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Abstract

Machine learning is a technique that fosters many Artificial Intelligence Applications in both Computer
Vision and Medical Imaging. However, applying this technique blindly, in particular for medical
applications, might lead to undesirable performance. Therefore, one must be aware of possible pitfalls,
and associated challenges present in machine learning phases, including pre-processing, learning, and
evaluation. This calls for incorporating domain-specific knowledge, which is extremely important and
plays a crucial role in these applications, into the learning process. In this thesis, a set of mathematical
and technical methods incorporating this knowledge is introduced in both unsupervised and supervised
setups for different biomedical applications, namely Breast Cancer Histology Imaging, Cryo-Electron
Tomography, and Depth Perception in Interventional Imaging.

In Breast Cancer Histology Images, where data can be easily acquired in clinical routines, obtaining
such a ground-truth label is a tedious, time-consuming, and rather challenging task for physicians,
in particular when the intra-variability agreement between physicians is pretty low. Crowdsourcing
is considered the state-of-the-art for collecting inexpensive image annotations. However, it is still
hampered by the need of domain knowledge and expertise for medical data. In this context, a
robust aggregation layer for a deep learning framework, which combines both Human and Artificial
intelligence, is proposed to generate ground-truth annotations from noisy annotations collected by
crowdsourcing, as well as play-sourcing platforms.

However, in some cases, due to the absence of data abundance and labels, e.g. in Cryo-Electron
Tomography, regularization based methods that incorporate prior knowledge, for example, Huber
terms for robust regression, and Graph Laplacians for manifold embedding, are proposed in the context
of tomographic reconstruction and noise reduction, respectively. In Interventional Imaging, prior
knowledge information obtained from pre-operative Computed Tomography (CT) scans are used to
obtain labels for machine learning algorithms, to improve the visual perception of interventional X-ray
images.

Finally, this thesis concludes incorporating such a prior knowledge,i.e. domain-specific knowledge,
intelligently in the learning phase, influencing the performance positively.

Keywords: Regularization, Laplacian Graph, Dictionary Learning, Deep Learning, Crowdsourcing,
Gamification.
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Zusammenfassung

Maschinelles Lernen ist eine Technik, die viele Künstliche Intelligenz Anwendungen, sowohl in Com-
puter Vision als auch in Medical Imaging fördert. Allerdings könnte die gedankenlose Anwendung
dieser Technik, insbesondere für medizinische Anwendungen, zu einer unerwünschten Leistung führen.
Daher muss man sich über mögliche Fallern und damit verbundene Herausforderungen in maschinellen
Lernphasen, einschließlich Vorverarbeitung, Lernen und Auswertung, bewusst sein. Dies erfordert die
Einbindung von domänenspezifischem Wissen, das äußerst wichtig ist und bei diesen Anwendungen
eine entscheidende Rolle spielt, in den Lernprozess. In dieser Arbeit wird eine Reihe von mathema-
tischen und technischen Methoden, die dieses Wissen einbeziehen, sowohl in unbeaufsichtigter als
auch in beaufsichtigter Konfiguration für verschiedene biomedizinische Anwendungen eingeführt,
nämlich histologische Bildverarbeitung für Brustkrebsanlayse, Cryo-Elektronen Tomographie und
visuelle Wahrnehmung in interventioneller Bildgebung.

In den Brustkrebs-Histologie-Bildern, wo Daten in klinischen Routinen leicht erworben werden können,
ist jedoch die Erlangung eines solchen annotierten Vorwissens eine langwierige, zeitaufwändige und
anspruchsvolle Aufgabe für Ärzte, insbesondere wenn die intravariable Vereinbarung zwischen Ärzten
sehr niedrig ist. Crowdsourcing gilt als aktueller Stand der Technnik für das Sammeln von preiswerten
Bild-Annotationen. Allerdings ist diese Methiode immer noch eingeschränkt durch die Notwendigkeit
von Fachkenntnissen und Know-how insbesondere für medizinische Daten. In diesem Zusammenhang
wird eine robuste Aggregationsschicht für ein Deep Learning Framework vorgeschlagen, das sowohl
menschliche als auch künstliche Intelligenz kombiniert, um genauere Annotationen aus fehlerbehafte-
ten Annotationen zu generieren, die durch Crowdsourcing sowie Play-Sourcing-Plattformen gesammelt
wurden.

In einigen Fällen werden jedoch aufgrund der Abwesenheit von Datenreichtum und annotierten
Daten, z. B. in der Cryo-Elektronen-Tomographie, regulationsbasierte Methoden, die Vorkenntnisse
beinhalten, beispielsweise Huber-Begriffe für eine robuste Regression und Graph Laplace-Operatoren
für vielfältige Einbettung im Rahmen der tomographischen Rekonstruktion und Rauschreduktion,
vorgeschlagen. In der interventionellen Bildgebung werden vorherige Kenntnisse, die aus präoperativen
Computer Tomographie (CT) Bildern gewonnen wurden, verwendet, um Annotationen für maschinelle
Lernalgorithmen zu erhalten, um die visuelle Wahrnehmung von interventionellen Röntgenbildern zu
verbessern.

Letztendlich beshreibt diese Dokorarbeit die Einbeziehung solcher Vorkenntnisse, d.h. Domänen-
spezifisches Wissen auf intelligente Art und Weise in die Lernphase, wodurch die Leistung positiv
beeinflusst wird.

Keywords: Regularization, Laplacian Graph, Dictionary Learning, Deep Learning, Crowdsourcing,
Gamification.

vii





Acknowledgments

First of all, I would like to express my sincere gratitude to Prof. Dr. Nassir Navab for giving me the
opportunity to do my research in collaboration with the Computer Aided Medical Procedures (CAMP)
group, at Technical University of Munich (TUM) in Germany and Johns Hopkins University (JHU) in
USA. Prof. Navab has provided me an endless support and encouragement throughout the last four
years. Without that, this thesis would not have been possible.

I would also like to appreciate all contributions from my colleagues during my doctoral study, in
particular, the senior co-authors; Tobias Lasser, Maxmilian Baust, and Stfeanie Demirci, and this
gratitude also extends to my colleagues; Diana Mateus, Lichao Wang, Tingying Ping, Sailesh Conjeti,
Mohammed Alsheikhali, Wadim Kehl, Loic Peter, and Martina Hilla for their help, support, and
fruitful discussion. Furthermore, I would like to thank Ashraf Al-Amoudi, and Weaam Alkhaldi from
Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) for their help and support, in
particular, at the beginning of my Ph.D. journey.

Finally, I would like to say thank you to my parents; Sabah and Nabil, my sisters; Shatha, Roba, Aya,
and Dima, and my brothers; Loai and Mohammed for their continuous support over the years. Last but
not least, I would like to thank my wife Reem and my daughter Alma for their patience and tremendous
support.

ix





Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Towards Deep Learning for Medical Applications 7
2.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Feature normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Class Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Classification Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Image Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 From Nano- to Milli-meter Image Resolution 23
3.1 Cryo-Electron Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Problem Definition and Motivation . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Contribution: Gradient Projection for Regularized Cryo-Electron Tomographic

Reconstruction (CMMI MICCAI 2014) . . . . . . . . . . . . . . . . . . . . 27
3.1.4 Contribution: Multi-scale Graph-based Guided Filter for De-noising Cryo-

Electron Tomographic Data (BMVC 2015) . . . . . . . . . . . . . . . . . . 27
3.2 Breast Cancer Histology Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Problem Definition and Motivation . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Contribution: AggNet: Deep Learning From Crowds for Mitosis Detection in

Breast Cancer Histology Images (IEEE TMI 2016) . . . . . . . . . . . . . . 30
3.2.4 Contribution: Playsourcing: A Novel Concept for Knowledge Creation in

Biomedical Research (LABELS/DLMIA MICCAI 2016) . . . . . . . . . . . 31
3.3 Depth Perception in Interventional X-ray Imaging . . . . . . . . . . . . . . . . . . . 32

3.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Contribution: Single-view X-ray depth recovery: toward a novel concept for

image-guided interventions (IJCARS 2016) . . . . . . . . . . . . . . . . . . 33

xi



3.3.3 Contribution: X-ray In-Depth Decomposition: Revealing The Latent Struc-
tures (MICCAI 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Conclusion and Outlook 35

List of Figures 37

List of Tables 41

Bibliography 43

A Gradient Projection for Regularized Cryo-Electron Tomographic Reconstruction 59

B Multi-scale Graph-based Guided Filter for De-noising Cryo-Electron Tomographic
Data 61
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.2.1 Graph Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2.2 Graph Spectral Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.2.3 Connection to Classical Filters . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2.4 Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

C AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer His-
tology Images 71
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
C.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.2.2 Multi-scale CNN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.2.3 Aggregation Layer (AG): . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

C.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
C.3.1 Proof-of-Concept Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.3.2 Use Case Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

C.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
C.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

D Playsourcing: A Novel Concept for Knowledge Creation in Biomedical Research 91

E Single-view X-ray depth recovery: toward a novel concept for image-guided inter-
ventions 93

F X-ray In-Depth Decomposition: Revealing The Latent Structures 95

G Abstracts of Publications not Discussed in this Thesis 97

xii



List of Authored and Co-authored
Publications

Discussed in This Dissertation
[1] S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S. Demirci, and N. Navab. “AggNet: Deep

Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images”. In: IEEE
transactions on medical imaging 35.5 (2016), pp. 1313–1321.

[2] S. Albarqouni, T. Lasser, W. Alkhaldi, A. Al-Amoudi, and N. Navab. “Gradient Projection
for Regularized Cryo-Electron Tomographic Reconstruction”. In: Computational Methods for
Molecular Imaging. 2015, pp. 43–51.

[3] S. Albarqouni, M. Baust, S. Conjeti, A. Al-Amoudi, and N. Navab. “Multi-scale Graph-based
Guided Filter for De-noising Cryo-Electron Tomographic Data.” In: British Machine Vision
Conference (BMVC). 2015, pp. 17–1.

[4] S. Albarqouni, S. Matl, M. Baust, N. Navab, and S. Demirci. “Playsourcing: A Novel Concept
for Knowledge Creation in Biomedical Research.” In: LABELS/DLMIA@ MICCAI. 2016,
pp. 269–277.

[5] S. Albarqouni, U. Konrad, L. Wang, N. Navab, and S. Demirci. “Single-view X-ray depth
recovery: toward a novel concept for image-guided interventions”. In: International journal of
computer assisted radiology and surgery (2016), pp. 1–8.

[6] S. Albarqouni, J. Fotouhi, and N. Navab. “X-ray In-Depth Decomposition: Can Deep Learn-
ing Reveal The Latent Structures?” In: Medical Image Computing and Computer-Assisted
Intervention—MICCAI 2017. Vol. Lecture Notes in Computer Science Volume 10435. 2017,
pp. 401–409.

Selected Publications
[7] C. Baur, S. Albarqouni, S. Demirci, N. Navab, and P. Fallavollita. “CathNets: Detection

and Single-View Depth Prediction of Catheter Electrodes”. In: International Conference on
Medical Imaging and Virtual Reality. Springer. 2016, pp. 38–49 (cit. on p. 36).

[8] C. Baur, S. Albarqouni, and N. Navab. “Semi-Supervised Learning for Fully Convolutional
Networks”. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2017.
Vol. Lecture Notes in Computer Science Volume 10435. 2017, pp. 281–289 (cit. on p. 36).

1



[9] M. Bui, S. Albarqouni, M. Schrapp, N. Navab, and S. Ilic. “X-Ray PoseNet: 6 DoF Pose
Estimation for Mobile X-Ray Devices”. In: Applications of Computer Vision (WACV), 2017
IEEE Winter Conference on. IEEE. 2017, pp. 1036–1044 (cit. on p. 36).

[10] A. Vahadane, T. Peng, S. Albarqouni, et al. “Structure-preserved color normalization for
histological images”. In: Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium
on. IEEE. 2015, pp. 1012–1015 (cit. on p. 29).

[11] A. Vahadane, T. Peng, A. Sethi, et al. “Structure-preserving color normalization and sparse
stain separation for histological images”. In: IEEE transactions on medical imaging 35.8
(2016), pp. 1962–1971 (cit. on p. 29).

2 Contents



1Introduction

„If learning the truth is the scientist’s goal. . . then he must
make himself the enemy of all that he reads.

— Al-Hazen Ibn Al-Haytham (965-1040CE)

A Brief History: The brilliant breakthrough in both vision and light took place in the 9th century
when Alhazen Ibn Al-Haytham invented the Camera Obscura (in Latin) or Albait Almuzlim (in Arabic),
which simply means the dark room. Ibn Al-Haytham observed that the act of vision is accomplished
by rays emitting from external objects and entering the visual organs, demolishing the extra-mission
theories of his predecessors. Ibn Al-Haytham reported his systematic experiments and theories in
his great work, Kitab Al-Manazir or Book of Optics [18], which has been ranked as one of the most
influential books ever written in the history of optics. His ideas influenced many Western scholars
enabling them to develop optical microscopy in the 14th and 15th centuries until Isaac Newton wrote
his "new" theory about light and colors in 17th century [182]. In his work, he identified the colors which
form the visible band within the electromagnetic spectrum. Afterward, electromagnetic radiations
other than visible lights were discovered including infrared radiation, ultraviolet radiation, and radio
waves. In the late 19th century, X-ray was first discovered by Roentgen who noticed that rays were
able to penetrate soft tissues, i.e. Human flesh better than hard ones, i.e. bones. This discovery enabled
both diagnostic and interventional imaging such as mammography, Computed Tomography (CT),
Fluoroscopy and Angiography.

1.1 Motivation

With the rapid and advanced development in information and communication technology (ICT), the
amount of data is increasing exponentially. For example, the healthcare system in the United States
alone produced more than 150 exabytes (150 × 1018) back in 2011 [198] and it is expected that the
worldwide health records will reach 40 yottabytes (40 × 1024) in 2020 [181]. This big data, as defined
in [168] by

“the ability of society to harness information in novel ways to produce useful insights or
goods and services of significant value”,

is making a difference in public health sector, i.e. predicting outbreaks, improving patient care and
health outcomes [168, 198]. However, this numerous application of big data can not happen without
statistical and automated models for data analysis; pattern recognition, prediction, decision making,
that govern the learning system, which is what Artificial Intelligence (AI), and Machine Learning (ML)
provide.
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Figure 1.1. Energy sources and different imaging modalities.

Over the last decade, most research in machine learning has emphasized the use of handcrafted features,
and data-driven based approaches to solving different tasks in the medical field (cf. Fig.1.2). Recently,
with the advances in graphic processing units (GPU), computing, and optimization, deep learning
has emerged as a powerful tool enabling us to solve challenging tasks in both Computer Vision [133]
and Medical Imaging [70]. One of the most significant applications of AI and ML in the medical
field is Computer Aided Diagnosis (CAD) [58] that aims at assisting clinicians and physicians based
on different information sources such as Electronic Medical Records (EMR), and different imaging
modalities, i.e. X-ray, CT, and Magnetic Resonance Imaging (MRI).

However, as pointed out by Andrew Ng [183], Artificial Intelligence (AI) and Machine Learning (ML),
in general, can not work without a huge amount of data and talent, referring to domain-specific
knowledge. Similarly, Ge Wang [255] holds the view that developing a new generation of image
reconstruction techniques might lead to elegant utilization of domain-specific knowledge as prior
knowledge, and consequently boosting the performance in several clinical applications.

Figure 1.2. Google trends on Big Data and Artificial Intelligence; Pattern Recognition, Machine Learning, and Deep Learning.

4 Chapter 1 Introduction



1.2 Problem Statement

In this dissertation, we address the following questions, which are considered important for machine
learning problems, in particular for medical applications, covering the pre-processing, learning, and
evaluation phases, respectively:

• To what extent can Artificial Intelligence (AI) and Human Intelligence (HI) collaborate
for robust Biomedical Image Annotation?

Given the lack of publicly available ground-truth, transferring recent developments in deep
learning to the biomedical imaging becomes a serious challenge. Crowd-sourcing has enabled
us to collect annotations for large scale databases, i.e. ImageNet1. However, its application to
biomedical imaging raises many questions about the reliability of collected annotations and the
agreement between different users. Therefore, combining both AI and HI in a single framework
that can generate reliable image annotations is highly desirable.

• How can prior knowledge be defined and incorporated into Machine Learning (ML) al-
gorithms?

Employing machine learning algorithms blindly, particularly in medical applications, without
deeply understanding the challenging circumstances, might lead to unsatisfactory performance.
This urges the demand for a domain-specific knowledge that can be incorporated into machine
learning algorithms, starting from simple feature extraction methods, i.e. handcrafted engineered
features, to more sophisticated regularized energy functions. Insights of the definition and
formulation of such a prior knowledge are expected to be delivered for different biomedical
applications and machine learning tools as well.

• What are the challenges present in real scenarios, how this would affect the evaluation,
and what are the possible solutions?

A limited amount of labeled data, highly imbalanced classes, different scanners, together
with inter- and intra-observer variability are common challenges in medical applications. For
instance, training an ML algorithm from highly imbalanced data, where the majority of samples
are negative, and few samples are positive, would negatively influence the performance. This
requires new techniques handling the under-represented classes, i.e.re-sampling, and data
augmentation, and independent metrics that can measure the performance regardless the class
distribution.

The challenges above are essential for the study of machine learning for biomedical applications, and
we believe that our novel contributions, presented in this dissertation, provide answers covering many
challenging aspects, from Nano- to Milli-meter image resolution, and from Crowdsourcing to Deep
Learning approaches.

1http://www.image-net.org/
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1.3 Roadmap
This dissertation is structured as follows:

In Chapter 2, we briefly define machine learning (ML) and the relevant technical questions in different
ML phases. The chapter is divided into three main sections, in each, we describe ML phase along with
its corresponding challenges. For instance, preprocessing steps along with the techniques handling
missing data and class imbalance are discussed in Sec. 2.1. Afterward, Sec. 2.2 focuses on the learning
phase of ML, i.e. Big Data Vs. Small Data, Bias-Variance problem, before we explain the mathematical
tools used in this dissertation. Evaluation metrics in the presence of imbalanced data are discussed in
Sec. 2.3.

Moving forward, Chapter 3 describes the ML application on different imaging modalities, starting
from Nano- to Millimeter Image Resolution. In sec. 3.1, we introduce the Cryo-Electron Tomography
and its impact on understanding and interpretation of complex biological structures. Then we present
the major challenges associated with the electron microscopy imaging device, i.e. limited angle view,
radiation damage, and the contrast transfer function before we present our contributions in both 3D
Tomographic Reconstruction and Noise Reduction. Moving to the micro-scale (cf. Sec. 3.2), we briefly
introduce the Breast Cancer Histology Images and the clinical procedures, as well as the challenges
associated with the staining and observer disagreement. Insights about our partipation in AMIDA13
Challenge, related work, and our significant contributions in Crowdsourcing and Gamification are
also presented. After that, Sec. 3.3 highlights the need for Depth Perception in Interventional X-ray
imaging and presents our most significant contributions, i.e. Depth recovery of single-view X-ray
images, and X-ray In-Depth Decomposition.

Finally, Chapter 4 combines our conclusion and future outlook by discussing the importance of prior
knowledge to various biomedical applications, and further list open questions that could be food for
thought for any future research.

6 Chapter 1 Introduction



2Towards Deep Learning for
Medical Applications

„The good teacher makes the poor student good and the
good student superior!

— Marva Collins (1936–2015)

As defined by Jordan et al. [124], ML is

“The discipline focused on two interrelated questions: How can one construct computer
systems that automatically improve through experience?, and What are the fundamental
statistical computational-information-theoretic laws that govern all learning systems,
including computers, humans, and organizations?”.

It is lying at the intersection of computer science and mathematics & statistics as represented in the
Venn diagram of Drew Conway (cf. Fig.2.1). Nowadays, with the advent of big data, scalable machine
learning techniques are demanded, namely deep learning, which has been recently emerged as a
powerful tool handling this massive amount of data (cf. Fig.2.1).

In 2017, Zhou et al. [288] proposed a framework for ML on big data (MLBiD), which interacts mainly
with four components, i.e. big data, user, domain knowledge, and system. Opportunities and challenges
with respect to aforementioned components are thoroughly discussed. As depicted in Fig.2.2, all
interactions are bi-directional, for instance; big data acts as input to ML algorithm outputting a useful
information that sent back to form a big data, user interacts with ML providing the domain knowledge,
usability, and design requirements, and in return ML assists users in decision making, domain acts as a
source of knowledge and the area where ML can be applied as well; system determines the running
time of ML algorithms, where ML can define the system design requirements.

This chapter is not intended to provide a comprehensive overview of machine learning but rather focus
on common technical questions in different ML phases; Pre-processing, Learning, and Evaluation.
Readers are referred to [27] to understand the basic concepts of machine learning algorithms.

2.1 Pre-Processing

2.1.1 Feature normalization

It has been shown in the literature that this process is very essential for many machine learning
algorithms. For instance, having a high-deimensional feature vector x ∈ Rn that has some attributes in
range (0, 1000), and others in range (−1, 1), would highly bias the learning process. To rescale the

7



Figure 2.1. Venn Diagram of Data Science: Drew Conway [218] (left), Modified one (right).

dynamic range, commonly used normalization and standarization techniques are presented for a given
feature matrix X = {x1, x2, ..., xN} ∈ R

n×N , where n is the number of instances.

Normalization. Given a lower bound lx ∈ Rn and an upper bound ux ∈ R
n, the normalized feature

matrix X̄ is rescaled into range [0,1] as

X̄ =
X − lx
ux − lx

, (2.1)

Standarization. Given a mean µx ∈ R
n and a covariance matrix Σx ∈ R

n×n, the standarized feature
matrix X̄ is transformed to a random variable with zero mean and unit covariance as

X̄ =
X − µx

Σx
, (2.2)

where Σx = 1
N−1

∑N
i=1(X − µx)(X − µx)T . Other rescaling techniques such as Whitening, Rank normal-

ization, and Zero Component Analysis (ZCA), are widely covered in the literature [14, 132].

Figure 2.2. MLBiD framework. Adapted from Fig.1 in [288].

8 Chapter 2 Towards Deep Learning for Medical Applications



(a) (b) (c) (d)

Figure 2.3. Class Imbalance in (a) classical scenarios, and (b) complex ones with the presence of intra- and inter-class
imbalance. Example on synthetic methods, and its drawback in (c) and (d).

2.1.2 Missing Data

In real applications, high-dimensional feature vectors often associated with missing and incomplete
data. Replacing the missing data with substituted values is so-called Data Imputation. Simple
techniques such as mean substitution, and hot-deck, are known to increase the risk of model bias.
Therefore, sophisticated learning-based methods are proposed showing a significant performance over
the statistical-based ones [121].

2.1.3 Class Imbalance

Learning from highly imbalanced data, where few positive samples are available among the majority of
negative samples (cf. Fig. 2.3), highlighted as a major challenge yielding a serious problem, i.e. model
bias, in ML research. To mitigate this issue, few methods are presented here, while a comprehensive
review of different methods is covered in [112].

Sampling Methods While simple random over-sampling or under-sampling techniques can be
performed to balance the class distribution, it so happened that worsen the performance. For instance,
under-sampling the majority class could lead to missing important features or patterns. In contrast,
over-sampling the minority class might lead to overfitting (cf. Sec. 2.2) due to so many replicated
samples. One powerful technique, namely SMOTE method [40], has shown great success in many
applications. It creates basically synthetic instances that are close to the minority class.

Given an instance xi in the minority class, and its K-nearest neighbors (k-NN), the synthesized new
instance xnew can be obtained using one randomly sampled of k-NN xk as

xnew = xi + λ · (xi − xk), (2.3)

where λ is a random number between [0,1].

One drawback of synthetic sampling methods is the possible overlapping between the synthetic
example and the majority class (cf. Fig. 2.3). Data cleaner methods such as Tomek Link [236] are used
to clear unwanted overlapping samples.

2.1 Pre-Processing 9



Cost Sensitive Methods. Alternatively, penalties associated with misclassifying examples are con-
sidered in the cost-sensitive methods. For example, in a binary classification scenario, a weighting
scheme can be used in cross entropy loss function as

L(ŷ, y) =

N∑
i=1

α · yi log ŷi + (1 − α) · (1 − yi) log(1 − ŷi), (2.4)

where ŷi is the predicted value, yi is the corresponding ground-truth, and α is the cost penalty on
misclassiying positive class. Readers are referred to Sec. 2.2.1 for more details about logistic regression
for classification tasks.

2.2 Learning

How much data we need for a machine learning algorithm?

Big Data vs. Small Data. Variability and heterogeneity available in medical data calls for person-
alized medicine that provides a proper decision for an individual patient for the specific medical
procedure. Therefore, in contrast to the potential impact of big data in healthcare, Sacristan et al. [212]
spotted some potential barriers that may arise limiting the development of big data in research and
medicine, in particular, the knowledge transfer from clinical researches (Big data) to medical care
(small data) and vice versa. They believed that there is ”no big data without small data” and policy-
makers should care about the quality of small data, i.e. completeness, standardization. Therefore, such
a learning healthcare system that proposed in [212]is desirable, where the medical act (doctor-patient
encounter) plays a crucial role in the learning process (cf. Fig. 2.4). In another study, Ferguson et
al. [72] have shown in their paper, entitled ”big data from small data”, that small data which carries a
lot of diversity and heterogeneity might not be suitable for publications. However, a collection of such
small datasets, so-called long-tail data, can be utilized and in fact turned into a big data (cf. Fig. 2.4).

Léon Bottou, from Facebook AI Research, pointed out in his presentation on Big Data [28] that the
assumption of data scarcity advanced the development of statistical machine learning, and having Big
data nowadays should not be utilized to increase the average accuracy rather mitigate the challenging
aspects, in reality, i.e. Transfer Learning, and Domain Adaptation.

In medical field, having such a standarized or complete data is a bit challenging for many reasons.
For instance, biomedical data acquisition takes from few minutes for MR, or CT scans to a couple of
weeks for Cryo-Electron Tomography [108] and needs a lot of preprocessing steps including image
reconstruction, noise-reduction, registration, and most importantly labeling or annotation. Furthermore,
medical data need to be de-identified and anonymized for privacy issues [83, 136]. All these issues
hinder the availability of such a large scale database that can be utilized for ML algorithms in healthcare
systems. Having said that, massive efforts are made to collect and gather de-identified, and standardized
medical data from multi-research centers across the world, giving an excellent opportunity for scientists
and researchers to contribute and evaluate their algorithms on benchmark databases. Table 2.1 lists
few challenges, offered at grand-challenges website1, that provide multi-centers clinical database.

1Grand-challenges website, https://grand-challenge.org/All_Challenges/
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Figure 2.4. Big data or Small data: On top is the learning healthcare system proposed by Sacristan et al. [212], while the
bottom figure, adapted from [72], shows the long tail of unpublished and dark datasets, which can be a potential
treasure for big data.

Given the aforementioned challenges and aspects of having such a big medical database, the question
remains, how we can define enough data for an ML algorithm?. It is still an open question. However,
some technical hints can guide the ML practitioners to understand the impact of using a small amount
of data, so-called variance problem.

Bias-Variance tradeoff. It is considered as one of the common problems in Machine Learning.
Bias error is mainly due to the improper choice of model complexity. For instance, approximating a
real-life problem, which might be extremely complicated, by a pretty simple model. This bias results
in undesired performance regardless the number of instances. One example is modeling a highly
complex function by a simple linear regression. In contrast, the Variance error happens due to the
limited number of instances in the training set. Ideally, the trained model should generalize well on
new instances. However, due to the small number of training sample, the model tends to overfit and
produces a significant discrepancy, so-called variance error, for a new instance. Figure 2.5 shows the
performance of different models in the presence of bias and variance. That just means, whenever the
model complexity fits the problem, you can start with a limited amount of data and keep increasing
it gradually until you minimize the variance error between training and validation losses, and hence
we reach the enough amount of data. The later problem is also referred to the overfitting problem,

2http://amida13.isi.uu.nl/
3https://camelyon16.grand-challenge.org
4https://retouch.grand-challenge.org/details/
5https://portal.fli-iam.irisa.fr/msseg-challenge/overview
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Table 2.1. Publicly available challenges and the rank obtained by the author’s team.

Challenge Modality Organ Task Training Set Testing Set Rank

AMIDA132 Histology Breast Mitosis Detection (12) 311 HPF (11) 305 HPF 3/16

CAMELYON163 Histology Breast Cancer metastasis detection (270) WSI (130) WSI 19/32

RETOUCH4 OCT Retina Fluid detection and segmentation (72) volumes (30) volumes N/A

MSSEG5 MRI Brain MS Lesion segmentation (15) volumes (38) volumes N/A

Figure 2.5. Bias-Variance tradeoff: dotted lines refers to the desired performance, where the model complexity refers to the
number of iterations in this context.

where the number of instances is much less than the number of parameters (under-determined systems).
Regularization techniques are proposed in this context to avoid overfitting and find a sub-optimal
solution.

What is the difference between different machine learning algorithms?

Before diving into different types of machine learning algorithms, a brief discussion about the two
cultures of statistical modeling; data modeling and algorithmic modeling will be presented. To
explain the difference between the two cultures (cf. Fig.2.6), we would assume a black box system
generates a response variable y ∈ Rm from an input variable x ∈ Rn, where the goal is i) to predict
the response variable ŷ for any novel input variable, and/or ii) to extract some information about the
system f (·). The response variable of a given input x can be written as

ŷ = f (x; w), (2.5)

where w are the learned parameters.

Researchers in data modeling culture build some assumptions about the data enabling them to formulate
the response as a stochastic model with known distributions, for instance,

ŷ = f (x; w) =

n∑
i=1

wixi + η, where η ∼ N(0, σ), (2.6)
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(a) (b)

Figure 2.6. Two cultures: a) Data Modeling, b) Algorithmic Modeling.

where η ∼ N(0, σ) is an i.i.d Gaussian noise with zero mean and σ standard deviation, and w are
the estimated parameters. Logistic, Linear and Cox Regression are typically used in this community.
In contrast, researchers in the algorithmic modeling culture assume f (x) is an unknown complex
model that handles i.i.d unknown multivariate distribution. Random Forests and Deep Learning are
examples of such algorithms (cf. Fig. 2.6). Leo Breiman [32] holds the view that the commitment of
the statistical community to the data modeling had led to irrelevant theory and questionable conclusion.
Further, it has kept the statisticians from working on interesting new problems and using more suitable
algorithmic models. His conclusion, which brought a lot of discussions, was drowned from his
experience while leading many projects in both academia and industry.

Up to now, we have mentioned few examples on machine learning algorithms where the objective is to
predict the response variable given an enough amount of labeled data; so-called supervised learning.
However, machine learning algorithms can be further available in different setups such as unsupervised,
and semi-supervised learning.

Supervised learning. It refers to ML algorithms where the ground-truth is available in the training
set, i.e.class labels, or continuous outputs. This ground-truth is pre-assumed that is reliable to govern
the learning process; otherwise, it would mislead the learning process.

Unsupervised learning. Unlike the supervised learning, it does not require any ground-truth for
the training. However, it mainly depends on the intrinsic structure of the manifold. This setup is
commonly used for dimensionality reduction, clustering, and feature representation.

Semi-supervised learning. It refers to ML algorithms where few labeled data are used together
with a massive amount of unlabeled data. The objective is to improve the supervised learning task by
leveraging this large amount of unlabeled data during the training.

For supervised learning, the general formula of the loss function for a given ground-truth and predicted
output,

L(y, ŷ) = min f

N∑
i=1

φ(yi, f (xi; w)), (2.7)

where φ(·) is the underlying loss function that describes the cost of misclasifying (deviating) the
ground-truth discrete (continious) label.
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Prior knowledge, i.e. domain-specific knolwedge, can be incorporated into the loss function, as a soft
constraint, to find an optimal or sub-optimal solution. The regularized loss function is formulated
using Lagrangian multiplier as

L(y, ŷ) = min f

N∑
i=1

φ(yi, f (xi; w))︸           ︷︷           ︸
Reconstruction Error

+ λ · R( f )︸  ︷︷  ︸
Regularization

, (2.8)

where λ is the regularization parameter.

The following sections attempt to give a mathematical background on both cultures starting with the
Linear regression, dictionary learning to the recent sophisticated models of deep learning.

2.2.1 Logistic Regression

Logistic Regression is used for classification tasks, where the goal is to assign a given input of an
n-dimensional feature space x ∈ Rn to one of K discrete classes Ck, where k = 1, ...,K. To be able to
exactly sparate the feature space to disjoint classes, feature space is assumed to be linearly separable.
The predicted output variable ŷ,

ŷ = f (x; w) = σ
(
wT x + ω0

)
, (2.9)

where σ(·) is known as an activation function, and its objective to squeeze the continious values to
disrcete ones, or more generally to probabilities that lie in the range (0.1). Typical choices for such an
activation function are softmax, hyperbolic tangent, and sigmoid functions.

To estimate the learned parameters w, cross-entropy loss function is typically utilized in Eq. 2.7,

φ(yi, f (xi; w)) =

K∑
k=1

−yik log ŷik, (2.10)

where ŷik is the predicted output for the corresponding class k. To avoid overfitting, a smoothness term
such as `2-norm is added to the loss function similar to Eq. 2.8.

2.2.2 Linear Regression

Linear Regression is similar to the Logistic Regression, however, the response variable y ∈ Rm is
continuous. The predicted output variable ŷ is expressed as

ŷ = f (x; w) = wT x + ω0, (2.11)

To estimate the learned parameters w, Mean-Square-Error loss function is typically utilized in Eq. 2.7,

φ(yi, f (xi; w)) =
1
N
‖yi − ŷi‖

2
2, (2.12)
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(a) ‖w‖0 (b) ‖w‖1 (c) ‖w‖2 (d) ‖w‖4

Figure 2.7. The geometry of different norms in 3-dimensional space: Sparsity prior in (a-b), and Smoothness prior in (c-d).

where ‖ · ‖2 is the Euclidean distance. To incroporate a prior knowledge, an `p-norm is added to the
loss function similar to Eq. 2.8.

L(y, ŷ) = min f

N∑
i=1

φ(yi, f (xi; w)) + λ‖w‖p, (2.13)

where ‖ · ‖p is the `p-norm in reproducing kernel Hilbert space (RKHS). Typical examples of sparsity
and smoothness terms are illlustrated in Fig. 2.7.

Example 1 Given a measured response variable y ∈ Rm and a projection matrix W ∈ Rm×n, which
represents the discrete version of Radon Transform, we need to reconstruct the latent input variable
x ∈ Rn.

y = f (x; w) =

n∑
i=1

wixi + η = Wx + η, where η ∼ N(0, σ),

where η ∈ Rn is i.i.d gaussian random variable with zero mean and σ standard deviation.

Solution: The latent variable x can be obtained by solving either for the least square error (LSE) or
the maximum likelihood (ML),

xLS E = arg min
x

1
2
‖y −Wx‖22, or xML = arg max

x
p(y|x),

where p(y|x) ∼ N(Wx, I) = exp−
1
2 ‖y−Wx‖22 . It turns out solving the later formula for the negative log

likelihood would give the same solution of least square error, and can be written in a closed form:

xLS E/ML = (WT W)−1WT y.

For an ill-posed problem, i.e. when W is under-determined, ill-conditioned, or WT W is a singular
matrix, the solution is not unique. Fig. 2.8 shows the difference of error surface between a well- and
ill-posed problems. It is obvious that the latter one has an infinite number of solutions.

As indicated previously, a sub-optimal solution can be obatined using regularization techniques that
regularize the ill-posedness by incorporating a prior knowledge. For instance, a smoothness constraint
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(a) Well-posed (b) Ill-posed

Figure 2.8. Error surface and contour of a well-posed vs. ill-posed.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Smoothness term ‖x‖22
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(b) Sparsity term ‖x‖1

Figure 2.9. Sub-optimal solutions can be obtained using regularization techniques or soft constraints. Black dotted line shows
the infinite number of solutions, where the colored shape represents the constraint. The intersection point is the
sub-optimal solution.

on the latent variable can regualrize the singular values and obtain a sub-optimal solution xR analytically
using Tikhonov regularization [97] or statistically using Maximum A Posterior (MAP) as follows:

xR = arg min
x

1
2
‖y −Wx‖22 +

λ

2
‖x‖22, or xMAP = arg max

x
p(y|x) · p(x),

where p(x) ∼ N(0, I) = exp−
λ
2 ‖x‖

2
2 is the smoothness prior. Closed form solution can be written as

xR/MAP = (WT W + λI)−1WT y.

2.2.3 Dictionary Learning

Unlike dimensionality reduction techniques such as Principle Component Analysis (PCA) where the
data is projected into a lower dimensional using orthonomal basis of a complete dictionary, Dictionry
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Learning is introduced in the context of compressed sensing and sparse coding, where the data is
projected into a higher dimensional space using an overcomplete dictionary. Concretely, a signal
x ∈ Rn is decomposed to a sparse linear combinations of basis elements D ∈ Rn×l, where n << l as
follows,

arg min
D,α

1
2
‖x − Dα‖22 + λ‖α‖1, s.t. ‖di‖

2
2 = 1, di ⊥ d j, (2.14)

where α ∈ Rl is the sparse coefficient (code), λ is the regualrization parameter, and di ∈ R
n is a column

of the dictionary. The resulting sparse codes can be utilized as a feature vector for any un/supervised
methods afterwards. Fig. 2.11 shows an embedding into a 3-deimnsional space of raw features, deep
learned features, and the sparse codes obtained from deep learned features.

Dictionary Learning has been intensively investigated for patch-based approaches in many applications
for noise reduction [66], color image restoration [161], clustering and classification [199]. Further,
it has been shown in the literature that sparse representation gives better compression performance
over the complete dictionary [131], and more likely to be linearly separable [88]. Readers are referred
to Aharon et al. [12] and Mairal et al. [159] for more details about the sparse coding and dictionary
learning.

2.2.4 Deep Learning

In deep learning, particularly in Artificial Neural Networks (ANN), the predicted variable ŷ ∈ Rm is
modelled as a composite of nonlinear functions of input and hidden variables as

ŷ = f (x; w) = fwh ◦ fwh−1 ◦ ... ◦ fw0 (x) (2.15)

where each composite is a function of previous hidden variables (neurons) and associated paramaters
(weights) as

fwh−1 (h) = σ
(
wh−1

T h + bh−1

)
, (2.16)

where σ(·) is as an activation function, h ∈ Ru is the hidden variable (neurons), wh−1 ∈ R
u are the

asscoiated learned parameters (weights), and bh−1 is the bias. Single layer of neural networks is
referred to Perceptron (cf. Fig. 2.10).

Unlike ANN, Convolutional Neural Networks (CNN), which was first proposed by LeCun et al. [140]
for handwritten character recognition, uses shared weights in the convolutional layers, followed
by pooling layers, before it uses all neurons in the fully connected layers (similar to ANN). Each
convolutional layer can be modelled as a convolution process of the hidden vector and the shared
weights added to a certain bias as

fwh−1 (h) = σ ((wh−1 ∗ h) + bh−1) , (2.17)

where h ∈ Ru is u-dimensional vector, wh−1 ∈ R
v is v-dimensional vector, and v << u (cf. Fig. 2.10).

This architecture has way less parameters to estimate enabling us to handle 2-dimensional input data
such as images. Nowadays, it is considered the state-of-the-art for object recognition in Computer
Vision [133].
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(a) Perceptron (b) ANN

(c) CNN

Figure 2.10. Different Feed-Forward Neural Networks Architectures

2.3 Evaluation

Over the last decades, researchers have investigated the evaluation metrics, in particular, the Receiver
Operating Characteristics (ROC) curve, in radiology [186, 188, 291]. It has been shown that ROC and
its Area Under the Curve (AUC) are fundamental tools to evaluate the model performance, particularly
Computer Aided Diagnosis systems. In this section, a brief overview of the model selection is presented
before reporting the common evaluation metrics of high interest for both classification and image
quality in medical applications.

What are the criteria to select a ML model?

Free parameters available in the aforementioned machine learning algorithms govern the model
complexity. For instance, the regularization parameter in linear regression controls the influence of
the prior knowledge, and hence the model complexity, whereas for more complex models, such as
convolutional neural networks, there are many free hyper-parameters, i.e. number of hidden layers
and neurons, and learning rate, need to be carefully selected. The primary objective here is to find the
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(a) Handcrafted (b) Deep (c) Deep + Sparse Coding

Figure 2.11. An embedding to 3-dimensional space of (a) Handcrafted features, (b) Deep Learned features, and (c) Deep
Learned features encoded using Sparse Coding, for small patches of mitotic figures in histology images. The
majority negative class in blue, and the minority positive class in red.

Table 2.2. Confusion (Decision) Matrix

True Condition

Prediction Positive Negative Total

Positive TP FP T+

Negative FN TN T−

Total D+ D−

appropriate values of such hyper-parameters yielding the best model which can generalize well on new
data. Therefore, such a model need to be trained several times for a different range of values to find the
best one.

However, observing the performance on the training set is not a good indicator of the performance on
a new unseen data due to the overfitting problem (cf. Sec. 2.2). Therefore, it is highly recommended
to split the medical dataset into independent and preferably patient-wise; training, validation, and
testing sets. For a limited amount of data, in particular for medical applications, the performance on
the validation set is not entirely reliable. Cross-validation such as leave-p-out (LpOCV), leave-one-
out (LOOCV), or k-fold cross validation, is one solution to obtain a reliable indicator of the model
performance.

2.3.1 Classification Metrics

Before we explain the ROC and its importance to the medical diagnosis, the following metrics should
be introduced first. Given a confusion matrix (cf. Table 2.2), the following metrics can be computed as
follows:

Accuracy and Error Rate
Both are commonly used and reported to evaluate a classfier performance,

Accuracy =
T P + T N

T P + T N + FP + FN
, ErrorRate = 1 − Accuracy, (2.18)
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where T P= True Positive, FP= False Positive, T N= True Negative, and FN= False Negative.

Precision
It is the percentage of cases that the classifier labeled as positive are actually positive, it is also known
as positive predictive value (PPV). Thus, it is defined as

Precision =
T P

T P + FP
=

T P
T+

, (2.19)

where the higher the precision, the more accuarte the diagnosis.

Recall
It is the percentage of positive cases that the classifier did label as positive, it is also known as sensitivity
or true psoitive rate (TPR). Thus, it is defined as

Recall =
T P

T P + FN
=

T P
D+

, (2.20)

where the higher the recall, the more accuarte the diagnosis.

Specificity
It is the percentage of negative cases that the classifier did label as negative, it is also referred as true
negative rate (TNR). Thus, it is defined as

S peci f icity =
T N

T N + FP
=

T N
D−

, (2.21)

where the higher the specificity, the more accuarte the diagnosis.

F-Measure
It is the harmonic mean of precision and recall, and provides more insight into the functionality of the
classifier. Therefore, it is more effective than accuracy, in particular for class imbalance.

Fβ = (1 + β2)
precision · recall

β2 · precision + recall
, (2.22)

where β controls the balance between preicion and recall (cf. Fig. 2.12). Typical value of β is 1 or 2.
The higher the F-score, the better the overall performance.

Receiver Operating Characterstics (ROC)
As indicated earlier, ROC is an effective and fundamental method in the evaluation of model perfor-
mance. It is defined as a plot of model sensitivity or TPR as the y-coordinate against its 1-specicity or
False Positive Rate (FPR) as the x-coordinate, where both sensitiivty and specificity are computed at
every possible threshold. One of the most popular metrics is the area under the ROC curve (AUC),
where the higher the AUC, the better the overall performance. Four ROC curves are illustarted in
Fig. 2.12, whereas curves C and D show the random guessing (AUC= 0.5) and the perfect (AUC≈ 1.0)
performance, respectively, both curves A and B exhibits the same AUC. However, to determine the
better model among A and B, the clinician may select the optimal operating point (black circles in
Fig. 2.12) based on the clinical application. For imbalanced classes, Precision-Recall curve is highly
recommended [112].
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(a) Fβ-Score (b) ROC

Figure 2.12. (a) Mesh surface of Fβ-Score at different values of β. (b) ROC curves of different models.

Example 2 Given the follwoing confusion matrix, T P = 50, FP = 10, T N = 9840, and FN = 50,
compute the evaluation metrics?

Answer: Accuracy = 99.4%, Precision = 83.33%, Recall = 50%, F1-score = 62.50%. As anticipated,
Accuracy is not a reliable metric in the presence of imbalance data.

2.3.2 Image Quality Metrics

Few metrics are reported here. However, readers are referred to this review [189] for more details.

Mean Square Error (MSE)
It is a pixel-wise measure and commonly used in reconstruction and noise reduction. MSE is given as

MS E(x, y) =
1
n

n∑
i=1

(yi − xi)2, (2.23)

where x is the predicted or regressed pixel. The lower the MSE, the better the quality.

Peak Signal-to-Noise Ratio (PSNR)
It is a measure of the peak error between the predicted image and origina one, PSNR is given as

PS NR(x, y) = 10 log10

(
y2

max

MS E

)
, (2.24)

where ymax is the maximum value of the image. The higher the PSNR, the better the quality.

Structral Similarity (SSIM)
It is a measure of perceptual image quality [266] and given as

S S IM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (2.25)

where µ is the mean, σ is the standard deviation, and C are constants. The higher the SSIM, the better
the quality.
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3From Nano- to Milli-meter Image
Resolution

„The good physician treats the disease; the great
physician treats the patient who has the disease!

— William Osler (1849–1919)

3.1 Cryo-Electron Tomography
In contrast to Computed Tomography (CT), a medical device used to scan the interior of a patient,
where the source-detector is arranged in such a way that it is rotated around the patient along a single
axis (cf. Fig 3.1), Electron Tomography (ET) uses Electron source to image the interior of tiny objects
that commonly used for biological imaging [151] and material science [93]. The source of illumination,
the angular or the spatial resolution regarding the wavelength, is defined by the Rayleigh criterion.
The shorter wavelength, the greater resolution is obtained. Hence, the Electron beam is used as the
imaging source to visualize the details of the molecular structures (around 4 − 10Å). These Electrons,
accelerated by the voltage imposed on anode and cathode of the electron gun, travel in a vacuum tube
and then pass through the specimen. The scattered and unscattered electrons are then collected to form
a 2D projection image on the film surface. By rotating the sample around its axis, different projection
images can be obtained. Unlike, the Electron Microscopy (EM) which is utilized for Single Particle
Analysis (SPA) such as macromolecules, Electron Tomography (ET) enables the understanding and
interpretation of three-dimensional complex cellular structures [123].

Figure 3.1. Difference between Computed Tomography (left) and Electron Tomography (right). Stationary parts in white
while the rotating ones in black. Limited angle view is available in ET.
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Different techniques such as [16] and [272] have been developed towards native-state imaging in
biological contexts such as Cryo-Electron Microscopy of vitreous sections (CEMOVIS), which has
become an important technique for structural molecular biology at cryogenic temperatures (cf. Fig. 3.2).
Over the last decade, cryo-Electron Tomography (CET) has drawn the attention of researchers. It
is considered the most powerful imaging technique to address fundamental questions on biological
structures at both cellular and molecular levels [170] (cf. Fig. 3.2). It also bridges the gap between
low-resolution imaging techniques, e.g.light microscopy, high-resolution techniques, e.g.single particle
electron microscopy, X-ray crystallography, and nuclear magnetic resonance (NMR), to get better
understanding and more insights into the mechanism of protein structures and viruses [33], hence, aids
drug design development [19].

3.1.1 Problem Definition and Motivation

Cryo-ET merges the principles of transmission electron microscopy (TEM) and the principle of
tomographic imaging by acquiring several two-dimensional projection images of biological structures
at limited tilt range and close-to-native condition. These two-dimensional projection images are then
reconstructed into a three-dimensional image (called tomogram), after passing through a pipeline
of alignment and restoration procedure as shown in Fig. 3.3. Ideally, these aligned 2D projections
can be used to analytically reconstruct the underlying 3D structure using Weighted Back-Projection
(WBP) techniques, which assumes for each tilt angle, the projection image represents the mass density
encountered by the image rays. Accordingly, it redistributes the known specimen mass that is present
over the back-projection rays, so that the specimen mass is projected back into the reconstruction
volume. This is done overall tilt angles, and the reconstructed volumes are ’strongly blurred’ where
the mass is frequently present. This process is assisted by the use of weighting (filtering) techniques
to mitigate the blurring effects. Iterative reconstruction techniques along with compressive sensing
techniques have shown better and interesting results for Image reconstruction, particularly for limited
angle view [41]. Once the latent structure of the 3D tomographic object is reconstructed, a post-
processing step, i.e. noise reduction, tomograms averaging, and segmentation, becomes necessary to
interpret the underlying structure. For more in-depth description of CET and the associated image
processing pipeline, see [81]. While it carries much hope and potential use-cases to the community, it
is still hampered by mechanical and technical limitations calling for novel and advanced techniques on
both hardware and software solutions. Next, few limitations and challenges present in CET such as the
limited angle, radiation dose, and EM transfer function, are briefly introduced.

Limited Angle
Due to the physical limitation of ET, the data collected at angular range restricted between ±60◦/70◦

around the tilting axis causing what so-called missing wedge effect. This missing information which
can be easily observed in the Fourier domain of the 3D volume as a missing cone (thanks to Central
Section Theorem), negatively affects the reconstruction yielding elongated and blurred objects [81].
Further, it makes the 3D Inverse Fourier Transform challenging since the radial frequency is not an
isotropic anymore.

Radiation Damage
An excessive amount of radiation dose may cause a specimen damage. Therefore the maximum
tolerable dose of the electron beam is divided by the number of 2D projections. This adds a trade-off

between the number of projections and the electron dose per projection, generating an extremely
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(a) (b) (c)

Figure 3.2. Electron Microscopic Images of (a) GroEL for Single Particle Analysis and (b) Hella cells for Cellular structures.
A single 2D projection of a sperm cell scanned by Cyro-Electron Tomography(c) . Black dots appeared in (b) are
gold particles used for feature-based alignment methods. Red boxes show the region of interests. Images (a) and
(b) courtesy of Electron Micropscopy Group and BirkBeck College, respectively.

low signal to noise ratio (SNR < 0.1). While the resulting noise distribution can be modeled as
a Poisson noise added to the 2D projections, it is different for the 3D tomogram as it is highly
dependant on the reconstruction algorithms [81]. For simplicity, it is commonly defined as a Gaussian
distribution [101].

EM Contrast Transfer Function (CTF)

Another problem related to the imaging device is the CTF, which is defined as an oscillating function
of the spatial frequency and profoundly affected by the applied defocus and other parameters of the
imaging system. Since CTF function crosses the zero line behaving as a sinusoidal function, the
contrast of many frequencies is flipped (negative lobes), and others are lost (zero crossing) affecting
the contrast and further the resolution of the reconstructed tomograms. To mitigate this problem, few
methods are proposed for the CTF correction [279] (cf. Fig. 3.3).

Given the previous challenges, advanced image processing methods are highly desirable, particularly
for 3D reconstruction and noise reduction, to reduce the noise, and compensate the missing wedge
effect while at the same time preserving the structure of interest.

3.1.2 Related Work

It has been shown that iterative tomographic reconstruction algorithms perform better than the back-
projection techniques yielding an improvement in the resolution and contrast. Standard techniques such
as Simultaneous Iterative Reconstruction Technique (SIRT) or Simultaneous Algebraic Reconstruction
Technique (SART) are introduced, where the solution can be obtained using least squares approach
using

xLS = arg min
x

1
2
‖b − Ax‖22, (3.1)

where ‖ · ‖2 denotes the Euclidean norm, x ∈ Rn is the three-dimensional reconstructed tomogram,
b ∈ Rm represents the measured projection data, and A ∈ Rm×n represents the weighting matrix, where
a ji is the weight associated with which each voxel in the image vector x ∈ Rn contributes to the j-th
projection measurement.
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Figure 3.3. Image Processing Pipeline for Single Particle Analysis (top) and cellular structures (bottom). Specific tasks for
Single Particle Analysis (in blue) and for Cellular Structures (in red). 3D Tomogram of Cellular structure images
courtsey of National Institute of Medical Research.

Table 3.1. Different SIRT techniques

Method T M

Landweber I I

Cimminos I 1
m diag( 1

‖ai‖
2
2

)

Component Averaging (CAV) I 1
m diag( 1

‖ai‖
2
S

)

SART diag( 1
‖ai‖1

) diag( 1
‖a j‖1

)

This least squares problem can be solved iteratively following a weighted gradient descent approach,

xk+1 = xk + skgk, k = 0, 1, . . . , (3.2)

with a starting value x0, step size sk and a weighted gradient gk = T AT M(b − Axk), where T and
M are diagonal matrices represented by the sum of the columns or rows of the system matrix A. A
different definition of these matrices leads to different Simultaneous Iterative Reconstruction Technique
(SIRT) methods [205] (cf. Table 3.1). This applies also to the recently developed techniques I-SIRT
[100], M-SART [246] or W-SIRT [267]. However, due to the strong measurement noise and the
limited number of projections, a least squares approach might fail and lead to noise amplification.
As pointed out in a previous example (cf. Ex. 1), regularization-based techniques that incorporate
prior knowledge are introduced in the context of tomographic reconstruction in particular for medical
imaging, i.e. Computed Tomography, showing promising results [222]. In very recent work, Com-
pressed Sensing is investigated as prior knowledge to improve the reconstruction of Cryo-Electron
Tomographic data [101].
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Table 3.2. Related work on Tomographic Reconstruction and Noise Reduction in CET.

Paper Task Methodology

Liu et al., 2009 [253] Tomographic Reconstruction Modified SART

Guo et al., 2012 [102] Tomographic Reconstruction Improved SIRT

Wolf et al., 2014 [275] Tomographic Reconstruction Weighted SIRT

Fernandez et al., 2003 [75] Noise Reduction Improved Anistropic Nnonlinear Diffusion

Darbon et al., 2008 [50] Noise Reduction Non-Local Means Filter

Narasimha et al., 2008 [178] Noise Reduction Evaluation of different denoising methods

Fernandez et al., 2009 [74] Noise Reduction Beltrami flow

Fleet et al., 2014 [77] Noise Reduction Rolling Guidnace Filter

3.1.3 Contribution: Gradient Projection for Regularized Cryo-Electron
Tomographic Reconstruction (CMMI MICCAI 2014)

By introducing Huber term as a smooth regularization term to the energy function, we have constrained
the solution to a feasible bounded set. Also, such a smooth term is preferred over non-smooth
regularization terms, i.e. Isotropic total variation, that might pose a problem during the optimization
procedures. Moreover, our proposed regularized energy function can be easily optimized using
projected gradient methods (see Appendix A). We have validated our proposed reconstruction method
against commonly used methods in Electron Tomography, including the filtered back projection and
the algebraic reconstruction techniques, on a vitrified freeze-substituted section of HeLa cells. Results
have been evaluated using Fourier Shell Correlation, and Line Profile, showing an out-performing
result of our proposed method.

3.1.4 Contribution: Multi-scale Graph-based Guided Filter for
De-noising Cryo-Electron Tomographic Data (BMVC 2015)

By introducing Graph Laplacians, with a full control of scale-space and global consistency, as a
regularization term to the energy function, we were able to reduce the noise in CET data without over
smoothing fine-scale structures. Overlapped batches (voxels) are collected from images (volumes)
and treated as nodes in the graph, where the weights are computed based on the distance between
these patches on a multi-scale pyramid, i.e.where the noise manifests itself at coarse levels, and the
hidden structures are revealed (see Appendix B). It turned out that the core component in the closed
form solution is the graph spectral filter (GSF), which controls the frequency decay and the degree of
smoothness present in the Laplacian Graphs. We have validated our proposed algorithm on Computer
Vision as well as CET data. Our proposed algorithm significantly outperforms the state-of-the-art
methods regarding noise removal and structure preservation.
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Figure 3.4. Histology sample preparation. Image courtsey of AMIDA 2013 MICCAI Grand Challenge.

3.2 Breast Cancer Histology Images
One of the leading women death’s causes in the developed and developing countries is breast cancer,
approximately 1.7 million cases and 521,900 deaths in 2012 [231]. In the USA, based on the American
Cancer Society’s estimate1, about 300,000 new cases will be diagnosed of invasive or non-invasive
breast cancer in 2017. Many risk factors raise the incidence of breast cancer in the developing world
including increases in smoking, excess body weight, and physical inactivity [237]. Although some
control measures and risk reduction strategies are applied, the majority of breast cancer is diagnosed
in later stages. Therefore, early breast cancer detection is essential to prevent any progression and to
increase the survival rate.

Regular check-ups, using mammography or ultrasound imaging, are performed to detect and diagnose
the breast cancer in early stages. Once the exam indicates a possibility of an abnormal lesion growth, a
breast tissue biopsy is undertaken to confirm the diagnosis. Collected tissue during the biopsy is sliced
into small cuts and thin sections (cf. Fig. 3.4). Then, these sections are put onto glass slides, before
they are stained with hematoxylin and eosin (H&E).

3.2.1 Problem Definition and Motivation

To identify and detect mitotic figures, the specimen is investigated under the light microscopy, nowadays
with the digital slide scanners, where pathologists screen the whole slide image (WSI). Once the
most active region is identified, the pathologists start counting the mitotic figures available in an
area of 2 sqm, sub-divided into 10 patches, so-called high power field (HPF) slides (cf. Fig. 3.6). A
typical case takes around 5 − 10 min. for a pathologist to perform mitosis counting. Based on the
number of detected mitotic figures, the cancer is graded accordingly [208]. Readers are referred to the
modified Bloom–Richardson–Elston grading (BRE) [68] system for more details about breast cancer
classification. Next, we discuss briefly few present challenges in breast cancer histology imaging.

1https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html
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(a) Hamamatsu Scanner (b) Aperio Scanner

Figure 3.5. Color variations of the same stained tissue among different scanners. Image courtsey of MITOS-ATYPIA-14
ICPR Challenge.

H&E Staining

In histopathology, the hematoxylin and eosin stain is the most common standard protocol used. That
is because of its simplicity and ability to enhance the appearance and increase the contrast between
different tissue structures. It is simply achieved by binding these stains, which have different dyes, to
specific proteins. For instance, hematoxylin, in combination with mordant, binds strongly to the nuclei
showing a dark purple color, while eosin dye binds to the cytoplasm, stroma, and other structures,
showing a pink color. Nevertheless, undesirable variations in RGB colors can vary widely due to
many factors, i.e. raw materials, manufacturing techniques of stain vendors, and different digital
slide scanners (cf. Fig.3.5). Technically, this variation between scanners, so-called domain shift,
creates complexity for any automatic machine learning models trained on a particular stain appearance.
Recently, stain normalization methods [153, 10, 11] are developed to mitigate this problem.

Inter- and Intra-Observer Variability

Another challenge presents in histology imaging, in particular Breast Cancer, is the high variability
between Inter- and Intra-observers in the diagnosis of atypical ductal hyperplasia (ALH), Lobular
(LCIS), and Ductal (DCIS) carcinoma in situ (CIS) of the breast. Therefore, Dice coefficient and
Cohen’s Kappa coefficient are calculated to analyze the agreement between pathologists. In Gomes
et al.study [89], the inter-observer variability between general pathologists and an expert in breast
pathology was investigated, a weak correlation was observed for the diagnosis of different types
of carcinoma (average Kappa = 0.47). In a recent study, Elmore et al. [67] noted that the overall
agreement between individual pathologists and the expert consensus was about 75.3%. In both studies,
higher agreement of invasive cancer, and lower levels of understanding of CIS were observed. Overall,
these studies highlighted the need for automated models to reduce this variability.

Given the challenges mentioned above, an automatic and reproducible method for detection of mitotic
figures, in breast cancer histology images, has a great potential to assist pathologists, reduce the total
amount of time and efforts, and mitigate the inter- and intra-observer variability.

3.2 Breast Cancer Histology Images 29



Figure 3.6. Detected mitotic figures, in yellow circles, on different HPF slides. Image courtsey of AMIDA 2013 MICCAI
Grand Challenge.

3.2.2 Related Work

In recent years, with the increased availability of WSI scanners, many grand challenges, i.e.AMIDA132

and CAMELYON163, called for (semi-)automated solutions to detect mitotic figures [246] and
metastasis [25] in breast cancer, respectively. Classical ML algorithms based on engineered and
handcrafted features are proposed to detect mitotic figures, however, among the participants, Ciresan et
al. [44] proposed a deep max-pooling convolutional neural network. Their proposed patch-based CNN
model set the state-of-the-art, and won both the ICPR 2012 competition and the AMIDA13 challenge
(cf. Fig. 3.7). Readers are referred to Veta et al. [246] for more details.

One interesting paragraph in Veta et al. [246] paper quoted here,

“After a visual inspection of the detection results, it was observed that many of the
false positives produced by the top performing methods closely resemble mitotic figures.
Indeed, owing to the difficulty of the task it is possible that some mitotic figures were
missed during the ground truth annotation, but were then detected by the automatic
methods.”

This interesting finding sparked the idea of investigating the collaboration of both Human Intelligence,
via Crowdsourcing, and Artificial Intelligence, by using Deep Learning frameworks.

3.2.3 Contribution: AggNet: Deep Learning From Crowds for Mitosis
Detection in Breast Cancer Histology Images (IEEE TMI
2016)

By integrating Crowdsourcing into Deep Learning framework, we were able to i) mitigate the negative
influence of noisy crowd votes (spammers), ii) generate so-called crowd-truth annotations using a
robust aggregation layer, and iii) improve the performance of CNN models.

An initial multi-scale CNN model is proposed to detect the mitotic figures at different scale-space, then
the probabilistic scores are geometrically averaged to produce more accurate detections. The proposed

2http://amida13.isi.uu.nl/
3http://camelyon16.grand-challenge.org/
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Figure 3.7. Ranking of all participants in AMIDA13 Challenge. Our approach rank is 3 out of 16. The full team name can be
found in the challenge web page.

model has been validated on a publicly available database, namely AMIDA13 challenge, showing a
comparable performance to the state-of-the-art method (cf. Fig. 3.7).

To validate the primary objectives of this work, a subset of the training set is treated as a validation
set, where the detected mitotic figures, obtained from the pre-trained CNN model, are sent to the
crowdsourcing platform. Tutorials along with some examples were provided to the participants.
Besides, quality control was performed to allow only serious participants. Collected crowd votes were
fed back to the network through a novel robust aggregation layer (see Appendix C). Interestingly, the
model that fine-tuned from aggregated crowd votes showing an outstanding performance. This novel
approach has been published in a Special Issue in Deep Learning in the IEEE Transactions on Medical
Imaging.

3.2.4 Contribution: Playsourcing: A Novel Concept for Knowledge
Creation in Biomedical Research (LABELS/DLMIA MICCAI
2016)

By introducing a novel concept of an image to game-object translation in Biomedical Imaging, we have
been able to represent detected mitotic figure images to star-shaped objects that can be embedded easily
to any readily available game canvas. The novel concept targets non-expert users for crowdsourcing
tasks via gamification providing an incentive for persistent engagement of the players. In our work,
we have noted an interesting and promising result of our playsourcing concept compared to the other
conventional crowdsourcing platforms (see Appendix D).
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(a) (b) (c)

Figure 3.8. Simulated X-ray images for (a) abdominal: ~µT , (b) AAA sub-volume: ~µA, and (c) spine sub-volume: ~µS . Region
of interests (white arrows) are quite visible after removing rigid structure, i.e.bone.

3.3 Depth Perception in Interventional X-ray Imaging

Since its discovery by Roentgen in 1895, X-ray radiology is still the primary imaging modality for
diagnostic and interventional radiology. Due to its projective nature, a single pixel in an X-ray image
may partially contribute to soft tissue as well as hard tissue encoding the depth information within the
convolution of attenuation and scale. Hence, the accumulation of X-ray attenuation displayed on the
X-ray image leads to anatomy obscuration. In abdominal X-ray imaging, observing and distinguishing
the anterior and posterior organs; spine, pelvis, and the vasculature, i.e.Abdominal Aorta Aneurysm
(AAA), requires skilled clinicians (cf. Fig. 3.8).

In Minimally Invasive Surgery (MIS), mobile C-arm X-ray imaging device has proven to be an
essential part of the surgical workflow and has been widely used, to assist clinicians and surgeons, in
many medical procedures [115]. The acquired intra-operative fluoroscopy or angiography images are
used together with the pre-operative 3D information to better understand the underlying anatomy. To
this end, many methods and techniques are introduced to improve the visual perception of obscured
anatomical structures, i.e. contrast-enhanced X-ray [173], dual-energy X-ray [169], Dual-energy
contrast-enhanced X-ray [143], and phase contrast X-ray [31, 289], just to name a few. Neither of the
methods above provides a distinction between the anatomy at different depth and yet distinguishing
the layers of the anterior and posterior anatomy depends on the surgeon’s experience and judgment.
Next, we briefly present the impact of perceptual errors on health care, before we discuss few loosely
related works that depend mainly on multi-modal 3D/2D registration.

Cognitive and Perceptual Errors in Radiology
In last decades, errors in radiology gained a lot of attention, from the community, calling for proposed
solutions to prevent medical errors and build safer healthcare systems. In 1999, the US Institute of
Medicine [60] reported that around 98,000 patients die every year in hospitals due to diagnostic errors
that could have been prevented. Very similar data has been published by Hayward et al. [111]. Whereas
Pinto et al. [195] proposed quality improvement projects in both knowledge and systems, Graber et
al. [94] argued that being able to measure the incidence of diagnostic errors is essential to initiate such
quality improvement projects. In a very recent review, Adrian Brady [30] highlighted both human-
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and system-derived errors in details, reporting both cognitive and perceptual errors, which account for
20 − 40% and 60 − 80% in total, respectively. His conclusion was that no single strategy can eliminate
error in radiology. Overall, these studies suggested the use of CAD systems to reduce the perceptual
errors and mitigate the inter- and intra-variability between radiologists.

Multi-modal 3D/2D Registration
To improve the perceptual problem in 2D X-ray radiographs, prior knowledge from pre-operative
patient CT data is used to restore depth data. However, as pointed out by Terry Peters [194], accurate
multi-modal registration between 3D pre-operative CT scan and 2D X-ray image is required. Wieczorek
et al. [274] have demonstrated that estimating the relative depth of the X-ray image relative to the CT
data allows to modulate X-ray intensities (cutting off at a certain depth) and to introduce additional
depth cues into the X-ray image. In [258], an interactive virtual mirror is integrated into the 2D/3D
fusion of X-ray and CT data to facilitate the localization of an aneurysm. The virtual mirror generates
desired perspectives of the 3D data and displays 2D and 3D data on a single screen. To further improve
the depth perception of X-ray acquisitions, colored depth maps are computed using ray casting on 3D
data, and are later integrated into the interventional X-ray while preserving the original gray-scale level
of the X-ray [256, 264]. These methods rely on accurate 2D/3D registration of data which by itself is
a challenging task given the highly dynamic environment, i.e. motion due to respiration, and organ
deformation. Last but not least, access to patient CT data is not available for the majority of cases.

Given the challenges above, correct depth recovery of the underlying anatomy, from a single view
X-ray image, would have a great potential to assist radiologists and surgeons in both diagnostic and
interventional procedures.

3.3.1 Related Work

Whereas the task of depth recovery from single-view images has been investigated thoroughly within
the computer vision community, few attempts have been studied in Image-Guided Intervention (IGI),
in particular for robotic-assisted MIS [158, 185, 227]. In Computer Vision, learning-based approaches,
where both monocular images (features) together with the corresponding depth images are used
for training an ML model, to recover the depth information for a given monocular image, yielded
successful applications for 3D reconstruction [216], and scene understanding [263]. In robotic-assisted
MIS, Stoyanov et al. proposed interesting methods for depth recovery and scene reconstruction [227,
229], where they made use of the available information of camera position, in addition to the known
3D geometry.

3.3.2 Contribution: Single-view X-ray depth recovery: toward a novel
concept for image-guided interventions (IJCARS 2016)

By training a patient specific model from a pre-operative 3D CT scan, we have been able to i)
roughly estimate the corresponding pose of the C-arm device, and ii) recover the corresponding depth
information of a given fluoroscopic X-ray image during the intervention.

Employing the recently proposed gradient-based rendering scheme [264], we have been able to generate
ground-truth depth images for any X-ray image simulated at different possible C-arm configurations
(cf. Fig. 3.9). Our proposed depth model employs both depth images and the corresponding X-ray

3.3 Depth Perception in Interventional X-ray Imaging 33



Figure 3.9. Generated Digitally Reconstructed Radiographs (DRR) from the soft-tissue sub-volume.

images to train a label consistent dictionary. Using the trained dictionary, a rough depth estimation is
obtained for any given query image. To improve the recovered recovery further, an atlas prior together
with spatial information is utilized (see Appendix E).

3.3.3 Contribution: X-ray In-Depth Decomposition: Revealing The
Latent Structures (MICCAI 2017)

By incorporating the Beer-Lambert Law as a constraint, we have been able to decompose a given
X-ray image into d in-depth layers separating Rigid Structures, i.e.spine, and ribcage, into distinct
layers, leaving all Deformable Organs in one layer.

Our proposed deep learning model is trained on a couple of thousands of pairs of generated DRRs of
the whole CT volume, along with the corresponding DRRs of individual, independent, non-overlapped
in-depth sub-volumes (cf. Fig. 3.9). The highly ill-posed regression problem is constrained by a
fundamental principle of X-ray imaging, i.e.Beer-Lambert Law, to be able to ensemble the given X-ray
image.

We have validated our proposed model on two clinical databases showing a promising result. Further,
we have demonstrated an impressive result on a clinical use case for Tuberculosis detection. Two
CAD models have been trained individually using i) the conventional chest X-ray image, and ii) the
deformable organs, i.e. Lung, and Vasculatures, showing an encouraging result for the later one (see
Appendix F).
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4Conclusion and Outlook

Throughout this dissertation, a prior knowledge, i.e. domain-specific knowledge, has been investigated
for many biomedical applications illustrating a positive influence on the performance. In this context,
a detailed overview of the major challenges in machine learning for medical application was provided
before focusing on the contributions. Now, we want to summarize our contributions addressing the
posed research questions:

• To what extent can Artificial Intelligence (AI) and Human Intelligence (HI) collaborate
for robust Biomedical Image Annotation?

In this context, we have presented a novel concept for learning from crowds, i.e. training an
AI from HI, that can robustly aggregate the noisy annotations, collected via Crowdsourcing
platform, during the training process. It has been confirmed that HI can work together with AI
positively influencing the model performance provided that i) the initial AI model is trained
using ground-truth data, ii) quality control is applied.

We have also introduced a novel concept for Playsourcing in the biomedical context, where
we gamify the crowdsourcing task for medical applications. Our framework is designed to
transform images into a visual salient game object that can be embedded easily into a readily
available game canvas. It has been shown that Playsourcing performs better than crowdsourcing
ones, reducing the cost, time, and false positives.

One more research question needs further investigation:

– Can we eliminate the need for the initial model using ground-truth labels and rather train
a model from scratch using the noisy annotations?

We have noticed in our experiments on Breast Cancer Histology Images that it is nearly
impossible due to the high inter- and intra-variability between pathologists and even worse
for nonexpert participants. That might be possible for simpler tasks, i.e. organ localization,
and segmentation, however, this need to be further investigated. One suggestion is to
train an initial model in unsupervised fashion, i.e. AutoEncoders, and do transfer learning
afterward.

• How can prior knowledge be defined and incorporated into Machine Learning (ML) al-
gorithms?

It has been shown that the definition of a prior knowledge mainly depends on a thorough
understanding of the clinical problem and close interaction with clinicians and practitioners.
This prior knowledge has been modeled as a soft constraint, i.e. regularization term, in the
corresponding energy function.
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• What are the challenges present in real scenarios, how this would affect the evaluation,
and what are the possible solutions?

Throughout the dissertation, many biomedical applications have been presented highlighting
the significant challenges that negatively influence the performance. For instance, one of the
major challenges available in Breast Cancer Histology Images is the highly imbalanced classes
and the domain shift. To mitigate that in the preprocessing phase, data augmentation and
stain normalization have been employed, respectively. In later works, not discussed in this
dissertation, a cost-sensitive energy function [7], and an auxiliary manifold embedding [8],
have been introduced to mitigate the class imbalance and domain shift problems, respectively.
Interestingly, it has been noted that training a deep learning model on a huge amount of DRRs
can be transferred to real X-ray images for Depth Perception application. This observation has
been confirmed in our recent research on pose estimation for X-ray images [9].

In our contributions to both challenges, the assessment of mitosis detection algorithms (AMIDA13)
and the cancer metastasis detection in lymph node (CAMELYON16), we have introduced a
multi-scale deep learning approach. Results are evaluated using robust evaluation metrics
showing an exciting performance compared to other participants.
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Abstract. Cryo-ET has recently emerged as a leading technique to investigate the three-dimensional
(3D) structure of biological specimens at close-to-native state. The technique consists of acquiring
many two-dimensional (2D) projections of the structure under scrutiny at various tilt angles under
cryogenic conditions. The 3D structure is recovered through a number of steps including projection
alignment and reconstruction. However, the resolution currently achieved by cryo-ET is well below
the instrumental resolution mainly due to the contrast transfer function of the microscope, the limited
tilt range and the high noise power. These limitations make the 3D reconstruction procedure very
challenging. Here, we propose a new regularized reconstruction technique based on projected gradient
algorithm. Using the gold-standard method for resolution assessment, the Fourier Shell Correlation,
we show that the proposed technique outperforms the commonly used reconstruction methods in ET,
including the filtered back projection and the algebraic reconstruction techniques.
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Abstract. Cryo-Electron Tomography is a leading imaging technique in structural biology, which is
capable of acquiring two-dimensional projections of cellular structures at high resolution and close-to-
native state. Due to the limited electron dose the resulting projections exhibit extremely low SNR and
contrast. The 3D structure is then reconstructed and passed through a number of post-processing steps
including de-noising and sub-tomogram averaging to provide a better understanding and interpretation.
As CET is mainly used for imaging fine scale structures, any denoising method applied to CET images
should be scale selective and in particular be able to preserve such fine scale structures. In this context,
we propose a new denoising framework based on regularized graph spectral filtering with a full control
of scale-space and global consistency. Using the gold-standard metrics, we show that our denoising
algorithm significantly outperforms the state-of-the-art methods such as NAD, NLM and RGF in terms
of noise removal and structure preservation.

B.1 Introduction

Cryo-electron tomography (CET) is a powerful imaging technique in biological sciences which bridges
the gap between the molecular and the cellular structural biology [204], giving a better understanding
of protein interactions and thus better drug delivery strategies. In principle, similar to Computed
Tomography (CT) in Medical Imaging, CET acquires two-dimensional projections at high resolution
(around 20-50 Angstrom) of three dimensional (3D) cellular structures (called tomograms) at cryogenic
(freezing) conditions under near-to-native state. Due to the low electron dose, necessary to avoid
biological specimen damage, and limited tilt angle (typically ±60◦ to 70◦), a noisy (SNR typically
0.1 to 0.01) and extremely weak signal (low contrast) is formed in the resulting projections. These
unfiltered projection images are then projected back to build the tomogram. In the reconstruction phase,
the noise is propagated through the tomogram making the noise model more complicated. The reader
is referred to [80] for more details on image formation and noise model in Electron Microscopy.

Therefore, post-processing steps, such as noise reduction, after 3D reconstruction are necessary to
provide a better visualisation and interpretation of the structure under scrutiny. However, this process
is critical and could lead to wrong interpretation by erroneously removing fine structural information,
that can not be discriminated from the noise. Conventional linear filters such as Gaussian kernels
succeed in reducing noise, however, at the expense of blurring edges. Popular Non-linear anisotropic
diffusion (NAD) [193] and its extended versions, which can be interpreted in terms of scale space
theory, are extensively used in CET community due to their successful performance. However, NAD
requires the diffusivity to be chosen carefully, which is sometimes quite challenging, and needs many
iterations to converge. Non-local means (NLM) filter and its fast version[50] are investigated for
denoising tomograms having redundant information, however, their performance is degraded when the
window size is increased (spatial neighbourhood), in particular for high resolution CET data (> 20482).
To date, both techniques are still used in the context of CET, however, advanced filtering algorithms
which are able to smooth the noise while preserving the edges to increase the contrast as well are still
in demand and highly desirable [150].

Bilateral filter (BF) [234] and its vectorized extension [191] have been successfully applied in computer
vision community. One related technique is the rolling guidance filter (RGF) [77], which can be
interpreted in terms of joint bilateral filter. However, it uses the filtered image as guidance rather than
the original image which is commonly used in guided filters. This way, it succeeds in preserving the
edges while smoothing the background. Another related work is [85], where bilateral filtering (BF) is
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interpreted in graph spectral domain addressing some open issues in [221] regarding emerging signal
processing on graphs. As mentioned before, denoising CET images requires a proper scale selection as
well as the preservation of fine scale structures. The proposed method is thus based on the following
considerations:

• By using a multi-scale pyramid for guidance we are able to detect meaningful scales and use
them for guidance without oversmoothing fine scale structures.

• Using a patch-based approach, we can take advantage of redundant structures in the whole
image rather than using a pre-defined spatial window for averaging similar pixels or patches.
This way, we can preserve the local and global consistencies.

• By deriving explicit solution formulas for computing the intermediate filtering results we obtain
an efficient algorithm.

Inspired by [77] and [85], we propose the Multi-scale Graph-based Guided Filter (MG2F), which is
- to the best of our knowledge - the first attempt of employing multi-scale graph representation as a
guidance for an iterative graph spectral filtering in general and on CET data in particular.

B.2 Methodology
We assume the noisy image Iη to be corrupted by white Gaussian noise, thus a suitable objective
function would be

Î f = arg min
I f

1
2
‖I f − Iη‖22, (B.1)

but we will augment this energy by a novel multi-scale graph regularisation as described in the
following.

B.2.1 Graph Representation

Given a noisy image Iη, we collect N overlapping patches covering the whole image P ∈ R
√

n×
√

n,
which can be seen as data points ν = {ν1, ν2, ..., νN} ∈ R

n×N lying on a manifoldM embedded in Rn

space such that ν = EIη, where E is an operator collecting patches and vectorize it, cf. Figure B.1. The
relation between the data points can be represented by a k-NN connected, undirected, and weighted
graph G = {ν, ε, ω}, where ν is the data points (patches), ε is the set of edges, and ω is the set of edge
weights.

Weight Assignment
Assigning weights to the edges which exhibit a low SNR such in Cryo-ET data is challenging, therefore,
we recall the scale-space theory [193] to build a Gaussian pyramid IGσs

= Gσs ∗ Iη such that the noise
manifests itself at certain structure scale σs and the semantical image appears clearly as shown in
Figure B.1, then the weights of the data points can be easily assigned using a heat kernel as follows:

Wi j =

exp−
‖νi−ν j‖

2
2,σs

σ2
h

, εi j ∈ k-NN,

0, else.
(B.2)
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Figure B.1. MG2F Framework: A noisy image slice from the 3D reconstructed tomogram is fed to the algorithm, where the
graph is built on a selected scale space image (i.e. coarse grid) acting as a guidance for the regularized graph
spectral filter.

Where ‖·‖2,σ is the Euclidean distance between two vectors at scale σ, however, σh is controlling the
affinity of the neighbouring data points. Further, we denote the diagonal degree matrix by D, where
Dii :=

∑
j Wi j.

Graph Guidance Regularization

In this work, we are interested to preserve the intrinsic structure of the data points ν in the spectral
filtering phase. It is worth mentioning that ν will be collected from the iterated filtered image I f . We
recall the definition of the Laplacian Quadratic Form [241], which can be represented as follows:

S σs (I f ) =
∑

(i, j)∈ε

Wi j‖νi − ν j‖
2
2 =

1
2

Tr
(
νLσsν

T
)
. (B.3)

This expression can be interpreted as a regularization term that minimizes the distance between data
points guided by, we denote it, the penalty Laplacian graph Lσs := D−W, which computed at different
scales σs. The normalised Laplacian graph can be computed by ˜Lσs := D−

1
2 Lσs D

− 1
2 . The reader is

referred to [95] for more details on graph operators.

B.2.2 Graph Spectral Filtering

The spectrum of the graph σ(G) can be obtained from the eigenvalue decomposition of the normalised
graph Laplacian ˜Lσs := UΛUT , where the eigenvalues Λ = diag {λ1, λ2, ..., λN} ∈ [0,1] carry a notion
of the graph frequencies, and the eigenvectors UT := {u1, u2, ..., uN}

T ∈ RN×n act as the orthogonal
basis of the Graph Fourier Transform (GFT) [95], so we can write the transformed signal as follows
ν̂ = UTν.

Regularized Energy

We define our objective function as follows:

Î f = arg min
I f

{
1
2
‖I f − Iη‖22 + αS σs (I f )

}
, (B.4)
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where α > 0 is the regularization parameter. The solution can be written in a closed form:

Î f = ET

 N∑
i=1

1
(1 + αλi)

uiν̂i

 = ET
(

1
I + αL̃σs

)
EIη, (B.5)

where ET denotes the reshaping process of the previously vectorised patches. It becomes apparent
from (B.5) that the signal is filtered on the spectral domain before doing the inverse GFT, where the
spectral response of the filter h1(λi) = 1/(1 + αλi) controls the frequency decay and thus the degree of
smoothness.

B.2.3 Connection to Classical Filters

Different classical filters can be expressed similar to (B.5) with different spectral filters, for instance,
the Bilateral filter (BF) kernel can be written as νBF = D−1Wν, where its spectral response can be
recast as a linear spectral filter h(λi) = (1− λi) [85], the same applies for non-local means filter (NLM),
while the nonlinear anisotropic diffusion (NAD) has an exponential spectral filter h2(λi) = e−αλi . For
the sake of having the power of diffusivity (fast decay) along with the regularized graph, we propose a
new spectral filter

h3(λi) = e−καλi/(1 + αλi), (B.6)

where κ is a decaying factor. The proposed filter can be interpreted in the context of fractional derivative
orders of Laplacian in Sobolev space [56], that shows a promising performance. A comparison of
different filter responses is shown in Figure B.2.

B.2.4 Stopping Criterion

One can simply raise a question, why we need a stopping criterion where we have already a closed
form solution for (B.4). Indeed, this optimal solution is designated for a specific scale, and since we are
interested in having a multi-scale reconstruction, the resultant filtered image from the previous scale
used as a guidance for the next scale, hence the need of a stopping criterion. Choosing it automatically
is an important feature for variational approaches in general, [114] suggested one stopping criterion
for Manifold de-noising, based on graph diffusion, therefore we employ the graph diffusion distance
proposed by [107], ξ(Lk, Lk−1) := ‖e−Lk

− e−Lk−1
‖2F , which computes each iteration the distance between

consequent graph Laplacians, which reflects the significant change in the filtering process. Then the
optimization problem formulated as follows:

Î f = arg min
I f ,σs

{
1
2
‖I f − Iη‖22 + αS σs (I f )

}
, s.t. ξ(Lk, Lk−1) ≤ β, (B.7)

where β is the desired distance and k is the iteration index, which can be minimized by Algorithm 1.

B.3 Experiments and Results

Our experiments are conducted on computer vision, simulated data, that rather mimics the complicated
noise model in CET, as well as real CET tomographic data. We compare the results of our algorithm
(MG2F) against common de-noising gold-standard filters in computer vision community, then we
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(a) h(λi) (b) h2(λi)

(c) h3(λi) (d) Filter Response

Figure B.2. Spectral filters responses: (a) linear (i.e. Bilateral), (b) regularised graph, and (c) designed one, against the
parameters λ (spectral frequency) and α (regularization parameter), (d) shows the line profile (α = 1) for different
filters.

compare it with the successful filters in CET [178] such as Nonlinear Anisotropic Diffusion (NAD)
[193] and Fast Non-Local Means (NLM) [50], and further with the recent scale-aware filter, the
Rolling Guidance Filter (RGF) [77]. The filter parameters are tuned in an optimal way; either from
the cited references or determined experimentally in order to visualise the feature of interest. Results
are validated by different metrics; i.e. data with ground truth are validated using Peak Signal to Noise
Ratio (PSNR) and Mean Square Error (MSE), however, we followed [80] and [178] for evaluating
denoising methods on real data.

Computer Vision: To give a good illustrative example, we run the algorithm on Lena image, which
corrupted by an (i.i.d) Gaussian noise resulting in SNR of 7. Different algorithms are applied on this
image, results are shown in Figure B.3 for the cropped images. It is clear that our method gives an
outperforming PSNR indicating for better contrast.

Simulated Data: A GroEL tomogram, which is obtained from the Electron Microscopy Data Bank
(EMDB-ID: 1AON), is generated using the TOM toolbox [184], where both (i.i.d) Gaussian and
Poisson noise are added on the projection images resulting in a signal-to-noise ratio (SNR) of 0.1, then
a slice of the reconstructed tomogram (the noisy image) is passed to different denoising algorithms.
We run the algorithms on 150 random slices collected from 15 different tomograms. Results are
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Require: The noisy image Iη, patch size
√

n, σs, k-NN, kmax, α and β.
Ensure: The filtered image Î f in (B.7).

1: Initialize the Laplacian L0 = ones(N,N), I0
f ← Iη

2: while ξ(Lk, Lk−1) > β or k < kmax do
3: Find the scale-space image IGσs

= Gσs ∗ Ik
f .

4: σs ← next finer level in the pyramid.
5: Collect patches (data points) ν = EIk

f .
6: Build the graph & assign weights for the k-NN patches νσs = EIGσs

using (B.2).
7: Compute the normalised graph Laplacian ˜Lσs and the graph spectrum σ(G).
8: Apply the spectral filtering Ik+1

f = ET
(∑N

i=1 h(λi)uiν̂i

)
.

9: Compute the graph diffusion ξ(Lk, Lk−1).
10: Ik

f ← Ik+1
f

11: end while
Algorithm 1: MG2F algorithm

validated by PSNR, our method shows significant performance (p < 0.01 by t-test, and p < 0.05 by
Kolmogorov-Smirnov test), making the results consistently better compared to the other methods as
shown in Figure B.4(c).

Real CET Data: We also denoised an unstained CET HIV-1 virion (EMDB-ID: 1155), which can be
considered as a benchmark data for de-noising in CET. Results are validated by the common validation
measure in CET community for 2D images, namely, the Contrast to Noise ratio (CNR) [80]. Further, in
the qualitative evaluation session with our clinical partners, they appreciated the enhanced contrast in
our method, because the background in Figure B.5(e) was carefully smoothed, while spiky signals such
as membrane proteins (arrows) as well as the inner core of the HIV virus (ellipse) were well preserved.
As the algorithm takes factors, such as patch size, redundancy, and scale-space, into account, we may
conclude, based on their feedback and the resultant CNRs, that it is well suited for handling CET
data.

3D Extension: Showing 3D data augments the computed statistics visually and gives a better interpre-
tation for scientists, therefore, we extended the algorithm to handle 3D objects, which conceptually
similar to our basic algorithm, however, blocks are collected from volumes rather than patches. An
unstained HIV-1 tomogram is denoised using NAD (commonly used in CET), BM3D [49] (com-
monly used in Computer Vision) and our algorithm MG2F. The results are validated using both
KL-divergence test (p < 0.1) and Fourier Shell Correlation (FSC) used in [178] as shown in Fig-
ure B.6. The FSC curve shows the correlation of the corresponding frequency shells between the
unprocessed/noisy and denoised tomograms, the blue line shows the auto-correlation of noisy data
over the frequency, NAD has a smooth curve as expected due to the diffusion effect, BM3D is slightly
better than MG2F in low frequencies, however, MG2F has a sharp decay in higher frequencies which
is not the case for BM3D as shown in Figure B.4(d). It is worth mentioning that the higher 0.5-cut-off

frequency the higher resolution you get for these tomograms. Therefore, we can say MG2F performs
better than NAD (has lower resolution), and BM3D (pass the higher frequencies).

Sensitivity Analysis: Cross validation in general is a daunting task, however, it becomes more difficult
when the feature assessment depends mainly on the experts opinion. Therefore, we performed a
sensitivity analysis to investigate the effect of these hyperparamaters and suggest to update the scale-
space parameter σs iteratively from the coarse level (given) to the fine level (until saturated). σh should
be set based on the variance of data points, however, for the sake of simplicity, we normalize the
data points before computing the weights. The impact of selecting different k-NN and Patch sizes
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(a) G.T. (b) Noisy (c) BF

(d) BTR (e) EED (f) RGF

(g) NAD (h) NLM (i) MG2F

Algorithm PSNR MSE

Parameters (dB) (10−3)

Bilateral (BF) [234]

(σi=0.5, σr=1.5, W=10)

17.49 174

Beltrami (BTR) [74]

(δ=0.1, iter=10)

17.37 176

EED [104]

(ρ=4, iter=30)

11.27 324

NAD [193]

(iter=10, κ=0.3)

16.50 192

NLM [50]

(P=7, W=21, σs=4σn )

12.11 298

RGF [77]

(σi=0.5, σr=1.5, iter=10)

17.49 174

MG2F

(α=0.8, iter=4, σh=0.1)

17.78 169

Figure B.3. Photographic Image: Results of different algorithms on Lena image(128X128, SNR=7) along with a tabulated
comparison to the proposed MG2F filter.

(i.e. 3,5,7,9 and 11) on PSNR is shown in Figure B.4. We observe that the algorithm converges at 3-7
iterations demonstrating the performance of the stopping criterion.

B.4 Conclusion

In this chapter, we propose MG2F algorithm for denoising CET data, which incorporates a multi-scale
pyramid taking the advantage of redundant structures on different scales into account. This acts as a
guidance for the graph spectral filter and this way the local and global consistencies are well preserved.
To the best of our knowledge this is the first approach which incorporates a multi-scale scheme in a
guided filtering framework. Furthermore, the algorithm converges within only a few iterations and we
demonstrated the performance of it on simulated as well as real data.
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In (c) PSNR of different denoising algorithms (NLM, NAD, RGF and Ours respectively) for 150 slices (SNR=0.1)
from 15 simulated tomograms. (d) FSC curve for different denoised 3D tomograms.

(a) Noisy Image (b) NLM (c) NAD (d) RGF (e) MG2F

Figure B.5. 2D CET data: Filtering results on the tomogram along with the corresponding CNR of b) NLM (0.1979), c)
NAD (0.2570), d) RGF (0.3146), e) Proposed MG2F (0.3150), where the arrows point to the fine structures on the
membrane and the ellipse contains the inner core of HIV virus.

[74] J.-J. Fernandez. “TOMOBFLOW: feature-preserving noise filtering for electron tomography”.
In: BMC bioinformatics 10.1 (2009), p. 178 (cit. on pp. 27, 68).

[75] J.-J. Fernández and S. Li. “An improved algorithm for anisotropic nonlinear diffusion for
denoising cryo-tomograms”. In: Journal of structural biology 144.1 (2003), pp. 152–161
(cit. on p. 27).

[95] L. J. Grady and J. R. Polimeni. Discrete Calculus, Applied Analysis on Graphs for Computa-
tional Science. Springer, 2010 (cit. on p. 64).

[104] B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever, and J. Weickert. “A review of
nonlinear diffusion filtering”. In: Scale-Space Theory in Computer Vision. Vol. 1252. Springer
Berlin Heidelberg, 1997, pp. 1–28 (cit. on p. 68).

[114] M. Hein and M. Maier. “Manifold denoising”. In: Advanced in Neural Information Processing
Systems (NIPS) 19 (2006) (cit. on p. 65).
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Abstract. The lack of publicly available ground-truth data has been identified as the major challenge
for transferring recent developments in deep learning to the biomedical imaging domain. Though
crowdsourcing has enabled annotation of large scale databases for real world images, its application
for biomedical purposes requires a deeper understanding and hence, more precise definition of the
actual annotation task. The fact that expert tasks are being outsourced to non-expert users may lead
to noisy annotations introducing disagreement between users. Despite being a valuable resource
for learning annotation models from crowdsourcing, conventional machine-learning methods may
have difficulties dealing with noisy annotations during training. In this manuscript, we present a
new concept for learning from crowds that handle data aggregation directly as part of the learning
process of the convolutional neural network (CNN) via additional crowdsourcing layer (AggNet).
Besides, we present an experimental study on learning from crowds designed to answer the following
questions: (i) Can deep CNN be trained with data collected from crowdsourcing?, (ii) How to adapt
the CNN to train on multiple types of annotation datasets (ground truth and crowd-based)?, (iii) How
does the choice of annotation and aggregation affect the accuracy? Our experimental setup involved
Annot8, a self-implemented web-platform based on Crowdflower API realizing image annotation
tasks for a publicly available biomedical image database. Our results give valuable insights into the
functionality of deep CNN learning from crowd annotations and prove the necessity of data aggregation
integration.

C.1 Introduction

Crowdsourcing is a type of participative online activity in which an individual, an institution, a
non-profit organization or a company proposes to a group of individuals of varying knowledge,
heterogeneity, and number, via flexible open call, the voluntary undertaking of a task [69]. It was first
introduced by Jeff Howe and Mark Robinson in 2005 using the internet for outsourcing work to a
crowd of people [117]. Being initially considered as market research strategy [129], it is nowadays
widely seen as an economical way to recruit crowds for tedious and time-consuming tasks such as
annotations for character recognition [251], image classification [133], and natural language processing
[119]. As a result of this trend, many crowdsourcing plattforms such as Amazon Mechanical Turk
(AMT)1, Games with a Purpose2 [250], Crowdflower3, and LabelMe4 have emerged within the past
decade. Here, users are not only confronted with simple, every-day tasks, but are also engaged in
highly complex processes involving innovation creation.

A good example for this, is the medical domain where, very recently, crowdsourcing has been presented
as a solution to the immense lack in publicly available ground-truth data. Various applications such
as medical pictogram [280], correspondence finding for stereo endoscopic imaging [156], device
detection in angiographic sequences [249], telepathology [165], and medical image segmentation [103]
and classification [78] have already shown that crowdsourcing can provide efficient and inexpensive
data annotation. With the very recent launch of the CrowdTruth framework5, IBM, Google and
Amsterdam University have paved the way towards machine-human computing for collecting ground-
truth annotation data on text, images and videos in the medical domain. Similarly, Celi et al. [38]
organised several events and data marathons, where engineers, data scientists, and clinicians were

1Amazon Mechanical Turk, https://www.mturk.com
2Game with a Purpose, https://www.gwap.com
3CrowdFlower, http://www.crowdflower.com/
4LabelMe, http://labelme.csail.mit.edu/
5CrowdTruth framework - http://crowdtruth.org
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invited to address specific challenges during the clinical routines and procedures. As a result, many
innovative ideas and prototypes have been developed, clinicians as well as medical students become
part of a data-driven learning system. The most astonishing fact about crowdsourcing studies in the
medical domain, however, is the conclusion that a crowd of non-professional, inexperienced users do
not underperform medical experts [22, 156].

Improving the crowd’s quality is very essential for being able to generate a reliable ground-truth and
creating an interest within the research community. Redundancy and Aggregation (R&A) (i.e. majority
voting) is the baseline approach that has been proposed in this context [196, 219]. However, there is
no control on the sensitivity and specificity of single participants. All aforementioned crowdsourcing
platforms integrate qualification tests in order to restrict "noisy" annotations. This information can
then be incorporated into the ground-truth generation process via aggregation. Recently, Raykar et
al. [201] have proposed a probabilistic model for supervised learning to evaluate different users and
estimate the ground-truth labels. Having such ground-truth is very important for both training many
machine learning algorithms as well as for evaluation.

Indeed, deep learning has advanced the field of computer vision the last few years [217] leading to
powerful methods for various applications such as object classification [133], detection [87], segmen-
tation [148], robust regression [26] and depth prediction [65]. The most established realization of deep
learning are Convolutional Neural Networks (ConvNets or CNN) that have also been successfully
applied for biomedical imaging purposes [36, 43, 147, 278]. The bottleneck, however, for deep CNN to
yield decent accuracy is the availability of a large number of annotated training samples. In particular
in the biomedical domain, sufficient ressources are not available.

We believe that crowdsourcing platforms will engage various crowds to collaborate with clinicians
and frontline healthcare workers in translating questions into methodologies and innovative solutions
of which ground truth data is an essential part. However, it is not clear how state-of-the-art machine
learning methods behave when fed with training data consisting of reliable (expert) and unreliable
(crowd) annotations [22]. As suggested by Aroyo et al. [22], it is our goal to evaluate the trustworthiness
of participants and integrate this knowledge into the analysis and further processing of annotations.

In this manuscript, we present a first attempt to apply the concept of learning from crowds within
a biomedical environment. Being inspired by prominent previous work in this field [43, 201], we
define the specific contribution of our own work as: i) Learning of a multi-scale CNN model for
mitosis detection, ii) Incorporation of aggregation schemes into CNN layers, and iii) Augmentation
and retraining of the CNN model with crowd’s annotation labels.

In our analysis comparing performance of the CNN model when incorporating different types of
aggregations schemes, we aim at answering the following questions: i) Can deep CNN be trained with
data collected from crowdsourcing and is it robust against "noisy" labels?, ii) How to adapt the CNN
when we have both ground-truth label and multiple annotations that could be "noisy"?, and iii) How is
the accuracy compared to that obtained by ground-truth or majority voting?

In this manuscript, after recapitulating previous work in this field, we introduce AggNet, a novel
aggregation layer that is integrated into our multiscale CNN. We further present an analysis of the
behavior of CNN with and without aggregation on a publicly available large-scale pathological dataset
(including ground truth annotations). However, to the best of our knowledge, there has not yet been
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Figure C.1. AggNet Framework: (1) The multi-scale CNN model is trained from gold-standard annotations. (2) Then for any
incoming unlabelled image, (3) the AggNet will produce a response map which is thresholded at selected optimal
operating point. (4) These few resulting positive candidates are outsourced to crowds. (5) AggNet collects back
the crowd votes and jointly aggregates the ground truth and refine the CNN model.

any effort to incorporate this information into machine learning algorithms analyzing the quality of
models learned from non-expert annotations.

C.2 Methodology

In this section, we introduce the proposed CNN for aggregating annotations from crowds in conjunction
with learning a model for a challenging classification task. Unlike typical supervised methods, which
learn a model from ground truth labeled data, learning from crowd annotations is different in the sense
that there may be (possibly noisy) multiple labels for the same sample. Our idea is to learn multiple
CNN models with the same basic architecture on different image scales (c.f. step 1 in Fig. C.1),
perform mitosis detection using these models (c.f. step 2 in Fig. C.1) and provide the crowds with
detected mitosis candidates for annotation (c.f. step 3 in Fig. C.1). The collected annotations are then
passed to the existing CNN (c.f. step 5 in Fig. C.1) with our aggregation layer attached in order to
refine the models and simultaneously generate a ground-truth. This multi-scale approach ensures that
we have redundant responses of the same data instances at different scales, with the goal to increase
robustness of both aggregation and classification.
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C.2.1 Notation

The input to our network is an observation set D = {xi, y
j
i ; i = 1, ...,N, j = 1, ..., P} containing N

instances of xi ∈ R
d (RGB image as d-dimensional vector) with corresponding labels yi ∈ C (i.e.

C := {0, 1} for binary classification) annotated by P independent participants. The goal is to learn a
robust CNN model, represented by f : X → Y, from aggregated labels which generalizes well on
unseen data:

p̂ = f (x, y; θ), (C.1)

where p̂ is the predicted label for an unseen image x, and θ is the learned model parameter.

C.2.2 Multi-scale CNN Model

Our network architecture consists of three convolutional blocks followed by two fully connected (FC)
layers as shown in Fig. C.2. Each convolutional block consists of a convolutional layer followed by
a rectified linear unit (ReLU) [177] and max-pooling layer. The output of the softmax layer is the
probabilistic score of the mitotic figures.

In our proposed multi-scale CNN model the input image is first down-sampled to different scales (i.e.
0.33, 0.66 and 1). Then, 33 × 33 patches are collected and passed to the model (scale-wise). On new
unlabelled data, we apply the learned model to mirrored and rotated versions (0, 90, 180, and 270 deg)
of each image and compute a final detection map (FDM) as the mean of all those detection results.

FDM of different scales are then geometrically averaged to filter out weak responses. By doing this,
we aim at obtaining more accurate detections.

During learning from crowd annotations phase, we augment the CNN architecture with our novel
aggregation layer (AG) (Sec. C.2.3) in order to i) aggregate the ground-truth from crowdvotes matrix,
ii) compute the sensitivity and specificity of each annotator, and iii) jointly learn the classifier by back
propagating the derivative of the loss function. We refer to this augmented architecture as AggNet.

C.2.3 Aggregation Layer (AG):

The straightforward method to aggregate labels annotated by users, is to employ majority voting (MV)
[135]:

µ =


1 ȳ ≥ 0.5

0 ȳ < 0.5
(C.2)

where ȳ = 1
|P|

∑P
j=1 y j is the average label of P users. However, this strategy assumes all users to be on

an equal level of trustworthiness.

In our framework, we integrate the method initially proposed by Raykar et al. [201], showing a good
performance in many applications [196]. On top of our CNN architecture, we aggregate labels µ,
estimate the sensitivity α j and the specificity β j for each annotator j ∈ P, and jointly learn the classifier.
The method is solved using the well-known expectation-maximization (EM) algorithm and adapted to
learn the softmax classifier as follows:
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• Initialization: Using the crowdvotes matrix Y, the aggregated labels µi initialized with majority
voting, α j and β j are initially computed from µi.

• E-Step: Given the observation set D and a current estimate of parameters ψ := {α, β, µ}, the
conditional expectation is computed as

E{ln Pr[D, g|ψ]} =

N∑
i=1

µi ln piai + (1 − µi) ln(1 − pi)bi, (C.3)

where

ai =
∏P

j=1[α j]y j
i [1 − α j]1−y j

i ,

bi =
∏P

j=1[β j]1−y j
i [1 − β j]y j

i ,

pi = σ(zi) = ezic∑C
c=1 ezic

, the output of softmax layer,

zi = wT xi, the output of FC layer,

g is the hidden variable (ground-truth),

and the expectation is with respect to Pr[g|D, ψ].

Using Bayes’ theorem, the aggregated labels µi can be computed as follows:

µi =
ai pi

ai pi + bi(1 − pi)
. (C.4)

The loss function in our aggregation layer (AG) is defined as the Negative log-likelihood:

£(µi, pi) = −E{ln Pr[D, g|ψ]}, (C.5)

• M-Step: Based on the observation set D and the current estimate µi, the model parameters ψ
can be computed by taking the derivative of £ with respect to each parameter and equate it to
zero. The updates for α j and β j can be obtained as follows:

α j =

∑N
i=1 µiy

j
i∑N

i=1 µi
, β j =

∑N
i=1(1 − µi)(1 − y j

i )∑N
i=1(1 − µi)

, (C.6)

The softmax function is non-linear and the gradient with respect to parameter w should be back
propagated to the CNN layers [141]. For this purpose, we can employ the chain rule:

∂£
∂w

=
∂£
∂pi

∂pi

∂zi

∂zi

∂w
, (C.7)

where

∂£
∂pi

=
µi−pi

pi(1−pi)
, the output of AG Layer,
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∂pi
∂zi

= pi(δi j − p j), the output of softmax layer6,

∂zi
∂w = xi, the output of FC layer.

Then, weights are updated using Stochastic Gradient Descent (SGD) [29].

It is notable that E-Step and M-Step are computed in forward and backward propagation respectively,
which means one EM iteration per epoch. The refining process is stopped when the loss function
output barely changes to avoid overfitting.

To this end, the aggregation method takes into account the sensitivity and specificity of each annotator
to aggregate the labels. Furthermore, the algorithm is adapted to handle:

• Trustworthiness: Some crowdsourcing platforms provide the customer with a single accuracy
score γ that each user achieved on a qualitative test for a specific task. It has been suggested
by Raykar et al. [201] to model a prior distribution on sensitivity and specificity to trust some
participants more than others. With only a single accuracy score as provided by our scenario,
this is however not possible.

• Missing Labels: A common failure in crowdsourcing is that some users annotate a few samples
only. If all these samples happen to fall within one single class, sensitivity or specificity remains
unknown. Furthermore, the user who annotates few samples only might be equally or even more
trusted than a user who annotates more samples.

Therefore, we reformulate α j and β j, without loss of generality, in such a way to augment the number
of True Positives (TP) and True Negatives (TN) when the user has high confidence (i.e. accuracy
score) as follows:

α j =
τγ j|Np|+

∑Np
i=1 µiy

j
i

τγ j|Np|+
∑N

i=1 µi
=

(1+τγ j)T P
(1+τγ j)T P+FN ,

β j =
τγ j |Nn |+

∑Nn
i=1(1−µi)(1−y j

i )
τγ j |Nn |+

∑N
i=1(1−µi)

=
(1+τγ j)T N

(1+τγ j)T N+FP ,

(C.8)

where γ j is the accuracy score for a particular user and τ is the hyper-parameter that leverage the user’s
confidence. To avoid numerical issues, we set the sensitivity and specificity to 0.5 for unknown cases.

C.3 Experiments and Results

We have designed our experimental setup such that first, the proposed multi-scale CNN architecture is
validated before evaluating the aggregated labels from the crowdvotes and validating the proposed
augmented CNN (AggNet).

6The Kronecker delta, δi j =

1 i = j

0 i , j
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Figure C.2. AggNet architecture: The same CNN architecture is used for different scales, where pi, µi, y
j
i represents the

classifier output, the aggregated label, and the crowdvotes respectively.

Dataset. We have validated our proposed network on the publicly available MICCAI-AMIDA13
challenge dataset7. It contains annotated histology images of a total of 23 patients, who underwent
invasive breast biopsy. During this medical examination, sections of suspicious breast tissue are
collected and stained using hematoxylin and eosin (H&E). A histology RGB image of 2k × 2k is then
acquired with the Aperio ScanScope XT scanner at 40X magnification and with a spatial resolution
of 0.25µm/pixel. Then, a region of interest is identified and digitized to several high power field
(HPF) images. The standard procedure in pathology is to count the mitotic figures in this area for the
purpose of cancer grading (mitotic count score criteria). The annotation in the AMIDA13 dataset was
done by two expert pathologists. Concordant annotations of both experts were taken as ground truth
objects directly, whereas discordant cases were presented to two additional observers, such that the
ground truth have been agreed upon by at least two experts. The reader is referred to [246] for more
information about the dataset and its clinical/pathological background. In our experiment, we learn the
proposed initial multi-scale model from 12 patients (311 HPF images), validate on 20% of the training
set (60 HPF images) and test it on the whole testing data of AMIDA Challenge, including 11 patients
(295 HPF images).

Implementation details. Each input RGB image is first pre-processed by staining appearance
normalization [154]. Then, small patches of 33 × 33 are collected. Furthermore, to handle highly
imbalanced data, patches showing positive classes are augmented with rotation and mirroring in
such a way to leverages the ratio of positive to negative classes about (3:7). The muti-scale CNN
is implemented using MATLAB and MatConvNet[242] and conducted on an Intel i7 machine with
a GeForce GT 750M graphics card. Concerning the network parameters, the learning rate is set to
1 × 10−3, momentum to 0.9, weight decay to 5 × 10−4, and the batch size fixed to 200 samples. Note
that some of these parameters are changed in the refining process, i.e. learning rate is set to 5 × 10−5

and the batch size is set to the whole crowdsourcing set. For the sake of reusability and to overcome the
limitations of the crowdsourcing platform Crowdflower, we have designed and implemented Annot88,
a Ruby-on-Rails based web-platform, allowing registered users to create datasets, upload images
and labels, and categorize the labels with the help of a powerful tagging system. Collections of
existing labels can be sent to and crowdsourced labels can be imported from Crowdflower easily. Our
web-platform also offers an online image processing frontend for on-demand patch extraction and

7AMIDA13: http://amida13.isi.uu.nl/
8Annot8: http://vmnavab14.informatik.tu-muenchen.de/
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Table C.1. DATASETS SPECIFICATIONS

Proof of Concept Use-Case

Model 8 Patients of Training set
(318 HPF images)

The Entire Training set (371
HPF images)

Testing 3 Patients of Training set (22
HPF images)

The Entire Testing set (295
HPF images)

Crowdsourcing Positive Candidates (550
Patches)

Positive Candidates (750
Patches)

computation of biomedical image filtering. On the participant side, each user was introduced briefly
about the disease and the instructions of the actual task showing some good and bad examples as
shown in Fig. C.3. Then, participants had to conduct a few test questions for quality control purposes.
Without being made aware of the quiz mode, each annotator was presented with patches with known
labels. Only then, he/she started to annotate five patches presented along with the filtered images. In
order to ensure continuous quality control, a few randomly seeded test patches were still shown during
the actual annotation job.

Evaluation metrics. We calculate different validation measures for comparison purpose, such as
Recall = T P

T P+FN and Precision = T P
T P+FP , where TP, FP and FN represent the true positives, false

positives and false negatives respectively.

We further employ widely used statistical measures, such as F1-score = 2×T P
FP+FN+2×T P , Receiver

Operating Characteristics (ROC) and its Area Under Curve (AUC).

For measuring the improvement of multi-scale CNN over single scales, we compute the mean and stan-
dard variation of Relative Changes (RC) of different scales, i.e. µRC = 1

|S cales|
∑

S cales
MultiS cale−xS cale

xS cale .

C.3.1 Proof-of-Concept Evaluation

The objective of this experimental setup is to analyze the functionality of the entire AggNet framework
(c.f. Fig. C.1), specifically i) the accuracy of multi-scale CNN, ii) the performance of our novel
aggregation layer when fed with noisy annotations, and iii) the influence of the augmented model on
the detection quality of the multi-scale CNN. In order to perform quantitative analysis with respect
to real ground-truth data, we decided to employ the AMIDA13 Challenge training dataset only as
it comes with ground truth annotations (c.f. TABLE C.1). The setup is designed according to our
overall framework pipeline depicted in Fig. C.1. First, a model is learned on 8 random patients of
the AMIDA13 Challenge training dataset and tested on different 3 patients. Training and testing
is performed employing our novel multi-scale CNN AggNet. Then, response maps of AggNet are
thresholded at a lower operating point ensuring a large number of positive candidates, repatched and
sent to CrowdFlower using our Annot8 web-platform.

In this experiment, we have crowdsourced around 550 patches, where each patch was annotated by
10 participants at least, resulting in more than 5500 labels stored in the crowdvotes matrix Y. We
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Figure C.3. Instructions and guidelines

have then evaluated results according to the different aspects related to the objectives defined for this
specific experimental setup:

Multi-scale CNN
In order to measure the performance of the multi-scale CNN, we train the network on three different
scales (0.33, 0.66 and 1) individually. For inference, we geometricaly average the resulting FDMs from
all scales to obtain the final positive responses. As alternative method to extract positive responses, we
also threshold the FDM for each scale. For each remaining response, we check whether it is a TP, FP
or FN detection. A positive response is considered a TP if its Euclidean distance to a ground-truth
mitotic figure is less or equal than 30px. Multiple responses within the same radius around a mitotic
figure are counted as a single TP. If there is no response for a mitotic figure within this radius, we
count a FN detection. Any responses that are not inside any 30px region around a mitotic figure are
counted as FP. It should be noted that a 30px radius (7.5µm) is used on the original scale, however, this
is adjusted for different scales. Using these numbers, we calculate the Precision, Recall, and F1-score
over all HPF slides at once and also per patient. TABLE C.2 shows the F1-score of 22 HPF images,
the corresponding testing dataset, while the bar plot in Fig. C.5 displays the other metrics. It is obvious
that the multi-scale CNN approach pushed the overall F1-score about 22.5% ± 6.8, which validates
our initial hypothesis of the proposed multi-scale CNN approach yielding a more robust classification
due to detection consensus at various scales.

Aggregated Labels (AL)
To investigate the aggregated labels of the crowdvotes matrix Y, we first run majority voting (MV)
[135] and GLAD [273] methods on Y without any quality control, referred to as MV-NoQ and GLAD-
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(a) Scale 0.3 (b) Scale 0.6 (c) Scale 0.9 (d) Scale Multi-Scale

(e) Scale 0.3 (f) Scale 0.6 (g) Scale 0.9 (h) Scale Multi-Scale

Figure C.4. First row shows results of one single image using multi-scale CNN, Green: the true positives, Orange: the false
positives. Second row shows the corresponding final detection map (FDM) before thresholding. Best viewed in
color.

NoQ respectively. Then, we use the existing 0.33-scale model from the previous multi-scale CNN
experiment and augment it with our AG layer. Subsequently, we retrain it further for 100 epochs. We
refer to this architecture as AggNet, and the aggregation results as AG-NoQ.

Further, to test the quality control, we filtered first the crowdvotes matrix Y in order to keep only
the annotations from the users who achieved more than 70% accuracy score in their qualitative test
(in a quiz stage, each user had to annotate a few samples extracted from training data with known
ground-truth). Then, we run the same aggregation methods, however, MV is replaced with Honeypot
(HP) [142]. We refer to the aggregated labels using 70% quality control as HP-70Q, GLAD-70Q, and
AG-70Q.

In addition, to figure out how the accuracy scores γ of the participant can influence the proposed
aggregation method, we validate the hyper-parameter τ = [0.1, 0.2, ..., 1] (ref. Sec. C.2.3) and run
similar experiments, referred to as AG-NoQ-τ and AG-70Q-τ respectively.

C.3 Experiments and Results 81



Table C.2. F1-SCORES

Patient 9 Patient 11 Patient 12 Overall

0.33-Scale 0.8000 0.5833 0.7778 0.6479

0.66-Scale 0.5000 0.5556 0.6957 0.5882

Orig.-Scale 0.5000 0.5490 0.6957 0.5854

Multi-Scale 0.8000 0.7368 0.7368 0.7419

Improvement 40%±36 39%±11 2.2%±6.4 22.5%±6.8

(a) Patient 9 (b) Patient 11

(c) Patient 12 (d) Overall

Figure C.5. Evaluation Metrics: Precision, Recall, and F1-score of Patients 9, 11 and 12.

To evaluate the aforementioned aggregated labels of crowdsourced patches (c.f. TABLE C.3), we
compute the F1-score between the ground-truth and the aggregated labels of different methods as well
as the proposed method (c.f. Fig. C.6(a)). Further, to give the reader more insight on the probabilistic
scores of different aggregation methods, we plot the ROC curves of the significant methods as shown
in Fig. C.7(a).

Unlike the weak agreement of the aggregated labels of both MV-NoQ and GLAD-NoQ with the
ground-truth, both AG-NoQ and AG-NoQ-τ (-70Q as well) achieve an outperforming agreement at the
first few epochs before getting decayed and saturated at still good agreement compared with the other
aggregation methods as shown in Fig. C.6(a). MV-NoQ and GLAD-NoQ coincide in this setup due to
the choice of our label threshold = 0.5. The ROC curve of the respective methods shows that GLAD is
slightly superior to MV.

Interestingly, the aggregation methods without any quality control perform better than the ones
with 70% quality control, which shows that the quality control strategy should be revised for such
challenging data. Notably, AG-NoQ-τ as well as AG-70Q-τ, which incorporate the gamer accuracies
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Table C.3. AGGREGATED LABELS

Aggregation Method Quality Control Prior

MV-NoQ MV No -

GLAD-NoQ GLAD No -

AG-NoQ Proposed No -

AG-NoQ-τ Proposed No τ

HP-70Q HP 70% -

GLAD-70Q GLAD 70% -

AG-70Q Proposed 70% -

AG-70Q-τ Proposed 70% τ

Table C.4. AUGMENTED MODELS

AM-GT AM-MV AM-GLAD AggNet

F1-score 0.6250 0.6097 0.6097 0.6133

AUC 0.8433 0.8082 0.8082 0.8695

as a prior, underperform the other AG-models. Once again, this shows that the quality control strategy
and thus the accuracy is a potential bottleneck.

Augmented Models (AM)

We further investigate how aggregated labels obtained from the previous experiment, influence the
detection quality of our CNN compared to the ground-truth model. For this purpose, we compute
several augmented models based on 0.33-scale of the initially trained ground truth model (GT). Besides
AggNet, which we obtain by attaching our AG layer to GT, we compute three additional distinct models
by retraining with aggregated labels from MV and GLAD as well as the real ground truth labels. We
refer to the augmented models as AM-MV, AM-GLAD and AM-GT respectively. In fact, we retrain
for 100 epochs, but pick the best performing model for each. Note that AM-GT is the 0.33-scale
CNN model, however, its operating point is set to the same threshold that was used to select positive
candidates for crowdsourcing. Once retrained, we utilize the models to perform mitosis detection on
the corresponding testing set. Fig. C.7(b) and TABLE C.4 nicely outline how the proposed AggNet
model almost performs as good as the augmented ground truth model AM-GT and easily outperforms
both AM-MV and AM-GLAD (around 7.6% of AUC). Furthermore, some HPF images are visualized
in TABLE C.5 to show how different augmented models perform on their optimal operating points. It
is worth noticing also here how the proposed AggNet hits only the ground-truth in the perfect scenario
outperforming even the AM-GT, or miss some ground-truth while having very few false positive in off

scenario.
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(a) F1-score (b) Loss function

Figure C.6. (a) The aggregated labels of the crowdsourcing set are evaluated using the F1-score metric. (b) The loss function
barely changes at 3-8 epochs before starting to overfit and the gap between the validation and training curves
becomes significant. The shaded area depicts the change of τ.

C.3.2 Use Case Evaluation

This experiment aims at proving the overall impact of AggNet on a large standardized dataset (entire
AMIDA13 Challenge training and testing datasets).

To first evaluate the performance of our proposed multi-scale CNN, we have participated in the
AMIDA13 Challenge with our novel approach achieving 0.433 as overall F1-score. As reported by the
challenge organizers, our method yields rank three of 15 participating methodologies.

Response maps resulting from the AMIDA13 Challenge testing dataset on 0.33-Scale have then been
thresholded at an operating point of 0.99 (calculation based on the dataset) and repatched samples
have been forwarded to CrowdFlower. Similarly to the previous experimental setup, crowdvotes Y
and confidences have been fed back to AggNet in order to augment the previously trained model.
For performance evaluation, different augmented models have also participated in the AMIDA13
Challenge. TABLE C.7 shows the evaluation metrics of different models augmented with MV, GLAD
and our robust aggregation layer (AggNet). The overall F1-score of AggNet easily outperforms the
other augmented models of MV and GLAD, however, it falls slightly behind the previously trained
model (0.33-Scale).
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(a) Aggregated Labels (b) Augmented Models

Figure C.7. ROC curves of the (a) aggregated labels using MV, GLAD and the proposed AG-NoQ, (b) the augmented models
AM-GT, AM-MV, AM-GLAD and AggNet as well.

C.4 Discussion

Our results confirm that aggregation and deep learning from crowd annotations using the proposed
AggNet is robust to "noisy" labels and positively influences the performance of our CNN in the refining
phase.

Proper selection of operating point for crowdsourcing is quite challenging, for instance, it can be
chosen based on the validation set, however, it might not be optimal for crowdsourcing where you
need more positives. Therefore, it is recommended to plot the AUC, which provides the clinicians with
more flexibility to run the model at the optimal operating point from their perspective. The augmented
model AggNet has a gain of 7.6% in AUC at lower than the optimal operating point, however, this can
not be computed for the use case experiment due to the limited number of submissions to the AMIDA
Challenge.

However, the aggregation results from quality-filtered crowd annotations shed the light on the applied
quality control. Surprisingly, they turned out to be worse than the aggregation from the complete,
"noisy" set of crowd votes. This is clearly related to the high ambiguity and the high level of difficulty
in detecting mitotic figures in general. Indeed, such quality tests need to be carefully planned and well
designed in order to make sure they do not carry more "noise" than the actual crowdsourcing task,
which we believe, the latter was the case in our experiments. However, this problem can also be related
to the community of the crowd itself [245].

The low agreement among the crowd together with the small number of patches might be the reasons
of the noticed decay in the aggregation F1-score curve, which leads to an overfitting after only few
epochs (see Fig. C.6). Nevertheless, it is obvious that our robust aggregation layer can detect the
novices (spammers) and weight their votes less. Therefore, our AggNet outperforms easily the other
augmented models, where the spammers hurt the aggregations (c.f. TABLE C.7). Fig. C.8 shows the
accuracy scores γ (based on the qualitative test) and the spammer scores S p (based on the participant’s
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Table C.5. AGGREGATION AND DETECTION RESULTS

Augmented
Models

AM-GT AM-MV AM-GLAD The proposed AggNet

Perfect

Off

Table C.6. USE CASE RESULTS

Precision Recall Overall F1-score

0.33-Scale 0.211 0.538 0.303

0.66-Scale 0.296 0.583 0.393

Orig.-Scale 0.172 0.400 0.241

Multi-Scale 0.441 0.424 0.433

Improvement 105%±54 -14%±18 44%±35

sensitivity α and specificity β, where S p = (α+ β− 1)2 [200]) of 100 participants in the crowdsourcing
task.

During our research, the very natural question arose whether it may be possible to learn a model
from crowdsourcing labels alone. For this purpose, we ran two additional crowdsourcing experiments.
First, we utilized the crowdsourcing set (i.e. 5500 patches) and the binary classification crowdvotes
to learn a model from scratch. Very soon, we realized that this model quickly overfited due to the
small number of training instances. Second, instead of publishing patches only, we asked the crowd to
label full HPF images. In this case, however, due to insufficient settings within CrowdFlower platform,
each participant labeled only few potential mitotic figures per image and left most of the challenging
cases besides. This led to a large number of missing annotations and poor overall agreement among
participants, which renders aggregation and training impossible. Still, these initial experiments gave us
evidence that it is very difficult and maybe even impossible to entirely outsource the task of labeling
mitotic figures in histology images to crowds. Instead, we decided to rather augment a small and
narrow model learned from expert labels with wide but noisy crowd annotations to enhance variations
encoded within the model.
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Table C.7. USE CASE AUGMENTED MODELS

0.33-Scale AM-MV AM-GLAD AggNet

Precision 0.211 0.006 0.006 0.374

Recall 0.538 0.004 0.004 0.208

F1-score 0.303 0.004 0.005 0.267

Figure C.8. Participants Analysis: accuracy and spammer scores of 100 participants. Arrows in green show some participants
achieve high accuracy scores in the qualitative test, however, they are spammer. Arrows in red show very few
participants who have good accuracy score as well as spammer score. Note that spammer score "0" means the
participant is spammer.

Validating our methodology based on the smallest scale of our initial model is theoretically feasible.
However, in future work, we want to conduct even more involved experiments including also the
models of the other scales. This includes independent crowd sourcing rounds for each scale separately
since retraining all the scales of the multi-scale model from the same crowd-sourced and aggregated
labels hurts the concept of "redundancy & aggregation". Additionally, we want to consider multi-class
classification which is, due to the binary nature of sensitivity and specificity, not directly possible, but
can be performed in an one-vs-all fashion.

C.5 Conclusion

In this paper, we have introduced a novel concept for learning from crowds. Our new multi-scale CNN
AggNet is designed to handle data aggregation directly as part of the learning process via an additional
crowdsourcing layer. In our experimental study, we have further presented valuable insights into
the functionality of deep CNN learning from crowd annotations and proven the impact of our novel
aggregation scheme. To the best of knowledge, this is the first time that deep learning has been applied
to generate a ground-truth labeling from non-expert crowd annotation in a biomedical context.
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Although data aggregation is certainly necessary to learn from crowds, computational aggregation
models have a limited impact, in particular if noisy crowd annotations are not significant, i.e. do not
arise from ambiguous contexts. Besides clear guidelines, non-expert users need to be motivated to
perform the task until the very end. Gamification is the ultimate solution here and we will focus future
work on novel solutions on how to transform complex expert tasks in the biomedical domain into a
game for non-expert users.
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Abstract. Being considered as a valid solution to the lack of ground truth data problem, crowd-
sourcing has recently gained a lot of attention within the biomedical domain. However, available
concepts in life science domain require expert knowledge and thereby restrict the access to only very
specific communities. In this paper, we go beyond state-of-the-art and present a novel concept for
seamlessly embedding biomedical science into a common game canvas. Besides introducing the visual
saliency concept, we thereby essentially eliminate the requirement for prior knowledge. We have
further implemented a game to evaluate our novel concept in three different user studies.
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Abstract. X-ray imaging is widely used for guiding minimally-invasive surgeries. Despite ongoing
efforts in particular towards advanced visualization incorporating mixed reality concepts, correct depth
perception from X-ray imaging is still hampered due to its projective nature. In this paper, we introduce
a new concept for predicting depth information from single view X-ray images. Patient-specific training
data for depth and corresponding X-ray attenuation information is constructed using readily available
preoperative 3D image information. The corresponding depth model is learned employing a novel
label consistent dictionary learning method incorporating atlas and spatial prior constraints to allow
for efficient reconstruction performance. We have validated our algorithm on patient data acquired
for different anatomy focus (abdomen and thorax). Of 100 image pairs per each of 6 experimental
instances, 80 images have been used for training and 20 for testing. Depth estimation results have been
compared to ground truth depth values. We have achieved around 4.40% ± 2.04 and 11.47% ± 2.27
mean squared error on abdomen and thorax datasets respectively, visual results of our proposed method
are very promising. We have therefore presented a new concept for enhancing depth perception for
image guided interventions.
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Abstract. X-ray is the most readily available imaging modality and has a broad range of applications
that spans from diagnosis to intra-operative guidance in cardiac, orthopedics, and trauma procedures.
Proper interpretation of the hidden and obscured anatomy in X-ray images remains a challenge and
often requires high radiation dose and imaging from several perspectives. In this work, we aim at
decomposing the conventional X-ray image into d X-ray components of independent, non-overlapped,
clipped sub-volume, that separate rigid structures into distinct layers, leaving all deformable organs in
one layer, such that the sum resembles the original input. Our proposed model is validaed on 6 clinical
datasets (∼7200 X-ray images) in addition to 615 real chest X-ray images. Despite the challenging
aspects of modeling such a highly ill-posed problem, exciting and encouraging results are obtained
paving the path for further contributions in this direction.
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Abstract. Automated image processing and quantification are increasingly gaining attention in the
field of digital pathology. However, a common problem that encumbers computerized analysis is
the color variation in histology, due to the use of different microscopes/scanners, or inconsistencies
in tissue preparation. In this paper, we present a novel color normalization technique to bring a
histological image (source image) into a different color appearance of a second image (target image),
which therefore standardizes the color representation of both images. In particular, by incorporating
biological stain-sparse regularized stain separation, our color normalization technique preserves the
structural information of the source image after color normalization, which is very important for
subsequent image analysis. Both qualitative and quantitative validation demonstrates the superior
performance of our stain separation and color normalization techniques.
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Abstract. Staining and scanning of tissue samples for microscopic examination is fraught with
undesirable color variations arising from differences in raw materials and manufacturing techniques of
stain vendors, staining protocols of labs, and color responses of digital scanners. When comparing
tissue samples, color normalization and stain separation of the tissue images can be helpful for
both pathologists and software. Techniques that are used for natural images fail to utilize structural
properties of stained tissue samples and produce undesirable color distortions. The stain concentration
cannot be negative. Tissue samples are stained with only a few stains and most tissue regions are
characterized by at most one effective stain. We model these physical phenomena that define the
tissue structure by first decomposing images in an unsupervised manner into stain density maps that
are sparse and non-negative. For a given image, we combine its stain density maps with stain color
basis of a pathologist-preferred target image, thus altering only its color while preserving its structure
described by the maps. Stain density correlation with ground truth and preference by pathologists
were higher for images normalized using our method when compared to other alternatives. We also
propose a computationally faster extension of this technique for large whole-slide images that selects
an appropriate patch sample instead of using the entire image to compute the stain color basis.
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Abstract. The recent success of convolutional neural networks in many computer vision tasks
suggests that their application could also be beneficial for vision tasks in cardiac electrophysiology
procedures which are commonly carried out under guidance of C-arm fluoroscopy. Many efforts for
catheter detection and reconstruction have been made, but especially realtime and robust detection
of catheters in X-ray images is still not entirely solved. We propose two novel methods for i) fully
automatic electrophysiology catheter electrode detection in X-ray images and ii) depth estimation of
such electrodes based on convolutional neural networks. For i), experiments on a total of 1650 X-ray
images from 24 sequences yielded a detection rate > 99%. Our experiments on ii) depth prediction
using 20 images with depth information available revealed that we are able to estimate the depth of
catheter tips in the lateral view with a remarkable mean error of 6.08 ± 4.66mm.
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Abstract. Precise reconstruction of 3D volumes from X-ray projections requires precisely pre-
calibrated systems where accurate knowledge of system geometric parameters is known ahead. How-
ever, when dealing with mobile X-ray devices such calibration parameters are unknown. Joint
estimation of system calibration parameters and 3d reconstruction is heavily unconstrained problem,
especially when the projections are arbitrary. In industrial applications, that we target here, nominal
CAD models of object to be reconstructed are usually available. We rely on this prior information
and employ Deep Learning to learn the mapping between simulated X-ray projections and its pose.
Moreover, we introduce the reconstruction loss in addition to the pose loss to further improve the
reconstruction quality. Finally, we demonstrate the generalization capabilities of our method in case
where poses can be learned on instances of the objects belonging to the same class, allowing pose
estimation of unseen objects from the same category, thus eliminating the need for the actual CAD
model. We performed exhaustive evaluation demonstrating the quality of our results on both synthetic
and real data.
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Abstract. Deep learning usually requires large amounts of labeled training data, but annotating data
is costly and tedious. The framework of semi-supervised learning provides the means to use both
labeled data and arbitrary amounts of unlabeled data for training. Recently, semi-supervised deep
learning has been intensively studied for standard CNN architectures. However, Fully Convolutional
Networks (FCNs) set the state-of-the-art for many image segmentation tasks. To the best of our
knowledge, there is no existing semi-supervised learning method for such FCNs yet. We lift the
concept of auxiliary manifold embedding for semi-supervised learning to FCNs with the help of
Random Feature Embedding. In our experiments on the challenging task of MS Lesion Segmentation,
we leverage the proposed framework for the purpose of domain adaptation and report substantial
improvements over the baseline model.
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