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Abstract
Software obfuscation transforms code such that it is more
difficult to reverse engineer. However, it is known that
given enough resources, an attacker will successfully re-
verse engineer an obfuscated program. Therefore, an
open challenge for software obfuscation is estimating the
time an obfuscated program is able to withstand a given
reverse engineering attack. This paper proposes a gen-
eral framework for choosing the most relevant software
features to estimate the effort of automated attacks. Our
framework uses these software features to build regres-
sion models that can predict the resilience of different
software protection transformations against automated
attacks. To evaluate the effectiveness of our approach,
we instantiate it in a case-study about predicting the time
needed to deobfuscate a set of C programs, using an at-
tack based on symbolic execution. To train regression
models our system requires a large set of programs as
input. We have therefore implemented a code genera-
tor that can generate large numbers of arbitrarily com-
plex random C functions. Our results show that features
such as the number of community structures in the graph-
representation of symbolic path-constraints, are far more
relevant for predicting deobfuscation time than other fea-
tures generally used to measure the potency of control-
flow obfuscation (e.g. cyclomatic complexity). Our best
model is able to predict the number of seconds of sym-
bolic execution-based deobfuscation attacks with over
90% accuracy for 80% of the programs in our dataset,
which also includes several realistic hash functions.

1 Introduction

Software developers often protect premium features and
content using cryptography, if secure key storage is pos-
sible. However, there are some risks regarding the use
of cryptography in this context, i.e. code and data must
be decrypted in order to be executable, respectively con-

sumable by the end-user device. If end-users are mali-
cious, then they can get access to the unencrypted code
or data, e.g. by dumping the memory of the device on
which the client software is running. Malicious end-
users are called man-at-the-end (MATE) attackers and
their capabilities include everything from static analy-
sis to dynamic modification of the executable code and
memory (e.g. debugging, tampering with code and data
values, probing any hardware data bus, etc.).

In order to raise the bar against MATE attackers, ob-
fuscation tools use code transformations to modify the
original code such that it is harder to analyze and tamper
with, while preserving the functionality of the program.
Provably secure code obfuscation has been proposed in
the literature, however, it is still impractical [3, 6, 7]. On
the other hand, dozens of practical obfuscation transfor-
mations have been proposed since the early 1990s [14],
however, their security guarantees are unclear.

Researchers and practitioners alike have struggled
with evaluating the strength of different obfuscating code
transformations. Many approaches have been proposed
(see Section 2), however, despite the numerous efforts in
this area, a recent survey on common obfuscating trans-
formations and deobfuscation attacks indicates that after
more than two decades of research, we are still lacking
reliable concepts for evaluating the resilience of code ob-
fuscation against attacks [42].

This paper makes the following contributions:

• A general framework for selecting program features
which are relevant for predicting the resilience of
software protection against automated attacks.

• A free C program generator, which was used to cre-
ate a dataset of over 4500 different programs in or-
der to benchmark our approach.

• A case study involving over 23000 obfuscated pro-
grams, where we build and test regression models
to predict the resilience of the obfuscated programs
against symbolic execution attacks.
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• A set of highly relevant features for predicting the
effort of attacks based on symbolic execution.

• A model that can predict the resilience of several
code obfuscating techniques against an attack based
on symbolic execution, with over 90% accuracy for
80% of the programs in our dataset.

The remainder of this paper is organized as follows.
Section 2 describes related work. Section 3 describes
our framework and the C program generator. Section 4
describes the case-study. Section 5 presents conclusions
and future work. Acknowledgements are expressed in
Section 6. Details regarding the availability our dataset
and software tools are given in Section 7.

2 Related Work

Collberg et al. [15] proposed a general taxonomy for
evaluating the quality of obfuscating transformations.
This taxonomy states that code obfuscation should be
evaluated with respect to: potency against human-
assisted attacks, resilience against automated attacks,
cost (in terms of performance overhead) added by the
obfuscating transformation and stealth, which measures
the difficulty of identifying parts of obfuscated code in
a given program. Collberg et al. [15] also proposed us-
ing several existing software features to evaluate potency,
namely: program length, cyclomatic complexity, nesting
complexity, data flow complexity, fan-in/-out complex-
ity, data structure complexity and object oriented design
metrics. However, in their empirical studies Ceccato et
al. [11] have found that potency does not always corre-
late with the previous software metrics. Dalla Preda [17]
proposes using abstract interpretation to model attackers,
which can either break a certain obfuscation transfor-
mation or not. However, they do not propose any fine-
grained features for measuring resilience. On the other
hand, there have also been works that propose measures
for resilience. Udupa et al. [46] propose using the edit
distance between control flow graphs of the original code
and deobfuscated code. Mohsen and Pinto [33] propose
using Kolmogorov complexity. Banescu et al. [5] pro-
pose using the effort needed to run a deobfuscation at-
tack. However, they do not attempt to predict the effort
needed for deobfuscation, which has been identified as a
gap in this field [45]. In this paper we focus on predicting
the effort needed by an automated deobfuscation attack.

Our work is complementary to the Obfuscation Exec-
utive (OE) proposed by Heffner and Collberg [23]. The
OE uses software complexity metrics and performance
measurements to choose a sequence of obfuscating trans-
formations, that should be applied to a program in order
to increase its potency, while our paper is solely con-
cerned with resilience. Moreover, the OE also proposes

restrictions regarding which obfuscating transformations
can follow each other. Our work focuses on prediction of
resilience, which is something that the OE does not do.
However, our approach could be integrated into the OE to
improve the decision making process (see Section 4.4).

Karnick et al. [26] proposed to measure the quality of
Java obfuscators by summing up potency and resilience
and subtracting cost of memory consumption, file stor-
age size and execution time from the sum. They mea-
sure potency with a subset of the features proposed by
Collberg et al. [15]. They measure resilience by us-
ing concrete implementations of deobfuscators, measur-
ing whether they were successful or if they encountered
errors and averaging the measurements across the total
number of deobfuscators. We acknowledge that using
multiple concrete implementations of a deobfuscation at-
tack (e.g. disassembly, CFG simplification) is important
to weed out any issues specific to a particular implemen-
tation. However, in this work we aim to provide a more
fine-grained measure of deobfuscation effort, instead of
a categorical classification such as succeeded or failed
for each deobfuscation attack implementation, as done in
[26]. Moreover, we also predict this fine-grained effort.

Anckaert et al. [2] propose applying concrete software
complexity metrics on four program properties (i.e. in-
structions, control flow, data flow and data), to mea-
sure resilience. Similarly to our work, Anckaert et
al. measure resilience of different obfuscating transfor-
mations against concrete implementations of deobfusca-
tion attacks. However, they apply deobfuscation attacks
which are specific to different obfuscating transforma-
tions, while we use a general deobfuscation attack (based
on symbolic execution) on all obfuscating transforma-
tions. Moreover, they disregard the effort needed for de-
obfuscation and measure the effect of different obfuscat-
ing transformations on software complexity metrics and
the subsequent effect of deobfuscation on these metrics.
In this paper we are chiefly concerned with predicting the
effort needed to run a successful deobfuscation attack.

Wu et al. [48] propose using a linear regression model
over a fixed set of features, for measuring the potency
of obfuscating transformations. In contrast to our work,
they do not provide any evaluation of their approach.
They suggest obtaining the ground truth for training and
testing a linear regression model, from security experts
who manually deobfuscate the obfuscated programs and
indicate the effort required for each program, which is far
more expensive compared to our approach of using auto-
mated attacks. We obtain our ground truth by running an
automated attack and recording the effort (measured in
execution time), needed to deobfuscate programs. More-
over, we also propose a way of selecting which features
to use for building a regression model.

In sum, Collberg’s taxonomy [15] proposes evaluating

2



obfuscation using four dimensions. Most of the related
work focuses on simply measuring potency, resilience
and cost. Wu et al. [48] discuss estimating potency.
Zhuang and Freiling [50] propose using a naive Bayes
algorithm to estimate the optimal sequence of obfuscat-
ing transformations, from a performance point of view.
Kanzaki et al. [25] propose code artificiality as a measure
to estimate stealth. However, there is a gap in estimating
resilience, which we fill in this work.

3 Approach

Resilience is defined as a function of deobfuscator ef-
fort1 and programmer effort (i.e. the time spent building
the deobfuscator) [15]. However, in many cases we can
consider the effort needed to build the deobfuscator to
be negligible, because an attacker needs to invest the ef-
fort to build a deobfuscator only once and can then reuse
it or share it with others. Our general approach is il-
lustrated as a work-flow in Figure 1, where ovals depict
inputs and outputs of the software tools, which are rep-
resented by rectangles. The work-flow requires a dataset
of original (un-obfuscated) programs to be able to start
(step 0 in Figure 1). To generate these programs we have
developed a C code generator presented in Section 3.1.
Afterwards, an obfuscation tool is then used to generate
multiple obfuscated (protected) versions of each of the
original programs (step 1 in Figure 1). Subsequently, an
implementation of a deobfuscation attack (e.g. control-
flow simplification [49], secret extraction [5], etc.) is ex-
ecuted on all of the obfuscated programs, and the time
needed to successfully complete the attack for each of
the obfuscated programs is recorded (step 2 in Figure 1).
In parallel, feature values (e.g. source code metrics) are
extracted from the obfuscated programs.

Once the attack times are recorded and software fea-
tures are extracted from all programs, one could directly
use this information to build a regression model for pre-
dicting the time needed for deobfuscation. However,
some features could be irrelevant to the deobfuscation
attack and/or they could be expensive to compute. More-
over, for most regression algorithms the resource usage
during the training phase grows linearly or even expo-
nentially with the number of different features used as
predictors. Therefore, we add an extra step to our ap-
proach, namely a Feature Selection Algorithm, which se-
lects only the subset of features which are most relevant
to the attack (step 3 in Figure 1). Feature selection can be
performed in many ways. Section 3.2 briefly describes
how we approached feature selection. After the relevant

1In this paper we quantify deobfuscator effort via the time it takes to
run a successful attack on a certain hardware platform; however, note
that we could easily map time to CPU cycles, to provide a hardware
independent measure of attack effort.

Figure 1: General attack time prediction framework.

features are selected, the framework uses this subset of
features to build a regression model via a machine learn-
ing algorithm (step 4 in Figure 1).

Note that the proposed approach is not limited to ob-
fuscation and deobfuscation. One can substitute the ob-
fuscation tool in Figure 1, with any kind of software
protection mechanism (e.g. code layout randomization
[38]) and the deobfuscation tool by any known attack
implementation corresponding to that software protec-
tion mechanism (e.g. ROPeme [27]). This way the set
of relevant features and the output prediction model will
estimate the strength of the chosen protection mechanism
against the chosen attack implementation.

3.1 C Program Generator

One important challenge of the proposed approach is ob-
taining a dataset of unobfuscated (original) programs for
the input to the framework. This dataset should be large
enough to serve as a training set for the regression model
in the last step of the framework, because the quality of
the model depends on the training set. Ideally, we would
have access to a large corpus of open source programs
that contain a security check (such as a license check)
that needed to be protected against discovery and tam-
pering, as presented in [4]. For example, we could select
a collection of such programs from popular code sharing
sites such as GitHub. Unfortunately, open source pro-
grams tend not to contain the sorts of security checks
required by our study. To mitigate this we could manu-
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1 void f(int *in , int *out) {
2 long s[2], local1 = 0;
3 // Expansion phase
4 s[0] = in[0] + 762;
5 s[1] = in[0] | (9 << (s[0] % 16 | 1));
6 // Mixing phase
7 while (local1 < 2) {
8 s[1] |= (s[0] & 15) << 3;
9 s[( local1 + 1) % 2] = s[local1 ];

10 local1 += 1;
11 }
12 if (s[0] > s[1]) {
13 s[0] |= (s[1] & 31) << 3;
14 } else {
15 s[1] |= (s[0] & 15) << 3;
16 }
17 s[0] = s[1];
18 // Compression phase
19 out [0] = (s[0] << (s[1] % 8 | 1));
20 }
21 void main(int ac, char* av[]) {
22 int out;
23 f(av[1], &out);
24 if (out == 0xa199abd8)
25 printf("You win!");
26 }

Figure 2: Randomly generated program example.

ally insert a security check into a few carefully chosen
open source programs. While this would have the ad-
vantage of using real code for the study, it does not scale
for a large enough dataset. Moreover, we have noticed
that in capture the flag (CTF) competitions, attackers al-
ways seem to locate the license checking code via pat-
tern recognition or taint analysis [41], in order to reduce
the part of the code which needs to be symbolically ex-
ecuted. Afterwards, they apply symbolic execution on
the license checking code snippet, not on the whole ex-
ecutable code (e.g. built from a GitHub project), which
removes the utility of using open source projects in the
first place. Since we only want to focus on the second
part of this attack (i.e. symbolically executing the license
checking code snippet), our C program generator pro-
duces a large number of simple programs with diverse
license checking algorithms, having a variety of control-
and data-flows.

The code generator operates at the function level.
Each generated function takes an array of primitive type
(e.g. char, int) as input (i.e. in) and outputs another ar-
ray of primitive type (i.e. out), as shown in Figure 2.
Each function first expands the input array into a (typ-
ically larger) state array via a sequence of assignment
statements containing operations (e.g. arithmetic, bit-
wise, etc.) involving the inputs (lines 3-5). After input
expansion, the values in the state array are processed via
control flow statements containing various operations on
the state variables (lines 6-17). Finally, the state array is
compressed into the (typically smaller) output array via
assignment statements (lines 18-19). These three phases
represent a generic way to map data from an input do-
main to an output domain, as a license check would do.

Figure 3: RandomFunsControlStructures grammar

We implemented this approach as the RandomFuns

transformation as part of the Tigress C Diversifier/Obfus-
cator [13]. This transformation offers multiple options2

that can be tuned by the end user in order to control the
set of generated programs. However, here we only pro-
vide a description of those options which have been used
to generate the dataset of programs used in the experi-
ments from Section 4, i.e.:

• RandomFunsTypes indicates the data type of the in-
put, output and state arrays. The current implemen-
tation supports the following primitive types: char,
short, int, long, float and double.

• RandomFunsForBound indicates the type of upper
bound in a for loop. The possible types are: (1) a
constant value, (2) a value from the input array and
(3) a value from the input array modulo a constant.

• RandomFunsOperators indicates the allowable
operators in the body of the function. Possible val-
ues include: arithmetic operators (addition PlusA,
subtraction MinusA, multiplication Mult, division
Div and modulo Mod), left shift Shiftlt, right
shift Shiftrt, comparison operators (less than Lt,
greater than Gt, less or equal Le, greater or equal
Ge, equal Eq, different Ne) and bitwise operators
(and BAnd, or BOr and xor BXor).

• RandomFunsControlStructures indicates the
control structure of the function. If this option is not
set, a random structure will be chosen. The value of
this option is a string, which follows a simple gram-
mar depicted in Figure 3, where (bb n) specifies that
the structure should be a basic block with n state-
ments, where n is an integer. Note that the branch
conditions are implicit and randomly generated.

• RandomFunsPointTest adds an if -statement in the
main function, immediately after the call to the ran-
dom function (lines 24-25 in Figure 2). This if state-
ment compares the output of the random function
with a constant. If the two values are equal then
“You win!” is printed on standard output, indicating
that the random function was given an input which
led it to execute the true branch of the if -statement.
Few inputs of the random function take this path,
hence, finding such an input is equivalent to finding
a valid license key.

2For a full list of options and features visit the web-
page of RandomFuns at http://tigress.cs.arizona.edu/

transformPage/docs/randomFuns.
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The reason why we chose to implement these features is
that we suspect them to be relevant for the deobfuscation
attack presented in [5], which is used in our case study
presented in Section 4. An important limitation of the C
code generator is that it does not add system calls inside
the generated code. We plan to add this feature in future
work.

3.2 Selecting Relevant Features

Given a set of several software features (e.g. complexity
metrics), it is unclear which software features one should
aim to change (by applying various obfuscating transfor-
mations), such that the resulting obfuscated program is
more resilient against certain automated deobfuscation
attacks. A conservative approach would be to simply use
all available software features in order to build a pre-
diction model. However, this approach does not scale
for several regression algorithms, because of the large
amount of hardware resources needed and also the time
needed to train the model. There are several approaches
for feature selection published in the literature, e.g. using
genetic algorithms [8] or simulated annealing [29]. From
our experiments we noticed that such feature extraction
algorithms are time-consuming, i.e. even with datasets of
the order of tens of thousands of entries and a few dozen
features it takes weeks of computation time. We have ex-
perimented also with principal component analysis [40],
however, this approach did not yield better results for
our dataset. Therefore, in this section we describe a
few light-weight approaches for selecting a subset of fea-
tures, which are most relevant for a particular deobfusca-
tion attack. The first approach is based on computing
correlations and the second approach is based on vari-
able importance in regression models. In Section 4 we
compare these approaches by building regression mod-
els using the features selected by each approach.

3.2.1 First approach: Pearson Correlation

One intuitive way to select relevant features, first pro-
posed by Hall [22], is by computing the Pearson correla-
tion [39] between each of the software features and the
attack time. The Pearson correlation is a value in the
range [−1,1]. A positive value means that both the time
needed for deobfuscation and the software feature tend
to have the same increasing trend, while a negative value
indicates that the deobfuscation time decreases as the
software feature increases. If the absolute value of this
correlation is in the range [0.8,1] the variables are said
to be very strongly correlated. Furthermore, the range
[0.6,0.8) corresponds to strong correlation, [0.4, 0.6) to
moderate correlation, [0.2,0.4) to weak correlation, and
(0,0.2) to very weak correlation. Finally, a value of 0 in-

dicates the absence of correlation. After computing the
correlation, we sort the features by their absolute corre-
lation values in descending order and store them in a list
L. The caveat in selecting the top ten features with the
highest correlation is that several of those top ten fea-
tures may contain couples which are highly correlated
with each other. This means that we could discard one of
them and still obtain about the same prediction accuracy.
To avoid this issue, for each pair of highly correlated fea-
tures in L, we remove the one with a lower correlation to
the deobfuscation attack time. Afterwards, we select the
remaining features with the highest correlations.

3.2.2 Second approach: Variable Importance

Another way of selecting relevant features from a large
set of features is to first build a regression model (e.g. via
random forest, support vector machines, neural net-
works, etc.), using all available features and record the
prediction error. Concretely, we would:

1. Check the importance of each variable (i.e. feature)
using the technique described in [9], i.e. add random
noise by permuting values for the i-th variable and
average the difference between the prediction error
after randomization and before.

2. Repeat this for all i = {1, . . . ,n}, where n is the total
number of variables.

3. Rank the variables according to their average dif-
ference in prediction error, i.e. the higher the pre-
diction error, the more important the variable is for
the accuracy of the regression model.

Similarly, to the previous approach based on Pearson
correlation, we select those features which have the high-
est importance. In order to reduce over-fitting the re-
gression model to our specific dataset, we employ 10-
fold-cross-validation, i.e. the dataset is partitioned into
10 equally sized subsets, training is performed on 9 sub-
sets and testing is performed on the remaining subset,
for each combination of 9 subsets. Variable importance
is averaged over all of these 10 regression models. Then
the features are ranked according to their average impor-
tance, i.e. difference in prediction error when the values
of that variable are permuted. This procedure is called
recursive feature elimination [21].

4 Case-Study

This section presents a case-study in which we evaluate
the approach proposed in Section 3. We are interested in
answering the following research questions:
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RQ1 Which features are most relevant for predicting
the time needed to successfully run the symbolic-
execution attack presented in [5]?

RQ2 Which regression algorithms generate models that
can predict the attack effort with the lowest error?

Due to space constraints, in this paper we will focus
on the deobfuscation attack based on symbolic execution
presented in [5], which is equivalent to extracting a secret
license key hidden inside the code of the program via ob-
fuscation. However, in future work we plan to apply the
approach proposed in Section 3, to other types of auto-
mated attacks, such as control-flow simplification [49].
Note that even for other attacks the work-flow from Fig-
ure 1 remains unchanged. However, the attack imple-
mentation and the software features will change.

4.1 Experimental Setup
All steps of the experiment were executed on a physical
machine with a 64-bit version of Ubuntu 14.04, an In-
tel Xeon CPU having 3.5GHz frequency and 64 GB of
RAM. Subsequently we describe the tools that we have
used and how we have used them. The following subsec-
tions correspond to the steps from 0 to 4 in Figure 1.

4.1.1 Dataset of Original Programs

We have used the code generator described in Section 3.1
to generate a dataset of 4608 unobfuscated C programs.
The following is a list of parameters and their corre-
sponding values we used to generate this dataset:

• The random seed value: Seed ∈ {1,2,4} (3 values).

• The data type of variables: RandomFunsTypes ∈
{char, short, int, long} (4 values).

• The bounds of for-loops: RandomFunsForBound ∈
{constant, input, boundedInput} (3 values).

• The operators allowed in expressions: Random-

FunsOperators presented in Table 1 (4 values),
which also describes each parameter value.

• The control structures: RandomFunsControl-

Structures presented in Table 2 (16 values),
which also shows the depth of the control flow.

• The number of statements per basic block was
changed via the value of n ∈ {1,2} from Table 2.

The total number of combinations is therefore: 3 ×
4 × 3 × 4 × 16 × 2 = 4608. All other parameters
were kept to their default values, except for the
RandomFunsPointTest, which was set to true, mean-
ing that the return value of the randomly generated func-
tion is checked against a constant value and if they are
equal the program prints a distinctive message, i.e. “You

RandomFunsOperators Parameter Value Description
PlusA, MinusA, Lt, Gt, Le, Ge, Eq,

Ne

Simple arithmetic and compar-
ison operators

PlusA, MinusA, Mult, Div, Mod, Lt,

Gt, Le, Ge, Eq, Ne

Harder arithmetic and compar-
ison operators

Shiftlt, Shiftrt, BAnd, BXor, BOr,

Lt, Gt, Le, Ge, Eq, Ne

Shift, bitwise and comparison
operators

PlusA, MinusA, Mult, Div, Mod,

Lt, Gt, Le, Ge, Eq, Ne, Shiftlt,

Shiftrt, BAnd, BXor, BOr

Harder arithmetic, shift, bit-
wise and comparison operators

Table 1: Operator parameter values given to C code gen-
erator used for generating dataset.

RandomFunsControlStructures Parameter Value (see
grammar in Figure 3)

Ctrl-
flow
depth

Num.
of if -
stmts

Num.
of
Loops

(if (bb n) (bb n)) 1 1 0
(if (bb n))(if (bb n)) 1 2 0
(if (bb n))(if (bb n))(if (bb n)) 1 3 0
(if (if (bb n) (bb n)) (bb n)) 2 2 0
(if (if (bb n) (bb n)) (if (bb n) (bb n))) 2 3 0
(if (if (if (bb n) (bb n)) (bb n)) (bb n)) 3 3 0
(if (if (if (bb n) (bb n)) (if (bb n) (bb n))) (bb n)) 3 4 0
(if (if (if (bb n) (bb n)) (if (bb n) (bb n))) (if (bb n) (bb n))) 3 5 0
(for (bb n)) 1 0 1
(for (if (bb n) (bb n))) 2 1 1
(for (bb n))(for (bb n)) 1 0 2
(for (for (bb n))) 2 0 2
(for (if (if (bb n) (bb n)) (bb n))) 3 2 1
(for (if (bb n) (bb n))(if (bb n) (bb n))) 2 2 1
(for (if (if (bb n) (bb n)) (if (bb n) (bb n)))) 3 3 1
(for (for (if (bb n) (bb n)))) 3 1 2

Table 2: Control structure parameter values given to C
code generator used for generating dataset.

win!” to standard output. We have set this constant value
to be equal to the output of the randomly generated func-
tion when its input is equal to “12345”. Therefore, all of
the 4608 programs will print “You win!” on the standard
output if their input argument is “12345”. The reason for
doing this will become clear when we explain the deob-
fuscation attack in Section 4.1.3.

Since this set of 4608 programs might seem too homo-
geneous for building a regression model, we used another
set of 11 non-cryptographic hash functions3 in our exper-
iments. Similarly to the randomly generated functions,
these hash functions, process the input string passed as
an argument to the program and it compares the result
to a fixed value. In the case of the hash functions we
print a distinctive message on standard output whenever
the input argument is equal to “my license key”. Ta-
ble 3 shows the minimum, median, average and maxi-
mum values of various code metrics of only the origi-
nal (un-obfuscated) set of programs, as computed by the
Unified Code Counter (UCC) tool [37] and the total num-
ber of lines of code (LOC). Each metric was computed on
the entire C file of each program, which includes the ran-
domly generated function and the main function. Note
that by summing up the metrics on the first 6 rows we
obtain the total number of lines of code in our C pro-
grams. The important thing to note from Table 3 is that

3http://www.partow.net/programming/hashfunctions/
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Code Metric Min Med Avg Max
Calculations 10.00 27.00 34.64 152.00
Conditionals 7.00 10.00 10.02 16.00
Logical 4.00 9.00 12.17 69.00
Assignment 9.00 17.00 18.13 46.00
L1.Loops 2.00 3.00 2.85 4.00
L2.Loops 0.00 0.00 0.19 1.00
Total LOC 32.00 66.00 78.00 288.00
Average CC 2.67 3.33 3.21 4.00

Table 3: Overview of un-obfuscated randomly generated
programs.

these 4608 programs vary in size and complexity, as was
intended, in order to capture a representative range of li-
cense checking algorithms.

To increase the number of programs in this set, we
generated 275 different variants for each of the non-
cryptographic hashes using combinations of multiple ob-
fuscation transformations. The point which we aim to
show here is that even if we add a small heterogeneous
subset to our larger homogeneous set of programs, the
smaller subset is going to be predicted with the same ac-
curacy as the programs from the larger set. Table 4 shows
the minimum, median, average and maximum values of
various code metrics of only the original (un-obfuscated)
non-cryptographic hash functions, as computed by the
UCC tool and the total number of lines of code (LOC).
Each metric was computed on the entire C file of each
program, which includes the hash function and the main
function, but no comment lines or empty lines.

4.1.2 Obfuscation Tool

We have used five obfuscating transformations offered
by Tigress [13], in order to generate five obfuscated ver-
sions of each of the 4608 programs generated by our code
generator and the 11 non-cryptographic hash functions.
The obfuscating transformations we have used are:

• Opaque predicates: introduce branch conditions in
the original code, which are either always true or
always false for any possible program input. How-
ever, their truth value is difficult to learn statically.

• Literal encoding: replaces integer/string constants
by code that generates their value dynamically.

• Arithmetic encoding: replaces integer arithmetic
with more complex expressions, equivalent to the
original ones.

• Flattening: replaces the entire control-flow struc-
ture by a flat structure of basic blocks, such that it is
unclear which basic block follows which.

• Virtualization: replaces the entire code with byte-
code that has the same functional semantics and an
emulator which is able to interpret the bytecode.

Code Metric Min Med Avg Max
Calculations 4.00 6.00 6.45 12.00
Conditionals 3.00 3.00 3.27 4.00
Logical 2.00 6.00 5.36 11.00
Assignment 8.00 9.00 9.91 16.00
L1.Loops 1.00 1.00 1.00 1.00
L2.Loops 0.00 0.00 0.00 0.00
Total LOC 18.00 25.00 25.99 44.00
Average CC 2.00 2.00 2.14 2.50

Table 4: Overview of un-obfuscated simple hash pro-
grams.

We obfuscated each of the generated programs using
these transformations with all the default settings (except
for opaque predicates where we set the number of in-
serted predicates to 16), we obtained 5× 4608 = 23040
obfuscated programs. We obfuscated each of the non-
cryptographic hash functions with every possible pair of
these 5 obfuscation transformations and obtained 25×
11 = 275 obfuscated programs.

Table 5 and Table 6 show the minimum, median,
average and maximum values of various code metrics
of the obfuscated set of randomly generated programs,
respectively the obfuscated programs involving simple
hash functions, as computed by the UCC tool. Each
metric was computed on the entire C file of each pro-
gram, which includes the randomly generated function,
the main function and other functions generated by the
obfuscating transformation which is applied. For in-
stance, the encode literals transformation generates an-
other function which dynamically computes the values
of constants in the code using a switch statement with
a branch for each constant. Due to this reason we also
notice that after applying the encode literals transfor-
mation to a program, its average cyclomatic complexity
(CC) is slightly reduced because this function has CC=1
and it is averaged with two other functions with higher
CCs. Comparing the numbers in these two table with
those from Tables 3 and 4, it is important to note that the
size and complexity of the obfuscated programs have in-
creased by one order of magnitude on average, w.r.t. un-
obfuscated programs.

4.1.3 Deobfuscation Tool

Since all of the original programs print a distinctive mes-
sage (i.e. “You win!”) when a particular input value
is entered, we can define the deobfuscation attack goal
as: finding an input value that leads the obfuscated pro-
gram to output “You win!”, without tampering with the
program. As presented in [4], this deobfuscation goal
is equivalent to finding a hidden secret key and can be
achieved by employing an automated test case genera-
tor. A state of the art approach for test case generation
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Code Metric Min Med Avg Max
Calculations 22.00 98.00 183.36 870.00
Conditionals 4.00 21.00 105.41 504.00
Logical 4.00 14.00 63.75 458.00
Assignment 10.00 32.00 222.88 1078.00
L1.Loops 2.00 3.00 2.99 10.00
L2.Loops 0.00 0.00 0.25 12.00
Total LOC 42.00 168.00 578.64 2932.00
Average CC 1.80 5.25 15.73 66.75

Table 5: Overview of obfuscated randomly generated
programs.

Code Metric Min Med Avg Max
Calculations 18.00 27.00 127.70 350.00
Conditionals 3.00 10.00 100.81 444.00
Logical 2.00 6.00 54.45 240.00
Assignment 11.00 17.00 217.36 963.00
L1.Loops 1.00 1.00 1.02 2.00
L2.Loops 0.00 0.00 0.36 3.00
Total LOC 35.00 61.00 501.70 2002.00
Average CC 1.50 3.33 18.80 76.00

Table 6: Overview of obfuscated simple hash programs.

is called dynamic symbolic execution (often it is simply
called symbolic execution). Such an approach is imple-
mented by several free and open source software tools
such as KLEE [10], angr [44], etc. The first step of
symbolic execution is to mark a subset of program data
(e.g. variables) as symbolic, which means that they can
take any value in the range of its type. Afterwards, the
program is interpreted and whenever a symbolic value
is involved in an instruction, its range is constrained ac-
cordingly. Whenever a branch based on a symbolic value
is encountered, symbolic execution forks the state of the
program into two different states corresponding to each
of the two possible truth values of the branch. The ranges
of the symbolic variable in these two forked states are
disjoint. This leads to different constraints on symbolic
variables for different program paths. The symbolic ex-
ecution engine sends these constraints to an SMT solver,
which tries to find a concrete set of values (for the sym-
bolic variables), which satisfy the constraints. Giving the
output of the SMT solver as input to the program will
lead the execution to the path corresponding to that con-
straint.

Since we have the C source code for the obfuscated
programs, we chose to use KLEE as a test case genera-
tor in this study. We ran KLEE with a symbolic argu-
ment length of 5 characters, on all of the un-obfuscated
and obfuscated programs generated by our code gen-
erator, for 10 times each. All of the symbolic execu-
tions successfully generated a test case where the in-
put was “12345”, which is the input needed to achieve
the attacker goal. Similarly we ran KLEE with a sym-

bolic argument length of 16 characters, on all of the un-
obfuscated and obfuscated non-cryptographic hash func-
tions, for 10 times each. Again the correct test cases were
generated on all symbolic executions, but this time the
input was “my license key”. Note that this is only one
way to attack an obfuscated program, and that it does not
produce a simplified version of the obfuscated code as in
[49]. Rather, it extracts a hidden license key value from
the obfuscated code. We computed the mean (M) and the
standard deviation (SD) of the reported times across all
the 10 runs of KLEE and obtained that 83% of the pro-
grams have a relative standard deviation (RSD = SD/M)
under 0.25 and 94% have RSD ≤ 0.50. This means that
the difference between multiple runs of KLEE on the
same program is small.

4.1.4 Software Feature Extraction Tools

Many papers [32, 43, 1, 4] suggest that the complexity of
branch conditions is a program characteristic with high
impact on symbolic execution. However, these papers
do not clearly indicate how this complexity should be
measured. One way to do this is by first converting the
C program into a boolean satisfiability problem (SAT in-
stance), and then extracting features from this SAT in-
stance. There are several tools that can convert a C pro-
gram into a SAT instance, e.g. the C bounded model
checker (CBMC) [12] or the low-level bounded model
checker (LLBMC) [31], etc. However, the drawback of
these tools is that the generated SAT instances may be as
large as 1GBs even for programs containing under 1000
lines of code, because they are not optimized. Hence, for
our dataset, the generated SAT instances would require
somewhere in the order of 10TBs of data and several
weeks of computational power, which is prohibitively ex-
pensive.

Instead, we took a faster alternative approach for ob-
taining an optimized SAT instance from a C program,
which we describe next. KLEE generates a satisfiability
modulo theories (SMT) instance for each execution path
of the C program. We selected the SMT instance cor-
responding to the difficult execution path that prints out
the distinctive message on standard output4. These SMT
instances (corresponding to the difficult path), were the
most time-consuming to solve by KLEE’s SMT solver,
STP [19]. Many SMT solvers, including Microsoft’s
Z3 [18], internally convert SMT instances to SAT in-

4Note that it is not necessary to execute KLEE to obtain the SMT
instance corresponding to the difficult execution path. The developer
knows the correct license key, therefore s/he can give the correct license
key and record the instruction trace of the execution. Afterwards, the
developer can substitute the constant input argument in the trace, with
a symbolic input and then extract the path constraint by combining all
expressions in the trace. This path constraint does not need to be solved
by the SMT solver, but simply converted to SAT.
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stances in order to solve them faster. Therefore, we mod-
ified the source code of Z3 to output the internal SAT
instance, which we saved in separate files for each of
the programs in our dataset. For extracting features from
these SAT instances we used SATGraf [36], which com-
putes graph metrics for SAT instances, where each node
represents a variable and there is an edge between vari-
ables if they appear in the same clause. SATGraf com-
putes features such as the number of community struc-
tures in the graph, their modularity (Q value), and also
the minimum, maximum, mean and standard deviation
of nodes and edges, inside and between communities.
Such features have been shown to be correlated with
the difficulty of solving SAT instances [35]. Therefore,
since symbolic execution includes many queries to an
SMT/SAT solver, as shown in [4], these features are ex-
pected to be good predictors of the time needed for a
symbolic execution based deobfuscation attack. In sum,
we transform the path that corresponds to a successful
deobfuscation attack into a SAT instance (via an SMT
instance), and then compute characteristics of this for-
mula, to be used as features for predicting the effort of
deobfuscating the program.

For computing source code features often used in soft-
ware engineering, on both the original and obfuscated
programs, we used the Unified Code Counter (UCC)
tool [37]. This tool outputs a variety of code metrics in-
cluding three variations of the McCabe cyclomatic com-
plexity, their average and the number of: calculations,
conditional operations, assignments, logical operations,
loops at three different nesting levels, pointer opera-
tions, mathematical operations, logarithmic operations
and trigonometric operations. For the programs in our
dataset the last four metrics are all zeros, therefore, in
our experiments we only used the other eleven metrics.
Additionally, we also propose using four other program
features, namely: the execution time of the program, the
maximum RAM usage of the program, the compiled pro-
gram file size and the type of obfuscating transformation.

In total we have 64 features out of which 49 are SAT
features which characterize the complexity of the con-
straints on symbolic variables and 15 are program fea-
tures which characterize the structure and size of the
code. In the following we show that not all of these fea-
tures are needed for good prediction results.

4.1.5 Regression Algorithms

For the purpose of regression we have used the R soft-
ware environment5 for statistical computing. R provides
several software packages for regression algorithms out
of which we used e1071, randomForest, rgp and h2o:

5https://www.r-project.org/

• The “e1071” package for regression via the support
vector machine (SVM) algorithm.

• The “randomForest” package for regression via the
random forest (RF) algorithm.

• The “rgp” package for regression via genetic pro-
gramming (GP).

• The “h2o” package for regression via neural net-
works (NNs).

4.2 Feature Selection Results
This section presents the results for the Feature Selection
Algorithms presented in Section 3.2. However, before se-
lecting the most relevant features, we identify how many
features (predictor variables) are needed to get good pre-
diction results. For this purpose we performed a 10-fold-
cross validation with linear and random forest (RF) re-
gression models using all combinations of 5, 10 and 15
metrics, as well as a model with all metrics. The results
in Figure 4 show that using 15 variables is enough to ob-
tain an RF model with root-mean-squared-error (RMSE)
values which are as good as those from RF models built
using all variables. Similar results were obtained for lin-
ear models, except that the overall RMSE was higher
w.r.t. that of the RF models. Therefore, in the experi-
ments presented in the following sections, we will only
select the top best 15 features in both of the two ap-
proaches described in Section 3.2.

4.2.1 First approach: Pearson Correlation

After employing the algorithm described in Sec-
tion 3.2.1, we were left with a set of 25 features,
with their Pearson correlation coefficients ranging from
0.4523 to -0.0302. The top 15 metrics in this range
are shown in Figure 5. The strongest Pearson correla-
tion of the time needed for running the deobfuscation
attack is with the average size of clauses in the SAT in-
stance (mean clause), followed by: the average number
of times any one variable is used (meanvar), the stan-
dard deviation of the ratio of inter to intra community
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edges (sdedgeratio), the average number of intra com-
munity edges (meanintra), the average number of times
a clause with the same variable (but different literals)
is repeated (mean reused), the average community size
(meancom), the number of unique edges (unique edges),
the number of variables (vars), the standard deviation
of the number of inter community edges (sdinter), the
maximum number of distinct communities any one com-
munity links to (max community), the number of com-
munities detected with the online community detection
algorithm (ol coms), the maximum ratio of inter to in-
tra community edges within any community (maxedger-
atio), the maximum number of inter community edges
(maxinter), the maximum number of edges in a commu-
nity (max total) and finally the type of obfuscation trans-
formation employed.

None of the previous features are very strongly cor-
related to deobfuscation time. The first three features
are moderately correlated, the following ten features are
weakly correlated and finally the last two features are
very weakly correlated. However, notice that the top
fourteen features are all SAT features, and none are code

metrics from the UCC tool or program features such as
execution time, memory usage or file size.

4.2.2 Second approach: Variable Importance

To rank our features according to variable importance
we performed recursive feature elimination via random
forests, as indicated in Section 3.2.2. Figure 6 shows
the top 15 features sorted by their variable importance.
The features selected using this approach are quite dif-
ferent from those selected in Section 4.2.1. The com-
mon features between these two approaches are: sdinter,
ol coms, sdedgeratio, meancom and meanintra. The first
two common features are ranked 2nd and 3rd according
to variable importance, however, the most important fea-
ture w.r.t. variable importance is the weight of the graph
(weight), computed as the sum of positive literals mi-
nus the sum of negative literals. The 4th most important
variable in Figure 6 is the average number of inter com-
munity edges (meaninter), followed by: sdedgeratio,
meancom, meanintra (see descriptions of these 3 features
in Section 4.2.1), the standard deviation of community
sizes (sdcom), the standard deviation of intra community
edges (sdintra), the modularity of the SAT graph struc-
ture (ol q), the overall ratio of inter to intra community
edges (edgeratio), the category of the McCabe cyclo-
matic complexity [30] (Risk), the number of outer-loops
(L1.Loops), the size of the longest clause (max clause)
and the number of communities that have the maximum
number of inter community edges (num max inter).

Similarly, to the first approach, the majority of se-
lected features are SAT features. The only two features
which are not SAT features are Risk and L1.Loops which
are computed by the UCC tool. The number of loops was
indeed indicated also in [4] as being an important fea-
ture. The Risk has four possible values depending on the
value of the cyclomatic complexity (CC), i.e. low if CC
∈ [1,10], moderate if CC ∈ [11,20], high if CC ∈ [21,50]
and very high if CC is above 50. CC gives a measure
of the complexity of the branching structure in programs
(including if-statements, loops and jumps). However, it
is remarkable that the CC value was ranked lower than
the Risk.

4.2.3 Insights from Feature Selection Results

SAT features are important for symbolic execution, be-
cause most of the time of the attack is spent waiting for
the SAT solver to find solutions for path constraints [4].
Taking a closer look at the common SAT features of both
feature selection approaches, we can characterize those
SAT instances, which are harder to solve. The graph
representation of such an instance has a large number of
balanced community structures, i.e. a similar number of
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Figure 7: Graph representation of SAT instance corre-
sponding to an MD5 hash with 27 rounds. Solving this
instance takes approximately 25 seconds on our testbed.

Figure 8: Graph representation of SAT instance corre-
sponding to a program whose symbolic execution time is
under 1 second.

intra- and inter-community edges. On the other hand,
easy to solve instances tend to have established com-
munity structures, i.e. many more intra-community, than
inter-community edges. To check this observation, we
downloaded the Mironov-Zhang [32] and the Li-Ye [28]
benchmark suites for SAT solvers, containing solvable
versions of more realistic hash functions such as MD5
and SHA. All of these instances had balanced commu-
nity structures. For example, Figure 7 illustrates the

graph representation of the SAT instance6 of the MD5-
27-4 hash function of the Li-Ye benchmark suite[28]
proposed during the 2014 SAT Competition. It is visi-
ble – from the number of yellow dots – that this graph
has a high number of variables. More importantly it
is also visible that one cannot easily distinguish graph
community structures, because they are relatively small
and well connected with other communities. This kind
of structure is hard to solve, because each assignment of
a variable has a large number of connections and there-
fore ramifications inside the graph at the time when unit
propagation is performed by the SAT solver. However,
note that if the graph is fully connected, then it is easy to
solve. Therefore, there is a fine line between having too
many connections and too few, where the difficulty of
SAT instances increases dramatically. This last observa-
tion is similar to the constrainedness of search employed
by Gent et al. [20], when analyzing the likelihood of find-
ing solutions to different instances of the same search
problem. This makes sense since a SAT solver is execut-
ing a search when it is trying to solve a SAT instance.

On the other hand, many of our randomly generated
C programs which were fast to deobfuscate, had estab-
lished community structures. For example, Figure 8 il-
lustrates the graph representation of a program generated
using our C code generator. This program was generated
with the following parameter values:

• RandomFunsTypes was set to int.

• RandomFunsForBound was set to a constant value.

• RandomFunsOperators was set to Shiftlt,
Shiftrt, Lt, Gt, Le, Ge, Eq, Ne, BAnd, BOr and
BXor.

• RandomFunsControlStructures was set to (if (if
(if (bb n) (bb n)) (if (bb n) (bb n))) (if (bb n) (bb n))).

• n = 1.

• RandomFunsPointTest was set to true.

Given these parameter values, this instance is expected
to be fast to solve, because it does not involve any loops
dependent on symbolic inputs and it only involves logical
and bitwise operators.

In this context of representing SAT instances as
graphs, it is interesting to note the effect of obfuscation
transformations on SAT instances. For instance, Figure 9
illustrates the SAT instance of a non-obfuscated, non-
cryptographic hash function from our dataset. The com-
munity structures of this hash function are established,
hence, the instance can be solved in about 7.5 seconds.

6These graph representations were generated using the SATGraf
tool [36].
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Figure 9: Graph representation of SAT instance corre-
sponding to a non-cryptographic hash function which is
solved in about 7.5 seconds.

Figure 10: Graph representation of SAT instance corre-
sponding to same non-cryptographic hash function from
Figure 9, after being obfuscated with virtualization and
subsequently control-flow flattening. This instance is
solved in about 438 seconds.

However, after applying two layers of obfuscation, first
using the virtualization and then the flattening, trans-
forms the SAT instance of this program into the one illus-
trated in Figure 10. This instance, has a balanced com-
munity structure, hence, slower to solve (438 seconds)
and shares a resemblance to the MD5 instance from Fig-
ure 7. We have also noticed that the arithmetic encoding
transformation has this effect on SAT instances. How-
ever, the opaque predicate and literal encoding alone do
not have such an effect.

As a conclusion of this section we observe that bal-
anced community structures translate to a high diffusion
of the symbolic input to output bits, i.e. affecting any bit
of the input license key will affect the result of the output.
This is the case for collision-resistant hash functions, as
well as the effect of obfuscation transformations like vir-
tualization, flattening and arithmetic encoding.

4.3 Regression Results

For each of the regression algorithms presented next,
we have used several different configuration parameters.
Due to space limitations, we only present the configu-
ration parameters which gave the best results. We ran-
domly shuffled the programs in our 2 datasets of pro-
grams into one single dataset and performed 10-fold
cross-validation for each experiment. To interpret the
root-mean-squared-error (RMSE) we normalize it by the
range between the fastest and slowest times needed to
run the deobfuscation attack on any program from our
dataset. Since our dataset contains outliers (i.e. either
very high and very low deobfuscation times), the nor-
malized RMSE (NRMSE) values are very low for all al-
gorithms, regardless of the selected feature subsets, as
shown in Table 7. This could be misinterpreted as ex-
tremely good prediction accuracy regardless of the re-
gression algorithm and feature set. However, we pro-
vide a clearer picture of the accuracy of each regression
model by computing the NRMSEs after removing 2%
and 5% of outliers from both the highest and the lowest
deobfuscation times in the dataset. This means that in
total we remove 4%, respectively 10% of outliers. In-
stead of showing just the numeric values of the NRMSE
for each these three cases (0%, 4% and 10% of outliers
removed), we show cumulative distribution functions of
the relative (normalized) error in the form of line plots,
e.g. Figure 11. These line plots show the maximum and
the median errors for all the three cases, where the x-
axis represents the percentage of programs for which the
relative error (indicated on the y-axis) is lower than the
plotted value.

Note that in addition to the following regression al-
gorithms we have also employed both linear models and
generalized linear models [34]. However, the results of
the models generated by these algorithms were either
much worse compared to the models presented in the fol-
lowing, or the models did not converge after 24 hours.

4.3.1 Random Forests (RFs)

Random forests (RFs) were proposed by Breiman [9] as
an extension of random feature extraction, by including
the idea of “bagging”, i.e. computing a mean of the pre-
diction of all random decision trees. In our experiments
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SVM RF GP NN
UCC (11 features) 0.019 0.016 0.018 0.018
Pearson (15 features) 0.017 0.013 0.015 0.015
Var. Importance (15 features) 0.019 0.013 0.015 0.015

Table 7: The NRMSE between model prediction and
ground truth (average over NRMSE of 10 models)
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Figure 11: Relative prediction error of RF model.

we constructed a RF containing 500 decision trees.
Figure 11 shows the maximum and median relative er-

rors for 0%, 4% and 10% of outliers removed. As more
outliers are removed the relative error increases due to
a decrease in the range of deobfuscation times in the
dataset. However, even when 10% of outliers are re-
moved, the maximum error is under 17% and the median
error is less than 4% for 90% of the programs, which
seems acceptable for most use cases.

Note that the model in Figure 11 was built using the
15 features selected via variable importance, presented
in Section 4.2.2. We chose to show the results from the
model built using these features because, they are better
than those produced by models built using other subsets
of features. As we can see from Figure 12, the relative er-
ror values when building models with UCC metrics only
and with the Pearson correlation approach, give worse re-
sults in terms of both maximum and median error rates.

4.3.2 Support Vector Machines (SVMs)

Support vector machines (SVMs) were proposed by
Cortes and Vapnik [16] to classify datasets having a high
number of dimensions, which are not linearly separable.

Figure 13 shows the relative errors for the SVM model
built using the features selected via the second approach
(see Section 4.2.2). The accuracy of this model is lower
than the RF model from Figure 11, i.e. the maximum rel-
ative error is just below 35% for 90% of the programs,
when we remove 10% of the outliers. However, the me-
dian error is less than 7% in the same circumstances. The
reason why SVM performs worse than RF is due to the
bagging technique applied by RF, whereas SVM uses a
single non-linear function.
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Figure 12: RF models with different feature sets.
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Figure 13: Relative prediction error of SVM model.

Again we chose to show the SVM model built us-
ing the features selected via variable importance in Fig-
ure 13, because, as we can see from Figure 14, the
maximum and median error rates for this model are
much lower than the SVM models built using only UCC
metrics or the features selected via Pearson correlation.
However, note that the maximum error of the model built
using variable importance surpasses that of the other two
models around the 90% mark on the horizontal axis. This
means that for 10% of the programs the maximum error
of the model built using the features selected by variable
importance, is higher that the error of the other two mod-
els. However, note that the median error is around 10%
lower in the same circumstances.

4.3.3 Genetic Programming (GP)

Given the set of all code features as a set of input vari-
ables, GP [24] searches for models that combine the in-
put variables using a given set of functions used to pro-
cess and combine these variables, i.e. addition, multipli-
cation, subtraction, logarithm, sinus and tangent in our
experiments. GP aims to optimize the models such that a
given fitness function is minimized. For our experiments,
we used the root-mean-square error (RMSE) between
the actual time needed for deobfuscation and the time
predicted by the model, as a fitness function. The output
of GP is one of the generated models with the best fitness
value. In our case this member is a function of the code
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Figure 14: SVM models with different feature sets.
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Figure 15: Relative prediction error of GP model.

features, which has the smallest error in predicting the
time needed to execute the deobfuscation attack on every
program. For instance, the best GP model built using the
features selected via variable importance is presented in
equation 1:

time = (edgeratio+ cos(ol coms)

+ cos(cos(sdcom+num max inter)+L1.Loops))

∗ (sdinter∗ (sdedgeratio− sin(meanintra∗−1.27)))

∗ (sdedgeratio− sin(meanintra∗−1.27))

∗ (1.03− sin(0.04∗ sdinter))

∗ sdedgeratio+10.2

(1)

Note that only seven distinct features were selected by
the GP algorithm for this model, from the subset of 15
features. Figure 15 shows the maximum and median
error values for the GP model from equation 1. Note
that the maximum and median error levels for the dataset
where 10% of outliers are removed, are 55%, respec-
tively 19% for 90% of the programs. This error rate is
much higher than both RFs and SVMs and is due to the
fact that the GP model is a single equation.

4.3.4 Neural Networks (NNs)

Multi-layer neural networks (NNs) were introduced by
Werbos [47] in the 1970s. Recently, the interest in NNs
has been revived due to the increase in computational re-
sources available in the cloud and in graphical processing
units. A neural network has three characteristics. Firstly,
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Figure 16: Relative prediction error of NN model.

the architecture which describes the number of neuron
layers, the size of each layer and connection between the
neuron layers. In our experiments we used a NN with five
hidden layers each containing 200 neurons. The input
layer consists of the set of code features and the output
of the NN is a single value that predicts the time needed
to run the deobfuscation attack on a program. Secondly,
the activation function which is applied to the weighted
inputs of each neuron. This function can be as simple as
a binary function, however it can also be continuous such
as a Sigmoid function or a hyperbolic tangent. In our ex-
periments we use a ramp function. Thirdly, the learning
rule which indicates how the weights of a neuron’s input
connections are updated. In our experiment we used the
Nesterov Accelerated Gradient as a learning rule.

Figure 16 shows the maximum and median error of
the NN model built using all metrics. Note that in the
case of NNs it is feasible to use all metrics without incur-
ring large memory usage penalties such as is the case for
SVMs. The performance of this model is better than the
SVM and GP models, but not better than the RF model.

4.4 Summary of Results

Based on the results presented above, we answer the re-
search questions elicited in the beginning of Section 4.
Firstly, in Figure 4 we have seen that given our large set
of 64 program features, using only 15 is enough to obtain
regression models with RMSEs as low as the regression
models where all the features are used. From Figures 5
and 6 we have seen that both approaches to feature selec-
tion ranked SAT features above code metrics commonly
used to measure resilience, namely cyclomatic complex-
ity or the size of the program. This means that the most
important characteristics for symbolic execution based
attacks is the complexity of the constraints on symbolic
variables. The reason why SAT features have a higher
impact on symbolic execution is that most of the time
during symbolic execution is spent waiting for the SMT
solver and these features indicate the time that is needed
by the SMT solver to find a counter example for path
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Figure 17: Comparison of regression algorithms.

constraints.
Secondly, Table 7 shows the RMSE for different re-

gression models normalized by the fastest and slowest
deobfuscation attacks in our dataset. Since our dataset
contains outliers, the results from Table 7 are mislead-
ing. Therefore we removed 4% and 10% of the outliers
from our dataset and plotted the cumulative distribution
of the errors for each of the regression models. From
Figures 12 and 14 we observe that the second approach
to feature selection, based on variable importance, gives
better results than the first approach, based on Pearson
correlation. Therefore, in Figure 17 we plot the maxi-
mum and median errors of the models from the four dif-
ferent regression algorithms, where 10% of outliers are
removed from the dataset. From this figure we observe
that RF has the lowest overall maximum error rate, fol-
lowed by NN, SVM and GP. However, the median error
of the RF, NN and SVM models are all lower than 8%
for all programs. This indicates that if the median error
is the key performance indicator, it is much less impor-
tant whether we pick RF, NN or SVM as the regression
algorithm.

Another observation is that the size of the prediction
models from RF models are generally smaller than those
of SVM models. However, models obtained from GP
and NN are one, respectively two orders of magnitude
smaller than RF models. The size of SVM, RF and GP
models grows proportionally to the number of features
used. An advantage of NN models is their relatively
small size of around 50 Kilobytes is constant for any
number of features used. This is understandable because
the number of weights and neurons is negligibly influ-
enced by the number of features used to build the model.

In sum, the most relevant features for characterizing
the deobfuscation attack based on symbolic execution,
are SAT features (RQ1). Moreover, the regression al-
gorithm which yields the highest prediction accuracy is
random forest (RQ2).

These results can be used to build the Smart Obfus-
cation Engine (SObE) shown in Figure 18, where the
ovals represent inputs and outputs. SObE takes three in-

Figure 18: Combining results with obfuscation tools.

puts: (1) the original program source code, (2) the maxi-
mum allowed performance overhead of the resulting ob-
fuscated program and (3) the resource and time available
to the attacker (attacker budget). SObE first gives the
original program to the Obfuscation Executive (OE) [23]
(see Section 2), which applies a set of obfuscation trans-
formations that satisfy the maximum allowed overhead.
Afterwards, SObE computes the relevant features (de-
termined in Section 4.2) on the obfuscated program and
then uses the best prediction model from Section 4.3 to
estimate the effort needed by the deobfuscation attack. If
the effort is less than the attacker’s budget, then this is
signaled to the OE and the process restarts, otherwise the
obfuscated program is output.

4.5 Threats to Validity
In our case study, we have generated a dataset of unob-
fuscated programs of up to a few 100s of lines of code
(LOC). Obfuscating these programs generates programs
having up to a few 1000s of LOC. Therefore, the regres-
sion models generated in the case study may not be ac-
curate for all possible programs. However, in our ex-
periments we have found that the size of the program
is very weakly correlated with the time needed to run
the deobfuscation attack based on symbolic execution.
We show that the prediction accuracy of our best RF
model (from Figure 11) is high even when including a
small non-artificial dataset of programs containing non-
cryptographic hash functions. Figure 19 shows the pre-
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Figure 19: Relative error of hash functions only.
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diction error of our best RF model (trained using 10-fold-
cross-validation on both datasets), for the samples in the
smaller dataset alone, has similar levels to the prediction
error of the entire dataset.

We also performed a reality check, i.e. we verified that
the SAT features we identified are also relevant for the re-
alistic hash functions from the Mironov-Zhang [32] and
the Li-Ye [28] benchmark suites for SAT solvers. We
selected the top 10 SAT metrics from Section 4.2 and
trained a random forest (RF) model using the SAT in-
stances corresponding to the C programs in our obfus-
cated dataset of randomly generated programs and non-
cryptographic hash functions. Afterwards, we applied
this RF model to a set of more realistic hash functions
from the Mironov-Zhang [32] and the Li-Ye [28] bench-
mark suites for SAT solvers, containing solvable versions
of more realistic hash functions such as MD5 and SHA.
Table 8 shows the results obtained from applying the RF
model to the hash functions, which were solvable by the
minisat solver used by STP (KLEE’s SMT solver), on
our machine. Note that the Li-Ye [28], suite contains
many other instances of MD5 with more rounds, how-
ever, those could not be solved within a 10 hour time
limit on our test machine. The last column of Table 8
gives the ratio between the predicted and the actual time
needed to solve each instance. Except for the mizh-md5-
47-4 and mizh-md5-47-5 SAT instances, which are the
most over- and respectively under-estimated, the rest of
the predictions are quite encouraging, given that we have
not trained the RF model with any such realistic SAT in-
stances. Therefore, we obtained encouraging results with
a median prediction error of 52%, which is quite remark-
able given the fact that our model was not trained using
these realistic instances.

5 Conclusions

This paper presents a general approach towards build-
ing prediction models that can estimate the effort needed
by an automated deobfuscation attack. We evaluated our
approach using a dataset of programs produced by our C
code generator. For programs that our generated dataset
is representative, features such as the complexity of path
constraints (measured via SAT features), are more im-
portant than cyclomatic complexity, size of the program,
number of conditional operations, etc. With a median er-
ror of 4% our best model can accurately predict the time
it takes to deobfuscate a program using a symbolic exe-
cution based attack, for programs in our dataset. More-
over, we have also obtained encouraging results with re-
alistic hash functions such as MD5 and SHA instances
used in SAT competitions.

Note however, that our framework is not specific to
symbolic execution and can be used for other attacks,

Instance Name Solver(s) Predicted(s) Predicted
Solver

MD5-27-4 25.37 71.56 2.82
mizh-md5-47-3 681.29 950.43 1.39
mizh-md5-47-4 235.53 1069.19 4.53
mizh-md5-47-5 1832.96 437.98 0.23
mizh-md5-48-2 445.19 523.70 1.17
mizh-md5-48-5 227.05 644.38 2.83
mizh-sha0-35-2 330.48 158.57 0.47
mizh-sha0-35-3 139.93 213.03 1.52
mizh-sha0-35-4 97.62 214.61 2.19
mizh-sha0-35-5 164.71 193.49 1.17
mizh-sha0-36-2 85.44 222.07 2.59

Table 8: Prediction results of realistic hash functions via
RF model trained with SAT features from Section 4.2.
The solver and predicted time are given in seconds.

other programs and other obfuscators. Finally, we com-
pared different regression algorithms both in terms of
prediction error and memory consumption and conclude
that the choice of regression algorithm is less important
than the choice of features when it comes to predicting
the effort needed by the attack. However, we obtained
the lowest maximum error using a random forest model,
built with features selected using variable importance. In
terms of memory usage genetic algorithms and neural
networks have a lower memory footprint, however their
training times may be much higher.

In future work we plan to use datasets consisting
of real-world programs, additional obfuscation tools
and deobfuscation attacks. We believe that obtain-
ing representative datasets of programs would also be
of paramount importance for benchmarking both new
and existing obfuscation and deobfuscation techniques.
Therefore, we believe this area of research needs much
more work, since it could be a driving factor for the field
of software protection.

Another avenue for future work is to employ other ma-
chine learning techniques in order to derive better pre-
diction models for deobfuscation attacks. An interesting
idea in this direction is deriving attack resilience features
using deep neural networks. However, such a task would
also require a set of representative un-obfuscated pro-
grams, which stresses the importance of future work in
this direction.
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7 Availability

Our code generator is part of the Tigress C Diversi-
fier/Obfuscator tool. Binaries are freely available at:

http://tigress.cs.arizona.edu/

transformPage/docs/randomFuns

Source code is available to researchers on request. Our
dataset of original (unobfuscated) programs, as well as
all scripts and auxiliary software used to run our experi-
ments, are available at:

https://github.com/tum-i22/

obfuscation-benchmarks/
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