration for the selected models. Top: PRN05 ( °= 5.550β ). 

Bottom: PRN06 ( °= 2.200β ). Right: radial acceleration. Left: Along track and cross track 

accelerations  

 

 

 

5.3 Orbit Residuals  

 

 

In this section we present the results from the computation of orbit residuals, more 
specifically we will present the results in three ways: 

1) Difference of orbit with Earth radiation pressure (ALB-i) minus reference orbit without 
it (ALB-0). Results just for the most simple (ALB-1) and for the two most sophisticated 
models (ALB-8 and ALB-9) are presented.  

2) Difference of orbit with Earth radiation pressure (ALB-i+1) minus previous orbit with 
Earth radiation pressure (ALB-i).  

3) The same as 1), but the radial residuals are plotted as a function of 0β  and u∆ .  

The first way will give us an idea of the perturbation acting on the satellite and the magnitude 
of it. The second way will allow us to identify which of the Earth radiation or satellite models 
are critical for a correct but simple modelling of the Earth radiation acting on GPS satellites.  
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Figure 5.2 Sun elevation angle ( 0β ) for PRN05 and PRN06 for year 2007 

 

And finally with the third way we will be able to see how the radial residuals behave over one 
revolution and over one year, see also Figure 4.13 and Figure 4.14. 

Moreover, since the orbit residuals are plotted for the satellites PRN05 and PRN06, it is 
useful to plot the Sun elevation angle for both satellites over the complete year, see Figure 
5.2. Note that there is a phase shift between the curves of Figure 5.2, this same shift can 
also be appreciated in Figure 5.3 to Figure 5.7. 

The orbit residuals of three selected models (ALB-1, ALB-8, ALB-9) with respect to the 
reference orbit (ALB-0) are presented in Figure 5.3, Figure 5.4 and Figure 5.5. Note that for 
the three models there is always a radial shift of around cm21− . Something that was 
already noted by Ziebart et al. (2007), that the Earth radiation pressure reduces the SLR-
GPS anomaly by this amount. Also from last chapter we know the reason of this reduction of 
the orbit is that GPS measurements, being essentially angular measurements due to 
required clock synchronization, determine with high accuracy the mean motion of the 
satellite. Consequently as demonstrated in the last chapter a positive radial acceleration 
(equivalent to a reduction of GM ) can reduce the semi major axis of the orbit and therefore 
the radial component of it.  

Furthermore there is a big difference between the models, also visible in Figure 5.6 and 
Figure 5.7, coming mostly from the change of a cannon-ball to a box-wing model and also 
from the use of an a priori model for the solar radiation pressure. Also one can note that the 
radial residuals basically follow the Sun elevation angle curves, with bigger residuals for 
small values of Sun elevation angle, something that was already pointed out in the previous 
chapter. 

Considering the along track and cross track components we find non negligible effects in the 
orbit differences, note that residuals for these components are in the same order of 
magnitude as the ones for the radial component. It is interesting that although the along track 
and cross track accelerations are around one order of magnitude smaller than the radial 
acceleration (Figure 5.1), the effect on the position of the satellite is of the same order of 
magnitude for the three components. 

For completeness in Table 5.2 and Table 5.3 the differences between orbits shown in Figure 
5.3 to Figure 5.7 are presented in a quantitative way. The mean and standard deviation were 
computed for the three components of the orbits differences over one year. These two tables 
allow us to have then also a qualitative instrument to distinguish which model components 
are more important.   
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Figure 5.3 Orbit residuals ALB-1 – ALB-0 for PRN05 and PRN06 

 

 
Figure 5.4 Orbit residuals ALB-8 – ALB-0 for PRN05 and PRN06 

 

 
Figure 5.5 Orbit residuals ALB-9 – ALB-0 for PRN05 and PRN06 
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Figure 5.6 Orbit residuals between selected models for PRN05 
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Figure 5.7 Orbit residuals between selected models for PRN06 
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Table 5.2 Orbit residuals between selected models for PRN05, mean +/- standard deviation 

Models difference Radial [m] Along Track [m] Cross Track [m] 

ALB-1 – ALB-0 -0.0165 +/- 0.0017 0.0005 +/- 0.0023 0.0001 +/- 0.0010 

ALB-8 – ALB-0 -0.0186 +/- 0.0036 -0.0001 +/- 0.0062 -0.0004 +/- 0.0074 

ALB-9 – ALB-0 -0.0197 +/- 0.0222 -0.0028 +/- 0.0361 -0.0002 +/- 0.0419 

ALB-2 – ALB-1 0.0003 +/- 0.0010 0.0004 +/- 0.0023 -0.0001 +/- 0.0006 

ALB-3 – ALB-2 0.0005 +/- 0.0035 0.0037 +/- 0.0057 -0.0006 +/- 0.0056 

ALB-4 – ALB-3 -0.0002 +/- 0.0008 -0.0003 +/- 0.0020 0.0000 +/- 0.0006 

ALB-5 – ALB-4 -0.0007 +/- 0.0011 -0.0002 +/- 0.0025 0.0000 +/- 0.0012 

ALB-6 – ALB-5 0.0022 +/- 0.0011 -0.0007 +/- 0.0025 0.0001 +/- 0.0012 

ALB-7 – ALB-6 0.0004 +/- 0.0008 -0.0001 +/- 0.0023 0.0000 +/- 0.0003 

ALB-8 – ALB-7 -0.0047 +/- 0.0008 0.0000 +/- 0.0022 0.0000 +/- 0.0002 

ALB-9 – ALB-8 -0.0010 +/- 0.0205 -0.0005 +/- 0.0134 0.0002 +/- 0.0173 

 

 

Table 5.3 Orbit residuals between selected models for PRN06, mean +/- standard deviation 

Models difference Radial [m] Along Track [m] Cross Track [m] 

ALB-1 – ALB-0 -0.0164 +/- 0.0016 0.0006 +/- 0.0023 0.0002 +/- 0.0009 

ALB-8 – ALB-0 -0.0179 +/- 0.0037 -0.0000 +/- 0.0056 0.0002 +/- 0.0075 

ALB-9 – ALB-0 -0.0187 +/- 0.0223 -0.0016 +/- 0.0538 -0.0006 +/- 0.0310 

ALB-2 – ALB-1 0.0004 +/- 0.0010 0.0005 +/- 0.0021 0.0000 +/- 0.0006 

ALB-3 – ALB-2 0.0015 +/- 0.0036 0.0038 +/- 0.0055 -0.0000 +/- 0.0052 

ALB-4 – ALB-3 -0.0001 +/- 0.0008 -0.0004 +/- 0.0022 0.0000 +/- 0.0006 

ALB-5 – ALB-4 -0.0009 +/- 0.0012 -0.0000 +/- 0.0025 -0.0000 +/- 0.0012 

ALB-6 – ALB-5 0.0020 +/- 0.0011 -0.0010 +/- 0.0024 -0.0000 +/- 0.0011 

ALB-7 – ALB-6 0.0003 +/- 0.0008 0.0001 +/- 0.0020 0.0000 +/- 0.0003 

ALB-8 – ALB-7 -0.0047 +/- 0.0007 -0.0001 +/- 0.0020 0.0000 +/- 0.0001 

ALB-9 – ALB-8 -0.0008 +/- 0.0207 -0.0004 +/- 0.0144 -0.0008 +/- 0.0156 
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Regarding the differences between all models (Figure 5.3, Figure 5.6 and Figure 5.7) we can 
see that the first big change is obtained from ALB-1 – ALB-0, it means just by including a 
simple Earth radiation and satellite model in the orbit computation. Further on, also a very 
considerable effect it is obtained from ALB-3 – ALB-2, the change of cannon-ball to box-wing 
model. Note that the values computed in Table 5.2 and Table 5.3, show a large difference in 
the along track component between the cannon-ball and the box-wing models, also the 
standard deviation of the three components is much larger as compared to the effect of other 
model components 

The results obtained by introducing an a priori solar radiation pressure (ALB-9 – ALB-8) 
present the biggest difference between models, something that was not at all expected. The 
large differences are also exhibited in the standard deviation computed in Table 5.2 and 
Table 5.3. The opinion of the author is that these results should be treated with precaution 
and if possible further studied. They are also mainly an indication that the modelling of solar 
radiation pressure stills plays a role in the orbits of GPS satellites and possible there is a 
problem in the ROCK model for Block II/IIA satellites, which as been already noted by Urschl 
et al. (2007). 

As secondary effects we find that the differences between the Earth radiation models are 
small compared to other model components and it can be said that the improvement of the 
Earth radiation models does not have an important impact on the orbits. For example the use 
of the numerical model for constant albedo (ALB-2 – ALB-1), the latitude dependent model 
(ALB-4 – ALB-3) or the model with CERES data (ALB-5 – ALB-4) present similar differences 
between each other. This can be noted in Figure 5.6 and Figure 5.7 or in Table 5.2 and 
Table 5.3. The similar differences between the Earth radiation models is a simple 
consequence of the GPS satellite altitude since they are high enough such that varying 
surface albedo is averaged out over the visible illuminated surface area of the Earth. 

The block specific optical properties of the satellite (ALB-6 – ALB-5) seem to be more 
important than the Earth radiation model at least for the radial component, see Table 5.2 and 
Table 5.3. And the acceleration due to antenna thrust (ALB-8 – ALB-7) as expected implies 
mostly a change in the radial component which can be seen in Figure 5.6 and Figure 5.7. 

As simple conclusion of this section, we can divide the model components into three 
categories: critical, important and less important. 

Critical: 

- A box-wing satellite model. 

- An Earth radiation model that includes emitted and reflected radiation. 

Important: 

- Block specific optical properties. 

- Acceleration due to antenna thrust. 

Less important: 

- Type of Earth radiation model (reflectivity and emissivity data). 

- Type of box-wing model (analytical or numerical). 
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From this last classification of the model components, we have that in general a good 
satellite model is very important, in particular the knowledge of the optical properties, 
dimensions and attitude of the satellite are factors that must be taken into account. 

The results also show that the sophistication on the Earth radiation is less important. 
However from the results of Table 5.2 and Table 5.3 the model that included the complete 
CERES data still has a difference to the model with latitude dependency (ALB-5 – ALB-4). In 
the case that this model is not wish to be used the analytical Earth radiation model gives a 
reasonable and simple approximation of the previous one. 

Finally a recommendation of the best but simplest satellite and Earth radiation model can be 
already given here: 

- Earth radiation model with CERES data (E4 or ERM-CERES). Alternatively by 
introducing a small error the analytical model (E1 or ERM-A) can be used. 

- Box-wing analytical model with block specific optical properties and with antenna 
thrust (S2-BA). 

Now looking at the orbit residuals plotted as a function of 0β  and u∆  (Figure 5.8 and Figure 
5.9) note first of all that they are very similar to Figure 4.13(b) and Figure 4.14(b) of the last 
chapter. This means that the assumption made in the previous chapter, that the mean motion 
of the perturbed and unperturbed orbit is the same, should be in general correct.  

Furthermore also note that in the case of the box-wing model (Figure 5.9) it resembles very 
much the SLR – GPS residuals presented in Figure 1.1, mostly the shape of the curves is 
very similar. However the variation from maximum to minimum in Figure 1.1 is around cm5 , 
while for Figure 5.9 is just around mm2 . Then it can not be concluded that the problem of 
explaining the pattern of SLR – GPS residuals is totally solved. From the results obtained 
here it just can be said that the Earth radiation can explain part of the SLR – GPS residuals, 
but the correlation between the two plots is evident. 

The results computed by using the cannon-ball model (Figure 5.8) simply have an opposite 
sign as the SLR – GPS residuals at the night side of the Earth, as has been already 
mentioned in the previous chapter, therefore it is confirmed again that the use of a box-wing 
model is a key factor. 

Regarding the results obtained by introducing an a priori solar radiation pressure model 
(Figure 5.10), although they should be interpreted with precaution, they are also very 
interesting. Note that a box-wing model was used in here but results are much similar to the 
one of a cannon-ball model, furthermore note that while for Figure 5.8 the total variation is 
around mm2 , for Figure 5.10 the total variation is around cm5.3 . And as mentioned before 
future studies should try to go deeper in this direction, but by now it outreaches the 
objectives of this thesis, since the solar radiation pressure acting on GPS satellites is not a 
simple topic and many works have been already written about it. 
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 Figure 5.8 Radial residuals (in meters) ALB-1 – ALB-0 for PRN05 
and PRN06 as a function of 0β  and u∆  

 

 

 

 

 

 

 

 

 Figure 5.9 Radial residuals (in meters) ALB-8 – ALB-0 for PRN05 
and PRN06 as a function of 0β  and u∆  
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 Figure 5.10 Radial residuals (in meters) ALB-9 – ALB-0 for PRN05 
and PRN06 as a function of 0β  and u∆  

 

 

 

 

5.4 SLR Validation 

 

 

The orbits computed with the selected models (ALB-0 to ALB-9) can be compared with SLR 
measurements. The residuals between SLR measurements and GPS orbits are presented in 
Table 5.4 and Table 5.5. Additionally in this section a new orbit was computed (ALB-R) which 
does not include any acceleration due to Earth radiation but includes an a priori solar 
radiation pressure model. 

Now in the SLR validation (Table 5.4 and Table 5.5) we can see that for models ALB-0 to 
ALB-8, where no a priori solar radiation pressure model is considered, we have a change of 
the mean that correspond to what was observed in Figure 5.3, Figure 5.6 and Figure 5.7 or in 
Table 5.2 and Table 5.3 when the difference between models were computed. For the 
standard deviation of the residuals we can not say anything since there is no significant 
change. Finally by putting our attention just on ALB-0, ALB-7 and ALB-8 we see that a 
reduction of mm8.16  and mm16  is obtained in the SLR – GPS bias for PRN05 and PRN06. 
For both satellites mm7.4  of this reduction is due to the thrust of the navigation antennas. 
Finally the SLR – GPS bias remains in mm8.6−  and mm1.10−  for the two GPS satellites.  
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Furthermore if the offset values of the laser retro reflectors arrays (LRA), reported by Davis 
and Trask (2007), are taken into account we would have a further reduction of the bias by 

mm11  for PRN05 and mm13  for PRN06. This would lead to a SLR – GPS bias of mm2.4  
and mm9.2  for both satellites and to orbits with potentially sub-centimetre accuracy. 

 

Table 5.4 SLR – GPS residuals for PRN05. Year 2007 with 2936 observations  

Test # Mean [m] RMS [m] Sigma [m] 

ALB-R -0.0324 0.0483 0.0358 

ALB-0 -0.0236 0.0362 0.0275 

ALB-1 -0.0080 0.0286 0.0275 

ALB-2 -0.0092 0.0295 0.0281 

ALB-3 -0.0099 0.0291 0.0273 

ALB-4 -0.0098 0.0290 0.0273 

ALB-5 -0.0092 0.0289 0.0274 

ALB-6 -0.0112 0.0296 0.0274 

ALB-7 -0.0115 0.0297 0.0274 

ALB-8 -0.0068 0.0282 0.0274 

ALB-9 -0.0151 0.0337 0.0302 

 

Table 5.5 SLR – GPS residuals for PRN06. Year 2007 with 2418 observations 

Test # Mean [m] RMS [m] Sigma [m] 

ALB-R -0.0345 0.0502 0.0364 

ALB-0 -0.0261 0.0416 0.0324 

ALB-1 -0.0107 0.0342 0.0325 

ALB-2 -0.0113 0.0348 0.0329 

ALB-3 -0.0138 0.0349 0.0321 

ALB-4 -0.0135 0.0349 0.0322 

ALB-5 -0.0129 0.0348 0.0323 

ALB-6 -0.0146 0.0355 0.0323 

ALB-7 -0.0148 0.0355 0.0323 

ALB-8 -0.0101 0.0338 0.0323 

ALB-9 -0.0184 0.0402 0.0357 
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Regarding the orbits where an a priori solar radiation pressure model was used (ALB-R and 
ALB-9), note that the reduction of the bias is almost the same as the one mentioned before 
for ALB-0 and ALB-8, around mm3.17  for PRN05 and mm1.16  for PRN06. However note 
that a reduction of the standard deviation is also obtained in this case, which is much larger 
for PRN05 than for PRN06. This is an indication that a small reduction of the SLR – GPS 
residuals pattern (Figure 1.1) is obtained.  

Again if the offsets for the laser retro reflectors arrays are introduced, we would have in this 
case orbits with a potential accuracy of mm1.4−  and mm4.5−  for both GPS satellites. 

The comparison of ALB-R and ALB-0 is also very interesting, since one can see only the 
effect of the introduction of an a priori model for the solar radiation pressure in the 
computation of the orbit. Note that in general the orbits without the a priori model perform 
better (mean and standard deviation) in the SLR validation. This as mentioned in the 
previous section is an indication that more studies maybe needed for the modelling of solar 
radiation pressure or other non-conservative forces acting on GPS satellites. A similar effect 
has also been noted by Urschl et al. (2007). 

Finally we present in Figure 5.11 the plots of residuals between the SLR measurements and 
the reference orbit ALB-R. We can see in this figure some characteristic pattern of the 
residuals, moreover the mean is clearly negative but the residuals have a dispersion of a few 
centimetres. We can also corroborate that the residuals used here are very similar to the 
ones previously obtained by Urschl et al. (2008) and presented in Figure 1.1. 

 

 

 

 

 

 

 

 Figure 5.11 Radial residuals (in milimeters) SLR – ALB-R for PRN05 
and PRN06 as a function of 0β  and u∆  
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6 Conclusions 

 

 

 

 

In order to consider the perturbing acceleration due to Earth radiation pressure acting on 
GPS satellites, we needed two types of models: a Earth radiation model that computes the 
irradiance at the satellite position and a model of the satellite structure to interact with the 
radiation coming from the Earth. 

In this thesis we have constructed four different diffuse Earth radiation models of increasing 
complexity. For a constant albedo of the Earth, we have an analytical but approximate model 
(valid only if the altitude of the satellite is much larger than the radius of the Earth) and a 
numerical one where no approximation is used. Furthermore using CERES data we have a 
numerical model with latitude dependent reflectivity and emissivity and a model where the 
complete CERES data is used (latitude and longitude dependent). The differences between 
the models are small since the GPS satellites are relative far from the Earth, see Figure 2.14 
and Table 2.5. As the satellites see about 38% of the Earth’s surface, the irradiance at the 
satellite position is a large average of the emitted or reflected radiation coming from the 
different surface elements of the Earth, which are visible to the satellite.  

From the results obtained in the thesis it can be concluded that the analytical Earth radiation 
model with constant albedo is already a good approximation and if one wants to have a 
better model, the one that uses the complete CERES data can be recommended. 
Furthermore the assumption made for all models that the Earth behaves like a Lambertian 
sphere (diffuse reflection) should be in future studies proofed. In particular a next step should 
be to take into account the specular reflection (mirror like) to study the impact in the models. 
However the differences due to specular radiation are expected to be small, since some 
studies have suggested that this kind of reflection should have a small contribution (around 
10%) in the irradiance that is received by a satellite, where the diffuse reflection is the most 
important component. 

Regarding the satellite models, three models of increasing complexity were constructed: the 
cannon-ball model, the analytical box-wing model and the numerical box-wing model. The 
first one has average dimensions and optical properties, assuming the satellite to be a 
sphere. The analytical box-wing model includes the bus of the satellite and the solar panels, 
an analytical expression of the model could be found by assuming the irradiance coming 
from the Earth to be purely radial. The numerical box-wing model considers the irradiance 
from the full disc of the Earth; therefore the model is calculated in a numerical way. Also we 
have optical properties that are the same for all the GPS block types or are block specific. 
Finally the acceleration due to the antenna trust was also considered, since it is in the same 
order of magnitude as the acceleration due to Earth radiation. 

The difference between the cannon-ball model and the box-wing models is found to be very 
important (Figure 3.4), because the relative position of the solar panels with respect to the 
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Earth changes drastically over one revolution, which is a simple consequence of the nominal 
satellite attitude. The difference between the analytical and the numerical box-wing models is 
found to be small (Figure 3.4), with the main difference for the case where the radiation 
coming from the full disc of the Earth can reach the front and back of the solar panels at the 
same time. Also it is found that the block specific optical properties and the acceleration due 
to antenna thrust are components of the satellite models that should be taken into account. 

From the point of view of modelling, it can be said that while the Earth radiation models 
present small differences between each other, the inclusion of different components (or more 
details) in the satellite models is important. Therefore future efforts should focus more in the 
improving of the satellite models. For example the optical properties of the satellites in the 
infrared are practically unknown and this kind of radiation represents a big contribution in the 
radiation received by the satellites. 

The acceleration acting on the satellite due to Earth radiation pressure was compared to the 
acceleration due to solar radiation pressure, see Figure 3.5. There we can find the answers 
to our second scientific question: “Is this acceleration negligible or it is worth to include it in 
the current modelling of GPS orbits?” The acceleration is not negligible, with an order of 
magnitude around 29100.1 sm−×  is similar to the effect due to the so-called Y-bias. 
Furthermore comparing the change of the acceleration due to the solar radiation pressure 
with the one due to Earth radiation pressure, one finds that there is a potential mismodeling 
of around 20% in the current a priori radiation models by no including the Earth radiation. 
Consequently the Earth radiation pressure is an effect that should be considered in the 
modelling of GPS orbits. 

The combination of the Earth radiation and satellite models was done in Chapter 4, which 
allowed us to compute the acceleration acting on the satellites. The results were given in the 
radial, along track and cross track reference system and can be seen in Figure 4.6 and 
Figure 4.7, for the cannon-ball and the analytical box-wing model together with the analytical 
Earth radiation model for constant albedo. These results give a complete answer to the first 
scientific question: “Which is the magnitude and behaviour of the acceleration due to Earth 
radiation pressure acting on GPS satellites?” For the box-wing model (the more realistic 
one), the order of magnitude of the radial acceleration is around 29100.1 sm−× . Moreover 
the acceleration has a clear dependency on the relative position of satellite, Earth and Sun. 
Note that Figure 4.6(b) has the same shape of the SLR – GPS residuals obtained by Urschl 
et al. (2008), see Figure 1.1. The along track and cross track acceleration have an order of 
magnitude of around 210100.1 sm−× . The along track component presents a twice per 
revolution perturbation, while for the cross track direction it is once per revolution. Also these 
components have a clear dependency on the relative position of satellite, Earth and Sun. 

By introducing this perturbing acceleration in the computation of a simple GPS orbit (Kepler 
orbit), the general effect of this perturbation could be studied. By doing that we found the 
answers to the third question. “Is this perturbation in the orbit capable of producing a radial 
shift in the orbits and if it does why?” Yes, the Earth radiation pressure can produce a 
negative radial shift of around cm21−  in orbits of GPS satellites, which has been also noted 
by Ziebart et al. (2007). The cause of this radial shift comes from way the GPS 
measurements works, which are capable of achieving a higher accuracy for the along track 
position of the satellite than for the radial position. This has as consequence that the mean 
motion of the unperturbed and perturbed orbit should be the same. Therefore a positive 
radial acceleration implies an apparent negative change of GM , and by using Kepler’s third 
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law we find a negative change of the semimajor axis of the orbit which is related to the radial 
position, see Figure 4.12.  

The perturbing acceleration for selected combinations of Earth radiation and satellite models 
(Figure 5.1) was then included in the Bernese GPS Software. The analysis with this software 
was done using GPS observations from around 190 IGS stations around the world and for a 
complete year of data. The resulting GPS orbits were compared between each other and 
with SLR measurements. Also orbits with and without an a priori solar radiation pressure 
model were computed. By plotting the obtained radial residuals between the perturbed and 
the reference orbit as a function of the relative position of satellite, Earth and Sun, we find the 
answer to the fourth scientific question: “Can this perturbation produce a similar pattern as 
the one observed between SLR measurements and GPS orbits (Figure 1.1)?”  Yes, the Earth 
radiation can produce a similar pattern as the one observed in Figure 1.1, see for example 
Figure 5.9. Since the SLR measurements are mainly available at night, the observed pattern 
would be then caused by the Earth infrared radiation acting on the solar panels. However the 
variation from maximum to minimum in Figure 1.1 is around cm5 , while for Figure 5.9 is just 
around mm2 . Also it is important to mention that the radial residuals when a cannon-ball 
model is used (Figure 5.8) have a minimum for °=∆ 0u  instead of a maximum like Figure 5. 
This is another indication that the use of a box-wing model is a key factor. 

The comparison of the orbits (using the selected models) with each other (Figure 5.6, Figure 
5.7, Table 5.2 and Table 5.3) give us enough elements to answer the fifth question: “Which 
are the key factors for an adequate but simple modelling of the effect of Earth radiation on 
GPS satellites?” The key factors are: 

- Earth radiation model with CERES data. Alternatively by introducing a small error the 
analytical model can be used. 

- Box-wing analytical model with block specific optical properties and with antenna 
thrust. 

The orbits computed with the Bernese GPS Software were compared with SLR 
measurements for the year 2007 using the same software. The results presented in Table 
5.4 and Table 5.5 answer the last questions of this thesis: “Is the GPS – SLR orbit anomaly 
reduced in a long term by including this acceleration on the computation of real GPS orbits?” 
Yes it is reduced by around 16 mm, from which 5 mm are due to the antenna thrust. 
Furthermore if one includes the LRA offsets mentioned by Davis and Trask (2007), this 
would lead to a further reduction of the bias in the sub-centimeter region, which leads to 
potentially orbits of this accuracy 

Additionally to the objectives of this thesis, it was found, like Urschl et al. (2007), that it is 
important if the orbits include or not an a priori solar radiation pressure model. Note in Table 
5.4 and Table 5.5 that by no including an a priori model leads to better results than by 
including it, possibly and indication that the modelling of solar radiation pressure stills plays a 
role in the accuracy of the GPS orbits. 
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8 Appendix 

 

 

 

 

8.1 COMP_ERM Subroutine 

 

 

function  [PRG_OUT1,PRG_OUT2] = COMP_ERM(sun_vec,sat_vec,sat _abs,psi)  
  
% 
% COMP_ERM: EARTH RADIATION MODEL COMPUTATION 
% 
%   INFORMATION NEEDED BY THE PROGRAM: 
%   S0:           Solar constant = 1367 W/m^2  
%   RE:           Mean Radious of the Earth = 6371 km 
%   ALBEDO:       Total Albedo of the Earth = 0.3  
%   COEF_CERES:   Coefficients needed for latitude dependent reflectivity  
%                 and emissivity, for a given year.  
%   DOY:          Day of Year  
%   REFL_CERES:   Reflectivity matrix from CERES da ta  
%   EMIT_CERES:   Emissivity matrix from CERES data  
%   ERM:          Earth Radiation Model (ERM-A = 1,  ERM-N = 2, ERM-LAT = 3,  
%                 ERM-CERES = 4)  
%   SAT:          Satellite Model (cannon ball = 1, box-wing analytical = 2,  
%                 box-wing numerical = 3)  
% 
%   INPUTS OF THE PROGRAM:  
%   sun_vec:      Sun direction vector in ECEF coor dinates  
%   sat_vec:      Satellite direction vector in ECE F coordinates  
%   sat_abs:      Magnitude of satellite position v ector  
%   psi:          Angle between satellite, Earth an d Sun  
% 
%   OUPUTS OF THE PROGRAM: 
%   Irradiance magnitude for SAT <= 2  
%   Acceleration vector for SAT == 3  
  
 
global  S0;  
global  RE;  
global  ALBEDO;  
global  COEF_CERES; 
global  DOY;  
global  REFL_CERES; 
global  EMIT_CERES;  
global  ERM;  
global  SAT;  
  
% Top of Atmosphere for CERES  
TOA = RE + 30*1000;  
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% EARTH RADIATION ANALYTICAL MODEL ---------------- ------------------------  
if  ERM == 1  
     
Fac_A = (pi*TOA^2)*S0/sat_abs^2;  
if  (psi >= 0) && (psi <= pi)  
    Phase_VI = ((2*ALBEDO)/(3*pi^2))*((pi-psi).*cos (psi)+sin(psi));  
    Phase_IR = (1-ALBEDO)/(4*pi);  
else  
    Phase_VI = NaN;  
    Phase_IR = NaN;  
end  
IRR_SUM_VI = Fac_A*Phase_VI;  
IRR_SUM_IR = Fac_A*Phase_IR;  
  
  
% EARTH RADIATION NUMERICAL MODELS ---------------- ------------------------  
elseif  ERM >= 2  
  
% Coefficients for latitude dependent model     
if  ERM == 3  
    coeff = COEF_CERES;  
    doy = DOY;  
    ALB_coeff(1) = coeff(1,1) + coeff(1,2)*cos(2*pi *doy/365) + 
coeff(1,3)*sin(2*pi*doy/365);  
    ALB_coeff(2) = coeff(2,1) + coeff(2,2)*cos(2*pi *doy/365) + 
coeff(2,3)*sin(2*pi*doy/365);  
    ALB_coeff(3) = coeff(3,1) + coeff(3,2)*cos(2*pi *doy/365) + 
coeff(3,3)*sin(2*pi*doy/365);  
    EM_coeff(1) = coeff(4,1) + coeff(4,2)*cos(2*pi* doy/365) + 
coeff(4,3)*sin(2*pi*doy/365);  
    EM_coeff(2) = coeff(5,1) + coeff(5,2)*cos(2*pi* doy/365) + 
coeff(5,3)*sin(2*pi*doy/365);  
    EM_coeff(3) = coeff(6,1) + coeff(6,2)*cos(2*pi* doy/365) + 
coeff(6,3)*sin(2*pi*doy/365);  
end  
  
% Compute body-fixed system from ECEF coordinates  
if  (SAT == 3)  
    % Vector perpendicular to satellite and Sun vectors  
    ort_vec = cross(sat_vec,sun_vec);  
    ort_abs = sqrt(ort_vec(1)^2 + ort_vec(2)^2 + or t_vec(3)^2);  
    ort_vec = ort_vec/ort_abs;  
  
    % Completes system, positive in the direction of th e Sun  
    nrd_vec = cross(ort_vec,sat_vec);  
    nrd_abs = sqrt(nrd_vec(1)^2 + nrd_vec(2)^2 + nr d_vec(3)^2);  
    nrd_vec = nrd_vec/nrd_abs;  
end  
  
% Integration grid 2.5° x 2.5°  
lat_int = (pi/180)*(-88.75:2.5:88.75);  
lon_int = (pi/180)*(-178.75:2.5:178.75);  
dif_ang = pi/72;  
  
IRR_SUM_VI = 0;  
IRR_SUM_IR = 0;  
ACC_SUM_VI = [0,0,0];  
ACC_SUM_IR = [0,0,0]; 
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for  z = 1:length(lat_int)  
    for  a = 1:length(lon_int)  
         
        % Sphere normal vector and differential of area  
        dif_area = (TOA^2)*cos(lat_int(z))*dif_ang^ 2;  
        v_norm = 
[cos(lat_int(z))*cos(lon_int(a)),cos(lat_int(z))*si n(lon_int(a)),sin(lat_in
t(z))];  
         
        % Actual vector from surface element to satellite  
        v_dist = sat_abs*sat_vec-TOA*v_norm;  
        D2 = v_dist(1)^2 + v_dist(2)^2 + v_dist(3)^ 2;  
        v_sat = v_dist/sqrt(D2);  
             
        % Angle of incident Sun light  
        cos_gamma = sum(sun_vec.*v_norm);  
         
        % Angle of emitted or reflected radiation  
        cos_theta = sum(v_sat.*v_norm);  
         
        % Earth Radiation Numerical Models  
        % ERM-N 
        if  ERM == 2  
            refl_coef = ALBEDO;  
            emit_coef = 1-ALBEDO;  
             
        % ERM-LAT     
        elseif  ERM == 3  
            refl_coef = 
ALB_coeff(1)+ALB_coeff(2)*cos(lat_int(z))+ALB_coeff (3)*sin(lat_int(z));  
            emit_coef = 
EM_coeff(1)+EM_coeff(2)*cos(lat_int(z))+EM_coeff(3) *sin(lat_int(z));  
             
        % ERM-CERES     
        elseif  ERM == 4  
            refl_coef = REFL_CERES(z,a);  
            emit_coef = EMIT_CERES(z,a);  
        end  
                    
        % Reflected radiation over illuminated part of the Earth,  
        % visible to the satellite  
        if  (cos_theta >= 0) && (cos_gamma >= 0) && (isfinite( refl_coef) == 
1)  
            E_refl = (refl_coef/(pi*D2))*cos_theta* cos_gamma*S0*dif_area;  
        else  
            E_refl = 0;  
        end  
  
 
        % Emitted radiation over part of the Earth visible to the satellite  
        if  (cos_theta >= 0)  && (isfinite(emit_coef) == 1)  
            E_emit = (emit_coef/(4*pi*D2))*cos_thet a*S0*dif_area;  
        else  
            E_emit = 0;  
        end  
  
        % Magnitude of Irradiance vector  
        IRR_SUM_VI = IRR_SUM_VI + E_refl;  
        IRR_SUM_IR = IRR_SUM_IR + E_emit;  
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        % Box-Wing Numerical Model, body-fixed reference sy stem  
        if  SAT == 3  
            if  cos_theta >= 0  
                irr_vec = 
[sum(v_sat.*sat_vec),sum(v_sat.*nrd_vec),sum(v_sat. *ort_vec)];  
             
                [Arad_VI,Arad_IR] = COMP_SAT(E_refl ,E_emit,psi,irr_vec);  
             
                ACC_SUM_VI = ACC_SUM_VI + Arad_VI;  
                ACC_SUM_IR = ACC_SUM_IR + Arad_IR;  
            end  
        end   
                   
    end  
end  
  
end  
  
  
% PROGRAM OUTPUT ---------------------------------- ------------------------  
  
if  SAT <= 2  
    PRG_OUT1 = IRR_SUM_VI;  
    PRG_OUT2 = IRR_SUM_IR;  
elseif  SAT == 3  
    PRG_OUT1 = ACC_SUM_VI;  
    PRG_OUT2 = ACC_SUM_IR;  
end  
 

 

 

8.2 COMP_SAT Subroutine 

 

 

function  [ACC_SUM_VI,ACC_SUM_IR] = COMP_SAT(Eabs_VI,Eabs_IR ,psi,irr_vec)  
  
% 
% COMP_SAT: GPS SATELLITE MODEL COMPUTATION 
% 
%   INFORMATION NEEDED BY THE PROGRAM: 
%   CV:           Velocity of light in vacuum  
%   SAT:          Satellite Model (cannon ball = 1, box-wing analytical = 2,  
%                 box-wing numerical = 3)  
%   GPS_AREA:     Area of satellite components    
%   GPS_RF_:      Reflectivity of satellite compone nts  
%   GPS_SP_:      Specularity of satellite componen t  
%                 Using (k=1 satellite bus, k=2 bac k of solar panels,  
%                 k=3 front of solar panels)  
%   GPS_BALL:     Other satellite constants needed:  (k=1 mass, k=2 area to  
%                 mass ratio, k=3 cannon-ball coeff icient  
%        
%   INPUTS OF THE PROGRAM:  
%   Eabs_VI:      Magnitude of irradiance vector (v isible)  
%   Eabs_IR:      Magnitude of irradiance vector (i nfrared)  
%   psi:          Angle between satellite, Earth an d Sun  
%   irr_vec:      Irradiance direction vector in bo dy-fixed coordinates  
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% 
%   OUPUTS OF THE PROGRAM: 
%   Acceleration vector  
  
global  CV;  
global  SAT  
global  GPS_AREA; 
global  GPS_RF_VI;  
global  GPS_SP_VI;  
global  GPS_RF_IR;  
global  GPS_SP_IR;  
global  GPS_BALL;  
  
  
% ANALYTICAL SATELLITE MODEL COMPUTATION ---------- ------------------------  
if  SAT <= 2  
  
% Cannon-Ball Model     
if  SAT == 1  
    ACC_RAD_VI = (Eabs_VI/CV)*GPS_BALL(2)*GPS_BALL( 3);  
    ACC_RAD_IR = (Eabs_IR/CV)*GPS_BALL(2)*GPS_BALL( 3);  
     
    ACC_NRD_VI = 0;  
    ACC_NRD_IR = 0;  
     
    ACC_ORT_VI = 0;  
    ACC_ORT_IR = 0;  
     
% Box-Wing Model     
elseif  SAT == 2  
    FAC_VI = (Eabs_VI/CV)*(1/GPS_BALL(1));    
    FAC_IR = (Eabs_IR/CV)*(1/GPS_BALL(1));    
     
    ACCRAD_BUS_VI = FAC_VI*GPS_AREA(1)*(1 + (2/3)*G PS_RF_VI(1) + 
(1/3)*GPS_SP_VI(1)*GPS_RF_VI(1));  
    ACCRAD_BUS_IR = FAC_IR*GPS_AREA(1)*(1 + (2/3)*G PS_RF_IR(1) + 
(1/3)*GPS_SP_IR(1)*GPS_RF_IR(1));  
     
    ACCNRD_BUS_VI = 0;  
    ACCNRD_BUS_IR = 0;  
     
    % Check for back and front side of Solar Panels  
    if  psi <= pi/2  
        k = 2;   
    elseif  psi > pi/2     
        k = 3;  
    end      
 
    ACCRAD_SOL_VI = FAC_VI*GPS_AREA(k)*abs(cos(psi) )*(1 + 
(2/3)*GPS_RF_VI(k)*(1-GPS_SP_VI(k))*abs(cos(psi)) +  
GPS_SP_VI(k)*GPS_RF_VI(k)*cos(2*psi));  
    ACCRAD_SOL_IR = FAC_IR*GPS_AREA(k)*abs(cos(psi) )*(1 + 
(2/3)*GPS_RF_IR(k)*(1-GPS_SP_IR(k))*abs(cos(psi)) +  
GPS_SP_IR(k)*GPS_RF_IR(k)*cos(2*psi));  
     
    ACCNRD_SOL_VI = FAC_VI*GPS_AREA(k)*cos(psi)*((2 /3)*GPS_RF_VI(k)*(1-
GPS_SP_VI(k))*sin(psi) + GPS_SP_VI(k)*GPS_RF_VI(k)* abs(sin(2*psi)));  
    ACCNRD_SOL_IR = FAC_IR*GPS_AREA(k)*cos(psi)*((2 /3)*GPS_RF_IR(k)*(1-
GPS_SP_IR(k))*sin(psi) + GPS_SP_IR(k)*GPS_RF_IR(k)* abs(sin(2*psi)));  
    ACC_RAD_VI = ACCRAD_BUS_VI + ACCRAD_SOL_VI;  
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    ACC_RAD_IR = ACCRAD_BUS_IR + ACCRAD_SOL_IR;  
     
    ACC_NRD_VI = ACCNRD_BUS_VI + ACCNRD_SOL_VI;  
    ACC_NRD_IR = ACCNRD_BUS_IR + ACCNRD_SOL_IR;  
     
    ACC_ORT_VI = 0;     
    ACC_ORT_IR = 0;  
     
end  
     
 
% NUMERICAL SATELLITE MODEL COMPUTATION ----------- ------------------------     
elseif  SAT == 3     
  
% Check for satellite orientation, respect to radia l radiation     
if  (psi >= 0) && (psi < pi/2)  
    sol_psi = psi;  
    k = 2;  
elseif  (psi >= pi/2) && (psi <= pi)  
    sol_psi = psi-pi;  
    k = 3;  
end  
  
% Check for satellite orientation, respect to actua l direction of radiation  
if  abs(irr_vec(2)) > cos(sol_psi)  
    if  (psi >= 0) && (psi < pi/2)  
        if  irr_vec(2) > 0  
            k = 2;  
        elseif  irr_vec(2) < 0  
            k = 3;  
            sol_psi = sol_psi-pi;  
        end  
     elseif  (psi >= pi/2) && (psi <= pi)  
        if  irr_vec(2) > 0  
            k = 2;  
            sol_psi = pi + sol_psi;  
        elseif  irr_vec(2) < 0  
            k = 3;  
        end  
    end   
end  
  
% Normal and tangent vectors for satellite bus  
bus_nrm = [1,0,0];  
if  (irr_vec(1) == bus_nrm(1)) && (irr_vec(2) == bus_n rm(2)) && (irr_vec(3) 
== bus_nrm(3))  
    bus_tan = [0,0,0];  
else  
    bus_ort = cross(irr_vec,bus_nrm);  
    abs_bus_ort = sqrt(bus_ort(1)^2+bus_ort(2)^2+bu s_ort(3)^2);  
    bus_ort = bus_ort/abs_bus_ort;  
         
    bus_tan = cross(bus_nrm,bus_ort);  
    abs_bus_tan = sqrt(bus_tan(1)^2+bus_tan(2)^2+bu s_tan(3)^2);  
    bus_tan = bus_tan/abs_bus_tan;         
end  
bus_ang = acos(sum(irr_vec.*bus_nrm)); 

  
% Normal and tangent vectors for Solar Panels  
sol_nrm = [cos(sol_psi),sin(sol_psi),0];  
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if  (irr_vec(1) == sol_nrm(1)) && (irr_vec(2) == sol_n rm(2)) && (irr_vec(3) 
== sol_nrm(3))  
    sol_tan = [0,0,0];  
else  
    sol_ort = cross(irr_vec,sol_nrm);  
    abs_sol_ort = sqrt(sol_ort(1)^2+sol_ort(2)^2+so l_ort(3)^2);  
    sol_ort = sol_ort/abs_sol_ort;  
         
    sol_tan = cross(sol_nrm,sol_ort);  
    abs_sol_tan = sqrt(sol_tan(1)^2+sol_tan(2)^2+so l_tan(3)^2);  
    sol_tan = sol_tan/abs_sol_tan;  
end      
sol_ang = acos(sum(irr_vec.*sol_nrm));  
  
% Final computation of accelerations         
fac_bus_VI = (GPS_AREA(1)/GPS_BALL(1))*(Eabs_VI/CV) *cos(bus_ang);  
fac_bus_IR = (GPS_AREA(1)/GPS_BALL(1))*(Eabs_IR/CV) *cos(bus_ang);  
  
fac_sol_VI = (GPS_AREA(k)/GPS_BALL(1))*(Eabs_VI/CV) *cos(sol_ang);  
fac_sol_IR = (GPS_AREA(k)/GPS_BALL(1))*(Eabs_IR/CV) *cos(sol_ang);  
         
acc_bus_nrm_VI = fac_bus_VI*((1+GPS_SP_VI(1)*GPS_RF _VI(1))*cos(bus_ang) + 
(2/3)*GPS_RF_VI(1)*(1-GPS_SP_VI(1)));  
acc_bus_nrm_IR = fac_bus_IR*((1+GPS_SP_IR(1)*GPS_RF _IR(1))*cos(bus_ang) + 
(2/3)*GPS_RF_IR(1)*(1-GPS_SP_IR(1)));  
  
acc_bus_tan_VI = fac_bus_VI*(1-GPS_SP_VI(1)*GPS_RF_ VI(1))*sin(bus_ang);  
acc_bus_tan_IR = fac_bus_IR*(1-GPS_SP_IR(1)*GPS_RF_ IR(1))*sin(bus_ang);         
  
acc_sol_nrm_VI = fac_sol_VI*((1+GPS_SP_VI(k)*GPS_RF _VI(k))*cos(sol_ang) + 
(2/3)*GPS_RF_VI(k)*(1-GPS_SP_VI(k)));  
acc_sol_nrm_IR = fac_sol_IR*((1+GPS_SP_IR(k)*GPS_RF _IR(k))*cos(sol_ang) + 
(2/3)*GPS_RF_IR(k)*(1-GPS_SP_IR(k)));  
  
acc_sol_tan_VI = fac_sol_VI*(1-GPS_SP_VI(k)*GPS_RF_ VI(k))*sin(sol_ang);  
acc_sol_tan_IR = fac_sol_IR*(1-GPS_SP_IR(k)*GPS_RF_ IR(k))*sin(sol_ang);  
  
ACC_RAD_VI = acc_bus_nrm_VI*bus_nrm(1) + acc_bus_ta n_VI*bus_tan(1) + 
acc_sol_nrm_VI*sol_nrm(1) + acc_sol_tan_VI*sol_tan( 1);  
ACC_RAD_IR = acc_bus_nrm_IR*bus_nrm(1) + acc_bus_ta n_IR*bus_tan(1) + 
acc_sol_nrm_IR*sol_nrm(1) + acc_sol_tan_IR*sol_tan( 1);  
  
ACC_NRD_VI = acc_bus_nrm_VI*bus_nrm(2) + acc_bus_ta n_VI*bus_tan(2) + 
acc_sol_nrm_VI*sol_nrm(2) + acc_sol_tan_VI*sol_tan( 2);  
ACC_NRD_IR = acc_bus_nrm_IR*bus_nrm(2) + acc_bus_ta n_IR*bus_tan(2) + 
acc_sol_nrm_IR*sol_nrm(2) + acc_sol_tan_IR*sol_tan( 2);  
  
ACC_ORT_VI = acc_bus_nrm_VI*bus_nrm(3) + acc_bus_ta n_VI*bus_tan(3) + 
acc_sol_nrm_VI*sol_nrm(3) + acc_sol_tan_VI*sol_tan( 3);  
ACC_ORT_IR = acc_bus_nrm_IR*bus_nrm(3) + acc_bus_ta n_IR*bus_tan(3) + 
acc_sol_nrm_IR*sol_nrm(3) + acc_sol_tan_IR*sol_tan( 3);  
  
end  
  
  
% PROGRAM OUTPUT ---------------------------------- ------------------------  
  
ACC_SUM_VI = [ACC_RAD_VI, ACC_NRD_VI, ACC_ORT_VI];  
ACC_SUM_IR = [ACC_RAD_IR, ACC_NRD_IR, ACC_ORT_IR];  
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8.3 COMP_ACC Subroutine 

 

 

function  [ACC_VI,ACC_IR,Arad_VI,Arad_IR] = COMP_ACC(sat_spf ,sun_spf,t)  
%  
% COMP_ACC: COMPUTATION OF ACCELERATION ACTING ON SATELLITE  
% 
%   INFORMATION NEEDED BY THE PROGRAM: 
%   WE:           Earth rotation rate = 2*pi/86164  
%   ERM:          Earth Radiation Model (ERM-A = 1,  ERM-N = 2, ERM-LAT = 3,  
%                 ERM-CERES = 4)  
%   SAT:          Satellite Model (cannon ball = 1,  box-wing analytical = 
2,  
%                 box-wing numerical = 3)  
% 
%   INPUTS OF THE PROGRAM:  
%   sat_spf:      Satellite vector in Space fixed E arth centred coordinates  
%   sun_spf:      Sun vector in Space fixed Earth c entred coordinates  
%   t:            Time in seconds (used for simple conversion into Earth  
%                 fixed Earth centred coordinates)  
% 
%   OUPUTS OF THE PROGRAM: 
%   ACC_:         Acceleration vector in Space fixe d Earth centred  
%                 coordinates  
%   Arad_:        Acceleration vector in body-fixed  coordinates  
  
global  WE;  
global  ERM;  
global  SAT;  
  

 
% VECTORS AND ANGLES FOR MODELS ------------------- ------------------------  
  
% Geocenter distance to satellite  
sat_abs = sqrt(sat_spf(1)^2 + sat_spf(2)^2 + sat_sp f(3)^2);  
  
% Normalized satellite position vector, space-fixed  
sat_spf = [sat_spf(1)/sat_abs, sat_spf(2)/sat_abs, sat_spf(3)/sat_abs];  
sun_spf = [sun_spf(1), sun_spf(2), sun_spf(3) ];  
  
% Angle between satellite, Earth and Sun  
psi = acos(sum(sun_spf.*sat_spf));  
  
% Vector perpendicular to sun and satellite directi on, space-fixed  
ort_vec = cross(sat_spf,sun_spf);  
ort_abs = sqrt(ort_vec(1)^2 + ort_vec(2)^2 + ort_ve c(3)^2);  
ort_vec = [ort_vec(1)/ort_abs, ort_vec(2)/ort_abs, ort_vec(3)/ort_abs;];  
     
% Vector in the plane satellite-sun, space-fixed  
nrd_vec = cross(ort_vec,sat_spf);  
nrd_abs =  sqrt(nrd_vec(1)^2 + nrd_vec(2)^2 + nrd_v ec(3)^2);  
nrd_vec = [nrd_vec(1)/nrd_abs, nrd_vec(2)/nrd_abs, nrd_vec(3)/nrd_abs;];  
  
%Sun and satellite vector in Earth fixed coordinate s  
sat_erf = [0,0,0];  
sat_erf(1) = sat_spf(1)*cos(WE*t) + sat_spf(2)*sin( WE*t);  
sat_erf(2) = -sat_spf(1)*sin(WE*t) + sat_spf(2)*cos (WE*t);  
sat_erf(3) = sat_spf(3);  
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sun_erf = [0,0,0];  
sun_erf(1) = sun_spf(1)*cos(WE*t) + sun_spf(2)*sin( WE*t);  
sun_erf(2) = -sun_spf(1)*sin(WE*t) + sun_spf(2)*cos (WE*t);  
sun_erf(3) = sun_spf(3);  
  
  
% ALBEDO MODEL COMPUTATION ------------------------ ------------------------  
  
if  (ERM == 1) && (SAT == 3)  
    SAT = 2;  
end  
         
if  SAT <= 2  
    [Eabs_VI,Eabs_IR] = COMP_ERM(sun_erf,sat_erf,sa t_abs,psi);  
elseif  SAT == 3  
    [Arad_VI,Arad_IR] = COMP_ERM(sun_erf,sat_erf,sa t_abs,psi);  
end   
         
if  SAT <= 2  
    [Arad_VI,Arad_IR] = COMP_SAT(Eabs_VI,Eabs_IR,ps i);  
end  
  
  
% TOTAL ACCELERATION ------------------------------ ------------------------  
  
ACC_VI = [0,0,0];  
ACC_VI(1) = Arad_VI(1)*sat_spf(1) + Arad_VI(2)*nrd_ vec(1) + 
Arad_VI(3)*ort_vec(1);  
ACC_VI(2) = Arad_VI(1)*sat_spf(2) + Arad_VI(2)*nrd_ vec(2) + 
Arad_VI(3)*ort_vec(2);  
ACC_VI(3) = Arad_VI(1)*sat_spf(3) + Arad_VI(2)*nrd_ vec(3) + 
Arad_VI(3)*ort_vec(3);  
  
ACC_IR = [0,0,0];  
ACC_IR(1) = Arad_IR(1)*sat_spf(1) + Arad_IR(2)*nrd_ vec(1) + 
Arad_IR(3)*ort_vec(1);  
ACC_IR(2) = Arad_IR(1)*sat_spf(2) + Arad_IR(2)*nrd_ vec(2) + 
Arad_IR(3)*ort_vec(2);  
ACC_IR(3) = Arad_IR(1)*sat_spf(3) + Arad_IR(2)*nrd_ vec(3) + 
Arad_IR(3)*ort_vec(3);  
  
 

 

 

 

 

 

 

 

 

 

 


