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Abstract. We study the problem of approximating binary images that are accessible only
through few evaluations of their discrete X-ray transform, i.e., through their projections counted
with multiplicity along some lines. This inverse discrete problem belongs to a class of generalized
set partitioning problems and allows natural packing and covering relaxations. For these (NP-hard)
optimization problems we present various approximation algorithms and provide estimates for their
worst-case performance. Further, we report on computational results for various variants of these
algorithms. In particular, the corresponding integer programs are solved with only small absolute
error for instances up to 250, 000 binary variables.
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1. Introduction. The present paper studies various algorithms for finding ap-
proximate solutions for an inverse discrete problem that is most prominently moti-
vated by the demand in material science for developing a tool for the reconstruction
of 3-dimensional crystalline structures that are accessible only through some images
provided by high resolution transmission electron microscopy. In fact, the articles [13]
and [18] describe a new technique called QUANTITEM for the quantitative analysis
of the information provided by transmission electron microscopy that can effectively
measure the number of atoms lying on each line parallel to a given set of directions.

Mathematically, this is the inverse problem of reconstructing certain discrete den-
sity functions from their discrete X-rays in certain directions. More precisely, the basic
question is the following. Can a finite set of points in the integer lattice Z

3 be (approx-
imately) reconstructed from measurements of the number of its points lying on each
line parallel to one of a small prescribed number of directions specified by nonzero
vectors in Z

3? Here small means 3, 4, or 5 since the energy that is needed to produce
the images is about 200 keV so that after a few exposures the object is damaged.

Various approaches have been suggested for solving the general reconstruction
problem, and various theoretical results are available; see, e.g., [9] for a survey. In the
present paper we concentrate on approximative solutions. Even though most of the
resulting combinatorial optimization problems are NP-hard, we prove in section 3 that
some (relatively) simple algorithms yield already very good worst-case bounds. As
section 4 indicates, these algorithms perform even better in computational practice.

Let us close the introduction with a word of warning. Typically, when one is
dealing with optimization problems in practice it is completely satisfactory to pro-
duce solutions that are close to optimal. For instance, a tour for a given instance of the
traveling salesman problem that is off by only a few percents is for many practical pur-
poses almost as good as an optimal tour. This is because the particular optimization
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 523

is typically just part of a much more complex real world task, and the improvement
over existing methods is governed by so many much harder to influence factors that
a small error in the optimization step does not really matter by any practical means.
This is different in the context of our prime application. The relevant measure for
the quality of an approximation to a binary image would of course be the deviation
from this image. Hence, in order to devise the most appropriate objective function
one would have to know the underlying solution of the given inverse problem. How-
ever, the whole point is of course to find this unknown solution. Hence, one can only
consider objective functions, with respect to which the approximation is evaluated,
that are based on the given input data. While a good approximation in this sense is
close to a solution in that its X-ray images in the given directions are close to those
of the original set, the approximating set itself may be off quite substantially. In fact,
the inverse discrete problem is ill-posed and it is precisely this property that causes
additional difficulties. In particular, if the input data do not uniquely determine the
image, even a “perfect” solution that is completely consistent with all given data may
be quite different from the unknown real object.

Obviously there is more work to be done to handle the ill-posedness of the problem
in practice. Hence, the results of this paper should be regarded only as a first (yet
reassuring!) step in providing a computational tool that is adequate for the real world
applications outlined above. In particular, our approximate algorithms can be used
to provide lower bounds in branch-and-cut approaches that incorporate strategies to
handle the nonuniqueness of solutions and the presence of noise in the data.

The paper is organized as follows. Section 2 provides the basic notation, states
the problems and algorithmic paradigms that are most important in the context of the
present paper, and gives a brief overview of our main results. Section 3 studies various
polynomial-time iterative improvement strategies for inner and outer approximation.
We derive performance ratios that show that in this model the optimum can be ap-
proximated up to a relative error that depends only on the number m of directions
in which the X-ray data are available. The analysis is based on work of Hurkens and
Schrijver [12], Goldschmidt, Hochbaum, and Yu [8], and Halldórsson [11] for set pack-
ing and set covering heuristics. Our theoretical worst-case bounds are complemented
by extremely satisfactory computational results described in section 4.

2. Preliminaries and results.

2.1. Basics of discrete tomography. We use the general setting of a d-
dimensional Euclidean space E

d, with d ≥ 2, though only the cases d = 2, 3 are
relevant in practice. Let S1,d be the set of all 1-dimensional subspaces in E

d, and let
Fd denote the family of finite subsets of Z

d. For F ∈ Fd let |F | be the cardinality of
F . A vector v ∈ Z

d \ {0} is called a lattice direction; L1,d denotes the subset of S1,d

spanned by a lattice direction. For S ∈ S1,d let A(S) denote the family of all lines
parallel to S. The (discrete) 1-dimensional X-ray parallel to S of a set F ∈ Fd is the
function XSF : A(S) → N0 = N ∪ {0} defined by

XSF (T ) = |F ∩ T | for T ∈ A(S).

Since F is finite, the X-ray XSF has finite support T ⊂ A(S).
In the inverse reconstruction problem, we are given data functions φi : A(Si) →

N0, i = 1, . . . ,m, with finite support, and we want to find a set F ⊂ Z
d with corre-

sponding X-rays. More formally, for S1, . . . , Sm ∈ L1,d pairwise different, the most
important algorithmic task in our context can be stated as follows.
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524 PETER GRITZMANN, SVEN DE VRIES, AND MARKUS WIEGELMANN

Reconstruction(S1, . . . , Sm).
Given data functions φi : A(Si) → N0 for i = 1, . . . ,m, find a finite
set F ⊂ Z

d such that φi = XSi
F for all i = 1, . . . ,m or decide that

no such F exists.

Clearly, when investigating the computational complexity of the above problem
in the usual binary Turing machine model one has to describe suitable finite data
structures. We do not go into such details here but refer the reader to [5]. For the
purpose of this paper, handling an input ofm data functions φ1, . . . , φm with supports
T1, . . . , Tm, respectively, is facilitated with the aid of a set G ⊂ Z

d of candidate points.
This set G consists of the intersection of all (finitely many) translates of

⋂m
i=1 Si that

arise as the intersection of m lines parallel to S1, . . . , Sm with Z
d, respectively, whose

data function value is nonzero, i.e.,

G = Z
d ∩

m⋂
i=1

⋃
T∈Ti

T.

To exclude trivial cases, in the following we will always assume that G �= ∅ and that⋂m
i=1 Si = {0}. Hence, in particular m ≥ 2.
The incidences of G and Ti can be encoded by an incidence matrix Ai. To fix the

notation, let G consist of, say, N points, and let Mi = |Ti| and M =M1 + · · ·+Mm.
Then the incidence matrices Ai ∈ {0, 1}Mi×N can be joined together to form a matrix
A ∈ {0, 1}M×N . Identifying a subset of G with its characteristic vector x ∈ {0, 1}N ,
the reconstruction problem amounts to solving the integer linear feasibility program

Ax = b s.t. x ∈ {0, 1}N ,(1)

where bT = (bT1 , . . . , b
T
m) contains the corresponding values of the data functions

φ1, . . . , φm as the right-hand sides of A1, . . . , Am, respectively.
Let us point out here in passing that more general inverse discrete problems can

be modeled in a similar way. In fact, query sets (which are lines in the present
paper) could be chosen in various different and meaningful ways. (For instance, if the
lines are replaced by the translates of some k-dimensional subspaces, we obtain the
reconstruction problem for discrete k-dimensional X-rays.)

It is not difficult to see that the matrix A is totally unimodular when m = 2.
In particular, for m = 2 the integer linear program (1) and its linear programming
relaxation

Ax = b s.t. x ∈ [0, 1]N ,(2)

where the condition x ∈ {0, 1}N is replaced by the weaker constraint x ∈ [0, 1]N , are
equivalent in the sense that all vertices of the polytope {x : Ax = b ∧ x ∈ [0, 1]N} are
0-1 vectors anyway; see, e.g., [17] for an exposition of the underlying theory. Hence,
for m = 2 the reconstruction problem is solvable in polynomial time; see [15], [1], and
[7] for different proofs that do not rely on the fact that linear programming problems
can be solved in polynomial time. Reconstruction(S1, . . . , Sm) becomes NP-hard,
however, when m ≥ 3; see [5]. (For an introduction to the theory of computational
complexity see [6].) This means that (unless P = NP) exact solutions of (1) require
(in general) a superpolynomial amount of time. In polynomial time only approximate
solutions can be expected. We will henceforth always assume that m ≥ 3.
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 525

Let us stress the fact that while the solutions of the polynomial-time solvable
LP-relaxation (2) do provide some information about (1) (see [3]), it is our goal
to solve (1) rather than (2), since the objects underlying our prime application are
crystalline structures forming (physical) sets of atoms rather than “fuzzy” sets; see
[10] for some additional discussion of this point.

2.2. Two optimization problems. For measuring the quality of approxima-
tion methods, we introduce objective functions so as to formulate the reconstruction
problem as optimization problems. Two very natural such formulations are the fol-
lowing problems, Best-Inner-Fit and Best-Outer-Fit.

Best-Inner-Fit(S1, . . . , Sm) [BIF].
Given data functions φ1, . . . , φm, find a set F ⊂ G of maximal cardi-
nality such that

XSiF (T ) ≤ φi(T ) for all T ∈ Ti and i = 1, . . . ,m.

Equivalently, [BIF] can be formulated as the integer linear program

max 11Tx s.t.(3)

Ax ≤ b and x ∈ {0, 1}N ,

where 11 is the all-ones vector.
The “outer counterpart” of this inner approximation is defined as follows.

Best-Outer-Fit(S1, . . . , Sm) [BOF].
Given data functions φ1, . . . , φm, find a set F ⊂ G of minimal cardi-
nality such that

XSiF (T ) ≥ φi(T ) for all T ∈ Ti and i = 1, . . . ,m.

Again, the problem is equivalent to an integer linear program, precisely to

min 11Tx s.t.(4)

Ax ≥ b and x ∈ {0, 1}N .

Note that while for any given instance of [BIF] ∅ is a feasible solution, [BOF]
may be infeasible. In order to exclude this degeneracy, we will in the following always
assume that

φi ≤ XSiG for i = 1, . . . ,m.

The two problems [BIF] and [BOF] are then complementary to each other in the
following sense. The complement F̄ = G\F of a solution F ⊂ G of an instance of one
problem is a solution of the instance with complementary data functions φ̄i defined by
φ̄i(T ) = |G∩T |−φi(T ) of the other problem. This reflects the fact that reconstructing
the “positive” or the “negative” of a binary picture are equivalent. However, as the
direct conversion of an approximation result for [BIF] of the form |V |/|F | ≥ α (F is an
optimal solution and V is some solution) yields a bound |V̄ |/|F̄ | ≤ α+(1−α)|G|/|F̄ |
for [BOF] that is dependent on the “density” |F |/|G| of an optimal solution in the
underlying candidate grid, bounds for the relative error of one problem are usually
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526 PETER GRITZMANN, SVEN DE VRIES, AND MARKUS WIEGELMANN

not “identical” to bounds for the other. More importantly, our algorithms for [BOF]
are actually insertion methods rather than “dual” deletion methods. Hence, we will
consider [BIF] and [BOF] separately in section 3.

Let us remark in passing that one can of course consider other kinds of optimiza-
tion problems related to Reconstruction(S1, . . . , Sm). For instance, rather than
measuring the approximability in terms of the points inserted into the candidate grid
one may count the number of lines on which an X-ray of a solution coincides with the
given value of the corresponding data function. An intractability result for this kind
of approximation can be found in [10].

2.3. The basic algorithmic paradigm. In this section we describe a general
algorithmic scheme for solving [BIF] and [BOF] that provides the framework for the
subsequent approximation algorithms studied in sections 3 and 4. See [10] for a
discussion of some other algorithmic paradigms that comprise most of the methods for
solving Reconstruction(S1, . . . , Sm) that have been suggested by various authors
in the past.

In the present paper we give a theoretical and computational analysis of various
iterative improvement strategies that are built on some greedy method. In the simplest
classes of local search algorithms for [BIF] and [BOF] the neighborhood of a set S is
defined as the collection of all supersets of S of cardinality |S| + 1 or of all subsets
of cardinality |S| − 1, respectively, and the choice is based on some greedy strategy
(that may or may not use weights for breaking ties).

In order to increase the performance of such iterative insertion or deletion algo-
rithms, one can apply r-improvements for r ∈ N0, where an r-point 〈(r + 1)-point〉
subset of a current feasible solution F ⊂ G for the given instance of [BIF] 〈[BOF]〉
is deleted and r + 1 〈r〉 points of (G \ F ) are inserted while maintaining feasibil-
ity. A feasible set F ⊂ G is called t-optimal for the given instance of [BIF] 〈[BOF]〉
if no r-improvement is possible for any r ≤ t. Note that 0-optimality agrees with
the common greedy-optimality (no point can be inserted without destroying feasibil-
ity for [BIF] and no point can be removed without destroying feasibility for [BOF]).
However, since our algorithms for [BOF] are based on greedy-type insertions rather
than greedy-deletions, the greedy algorithm of section 3.3 need not produce 0-optimal
solutions per se.

The following paradigm comprises a large class of iterative improvement methods
for [BIF]. A similar paradigm can be formulated for [BOF]. (A symbolic formulation
in the realm of commutative algebra of a general reduction process involving a set of
binomials in an appropriate toric ideal is given in [20].)

Paradigm 2.1 (iterative inner approximation).
• INPUT: Data functions φ1, . . . , φm for the given lines S1, . . . , Sm, respec-

tively.
• OUTPUT: A feasible set F ⊂ G for the given instance of [BIF].
• COMPUTATION:

Start with F = ∅ and successively apply r-improvements for r ≤ t for
some fixed constant t ∈ N0 until no further improvement is possible.

Since it is not specified how to select the points for insertion and deletion,
Paradigm 2.1 is so general and flexible that it covers a large number of algorithms
that incorporate promising refinements. For example, the X-ray data can be used for
back-projection-like techniques to express preferences between points to be chosen; see
Algorithm 3.7. In addition, connectivity of the solution (in a sense that is justified
by the physical structure of the analyzed material) can be rewarded by introducing
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 527

adjustable weights. Similarly, information from neighboring layers can be taken into
account in a layerwise reconstruction of a 3-dimensional object. In fact, the positive
results of section 3 will apply to the general paradigm.

2.4. Main results. The simplest algorithm for [BIF] within the framework of
Paradigm 2.1 is the plain greedy algorithm which considers the positions of the grid
in an arbitrary order and successively fills in points. We will refer to it as GreedyA.
GreedyB and GreedyC will be variants with refined insertion order. As a first result
(Theorem 3.1, with t = 0), we see that

|V |/|F | ≥ 1/m,

where V is the set obtained by GreedyA (or GreedyB or GreedyC), and F is an
optimal solution. Recall that m is the number of directions, whence the sharp and
(considering that it is hard to think of any algorithm that is simpler than GreedyA)
surprisingly good lower bound 1/m reflects the fact that the more data are given, the
harder it is for a greedy strategy to satisfy them. In our experiments, it turns out
that |V |/|F | is typically greater than 0.9 and for large instances greater than 0.96
even for m = 5; see section 4.

There are two natural ways to improve this algorithm:
(a) using a better order to visit the candidate points and
(b) using 1-improvements, 2-improvements, etc.

In terms of (a) we use a strategy (GreedyB) that is motivated by a method of [16]
for solving consistent [BIF]-instances exactly for m = 2. In our computational study
GreedyB clearly outperforms GreedyA for all m considered; see Figures 9 and 10.

In GreedyC weights are assigned dynamically to the candidate points to represent
the “changing importance” of a point to be included in a solution. Our computational
study shows that GreedyC gives smaller relative errors than GreedyA and GreedyB;
see Figure 9. In fact, even the absolute errors are small; the average case for GreedyC
for 250, 000 positions and density 50%, i.e., solutions of cardinality 125, 000 being
21.62, 64.13, 111.88 missing atoms for 3, 4, 5 directions, respectively. The price to
pay for this excellent performance is GreedyC’s considerably longer running time; see
section 4.

In terms of (b), Theorem 3.1 shows that, for a t-optimal solution V ,

|V |
|F | ≥

2

m
− εm(t),

where εm(t) is given explicitly and approaches 0 exponentially fast. Computationally,
it turns out that performing 1-improvements after GreedyA, GreedyB, or GreedyC
typically yields substantial improvements. In fact, in our computational study the
absolute errors go down for ImprovementC to 1.07, 23.28, 64.58 for 3, 4, 5 directions,
respectively; see Figure 10.

Theorem 3.9 provides worst-case guarantees for [BOF]. Part (a) shows that a
simple greedy-type insertion algorithm yields a solution U such that

|U |/|F | ≤ H(m),

where H(m) = 1 + 1/2 + · · · + 1/m is the mth harmonic number. If additional
matching techniques are applied to obtain a stronger optimality condition (“matching-
optimality”), then

|U |/|F | ≤ H(m)− 1/6;
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528 PETER GRITZMANN, SVEN DE VRIES, AND MARKUS WIEGELMANN

see Theorem 3.9(b).

Theorem 3.10(a) shows that the t-optimality of a solution U guarantees that

|U |/|F | ≤ m/2 + εm(t),

where again εm(t) is given explicitly and tends to 0 exponentially fast. If, finally, the
solution is matching-optimal and (what will be defined later) effect-3-t-optimal for
t ≥ 5, then

|U |/|F | ≤ H(m)− 1/3;

see Theorem 3.10(c). That is, for m = 3, 4, 5 the bounds are 3
2 ,

7
4 , and

39
20 .

Note that in the case of single coverings, there is a slightly better bound for a
certain semi-local search algorithm due to Duh and Fürer [2]. If their approach could
be extended to [BOF] it would read |U |/|F | ≤ H(m)− 1/2. However, currently it is
not known whether such an extension is possible.

Let us close this section with two remarks. First, all our results are formulated
within the realm of discrete tomography due to its main objective. It goes without
saying that the theoretical performance ratios apply also to more general multiple
packing and multiple covering problems. Second, as already pointed out in the in-
troduction, our analysis makes substantial use of ideas of Hurkens and Schrijver [12],
Goldschmidt, Hochbaum, and Yu [8], and Halldórsson [11] for set packing and set
covering heuristics. There may be a way to axiomize how to extend results for simple
packings and coverings to more general settings including our discrete tomography to
evoke some of their results directly. In general, however, multiple packing and mul-
tiple covering appear to be harder: general reductions to single packing or covering
problems are not known and not likely to exist. For this reason (and as a service to
the reader) we give a full direct analysis of each of the considered algorithms.

3. Worst-case performance guarantees for iterative improvement
algorithms.

3.1. Effects. Let V ⊂ G and g ∈ G \V . The effect eV (g) of g with respect to V
is the number of lines g+Si through g for which the X-ray bound is not yet achieved
by V , i.e.,

eV (g) = |{i ∈ {1, . . . ,m} : XSiV (g + Si) < φi(g + Si)}|.

Clearly, the effect of a point is an integer between 0 and m. The notion can easily be
extended to subsets of G \ V . More precisely, let V ′ ⊂ G \ V ; then the effect eV (V

′)
of V ′ with respect to V is defined by

eV (V
′) =

m∑
i=1

∑
T∈Ti

eV,V ′,i(T ),

where

eV,V ′,i(T ) =



|V ′ ∩ T | if |(V ∪ V ′) ∩ T | ≤ φi(T );
φi(T )− |V ∩ T | if |V ∩ T | < φi(T ) and |(V ∪ V ′) ∩ T | ≥ φi(T );
0 if |V ∩ T | ≥ φi(T ).
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 529

Clearly, eV (g) = eV ({g}); also eV (V ′) lends itself to a successive evaluation. In fact,
if V ′ = {g1, . . . , gl},

eV (V
′) =

l∑
i=1

eV ∪{g1,...,gi−1}(gi).

Furthermore,

e =
m∑
i=1

∑
T∈Ti

φi(T )

is called the total effect of the given instance. Clearly, if L and U are feasible for the
given instance of [BIF] and [BOF], respectively, then m|L| ≤ e ≤ m|U |. In particular,
if F is an exact solution of Reconstruction(S1, . . . , Sm), then e = m|F |.
3.2. Inner approximation algorithms. The following result gives worst-case

performance guarantees for a wide class of primal algorithms for [BIF] that fit into
Paradigm 2.1. In particular, all algorithms of section 4 are covered.

Theorem 3.1. Let t ∈ N0, let V be t-optimal for a given instance of [BIF], and
let F be an optimal solution for that instance. Then

|V |
|F | ≥

2

m
− εm(t),

where

εm(t) =




m− 2

m((m− 1)s+1 − 1)
if t = 2s;

2(m− 2)

m(m(m− 1)s − 2)
if t = 2s− 1.

Observe that εm(t) → 0 as t → ∞. To give an impression of how t enters the
bound on the right-hand side of Theorem 3.1, we point out that for t = 0, . . . , 5 the
values of 2/m − εm(t) are 1

3 ,
1
2 ,

5
9 ,

3
5 ,

13
21 ,

7
11 when m = 3 and 1

4 ,
2
5 ,

7
16 ,

8
17 ,

25
52 ,

26
53

when m = 4.
For the proof of the case t > 0 of Theorem 3.1 we need the following combinatorial

result of Hurkens and Schrijver [12, Theorem 1].
Proposition 3.2 (Hurkens and Schrijver). Let p, q ∈ N, let V be a set of size

q, and let E1, . . . , Ep be subsets of V. Furthermore, let m, t ∈ N with m ≥ 3 such that
the following hold:

(i) Each element of V is contained in at most m of the sets E1, . . . , Ep.
(ii) For any r ≤ t, any r of the sets among E1, . . . , Ep cover at least r elements

of V .
Then

p

q
≤



m(m− 1)s −m
2(m− 1)s −m if t = 2s− 1;

m(m− 1)s − 2

2(m− 1)s − 2
if t = 2s.

It is convenient to regard V and E = {E1, . . . , Ep} as a hypergraph (V, E). It is
clear that under the hypothesis of (i) and (ii) there is some bound on the quotient
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530 PETER GRITZMANN, SVEN DE VRIES, AND MARKUS WIEGELMANN

p/q. The bounds given in Proposition 3.2, however, are not that obvious and were
proved by a quite involved induction. (In addition, [12] shows that these bounds are
tight.)

Let us point out that Hurkens and Schrijver [12] apply Proposition 3.2 to derive
bounds for the approximation error of certain set packing heuristics, while in [11]
Halldórsson utilizes it for set covering. Our subsequent analysis is based on the ideas
of these papers.

Proof of Theorem 3.1. For a direct proof of the case t = 0, note that the effect of
V has to be at least |F | since otherwise the effect of F \V with respect to V would be
greater than (m− 1)|F |. In this case some point of F would have effect m and could
hence be added to V without violating the constraints of [BIF], in contradiction to
the assumption. Since the effect of V is exactly m|V |, the result follows.

Turning now to the general result, we note first that it suffices to give a proof
under the additional assumption that V ∩ F = ∅. The general case then follows via a
reduction of the data functions by the X-rays of V ∩ F with the aid of the inequality

|V |
|F | ≥

|V | − |V ∩ F |
|F | − |V ∩ F | for |V | < |F |.

We define a hypergraph H = (V, E) on the vertex set V with exactly |F | hyper-
edges (one for each element of F ) that satisfies the conditions (i) and (ii) of Proposi-
tion 3.2. Let F = {f1, . . . , fp} and V = {v1, . . . , vq}. The family E of hyperedges is
defined by associating to each k = 1, . . . , p with fk ∈ F a set Ek ⊂ V which encodes
the conflicts which the insertion of fk would cause with respect to {f1, . . . , fk−1} and
V .

For each line T ∈ T define a map ιT : F ∩ T �→ (F ∪ V ) ∩ T. Let F ∩ T =
{fi1 , fi2 , . . . , fia} and V ∩ T = {vj1 , vj2 , . . . , vjb}.

Let k = |F ∩ T | − |V ∩ T |. If k ≤ 0, we set ιT (fil) = vjl . If k > 0, let

ιT (fil) =

{
fjl : for l ≤ k and
vil−k

: otherwise.

Now we define the improvement set Ef for a given f ∈ F by

Ef = {ιT (f) : T � f} ∩ V.
We show that the assumptions of Proposition 3.2 are satisfied for t′ = t + 1. To

verify (i) recall that a point v ∈ V lies in a set Ef if and only if there is a line Tv with
ιTv (f) = v. This can happen only once for each line through v; hence v is contained
in at most m different sets Ef .

Next, we show thatH has property (ii) of Proposition 3.2. Assume on the contrary
that there are sets Ek1 , . . . , Ekr+1 that cover at most r elements of V for some r ≤ t.
(Here we write Eki for Efki

to avoid triple indices.) By choosing r to be minimal with
this property, we can assume that Ek1 , . . . , Ekr+1 cover exactly r elements of V .

Let us consider the set

S =
(
V \ (Ek1 ∪ · · · ∪Ekr+1)

) ∪ {fk1 , . . . , fkr+1}.
We show that the set S is feasible for the given instance of [BIF]. Let T ∈ T . If
|F ∩ T | ≤ |V ∩ T |, we have

|S ∩ T | ≤ |V ∩ T | ≤ φ(T ).
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 531

Fig. 1. The greedy bound is tight. (Grey points belong to F ; the black point constitutes V .)

On the other hand, |F ∩ T | > |V ∩ T | yields

|S ∩ T | ≤ |F ∩ T | ≤ φ(T ).

(The latter inequalities |V ∩ T | ≤ φ(T ) and |F ∩ T | ≤ φ(T ) follow from the fact that
both V and F are feasible solutions.) This shows that S is indeed feasible for the
given instance of [BIF].

Since S is obtained from V by deleting the r elements of Ek1 ∪ · · · ∪ Ekr+1 and
inserting the r+1 elements {fk1 , . . . , fkr+1}, S facilitates an r-improvement, which is
a contradiction to the assumption of t-optimality of V.

Summarizing, we have seen that (i) and (ii) of Proposition 3.2 hold for H and
t′ = t+ 1, and we obtain

p

q
=

|F |
|V | ≤




m(m− 1)s −m
2(m− 1)s −m : t+ 1 = 2s− 1,

m(m− 1)s − 2

2(m− 1)s − 2
: t+ 1 = 2s.

Hence

|V |
|F | =

2

m
−
(

2

m
− |V |

|F |
)

≥ 2

m
− εm(t)

which yields the assertion.
Deterministic polynomial-time algorithms that meet the requirements of Theo-

rem 3.1 include the greedy algorithm (for t = 0), or any other algorithm, according to
Paradigm 2.1. In case that t-optimality is guaranteed for some t ∈ N0 when the algo-
rithm stops, the results, however, also extend to techniques like simulated annealing
where, with some probability, changes are allowed that replace a current feasible set
by an inferior one.

The following examples show that the bounds given in Theorem 3.1 are tight in
the worst case already in the most basic situations.

Example 3.3. Let m ≥ 3 and let u1, . . . , um ∈ Z
d be m pairwise different

lattice directions in E
d. Let F = {ν1u1, . . . , νmum} ⊂ Z

d for some scaling factors
ν1, . . . , νm ∈ Z \ {0}. The X-rays of F in the directions u1, . . . , um are taken as data
functions for an instance of [BIF]. If the factors νi are chosen so that G = F ∪ {0},
then V = {0} is a greedy-optimal solution for [BIF]. Of course |V |

|F | =
1
m ; see Figure 1.
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532 PETER GRITZMANN, SVEN DE VRIES, AND MARKUS WIEGELMANN

◦ ◦ ◦ ◦
◦ ◦ • •
• • ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ ◦

Fig. 2. The 1-optimality bound is tight for three directions. (Black points denote F in the left
picture and V in the right picture.)

◦ • ◦ ◦ ◦ ◦
◦ ◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦ ◦

Fig. 3. The 1-optimality bound is tight for four directions. (Black points denote F in the left
picture and V in the right picture.)

◦ ◦ • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ •
• • ◦ ◦ • ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ •
◦ ◦ • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

Fig. 4. The 1-optimality bound is tight for five directions. (Black points denote F in the left
picture and V in the right picture.)

Example 3.4. Let m = 3 and let u1, u2, u3 ∈ Z
2 be the directions (1, 0), (0, 1),

(1, 1). The X-rays of F = {(0, 1), (1, 1), (2, 2), (3, 2)} in the directions u1, u2, u3 are
taken as data functions for an instance of [BIF]. Then V = {(1, 2), (2, 1)} is 1-optimal

and |V |
|F | =

1
2 = 2

3 − ε3(1); see Figure 2.

Example 3.5. Let m = 4 and let u1, u2, u3, u4 ∈ Z
2 be the directions (1, 0), (0, 1),

(1, 1), (1, 2). The X-rays of F = {(0, 0), (1, 5), (3, 4), (4, 3), (5, 3)} in the directions
u1, u2, u3, u4 are taken as data functions for an instance of [BIF]. Then V = {(1, 0),
(5, 5)} is 1-optimal and |V |

|F | =
2
5 = 2

4 − ε4(1); see Figure 3.

Example 3.6. Let m = 5 and let u1, . . . , u5 ∈ Z
2 be the directions (1, 0), (0, 1),

(1, 1), (1, 2), (2, 1). The X-rays of F = {(0, 0), (0, 3), (1, 3), (2, 5), (4, 3), (5, 4)} in the
directions u1, . . . , u5 are taken as data functions for an instance of [BIF]. Then V =

{(2, 4), (5, 5)} is 1-optimal and |V |
|F | =

1
3 = 2

5 − ε5(1); see Figure 4.

Clearly, there are smarter ways to insert points into the grid than by just greedily
putting one in when it fits. A more natural strategy is, for example, to apply a back-
projection technique, where each candidate point gets a weight based on the X-ray
values of all lines through this point. A typical example is given in Algorithm 3.7
below. In this algorithm, a specific direction S1 is chosen, which dictates the order in
which candidate points are considered for insertion into the set of points L that will
eventually form V and the set of holes E (that is disjoint from V ). For a fixed line
T parallel to S1, each point g on T gets a weight which depends on the number of
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 533

points still to be inserted and on the number of candidate points still available on the
lines g+Si for i ≥ 2; cf. step 2.1 of Algorithm 3.7. The corresponding ratio is a value
in [0, 1]. A value of 0 for a line g + Si indicates that the point g cannot be inserted
into L and a value of 1 indicates that the point must be inserted into L. Therefore,
the product over all m−1 other lines is a natural indicator for comparing the relative
importance of the points on line T .

Algorithm 3.7 (weighted greedy strategy).
• INPUT: Data functions φ1, . . . , φm for the given lines S1, . . . , Sm.
• OUTPUT: A set L ⊂ G feasible for the given instance of [BIF].
• COMPUTATION:

1. Initialize L = E = ∅ and choose a specific direction, say S1.
2. For all T ∈ T1 do:

2.1. For all g ∈ G ∩ T determine

wg =

m∏
i=2

φi(g + Si)− |(g + Si) ∩ L|
|(G \ (L ∪ E)) ∩ (g + Si)| .

2.2. Sort G ∩ T according to decreasing weights wg, g ∈ G ∩ T , and add
the

min{φ1(g + S1), |{g ∈ G ∩ T : wg > 0}|}
first elements of G ∩ T to L and the remaining ones to E.

It is a well-known result, and already known by Lorentz [14], that a similar strat-
egy (with a proper ordering of the lines) leads to an exact algorithm for m = 2 direc-
tions for consistent instances in the plane; cf. [16]. This suggests that Algorithm 3.7
might be substantially better for arbitrary m than the pure greedy algorithm, an
expectation that is confirmed by the experiments stated in section 4.

Let us point out that the solutions produced by the variant of Algorithm 3.7 that
is obtained by replacing the weights wg by

w′
g =

m∏
i=1

φi(g + Si)− |(g + Si) ∩ L|
|(G \ (L ∪ E)) ∩ (g + Si)|

coincide with the solutions produced by Algorithm 3.7. In fact, while w′
g usually differs

from wg, the order of points on a line in direction S1 produced by these weights are
the same.

3.3. Greedy-type insertion for outer approximation. By changing the
stopping rule in Paradigm 2.1, an algorithm for solving [BIF] can be extended to
an algorithm for solving [BOF]. Instead of inserting points into a set U ⊂ G only as
long as all constraints of [BIF] are satisfied, such an algorithm inserts points until the
constraints of [BOF] are satisfied for the first time. As one would never insert a point
into the set U that has effect 0, any such heuristic approximates [BOF] by a factor of
at most m. This seems to be the dual result to Theorem 3.1 for the case t = 0 but it
is not since the final set U is not 0-optimal in general.

Algorithm 3.8 (greedy insertion strategy for [BOF]).
• INPUT: Data functions φ1, . . . , φm for the given lines S1, . . . , Sm.
• OUTPUT: A set U ⊂ G feasible for the given instance of [BOF].
• COMPUTATION:

1. Initialize U = ∅ and l = m.

D
ow

nl
oa

de
d 

07
/0

5/
17

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



534 PETER GRITZMANN, SVEN DE VRIES, AND MARKUS WIEGELMANN

2. Repeat the following step until l = 0:
2.1. Add points of effect l to U as long as such points exist.
2.2. Decrease l by 1.

In what follows it will often be necessary to regard the points of U as ordered.
This underlying order will always be the point insertion order produced by Algorithm
3.8.

The performance guarantees given in the next theorem are derived by a careful
analysis of the m iterations of step 2.1 in Algorithm 3.8. Further, an additional
slight refinement of the algorithm is analyzed. This refinement consists of a combined
treatment of points of effects 1 and 2 by means of matching techniques. More precisely,
for l = 1, . . . ,m let Ul ⊂ U be the set of points constructed for the parameter l in
step 2.1. Then, in the modified version, Um, . . . , U1 are first constructed by step 2 of
Algorithm 3.8 and, subsequently, the following computation is appended as step 3 in
order to decrease |U1 ∪ U2|.

3. Repeat the following procedure until no further improvements occur:
3.1. Define a graph (V,E) on the vertex set V = ∪m

i=1Ti of all lines as follows:
For a vertex v ∈ Ti, 1 ≤ i ≤ m, define the degree

bv = max{0, φi(v)−XSi(U3 ∪ · · · ∪ Um)(v)}.

The edges E are given by means of the set G′ = G \ (U3 ∪ · · · ∪ Um)
in the following way: For g ∈ G′ let eg = {v ∈ V : g ∈ v and bv > 0}.
(Note that |eg| ≤ 2 since there are no points of effect at least 3 left
in G′.) Now construct a minimum b-edge-cover M for (V,E) and set
U1,2 = {g ∈ G′ : eg ∈M} and U = U1,2 ∪ U3 ∪ · · · ∪ Um.

Algorithm 3.8 can be implemented so as to have a polynomial running time.
Using, e.g., Gabow and Tarjan’s [4] weighted perfect matching algorithm to solve the
capacitated b-matching problem and the b-edge cover problem, step 3.1 can also be
carried out in polynomial time. A feasible set U (together with an insertion order)
which does not allow any further improvements by means of the procedure in step 3.1
is called matching-optimal (with respect to that order). Note that the iteration of step
3 terminates in one step, since after one call upon 3.1 no further improvements are
possible. This will be different after another refinement of Algorithm 3.8 is appended
as step 3.2 in subsection 3.4.

Theorem 3.9. Let U be a set of points constructed by Algorithm 3.8 and let F
be any feasible solution for [BOF].

(a) Then

|U |
|F | ≤ 1 +

1

2
+ · · ·+ 1

m
= H(m) < 1 + log(m).

(b) If U is matching-optimal, e.g., constructed by Algorithm 3.8 extended by step
3, then

|U |
|F | ≤

5

6
+

1

2
+ · · ·+ 1

m
= H(m)− 1

6
<

5

6
+ log(m).

The bounds for |U |/|F | in Theorem 3.9(a) are 11
6 ,

25
12 ,

137
60 for m = 3, 4, 5, respec-

tively. In (b) they are 5
3 ,

23
12 ,

127
60 .

Proof of Theorem 3.9. (a) Let Ul be again the set of points inserted in step
2.1 of Algorithm 3.8 for parameter l, i.e., the points which yield an effect of l upon
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 535

insertion, and let ul be the cardinality of Ul. The effect el of U1∪· · ·∪Ul with respect
to Ul+1, . . . , Um is given by el = u1 + 2u2 + · · · + lul. On the other hand, we show
that el is bounded from above by l|F | for some l.

To this end, let e be the total effect to be attained and suppose to the contrary
that el > l|F |. Consider the set F ′ = F \ (Ul+1 ∪ · · · ∪ Um). The union of F ′ and
Ul+1∪· · ·∪Um contains F , which is feasible for the given instance of [BOF], and thus
has effect e. Therefore, the effect of F ′ with respect to Ul+1 ∪ · · · ∪ Um is exactly el
and hence, by our assumption, greater than l|F |. Since |F ′| ≤ |F |, this implies by
the pigeonhole principle that there is at least one point g ∈ F ′ with effect at least
l + 1. This, however, means that the algorithm would have chosen g rather than
some point in U1 ∪ · · · ∪Ul since all these points have effect at most l with respect to
Ul+1 ∪ · · · ∪ Um, a contradiction. Thus

el = u1 + 2u2 + · · ·+ lul ≤ l|F |(5)

for l = 1, . . . ,m. Denoting the inequality (5) for parameter l ∈ {1, . . . ,m} by Il we
consider the positive linear combination

1

m
Im +

m−1∑
l=1

1

l(l + 1)
Il(6)

of I1, . . . , Im. Collecting the terms on the left and on the right of (6) we obtain

m∑
i=1

ui ≤ |F |+
m−1∑
l=1

1

l + 1
|F |,

which is equivalent to the assertion in (a).

The proof of (b) uses the same arguments as that of (a) with the difference that
appending step 3.1 to Algorithm 3.8 allows us to improve inequality I2 to u1+u2 ≤ |F |
(instead of u1 + 2u2 ≤ 2|F |).

To prove the new inequality, note that the subset U1,2 of G′ is determined in
step 3.1 as a minimum b-edge-cover of (V,E). By construction it follows that U =
U1,2 ∪ U3 ∪ · · · ∪ Um is feasible for the given instance of [BOF]. Moreover, with F ′ =
F \ (U3 ∪ · · · ∪ Um) the set {eg : g ∈ F ′} is also a b-edge-cover of (V,E). Since U1,2

is the disjoint union of (the new sets) U1 and U2 and is a minimum b-edge-cover, it
follows that

|U1,2| = u1 + u2 ≤ |F ′| ≤ |F |.(7)

With this inequality (instead of inequality I2) we are led to consider a positive linear
combination of type (6) with the coefficient 1/2 of I1 replaced by 1/3. This reduces
the contribution of I1 to the coefficient of F on the right-hand side by 1/6. Since the
other factors remain unchanged, the bound of (b) follows.

3.4. Outer approximation via r-improvements. The aim of this subsection
is to analyze an additional refinement of Algorithm 3.8 by means of r-improvements.
The first step on the way to improved bounds is to study the impact of r-improvements
separately (Theorem 3.10(a)). Afterwards, the additional gain of r-improvements ap-
plied to a matching-optimal configuration is considered by appending to Algorithm 3.8
the following step 3.2 for some (fixed) t ∈ N0.
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536 PETER GRITZMANN, SVEN DE VRIES, AND MARKUS WIEGELMANN

3.2. Apply all r-improvements for r ≤ t to U1 ∪ U2 ∪ U3 that decrease U
without destroying its feasibility.

Note that the notation U1, U2, U3 refers to the updated sets that are produced in
the course of the algorithm. As in this variant r-improvements are applied only to
the set U1 ∪ U2 ∪ U3, the resulting algorithm is faster than a general r-improvement
algorithm.

Clearly, since t ∈ N is a fixed parameter, step 3.2 can be performed in polynomial
time. A trivial upper bound for the running time is O(|G|2t+2). The geometry of
discrete tomography, however, allows us to significantly reduce this bound for many
values of t. The reason is that we do not need to consider all pairs of t- and t+1-subsets
of U1 ∪ U2 ∪ U3 but only those which satisfy certain compatibility conditions.

A set U ⊂ G (together with an insertion order) is called effect-3-t-optimal (with
respect to this order), if it cannot be decreased by the procedure of step 3.2 above,
i.e., by any r-improvement, on the points of effects 1, 2, and 3.

Theorem 3.10. Let F be a minimum solution for a given instance of [BOF] and
let t ∈ N0.

(a) Let U be t-optimal for that instance; then

|U |
|F | ≤

m

2
+ εm(t) , where εm(t) =




m(m− 2)

4(m− 1)s+1 − 2m
: if t = 2s;

(m− 2)

2(m− 1)s − 2
: if t = 2s− 1.

(b) Let m = 3 and t = 2s+ 1, s ∈ N. Furthermore, assume that U is matching-
optimal and t-optimal (that is, effect-3-t-optimal); then

|U |
|F | ≤

7

5
+ ε′(t) , where ε′(t) =




6

25 · 2r+1 − 15
: if s = 2r − 1;

2

5(5 · 2r − 1)
: if s = 2r.

(c) Let t ≥ 5 and let U be matching-optimal and effect-3-t-optimal; then

|U |
|F | ≤

2

3
+

1

2
+ · · ·+ 1

m
<

2

3
+ log(m).

The values of m/2 + εm(t) in Theorem 3.10(a) for m = 3 and t = 0, . . . , 5 are
3, 2, 9

5 ,
5
3 ,

21
13 ,

11
7 and for m = 4 they are 4, 5

2 ,
16
7 ,

17
8 ,

52
25 ,

53
26 . The values of 7/5+ε

′(t) for
t = 3, 5, 7, 9, 11 in (b) are 11

7 ,
3
2 ,

25
17 ,

13
9 ,

53
37 . Note that εm(t), ε′m(t) → 0 for t → ∞ for

all m ≥ 3. The upper bound for |U |/|F | in (c) is 3
2 ,

7
4 ,

39
20 for m = 3, 4, 5, respectively.

Proof of Theorem 3.10. (a) is proved by defining a hypergraph H = (V, E) on
the vertex set V = F with edges defined for each g ∈ U that satisfies (i) and (ii) of
Proposition 3.2. As in the proof of Theorem 3.1, it suffices to prove the result for
U ∩F = ∅. Again, we define a map ιT : U ∩T �→ (U ∪F )∩T . This time ιT (u) encodes
the information which point on T is added to compensate the deletion of u. For each
line T ∈ T let U ∩ T = {ui1 , ui2 , . . . , uia} and F ∩ T = {fj1 , fj2 , . . . , fjb}.

If |F ∩T | ≥ |U ∩T | we set ιT (uil) = fjl for l = 1, 2, . . . , a. If |F ∩T | < |U ∩T | let

ιT (uil) =

{
fjl : for l ≤ |F ∩ T | and
uil : otherwise.
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 537

Now we define the “improvement sets” Eu for a given u ∈ U by

Eu = {ιT (u) : T � u} ∩ F.
As in the proof of Theorem 3.1, the number m of directions gives the bound in (i)
and the t-optimality implies condition (ii) of Proposition 3.2 for t′ = t + 1. Thus
Proposition 3.2 can be applied, and the bound given in (a) follows.

In order to prove (b), let U = U1 ∪ U2 ∪ U3 be a partition of U into subsets of
points of effect 1, 2, and 3, respectively. As each point u of U1 has effect 1 we can
associate with it the line T (u) to which it contributes. For T ∈ T let

UT = {u ∈ U1 ∩ T : T = T (u)}.
Since |UT | ≤ φ(T ) ≤ |F ∩ T | for T ∈ T we can define an injection κT : UT �→ F ∩ T .
Now U1 =

⋃
T∈T UT , and let κ : U1 �→ F be the map induced by the injections κT .

We show that κ is injective. In fact, if there were u1, u2 ∈ U1 with κ(u1) = κ(u2),
then T (u1) �= T (u2), whence

(U \ {u1, u2}) ∪ {κ(u1)}
was feasible for the given instance of [BOF] contradicting the 1-optimality of U . It
follows that

|U1| = |F1|,(8)

where F1 = κ(U1).
For the set of remaining points F0 = F \ F1, we use the fact that there is no

r-improvement for U for any r ≤ 2s+ 1 in order to show

|U2|+ |U3| ≤
(
3

2
+ ε3(s− 1)

)
|F0|.(9)

To this end, let us first define the reduced X-ray functions

γi(T ) = min{φi(T ), XSiF0(T )} for T ∈ Ti and i = 1, 2, 3,

set U2,3 = U2 ∪ U3, and note that U2,3 is feasible for the instance I = {γ1, γ2, γ3}
of [BOF]. Next we define a hypergraph H = (F0, E) with |U2,3| edges, again with
the aid of maps ιT for T ∈ T . This time ιT : U2,3 ∩ T �→ (U2,3 ∪ F0) ∩ T , and
ιT (u) encodes the information which point on T is added to compensate for the
deletion of u in the reduced problem. Let T ∈ T and U2,3 ∩ T = {ui1 , ui2 , . . . , uia},
F0 ∩ T = {fj1 , fj2 , . . . , fjb}.

If |F0∩T | ≥ |U2,3∩T |, we set ιT (uil) = fjl for l = 1, 2, . . . , a. If |F0∩T | < |U2,3∩T |,
let

ιT (uil) =

{
fjl : for l ≤ |F0 ∩ T | and
uil : otherwise.

Now we define the “improvement sets” Eu for a given u ∈ U2,3 by

Eu = {ιT (u) : T � u} ∩ F0.

To obtain (9), we want to apply Proposition 3.2 to H. Clearly, condition (i)
of Proposition 3.2 holds with m = 3. Next we show that condition (ii) holds with
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538 PETER GRITZMANN, SVEN DE VRIES, AND MARKUS WIEGELMANN

parameter s. Assume on the contrary that there are l + 1 sets Eui1
, . . . , Euil+1

, with

l + 1 ≤ s, that cover only l elements f1, . . . , fl ∈ F0, and let l be minimal with this
property.

Let Û = {ui1 , . . . , uil+1
}, F̂ = {f1, . . . , fl} and set S = (U2,3 \ Û) ∪ F̂ . Of course,

S results from U2,3 via an l-improvement. Let eU2,3\Û (Û) 〈eU2,3\Û (F̂ )〉 denote the

effect of Û 〈F̂ 〉, with respect to U2,3 \ Û and the original data (φ), and let ē be the
corresponding effect-function for the reduced data (γ). We show that

eU2,3\Û (Û) ≤ eU2,3\Û (F̂ ) + l + 3.(10)

Of course, eU2,3\Û (Û) ≤ 3l+3 and, since S is feasible for I, ēU2,3\Û (Û) = ēU2,3\Û (F̂ ).

Further, it follows from the minimality of l that ēU2,3\Û (Û) ≥ 2l. In fact, if ēU2,3\Û (Û)

≤ 2l − 1, then there must exist an f ∈ F̂ of effect 1 with respect to U2,3 \ Û and the
reduced data; hence

(U2,3 \ (Û \ {uf}) ∪ (F̂ \ {f}),

where uf is an element of Û on the line T that carries the effect of f , would constitute
an (l − 1)-improvement. This contradiction implies that

eU2,3\Û (F̂ ) + l + 3 ≥ ēU2,3\Û (F̂ ) + l + 3 = ēU2,3\Û (Û) + l + 3 ≥ 3(l + 1),

as claimed.
Next we want to lift the l-improvement for U2 ∪ U3 to an r-improvement for

U1∪U2∪U3 with r ≤ 2l. From (10) we know that e∅(((U1 ∪ U2,3)\Û)∪F̂ ) ≥ e−(l+3).
Hence, it suffices to add at most l+3 suitable elements {g1, g2, . . . , gl′} of F1 to ensure
that (

(U1 ∪ U2,3) \ Û
)
∪
(
F̂ ∪ {g1, g2, . . . , gl′}

)

is feasible. Furthermore, the points κ−1(g1), . . . , κ
−1(gl) can be deleted from U1 with-

out destroying feasibility; i.e.,

(
(U1 ∪ U2,3)

∖(
Û ∪ {h1, h2, . . . , hl′}

))
∪
(
F̂ ∪ {g1, g2, . . . , gl′}

)

is feasible for the (original) data (φ). Let r = l + l′; then r ≤ 2l + 3 ≤ 2s + 1 = t.
Hence, the existence of this lifted r-improvement contradicts the t-optimality of U .
So, property (ii) holds, Proposition 3.2 can be applied, and (9) follows.

In order to derive the bound of (b), inequality (8), matching-optimality (i.e.,
inequality (7)), and the bound 3|F | on the total effect of U are combined to obtain

3|U | = |U1|+ (|U1|+ |U2|)︸ ︷︷ ︸
≤|F |

+(|U1|+ 2|U2|+ 3|U3|)︸ ︷︷ ︸
≤3|F |

≤ |F1|+ 4|F |.(11)

Furthermore, inequality (9) implies

|U | = |U1|+ (|U2|+ |U3|) ≤ |F1|+
(
3

2
+ ε3(s− 1)

)
|F0|.(12)
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 539

Multiplying (11) with 1
2 + ε3(s−1), adding (12), and using |F0|+ |F1| = |F | then give

(
5

2
+ 3ε3(s− 1)

)
|U | ≤

(
7

2
+ 5ε3(s)

)
|F |,

which implies assertion (b).

Note that the proof provides a result that is slightly stronger than assertion (b). In
fact, the argument does not use the assumption m = 3 “globally” but only “locally.”
More precisely, let m ≥ 3, s ∈ N, t = 2s + 1, and let U be matching-optimal and
effect-3-t-optimal. Then

|U1| = |F1| and
|U1|+ |U2|+ |U3| ≤ |F |+ (

1
2 + ε3(s− 1)

) |F0|.(13)

Finally, we turn to assertion (c). First, we form the positive linear combination

1

m
Im +

m−1∑
l=4

1

l(l + 1)
Il

of the inequalities (5) derived in the proof of Theorem 3.9. Collecting terms for
U1, . . . , Um yields

1

4
|U1|+ 2

4
|U2|+ 3

4
|U3|+ |U4|+ · · ·+ |Um| ≤

(
1 +

1

5
+ · · ·+ 1

m

)
|F |.

Thus it remains to show that

3

4
|U1|+ 2

4
|U2|+ 1

4
|U3| ≤ 3

4
|F |.

Since 5 ≤ t = 2s+ 1, we can apply (13) for s = 2. This yields

2|U1|+ |U2|+ |U3| ≤ 2|F |.

Matching-optimality implies again

|U1|+ |U2| ≤ |F |,

whence addition of these inequalities gives

3|U1|+ 2|U2|+ |U3| ≤ 3|F |.

This concludes the proof of Theorem 3.10.

4. Computational results. In this section we report on computational results
for implementations of the different algorithms outlined in the previous sections.

4.1. Description of the implementations. We implemented six different al-
gorithms for [BIF]. The first algorithm (GreedyA) is the plain greedy algorithm (see
Figure 5) which considers all positions in a random order and tries to place atoms
at these positions. The second algorithm (GreedyB) is a variant of the line following
greedy algorithm, Algorithm 3.7 (Figure 6). The algorithm chooses a direction with
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540 PETER GRITZMANN, SVEN DE VRIES, AND MARKUS WIEGELMANN

procedure GreedyA
Calculate a random permutation of all points
For each point in the order of this permutation do

Check whether any line passing through this point is saturated
If no line is saturated then

Add the point to the solution set
Update the sums of the lines passing through this point

Fig. 5. The plain greedy solver.

maximal support |Ti|. Suppose—in accordance with the notation in Algorithm 3.7—
that i = 1. The lines T ∈ T1 are then considered with respect to decreasing line-weights

φ1(T )/|G ∩ T |.

The algorithm usually performs quite well. However, if one regards the “en block”
point insertion procedure successively, i.e., as a point-by-point insertion, then the
adapted line-weights change and at some point—possibly long before the last point
of the block has been inserted—another line might be more profitable. This idea
is pursued in a third greedy algorithm (GreedyC) which changes the weights of all
lines and uninspected points after a new point is placed; see Figure 7. The initial
problem is, of course, that after each insertion a complete search for the next position
of maximum weight is necessary. This increases the computation times dramatically.
A good data structure for keeping the points (partially) ordered according to their
weights is a heap. After a point insertion, it suffices to update the weights of points
on lines through the new point. While a heap can perform this quite efficiently, this
procedure is still pretty time consuming since the weights of points change frequently,
without the element even being close to the top of the heap. We decided therefore to
use a lazy-update. For this we take the top element of the heap and recompute its
weight. Then we compare its stored weight with its actual weight (they might differ
due to recent insertions). If the weights are equal, this is still the top element of the
heap, and we can try to insert it. If the weights differ, the candidate point gets the
new weight and the heap needs to be restructured. After the restructuring we start
again with the (new) top element.

The last type of algorithm is the 1-improvement algorithm according to Paradigm
2.1. We tried three different variants (ImprovementA, ImprovementB, ImprovementC)
depending on the greedy algorithm (GreedyA, GreedyB, GreedyC) used first; see Fig-
ure 8 As the 1-improvement algorithm already needs 22 minutes on average for some
instances and the results are very good, we did not implement higher improvement
algorithms (like 2-improvement, etc.).

4.2. Performance of the implemented algorithms. In this subsection we
report on different experiments we conducted with the algorithms described in the
previous section. We performed several tests for problems of size 20×20 to 500×500,
with 2 to 5 directions and of density between 10% and 90%. After analyzing the
different experiments, we observed that the experiments with varying numbers of
directions, but a fixed density of 50%, are most representative and the other series
behave similarly. (For more data on the computational performance of the evaluated
heuristics for other densities of 1%, 5%, and 20% see de Vries [19].)

Even though our program can solve problems in three dimensions and on arbitrary
crystal-lattices, we decided to present here only results for 2-dimensional problems on
the square lattice, as in the physical application all directions belong to a single plane
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 541

procedure GreedyB
Determine a direction with maximal support
Sort the lines parallel to that direction by descending line-weights
For each of these lines (T ) in this order do

For each point on T do
Calculate its weight (the product of the line-weights)

Sort the points on T with respect to descending weights
For each point in this order do

Check whether any line passing through this point is saturated
If no line is saturated then

Add the point to the solution set
Update the sums of the lines passing through this point

Fig. 6. The line following greedy solver.

procedure GreedyC
For each point do

Calculate the weight of the point (the product of the relative line capacities)
and insert it into the heap

While there are still points in the heap do
Find the maximum weight and a corresponding point and remove it from the heap
Check whether any line passing through this point is saturated
If no line is saturated then

Add the point to the solution set
Update the sums of the lines passing through this point

Fig. 7. The dynamically reordering greedy solver.

(therefore the problem can be solved in a slice-by-slice manner); furthermore, this
restriction should facilitate the comparison with other, less general codes currently
under development by various research groups.

Whenever we report either running-times or performances, we report the average
of 100 randomly generated instances. We decided to use random instances for two
reasons. The first reason is that we still lack sufficient experimental data from the
physicists. On the other hand, it is typically easy to detect and then eliminate invari-
ant points, i.e., points that either must belong to every solution or do not belong to
any solution. Since the invariant points carry much of the physical a priori knowledge,
the reduced problem tends to be quite unstructured.

To obtain a random configuration of prescribed density, we generate a random
permutation of the positions of the candidate grid and then place atoms in this order
until the described density is reached. After calculating the lines and their sums we
discard the configuration itself. Then we preprocessed the problem by calculating the
incidence tables, which are necessary for all algorithms. The running-times we report
were obtained on an SGI Origin 200 computer with four MIPS R10000 processors at
225MHz with 1GB of main memory and by running three test programs at the same
time.

Note that all instances are consistent. There are two reasons for this. First,
for inconsistent problems we need the exact solution to evaluate the performance of
the heuristics. But for the relevant dimensions there are at present no algorithms
available that produce exact solutions in reasonable time. The second reason is that
the true nature of the error distribution for the real physical objects has not yet been
experimentally determined by the physicists. So it is not clear how to perturb an
exact instance to obtain inconsistent problems in a physically reasonable manner.

The performance plotted in Figure 9 is the quotient of the cardinality of the
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542 PETER GRITZMANN, SVEN DE VRIES, AND MARKUS WIEGELMANN

procedure Improvement[ABC]
Calculate a solution U according to GreedyA, GreedyB, or GreedyC
Repeat

For each point (p1) of the candidate grid do
If p1 ∈ U then continue with the next point
If no line passing through p1 is saturated then

Add p1 to U
Update the sums of the lines passing through p1
Continue with the next point

If more than one line passing through p1 is saturated then continue with the next point
For each point (p2) of U on the saturated line do

For each nonsaturated line (T1) through p1 do
Calculate the line (T2) parallel to T1 passing through p2
For each point (p3) on T2 not in U do

If the lines passing through p3 and
not containing p1 or p2 are nonsaturated and
the line passing through p3 and p1 (if existent)
has at least one point not in U then
Perform the improvement:

Remove p2 from U
Add p1 to U
Add p3 to U

Update the sums of all lines passing through p1, p2, or p3
Continue with the next point

Until no improvement was done in the last loop

Fig. 8. The improvement solvers.

approximate solution to that of an optimal solution. The closer it is to 1 the better
the result. It turns out that the larger the problems, the better every algorithm
performs in terms of relative errors (see Figure 9). Obviously, postprocessing the
output of some greedy algorithm with an improvement algorithm cannot decrease
the performance (usually it improves the performance). However, it turns out that
GreedyB outperforms ImprovementA (for four and five directions) and that GreedyC
performs better than ImprovementB (for five directions; for four directions they are
similar and for three directions ImprovementB is better).

The running-times for the algorithms GreedyA and GreedyB are less than 4 sec-
onds for all instances (of size up to 500×500). The application of the 1-improvements
to their results increases the running-time to up to 110 seconds.

The running-times of GreedyC and ImprovementC increase much faster than
those for the other algorithms. Still, they take only up to 1320 seconds. This is
long, but in fact these algorithms provide very close approximations, while presently
available exact algorithms seem incapable of solving 500× 500 problems in less than
a century. Furthermore, knowing a solution for a neighboring slice should speed up
the solution of the next slice by a good amount; so there is hope of solving even
500× 500× 500 real world problems in time that is acceptable in practice.

The better of the presented algorithms are so good that we also compare their
absolute errors (see Figure 10). As can be seen, the absolute error for ImprovementC
seems constant for three directions. (Of course, it follows from [5] that asymptotically
there must be a more than constant worst-case error unless P = NP.) For four and
five directions the absolute error appears to be O(

√|G|).
Another (practically) important issue is that of the distribution of errors among

different lines. For this we counted for 100 problems of size 500 × 500 how many
constraints were satisfied with equality, how many needed only one more point for
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 543

Fig. 9. Relative performance for 3 (top), 4 (middle), and 5 (bottom) directions on instances of
50% density for GreedyA ( ), ImprovementA ( ), GreedyB ( ), ImprovementB ( ), GreedyC ( ),
and ImprovementC ( ). The abscissa depicts the number of variables in thousands at a quadratic
scale and the ordinate depicts the relative performance.

equality, and so on. Again, it turned out that the algorithms GreedyC and Improve-
mentC have the best error distribution. In particular, for GreedyC no line occurred
with error greater than 1 for 3 and 4 directions; for 5 directions the worst case was
1 instance with a single line of error 2. For ImprovementC the worst cases were 3
instances with one line of error 2 for 3 directions, for 4 directions 1 instance with a
single line of error 4, and for 5 directions 1 instance with a single line of error 5. Of
course, while 1-improvements never decrease the number of points placed, the varia-
tion of errors over the single lines may increase, as it may happen that in a number
of improvement steps atoms from the same line are removed.
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544 PETER GRITZMANN, SVEN DE VRIES, AND MARKUS WIEGELMANN

Fig. 10. Absolute error for 3 (top), 4 (middle), and 5 (bottom) directions on instances of 50%
density for GreedyA ( ), ImprovementA ( ), GreedyB ( ), ImprovementB ( ), GreedyC ( ), and
ImprovementC ( ). The abscissa depicts the number of variables in thousands at a quadratic scale
and the ordinate depicts the absolute error at a logarithmic scale.

For GreedyC only lines with error at most 2 occur, while for ImprovementC
a single instance with a line of error 5 came up. In contrast, GreedyA, GreedyB,
ImprovementA, and ImprovementB always have a couple of lines with a huge error (see
Figure 11). For instance, for GreedyA, ImprovementA, GreedyB, and ImprovementB
instances occurred with lines of error 67, 130, 109, and 66. These huge errors do seem
inappropriate in the physical application since it is more likely that many lines occur
with small error rather than with very large error.
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APPROXIMATING BINARY IMAGES FROM DISCRETE X-RAYS 545

Fig. 11. Distribution of error for 100 instances with 5002 variables, density 50%, and 3 (.),
4 (◦), and 5 (×) directions. Depicted are: GreedyA (top left), ImprovementA (top right), GreedyB
(middle left), ImprovementB (middle right), GreedyC (bottom left), and ImprovementC (bottom
right). The abscissa depicts the absolute error on a line at a logarithmic scale and the ordinate
depicts the average number of lines with this error at a logarithmic scale.
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