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Abstract. In autumn 2006 the GOCE gradiometry 
ESA satellite mission will be launched. Its objective 
is the determination of a global model with 
maximum spatial resolution of the quasi-stationary 
gravity field and geoid. This makes the mission 
complementary to GRACE, which is designed so as 
to determine temporal variations of the Earth’s 
gravity field with highest precision at long 
wavelengths. The gravity and geoid as derived from 
GOCE will be used in solid Earth geophysics, 
oceanography, geodesy and sea level research. 
 
GOCE will be the first satellite to carry a gravity 
gradiometer and it will be for the first time that a 
sensor combination of gradiometer, GPS receiver and 
active angular and linear control systems will be 
flown in space. Consequently, a new data processing 
scheme has to be developed and adopted to this 
mission. It is the purpose of the GOCE ground 
segment elements to develop, test and operate the full 
processing chain for this new space-borne gravity 
sensor system in order to provide the projected 
precise GOCE gravity field model to the user 
community. The paper gives an overview of the 
GOCE mission concept, science goals and 
instruments as well as some details about the 
gradiometer data processing .  
 
Keywords: Earth Observation, GOCE, Global 
Gravity Field Determination 
 
1 Introduction 
 
GOCE is the acronym for „Gravity field and steady-
state Ocean Circulation Explorer mission“. It is the 
first core satellite mission of the newly defined ESA 
“Living Planet” programme. The objective of GOCE 
is the determination of the stationary part of the Earth 
gravity field and geoid with highest possible spatial 
detail and precision. The gravity and geoid model 
derived from the GOCE mission will serve science 
and application in the fields of solid Earth physics, 
oceanography, geodesy and glaciology, compare 
(Johannessen et al, 2003; Rummel et al, 2002). 
 
Two main applications can be distinguished. Firstly, 
the spatial variations of gravity and geoid are directly 
related to density anomalies in lithosphere and upper 
mantle, respectively, and consequently to interior 
stresses and ultimately to mass motion. In this respect 
GOCE provides important new information to studies 
of continental and oceanic lithosphere and upper 

mantle. Its information is complementary to that of 
seismic tomography, magnetic field models, 
geokinematic studies and laboratory results. 
Secondly, a detailed geoid surface when combined 
with satellite altimetry yields ocean topography, the 
quasi-stationary deviation of the actual mean ocean 
surface from its hypothetical surface of rest. Under 
the assumption of geostrophic balance ocean surface 
topography can be directly translated into a global 
map of ocean circulation. Thus, ocean surface 
circulation becomes directly measurable, globally 
and uninterruptedly. In conjunction with higher 
resolution ocean models and ocean measurements, 
GOCE is expected to improve significantly estimates 
of global mass and heat transport in the oceans (see 
Le Grand, 2003) . Furthermore, the global geoid will 
permit height systems to be connected globally with 
almost cm-precision. Sea level variations in 
Australia, or East Asia will become directly 
comparable to those measured in Europe or America. 
These and other expected scientific benefits from 
GOCE gravity and geoid models demonstrate that 
this mission represents an important element of 
global observation of mass anomalies, mass transport 
and mass exchange. The science goals and the 
requirements on the mission performance are 
summarized in Table  1. 
 
To reach the science goals as specified above, 
precondition is that GOCE can determine gravity and 
geoid with a precision of 10-6·g (corresponding to 1 
mgal) and 1-2 cm, respectively, with a spatial 
resolution of better of 100 km half wavelength and 
that these results are achieved free of long 
wavelength systematic errors. The mission 
performance depends on the gravity sensor system 
on-board GOCE. 
 
2 GOCE Mission Concept 
 
Gravity measurements with CHAMP and GRACE 
are based on inter-satellite tracking. The concept of 
the GOCE satellite mission is the direct measurement 
of the anomalous static gravity field by pairs of 
accelerometers forming a 3-D gravity gradiometer. 
By observing differential accelerations in three 
directions in a drag-free environment (see chapter 3) 
and at very low altitude it will become possible to 
determine the gravity field globally to a much higher 
spatial resolution than with any satellite mission 
flown before. The gravity gradiometer, due to its 
short baseline between the accelerometers and due to 
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Accuracy 

Application Geoid 
[cm] 

Gravity [mgal] 
Spatial Resolution 

(half wavelength – D in km) 

SOLID EARTH    
Lithosphere and upper mantle density structure  1-2 100 
Continental lithosphere:    

 Sedimentary basins  1-2 50-100 
 Rifts  1-2 20-100 
 Tectonic motions  1-2 100-500 

Seismic hazards  1 100 
Ocean lithosphere and interaction with asthenosphere  0,5-1 100-200 
OCEANOGRAPHY    

 Short scale 1-2 
0.2 

 100 
200 

 Basin scale ≈0.1  1000 
ICE SHEETS    

 Rock basement  1-5 50-100 
 Ice vertical movements 2  100-1000 

GEODESY    
 Levelling by GPS 1  100-1000 
 Unification of worldwide height systems 1  100-20000 
 Inertial navigation system  ≈1-5 100-1000 
 Orbits  ≈1-3 100-1000 

SEA LEVEL CHANGE Many of the above applications, with their specific 
requirements, are relevenat to studies of sea-level change. 

Table  1: Science Goals of the GOCE Mission (ESA, 1999) 

 
its band limitation will not be able to observe the 
long wavelength part of the Earth gravity field with 
sufficient accuracy. Therefore it is complemented by 
high-low satellite-to-satellite tracking. A GPS-
receiver will provide continuous position 
observations relative to the satellites of the GPS 
system. This part is identical to that of CHAMP, but 
due to the lower altitude of GOCE and due to the 
drag-free environment of the spacecraft some 
improvements in accuracy and resolution are 
expected. Figure 1 shows the general mission 
concept; Figure 2 provides an overview of the 
predicted performance of the GOCE mission 
compared to the predictions for CHAMP and 
GRACE and the results of some recent gravity field 
solutions from these two missions.  
 
 

 
Figure 1: GOCE mission scenario with gravity gradiometry 

and high-low satellite-to-satellite tracking  to the 
GPS constellation. 
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Figure 2: Square root of cummulative error degree variances 
from CHAMP, GRACE and GOCE mission 
prediction and from error estimates for some recent 
CHAMP models (blue) (TUM-1S, TUM-2SP, 
EIGEN-3P) and GRACE (red) (GFZ 66 days, CSR 
August 2003 monthly) gravity field models. 

 
3 Instruments 
 
Core instrument on-board GOCE is a three axis 
gravity gradiometer. It consists of three orthogonally 
mounted pairs of 3-axis accelerometers, i.e. an 
orthogonal arrangement of three one-axis 
gradiometers. The gradiometer baseline of each pair 
is about 50 cm long. The planned accelerometer 
precision is 12

2

m10 / Hz
s

−  along two axes with the third 

axis less sensitive. From the measured gravitational 
acceleration differences the three main diagonal 
terms of the gravitational tensor can be determined 
with high precision. The extremely high gradiometric 

GRACE

SGG
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mass 
anomal

GPS - 
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performance of the instrument is confined to the so-
called measurement bandwidth (MBW). In addition, 
the gradiometer yields the required information of the 
angular acceleration about the out-of-plane axis 
(pitch) of the gradiometer. This information in 
combination with the angular rates as derived from 
the star sensor readings and from magnetometers is 
used as control signal for angular control of the 
spacecraft by magneto torquers. The use of magneto 
torquers implies that three-axis active angular control 
is possible only over part of each orbit revolution. In 
order to prevent non-gravitational forces acting on 
the spacecraft to “sneak” into the measured 
differential accelerations as secondary effect, the 
satellite is kept “drag-free” in along track direction 
by means of a pair of ion thrusters. The necessary 
control signal is derived from the available 
“common-mode” accelerations (=mean accelerations) 
along the three orthogonal axes of the accelerometer 
pairs of the gradiometer. The gradiometric and 
angular signal part of the common mode 
acceleration, which is a result of the imperfect 
symmetry of the gradiometer relative to the 
spacecraft centre of mass has to be modelled during 
data analysis. 
 
 

 
 
Figure 3:  GOCE sensor concept for drag control, angular 

control and gravity gradiometry. 
 
The second gravity sensor device is a newly 
developed GPS receiver. From its measurements the 
orbit trajectory is computed to within a few 
centimetres, either purely geometrically by a so-
called kinematic orbit determination, or by the 
method of reduced dynamic orbit determination. As 
the spacecraft is kept in an almost drag-free mode (at 
least along track and within an extended 
measurement bandwidth) the orbit motion is purely 
gravitational. The observations from the GPS 

receiver complement the measurements of the gravity 
gradiometer. They provide high quality information 
about the long wavelength gravity field, below and at 
the lower end of the measurement bandwidth of the 
gradiometer. By a joint analysis of data from both 
gravity field sensors the final GOCE gravity field 
models are determined.   
 
In summary, GOCE is a technologically very 
complex and demanding mission. The gravitational 
field sensor system consists of a three-axis 
gravitational gradiometer and a GPS receiver as core 
instruments. Orientation in inertial space is derived 
from star sensors, angular rates are deduced from the 
gradiometer. Common mode accelerations from the 
gradiometer are used for drag-free control with ion 
thrusters, magneto-torquers provide angular control. 
The principle of the system is shown in Figure 3 and, 
the system elements are summarized in Table  2. 
 

Sensor Measurements 
Gravity gradients Гxx, Гyy, Гzz in 
instrument system and in MBW 
(measurement bandwidth) 
Angular accelerations (high accurate 
around y-axis, less accurate around x, 
z axes)  

3-axis gravity 
gradiometer 

Common mode accelerations 
Star sensors High rate and high precision inertial 

orientation 
GPS receiver Orbit trajectory with cm-precision 
Drag control with 
ion thruster 

Control signal from common mode 
accelerations of gradiometer 

Angular control 
with magnetic 
torquers 

Based on angular rates from star 
sensors, magnetometer and 
gradiometer 

Gradiometer 
calibration and 
quadratic factors 

With cold gas thrusters (random 
pulses) and sinusoidal motion of test 
masses of accelerometers, respectively 

translational
forces

angular
forces

star
sensors

drag control

*
*

angular control

GPS/GLONASS
SST -hl

  

GRAVITY GRADIOMETER

measures:

gravity gradients

angular accelerations
common mode acc.

A B

Table  2: Summary of GOCE instruments. 

 
4 Gradiometry with GOCE 
 
As outlined in the previous chapter each 
accelerometer has two highly sensitive axes and one 
less sensitive axis. The directions of the less sensitive 
axes are identified in Figure 4 by the dashed arrows. 
They are orthogonal to the planes, which are defined 
by the two high sensitive axes of the accelerometers. 
The orientation in space of the six accelerometers 
forming the gravity gradiometer is as follows. Each 
pair of accelerometers along a baseline forms a  one-
axis gradiometer. These are the accelerometer pairs 1 
and 4 (blue), 2 and 5 (yellow) and 3 and 6 (red) (see 
Figure 4). Nominally the one-axis gradiometers are 
orthogonal to each other with a common origin, 
which is close to the centre of mass of the satellite. 
The three vectors represented by the three one-axis 
gradiometer baselines form the so-called gradiometer 
reference frame (GRF). This is the frame where all 
observations of the gradiometer are taken. In 
addition, each accelerometer has its own reference 
frame (accelerometer reference frame), which is 
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aligned with the one-axis gradiometer baseline. The 
remaining two axes are parallel to the other two one-
axis gradiometer baselines. Each triad forms a right-
handed system in the origin of the accelerometer. 
Directions of the axes are shown in Figure 4. In 
space, nominally the three axes of the GRF are 
oriented such, that the x-axis points towards the flight 
direction, the y-axis is orthogonal to the orbital plane 
and the z-axis forms a right-handed system and 
points approximately away from the centre of the 
Earth. Due to the angular control by magneto-
torquers, which enables active angular motion only 
towards the poles the GRF does not fully correspond 
to the nominal orientation in space as described 
above. During each half revolution small rotations 
about the x-axis and the z-axis with respect to the 
nominal orientation are present (by about ±3°). 
 

 
 
Figure 4:  Schematic view of the three one-axis gradiometers, 

the gradiometer reference frame and the six 
accelerometer reference frames. 

 
In the following the basic gradiometer equations are 
presented and it is shown, which parameters are 
determined from the highly sensitive axes and where 
there is an impact of the less sensitive axes (see also 
Rummel, 1986). All observations are taken in the 
GRF. The basic observation by one accelerometer 
under the assumption that accelerometer bias and 
scale factors, misalignments, centre of mass 
displacements, etc. are not present is defined by: 
   

a V r r ( r= − ⋅ + ω× +ω× ω× )             (1) 
 
with: 
a  acceleration vector on proof mass  
V  gravity gradient matrix 
r  displacement of the accelerometer origin 

from the center of mass vector 
ω  angular rate vector 
ω  angular acceleration vector 
 

The three terms on the right hand side of equation (1) 
are caused by the following forces: 
• 1st term: linear acceleration of accelerometer proof 

mass induced by the gravity field, 
• 2nd term: linear acceleration of accelerometer proof 

mass induced by satellite angular accelerations 
• 3rd term: centrifugal acceleration of accelerometer 

proof mass induced by satellite angular rotation 
If we write equation (1) in the full form we get with 
(2), (3) and (4) the observation equation (5): 
 

V V V rxx xy xz x x
V V V V ; r r ; ;yx yy yz y y y

V V V rzx zy zz z z z
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⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ω ω⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

           (2) 
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Now for each accelerometer A1-6 the displacement 
vector relative to the centre of the GRF (assuming it 
is identical to the centre of mass) is introduced using 
the baseline length Lx,y,z for each one-axis 
gradiometer. 
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From equation (5) by introducing (6) the observation  
equations for each accelerometer (number index) in 
each axis (x,y,z index) can be written by (the green 
colour denotes observation along a high sensitive 
axis, red denotes observation along a less sensitive 
axis of the accelerometer): 

  

( ) ( )
( ) ( )a

1,y 4,y
= −

( ) ( )

a

L L
2 2 2 2x xV V

xx y z xx y z2 2

L L
x xV V

yx z x y yx z x y2 2

L L
x xV V

zx y x z zx y x

a a
1,x 4,x
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;
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a
3,y 6,y

= − − −    (9) 

 
These are the basic equations for all further 
deviations. They are treated here as idealized, free of 
any systematic errors like misalignments, scale 
factors, biases etc. 
 
Common-Mode Accelerations 
 
Common-mode (or mean) accelerations are 
computed from the mean of two accelerometers of 
one one-axis gradiometer in each direction. 
 

(c,l,k,i l,i k,i
1a a a
2

= + )   (10) 
 
with: c = common mode 

l = 1st accelerometer number 
 k = 2nd accelerometer number 
 I = direction (x,y,z) 
 
By introducing equations (7) for the one axis 
accelerometer pair 1 and 4 it becomes obvious that 
all common-mode accelerations cancel to zero in the 
nominal case. The same is true for the accelerometer 

pairs 2, 5 and 3, 6, respectively. In other words, this 
means that in an optimal case the drag-free control 
system works perfectly and the control loop 
automatically sets all resulting common-mode 
accelerations to zero. The perfect scenario means that 
the common-mode accelerations determined by the 
on-board Software are perfectly translated to ion-
propulsion and they perfectly eliminate the impact of 
the non-conservative forces acting on the satellite. In 
reality it can not be expected that the observed 
common-mode accelerations will always become 
zero. The remaining signal can be addressed to 
imperfections of the drag-free control system, to 
imperfections of the in-orbit calibration of the 
gradiometer and to misalignments of the gradiometer 
axes or centre of mass displacement. In order to 
optimally exploit the gradiometer observations these 
remaining common-mode accelerations have to be 
carefully analyzed and taken into consideration 
during observation pre-processing as residual 
accelerations from non-conservative forces. What 
also becomes visible from equations (7) to (9) is, that 
the common-mode accelerations in flight direction 
(x-axis) are observed by all three accelerometer pairs 
with the highly sensitive axes. This means that in the 
direction of the main signal of non-conservative 
forces some internal control is possible. In contrast, 
the common-mode accelerations in cross-track (y-
axis) and radial direction (z-axis) are observed only 
by one or two highly sensitive accelerometer axes, 
respectively. 
 
Differential-Mode Accelerations 
 
Differential-mode accelerations are computed by 
subtracting the observations of the two 
accelerometers of each one one-axis gradiometer in 
each direction. 
 

(d,l,k,i l,i k,i
1a a a
2

= − )   (11) 

 
with: d = differential model 

l = 1st accelerometer number 
 k = 2nd accelerometer number 
 I = direction (x,y,z) 
 
By introducing equation (7) the differential-mode 
accelerations e.g. for the accelerometer pair 1 and 4 
are computed by the following formulas (the 
meaning of the colours is identical as described 
before). 
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2 2 2 2x x
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2 2 2 2x x
xx y z xx y z
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Analogously the differential mode accelerations for 
the accelerometer pairs 2, 5 and 3, 6 become: 
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2
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Equations (12) to (20) provide the basic quantities for 
computation of the gravity gradients, which are the 
fundamental observables of the gravity field. The 
angular accelerations , which are required together 
with the star camera measurements for angular 
control of the satellite also are computed from the 
differential model accelerations. 

ω

 
The nine differential accelerations divided by the 
corresponding baseline lengths constitute the basic 
3x3 matrix of gradiometric observations. It is 
composed of these symmetric matrices, the gravity 
gradient and the centrifugal component matrix and of 
the skew-symmetric matrix of angular accelerations. 
This property, symmetry versus anti-symmetry, 
allows the separation of the angular acceleration 
components from the gradiometric and centrifugal 
ones, in principle.  
 
Gradiometer Angular Rates 
 
The angular accelerations of the spacecraft with 
respect to the three axes of the GRF are derived from  
linear combinations of the differential mode 
accelerations. From these angular accelerations 
angular rates are computed by integration over time. 
These angular rates are determined purely from the 
accelerometer readings, while the angular rates 
finally used for the angular control and the data 
processing are determined by a spectral combination 
of these accelerometer derived angular rates with 
those derived by differentiation from the star tracker 
observations. Both sensor systems provide 
complementary information (long frequency 

information from the star trackers, high frequency 
angular rates from the accelerometers). The 
following equations shall identify which angular 
acceleration (and after integration which angular 
rate) is determined from highly sensitive 
accelerometer axes and where the less sensitive axes 
influence the derived angular rates. 
 
From equations (17) and (19) we get: 
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By addition of both equations (21) we get the 
observation equation for the angular accelerations 
about the x-axis (roll). 
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In analogy the angular accelerations about the y-axis 
(pitch) and z-axis (yaw) are determined from 
equations (14) and (18) and equations (13) and (15) 
respectively. 
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From equations (22) to (24) it can be seen that the 
angular control with respect to the y-axis, which 
represents the largest rotational component of the 
spacecraft, can be determined very accurately, while  
the determination of rotations about the x-axis and to 
some extent also about the z-axis is weak. The 
spacecraft will rotate about these two axes only by a 
few degrees with slowly varying angular rates. This 
means that the main signal of the angular rates will 
be in the lower frequency spectrum. As star trackers 
provide good information for low frequencies and 
accelerometers provide good information in the 
medium to high frequencies, it is obvious that the 
angular rates computation about the x- and z-axes 
relies heavily on the star tracker information.  
 
Gravity Gradients 
 
The gravity gradients, which represent the central 
observables for gravity field determination with 
GOCE are computed directly from or by linear 
combinations of the differential mode accelerations. 
The diagonal components of the gravity gradient 
tensor are computed from equations (12), (16) and 
(20) using: 
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The off-diagonal elements of the gravity tensor are 
computed by linear combinations of equations (13) 
and (15), (14) and (18) and (17) and (19), 
respectively.  
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Inspection of equations (25) to (30) shoes that the 
gravity gradients for the z-y component are solely 
determined from differential mode accelerations of 
less sensitive accelerometer axes. This implies that 
this gravity gradient tensor component does not 
provide sufficiently accurate information to be used 
for the gravity field processing. This is also true for 
the x-y gravity gradient component. Differential 
mode accelerations based on highly sensitive axes of 
the accelerometers are used to compute the remaining 
4 components, which include all diagonal 
components. They contain the main signal of the 
gravity field to be determined. The quality of the 
gravity gradients is also influenced by the angular 
rates. As explained above, these rates are computed 
by integrating the accelerometer derived angular 
accelerations and by combining them with angular 
rates derived from the star tracker readings. From the 
equations above it becomes obvious that specifically 
the angular rates about the x- and z-axis have to be 
improved by the star tracker information in order to 
minimize the impact of less sensitive accelerometer 
axes on the diagonal terms of the gravity gradient 
tensor.  
 
5 Conclusions 
 
The GOCE satellite will be the first mission 
observing the gravity field directly from space with a 
gravity gradiometer. The gravity gradiometer is the 
core instrument. It is complemented by a GPS-
receiver, star tracker, magnetometers, magnetic 
torquers fro angular control and ion-thrusters fro 
along-track drag control. All systems together 
constitute the GOCE gravity sensor system. For this 
reason it is required that all system elements are 
understood correctly and that their interactions are 
taken into account during ground processing. This is 
well reflected in the gradiometer equations as they 

are described in the paper. From their analysis the 
following conclusions can be drawn: 
• Common mode accelerations in flight direction 

are determined solely from highly sensitive 
accelerometer observations. These common 
mode accelerations are used for the drag-free 
control system. As the main non-gravitational 
forces are acting in flight direction this 
represents the optimal strategy. The still 
remaining common mode accelerations are an 
important information source.  

• The dominating angular motion is the rotation 
once per revolution about the y-axis. Because of 
the deviation of the GRF from the local orbit 
system and due to the attitude control concept 
based on magnetorquers, the angular rates about 
the x- and z-axes are slowly varying within each 
revolution. The angular rate reconstruction 
procedure determines an optimal estimate for all 
angular rates by combining the accelerometer 
derived angular rates with the star tracker 
derived angular rates. Actually the angular rates, 
which are partly or fully determined by the less 
sensitive accelerometer axes are strongly 
improved by the star tracker information. 

• The diagonal gravity gradient tensor elements as 
well as the x-z tensor component are determined 
from highly sensitive differential accelerations. 
Angular rates to be applied for their computation 
are partly derived from the less sensitive axes. 
This means that the performance of the angular 
rate reconstruction algorithm has implication on 
the quality of the gravity gradients.  
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