Two-sided Moment Matching-Based Reduction for MIMO Quadratic-Bilinear Systems

Maria Cruz Varona

joint work with Elcio Fiordelisio Junior

Technical University Munich
Department of Mechanical Engineering
Chair of Automatic Control

11th Elgersburg Workshop
Elgersburg, 20th February 2017

Motivation

Given a large-scale nonlinear control system of the form

$$
\operatorname{det}(\mathbf{E}) \neq 0
$$

$$
\boldsymbol{\Sigma}:\left\{\begin{aligned}
\mathbf{E} \dot{\mathbf{x}}(t) & =\mathbf{f}(\mathbf{x}(t))+\mathbf{B u}(t), \\
\mathbf{y}(t) & =\mathbf{C x}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0}
\end{aligned}\right.
$$

$$
\mathbf{x}(t) \in \mathbb{R}^{n}
$$

with $\mathbf{E} \in \mathbb{R}^{n \times n}, \mathbf{f}(\mathbf{x}(t)): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\mathbf{B} \in \mathbb{R}^{n \times m}, \mathbf{C} \in \mathbb{R}^{q \times n}$
Simulation, design, control and optimization cannot be done efficiently!

Reduced order model (ROM)

$$
\boldsymbol{\Sigma}_{r}:\left\{\begin{aligned}
\mathbf{E}_{r} \dot{\mathbf{x}}_{r}(t) & =\mathbf{f}_{r}\left(\mathbf{x}_{r}(t)\right)+\mathbf{B}_{r} \mathbf{u}(t) \\
\mathbf{y}_{r}(t) & =\mathbf{C}_{r} \mathbf{x}_{r}(t), \quad \mathbf{x}_{r}(0)=\mathbf{x}_{r, 0}
\end{aligned}\right.
$$

with $\mathbf{E}_{r} \in \mathbb{R}^{r \times r}, \mathbf{f}_{r}\left(\mathbf{x}_{\mathbf{r}}(t)\right): \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ and $\mathbf{B}_{r} \in \mathbb{R}^{r \times m}, \mathbf{C}_{r} \in \mathbb{R}^{q \times r}$

$$
\mathbf{x}_{r}(t) \in \mathbb{R}^{r}, r \ll n
$$

State-of-the-Art: Overview

Reduction of nonlinear (parametric) systems

$$
\begin{aligned}
\mathbf{E} \dot{\mathbf{x}} & =\mathbf{f}(\mathbf{x})+\mathbf{b} u \\
y & =\mathbf{c}^{T} \mathbf{x}
\end{aligned}
$$

\square Simulation-based:

- POD,TPWL
- Reduced Basis, Empirical Gramians

Reduction of bilinear systems

$$
\begin{aligned}
\mathbf{E} \dot{\mathbf{x}} & =\mathbf{A} \mathbf{x}+\mathbf{N} \mathbf{x} u+\mathbf{b} u \\
y & =\mathbf{c}^{T} \mathbf{x}
\end{aligned}
$$

® Carleman bilinearization (approx.)
(1) Large increase of dimension: $n+n^{2}$
\square Generalization of well-known methods:

- Balanced truncation
- Krylov subspace methods
- \mathcal{H}_{2} (pseudo)-optimal approaches

Reduction of quadratic-bilinear systems

$$
\begin{aligned}
\mathbf{E} \dot{\mathbf{x}} & =\mathbf{A} \mathbf{x}+\mathbf{H}(\mathbf{x} \otimes \mathbf{x})+\mathbf{N} \mathbf{x} u+\mathbf{b} u \\
y & =\mathbf{c}^{T} \mathbf{x}
\end{aligned}
$$

\square Quadratic-bilinearization (no approx.!)
\square Minor increase of dimension: $2 n, 3 n$
\square Generalization of well-known methods:

- Krylov subspace methods
- \mathcal{H}_{2}-optimal approaches
\square Reduction methods for MIMO models

Quadratic-Bilinearization Process

SISO Quadratic-bilinear system:

$\mathbf{H} \in \mathbb{R}^{n \times n^{2}}$: Hessian tensor
$\mathbf{b}, \mathbf{c} \in \mathbb{R}^{n}$
Objective: Bring general nonlinear systems to the quadratic-bilinear (QB) form
1 Polynomialization: Convert nonlinear system into an equivalent polynomial system

2 Quadratic-bilinearization: Convert the polynomial system into a QBDAE

Quadratic-Bilinearization Process - Example

$$
i_{C}+i_{R}+i_{D}=i \quad \text { with }\left\{\begin{array}{l}
i_{C}=C \dot{v} \\
i_{R}=\frac{v}{R} \\
i_{D}=e^{\alpha v}-1
\end{array}\right.
$$

Nonlinear ODE: $\dot{v}=\frac{1}{C}\left(-\frac{v}{R}-e^{\alpha v}+1+i\right)$

Polynomialization step: Introduce new variable and its Lie derivative

$$
\begin{aligned}
& w=e^{\alpha v}-1 \\
\dot{v} & =\frac{1}{C}\left(-\frac{v}{R}-w+i\right) \\
\dot{w} & =\left(\alpha e^{\alpha v}\right) \dot{v} \\
& =\frac{\alpha}{C}\left(-\frac{v w}{R}-w^{2}+w i-\frac{v}{R}-w+i\right)
\end{aligned}
$$

Quadratic-Bilinearization Process - Example

2 Quadratic-bilinearization step: Convert polynomial system into a QBDAE

$$
\begin{aligned}
& \dot{v}=\frac{1}{C}\left(-\frac{v}{R}-w+i\right) \\
& \dot{w}=\frac{\alpha}{C}\left(-\frac{v w}{R}-w^{2}+w i-\frac{v}{R}-w+i\right) \\
& \underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}_{\mathbf{E}} \underbrace{\left[\begin{array}{c}
\dot{v} \\
\dot{w}
\end{array}\right]}_{\dot{\mathbf{x}}}=\underbrace{\left[\begin{array}{cc}
-\frac{1}{R C} & -\frac{1}{C} \\
-\frac{\alpha}{R C} & -\frac{\alpha}{C}
\end{array}\right]}_{\mathbf{A}} \underbrace{\left[\begin{array}{c}
v \\
w
\end{array}\right]}_{\mathbf{x}}+\underbrace{\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -\frac{\alpha}{R C} & 0 & -\frac{\alpha}{C}
\end{array}\right]}_{\mathbf{H}} \underbrace{\left[\begin{array}{c}
v^{2} \\
v w \\
v w \\
w^{2}
\end{array}\right]}_{\mathbf{x} \otimes \mathbf{x}}+\underbrace{\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{\alpha}{C}
\end{array}\right]}_{\mathbf{N}} \underbrace{\left[\begin{array}{c}
v \\
w
\end{array}\right]}_{\mathbf{x}} \underbrace{i}_{u}+\underbrace{\left[\begin{array}{c}
\frac{1}{C} \\
\frac{\alpha}{C}
\end{array}\right]}_{\mathbf{b}} \underbrace{i}_{u}
\end{aligned}
$$

Equivalent representation

Dimension slightly increased

Transformation not unique

The matrix \mathbf{H} can be seen as a tensor

Variational Analysis of Nonlinear Systems

Assumption: Nonlinear system can be broken down into a series of homogeneous subsystems that depend nonlinearly from each other (Volterra theory)

For an input of the form $\alpha u(t)$, we assume that the response should be of the form

$$
\mathbf{x}(t)=\alpha \mathbf{x}_{1}(t)+\alpha^{2} \mathbf{x}_{2}(t)+\alpha^{3} \mathbf{x}_{3}(t)+\ldots
$$

Inserting the assumed input and response in the QB system and comparing coefficients of α^{k}, we obtain the variational equations:

$$
\begin{aligned}
\mathbf{E} \dot{\mathbf{x}}_{1} & =\mathbf{A} \mathbf{x}_{1}+\mathbf{b} u \\
\mathbf{E} \dot{\mathbf{x}}_{2} & =\mathbf{A} \mathbf{x}_{2}+\mathbf{H} \mathbf{x}_{1} \otimes \mathbf{x}_{1}+\mathbf{N} \mathbf{x}_{1} u \\
\mathbf{E} \dot{\mathbf{x}}_{3} & =\mathbf{A} \mathbf{x}_{3}+\mathbf{H}\left(\mathbf{x}_{1} \otimes \mathbf{x}_{2}+\mathbf{x}_{2} \otimes \mathbf{x}_{1}\right)+\mathbf{N} \mathbf{x}_{2} u \\
& \vdots \\
& \\
\mathbf{E} \dot{\mathbf{x}}_{k} & =\mathbf{A} \mathbf{x}_{k}+\sum_{i=1}^{k-1} \mathbf{H}\left(\mathbf{x}_{i} \otimes \mathbf{x}_{k-i}\right)+\mathbf{N} \mathbf{x}_{k-1} u, \quad k=4,5,6, \ldots
\end{aligned}
$$

Generalized Transfer Functions (SISO)

Series of generalized transfer functions can be obtained via the growing exponential approach:
$1^{\text {st }}$ subsystem:

$$
\mathbf{A}_{s_{0}}=\mathbf{A}-s_{0} \mathbf{E}
$$

$$
G_{1}\left(s_{1}\right)=-\mathbf{c}^{T}\left(\mathbf{A}-s_{1} \mathbf{E}\right)^{-1} \mathbf{b}=-\mathbf{c}^{T} \mathbf{A}_{s_{1}}^{-1} \mathbf{b}
$$

$2^{\text {nd }}$ subsystem:

$$
\begin{aligned}
& G_{2}\left(s_{1}, s_{2}\right)=-\frac{1}{2} \mathbf{c}^{T} \mathbf{A}_{s_{1}+s_{2}}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{s_{1}}^{-1} \mathbf{b} \otimes \mathbf{A}_{s_{2}}^{-1} \mathbf{b}+\mathbf{A}_{s_{2}}^{-1} \mathbf{b} \otimes \mathbf{A}_{s_{1}}^{-1} \mathbf{b}\right)-\mathbf{N}\left(\mathbf{A}_{s_{1}}^{-1} \mathbf{b}+\mathbf{A}_{s_{2}}^{-1} \mathbf{b}\right)\right] \\
& \mathbf{H} \text { is symmetric } \quad \mathbf{H}(\mathbf{u} \otimes \mathbf{v})=\mathbf{H}(\mathbf{v} \otimes \mathbf{u}) \\
& G_{2}\left(s_{1}, s_{2}\right)=-\mathbf{c}^{T} \mathbf{A}_{s_{1}+s_{2}}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{s_{1}}^{-1} \mathbf{b} \otimes \mathbf{A}_{s_{2}}^{-1} \mathbf{b}\right)-\frac{1}{2} \mathbf{N}\left(\mathbf{A}_{s_{1}}^{-1} \mathbf{b}+\mathbf{A}_{s_{2}}^{-1} \mathbf{b}\right)\right] \\
& s_{1}=s_{2}=\sigma \\
& G_{2}(\sigma, \sigma)=-\mathbf{c}^{T} \mathbf{A}_{2 \sigma}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{\sigma}^{-1} \mathbf{b} \otimes \mathbf{A}_{\sigma}^{-1} \mathbf{b}\right)-\mathbf{N} \mathbf{A}_{\sigma}^{-1} \mathbf{b}\right]
\end{aligned}
$$

Moments of QB-Transfer Functions

Taylor coefficients of the transfer function: $G(s)=\underbrace{G\left(s_{0}\right)}_{m_{0}}+\underbrace{\frac{d G\left(s_{0}\right)}{d s}}_{m_{1}}\left(s-s_{0}\right)+\underbrace{\frac{1}{2!} \frac{d^{2} G\left(s_{0}\right)}{d s^{2}}}_{m_{2}}\left(s-s_{0}\right)^{2}+\ldots$
$1^{\text {st }}$ subsystem: $G_{1}\left(s_{1}\right)=-\mathbf{c}^{T}\left(\mathbf{A}-s_{1} \mathbf{E}\right)^{-1} \mathbf{b}=-\mathbf{c}^{T} \mathbf{A}_{s_{1}}^{-1} \mathbf{b}$

$$
\mathbf{A}_{s}=\mathbf{A}-s \mathbf{E}
$$

$$
\begin{aligned}
& \sqrt{\partial s} \mathbf{A}_{s}^{-1}(s)=-\mathbf{A}_{s}^{-1} \frac{\partial \mathbf{A}_{s}}{\partial s} \mathbf{A}_{s}^{-1}=\mathbf{A}_{s}^{-1} \mathbf{E} \mathbf{A}_{s}^{-1} \\
& \frac{\partial G_{1}}{\partial s_{1}}=-\mathbf{c}^{T} \mathbf{A}_{s_{1}}^{-1} \mathbf{E} \mathbf{A}_{s_{1}}^{-1} \mathbf{b}
\end{aligned}
$$

$2^{\text {nd }}$ subsystem: $G_{2}\left(s_{1}, s_{2}\right)=-\frac{1}{2} \mathbf{c}^{T} \mathbf{A}_{s_{1}+s_{2}}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{s_{1}}^{-1} \mathbf{b} \otimes \mathbf{A}_{s_{2}}^{-1} \mathbf{b}+\mathbf{A}_{s_{2}}^{-1} \mathbf{b} \otimes \mathbf{A}_{s_{1}}^{-1} \mathbf{b}\right)-\mathbf{N}\left(\mathbf{A}_{s_{1}}^{-1} \mathbf{b}+\mathbf{A}_{s_{2}}^{-1} \mathbf{b}\right)\right]$

$$
\begin{aligned}
\left\lfloor\frac{\partial G_{2}}{\partial s_{1}}=\right. & -\mathbf{c}^{T} \mathbf{A}_{s_{1}+s_{2}}^{-1} \mathbf{E} \mathbf{A}_{s_{1}+s_{2}}^{-1} \mathbf{H}\left[\mathbf{A}_{s_{1}}^{-1} \mathbf{b} \otimes \mathbf{A}_{s_{2}}^{-1} \mathbf{b}\right] \\
& -\mathbf{c}^{T} \mathbf{A}_{s_{1}+s_{2}}^{-1} \mathbf{H}\left[\mathbf{A}_{s_{1}}^{-1} \mathbf{E} \mathbf{A}_{s_{1}}^{-1} \mathbf{b} \otimes \mathbf{A}_{s_{2}}^{-1} \mathbf{b}\right] \\
& +\frac{1}{2} \mathbf{c}^{T} \mathbf{A}_{s_{1}+s_{2}}^{-1} \mathbf{E} \mathbf{A}_{s_{1}+s_{2}}^{-1} \mathbf{N}\left[\mathbf{A}_{s_{1}}^{-1} \mathbf{b}+\mathbf{A}_{s_{2}}^{-1} \mathbf{b}\right] \\
& +\frac{1}{2} \mathbf{c}^{T} \mathbf{A}_{s_{1}+s_{2}}^{-1} \mathbf{N}\left[\mathbf{A}_{s_{1}}^{-1} \mathbf{E} \mathbf{A}_{s_{1}}^{-1} \mathbf{b}\right]
\end{aligned}
$$

Multimoments approach (SISO)

```
Algorithm 1 QB Multimoment Matching (SISO)
Input: \(\mathbf{E}, \mathbf{A}, \mathbf{H}, \mathbf{N}, \mathbf{b}, \mathbf{c}\), shift \(\sigma\), reduced order of first transfer function \(q_{1}\)
    and of the second transfer function \(q_{2}\)
Output: Projection matrices V, W
    1: \(\mathbf{V}_{1}=\mathcal{K}_{q_{1}}\left(\mathbf{A}_{\sigma}^{-1} \mathbf{E}, \mathbf{A}_{\sigma}^{-1} \mathbf{b}\right)\)
    2: \(\mathbf{W}_{1}=\mathcal{K}_{q_{1}}\left(\mathbf{A}_{2 \sigma}^{-T} \mathbf{E}^{T}, \mathbf{A}_{2 \sigma}^{-T} \mathbf{c}\right)\)
    linear
    3: for \(i=1: q_{2}\) do
4: \(\quad \mathbf{V}_{2}^{i}=\mathcal{K}_{q_{2}-i+1}\left(\mathbf{A}_{2 \sigma}^{-1} \mathbf{E}, \mathbf{A}_{2 \sigma}^{-1} \mathbf{N V}_{1}(:, i)\right)\)
5: \(\quad \mathbf{W}_{2}^{i}=\mathcal{K}_{q_{2}-i+1}\left(\mathbf{A}_{\sigma}^{-T} \mathbf{E}^{T}, \mathbf{A}_{\sigma}^{-T} \mathbf{N}^{T} \mathbf{W}_{1}(:, i)\right)\)
bilinear
        for \(j=1: \min \left(q_{2}-i+1, i\right)\) do
        \(\mathbf{V}_{3}^{i, j}=\mathcal{K}_{q_{2}-i+1}\left(\mathbf{A}_{2 \sigma}^{-1} \mathbf{E}, \mathbf{A}_{2 \sigma}^{-1} \mathbf{H}\left(\mathbf{V}_{1}(:, i) \otimes \mathbf{V}_{1}(:, j)\right)\right)\)
        \(\mathbf{W}_{3}^{i, j}=\mathcal{K}_{q_{2}-i+1}\left(\mathbf{A}_{\sigma}^{-T} \mathbf{E}^{T}, \mathbf{A}_{\sigma}^{-T} \mathbf{H}^{(2)}\left(\mathbf{V}_{1}(:, i) \otimes \mathbf{W}_{1}(:, j)\right)\right)\)
        end for
10: end for
11: \(\operatorname{span}(\mathbf{V})=\operatorname{span}\left(\mathbf{V}_{1}\right) \cup \bigcup_{i} \operatorname{span}\left(\mathbf{V}_{2}^{i}\right) \cup \bigcup_{i, j} \operatorname{span}\left(\mathbf{V}_{3}^{i, j}\right)\)
12: \(\operatorname{span}(\mathbf{W})=\operatorname{span}\left(\mathbf{W}_{1}\right) \cup \bigcup_{i} \operatorname{span}\left(\mathbf{W}_{2}^{i}\right) \cup \bigcup_{i, j} \operatorname{span}\left(\mathbf{W}_{3}^{i, j}\right)\)
```

[Breiten '12]
$\operatorname{span}(\mathbf{V})=\operatorname{span}\left(\mathbf{V}_{\text {lin }}\right) \cup \operatorname{span}\left(\mathbf{V}_{\mathrm{b}}\right) \cup \operatorname{span}\left(\mathbf{V}_{\mathrm{q}}\right)$

$$
\frac{\partial^{i} G_{1}}{\partial s_{1}^{i}}(2 \sigma)=\frac{\partial^{i} G_{1, r}}{\partial s_{1}^{i}}(2 \sigma), \quad i=0, \ldots, q_{1}-1
$$

$$
\frac{\partial^{i+j}}{\partial s_{1}^{i} s_{2}^{j}} G_{2}(\sigma, \sigma)=\frac{\partial^{i+j}}{\partial s_{1}^{i} s_{2}^{j}} G_{2, r}(\sigma, \sigma), \quad i+j \leq 2 q_{2}-1
$$

$$
q_{1}+q_{2}^{2}+q_{2}^{2}
$$

quadratic
$\frac{\partial^{i+j}}{\partial s_{1}^{i} s_{2}^{j}} G_{2}(\sigma, \sigma)=\frac{\partial^{i+j}}{\partial s_{1}^{i} s_{2}^{j}} G_{2, r}(\sigma, \sigma), \quad i+j \leq 2 q_{2}-1$ columns per shift

Hermite approach (SISO)

Theorem: Two-sided rational interpolation

Let $\mathbf{E}_{r}=\mathbf{W}^{T} \mathbf{E V}$ be nonsingular, $\mathbf{A}_{r}=\mathbf{W}^{T} \mathbf{A V}, \mathbf{H}_{r}=\mathbf{W}^{T} \mathbf{H}(\mathbf{V} \otimes \mathbf{V}), \mathbf{N}_{r}=\mathbf{W}^{T} \mathbf{N V}$, $\mathbf{b}_{r}=\mathbf{W}^{T} \mathbf{b}, \mathbf{c}_{r}^{T}=\mathbf{c}^{T} \mathbf{V}$ with $\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times r}$ having full rank such that

$$
\begin{aligned}
& \operatorname{span}(\mathbf{V}) \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{b}, \mathbf{A}_{2 \sigma_{i}}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{b} \otimes \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{b}\right)-\mathbf{N} \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{b}\right]\right\} \\
& \left.\operatorname{span}(\mathbf{W}) \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{c}, \mathbf{A}_{\sigma_{i}}^{-T}\left[\mathbf{H}^{(2)}\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{b} \otimes \mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{c}\right)-\frac{1}{2} \mathbf{N}^{T} \mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{c}\right)\right]\right\}
\end{aligned}
$$

with $\sigma_{i} \notin\left\{\Lambda(\mathbf{A}, \mathbf{E}), \Lambda\left(\mathbf{A}_{r}, \mathbf{E}_{r}\right\}\right.$.

2 columns per shift

Then:

$$
G_{1}\left(2 \sigma_{i}\right)=G_{1, r}\left(2 \sigma_{i}\right)
$$

$$
G_{2}\left(\sigma_{i}, \sigma_{i}\right)=G_{2, r}\left(\sigma_{i}, \sigma_{i}\right) \checkmark \quad \frac{\partial G_{2}}{\partial s_{j}}\left(\sigma_{i}, \sigma_{i}\right)=\frac{\partial G_{2, r}}{\partial s_{j}}\left(\sigma_{i}, \sigma_{i}\right)
$$

Krylov subspaces for SISO systems

$$
\mathbf{A}_{s_{0}}=\mathbf{A}-s_{0} \mathbf{E}
$$

Multimoments approach [Gu '11, Breiten '12]:

$$
\operatorname{span}(\mathbf{V})=\operatorname{span}\left(\mathbf{V}_{\mathrm{lin}}\right) \cup \operatorname{span}\left(\mathbf{V}_{\mathrm{b}}\right) \cup \operatorname{span}\left(\mathbf{V}_{\mathrm{q}}\right)
$$

$\operatorname{span}(\mathbf{V}) \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{\sigma}^{-1} \mathbf{b}, \mathbf{A}_{2 \sigma}^{-1} \mathbf{N A}_{\sigma}^{-1} \mathbf{b}\right.$,

$$
\left.\mathbf{A}_{2 \sigma}^{-1} \mathbf{H}\left(\mathbf{A}_{\sigma}^{-1} \mathbf{b} \otimes \mathbf{A}_{\sigma}^{-1} \mathbf{b}\right)\right\}
$$

$\operatorname{span}(\mathbf{W}) \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{2 \sigma}^{-T} \mathbf{c}, \mathbf{A}_{2 \sigma}^{-T} \mathbf{N}^{T} \mathbf{A}_{2 \sigma}^{-T} \mathbf{c}\right.$,

$$
\left.\mathbf{A}_{2 \sigma}^{-T} \mathbf{H}^{(2)}\left(\mathbf{A}_{\sigma}^{-1} \mathbf{b} \otimes \mathbf{A}_{2 \sigma}^{-T} \mathbf{c}\right)\right\}
$$

$$
\begin{aligned}
G_{1}\left(\sigma_{i}\right) & =G_{1, r}\left(\sigma_{i}\right) & G_{1}\left(2 \sigma_{i}\right) & =G_{1, r}\left(2 \sigma_{i}\right) \\
G_{2}\left(\sigma_{i}, \sigma_{i}\right) & =G_{2, r}\left(\sigma_{i}, \sigma_{i}\right) & \frac{\partial}{\partial s_{j}} G_{2}\left(\sigma_{i}, \sigma_{i}\right) & =\frac{\partial}{\partial s_{j}} G_{2, r}\left(\sigma_{i}, \sigma_{i}\right)
\end{aligned}
$$

- Quadratic and bilinear dynamics are treated separately
- Higher-order moments can be matched
- 3 Krylov directions per shift

Hermite approach [Breiten '15]:

$$
\operatorname{span}(\mathbf{V})=\operatorname{span}\left(\mathbf{V}_{\mathrm{lin}}\right) \cup \operatorname{span}\left(\mathbf{V}_{\mathrm{qb}}\right)
$$

$$
\begin{aligned}
\operatorname{span}(\mathbf{V}) & \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{\sigma}^{-1} \mathbf{b}\right. \\
& \left.\mathbf{A}_{2 \sigma}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{\sigma}^{-1} \mathbf{b} \otimes \mathbf{A}_{\sigma}^{-1} \mathbf{b}\right)-\mathbf{N A}_{\sigma}^{-1} \mathbf{b}\right]\right\}
\end{aligned}
$$

$\operatorname{span}(\mathbf{W}) \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{2 \sigma}^{-T} \mathbf{c}\right.$,

$$
\left.\mathbf{A}_{\sigma}^{-T}\left[\mathbf{H}^{(2)}\left(\mathbf{A}_{\sigma}^{-1} \mathbf{b} \otimes \mathbf{A}_{2 \sigma}^{-T} \mathbf{c}\right)-\frac{1}{2} \mathbf{N}^{T} \mathbf{A}_{2 \sigma}^{-T} \mathbf{c}\right]\right\}
$$

$$
\begin{aligned}
G_{1}\left(\sigma_{i}\right) & =G_{1, r}\left(\sigma_{i}\right) & G_{1}\left(2 \sigma_{i}\right) & =G_{1, r}\left(2 \sigma_{i}\right) \\
G_{2}\left(\sigma_{i}, \sigma_{i}\right) & =G_{2, r}\left(\sigma_{i}, \sigma_{i}\right) & \frac{\partial}{\partial s_{j}} G_{2}\left(\sigma_{i}, \sigma_{i}\right) & =\frac{\partial}{\partial s_{j}} G_{2, r}\left(\sigma_{i}, \sigma_{i}\right)
\end{aligned}
$$

- Quadratic and bilinear dynamics are treated together (as one)
- Only 0th and 1st moments can be matched
- 2 Krylov directions per shift

Numerical Examples: SISO RC-Ladder

SISO RC-Ladder model:

Nonlinearity: $g(x)=e^{40 x}+x-1$
Input/Output: $u(t)=e^{-t} ; \quad y(t)=v_{1}(t)$
Reduction information:
$n=1000 ; \quad$ Shifts s_{0} gotten from IRKA
$t_{\text {sim }, \text { orig }}=17.6 \mathrm{~s}$

$$
\begin{aligned}
r_{\text {her }} & =12 & r_{\text {multi }} & =18 \\
t_{\text {sim,her }} & =0.116 \mathrm{~s} & t_{\text {sim, multi }} & =0.122 \mathrm{~s}
\end{aligned}
$$

Numerical Examples: SISO RC-Ladder

 SISO RC-Ladder model:

Nonlinearity: $g(x)=e^{40 x}+x-1$
Input/Output: $u(t)=1 / 2[\cos (2 \pi t / 10)+1]$

$$
y(t)=v_{1}(t)
$$

Reduction information:
$n=1000$; Shifts s_{0} gotten from IRKA
$t_{\text {sim,orig }}=25.5 \mathrm{~s}$

$$
\begin{aligned}
r_{\text {her }} & =12 & r_{\text {multi }} & =18 \\
t_{\text {sim,her }} & =0.468 \mathrm{~s} & t_{\text {sim }, \text { multi }} & =0.788 \mathrm{~s}
\end{aligned}
$$

MIMO quadratic-bilinear systems

MIMO Quadratic-bilinear system:

$\mathbf{E}, \mathbf{A}, \mathbf{N}_{j} \in \mathbb{R}^{n \times n}$
$\mathbf{H} \in \mathbb{R}^{n \times n^{2}}$: Hessian tensor
$\mathbf{B} \in \mathbb{R}^{n \times m}, \mathbf{C} \in \mathbb{R}^{p \times n}$

$$
\begin{aligned}
\mathbf{E} \dot{\mathbf{x}} & =\mathbf{A} \mathbf{x}+\mathbf{H}(\mathbf{x} \otimes \mathbf{x})+\overline{\mathbf{N}}(\mathbf{u} \otimes \mathbf{x})+\mathbf{B} \mathbf{u} \\
\mathbf{y} & =\mathbf{C} \mathbf{x}
\end{aligned}
$$

Transfer matrices of a MIMO QB system

Generalized transfer matrices can be obtained similarly via the growing exponential approach:

$1^{\text {st }}$ subsystem:

$$
\mathbf{A}_{s_{0}}=\mathbf{A}-s_{0} \mathbf{E}
$$

$$
\mathbf{G}_{1}\left(s_{1}\right)=-\mathbf{C}\left(\mathbf{A}-s_{1} \mathbf{E}\right)^{-1} \mathbf{B}=-\mathbf{C A}_{s_{1}}^{-1} \mathbf{B}
$$

$2^{\text {nd }}$ subsystem:

$$
\begin{aligned}
\mathbf{G}_{2}\left(s_{1}, s_{2}\right) & =-\frac{1}{2} \mathbf{C A}_{s_{1}+s_{2}}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{s_{1}}^{-1} \mathbf{B} \otimes \mathbf{A}_{s_{2}}^{-1} \mathbf{B}+\mathbf{A}_{s_{2}}^{-1} \mathbf{B} \otimes \mathbf{A}_{s_{1}}^{-1} \mathbf{B}\right)-\overline{\mathbf{N}}\left(\mathbf{I}_{m} \otimes\left(\mathbf{A}_{s_{1}}^{-1} \mathbf{B}+\mathbf{A}_{s_{2}}^{-1} \mathbf{B}\right)\right)\right] \\
& \\
\mathbf{G}_{2}(\sigma, \sigma) & =-\mathbf{C A}_{2 \sigma}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{\sigma}^{-1} \mathbf{B} \otimes \mathbf{A}_{\sigma}^{-1} \mathbf{B}\right)-\overline{\mathbf{N}}\left(\mathbf{I}_{m} \otimes \mathbf{A}_{\sigma}^{-1} \mathbf{B}\right)\right]
\end{aligned}
$$

Transfer matrices with
 $$
\operatorname{dim}\left(\mathbf{G}_{1}(s)\right)=(p, m)
$$
 $$
\operatorname{dim}\left(\mathbf{G}_{2}\left(s_{1}, s_{2}\right)\right)=\left(p, m^{2}\right)
$$

The quadratic term cannot be simplified

$$
\mathbf{H}(\mathbf{U} \otimes \mathbf{V}) \neq \mathbf{H}(\mathbf{V} \otimes \mathbf{U})
$$

Moments of QB-Transfer Matrices

$1^{\text {st }}$ subsystem: $\mathbf{G}_{1}\left(s_{1}\right)=-\mathbf{C}\left(\mathbf{A}-s_{1} \mathbf{E}\right)^{-1} \mathbf{B}=-\mathbf{C A}_{s_{1}}^{-1} \mathbf{B}$

$$
\begin{aligned}
& \sqrt{\partial s} \mathbf{A}_{s}^{-1}(s)=-\mathbf{A}_{s}^{-1} \frac{\partial \mathbf{A}_{s}}{\partial s} \mathbf{A}_{s}^{-1}=\mathbf{A}_{s}^{-1} \mathbf{E} \mathbf{A}_{s}^{-1} \\
& \frac{\partial \mathbf{G}_{1}}{\partial s_{1}}=-\mathbf{C A}_{s_{1}}^{-1} \mathbf{E} \mathbf{A}_{s_{1}}^{-1} \mathbf{B}
\end{aligned}
$$

$\mathbf{2}^{\text {nd }}$ subsystem: $\mathbf{G}_{2}\left(s_{1}, s_{2}\right)=-\frac{1}{2} \mathbf{C A}_{s_{1}+s_{2}}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{s_{1}}^{-1} \mathbf{B} \otimes \mathbf{A}_{s_{2}}^{-1} \mathbf{B}+\mathbf{A}_{s_{2}}^{-1} \mathbf{B} \otimes \mathbf{A}_{s_{1}}^{-1} \mathbf{B}\right)-\overline{\mathbf{N}}\left(\mathbf{I}_{m} \otimes\left(\mathbf{A}_{s_{1}}^{-1} \mathbf{B}+\mathbf{A}_{s_{2}}^{-1} \mathbf{B}\right)\right)\right]$

$$
\begin{aligned}
\left\lfloor\frac{\partial \mathbf{G}_{2}}{\partial s_{1}}(\sigma, \sigma)=\right. & -\mathbf{C A}_{2 \sigma}^{-1} \mathbf{E A} \\
2 \sigma & \mathbf{H}\left(\mathbf{A}_{\sigma}^{-1} \mathbf{B} \otimes \mathbf{A}_{\sigma}^{-1} \mathbf{B}\right) \\
& -\frac{1}{2} \mathbf{C A}_{2 \sigma}^{-1} \mathbf{H}\left(\mathbf{A}_{\sigma}^{-1} \mathbf{E} \mathbf{A}_{\sigma}^{-1} \mathbf{B} \otimes \mathbf{A}_{\sigma}^{-1} \mathbf{B}+\mathbf{A}_{\sigma}^{-1} \mathbf{B} \otimes \mathbf{A}_{\sigma}^{-1} \mathbf{E} \mathbf{A}_{\sigma}^{-1} \mathbf{B}\right) \\
& +\mathbf{C A}_{2 \sigma}^{-1} \mathbf{E A}{ }_{2 \sigma}^{-1} \overline{\mathbf{N}}\left(\mathbf{I}_{m} \otimes \mathbf{A}_{\sigma}^{-1} \mathbf{B}\right) \\
& +\frac{1}{2} \mathbf{C A}_{2 \sigma}^{-1} \overline{\mathbf{N}}\left(\mathbf{I}_{m} \otimes \mathbf{A}_{\sigma}^{-1} \mathbf{E} \mathbf{A}_{\sigma}^{-1} \mathbf{B}\right)
\end{aligned}
$$

$$
\mathbf{H}(\mathbf{U} \otimes \mathbf{V}) \neq \mathbf{H}(\mathbf{V} \otimes \mathbf{U})
$$

Matching of 1st moment of 2nd transfer function much more involved!

Block-Multimoments approach (MIMO)

Idea: Straightforward extension of the multimoments approach to the MIMO case

```
Algorithm 1 QB Multimoment Matching (MIMO)
Input: \(\mathbf{E}, \mathbf{A}, \mathbf{H}, \overline{\mathbf{N}}, \mathbf{B}, \mathbf{C}\), shift \(\sigma\), reduced order of first transfer function \(q_{1}\)
    and of the second transfer function \(q_{2}\)
Output: Projection matrices V, W
    \(: \mathbf{V}_{1}=\mathcal{K}_{q_{1}}\left(\mathbf{A}_{\sigma}^{-1} \mathbf{E}, \mathbf{A}_{\sigma}^{-1} \mathbf{B}\right)\)
    \(\mathbf{W}_{1}=\mathcal{K}_{q_{1}}\left(\mathbf{A}^{-T} \mathbf{E}^{T}, \mathbf{A}_{2 \sigma}^{-T} \mathbf{C}^{T}\right) \quad\) linear
    for \(i=1: q_{2}\) do
        \(\mathbf{V}_{2}^{i}=\mathcal{K}_{q_{2}-i+1}\left(\mathbf{A}_{2 \sigma}^{-1} \mathbf{E}, \mathbf{A}_{2 \sigma}^{-1} \overline{\mathbf{N}}\left(\mathbf{I}_{m} \otimes\left(\mathbf{A}_{\sigma}^{-1} \mathbf{E}\right)^{i-1} \mathbf{A}_{\sigma}^{-1} \mathbf{B}\right)\right)\)
        \(\mathbf{W}_{2}^{i}=\mathcal{K}_{q_{2}-i+1}\left(\mathbf{A}_{\sigma}^{-T} \mathbf{E}^{T}, \mathbf{A}_{\sigma}^{-T} \overline{\mathbf{N}}^{(2)}\left(\mathbf{I}_{m} \otimes\left(\mathbf{A}_{2 \sigma}^{-1} \mathbf{E}\right)^{i-1} \mathbf{A}_{2 \sigma}^{-1} \mathbf{B}\right)\right) \quad\) bilinear
        for \(j=1: \min \left(q_{2}-i+1, i\right)\) do
            \(\mathbf{V}_{3}^{i, j}=\mathcal{K}_{q_{2}-i+1}\left(\mathbf{A}_{2 \sigma}^{-1} \mathbf{E}, \mathbf{A}_{2 \sigma}^{-1} \mathbf{H}\left(\left(\mathbf{A}_{\sigma}^{-1} \mathbf{E}\right)^{i-1} \mathbf{A}_{\sigma}^{-1} \mathbf{B} \otimes\left(\mathbf{A}_{\sigma}^{-1} \mathbf{E}\right)^{j-1} \mathbf{A}_{\sigma}^{-1} \mathbf{B}\right)\right)\)
            \(\mathbf{W}_{3}^{i, j}=\mathcal{K}_{q_{2}-i+1}\left(\mathbf{A}_{\sigma}^{-T} \mathbf{E}^{T}, \mathbf{A}_{\sigma}^{-T} \mathbf{H}^{(2)}\left(\left(\mathbf{A}_{\sigma}^{-1} \mathbf{E}\right)^{i-1} \mathbf{A}_{\sigma}^{-1} \mathbf{B} \otimes\left(\mathbf{A}_{2 \sigma}^{-1} \mathbf{E}\right)^{i-1} \mathbf{A}_{2 \sigma}^{-1} \mathbf{B}\right)\right)\)
        end for
10: end for
11: \(\operatorname{span}(\mathbf{V})=\operatorname{span}\left(\mathbf{V}_{1}\right) \cup \bigcup_{i} \operatorname{span}\left(\mathbf{V}_{2}^{i}\right) \cup \bigcup_{i, j} \operatorname{span}\left(\mathbf{V}_{3}^{i, j}\right)\)
12: \(\operatorname{span}(\mathbf{W})=\operatorname{span}\left(\mathbf{W}_{1}\right) \cup \bigcup_{i} \operatorname{span}\left(\mathbf{W}_{2}^{i}\right) \cup \bigcup_{i, j} \operatorname{span}\left(\mathbf{W}_{3}^{i, j}\right)\)
```


quadratic

$$
m \cdot\left(q_{1}+q_{2}{ }^{2}+q_{2}{ }^{2}\right)
$$

columns per shift

```
\(\operatorname{span}(\mathbf{V})=\operatorname{span}\left(\mathbf{V}_{\text {lin }}\right) \cup \operatorname{span}\left(\mathbf{V}_{\mathrm{b}}\right) \cup \operatorname{span}\left(\mathbf{V}_{\mathrm{q}}\right)\)
```


Block-Hermite approach (MIMO)

Aim: Extension of the hermite approach to the MIMO case. Is that possible??

Propositions for Block-Hermite approach:

1

$$
\begin{aligned}
\operatorname{span}(\mathbf{V}) & \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B},\right. \\
& \left.\mathbf{A}_{2 \sigma_{i}}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B} \otimes \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B}\right)-\overline{\mathbf{N}}\left(\mathbf{I}_{m} \otimes \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B}\right)\right]\right\} \\
\operatorname{span}(\mathbf{W}) & \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T},\right. \\
& \left.\mathbf{A}_{\sigma_{i}}^{-T}\left[\mathbf{H}^{(2)}\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B} \otimes \mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T}\right)-\overline{\mathbf{N}}^{(2)}\left(\mathbf{I}_{m} \otimes \mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T}\right)\right]\right\}
\end{aligned}
$$

$\sqrt{ } \mathrm{W}$ must be adapted!

$$
\mathbf{H}(\mathbf{U} \otimes \mathbf{V}) \neq \mathbf{H}(\mathbf{V} \otimes \mathbf{U})
$$

$$
\mathbf{G}_{1}\left(\sigma_{i}\right)=\mathbf{G}_{1, r}\left(\sigma_{i}\right)
$$

$$
\mathbf{G}_{1}\left(2 \sigma_{i}\right)=\mathbf{G}_{1, r}\left(2 \sigma_{i}\right)
$$

$$
\mathbf{G}_{2}\left(\sigma_{i}, \sigma_{i}\right)=\mathbf{G}_{2, r}\left(\sigma_{i}, \sigma_{i}\right)
$$

$$
\frac{\partial \mathbf{G}_{2}}{\partial s_{j}}\left(\sigma_{i}, \sigma_{i}\right)=\frac{\partial \mathbf{G}_{2, r}}{\partial s_{j}}\left(\sigma_{i}, \sigma_{i}\right)
$$

$$
\begin{aligned}
& \operatorname{span}(\mathbf{V}) \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B},\right. \\
&\left.\mathbf{A}_{2 \sigma_{i}}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B} \otimes \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B}\right)-\overline{\mathbf{N}}\left(\mathbf{I}_{m} \otimes \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B}\right)\right]\right\} \\
& \operatorname{span}(\mathbf{W}) \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T},\right. \\
&\left.\mathbf{A}_{\sigma_{i}}^{-T}\left[(\mathbf{H}+\mathbf{J})^{(2)}\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B} \otimes \mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T}\right)-\overline{\mathbf{N}}^{(2)}\left(\mathbf{I}_{m} \otimes \mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T}\right)\right]\right\} \\
& \hline
\end{aligned}
$$

$$
\mathbf{J}=\mathbf{H}\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{E} \otimes \mathbf{E}^{-1} \mathbf{A}_{\sigma_{i}}\right)
$$

$\mathbf{m +} \mathbf{m}^{\mathbf{2}}$ columns per shift

Krylov subspaces for MIMO systems

Idea: Combine multimoments and hermite approaches!

$$
\mathbf{A}_{s_{0}}=\mathbf{A}-s_{0} \mathbf{E}
$$

Block tensor-based approach:

$$
\begin{aligned}
\operatorname{span}(\mathbf{V}) & \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B}, \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{E} \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B}, \ldots,\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{E}\right)^{m} \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B}\right. \\
& \left.\mathbf{A}_{2 \sigma_{i}}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B} \otimes \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B}\right)-\overline{\mathbf{N}}\left(\mathbf{I}_{m} \otimes \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B}\right)\right]\right\} \\
\operatorname{span}(\mathbf{W}) & \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T}, \mathbf{A}_{\sigma_{i}}^{-T} \mathbf{H}^{(2)}\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B} \otimes \mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T}\right),\right. \\
& \left.\mathbf{A}_{\sigma_{i}}^{-T} \overline{\mathbf{N}}^{(2)}\left(\mathbf{I}_{m} \otimes \mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T}\right)\right\}
\end{aligned}
$$

quadratic-bilinear
quadratic

bilinear

$$
\begin{array}{rlrl}
\frac{\partial^{l} \mathbf{G}_{1}}{\partial s^{l}}\left(\sigma_{i}\right) & =\frac{\partial^{l} \mathbf{G}_{1, r}}{\partial s^{l}}\left(\sigma_{i}\right) \\
\mathbf{G}_{1}\left(2 \sigma_{i}\right) & =\mathbf{G}_{1, r}\left(2 \sigma_{i}\right) \\
\mathbf{G}_{2}\left(\sigma_{i}, \sigma_{i}\right) & =\mathbf{G}_{2, r}\left(\sigma_{i}, \sigma_{i}\right) \\
\frac{\partial \mathbf{G}_{2}}{\partial s_{j}}\left(\sigma_{i}, \sigma_{i}\right) & =\frac{\partial \mathbf{G}_{2, r}}{\partial s_{j}}\left(\sigma_{i}, \sigma_{i}\right) & & \\
\end{array}
$$

- Subsystem interpolation
- $(m+1)+4$ moments matched
- $(m+1) \cdot m+m^{2}=m+2 m^{2}$ columns per shift

Krylov subspaces for MIMO systems

Idea: Add tangential directions!

Tangential tensor-based approach:

$$
\begin{aligned}
\operatorname{span}(\mathbf{V}) & \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B} \mathbf{r}_{i}, \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{E} \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B} \mathrm{r}_{i}, \ldots,\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{E}\right)^{m} \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B} \mathrm{r}_{i},\right. \\
& \left.\mathbf{A}_{2 \sigma_{i}}^{-1}\left[\mathbf{H}\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B r}_{i} \otimes \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B} \mathrm{r}_{i}\right)-\overline{\mathbf{N}}\left(\mathrm{r}_{i} \otimes \mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B} \mathrm{r}_{i}\right)\right]\right\} \\
\operatorname{span}(\mathbf{W}) & \supset \operatorname{span}_{i=1, \ldots, k}\left\{\mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T} l_{i}, \mathbf{A}_{\sigma_{i}}^{-T} \mathbf{H}^{(2)}\left(\mathbf{A}_{\sigma_{i}}^{-1} \mathbf{B r}_{i} \otimes \mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T} l_{i}\right),\right. \\
& \left.\mathbf{A}_{\sigma_{i}}^{-T} \overline{\mathbf{N}}^{(2)}\left(\mathbf{r}_{i} \otimes \mathbf{A}_{2 \sigma_{i}}^{-T} \mathbf{C}^{T} 1_{i}\right)\right\}
\end{aligned}
$$

$$
\left[\frac{\partial^{l} \mathbf{G}_{1}}{\partial s^{l}}\left(\sigma_{i}\right)\right] \mathrm{r}_{i}=\left[\frac{\partial^{l} \mathbf{G}_{1, r}}{\partial s^{l}}\left(\sigma_{i}\right)\right] \mathrm{r}_{i} \quad l=0, \ldots, m
$$

$$
\mathrm{l}_{i}^{T}\left[\mathbf{G}_{1}\left(2 \sigma_{i}\right)\right]=1_{i}^{T}\left[\mathbf{G}_{1, r}\left(2 \sigma_{i}\right)\right]
$$

$$
\left[\mathbf{G}_{2}\left(\sigma_{i}, \sigma_{i}\right)\right]\left(\mathrm{r}_{i} \otimes \mathrm{r}_{i}\right)=\left[\mathbf{G}_{2, r}\left(\sigma_{i}, \sigma_{i}\right)\right]\left(\mathrm{r}_{i} \otimes \mathrm{r}_{i}\right)
$$

$$
\mathbf{1}_{i}^{T}\left[\frac{\partial \mathbf{G}_{2}}{\partial s_{j}}\left(\sigma_{i}, \sigma_{i}\right)\right]\left(\mathrm{r}_{i} \otimes \mathrm{r}_{i}\right)=\mathbf{1}_{i}^{T}\left[\frac{\partial \mathbf{G}_{2, r}}{\partial s_{j}}\left(\sigma_{i}, \sigma_{i}\right)\right]\left(\mathrm{r}_{i} \otimes \mathrm{r}_{i}\right) \quad j=1,2
$$

- Tangential subsystem interpolation
- $(m+1)+4$ moments matched
- 3 columns per shift

Numerical Examples: MIMO RC-Ladder

MIMO RC-Ladder model:

Nonlinearity: $g(x)=e^{40 x}+x-1$
Inputs/Outputs: $\quad \mathbf{u}(t)=\sin (2 t) \cdot\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$

$$
\mathbf{y}(t)=\left[\begin{array}{ll}
v_{1}(t) & v_{N-1, N}
\end{array}\right]^{T}
$$

Reduction information:

$n=800 ; \quad$ Shifts s_{0} gotten from IRKA
$t_{\text {sim }, \text { orig }}=17.4 \mathrm{~s}$

$$
r_{\text {block }}=30
$$

$t_{\text {sim,block }}=0.232 \mathrm{~s}$

$$
\begin{aligned}
r_{\operatorname{tang}} & =21 \\
t_{\text {sim }, \operatorname{tang}} & =0.109 \mathrm{~s}
\end{aligned}
$$

Numerical Examples: FitzHugh-Nagumo

$$
\begin{aligned}
& \epsilon \frac{\partial v}{\partial t}(x, t)=\epsilon^{2} \frac{\partial^{2} v}{\partial x^{2}}(x, t)+f(v(x, t))-w(x, t)+g \\
& \frac{\partial w}{\partial t}(x, t)=h v(x, t)-\gamma w(x, t)+g
\end{aligned}
$$

Nonlinearity: $f(v)=v(v-0.1)(1-v)$

Conclusions \& Outlook

Summary:

- Many smooth nonlinear systems can be equivalently transformed into QB systems
- Systems theory and Krylov subspaces for SISO QB systems
- Extension of systems theory and Krylov subspaces to MIMO case

Conclusions:

- Transfer matrices make Krylov subspace methods more complicated in MIMO case
- Tangential directions: good option
- Choice of shifts and tangential directions plays an important role Outlook:
- Optimal choice of shifts (comparison with T-QB-IRKA)
- Stability preserving methods
- Other benchmark models

Thank you for your attention!

