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Abstract

This thesis studies a new concept for flexible wind turbine blades. Flexible
wings and their advantages have been the topic of various research projects.
To realize a flexible wing construction, different concepts have been used in-
cluding morphing wing, telescopic spars or using smart materials in the con-
struction of the wing. The membrane blade concept, which is studied within
the scope of this thesis, is originally an example of a passively controlled struc-
ture, whereas one could think of actuation in future realizations.

With the increase in a wind turbine’s rotor diameter, aeroelastic simulation of
rotor blades to study their unsteady response to disturbances or control actions
has become more and more important. To realize the so-called ”smart rotors”,
both active and passive aeroelastic devices have been employed for load miti-
gation of wind turbines. Within this contribution, a simulation environment for
multi-fidelity aeroelastic analysis of wind turbine blades is presented. The goal
of the multi-fidelity analysis is realized by using three different approaches for
calculating the aerodynamic loading on a wind turbine, which include: blade
element momentum (BEM) method, vortex panel method and computational
fluid dynamics.

The developed multi-fidelity analysis workflow is used for analysis of a sam-
ple membrane blade based on the NASA-Ames phase VI wind turbine. At
each level of modeling, the comparison between the performance of the mem-
brane blade and the rigid baseline blade is made. Furthermore, a new combined
methodology based on panel-BEM coupling for using the blade element mo-
mentum method for the analysis of membrane blades with form varying cross-
section is proposed and tested for the studied sample membrane blade. The
studied membrane blade demonstrates advantages over the baseline rigid blade
in terms of power generation which should be mainly attributed to the increase
of profile’s camber due to membrane’s deflection.
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1Introduction

This thesis has been built upon the idea of multi-fidelity aeroelastic analysis of
wind turbines. For realizing this idea, three approaches for predicting aerody-
namic loads on a wind turbine have been utilized. They are:

• Blade element momentum method (BEM)

• Vortex panel method

• Computational fluid dynamics

r

Blade element
r

c(r)

BEM Panel Method CFD

Figure 1.1: Aerodynamic models for analysis of wind turbines.

Within the thesis, these methods have been used for studying the applicability
of the sailwing concept to wind turbine rotors.

1



2 Chapter 1 Introduction

Flexible wings have been the central topic of many research projects. Different
techniques have been applied to bring flexibility to conventional rigid wings.
They can be categorized into two groups: active and passive. In active control
configurations like morphing wing [1] or wing frames employing telescopic
spars [2], actuators are used to bring flexibility to the wing. But in passive
control concepts, the wing configuration possesses some intrinsic flexibility
and its capability to adapt itself to the flow does not depend on the use of ac-
tuators. Membrane wings provide an alternative to conventional rigid wings
where the wing surface is made of shells, i.e. thin-walled structures with bend-
ing stiffness. Membrane structures can effectively carry the external load over
wide spans (e.g. stadium roofs) via in-plane stresses. Membrane wings could
be used in design of Micro Air Vehicles (MAVs) [3, 4], airplane models [5]
or windmills [6]. They have certain favorable characteristics compared with
conventional rigid wings. Because of their flexibility, they are able to adapt
to the surrounding flow field, which has the following advantages: From the
aerodynamics point of view, membrane wings have a higher lift curve slope,
higher maximum lift coefficient and higher lift to drag ratio compared to an
equivalent rigid wing [5, 7, 8]. Delayed stall to higher angles of attack is an-
other advantage of membrane wings [7]. From the structural dynamics point
of view, there is a load reduction for membrane wings in unsteady flow cases
[9]. However, because of self-excited vibrations, membrane wings might show
a transient response even in steady state flow conditions [10].

Numerous studies on membrane wings have been carried out to examine their
performance in MAV applications or with the goal of developing a better un-
derstanding of the mammalian flight. Shyy et al. [11] performed 2D analysis of
a membrane-top airfoil concept in MAV flying regime, demonstrating a more
stable lift coefficient compared with rigid airfoils. Another study on membrane
wings for MAVs by Lian et al. [12] studied laminar-turbulent transition for a
flexible airfoil, with only a portion of the upper surface formed by the mem-
brane, showing self-excited vibration at α = 4◦, with comparable lift and drag
coefficient to the rigid airfoil. Song et al. [13] performed an experimental and
analytical study of a low aspect ratio rectangular membrane wing with fixed
supports at the leading and trailing edge for a broad range of angles of attack
from -20 to 60 degrees. In a numerical high-fidelity study for a single-layered
membrane wing airfoil at MAV flying regime, Gordnier [14] studied the ef-
fect of membrane rigidity and pre-stress on airfoils aerodynamic characteristics
and dynamic response for different combinations of angle of attack, Reynolds
number, membrane rigidity and pre-strains. Different vibration modes were
observed for the studied cases, as well as improvement in the lift coefficient
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because of the introduced camber in the airfoil due to membrane’s flexibility.

Research on the Sailwing concept was originally initiated at Princeton Univer-
sity during the 1970s with an interest in determining the applicability of this
design as an auxiliary lifting device. Schematic presentation of the sailwing is
shown in Fig. 1.2. A rigid mast forms the leading edge section of the wing. To
support the upper and lower membranes, depending on the span of the wing a
number of ribs are mounted along the span. Upper and lower membranes are
joined together at the trailing edge via a pre-stressed edge cable.

Rib

Leading edge mast

Trailing edge cable

Figure 1.2: The Sailwing construction concept, from [15]

Later, during the 1980s, the application of the sailwing concept to wind energy
systems was explored by the Princeton windmill group. The final progress
report of the group states (Maughmer [6]): ”the sailwing rotor continues to be
highly competitive in performance with its rigid-bladed counterparts and yet
enjoys the benefits of simpler construction and lower costs”.

Analysis of the membrane blade consists of three major steps. They are repre-
sented in Fig. 7.3 for a sample section. In the form-finding step, the equilibrium
shape in the absence of external loading is calculated. This corresponds to the
shape of the wing at the beginning of the Fluid-Structure Interaction (FSI) sim-
ulation. Then in the FSI analysis, the interaction between the membrane and
the fluid flow is simulated. FSI analysis is followed by evaluating the design
in terms of aerodynamic and structural characteristics of the blade. The cycle
could be repeated for a new design to realize a better aerodynamic performance
of the blade.

For a membrane blade, the structural response (and thus the final form of the
blade in operating condition) depends on aerodynamic loading, whereas the
loading itself depends on the blade’s shape; thus, a two-way coupled FSI sim-
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Figure 1.3: Analysis workflow for the membrane blade

ulation is necessary to analyze the characteristics of a membrane wing. Many
parameters influence the overall performance of the sailwing, which include
pre-stresses of the membranes in spanwise and chordwise directions, the pre-
stress of the trailing-edge cable and material properties like elasticity modulus,
density, Poissons ratio for different structural parts, etc. To choose a proper set
of pre-stresses in order to obtain optimized performance at the design point, a
comprehensive parameter study should be performed. Taking into account that
FSI simulations are computationally expensive and time-consuming, a high-
fidelity FSI analysis with detailed flow simulation is not the best choice during
early phases of the design process. Models of lower complexity are unavoid-
able for performing a comprehensive design space exploration at a reasonable
cost. The sequence of the analysis of the membrane blade concept using multi-
fidelity FSI analysis is illustrated in Fig. 1.4.

The structure of the thesis is as follows:
Chapter 2 is about the blade element momentum (BEM) method. It explains
the steady and unsteady BEM and the structural modeling of rotor blades using



5

fl
u
id

 s
o
lv

er

-n
o
n
-m

at
ch

in
g
 m

es
h

m
ap

p
in

g

-c
o
n
v
er

g
en

ce
 c

h
ec

k
p
o
st

-p
ro

ce
ss

in
g
:

- 
C

L
- 

C
D

 
- 

c p
d
is

tr
ib

u
ti

o
n
, 
..
.

p
o

ss
ib

le
 u

p
d

at
e 

in
 

p
re

-s
tr

es
se

s

re
ce

iv
e 

d
is

p
la

ce
m

en
t

-i
n
it

ia
l 

to
p
o
lo

g
y

 
-p

re
-s

tr
es

se
s

eq
u
il

ib
ri

u
m

 s
h
ap

e

in
p
u
t

 
o
u
tp

u
t

m

re
ce

iv
e 

d
is

p
la

ce
m

en
t;

 
u
p
d
at

e 
3
D

 v
o
lu

m
e 

m
es

h
;

 
so

lv
e 

m
o
m

en
tu

m
 e

q
u
at

io
n
;

 
so

lv
e 

p
re

ss
u
re

 c
o
rr

ec
ti

o
n
 e

q
u
at

io
n
;

 
co

rr
ec

t 
p
re

ss
u
re

 a
n
d
 v

el
o
ci

ti
es

;

 
se

n
d
 f

o
rc

e; m

re
ce

iv
e 

d
is

p
la

ce
m

en
t;

 
u
p
d
at

e 
2
D

 
 m

es
h
;

 
ca

lc
u
la

te
 p

an
el

 p
ro

p
er

ti
es

;

 
ca

lc
u
la

te
 i

n
fl

u
en

ce
 c

o
ef

fi
ci

en
ts

;

 
ca

lc
u
la

te
 t

h
e 

R
H

S
 v

ec
to

r;

 
so

lv
e 

th
e 

li
n
ea

r 
sy

st
em

;

 
ca

lc
u
la

te
 v

el
o
ci

ty
 a

n
d
 p

re
ss

u
re

;

 
se

n
d
 f

o
rc

e;

F
in

it
e 

V
o
lu

m
e 

so
lv

er

P
an

el
 m

et
h
o
d

st
ru

ct
u
ra

l 
so

lv
er

se
n
d
 

fo
rc

e

se
n
d
 

d
is

p
la

ce
m

en
t

re
ce

iv
e 

fo
rc

e

F
o
rm

 f
in

d
in

g

F
S

I 
A

n
a
ly

si
s

H
ig

h
 F

id
el

it
y
 F

S
I 

A
n

a
ly

si
s:

 L
o
w

 F
id

el
it

y
 F

S
I 

A
n

a
ly

si
s:

F
o
r 

i=
0
 t

o
 m

ax
It

er
at

io
n
 d

o

F
o
r 

 i
=

0
 t

o
 m

ax
It

er
at

io
n
 d

o

E
n

d
 f

o
r

E
n

d
 f

o
r

su
rf

ac
e

D
es

ig
n

 E
v
a
lu

a
ti

o
n

Figure 1.4: Schematic representation of the multi-fidelity analysis work flow.



6 Chapter 1 Introduction

beam elements. The presented structural solver is coupled with the BEM solver
to construct a tool for aeroelastic analysis of wind turbine rotors.

In chapter 3, the vortex panel method is explained. It starts with the two-
dimensional panel method and continues with steady three-dimensional and
unsteady three-dimensional implementation, taking into account the wing or
rotor’s kinematics. The implemented panel code is tested for examples includ-
ing sudden acceleration of a wing, pitching oscillations of a wing and flow over
a wind turbine rotor.

Chapters 4 and 5 include respectively the fundamentals of computational fluid
dynamics and the finite element method. These two theory chapters are kept
very brief. For more detail, references are made to some well-known literature
in the respective fields.

In chapter 6 the results of the low-fidelity FSI analysis workflow, using the
panel method for solving the fluid problem are discussed and the comparison
is made with the high-fidelity analysis approach using CFD. Besides that, the
pre-stress dependent performance of the membrane blade concept is studied.

Chapter 7 is devoted to the membrane blade concept. The chapter presents
the analysis of the membrane blade concept in three levels. In the first level,
the membrane blade concept is studied in non-rotating uniform flow condition.
Multi-fidelity FSI analysis is performed for the steady state situation. Unsteady
FSI analysis of the membrane blade is also performed in non-rotating con-
dition. In the second level, a workflow is introduced for the analysis of the
membrane blade via panel-BEM coupling. The method combines the blade
element method with 2D and 3D panel method for analyzing the performance
of the membrane blade. At each FSI iteration the proposed method utilizes the
three-dimensional panel method solver (Section 3.2) for calculating the load-
ing from the fluid side in order to update the shape of the membrane blade and
the two-dimensional panel method solver (Section 3.1) for calculating the lift
and drag coefficient for the membrane blade sections which are used for BEM
calculations. Finally, the performance of the membrane blade is analyzed in
rotating configuration. In all three levels, comparison of the membrane blade’s
performance with its equivalent baseline rigid blade is made.

Lastly, concluding remarks are made in chapter 8.



2Blade Element Momentum Method

This chapter discusses the theory and development of a solver for aeroelastic
analysis of wind turbine rotor blades. It uses the blade element momentum
(BEM) method for determining the loading on the blade in both steady and
unsteady operating conditions. The unsteadiness of the loading might, on one
hand, be due to changes in parameters controlling the turbine’s operation like
the rotational speed of the rotor or the pitch angle of the individual blades. On
the other hand wind shear and atmospheric turbulence play a major load in
the unsteadiness of the loading on a wind turbine. They are both included in
evaluating the loading using BEM. Fluctuation of the wind speed component in
the atmospheric boundary layer is modeled based on Mann’s method [16, 17].
On the structural side, the blades are modeled using linear beam elements [18]
and modal decomposition is used for dynamic analysis of the blade.

The implemented BEM solver is verified against the results obtained from
Qblade [19] for the NASA-Ames Phase VI wind turbine (Appendix B). A very
good agreement between the results is observed. Finally, the obtained results
for unsteady cases like blade’s pitching are presented as well as the aeroelastic
response of the blade to unsteady loading due to wind shear and atmospheric
turbulence.

2.1 Flow Over Airfoils

Airfoils are geometric profiles used to create lift. For the case of flow over an
airfoil, the lift force (L) is quite larger than the drag force (D):

L >> D (2.1)

7



8 Chapter 2 Blade Element Momentum Method

Fig. 2.1 shows a sample airfoil with some of the term used in describing air-
foil’s geometry:

Mean camber line

Chord length, c

Urel

Lift force

Drag force

Figure 2.1: Airfoil terms and the forces acting on an airfoil section.

• Chord Line: The straight line connecting the leading edge and the trail-
ing edge of an airfoil. Its length (c) is used as the characteristic length in
airfoil calculations.

• Camber Line: The locus of the point midway between the upper and
the lower surface of an airfoil.

• Angle of Attack(α): The angle between the relative velocity vector 1

and the chord line.

The forces acting on an airfoil can be resolved to a component perpendicular
to the direction of the air flow, which is called the lift force, and a component
in direction of the upcoming air flow, which is called the drag force (Fig. 2.1).
The lift force is mainly a consequence of the pressure difference between the
upper surface (suction side) and the lower surface (pressure side) of the airfoil,
while the drag force is due to both the pressure difference on the two airfoil
sides and the viscous friction force at airfoil’s surface.

For a specific airfoil these forces depend on the angle of attack and the Reynolds
number, which is the ratio of viscous to inertial forces:

Re =
UL

ν
(2.2)

where U is the inflow velocity, L is a characteristic length (chord length for
2D profile calculations) and ν is the kinematic viscosity of the fluid. Non-
dimensional coefficients corresponding to the forces applied to an airfoil (or

1Velocity with respect to the frame attached to the airfoil
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other 3D bodies) are defined via dimensional analysis. The 2D lift coefficient
is defined as:

Cl =
L

1
2ρ|U |2c

(2.3)

and the 2D drag coefficient is defined as:

Cd =
D

1
2ρ|U |2c

(2.4)

Three-dimensional lift and drag coefficients are respectively designated by CL
and CD. Another non-dimensional coefficient used in studying fluid flow over
airfoils is the pressure coefficient:

cp =
p− p∞
1
2ρ|U∞|2

(2.5)

As an example, lift and drag curves of the NACA0012 airfoil as a function of
the angle of attack are shown in Fig. 2.2. The curves are obtained using XFOIL
and show typical lift and drag characteristic of a generic airfoil. The lift coef-
ficient at zero angle of attack is zero for this airfoil because NACA0012 is a
symmetric profile. For lower values of angle of attack the flow is attached, lift
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0.02

0.04

0.06

0.08

0.1

0.12
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C
d

Figure 2.2: Lift and drag coefficient for the NACA0012 airfoil.

coefficient increases linearly with α and drag remains relatively low. For an
ideal case of inviscid flow, the lift coefficient would continue to increase with
α until an angle of attack of 90 degrees is reached. But, as a result of viscous
forces, the slope of the lift curve decreases as the angle of attack and conse-
quently the viscous forces increases. The airfoil increasingly stalls with the
increase of angle of attack. Finally, stall happens at a specific critical angle of
attack (typically between 10 and 16 degrees depending on the airfoil geometry
and the Reynolds number [20] and flow separation on the suction side occurs.
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At the stall point, the lift coefficient is at its maximum. After the stall point, lift
coefficient starts to decrease and the drag coefficient increases rapidly. Power
regulation in a stall controlled wind turbine is based on the decrease in the lift
force after the stall point. With further increase in the angle of attack, the airfoil
acts more and more like a flat plate.

2.2 1D Momentum Theory

The power extracted from the wind flow by an idealized rotor can be calculated
using the Betz model. The Betz model is based on linear momentum theory
used for analyzing the performance of propellers. The control volume used
in the analysis is shown in Fig. 2.3. The model assumes incompressible, ho-
mogeneous, steady flow with no drag over a rotor with an infinite number of
blades. Furthermore, uniform distribution of the thrust force over the rotor disc
is assumed and the rotation in the wake is neglected.

Stream tube

1

2
3

4

U1 U2 U3 U4

Figure 2.3: Non-rotating actuator disc model for a wind turbine rotor.

Taking the above assumptions, the Bernoulli equation can be written for the
upstream region of the rotor (from section 1 to 2) and also for the downstream
region of the rotor (section 3 to 4):

p1 +
1

2
ρU2

1 = p2 +
1

2
ρU2

2 (2.6)
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and
p3 +

1

2
ρU2

3 = p4 +
1

2
ρU2

4 (2.7)

It is also assumed that the pressure far away from the rotor is equal to the free-
stream pressure (p1 = p4) and that the velocity does not change across the
rotor (U2 = U3).

The thrust force applied to the rotor can be found by applying the conservation
of linear momentum to the presented control volume in Fig. 2.3:

T = U1(ρA1U1)− U4(ρA4U4) = ṁ(U1 − U4) (2.8)

where Ai is the cross-section area of the corresponding section and ṁ is the
mass flow rate. The thrust force is the net force applied by the wind on the
rotor in the horizontal direction. It can also be calculated from the pressure
difference on the two sides of the rotor:

T = A(p2 − p3), (2.9)

where A = A2 = A3 is the rotor area. Solving equations 2.6 and 2.7 for
(p2 − p3) and inserting it into equation 2.9, yields:

T =
1

2
ρA2(U2

1 − U2
4 ) (2.10)

equating equations 2.8 and 2.10 and replacing the mass flow rate by ρA2U2,
one obtains:

U2 =
U1 + U4

2
(2.11)

which states that the velocity at the rotor plane is the average of the free stream
and downstream velocities. Defining the axial induction factor simplifies the
description of velocity at different sections. The axial induction factor is a
non-dimensional parameter describing the decrease of wind velocity from the
upstream region to the rotor plane:

a =
U1 − U2

U1
(2.12)

The velocity at different section can be written in terms of the free stream
velocity (U1) and the induction factor (a):

U2 = U1(1− a) (2.13)

U4 = U1(1− 2a) (2.14)



12 Chapter 2 Blade Element Momentum Method

The velocity at the rotor plane decrease as the induction factor increases from
0. For a = 0.5 wind velocity at the rotor becomes zero and the theory in not
applicable anymore.

Major parameters regarding rotor performance can now be described in terms
of the induction factor and the free stream velocity (U1) which is designated
by U from now on. The Power generated by the idealized rotor in the 1D
momentum theory is equal to thrust time velocity:

P =
1

2
ρA(U2

1 − U2
4 )U (2.15)

Substituting U2 and U4 form equations 2.13 and 2.14 the Power reads:

P =
1

2
ρAU34a(1− a)2 (2.16)

The performance of the rotor can be quantified via the non-dimensional power
coefficient:

CP =
Generated power

Available power in wind
=

P
1
2ρAU

3
(2.17)

which is equal to:
CP = 4a(1− a)2 (2.18)

Setting the derivative of CP with respect to a equal to zero, the maximum
theoretical power of a wind turbine can be calculated. It could be seen that CP
is maximum at a = 1

3 , and its maximum value is:

CP (a =
1

3
) =

16

27
≈ 0.593 (2.19)

It implies that with the previously mentioned idealizing assumptions, a wind
turbine cannot extract more than about 59% of the kinetic energy of the wind
passing through its rotor plane.

Similar to the power coefficient, the thrust coefficient is defined as the ratio
of the actual thrust acting on the rotor to the theoretically maximum force the
airflow with the velocity of U could exert on a disc of area A:

CT =
T

1
2ρU

2A
= 4a(1− a) (2.20)

For the case of optimal power output (a = 1
3 ), CT is equal to 8

9 . Maximum
thrust coefficient occurs at a = 1

2 . The simplified model used in 1D momentum
theory is not valid for axial induction factors greater than 0.4.
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Neglecting the rotation of the wake behind the rotor is one of the assumptions
made in the 1D momentum theory of Betz. As a consequence of rotor’s rota-
tion, the flow in the downstream of the rotor rotates in the opposite direction of
the rotor. The rotational velocity induced by the rotor in the downstream flow
is designated by ω. This rotational velocity is small compared with the rota-
tional velocity of the rotor itself(Ω). The angular induction factor is defined as
one half of this ratio:

a′ =
ω

2Ω
(2.21)

With the definition of these parameters for describing the performance of a
rotor and flow over an airfoil, the next section continues with the blade element
momentum theory.

2.3 Blade Element Momentum Method

The Blade Element Momentum (BEM) method is the most common method
used for calculating the wind load on wind turbines [21]. BEM calculations
are very fast and they still provide satisfactory result provided that good airfoil
data are utilized for the calculations. The inputs for the method include tabular
lift and drag coefficient data at a number of Reynolds numbers and for a proper
range of angles of attack, wind speed and turbine’s operation-related inputs
like pitch angle, yaw angle and rotational speed.

The method discretizes the blade into a number of radial elements (Fig. 2.4).
Typically between 20-30 elements are used. The primary unknowns of the
problem, solved using BEM method are the axial and tangential induction fac-
tors (a and a′). After solving for these unknowns the velocity at each section
could be calculated together with the angle of attack. In the post processing
step, the loading on the blade in the normal and tangential direction is calcu-
lated and major quantities like thrust, torque, bending moment and power could
be calculated.

The basis of the BEM method lies on the calculation of the forces acting on
each blade element using two different approaches and then equating them in
order to derive the BEM method equations, which are solved iteratively. The
two approaches are the momentum theory and the blade element theory:
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r

Blade element
�r

c(r)

Figure 2.4: Discretization of the blade into radial elements.

2.3.1 Momentum theory

The momentum theory calculates the forces and the moment acting on each
annular element based on the principle of conservation of linear and angular
momentum. The control volume used for the calculations is shown in Fig.
2.5. The lateral boundaries of the control volume are stream tubes, meaning
that no fluid flows through these boundaries and exchange of momentum takes
place only at the upstream boundary in front of the rotor and the downstream
boundary.

The thrust force acting on the annular element at the distance r from the root
of the rotor could be calculated from conservation of linear momentum:

dT = [U − (1− 2a)U ]dṁ (2.22)

where dṁ is the mass flow rate across the control volume:

dṁ = ρU(1− a)2πrdr (2.23)

Inserting the mass flow rate from 2.23 into 2.22 the thrust force acting on the
element reads:

dT = 4πrρU2a(1− a)dr (2.24)
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U U(1-a) U(1-2a)

r

r

R

Figure 2.5: Control volume in the momentum method, from [18].

The moment acting on the annular element, dM , can also be calculated analo-
gously using the principle of conservation of angular momentum:

dM = ruθdṁ (2.25)

where uθ is the azimuthal velocity:

uθ = 2Ωra′ (2.26)

Inserting the terms from 2.23 and 2.26 into 2.25 results in the moment acting
on the annular element:

dM = 4πr3ρUΩ(1− a)a′dr (2.27)

2.3.2 Blade Element Theory

Blade element theory calculates the thrust and moment acting on annular blade
elements in terms of lift and drag coefficient, Reynolds number and the local
angle of attack at each element. Flow in the radial direction is neglected in the
calculations using blade element theory. The two-dimensional force calcula-
tions are done independently for each element, i.e. elements are not influenced
by their neighbors.

As shown in Fig. 2.6, the relative velocity at each radial section can be de-
composed into a component in the rotor plane and another component normal
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α

Rotor planeΦθ

Urel

U(1-a)

rΩ(1+a')

Figure 2.6: Decomposition of the relative velocity vector.

to the rotor plane. θ is the local pitch angle, which is the sum of blade’s pitch
angle (θp) and local twist at the section (β). By definition, the pitch angle of
the blade is equal to zero when the chord line at the tip of the blade is parallel
with rotor plane. Φ is the angle between the relative velocity vector and rotor
plane:

Φ = atan
( (1− a)U

(1 + a′)Ωr

)
. (2.28)

With the definition of these two angles, the local angle of attack reads:

α = Φ− θ. (2.29)

The forces acting on a generic blade element are shown in Fig. 2.7. The lift and
the drag force acting on each element are calculated as a function of Reynolds
number and angle of attack. From the lift and the drag forces the force acting
normal to the rotor plane (contributing to the thrust force) and the tangential
force (generating torque) for each element can be calculated:[

pN
pT

]
=

[
cos(Φ) sin(Φ)
sin(Φ) −cos(Φ)

] [
L
D

]
(2.30)

dividing equation 2.30 by 1
2ρU

2
relc results in:[

Cn
Ct

]
=

[
cos(Φ) sin(Φ)
sin(Φ) −cos(Φ)

] [
Cl
Cd

]
(2.31)

whereCn andCt are respectively the non-dimensional parameters for the force
in normal and tangential direction:

Cn =
pN

1
2ρU

2
relc

, (2.32)
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Rotor plane

U
rel

D

L

R pN

Figure 2.7: Decomposition of force acting on a generic annular element.

and
Ct =

pT
1
2ρU

2
relc

. (2.33)

From the velocity triangle in Fig. 2.6, the relative velocity can be calculated as
a function of both a and a′:

Urel =
U(1− a)

sin(Φ)
, (2.34)

Urel =
Ωr(1 + a′)

cos(Φ)
. (2.35)

With the parameters defined so far, the force and moment calculation based
on blade element theory can be done. Since two-dimensional lift and drag
coefficients are used for BEM calculation, pN and pT are both force per unit
length and to calculate the total force they should be multiplied by element
length (dr) and the number of blades (B):

dT = BpNdr (2.36)

and
dM = rBpT dr. (2.37)

where B is the number of blades. Inserting pN from 2.32 and Urel from 2.34
into 2.36 the equation for the trust force on an annular element reads:

dT =
1

2
ρB

U2(1− a)2

sin2(Φ)
cCndr. (2.38)
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Similarly, the moment can be calculated by inserting the corresponding terms
into equation 2.37:

dM =
1

2
ρB

U(1− a)Ωr(1 + a′)

sin(Φ)cos(Φ)
cCtrdr. (2.39)

2.3.3 Solution Procedures

By equating equations 2.38 and 2.24 for the thrust force acting on the annular
segment and equations 2.39 and 2.27 for the moment, induced tangential and
angular induction factors can be calculated:

a =
1

1 + 4sin2(Φ)
σCn

(2.40)

and
a′ =

1
4sin(Φ)cos(Φ)

σCt
− 1

(2.41)

where σ is the local solidity defined as the ratio of the annular element area to
the area swept by the annular segment:

σ(r) =
Bc

2πr
. (2.42)

The iterative solution procedure of the BEM method is summarized in Algo-
rithm 1. For the first element, a and a′ are usually initialized by zero. To
improve convergence for the next elements, they could be initialized by the
converged solution from their neighboring element.

for each element do
initialize a and a′;
while convergence = false do

calculate the relative flow angle (Eqn. 2.28);
calculate angle of attack (Eqn. 2.29);
interpolate Cl(α) and Cd(α) form tabular data;
calculate Cn and Ct (Eqn. 2.31);
calculate a and a′ (Eqns. 2.40 and 2.41);
check convergence;

end
do the post-processing;

end

Algorithm 1: Iterative BEM solution
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2.4 Corrections Factors

In the previous sections, the basic BEM method and its underlying assumptions
were discussed. Different correction factors are introduced to the method in
order to improve BEM results and decrease the influence of the simplifications
due to the assumptions of the model. They include corrections for heavily
loaded rotors, yaw corrections, dynamic wake corrections, 3D corrections for
airfoil data, etc. Applying the following two corrections is necessary for getting
good results from BEM [18]:

2.4.1 Prandtl’s Tipp Loss Factor

One of the underlying assumptions of the classical BEM theory is the infinite
number of blades. Prandtl’s loss factor corrects this assumption. The pressure
on the blade side facing the wind is higher than the suction side, as a result,
the fluid particles tend to flow around the tip of the blade from the wind facing
side to the suction side where the pressure is lower. This phenomenon, which
also happens at the tip of airplane wings, reduces power production at the tip
of the blade and is most noticeable with fewer and wider blades [20]. The flow
pattern in the wake of a rotor with a finite number of blades is different from
the rotor with an infinite number of blades. For taking this into account, Prandtl
introduced a correction factor, F , into equations 2.24 and 2.27:

dT = 4πrρU2a(1− a)Fdr (2.43)

and
dM = 4πr3ρUΩ(1− a)a′Fdr (2.44)

The correction factor (F ) is calculated as:

F =
2

π
acos(e−f ) (2.45)

where f is:

f =
B

2

R− r
rsin(Φ)

(2.46)

using the above equations for equating annular thrust and moment derived from
the momentum theory and the blade element theory, the equations for calculat-
ing the induction factors including tip loss effects read:

a =
1

1 + 4Fsin2(Φ)
σCn

(2.47)
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and
a′ =

1
4Fsin(Φ)cos(Φ)

σCt
− 1

. (2.48)

2.4.2 Glauert’s Correction Factor

The momentum theory is not valid for axial induction factors greater than ap-
proximately 0.4 [18]. For these cases empirical relations between thrust coef-
ficient and the induction factor, like the one proposed by Spera[22], should be
used:

CT =

{
4a(1− a)F a ≤ ac
4(a2

c + (1− 2ac)a)F a > ac
(2.49)

ac is the critical axial induction factor and is approximately equal to 0.2. The
thrust coefficient for an annular element, from the momentum theory reads:

CT =
dT

1
2ρU

22πrdr
=

(1− a)2σCn
sin2(Φ)

. (2.50)

Equating the analytical equation with the empirical equation for a > ac, results
in:

4(a2
c + (1− 2ac)a)F =

(1− a)2σCn
sin2(Φ)

(2.51)

and consequently the axial induction factor can be corrected for the cases where
it exceeds the critical value:

a =
1

2
[2 +K(1− 2ac)−

√
(K(1− 2ac) + 2)2 + 4(Ka2

c − 1)] (2.52)

where:

K =
4Fsin2(Φ)

σCn
. (2.53)

2.5 Unsteady Blade Element Method

While the classical BEM method is sufficient for calculating the mean loading
on a wind turbine or deriving the power curve for estimation of the annual
energy production of the machine, an unsteady model is necessary for studying
the aeroelastic response of the turbine. Wind shear, atmospheric turbulence and
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the presence of the tower are among the factors contributing to the unsteadiness
of the aerodynamic load on the rotor.

Taking wind shear and atmospheric turbulence into account, the BEM method
should be used for each blade separately and the local undisturbed wind ve-
locity for each annular element should be calculated as a function of time and
section’s position vector. The velocity components at the generic annular ele-
ment are shown in Fig. 2.8.

Rotor plane

z

yU

U

W U

rel

0

rot

Figure 2.8: Decomposition of the relative velocity vector at a generic blade
section.

W is the induced velocity and the relative velocity vector could be decomposed
into three parts: [

Urely
Urelz

]
=

[
Uy
Uz

]
+

[
−Ωr

0

]
+

[
Wy

Wz

]
. (2.54)

The relative velocity angle Φ reads:

Φ = atan(
Urely
Urelz

) (2.55)

and the components of the induced velocity vector are computed as [18]:

Wz =
−BLcos(Φ)

4πρrF |U + fgn(n ·W)|
(2.56)

and

Wy =
−BLsin(Φ)

4πρrF |U + fgn(n ·W)|
(2.57)

where n is the vector normal to the rotor plane and fg corresponds to Glauert
correction factor:

fg =

{
1 a ≤ ac
ac
a (2− ac

a ). a > ac
. (2.58)
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2.5.1 Dynamic Wake (Inflow) Model

The induced velocities calculated from equations 2.56 and 2.57 are quasi-static
induced velocities, implying that the calculated velocities are valid when the
wake is in equilibrium with the forces acting on the blade. In the case of
transient conditions, there is a time delay before the velocities calculated from
equations 2.56 and 2.57 are in equilibrium with the load. This time delay is
proportional to the ratio of the rotor diameter to the undisturbed wind velocity
[21].

Different engineering models are proposed for the modeling of dynamic inflow
conditions [23, 24, 25]. In the later one, the induced velocities are modeled by
two first-order ordinary differential equations:

Wint + τ1
dWint

dt
= Wqs + 0.6τ1

dWqs

dt
(2.59)

and

W + τ2
dW

dt
= Wint. (2.60)

The two equations are separately solved for the two velocity components in y
and z direction. Wqs is the quasi-static induced velocity, Wint is an interme-
diate value and W is the final filtered induced velocity. The time constants,
τ1 and τ2, depend on the ratio of the rotor diameter to the undisturbed wind
velocity and are computed as:

τ1 =
1.1R

(1− 1.3a)U
(2.61)

and

τ2 = (0.39− 0.26(
r

R
)2)τ1. (2.62)

For calculating the filtered induced velocities, first the quasi-static induced ve-
locities should be calculated at each time step (equations 2.56 and 2.57). Then
equation 2.59 should be solved for the intermediate induced velocities. Hav-
ing Wint calculated, equation 2.60 is solved for the final value of the induced
velocities.
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2.5.2 Solution Procedure for Unsteady BEM

The solution procedure for the unsteady BEM method is presented in Algo-
rithm 2.

initialize the position vector for all elements;
initialize a and a′;
for each time step do

for each blade do
update blade’s position;
for each element do

calculate the local wind velocity;
calculate relative wind velocity (use the induced velocities

form the previous time step);
calculate the relative flow angle (Eqn. 2.55);
calculate angle of attack (Eqn. 2.29);
interpolate Cl(α) and Cd(α) form tabular data;
calculate Cn and Ct (Eqn. 2.31);
calculate the quasi-static induced velocities (Eqns. 2.56 and

2.57);
calculate the intermediate and final values of the induced

velocities (Eqns. 2.59 and 2.60);
end

end
do the post-processing;

end

Algorithm 2: Unsteady BEM solution procedure

2.6 Turbulent Inflow Condition for Unsteady Calculations

Generating the turbulent inlet conditions for unsteady simulations is based on
the method developed by Mann at the Risø national laboratory for sustain-
able energy in Denmark [16, 17]. Detailed explanation of the algorithm can
be found in mentioned publications. Most equations presented here are also
from them, so direct reference is not made for all equations in the coming
subsections. Turbulent flow consists of groups of eddies with different length
scales. It is common to describe it in frequency domain, i.e. different length
scales are described as waves with different frequencies and amplitudes. Wind
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modeling starts also from this point in frequency domain (Fourier mode), the
proposed method generates waves with amplitudes and phase angles such that
after transforming these waves using inverse Fourier transform it ends up with
the velocities which have the same statistics as in the atmospheric boundary
layer. Generating the proper Fourier modes is based on the spectral tensor for
incompressible isotropic turbulence. The velocity vector in the case of turbu-
lent flow could be decomposed into a constant mean part and a fluctuating part:

u = U + u′ (2.63)

In Mann’s method, the fluctuating part of the velocity components is calculated
for the grid points of an equidistant Cartesian grid (Fig. 2.9). It is done in three
steps:

1. Evaluate the coefficients Cij(k).

2. Generate the random vectors nj(k) and multiply.

3. calculate the fluctuating velocities by taking the inverse Fourier trans-
form:

ui(x) =
∑
k

exp(ik · x)Cij(k)nj(k) (2.64)

Figure 2.9: Precursor domain for generating turbulent inflow.

x here shows spatial coordinate of the corresponding node with xl = Nl∆Ll
for l = 1, 2, 3 and Nl is number of cells in each spatial direction. k is the
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vector of wave number k = [k1, k2, k3]
T , where each component of k is equal

to:
ki =

2πm

Li
(2.65)

where m ranges from −Ni/2 to Ni/2. Superposition of waves of different
amplitude and phase is done in a random way to generate the random field
of wind velocity fluctuations. The method assumes a Gaussian distribution
for the velocity fluctuations. Gaussian distribution is applied by the vector n
which contains independent Gaussian random variables with the mean value
of zero and standard deviation of one. The matrix C, which is a function of
wave number vector contains the information about how much each Fourier
mode should contribute to the total velocity field. It is different for isotropic
and anisotropic turbulence and is explained in more detail in the sequel.

2.6.1 Isotropic turbulence

In isotropic turbulence, the mean velocity field is assumed to be constant and
as a result, the shear force is zero. For incompressible isotropic turbulence the
spectral tensor, proposed by Batchelor [26] is

φij(k) =
E(k)

4πk4
(δijk

2 − kikj) (2.66)

k here is the magnitude of wave number vector, k =
√
k2

1 + k2
2 + k2

3 , and
E(k) is energy spectrum suggested by von Karman [27]:

E(k) = αε
2
3L

5
3

L4k4

(1 + L2k2)
17
6

(2.67)

L is the length characterizing the scale of turbulence, α is Kolmogorov constant
and ε is the rate of turbulent kinetic energy dissipation. The matrix C in Eqn.
2.64 is calculated using the following equation:

Cij(k) = (∆k1∆k2∆k3)
1
2 Aij(k) (2.68)

where ∆kl = 2π/Ll and A is calculated from square root factorization of the
spectral tensor:

A∗ijAij = φij . (2.69)

For isotropic turbulence, the matrix A reads:

A(k) =

√
E(k)√
4πk2

 0 k3 −k2

−k3 0 k1

k2 −k1 0

 (2.70)
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The advantage of the isotropic model is that it describes the power spectral
density well and at lower cost in comparison with the anisotropic model, but it
has one major deficit. Since it is isotropic, the generated velocity components
have pretty much the same magnitude in different spatial directions, which is
not supported by experimental measurements. In reality, velocity fluctuations
in the main flow direction are larger than fluctuations in transverse and vertical
direction. Experimental Measurements suggest the following numbers for the
ratios of the variances (σ) of velocity fluctuations in different directions:

σ2
w

σ2
u

≈ 0.25 (2.71)

σ2
w

σ2
u

≈ 0.5− 0.75 (2.72)

but for isotropic turbulence we have:

σ2
u ≈ σ2

v ≈ σ2
w (2.73)

which is normal for isotropic turbulence but does not agree with the reality.
Anisotropic turbulence should be modeled in order to get the correct ratios.

2.6.2 Anisotropic turbulence

In the anisotropic case the mean velocity field is not constant and shear force
is applied to eddies of different sizes. Eddies are assumed to be initially homo-
geneous. The initially homogeneous eddies are then stretched because of the
shear force and their size and orientation changes, making them more and more
anisotropic in time. The stretching of eddies does not continue for an infinite
time and after a while eddies are broken and a steady state is reached. Eddy
life time is the time that eddies face this stretching effect before they break up.
Mann assumes the homogeneous eddies described by homogeneous spectral
tensor in the last section as the initial condition of eddies and suggests a model
for eddy life time in which eddy life time is not the same for eddies of all sizes,
as in Townsend [28], but depends on eddy size. It is furthermore assumed that
shear is linear such that dU/dz is constant and with the application of rapid
distortion theory and linearization of the Navier-Stokes equation, the effect of
shear in making initially isotropic eddies anisotropic is modeled.

Initially, the following relation between eddy life time and eddy size, which is
proportional to |k|−1, was assumed:

τ(k) ∝ ε− 1
3 k−

2
3 (2.74)
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but this relation is not necessarily valid for eddies outside the inertial subrange.
Mann has then constructed an alternative model for eddy lifetime which as-
sumes that eddies of size k−1 are broken up mainly under influence of eddies
of similar or smaller size. Characteristic velocity of these eddies is written as(∫∞
k
E(p)dp

) 1
2 and lifetime is assumed to be simply proportional to eddy size

divided by this velocity:

τ(k) ∝ k−1

(∫ ∞
k

E(p)dp

)− 1
2
∝ k−

2
3

(
2F

1
(
1

3
,

17

6
,

4

3
,−(kL)

−2
)

)− 1
2
∝
{

k−
2
3 if k →∞

k−1 if k → 0

(2.75)

E is von Karman Energy spectrum and 2F
1 is the hypergeometric function,

appendix A. The algorithm from Numerical Recipes [29] is used for calculation
of hypergeometric function. The above equation can be written as

τ(k) = Γ

(
du

dz

)−1

(kL)
− 2

3

(
2F

1(
1

3
,

17

6
,

4

3
,−(kL)

−2
)

)− 1
2

. (2.76)

Γ is the parameter determining the level of anisotropy. For Γ equal to zero eddy
life time is zero and eddies do not undergo stretching but remain isotropic. The
anisotropy level is increased as Γ is increased. The ratios of velocity covariance
in different directions which can be a measure of the level of isotropy depend
only on Γ and not on L or αε

2
3 .

Because of the shear interaction between eddies of different sizes and orienta-
tions (Fourier modes) during eddy life time, figure 2.10, the wave number of
eddies changes.

Figure 2.10: Uniform shear anisotropy from [17].

Using rapid distortion theory and by linearization of the Navier-Stokes equa-
tion, the change in wavenumber over time is found to be governed by the fol-
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lowing equation:
dkk
dt

= −kj
∂uj
∂xk

. (2.77)

The mean velocity components in transversal and vertical direction are zero
and for the main flow direction it depends only on height,

U = (U, V,W ) = (U(z), 0, 0). (2.78)

As the initial condition for wave number vector, homogeneous Fourier modes
are used k(t = 0) = (k1, k2, k30) and instead of time, non-dimensional time,
β, defined as

β =
dŪ

dz
τ (2.79)

is used. Solving Eqn. 2.77 with the above-mentioned initial condition yields
the steady state wave number vector:

k(t) = (k1, k2, k30 − βk1) (2.80)

Performing square root factorization of the spectral tensor with the above wave
number vector, matrix A can be calculated for anisotropic turbulence: (more
details could be found in [16])

Aij(k0) =

√
E(k0)√
4πk2

0

 k2ζ1 k30 − k1ζ1 −k2

−k30 + k2ζ2 −k1ζ2 k1

k2
k2

0

k2 −k1
k2

0

k2 0

 (2.81)

k0 is the magnitude of initial wave number vector and the two additional pa-
rameters are:

ζ1 = C1 −
k2C2

k1
(2.82)

and

ζ2 = C2 +
k2C1

k1
(2.83)

where

C1 =
βk2

1(k2
0 − 2k2

30 + βk1k30)

k2(k2
1 + k2

2)
(2.84)

and

C2 =
k2

2k
2
0

(k2
1 + k2

2)
3
2

tan−1

βk1

(
k2

1 + k2
2

) 1
2

k2
0 − βk30k1

 . (2.85)
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To obtain an estimation of the parameters Γ, L and αε2/3 the explained spec-
tral model is fitted to common wind spectra proposed in the literature, namely
spectra from Kaimal and Simiu. Simultaneous least square fitting to Kaimal
spectra leads to

Γ = 3.9, (2.86)

L = 0.59z, (2.87)

αε2/3 = 3.2
u2
∗

z2/3
(2.88)

and
Γ = 3.8, (2.89)

L = 0.79z, (2.90)

αε2/3 = 2.8
u2
∗

z2/3
(2.91)

for Simiu. u∗ is friction velocity and z is the reference height for velocity
measurements.

2.7 Structural Dynamics Modeling of Rotor Blades

The governing equation of motion for the dynamic system is:

Mẍ + Cẋ + Kx = F. (2.92)

Where M, C and K are respectively the mass, damping and stiffness matrices
and F is the load vector. The method proposed by Hansen [18] for structural
dynamic modeling of blades is used in this work. It is based on modal su-
perposition and approximates blade’s displacement as a linear combination of
its first three eigenmodes. They are the first two flapwise eigenmodes(1f, 2f )
and the first edgewise eigenmode(1e). These eigenmodes are quantitatively
demonstrated in Fig. 2.11.

Using these eigenmodes, blade’s deformation in z direction reads:

dz(x) = D1u
1f
z (x) +D2u

1e
z (x) +D3u

2f
z (x) (2.93)
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Figure 2.11: The first three eigenmodes of a generic blade, from [18].

Where the constants D1 to D3 are the generalized coordinates. Velocity and
acceleration are calculated by taking the derivative of displacement with re-
spect to time:

ḋz(x) = Ḋ1u
1f
z (x) + Ḋ2u

1e
z (x) + Ḋ3u

2f
z (x), (2.94)

d̈z(x) = D̈1u
1f
z (x) + D̈2u

1e
z (x) + D̈3u

2f
z (x). (2.95)

Displacement, velocity and acceleration in y direction are calculated analo-
gously.

To solve the dynamic system using the generalized coordinates and eigen-
modes, equation 2.92 should be solved for generalized coordinates and gen-
eralized mass, damping and stiffness matrices, as well as the generalized load
vector, should be calculated. The equation of motion for the generalized coor-
dinates is:

MgD̈ + CgḊ + KgD = Fg (2.96)

where D = (D1, D2, D3) is the vector of the generalized coordinates. The
generalized force vector is calculated by multiplying the force vector by the
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corresponding eigenmode and integrating it over the blade:

Fg,i =

∫ R

0

pz(x)uiz(x)dx+

∫ R

0

py(x)uiy(x)dx for i=1,2,3 (2.97)

uiz and uiy represent the components of the ith eigenmode. The fist column of
the mass matrix is equal to the force needed for unit acceleration of the first
generalized coordinate (D̈ = (1, 0, 0)). The loading for such an acceleration
is: [

pz
py

]
=

[
md̈z(x)

md̈y(x)

]
=

[
mu1f

z

mu1f
y

]
. (2.98)

Inserting the loading form equation 2.98 into equation 2.97 yields:m11

m21

m31

 =

∫ u1f
z (x)m(x)u1f

z (x)dx+
∫
u1f
y (x)m(x)u1f

y (x)dx∫
u1f
z (x)m(x)u1e

z (x)dx+
∫
u1f
y (x)m(x)u1e

y (x)dx∫
u1f
z (x)m(x)u2f

z (x)dx+
∫
u1f
y (x)m(x)u2f

y (x)dx

 =

GM1

0
0


(2.99)

where the components m21 and m31 are vanished because of eigenmodes or-
thogonality condition. The two other columns of the mass matrix are similarly
calculated. The mass matrix is a diagonal matrix because of eigenmodes or-
thogonality condition. The other two diagonal components are:

GM2 =

∫
u1e
z (x)m(x)u1e

z (x)dx+

∫
u1e
y (x)m(x)u1e

y (x)dx (2.100)

and

GM3 =

∫
u2f
z (x)m(x)u2f

z (x)dx+

∫
u2f
y (x)m(x)u2f

y (x)dx. (2.101)

The stiffness and damping matrices could be calculated analogously i.e. the
first column of the stiffness matrix is for example equal to the necessary force
vector for applying a unit displacement of D = (1, 0, 0) to the blade. These
matrices read:

K =

 ω2
1GM1 0 0

0 ω2
2GM2 0

0 0 ω2
3GM3

 , (2.102)

and

C =

 ω1GM1
δ1
π 0 0

0 ω2GM2
δ2
π 0

0 0 ω3GM3
δ3
π

 (2.103)
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where ωi is the ith eigenfrequency and δi is the logarithmic decrement as-
signed to the ith eigenmode. Inserting the coefficient matrices into equation
2.96 results in:

 GM1 0 0
0 GM2 0
0 0 GM3

 D̈1

D̈2

D̈3

+

 C1 0 0
0 C2 0
0 0 C3

 Ḋ1

Ḋ2

Ḋ3

+

 K1 0 0
0 K2 0
0 0 K3

 D1

D2

D3

 = Fg

(2.104)

The matrix equation presents three uncoupled equations ( due to eigenmodes
orthogonality condition) which are solved independently using the Runge-Kutta
technique for time integration.

2.8 Results

This section presents the results of using the developed BEM code for steady
and unsteady analysis of the NASA-Ames Phase VI turbine (Appendix B). The
unsteady BEM tool is coupled with the structural dynamic model presented
in section 2.7 for performing the aeroelastic analysis of the blades. Steady,
unsteady and aeroelastic analysis of the turbine follow in the next sections.

2.8.1 Steady Aerodynamic Analysis

This section presents the steady-state BEM results and compares them with
the results obtained from Qblade [19]. Fig. 2.12 shows the extracted power by
the rotor and the thrust force applied to the rotor for wind speed range of 4 to
16m/s and and the pitch angle of 5 degrees.

Figure 2.12: Power and the thrust force for different wind speeds.
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Distribution of the loading on the blade in tangential and normal direction is
presented in Fig. 2.13. Qblade discretized the whole blade including the cylin-
drical section, But in the Developed BEM the cylindrical part of the blade is
neglected. A good match between Qblade results and the results from the de-
veloped BEM solver is observed.

Figure 2.13: Loading distribution over the blade (U = 8m/s and θp = 5◦).

Next, the distribution of the lift and drag coefficient over the blade is compared
between the two codes (Fig. 2.14).

Figure 2.14: Lift and drag coefficient distribution over the blade (U = 8m/s
and θp = 5◦).

Finally the comparison is made for the axial induction factor (a) and the angle
of attack over the blade (Fig. 2.15). The axial induction factor is the primary
unknown in BEM method. The increase in the induction factor at the vicin-
ity of blade’s tip is because of the tip losses which are modeled via Prandtl’s
correction factor. The angle of attack for the current operational condition of
the rotor ranges form about 11◦ at the root of the blade to about 3◦ at the tip.
Therefore the blade is not stalled, since for the S809 airfoil stall starts at about
10◦ and the fully stalled flow is observed at 20◦ [30].

The NASA-Ames Phase VI turbine is a stall-controlled machine. With the
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Figure 2.15: Axial induction factor and angle of attack distribution over the
blade (U = 8m/s and θp = 5◦).

increase of wind velocity, the blade is not pitched out of the wind as in pitch-
controlled turbines. Consequently, the local angle of attack increases with the
increase of wind velocity. The blades eventually stall at the designed wind
speed to regulate the extracted power. The distribution of the local angle of
attack along the blade for two different wind velocities is shown in Fig. 2.16.
At the root of the blade the angle of attack increases by about 7◦ as wind
velocity increase from U = 8m/s to U = 10m/s. The local change in angle
of attack decreases toward the tip of the blade with approximately 1.5◦ increase
of the angle of attack at the tip, compared with the case of U = 8m/s.

Figure 2.16: Angle of attack distribution for U = 8m/s and U = 10m/s at
pitch angle of θp = 5◦.
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2.8.2 Turbine’s Unsteady Operation

Wind turbines continuously experience unsteady operating conditions with the
main reason being unsteadiness in the wind hitting the blade due to both wind
shear and atmospheric turbulence. The unsteady BEM solver enables the anal-
ysis of the instantaneous loading on the rotor at a reasonable computational
cost. In the following, three scenarios of unsteady operating condition of wind
turbines are presented.

2.8.2.1 Blade Pitching

In pitch-controlled wind turbines, blade’s pitch angle (θp) is used to regulate
the generated power. The Power could be decreased by pitching the blades out
of the wind at higher wind speeds. As demonstrated in Fig. 2.17 the pitch
angle in this example is increased from 3◦ at t = 25 s to 5◦ at t = 25.5 s. It is
then decreased back to 3◦ during 0.5 s starting at t = 35 s. The wind speed is
8m/s.

Figure 2.17: Time-dependent pitch angle.

The change in Power and thrust as a result of changing the pitch angle can be
seen in Fig. 2.18. By increasing the pitch angle both the power and the thrust
decrease. There is an initial overshoot right after changing the pitch angle, but
after some time delay a new equilibrium state is reached. For this example, the
time delay is about 5s for both the increase and the decrease of the pitch angle.
The time delay increases with the decrease of wind speed, it depends on the
ratio of rotor diameter to the wind speed.
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Figure 2.18: Change in power and thrust as a result of changing the pitch angle.

2.8.2.2 Wind Shear

In this second example the pitch angle is fixed at θp = 5◦ but wind shear is
taken into account rather than assuming a uniform wind velocity profile. The
logarithmic profile suggested in [31] is used for the mean wind profile:

U(z) =
u∗
K
ln(

z + z0

z0
), (2.105)

where u∗ is the friction velocity, z0 is the roughness length, and K is the von
Karman constant. The roughness length is set to z0 = 0.01m (which cor-
responds to open areas covered with mown grass) and the friction velocity is
calculated for a mean wind speed of 8m/s at hub height. For this example, the
velocity at the rotor plane ranges forms 7.7m/s to 8.3m/s. The difference
between the minimum and maximum velocity is not very high (rotor diameter
is 10m), but it is still enough to observe oscillations in power and thrust at the
frequency of rotor’s rotation. Fig 2.19 shows the oscillation in the generated
power and Fig. 2.20 shows the thrust applied on each blade. By definition,
blade 1 is positioned at an azimuth angle of 0◦ at t = 0 s. As it is expected
for a 2-bladed rotor, because of the 180◦ angular distance between the blades,
while the thrust of one blade is at its maximum value the other blade faces its
minimum thrust.

2.8.2.3 Atmospheric Wind

This example takes both wind shear and atmospheric turbulence into account.
The pitch angle is fixed at θp = 5◦ and the mean wind speed at hub height is
8m/s. The described method in section 2.6 is used for generating the fluctuat-
ing part of the velocity vector. Instantaneous wind field in front of the turbine
is shown in Fig. 2.21. The wind velocity vector for each section of each blade
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Figure 2.19: Influence of wind shear on the generated power.

Figure 2.20: Influence of wind shear on the thrust applied to individual blades.

is calculated for every time step via bi-linear interpolation. The change in wind
velocity for the section at the middle of the first blade over time is shown in
Fig. 2.22. Because of the fluctuations in the wind field, the power output and
the thrust applied on the blade have an oscillatory behavior. Next, they are
compared with the case of using mean flow with no turbulent fluctuations.

The generated power by the rotor in plotted in Fig. 2.23. While for the mean
wind profile the mean time-averaged power stays constant, the power oscillates
about this mean value for the case of fluctuating wind.

Similar behavior is observed for the thrust applied on individual blades. The
thrust applied on blade 1 is shown in Fig. 2.24. For the mean wind profile
oscillation of the thrust force due to wind shear could be clearly observed, but
it is not the case for the fluctuating wind case. Looking at the spectrum of
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Figure 2.21: Three dimensional wind field in front of the turbine.

Figure 2.22: Change in wind velocity over time for a selected monitor point.

Figure 2.23: Comparison of the generated power.

the thrust force (Fig. 2.25) it is seen that for the uniform wind case, there is
only one dominating frequency in the signal at f = 1.196Hz which is the fre-
quency of blade’s rotation. For the fluctuating wind case on the other hand, the
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frequency of blade’s rotation has still the maximum amplitude, but other fre-
quencies have a higher contribution to the thrust force compared with the mean
profile case. Taking all these frequencies into account is crucial for fatigue life
analysis of the blade and other mechanical components of the turbine.

Figure 2.24: Comparison of the thrust force on blade 1.

Figure 2.25: Fourier transform of the thrust on blade 1.

2.8.3 Aeroelastic Analysis

The aeroelastic response of the blades to unsteady loading due to atmospheric
turbulence and wind shear is studied in this section. The same operating con-
ditions as in the last example (section 2.8.2.3) holds for this example. The
generalized forces applied to the first blade is presented in Fig. 2.26. The spec-
tra of the applied forces is similar to the one shown in Fig. 2.25. Different
frequencies are clearly visible in the generalized forces, which would not be



40 Chapter 2 Blade Element Momentum Method

the case if only wind shear was taken into account. The consequence of excit-
ing the structure with a rather wide range of frequencies could be seen in the
aeroelastic response of the blade.

2

Figure 2.26: Generalized forces applied to blade 1.
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The displacement at blade’s tip due to wind shear is presented in Fig. 2.27.
The dominant frequency for the loading this case is the frequency of rotor’s
rotation. Consequently, there is also only one frequency in blade’s oscillations.
After the initial response of the blade, it continues to oscillate in a periodic
pattern. Taking atmospheric turbulence into account (Fig. 2.28) the aeroelastic
response is entirely different. Due to the presence of eddies with different
sizes in the atmospheric wind, the structure is excited with different frequencies
including frequencies near the natural frequencies of the blade, therefore the
beating phenomenon happens [32].

Figure 2.27: Tip displacement of blade 1 due to wind shear.

Figure 2.28: Tip displacement of blade 1 due to wind shear and atmospheric
turbulence.
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3Vortex Panel Method

This chapter presents the theory behind the implemented panel method solver.
The ultimate goal of implementing the panel method solver was to speed-up
the FSI analysis for streamlined bodies within the applicability range of the
panel method. The chapter starts with the two-dimensional panel method, fol-
lowed by three-dimensional steady state and three-dimensional unsteady panel
method. The implementations are based on the approach and the formulation
in [33].

Verification of the implemented solver is made by comparing the obtained re-
sults with experimental results and numerical results form other solvers. Fi-
nally, examples such as pitching oscillation of a wing and flow over a wind
turbine rotor are presented.

3.1 Two-Dimensional Panel Method

The velocity field for the case of irrotational, incompressible and inviscid flow
can be represented by a velocity potential Φ. This is the basis for vortex panel
method. The flow velocity in this case is nothing but the derivative of the
potential and can be calculated from the potential in the following way:

u =
∂Φ

∂x
, (3.1)

v =
∂Φ

∂y
. (3.2)

43
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The continuity equation for two-dimensional fluid flow with the above men-
tioned assumptions reads:

∂u

∂x
+
∂v

∂y
= 0. (3.3)

Inserting the velocities form equations 3.1 and 3.2 into the continuity equation
(3.3) results in the continuity equation in terms of the potential:

∇2Φ = 0. (3.4)

There are two boundary conditions for solving this Laplacian equation:

1. At no-slip walls in the domain (e.g. on wing surface) the velocity compo-
nent normal to the surface should vanish. This is called the zero normal
flow boundary condition and is expressed in mathematical terms as:

∇Φ · n = 0, (3.5)

where n is the vector normal to the surface.

2. the disturbance in the freestream flow caused by the elementary solutions
should vanish with the increase of the distance, r, from the wing surface:

lim
r→∞

∇Φ = 0. (3.6)

The so-called elementary solutions are used in the panel method to enforce the
above conditions.

3.1.1 Elementary solutions

In the following the three basic elementary solutions are explained:

3.1.1.1 Point Source

A point source pumps fluid into the domain at the point it is located or sucks
the fluid in if its strength is negative (it is then called sink). The velocity field
induced by a point source is demonstrated in Fig. 3.1. The strength of point
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source is designated by σ. The potential created by a two-dimensional point
source located at (x0, y0) is:

Φ(x, y) = − σ

4π
√

(x− x0)2 + (y − y0)2
. (3.7)

Figure 3.1: Velocity induced by a point source.

The velocity induced by the point source can be calculated by taking the deriva-
tive of the potential. The velocity components read:

u(x, y) =
∂Φ

∂x
=

σ(x− x0)

4π[(x− x0)2 + (y − y0)2]
3
2

(3.8)

and

v(x, y) =
∂Φ

∂y
=

σ(y − y0)

4π[(x− x0)2 + (y − y0)2]
3
2

. (3.9)

3.1.1.2 Point Doublet

Point doublet is a combination of point source and point sink as they approach
each other. The velocity field around a point doublet is shown in Fig. 3.2. The
potential due to a point doublet with a strength of µ is:

Φ(x, y) = − µ

4π
(x− x0)[(x− x0)2 + (y − y0)2]−

3
2 (3.10)

and the induced velocities are:

u(x, y) = − µ

4π

(y − y0)2 − 2 ∗ (x− x0)2

[(x− x0)2 + (y − y0)2]
5
2

(3.11)



46 Chapter 3 Vortex Panel Method

Figure 3.2: Velocity induced by a point doublet.

and

v(x, y) =
3µ

4π

(x− x0)(y − y0)

[(x− x0)2 + (y − y0)2]
5
2

. (3.12)

3.1.1.3 Point Vortex

Similar to the doublet term, the point vortex introduces rotation into the fluid
flow about the point where it is located. The velocity introduced by the vortex
term is shown in Fig. 3.3.

Figure 3.3: Velocity induced by a point vortex.

The vortex strength is designated by Γ. The induced potential by the vortex
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term is:
Φ(x, y) = − Γ

2π
atan(

y − y0

x− x0
) (3.13)

and the induced velocities read:

u(x, y) =
Γ

2π

y − y0

(x− x0)2 + (y − y0)2
(3.14)

and
v(x, y) = − Γ

2π

x− x0

(x− x0)2 + (y − y0)2
. (3.15)

3.1.2 Numerical Panel Method

In panel method the surface of the wing, or the airfoil itself in the two-dimensional
case, is discretized into a number of panels (Fig. 3.4). In order to represent the
flow around the airfoil elementary solutions of the potential flow are distributed
over the airfoil in either lumped or continuous way.

Figure 3.4: Discretization of the S809 airfoil (blue) into 8 panels (red): Panel
nodes (circles) and collocation points (triangles).

The varieties for distribution of the elementary solutions include: point dis-
tribution (lumped), constant strength panels, linear strength panels and higher
order strength distribution. Geometry of the panels could be either a flat line in
first order description or a curved line for higher order models. Different types
of elementary solution could be combined for describing the fluid flow around
streamlined bodies. Point source, doublet and vortex are the three most com-
monly used ones. For the two-dimensional panel method, linear strength vortex
distribution is used in this work with flat panels for geometry representation.

The velocity induced by a single linear-strength vortex panel with the start
point 1 and end point 2 (Fig. 3.5) is calculated by integrating equations 3.14
and 3.15 over panel’s length:

u(xp, yp) =
1

2π

∫ x2

x1

Γ
yp − y

(xp − x)2 + (yp − y)2
dx
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Figure 3.5: Linear vortex distribution on a generic 2D panel.

=
1

2π

(
[−Γ1atan(

xp − x

zp
)]x2

x1
+

Γ2 − Γ1

l
[
1

2
ypln((xp−x)2+(yp−y)2)−xpatan(

xp − x

zp
)]x2

x1

)
(3.16)

and

v(xp, yp) = − 1

2π

∫ x2

x1

Γ
xp − x

(xp − x)2 + (yp − y)2
dx

= −
1

2π

(
Γ1[

1

2
ln(x

2−2xxp+x
2
p+y

2
p)]

x2
x1

+
Γ2 − Γ1

l
[−

1

2
ln(x

2−2xxp+x
2
p+y

2
p)+zpatan(

xp − x
zp

)−x]
x2
x1

)
(3.17)

where l is the length of the panel. The coordinates in panel’s frame of refer-
ence must be used in the above equations. In panel method the strength of the
elementary solutions (vortex strength at panel nodes in this case) are calculated
in a way that the component of the total velocity vector at the collocation point
of the panels in the normal direction vanishes.

There are two ways to enforce the zero normal flow boundary condition. It can
be enforced either as a Dirichlet boundary condition by setting a constant value
for the potential inside the body or as a Neumann boundary condition which
deals with the derivative of the potential, i.e. the velocity. The latter approach
is used to enforce the zero normal flow boundary condition at the collocation
points. The collocation point of a panel is at the center of the panel (in the case
of Dirichlet boundary condition the collocation points are shifted inside the
body). The velocity at the ith collocation point Pi (the numbering is presented
in Fig. 3.6) is calculated by summing up the contribution of each panel to the
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total velocity at this point with the free stream velocity:

u(Pi) =

N∑
k=1

AikΓk + u∞ (3.18)

1

N+1

i
i-1

i+1

1

N

i

i-1

Figure 3.6: Panel nodes and collocation points numbering, respectively in
black and green.

where N is the number of panels. The coefficients Aik are all gathered in an
(N + 1)× (N + 1) coefficient matrix A. Aik is equal to the velocity induced
at collocation point i, by a unit vortex strength of the kth panel and zero vortex
strength at other panels. To set the total velocity in the normal direction to
the panel to zero, the contribution of panels should cancel out that of the free
stream velocity, for the ith collocation point it reads:

(

N∑
k=1

AikΓk) · ni = −u∞ · ni. (3.19)

Equation 3.19 should hold at every collocation point. Applying this equation to
each collocation point results in a system ofN equations withN+1 unknowns,
which are the vortex strengths at panel nodes 1 to N + 1. One more equation
is needed in order to have a well-posed system of linear equations.

The Kutta condition provides the last equation necessary for solving the sys-
tem. It states that: ”The flow leaves the sharp trailing edge of an airfoil
smoothly and the velocity there is finite” [33]. The Kutta condition implies
that the circulation at the trailing edge should be zero. Two panels from the
suction and the pressure side of the airfoil meet at the trialing edge, so there
are two panel nodes located at the trailing edge. Zero circulation at the trailing
edge is satisfied by enforcing:

ΓTrailing Edge = Γ1 + ΓN+1 = 0. (3.20)

The set of N equation for zero normal flow at the collocation points and the
one equation for enforcing the Kutta condition provide the linear system which
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is solved for the N + 1 vortex strengths. In the post-processing step the ve-
locity at the points of interest, which are the collocation points in particular,
is calculated. The pressure is then calculated from the steady state Bernoulli
equation. Using the Bernoulli equation, the pressure coefficient reads:

cp =
p− p∞

1
2ρ ‖u∞‖

2 = 1− ‖u‖2

‖u∞‖2
(3.21)

3.1.3 Results

The results obtained from the implemented two-dimensional panel code are
presented in this section for the well-known NACA0012 airfoil. The pressure
distribution over the airfoil for the angles of attack of 4 and 8 degrees are shown
in Figs. 3.7 and 3.8 respectively. The reference data are from Mason [34].

Figure 3.7: cp distribution over the NACA0012 airfoil for α = 4.0◦.

Comparison of the two-dimensional lift coefficient with reference panel code
data [34] as well as experimental results is made in Fig. 3.9. In the linear
region of the lift curve both panel codes predict quite the same lift coefficient
as measured in the experiments, but the results deviate form the experimental
results as the angle of attack increases. At α = 10◦, panel code over-predicts
the lift coefficient by about 8%.

The results form the implemented panel code match well with the reference
panel code results from [34]. Overall, there is a good agreement between panel
codes and experimental results for lower angles of attack, but obviously with
further increase of the angle of attack and with the emergence of stall panel
code results cannot be used.
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Figure 3.8: cp distribution over the NACA0012 airfoil for α = 8.0◦.

Figure 3.9: Two-dimensional lift coefficient for the NACA0012 airfoil.

3.2 Three-Dimensional Panel Method

For the three-dimensional implementation of the panel method source terms
are combined with vortex rings. The addition of the source terms improves
the numerical stability in solving the resulting linear system of equation. The
geometry of the wing is described by first-order flat panels. The flow in the
wake of the wing is presented by one row of wake panels starting from the
trailing edge and extending far enough away from the wing (Fig. 3.10).

Each panel on the wing represents a constant source panel. In addition to the
source terms the edges of each panel represent 4 line vortices. The edges of
each wake panel represent 4 line vortices as well. These elementary solutions
and the velocity induced by them are explained in the following:
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u∞

∞

Figure 3.10: Discretization into wing and wake panels.

3.2.1 Quadrilateral Source

A generic panel with constant strength source distribution, σ, is shown in
Fig. 3.11. The potential due to this element at point P , with the coordinates
(xp, yp, zp) in the panel coordinate system, is the integral of the potential due
to point source terms over the entire panel surface:

Φ(x, y, z) =
−σ
4π

∫
S

dS√
(xp − x)2 + (yp − x)2 + z2

p

. (3.22)

(x2,y2,0)

(x1,y1,0)
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Figure 3.11: Quadrilateral source element.

The velocity induced by the element at point P is calculated by differentiating
the potential:

u = (
∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z
). (3.23)
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Calculating the potential and the differentiation is a lengthy process, the for-
mula for the velocity components are not included here to avoid clutter. They
are available in [33].

3.2.2 Line Vortex

Fig. 3.12 shows a line vortex with a constant vortex strength (Γ). The velocity
induced by the line segment (connecting point 1 to point 2) at point P is:

u = K(r1 × r2) (3.24)

where
K =

Γ

4π|r1 × r2|2
(r0 · r1

r1
− r0 · r2

r2

)
. (3.25)

r0 is the vector connecting point 1 to point 2 and r1 and r2 are respectively the
magnitudes of the vectors r1 and r2.

1

2
(x2,y2,z2)

(x1,y1,z1)

P, (xp,yp,zp)

r1

r2

z
y

x

Figure 3.12: Straight line vortex.

A quadrilateral vortex ring consists of 4 connected vortex lines as in Fig. 3.13.
The velocity induced by a vortex ring is the sum of the velocities induced by
its 4 edges.

3.2.3 Zero normal flow boundary condition

The zero normal flow boundary condition (Eqn. 3.5) is enforced at the center
of each wing panel (collocation points) using the Neumann’s approach. The
velocity at each collocation point is equal to the free stream velocity (u∞) plus
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Figure 3.13: Quadrilateral vortex ring with constant strength Γ.

the contributions from wing panels and wake panels. For the ith collocation
point (Pi)the velocity reads:

u(Pi) = u∞ +

N∑
k=1

CikΓk +

Nw∑
k=1

WikΓk +

N∑
k=1

Bikσk (3.26)

where N is the number of wing panels and Nw is the number of wake panels.
The first summation is for the contribution of vortex rings on the wing, the
second one is for the contribution of vortex rings in the wake panels and finally
the third one is for the contribution of source terms on the wing. The value of
the coefficient Cik is equal to the velocity at the ith collocation point induced
by the kth wing panel of unit strength, while all other panels have a vortex
strength of zero. Similar comment could be made about Wik for wake panels
and Bik for source panels on the wing. The velocity component normal to the
ith panel is the dot product of the velocity vector at Pi with the normal vector
of the panel (ni). Performing the dot product and bringing the term due to the
free stream stream velocity to the right hand side, the equation for enforcing
the zero normal flow boundary condition for the collocation point number i
reads:( N∑

k=1

CikΓk +

Nw∑
k=1

WikΓk +

N∑
k=1

Bikσk

)
· ni = −u∞ · ni. (3.27)

This equation holds for all collocation points, resulting in a linear system of N
equations to be solved (The C++ linear algebra library, Armadillo [35], is used
to solve the system). The unknowns in Eqn. 3.27 are the strength of source
terms, panel vortex rings and wake vortex rings. The value of the strength of
source terms is not solved for, but is assigned in advance:

σk = u∞ · nk. (3.28)
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The Kutta condition in 3D is applied by setting the strength of the wake panels
in terms of the neighboring wing panels in a way that the total circulation at
the trailing edge vanishes (Fig. 3.14).

Figure 3.14: Applying the Kutta condition at the trailing edge, from [33].

Three panels intersect at the trailing edge. These are the wake panel and the two
wing panels on the upper and lower surface of the wing. The Kutta condition
is satisfied by setting the difference in the strength of the upper and the lower
panel equal to wake strength:

Γw = Γupper − Γlower. (3.29)

The strength of the vortex ring panels on the wing is calculated by solving the
system of linear equations resulting form enforcing Eqn. 3.27 at each collo-
cation point. As in the two-dimensional case, in the post-processing step the
velocity at the points of interest, which are the collocation points in particular,
and consequently the pressure (from Bernoulli equation) are calculated.

3.2.4 Results

The three-dimensional implementation of the panel code is verified against
XFLR5 [36] results for two examples: a rectangular wing with an aspect ratio
of 6.0 and a delta wing configuration. The obtained results are in good agree-
ment with XFLR5 results in both cases. The two examples are presented in the
following:
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3.2.4.1 Rectangular Wing

The studied NACA0012 rectangular wing is discretized into circa 4000 panels.
The convergence of the obtained lift coefficient with the increase of the number
of panels is shown in Fig. 3.15.

Figure 3.15: Convergence of the lift coefficient.

The comparison between the obtained lift and drag coefficient and XFLR5
results is made in Fig. 3.16.

Figure 3.16: Comparison of the lift and drag coefficient for the rectangular
wing.

Finally, the distribution of pressure coefficient at the mid-span section of the
wing is compared for α = 3◦ and α = 6◦. For both lift and drag coefficient as
well as for the pressure distribution, the obtained results from the implemented
three-dimensional panel code match well with XFLR5 results.
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Figure 3.17: Comparison of pressure distribution, α = 3◦ (left) and α = 6◦

(right).

3.2.4.2 Delta Wing

As the second example a delta wing (Fig. 3.18) with a more complicated ge-
ometry compared with the rectangular wing is studied. The cross section of
the wing is again the NACA0012 airfoil. Its geometrical properties are sum-
marized in table 3.1.

y

Figure 3.18: Isometric, top and front view of the delta wing.

Comparison of the lift and drag coefficients are made in Fig. 3.19. The veri-
fication of pressure coefficient distribution is made for two different angles of
attack and at two different spanwise positions which are marked by red lines in
Fig. 3.18 ( 2y

b = 0 and 2y
b = 0.5, where b is the span of the wing). Also for this

example, the compared quantities are in good agreement with XFLR5 results.
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Table 3.1: Geometric properties of the delta wing

span 6m
root chord 2m
taper ratio 0.6
sweep angle 20◦

dihedral angle 3◦

Figure 3.19: Comparison of the lift and drag coefficient for the delta wing.

Figure 3.20: Pressure coefficient comparison at y
b = 0 (left) and y

b = 0.5
(right) for α = 2◦.

3.3 Unsteady Panel Method

So far the steady state implementation of the panel method has been explained.
The unsteady implementation is based on the steady state code, however some
modifications are necessary for the unsteady version. The three most important
ones are: kinematic description of wing’s motion, unsteady Bernoulli equation
and wake roll-up:
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Figure 3.21: Pressure coefficient comparison at y
b = 0 (left) and y

b = 0.5
(right) for α = 6◦.

3.3.1 Kinematics

In case of a moving wing (translation or rotation) or a stationary wing with
vibrating surface, as in the case of the membrane wing, deflection of the wing
influences the zero normal flow boundary condition. Kinematic description of
the wing’s motion is necessary for enforcing the zero normal flow boundary
condition for a moving wing. Consider the coordinate system xyz attached
to the wing and the inertial reference frame XY Z as in Fig. 3.22. Velocity
of the wing undergoing translation and rotation for an observer in the inertial
reference frame is:

u(r) = U0 + Ω× r (3.30)

where U0 is the velocity of translation and Ω is the rotation rate:

Ω = (p, q, r) (3.31)

with p, q and r being respectively rotation rate about x, y and z axis. If there is
also motion relative to the body attached coordinate system like deflection of
a flap or deformation of the flexible wing surface for the membrane wing, the
relative velocity (urel) should also be added to the total velocity of the wing:

u(r) = U0 + urel + Ω× r. (3.32)

Taking the wing motion into account the zero normal flow boundary condition
for unsteady flow reads:

(∇Φ−U0 − urel −Ω× r) · n = 0. (3.33)
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Figure 3.22: Body attached frame (xyz) and inertial reference frame (XY Z).

3.3.2 Unsteady Bernoulli equation

Without change of the elevation level between the reference point and the point
of interest (where pressure should be calculated for, in this case the collocation
points) the steady state Bernoulli equation is:

pref + ρ
‖uref‖2

2
= p+ ρ

‖u‖2

2
. (3.34)

For the case of unsteady flow there is an additional term in the equation due to
change of the potential with time. The unsteady Bernoulli equation reads:

pref + ρ
‖uref‖2

2
= p+ ρ

‖u‖2

2
+
∂Φ

∂t
. (3.35)

Taking the undisturbed flow as the reference point, the unsteady panel method
solver calculates the pressure coefficient from Eqn. 3.35:

cp =
p− p∞

1
2ρ ‖u∞‖

2 = 1− ‖u‖2

‖u∞‖2
− 2

‖u∞‖2
∂Φ

∂t
(3.36)

3.3.3 Wake roll-up

The unsteady panel method follows a time marching approach. At each time
step, wake panels are shed from the trailing edge of the wing (Fig. 3.23) and
are convected by the flow. The velocity at the vertices of each wake panel is
calculated using the same routine, used to calculate velocity at the collocation
points. Knowing the velocity and the time step size, displacement of the ver-
tices is calculated and the position of the vertices is updated accordingly. The
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Wake panels

Wing panels

Figure 3.23: Shedding of wake panels from the trailing edge.

algorithm of the unsteady vortex panel method is presented in Algorithm 3.

Discretize the wing into panels;
for each time step do

Calculate the influence coefficient matrices (C, W and B);
Calculate the instantaneous RHS vector;
Solve the linear system;
Calculate the velocity and pressure distribution;
Wake rollup;

end

Algorithm 3: The unsteady panel method algorithm.

3.3.4 Results

The unsteady implementation of the panel method is tested for solving three
transient cases:

3.3.4.1 Sudden acceleration of a rectangular wing

This example deals with flow around a rectangular wing (AR = 4) initially at
rest at t = 0 swhich is set into movement at the velocity of 10m/s and with an
angle of attack of 5◦. The wing is discretized into 80 panels in the chordwise
direction and 40 panels in the spanwise direction. Time step length is 0.01 s.
Fig. 3.24 shows the change in lift coefficient over time. Since the wing’s
velocity is not a function of time the lift coefficient converges to the steady
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state solution. The change in the pressure distribution over wing’s surface for
the mid-span section is shown in Fig. 3.25. At the beginning of the simulation
wake panels are shed at the trailing edge which are convected downstream. The
pressure near the trailing edge during the initial time steps is highly influenced
by the wake panels which are shed with relatively high circulations. As these
initially shed panels are convected downstream and new panels with smaller
circulation are shed, the pressure at the pressure side progressively increases
and consequently increases the lift. The course of lift coefficient over time
could be seen in Fig. 3.24 after about 0.5 seconds the lift coefficient reaches its
steady state value. Fig. 3.25 show the convergence of pressure distribution at
the mid-span section of the wing over time. Development of the wake panels in
the downstream region of the flow and the tip vortices could be seen in figure
3.26. The cross section of the wake panels is shown at 4 different section,
which are respectively 4, 8, 12 and 16 meters away from the trailing edge.
In order to precisely capture the structure of the tip vortices, mesh refinement
in the spanwise direction near the wingtips is necessary. The refinement is
realized by sine discretization in both chordwise and spanwise directions.

Figure 3.24: Convergence of transient solution to steady state solution from
[37] over time.

3.3.4.2 Pitching oscillation of a rectangular wing

This example deals with the same wing geometry as in the previous example.
The very same discretization in space and time are being used as well. But
rather than translation, the wing undergoes pitch oscillations about its quarter-
chord. The change of the pitch angle (in degrees) in time is governed by:

θp = 5sin(
2π

T
t) (3.37)
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Figure 3.25: Convergence of the pressure distribution in the mid-section of the
wing over time.

where T is time period of the oscillations. The development of vortices in the
wake of the wing is shown in Fig. 3.27. The figure presents a slice of wake
panels made at the mid-span section of the wing.

The influence of the time period of the oscillations on the lift coefficient could
be seen in Fig. 3.28. Four different time periods are studied. The maximum
angle of attack occurring during pitch oscillations is 5.0◦. The steady-state lift
coefficient for α = ±5◦ is demonstrated in Fig. 3.28 by horizontal lines. As
the period of the pitching oscillations increases the wing passes the point where



64 Chapter 3 Vortex Panel Method
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Figure 3.26: Developement of wake panels in the downstream of the flow.

≈T|u∞|

Figure 3.27: Development of vortices in the wake of an oscillating wing.

the angle of attack becomes ±5◦ more slowly and consequently the maximum
lift coefficient becomes closer to the steady-state solution at α = ±5◦.

3.3.4.3 NREL Phase VI turbine

Panel method could be used as a ”medium fidelity” approach to bridge the gap
between BEM and computationally expensive CFD simulations. Analysis of
the NASA-Ames Phase VI wind turbine using the unsteady panel method is
presented in this section. General information about the turbine is available in
Appendix B. Fig. 3.29 shows the total thrust force applied on each blade over
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±

Figure 3.28: Change of the lift coefficient during pitching oscillations for
different periods of the oscillations.

time. Wind shear is taken into account using logarithmic velocity profile (Eqn.
2.105) for a roughness length of z0 = 0.01m. The Period of the oscillations is
0.84 seconds, which correspond to rotor’s rotational velocity of 72 RPM.

Figure 3.29: Total thrust applied to individual blades (UHub = 8m/s,
θp = 5◦).

Comparison between the thrust force obtained from panel method and the un-
steady BEM method is made in Fig. 3.30. It can be seen that, the panel method
over-predicts the thrust force. For the wind velocity of 6m/s it over-predicts
the thrust force by about 4 % compared with BEM. This overprediction in-
creases with the increase in wind speed upto 12 %. The same trend is also re-
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ported in [38]. The reason for the over-prediction is the fact that panel method
neglects the viscous effects and consequently the lift force increases linearly
with angle of attack (Fig. 3.9). Overprediction of the lift force leads to higher
thrust force computed by the panel method. On the other hand, in the absence
of pitch control mechanism for the blade, the local angle of attack increases
with increase in wind speed (Fig. 2.16). This causes larger over-estimation
of the lift force by the panel method and, as a consequence, larger difference
between panel method results and BEM result with the increase of wind speed.

Figure 3.30: Mean thrust force applied on a single blade obtained from panel
method and unsteady BEM (θp = 5◦).

The difference in the calculated thrust force can be understood better by exam-
ining the pressure distribution obtained form the panel method. The compar-
ison between panel method’s results and experimental as well as CFD results
[39] is made in Figs. 3.31 and 3.32. The pitch angle is θp = 3◦ for both cases
and wind shear is not taken into account. In general, there is a very good agree-
ment between panel code results and the experimental and CFD results. Two
observation could be made from the figures: First of all, for both wind speeds,
panel code results match better with the reference results as we move towards
the tip of the blade. Furthermore, the agreement between the results is better
of the case with lower wind speed ( higher tip speed ratio). Both observation
could be attributed to the increase of local angle of attack as wind speed in-
creases (for stall-control wind turbines) or as we move toward the root of the
blade. The presented results are obtained from discretization of each blade into
100 panels in the chordwise direction and 30 panels in the spanwise. A time
step size of ∆t = 0.01 s is used. With this setup, using a normal PC (3.4 GHz,
8 M Cache, 15 GB RAM) the serial panel code simulates 6 seconds in a time
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frame which is in order of hours, while CFD computations (depending on the
degree of refinement and available computational resources) take days if not
weeks.

(a) r/R = 0.3 (b) r/R = 0.47

(c) r/R = 0.63 (d) r/R = 0.8

(e) r/R = 0.95

Figure 3.31: Pressure distribution at different blade sections for U = 7m/s.

The structure of the wake panels as they are shed from the trailing edge and
convected downstream of the flow is presented in Fig. 3.33. Using cosine
discretization at the tip of the blade, the method is also able to capture tip
vortices (Fig. 3.34).
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(a) r/R = 0.3 (b) r/R = 0.47

(c) r/R = 0.63 (d) r/R = 0.8

(e) r/R = 0.95

Figure 3.32: Pressure distribution at different blade sections for U = 10m/s.
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Figure 3.33: Wake panels shed at the trailing edge of the two blades.

Figure 3.34: Wake panels shed at the trailing edge of the two blades.
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4Fluid Dynamics

In this chapter, the fundamental equations of fluid mechanics and computa-
tional fluid dynamics (CFD) are presented briefly together with a very basic
introduction to the numerical solution of the Navier-Stokes equation using the
finite volume method. The chapter concludes with an overview of turbulence
modeling and details of the two models which are used in the simulations pre-
sented in the coming chapters. More details about the presented content could
be found in fluid mechanics textbooks like the books by Fox [40] or White
[41].

4.1 The governing equations

The governing equations of fluid flow are the mathematical expressions of the
conservation laws in physics. They are: conservation of mass, momentum and
energy.

4.1.1 Mass conservation

Conservation of mass states that the total mass of the studied fluid system is
conserved, i.e. the rate of increase or decrease of mass in the system is equal
to the net rate of mass flow into or out of the system. Taking the fluid element
with the dimensions δx, δy and δz (shown in Fig. 4.1) into account, the change
of mass within the element is:

∂

∂t
(ρδxδyδz) (4.1)

71
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Figure 4.1: Mass flows through the surfaces of a generic fluid element, from
[42].

and with u = (u, v, w) designating the velocity vector at the center of the
element, the net mass flow through element faces normal to the x axis is:

(ρu− 1

2

∂(ρu)

∂x
δx)δy δz − (ρu+

1

2

∂(ρu)

∂x
δx)δy δz. (4.2)

Similarly the net mass flow in the y and z direction could also be calculated.
Setting the net change of mass in the fluid element equal to the net mass flow
through the element’s faces yields the conservation of mass (continuity) equa-
tion:

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (4.3)

for steady, incompressible flows the continuity equation is further simplified
to:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (4.4)

.

4.1.2 Momentum conservation

Conservation of the linear momentum is simply Newton’s second law of mo-
tion applied to a fluid element. It states that the rate of increase of the momen-
tum for the fluid element is equal to the sum of forces acting on it. The forces
acting on a fluid element can be categorized into body forces, like the gravita-
tional force or electromagnetic force and surface forces, like the pressure and
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viscous forces. In the sequel a more detailed look is taken at the conservation
of linear momentum in x direction.

The rate of change of momentum per unit volume in x direction is:

D (ρu(t, x, y, z))

D t
=
∂(ρu)

∂t
+ u

∂(ρu)

∂x
+ v

∂(ρu)

∂y
+ w

∂(ρu)

∂z
(4.5)

which is called the material or total derivative. In vector notation it reads:

D (ρu(t, x, y, z))

D t
=
∂(ρu)

∂t
+ div(ρ uu). (4.6)

Surface forces acting on a generic fluid element are shown in Fig. 4.2.

Figure 4.2: Pressure and shear forces acting on a generic fluid element, from
[42].

The sum of surface forces acting on the element in the x direction is:[
(−∂p
∂x

+
∂τxx
∂x

) +
∂τyx
∂y

+
∂τzx
∂z

]
δxδyδz (4.7)

where the first term in the bracket is the sum of forces acting on the left and
right faces. The second term corresponds to the forces acting on the front and
back sides and finally the third term corresponds to the force resultant acting on
the top and bottom faces of the element. The shear components for Newtonian
fluids in incompressible flow is:

τxx = µ
(∂u
∂x

+
∂u

∂x

)
, τyx = µ

(∂v
∂x

+
∂u

∂y

)
, τzx = µ

(∂w
∂x

+
∂u

∂z

)
(4.8)
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Inserting the shear components form Eqn. 4.8 into Eqn. 4.7 and setting the sum
of the forces equal to the rate of change of momentum in x direction (Eqn. 4.6)
yields the equation for the conservation of linear momentum in the x direction:

ρ
Du

Dt
= −∂p

∂x
+ µ

(∂2u

∂x2
+

∂2v

∂y2
+
∂2w

∂z2

)
+ ρgx (4.9)

gx is the gravitational acceleration in the x direction. Conservation of momen-
tum in y and z direction could be derived similarly. Together they are called
Navier-Stokes equations. The Navier-Stokes equations in vector notation for
incompressible flow read:

∂u

∂t
+ div(uu) = −1

ρ

∂p

∂x
+ div

(
ν grad(u)

)
+ gx

∂v

∂t
+ div(v u) = −1

ρ

∂p

∂y
+ div

(
ν grad(v)

)
+ gy

∂w

∂t
+ div(w u) = −1

ρ

∂p

∂z
+ div

(
ν grad(w)

)
+ gz

(4.10)

The Navier-Stokes equations alongside with the continuity equation are the
fundamental governing equations of fluid flow. In a CFD code the discretized
form of these equations (either using the finite volume or finite element method)
is solved via numerical techniques which are discussed in the next sections.

4.2 Numerical solution of the Navier-Stokes equations

The CFD results presented in this work are obtained using the open-source
CFD software, OpenFOAM, which is a finite volume based fluid solver. In
the finite volume method, the integral form of the governing equations is used.
After discretizing the fluid domain into a number of elements (finite volumes)
the integral form of the equations is used to enforce conservation of mass and
momentum for each element. The discretization process can be divided into
two parts:

1. Domain discretization: discretizing the computational domain into non-
overlapping elements. The outcome of this step is the computational
mesh for solving the fluid flow problem.
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2. Equation discretization: deriving the algebraic equivalent of the gov-
erning equations which are originally in form of partial differential equa-
tions. The outcome of this step is a system of algebraic equations which
presents the conservation laws applied to each element in the mesh.

In the following, discretization of the momentum equation in the x direction
is discussed in more detail. Discretization starts from the integral form of the
conservation of linear momentum in x direction (Eqn. 4.10) which reads:∫
CV

∂u

∂t
dV +

∫
CV

div(uu)dV =

∫
CV

−1

ρ

∂p

∂x
dV +

∫
CV

div
(
ν grad(u)

)
dV +

∫
CV

gxdV.

(4.11)
The volume integrals for the convective and diffusion terms are then converted
to surface integrals using the convergence theorem. The convergence theorem
states: ∫

CV

div(u) dV =

∫
A

n · u dA (4.12)

the integration is then done over all surfaces of the element. n is the normal
vector of the element faces. Applying the convergence theorem to Eqn. 4.11
yields:

∂

∂t

( ∫
CV

u dV
)

+

∫
A

n ·uu dA =

∫
CV

−1

ρ

∂p

∂x
dV +

∫
A

n · (ν grad(u))dA+

∫
CV

gxdV.

(4.13)

The first term on the left hand side of the equation is the rate of change of the
momentum in the x direction within the control volume and the second term
shows momentum flux through element faces. The terms on the right hand side
correspond respectively to the pressure, viscous and gravitational force acting
on the control volume.

The volume integrals are calculated using Gauss quadrature. In a staggered grid
velocities are stored at the face centers which makes the calculation of the flux
over element faces easier. Calculating the diffusion term involves estimation
of the velocity gradient at the face center. Different interpolation techniques
could be used for this purpose. More details on implementation of the finite
volume method and the methods for estimation of the involved terms in the
discretized equation could be found in [43].

Two different approaches could be used for solving the Navier-Stokes equation:
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• Simultaneous approach: In the simultaneous approach the system of
equations is solved simultaneously for all the unknowns. It is robuster
than the staggered (iterative) approach, but demands more memory and
computational power [44].

• Staggered approach: In the staggered approach the equations are solved
sequentially. The coupling between the pressure and velocity field is en-
forced iteratively. The solver assumes an initial pressure distribution to
solve the velocity field. The assumed pressure is then corrected by the
obtained solution of the velocity field. The procedure is iterated until
convergence is reached. This approach is also called pressure correc-
tion method, since the assumed pressure is corrected during the iter-
ations. OpenFOAM uses the staggered approach for solving the fluid
problem. Common algorithms using the staggered approach include the
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algo-
rithm by Patankar and Spalding [45] or the PISO (Pressure Implicit with
Splitting of Operators) algorithm [46].

4.3 Turbulence modeling

Fluid flow can be categorized into two regimes: laminar and turbulent flows.
Laminar flow, or streamline flow, is the type of flow where fluid particles move
in parallel layers with no disruption between the layers [47], while in the case
of turbulent flow the streamlines do not have any layered pattern and chaotic
changes occur in the pressure and velocity field.

Random, three-dimensional fluctuations exist in all the three components of
the velocity vector in turbulent flow. The velocity vector for turbulent flow can
be decomposed into a mean component and a fluctuating component:

u = U + u′. (4.14)

The fluctuating part of the velocity vector (u′) is completely irregular or in
other words, random. Because of the randomness of velocity fluctuations it
is impossible to use a deterministic approach for modeling of turbulent flows,
statistical methods are used to describe turbulent flows instead [47]. Diffusivity
is generally very high in turbulent flows which increases the rate of momentum
exchange between adjacent fluid particles. One other characteristic of turbulent
flows is their large Reynolds number. The Reynolds number describes the ratio
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of inertial forces to viscous forces and is defined as:

Re =
uL

µ
, (4.15)

where µ is the kinematic viscosity and L is a characteristic length. For pipe
flows the diameter of the pipe is used as the characteristic length, while for
flow over airfoils the chord length is used to calculate the Reynolds number.
The large Reynolds number in the case of turbulent flow means that inertia
forces dominate viscous forces, while laminar flows are characterized by higher
diffusion of momentum due to viscous effects.

Eddies of different length scales are present in turbulent flows. Based on
eddy’s size, they are categorized into the energy-containing range, the iner-
tial subrange and the dissipation range. They are illustrated in Fig. 4.3. The
Kolmogorov length scale and the length scale of the largest existing eddies is
designated respectively by the η and L0. LDI is the demarcation length scale
between dissipation range and inertial subrange, while LEI is used for the de-
marcation length scale between inertial subrange and the energy-containing
rage and L designates the characteristic length of the flow.

LL0LEILDI

Universal equilibrium range

Inertial subrangeDissipation range

Energy-containing

range

Figure 4.3: Existing lengthscales and ranges in turbulent flow, from [48].

The characteristics of the existing eddies in turbulent flows are described using
the following three hypotheses (taken directly from [48]):

• Kolmogorovs hypothesis of local isotropy. At sufficiently high Reynolds
number, the small-scale turbulent motions (l << L0) are statistically
isotropic.

• Kolmogorovs first similarity hypothesis. In every turbulent flow at suf-
ficiently high Reynolds number, the statistics of the small-scale motions
(l < LEI ) have a universal form that is uniquely determined by ν and ε.
(ν is the kinematic viscosity of the fluid and ε is the rate of dissipation
of turbulent kinetic energy.)
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• Kolmogorovs second similarity hypothesis. In every turbulent flow at
sufficiently high Reynolds number, the statistics of the motions of scale
l in the range (η << l << L0) have a universal form that is uniquely
determined by ε, independent of ν.

More detailed explanation of the three Kolmogrov hypotheses and the Kol-
mogorov’s velocity, time and length scales could be found in [48].

The ratio of the smallest eddies to the largest eddies available in turbulent flow
decreases with increase of the Reynolds number:

η

L0
≈ Re− 3

4 . (4.16)

For the exact solution of the flow problem involving turbulence, even the small-
est existing eddies should be resolved. It requires a very fine spatial discetiza-
tion, specially for high Reynolds numbers. Time discretizations also needs to
be small enough to resolve the life time of the very small eddies. Based on
the complexity level of modeling the existing eddies in a turbulent flow, the
methods of turbulent flow calculation are grouped into the following three cat-
egories:

• Direct Numerical Simulation (DNS): DNS is about computing all avail-
able scales of the motion in the flow, from the largest scales to the small-
est turbulent velocity fluctuations. In DNS, instantaneous continuity and
Navier-Stokes equations are solved on a grid which is fine enough to re-
solve the Kolmogorov scales where energy is dissipated in form of heat
and using a time step small enough to resolve the very fast turbulence
fluctuations of the small eddies. DNS is computationally a very expen-
sive approach and,as a result, is not common practice for industrial flow
computation [42].

• Large Eddy Simulation (LES): In LES, the larger turbulent motions
are directly computed, while the influence of the smaller eddies is not
directly computed, but modeled. It involves a filtering operation to sep-
arate larger and smaller eddies. A cutoff length is chosen in LES with
the goal of resolving only eddies larger than the selected cutoff length.
The interaction between the smaller eddies, which are not resolved, and
the computed eddies is modeled using a so-called sub-grid-scale stress
(SGS) models. LES solves the filtered equations together with a SGS
model for the unresolved eddies.



4.3 Turbulence modeling 79

• Reynolds-Averaged Navier-Stokes equations (RANS): Rather than solv-
ing the flow equations for the instantaneous values, in RANS the focus
is on the mean flow and how it is affected by turbulence. Time-averaged
Navies-Stokes equations are solved in RANS. New terms do appear in
the time-averaged equations, which are called Reynolds stresses. These
extra terms should be modeled via turbulence models. Spalart-Allmaras
and k − ω SST are two of the models used in RANS, which are used
in the simulations presented in sections 6.1.3, 7.2.1, 7.2.2 and 7.4. They
are explained in more detail in the upcoming sections.

4.3.1 Spalart-Allmaras

The model is proposed by Spalart and Allmaras [49] and is mainly developed
for aerodynamic applications. It has proved to provide reliable results for aero-
dynamic flows [50], but because of some limitations, the model can not serve
as a general purpose turbulence model. It is for example unable to correctly
model the decay of eddy viscosity in isotropic turbulence [48].

The Spalart-Allmaras model uses a single equation for the transport of kine-
matic eddy viscosity parameter (ν̃). The dynamic eddy viscosity is then calcu-
lated from ν̃:

µt = ρν̃fv1 (4.17)

where fv1 is the wall-damping functions. For high Reynolds numbers, fv1

tend to unity and the kinematic eddy viscosity (νt) is becomes equal to the
eddy viscosity parameter (ν̃). The transport equation for ν̃ is:

∂ρν̃

∂t
+div(ρν̃U) =

1

σv
div
[
(µ+ρν̃)grad(ν̃)+Cb2 ρ

∂ν̃

∂xk

∂ν̃

∂xk

]
+Cb1ρν̃Ω̃−Cw1ρ

( ν̃
κy

)2
fw

(4.18)
where Ω̃ is a combination of the mean vorticity (Ω) and ν̃:

Ω̃ = Ω +
ν̃

(κy)2
fv2. (4.19)

In the above equations y is the distance to the solid wall, fw and fv2 are wall-
damping functions and κ, σv , Cb1 and Cb2 are model constants whose value
could be found in [42]. The boundary conditions for ν̃ are:

ν̃wall = 0 (4.20)

and
ν̃farfield = 3ν∞ to 5ν∞. (4.21)
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4.3.2 k− ω SST

The k − ω SST model is a two-equation turbulence model which solves one
equation for the turbulent kinetic energy (k) and one for the specific dissipation
rate (ω). It was proposed in 1992 by Menter [51] with the goal of having the
advantages of both the k − ε model and the k − ω model. The k − ω SST
model uses the k − ω model for near wall regions and the k − ε model for
regions away from the wall. Switching between the two models is realized via
blending functions. The blending functions are chosen in a way that:

1. They are zero at the wall.

2. They tend to unity towards the far field.

3. They provide a smooth transition at the distance half way between the
wall and the far field boundary [42].

The transport equation for k and ω at high Reynolds number flows read:

∂ρk

∂t
+ div(ρkU) = div

[
(µ+

µt
σk

)grad(k)
]

+ Pk − β∗ρkω (4.22)

where Pk is the rate of production of turbulent kinetic energy, and

∂ρω

∂t
+ div(ρωU) = div

[
(µ+

µt
σω,1

)grad(ω)
]

+ γ2

[
2ρSij · Sij −

2

3
ρω
∂Ui
∂xj

δij

]
−β2ρω

2 + 2
ρ

ωσω,2

∂k

∂xk

∂ω

∂xk

.

(4.23)

σk, σω,1, σω,2, γ2, β1, β2 and β∗ are all model constants. The boundary con-
ditions for k and ω are [52]:

kfarfield =
10−5U2

∞
ReL

to
0.1U2

∞
ReL

, (4.24)

kwall = 0, (4.25)

ωfarfield =
U∞
L

to 10
U∞
L
, (4.26)
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and
ωwall = 10

6ν

β1(∆d1)2
. (4.27)

where ∆d1 is the height of the first cell layer.
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5Structural Mechanics

The topic of this chapter is structural analysis of membrane structures and
Fluid-Structure Interaction (FSI). Analysis of membrane structures is done in
two steps. First, the equilibrium shape of the membrane, given the pre-stress
and support condition, needs to be calculated. This step is taken care of in form
finding analysis. Form finding analysis is followed by static or dynamic analy-
sis of the structure, where the response of the structure to the applied external
loading is analyzed.

The chapter starts with the theory behind form finding analysis of membrane
structures, followed by finite element formulation of the membrane element.
Finally, an overview of the general approach in FSI analysis and different cou-
pling methods is presented.

5.1 Form finding of membrane structures

Form finding analysis is inspired among others by the pioneering work of the
late German architect Frei Otto to find the equilibrium shape of cable struc-
tures. Different approaches are available for form finding analysis ranging
from dynamic relaxation [53] to force density method [54] and the updated
reference strategy (URS) [55]. The goal of form finding analysis of membrane
structures is to find the equilibrium shape of the membrane confined to a given
boundary, given the prescribed pre-stresses in the membranes and supporting
cables. The position of each point on the membrane is described by the surface
coordinates θ1 and θ2:

x = x(θ1, θ2). (5.1)

83
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Derivatives of the position vector with respect to the spatial coordinates form
the covariant base vectors:

gi =
∂x

∂θi
i = 1, 2. (5.2)

Form finding analysis starts from a reference configuration (Fig. 5.1) where
applied pre-stresses are not necessarily in equilibrium. In an iterative solution
procedure, the initial configuration converges to the equilibrium shape. The

Figure 5.1: Surface description of membrane element.

displacement of each point on the membrane is:

u(θ1, θ2) = x(θ1, θ2)−X(θ1, θ2) (5.3)

where X is the position vector in the reference configuration. The transforma-
tion from the reference configuration to the actual configuration is done via the
deformation gradient:

F =
dx

dX
. (5.4)

Using the principle of virtual work the governing equation for the equilibrium
state of the membrane could be derived:

δw = ts

∫
a

σs :
∂(δu)

∂x
da = ts

∫
a

σs : δu,xda = 0, (5.5)

In the above equation, ts is the membrane thickness. The integral is calculated
over the actual area and δu,x can be expressed in terms of the deformation
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gradient:

δu,x =
∂(δu)

∂x
=
∂(δx)

∂X
· ∂X

∂x
= δ(

∂x

∂X
) · F−1 = δF · F−1. (5.6)

Inserting Eqn. 5.6 into Eqn. 5.5 and doing some rearrangements, the equation
for the virtual work reads:

δw = ts

∫
A

σs : (δF ·F−1)det(F)dA = ts

∫
A

det(F)(σs ·F−T ) : δFdA = 0.

(5.7)
In form finding, the discretized form of Eqn. 5.7 is solved using the finite
element method. Nodal displacements of the discretized nodes are arranged in
a column vector b. Variation of the deformation gradient then reads:

δF =
∂F

∂br
δbr r = 1, ..., ndof (5.8)

where br is the rth component of b. Inserting variation of deformation gradient
from Eqn. 5.8 into Eqn. 5.7 yields:

δw = δbrts

∫
A

det(F)(σs · F−T ) :
∂F

∂br
dA = 0 (5.9)

and finally the non-linear discretized equation is derived which holds for each
degree of freedom:

∂w
∂br

= ts

∫
A

det(F)(σs · F−T ) :
∂F

∂br
dA = 0. (5.10)

In the updated reference strategy the linearized form of Eqn. 5.10 is solved
iteratively to find the equilibrium shape.

5.1.1 Membrane element

Linearization of Eqn. 5.10 for a membrane element reads:

LIN
( ∂w
∂br

)
= ts

∫
A

det(F)(σs·F−T ) :
∂F

∂br
dA+∆bsts

∫
A

∂

∂bs

(
det(F)(σs·F−T ) :

∂F

∂br

)
dA = 0.

(5.11)

Using standard finite element method notation, the equation can be written as:

R + K∆bs = 0 (5.12)
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where R is the out of balance force vector and K is the tangential stiffness
matrix. The base vectors gi depend linearly on the degrees of freedom br.
Consequently, the second derivative of the deformation gradient vanishes and
the components of the stiffness matrix and the out of balance force vector are
simplified to:

Krs = ts

∫
A

(
det(F)σαβs (gα,r ·gβ,s)+(det(F)σαβ),s(gα,r ·gβ)

)
dA, (5.13)

and
Rr = ts

∫
A

det(Fσαβs )(gα,r · gβ)dA. (5.14)

5.1.2 Cable element

In order to derive the stiffness matrix and the out of balance force for the cable
element, Eqn. 5.7 is first of all reduced to one dimension.

δw = Ac

∫
S

det(F)(σc · F−T ) : δFdA = 0. (5.15)

Only one base vector, g1, is needed for the kinematic description of cable el-
ement which is tangential to the cable. The determinant of the deformation
gradient in this case reduces to det(F) = ||g1||/||G1||. Inserting it into Eqn.
5.15, yields the equation of virtual work:

δw = Ac

∫
S

||g1||
||G1||

(σcg
11g1⊗g1·g1⊗G1) : δg1⊗G1dS = Acσc

∫
S

||g1||
||G1||

g11(δg1·g1)dS.

(5.16)
Discretizing the cable by 2-node elements and performing the integration, the
discretized form of Eqn. 5.16 reads:

δw = σcAc
l

L

1

l2
(g1,r · g1)Lδbr =

σcAc
l

(g1,r · g1)δbr (5.17)

where L is the initial length and l is the actual length of the element. With the
same procedure, as for the membrane element, the stiffness matrix and the out
of balance force vector for the cable element are calculated by linearizing Eqn.
5.17:

Krs =
σcAc
l

[
(g1,r · g1,s)−

1

l2
(g1,r · g1)(g1,s · g1)

]
, (5.18)

and
Rr =

σcAc
l

(g1,r · g1). (5.19)
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An example of form finding analysis is presented in Fig. 5.2. The refer-
ence configuration of the 4 point tent example consists of four flat membrane
patches. They are connected to four edge cables at the boundaries and are fixed
at four support points. After applying pre-stresses to the 4 membranes and the
supporting edge cables, the structure evolves from the initially flat membranes
to a double curved surface where internal membrane pre-stresses are in equi-
librium with the forces from the 4 edge cables.

Figure 5.2: Form finding analysis of a 4 point tent. Left: initial state. Right:
equilibrium state.

As mentioned before, the goal of form finding analysis is to calculate the ge-
ometry for which internal forces form membrane and edge cables are in equi-
librium. It should be noted that the result of a form finding analysis depends on
the topology of the structure and its support condition (position of supporting
edge cables and pre-defined fixed supports), pre-stresses, membrane thickness
and cable cross section. Parameters like the elastic modulus, Poisson’s ratio
and density are not influencing form finding results since they do not show up
in calculating the forces resulting from the prescribed stress distribution.

5.2 Finite element formulation of the membrane element

For the analysis of the membrane blade, the upper and the lower surface of the
blade are discretized into quadrilateral membrane elements. Finite element for-
mulation of the quadrilateral membrane element using bilinear shape functions
is presented in this section. Similar to the form finding analysis the formu-
lation uses a reference configuration, which corresponds to the undeformed
membrane, and the actual configuration of the deformed structure (Fig. 5.3).

The base vectors for the reference configuration and for the actual configuration
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X1, x1

X2, x2

X
3, x3

x( 1, 2)
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Figure 5.3: Reference and actual configuration of the membrane element.

are calculated by taking the derivative of the corresponding position vector:

Gi =
∂X(θ1, θ2)

∂θi
i = 1, 2

G3 = G1 ×G2 (5.20)

and

gi =
∂x(θ1, θ2)

∂θi
i = 1, 2

g3 = g1 × g2. (5.21)

Membrane’s displacement is easily calculated as the difference between the
position vector in the deformed configuration and in the reference configuration
(Eqn. 5.3). Using the base vectors, the components of Green-Lagrange strain
tensor are:

Eij =
1

2
(gi · gj −Gi ·Gj) (5.22)

For calculation of the element stiffness matrix, the first derivative and the sec-
ond derivative of the Green-Lagrange strain tensor with respect to the degrees
of freedom are needed. These derivatives are:

∂Emn
∂ui

=
1

2

(∂gm
∂ui

· gn + gm ·
∂gn
∂ui

)
(5.23)
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and

∂2Emn
∂ui∂uj

=
1

2

( ∂2gm
∂ui∂uj

·gn+
∂gm
∂ui
·∂gn
∂uj

+
∂gm
∂uj
·∂gn
∂ui

+gm·
∂2gn
∂ui∂uj

)
. (5.24)

5.2.1 Discretization

Using the isoparametric approach, the geometry and displacement are both
discretized by the same shape functions which are the bilinear shape functions
in this case:

N1(θ1, θ2) =
1

4
(1− θ1)(1− θ2)

N2(θ1, θ2) =
1

4
(1 + θ1)(1− θ2)

N3(θ1, θ2) =
1

4
(1 + θ1)(1 + θ2)

N4(θ1, θ2) =
1

4
(1− θ1)(1 + θ2)

(5.25)

The geometry of the deformed and undeformed membrane element, as well as
the displacement field, can be described using the shape functions:

X(θ1, θ2) =

4∑
i=1

Ni(θ
1, θ2)Xi

x(θ1, θ2) =

4∑
i=1

Ni(θ
1, θ2)xi

u(θ1, θ2) =

4∑
i=1

Ni(θ
1, θ2)ui

(5.26)

Describing the geometry of the element as a linear combination of shape func-
tions makes the description of the base vectors and also their derivatives in
terms of the shape functions possible. The base vectors can be formulated



90 Chapter 5 Structural Mechanics

based on the derivatives of the shape functions:

Gi =

4∑
i=j

∂Nj
∂θi

Xj for i = 1 : 3

gi =

4∑
i=j

∂Nj
∂θi

xj for i = 1 : 3

(5.27)

and the derivatives of the base vectors read:

∂gm
∂ui

=

4∑
k=1

∂Nk
∂θm

∂xk
∂ui

∂2gm
∂ui∂uj

=

4∑
k=1

∂Nk
∂θm

∂2xk
∂ui∂uj

(5.28)

5.2.2 Principle of virtual work

The principal of virtual work states that for a system in equilibrium the sum of
the work done by internal and external forces is zero as the system undergoes
a virtual displacement of δu:

δW = δWint + δWext = 0 (5.29)

The internal work is:

δWint = −ts
∫
A

S : δEdA = −ts
∫
A

S11

S22

S12

 ·
δE11

δE22

δE12

 dA. (5.30)

Where S is the second Piola-Kirchhoff stress tensor, which can be decomposed
into the elastic stress and the applied pre-stress to the membrane:

S = Sel + Spre = C : E + Spre. (5.31)

C in Eqn. 5.31 is the elasticity tensor. The virtual work done by the external
force is:

δWext = λ

∫
A

f · δudA (5.32)
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where f is the loading on the membrane element and λ is the load factor.

For nonlinear static analysis of the membrane problem in CARAT++, the lin-
earized form of Eqn. 5.29 is solved iteratively using the Newton-Raphson
method. The linearized form of Eqn. 5.29 after inserting the corresponding
terms for internal and external work is:

∂W

∂ui
δui = −ts

∫
A

(
C : E + Spre

)
:
∂E

∂ui
δuidA+ λ

∫
A

f · ∂u

∂ui
δuidA = 0.

(5.33)
Since the principal of virtual work is valid for any virtual displacement, equa-
tion 5.33 could be simplified by dividing it by the virtual displacement δui:

Ri =
∂W

∂ui
= −ts

∫
A

(
C : E + Spre

)
:
∂E

∂ui
dA+ λ

∫
A

f · ∂u

∂ui
dA = 0 (5.34)

whereRi is the so-called out of balance force corresponding to the ith degree of
freedom. The out of balance vector of all the degrees of freedom are collected
in the residual vector (R). Convergence criterion for the nonlinear solution of
the membrane problem is that the residual vector to converges to zero. This
could be realized using predictor-corrector methods like displacement control,
force control or arc length control [56].

5.3 Fluid-Structure Interaction

Fluid-Structure Interaction studies the interaction between a solid body and its
surrounding fluid. The interface between the fluid field (ΩF ) and the structure
field (ΩS) is designated by ΓI . The load from the fluid field is coupled with the
displacement from the structure field. Two coupling conditions are enforced at
the interface:

Kinematic continuity condition

Enforcing this constraint ensures that the fluid and structure interfaces lie on
each other during the simulation. It is satisfied if the displacement at the fluid
interface is the same as the displacement at the solid interface:

dFΓI (t) = dSΓI (t). (5.35)
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Dynamic continuity condition

Dynamic continuity condition is about mapping the correct force vector from
the fluid interface to the solid interface. It implies:

fSΓI (t) = fFΓI (t). (5.36)

There are two classes of methods for tackling FSI problems: Monolithic and
partitioned methods. In the monolithic approach fluid and structure equations
are merged into a single system of equations and are solved simultaneously,
while in the partitioned approach the problem is divided into two separate sub-
problems for fluid and structure field. Each field is solved separately in the
partitioned approach and exchange of information takes place in a separate
coupling step. The monolithic approach has an advantage over the partitioned
one in terms of stability and accuracy [44]. On the other hand, solving the
two fields independently in a modular environment provides the possibility of
using the most efficient available solution techniques for each field [57]. The
coupling in the partitioned approach is done either in an implicit or explicit
way.

5.3.1 Explicit coupling

In explicit coupling, the coupling is implemented according to the flowing
steps:

1. Solve the fluid problem for time step n.

2. Send the resulting force at the interface to the structure solver.

3. Solve the structure problem.

4. Send the calculated displacement to the fluid solver and proceed to the
next time step.

Schematic representation of these steps is shown in Fig. 5.4.

Inter-field exchange of information occurs only once per time step in the ex-
plicit coupling. The calculated displacement at the end of the time step has
been calculated based on the fluid load at the beginning of the time step. The
loading at the end of the time step is different from the loading at the begin-
ning of the time step, but this change is neglected in the explicit coupling. It is
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Figure 5.4: Explicit coupling scheme.

a source of error in the explicit coupling approach. The error might accumulate
during the simulation and cause the simulation to crash. For cases where solid
to fluid density ratio is high enough this might be a minor problem and accurate
and stable solution might be obtained [58]. But it is not the case for less stiff
structures. The stability issue for explicit coupling could be improved by us-
ing a predictor for interface displacement at the end of the time step [59]. The
predictor uses the information from previous time steps to predict the position
of the interface at the end of the current time step. This information is used to
provide a better approximation of the loading from the fluid side at the end of
the time step, resulting in a more stable solution.

5.3.2 Implicit coupling

In implicit coupling, stability is improved by performing multiple exchanges
of information (inner iterations) between fluid and structure field within one
single time step. Fig. 5.5 shows the procedure of exchange of information
in implicit coupling between the two fields. Because of having multiple inner
iterations in implicit coupling, this method is more accurate and more stable
compared to explicit coupling.

In the following the structure problem is abbreviated by the function S and the
fluid problem by the function F . On the structure side the solver receives the
loading from the fluid solvers and calculates the displacement at the interface:

dn+1
ΓI

= S(fn+1
ΓI

). (5.37)

For the fluid solver it is just the opposite, it receives the displacement at the
interface and delivers the load applied by the fluid:

fn+1
ΓI

= F (dn+1
ΓI

). (5.38)
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Figure 5.5: Implicit coupling scheme.

Inserting dΓ from Eqn. 5.37 into Eqn. 5.38 yields:

dn+1
ΓI

= S(fn+1
ΓI

) = S
(
F (dn+1

ΓI
)
)

= S ◦ F (dn+1
ΓI

). (5.39)

Equation 5.39 could be solved either using fixed-point iteration based methods
or Newton-based methods. Within current thesis, Gauss-Seidel method is used
to solve the equation iteratively. The iterations start from the initial guess for
the interface displacement dΓI and continue until it converges to the fixed point
of S ◦ F function. The algorithm for the coupling is shown below:

for i = 0 to NumTimeSteps do
for k = 0 to maxIter do

predictor: di+1
ΓI ,0

= diΓI + ∆tḋnΓI ;
solve fluid: fn+1

ΓI ,k+1 = F (dn+1
ΓI ,k

);
solve structure: dn+1

ΓI ,k+1 = S(fn+1
ΓI ,k+1);

check convergence;
if convergence == true then

break;
end

end
end

Algorithm 4: Implicit coupling using Gauss-Seidel method.

5.3.3 Mapping

The interface mesh at the fluid side is almost always finer than the mesh on the
structure side. Non-matching mesh mapping techniques are necessary to cal-
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culate the equivalent nodal force and nodal displacement at the FSI interface.
Throughout this thesis, Mortar mapping method is used in the FSI simulations.

A basic criterion for mapping algorithms is consistency. It implies that a con-
stant field is mapped exactly from one mesh to the other mesh. Another crite-
rion is the conservation of energy, which is used to derive the so-called conser-
vative mapping operators. In conservative mapping total energy is conserved
as the fields are mapped between the meshes at the interface. The conservation
of interface energy reads:∫

Γ

dF
T

Γ fFΓ dΓ =

∫
Γ

dS
T

Γ fSΓ dΓ. (5.40)

Normal and dual mortar algorithms for mapping are not consistent in general.
A novel technique for enforcing consistency on the mapping algorithm by scal-
ing up the structural shape functions for the calculation of mapping matrices
is utilized. Details of the formulation and its implementation are explained in
[60].
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6FSI Analysis Using Panel Method

As discussed in chapter 5, Fluid-Structure Interaction (FSI) simulations are
very time-consuming and computationally expensive. Depending on the com-
plexity of the problem and the necessary degree of refinement, solving a mul-
tiphysics problem in an FSI framework might take several days or even weeks
if an extremely fine discretization is used to resolve the turbulent fluid flow.
It takes many inter-field iterations between the fluid and structural solver un-
til convergence is reached. Consequently, solving the fluid problem, which
is in general more time consuming than the structure problem, should be re-
peated multiple times for each time step which makes FSI simulations very
costly. Using models with lower fidelity for the fluid problem is one way of
getting a reasonable solution to the FSI problem in a shorter time frame. By
using simpler models for the fluid problem some physical details of the fluid
flow are neglected, but the overall cost-effectiveness of simpler approaches for
flow modeling, e.g. the panel method, makes them a proper candidate for per-
forming multi-fidelity FSI simulations. Limitations of the chosen method and
its range of applicability have to be considered when it is opted for solving a
specific coupled problem.

Panel method based approaches for FSI problems have been applied in analy-
sis of certain coupled problems like biologically inspired flapping flight [61],
horizontal axis tidal turbines [62], ship hydro-elasticity [63] and wind turbine
computations [64].

In this chapter, a low-fidelity FSI simulation workflow using the vortex panel
method (discussed in chapter 3) for solving the fluid problem is discussed.
The cross-comparison between low-fidelity FSI simulation using panel method

97
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(FSI Panel) and the high-fidelity approach using the finite volume method via
OpenFOAM (FSI CFD) is made. The developed workflow could be used for
performing both steady state and transient FSI analysis. It is applied for study-
ing the aeroelastic characteristics of a demonstrative membrane wing with an
aspect ratio of 4.5. Steady state and transient FSI analysis of the membrane
wing follow.

Parts of the results presented in this chapter have been published in AIAA
Journal of Aircraft [65]. They are presented here with written consent from the
publisher.

6.1 Steady State FSI

The studied membrane wing with S809 airfoil profile can be seen in Fig. 6.1. It
has a span of 4.5m and a uniform chord length of 1m along the span. Dihedral
and sweep angles are both zero.

1.0m

1.5m

1.5m

1.5m

z

x

y

Figure 6.1: Isometric view of the wing.

The upper and lower membranes are attached to the rigid leading edge mast
which extends up to 15% of the chord. The membranes are supported by 4
ribs and by an edge cable at the trailing edge. The 4 ribs divide the wing
into 3 uniform segments. Structural properties of the membranes, ribs (which
are modeled as beams) and the edge cables are summarized in Tables 6.1 to
6.3. The finite element model of the wing is shown in Fig. 6.2. It consists
of four structural parts. The rigid leading edge extending up to 15% of the
chord length. The ribs which are modeled as beams, the cable at the trailing
edge which is modeled as truss and finally, upper and lower surface of the wing
which are modeled via membrane elements with no bending stiffness.
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Upper membrane

Leading edge mast

Lower membrane

Ribs

Trailing edge cable

Figure 6.2: Finite element model of the wing.

6.1.1 Form Finding

Table 6.1: Membrane properties, (u: upper, l: lower )

E 84MPa
ρ 1400 kg/m3

t 0.48mm
σuchordwise 300 kPa
σuspanwise 1600 kPa
σlchordwise 300 kPa
σlspanwise 1600 kPa

Table 6.2: Trailing edge cable properties

E 125GPa
ρ 7800 kg/m3

radius 4mm
σ 50MPa

The equilibrium shape of the wing with the structural parameters presented in
the Tables 6.1 to 6.3 is calculated using form finding analysis. The deformed
state is compared with the reference state in Figs. 6.3 and 6.4. The membranes
and the edge cables pull against each other and as a result, the edge cables are
moved toward the leading edge with maximum displacement at the middle of
each wing segment. The pre-stresses in the membranes form double-curved
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Table 6.3: Beam properties

E 190GPa
ρ 7800 kg/m3

A 2 cm× 12 cm

surfaces, where the upper membranes are moved downwards and lower mem-
branes are moved upwards. While the cross section remains unchanged at the
4 ribs, due to the deformation of the two membranes, the cross section of the
wing changes continuously on other sections along the span. Fig. 6.4 shows
how the cross section at the middle of the wing deviates from the initial S809
profile.

Figure 6.3: Form finding of the membrane wing. Top: initial state. Bottom:
equilibrium state.

Figure 6.4: Form finding of the membrane wing (mid-span section). Solid
line: initial state. Dashed line: equilibrium state.

6.1.2 Fluid Setup (FVM)

For the fluid side, SimpleFoam solver from OpenFOAM has been used for per-
forming steady state CFD simulations using the finite volume method (FVM).
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Necessary modifications to the solver are made to handle the moving mesh
problem. Fig. 6.5 shows the discretized computational domain used for CFD
simulations. It consists of about 2.9 million elements, which results in a y+

value of about 70. To check if the mesh is fine enough, the results for the
Reynolds number of Re = 106 are compared with the experimental and nu-
merical results reported in [67]. The comparison has been made only up to
an angle of attack of 9◦, for higher angles of attack a finer mesh is needed to
properly capture stall effects.

Figure 6.5: Computational domain.
The k − ωSST model has been used. OpenFOAM wall functions are used at
the wing surface, kqRWallFunction for k and omegaWallFunction for ω. The
velocity at the inlet is 30m/s which corresponds to a Reynolds number of
2× 106.

6.1.3 FSI Simulations

FSI simulations have been done for 7 different angles of attack from 0◦ to
9◦ with an increment of 1.5◦. Convergence to the steady state solution for
the case of using panel method solver is about 25 times faster than using the
simpleFoam solver in OpenFOAM. For both cases, a relaxation factor of 0.15
has been used for the displacement field.

First, the convergence behavior of the displacements for each approach to the
steady state solution is compared in Fig. 6.6. Displacement in the y direction
for the point at the mid-span section of the wing with x/c = 0.5 is compared
(c is the chord length). While with the panel method convergence is reached
within 20 iterations, FSI simulation using SimpleFoam takes 450 iterations to
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converge. The time each iteration takes is also different in the two approaches.
Overall, in the case of the panel method convergence is reached approximately
25 times faster. For this particular case, FSI CFD simulation takes about 7.5
hours to converge using 4 processors, but FSI Panel converges within about 20
minutes on a single processor of the same machine. For α = 3◦ the converged
displacement is 0.033m from FSI Panel and 0.035m from FSI CFD.
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Figure 6.6: Convergence of the displacement for a selected point. Top:
FSI Panel. Bottom: FSI CFD.

The comparison of the two approaches for the selected point is summarized
in Table 6.4. For α = 0◦ both approaches result in the same displacement.
But, it is not the case for higher angles of attack as the panel solver tends to
underpredict the overall pressure distribution and as a consequence, it results
in smaller displacements. It is not the case for α = 9◦. For this angle of attack,
the panel solver overpredicts the pressure and results in a larger displacement.
It should be a consequence of neglecting the viscous effects, which play an
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Table 6.4: Comparison of displacement (m) in y direction at different angles
of attack.

α(deg) FSI Panel FSI CFD %diff
0 0.028 0.028 0

1.5 0.030 0.031 3.22
3 0.033 0.035 5.71

4.5 0.035 0.038 7.89
6 0.038 0.040 5.00

7.5 0.04 0.041 2.44
9 0.042 0.039 7.69

important role as the flow gets closer to the stall region at α = 9◦.

A better comparison can be made by comparing the displacement along the
whole chord and not only at one certain point. This has been done for the
section at the mid-span of the wing (Fig. 6.7). For the first 4 angles of attack
(up to 4.5◦) and especially on the upper surface of the wing, there is a very
good agreement between the resulting displacement from the two approaches.
But from the angle of attack of 6◦, they start to deviate from each other.

As the angle of attack increases, viscous effects become more and more impor-
tant. These effects are neglected in the panel method which causes its accuracy
to decrease as the angle of attack is increased. Moreover, as the angle of attack
increases, the pressure peak on the membrane part of the lower surface of the
wing increases as well. The fluid pushes the membrane upward, while the lead-
ing edge part of the wing remains undeformed. This results in a discontinuity
in the slope of the wing surface, as shown in Fig. 6.8. The panel solver is not
able to capture the flow physics at the kink: it overpredicts the pressure in the
vicinity of the kink and consequently the resulting displacement from the two
solvers deviate from each other.

Membrane wings enable a lighter wing construction and their flexibility is an
advantage in terms of dynamic loading applied to the wing. The lift coefficient
of the membrane wing is compared with that of the baseline rigid wing. As it
can be seen in Fig. 6.9, at smaller angles of attack, the rigid wing has better lift
characteristics than the membrane wing, but from α ≈ 2.5◦ it is the membrane
wing which shows a higher lift coefficient. The reason for that is mainly the
flexibility of the upper surface. The upper membrane is pulled upward which
increases the thickness and the camber of the wing section and causes greater
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(b) α = 1.5◦
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(c) α = 3.0◦
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(d) α = 4.5◦
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(e) α = 6.0◦

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

x/c

di
sp
Y
[m

]

FSI CFD
FSI Panel

(f) α = 7.5◦
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Figure 6.7: Displacement in y direction along the mid-span section. FSI CFD:
blue. FSI Panel: red.
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α=0° α=1.5°

α= 3◦ α=4.5°

α=6° α=7.5°

α=9°

Figure 6.8: Cross section shape at the mid-span section. S809 airfoil: green.
Undeformed section: red. Deformed section: blue.

lift compared with the rigid case.
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Figure 6.9: Comparison of the lift coefficient between the membrane wing and
the rigid baseline wing.

Finally, it can be said that the panel method saves the computation time while
providing a good accuracy up to an angle of attack of 6◦ . This makes the
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panel method an appropriate tool for early design stages where an extensive
parameter study needs to be done. The studied membrane wing concept has a
higher slope of the lift curve as a function of the angle of attack.

6.2 Transient FSI

Unsteady FSI analysis of the same wing configuration (Fig. 6.1) with the very
same structural properties is presented in the following. To study the influence
of pre-stresses on the aerodynamic performance of the wing, three sets of pre-
stresses have been investigated (Table 6.5). The stiffness of the membrane
wing decreases and as a result its ability to adapt itself to the surrounding flow
increases from S1 to S3.

Table 6.5: Pre-stress sets

σuc (kPa) σus (kPa) σlc(kPa) σlc(kPa) σcable(MPa)
S1 300 1600 300 1600 50
S2 200 1066.67 200 1066.67 33.33
S3 100 533.33 100 533.33 16.67

Total simulated time in FSI analysis is 3 seconds with a time step length of
∆t = 0.01 s. Newmark-Beta method with β = 0.25 and γ = 0.5 is used
for time integration. To calculate the Rayleigh damping coefficients, modal
analysis has been performed for the three pre-stress sets. The first two mode
shapes of the S2 pre-stress set are demonstrated in Fig. 6.10. The first two
natural frequencies and the coefficients of the Rayleigh damping are presented
in Table 6.6. For these cases where the pre-stresses in the upper and lower
membranes are the same, the first two eigenfrequencies are close to each other,
but it is not the case when upper and lower membranes have different pre-
stresses.

Table 6.6: Natural frequencies and Rayleigh damping coefficients

f1(Hz) f2(Hz) α(s) β(s−1)
S1 15.36 15.74 9.7689 0.0010
S2 13.55 13.74 8.5730 0.0012
S3 10.35 10.40 6.5188 0.0015
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Figure 6.10: First (upper) and second (lower) mode shape for S2 pre-stress
set.

6.2.1 Fluid Setup

The wing is discretized into 100 panels in the chordwise direction and 36 pan-
els in the spanwise direction. The free stream velocity is 30m/s. Simulations
are done for a range of angles of attack from 0◦ to 9◦ with an increment of
1.5◦. In order to save computational time, quadrilateral source terms are ap-
proximated as point sources as the distance from them reaches 20 times the
maximum dimension of the largest panel (discretization is not uniform neither
in the spanwise direction nor in chordwise direction). As the simulation goes
on, the number of panels in the wake increases, which slows down the com-
putation. As the wake panels are convected downstream of the wing, their in-
fluence of the wing panels decreases as their distance from the wing increases.
Deleting the wake panels which are far away from the wing speeds up the com-
putations without any visible influence on the results. Therefore, wake panels
are truncated as their distance from the wing increases 30 times the mean aero-
dynamic chord of the wing. To ensure whether 30 times the mean aerodynamic
chord is far enough for truncating wake panels, lift coefficient with and with-
out wake panel truncation is compared in Fig. 6.11. Even though wake panels
are deleted as their distance from the wing increases the pre-defined limit, lift
coefficient converges to the value obtained without wake panel truncation. The
presented example corresponds to flow around a wing with the S809 airfoil
profile and an aspect ratio of 2 at an angle of attack of 5◦. The wing has
been discretized by about 3000 panels. Wake panels truncation reduces the
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computational time by 20% for this case where only 3 seconds are simulated.
The reduction in computational time with wake panels truncation increases for
longer simulation time and with the higher number of panels in span direction
of the wing.
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Figure 6.11: Comparison of the lift coefficient: with wake panels truncation
(red) versus the converged value without wake panels truncation (blue).

Fig. 6.12 compares the obtained lift coefficients from the panel code imple-
mentation with XFLR5. Steady state results from XFLR5 are compared with
the converged results from the unsteady panel code implementation with time
independent inflow conditions. The average relative error for the 7 cases is
3.11%. Comparison of the pressure distribution from the two codes is also
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Figure 6.12: Comparison of the lift coefficient with XFLR5.
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made in Fig. 6.13 for the case of α = 3◦.
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Figure 6.13: Comparison of the pressure coefficient at the middle section of
the wing with XFLR5.

6.2.2 Results and Discussion

FSI simulations have been done for three different sets of pre-stresses and 7
angles of attack, from 0◦ to 9◦ with an increment of 1.5◦. Same surface dis-
cretization has been used for both fluid and structure side. Total simulation
time is three seconds. In the form finding step, the membrane surfaces shrink
and get closer to each other (Fig. 6.4), which decreases wing’s thickness. Dur-
ing FSI simulation, the aerodynamic load is applied to the membranes. On
the suction side of the wing, negative pressure causes the upper membrane
to move upward. Depending on the angle of attack, either positive or negative
pressure acts on the lower membrane, causing it to move upward or downward.
Membrane deflection increases the thickness of the wing and as a result, lift in-
creases. The goal of FSI analysis is to study the aerodynamic characteristics of
the membrane wing for different pre-stress states, as they are one of the main
design criterion of the membrane wing.

Transient behavior of the membrane wing could be studied using an unsteady
fluid model coupled with a structural dynamics solver. Depending on the pre-
stress level and the angle of attack, the membrane wing might demonstrate a
steady or unsteady response. For the cases where the response is not transient
and initial oscillations are damped after a while, the problem could be tackled
using the steady state approach utilizing steady state panel method implemen-
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tation coupled with static structure solver. Using the steady state approach,
convergence to the steady state solution is reached at a much higher pace com-
pared with the unsteady approach. However, if the instantaneous response of
the membrane wing is of interest and not only the mean steady state response,
the unsteady approach is inevitable.

In the following, verification of the unsteady aeroelastic tool against the steady
one is presented. The steady aeroelastic code using steady panel method for
the fluid part is itself verified against steady Navier-Stokes based FSI solver
presented in section 6.1. The comparison between the steady and unsteady
approach is made for two angles of attack with the S2 pre-stress set. For α =
4.5◦ the unsteady approach converges to the steady state solution, but for α =
7.5◦ there is no steady state response. Fig. 6.14 presents the comparison of the
displacement at the selected monitor point in the mid-span section of the upper
membrane at x/c = 0.5 from the two approaches. As expected, the unsteady
solution converges to the steady state solution for α = 4.5◦, whereas for α =
7.5◦ without a physically steady state solution, the unsteady structural response
oscillates around the steady state result. It should be noted that for the studied
cases the transient approach takes approximately 13 times longer to converge
compared with the steady state approach. Comparison of the calculated lift
coefficient from the two solution approaches is also presented in Fig. 6.15.
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Figure 6.14: Displacement comparison between steady state and transient
approach, S2 pre-stress set.
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Figure 6.15: Lift coefficient comparison between steady state and transient
approach, S2 pre-stress set.

Oscillations in lift coefficient

Because of the interaction between displacement and the applied load (mainly
the lift force) the same oscillatory behavior is seen in the lift coefficient (Fig.
6.15). For a small angle of attack like 4.5◦ lift coefficient converges to a steady
state value, whereas for α = 7.5◦ there is no steady state solution and the lift
coefficient continues to oscillate around a constant mean value. For the base
airfoil of the wing (S809) stall happens at approximately 10◦. For a conven-
tional wing and at angles of attack lower than the stall point a steady lift coef-
ficient is expected, but for the sailwing it is not the case. Due to self-excited
vibrations in the membranes even for angles of attack smaller than 10◦ there is
an oscillating lift coefficient.

Membrane deflection

The deformation of the membranes increases as the pre-stress is subsequently
decreased from S1 to S3. Displacement at the selected monitor point located
in mid-span section of the upper membrane at x/c = 0.5 is presented in Table
6.7. For smaller angles of attack where the membranes reach a steady state
after initial vibrations, the steady state displacement is presented in the table,
whereas for the cases in which oscillations are not damped over time, the mean
value is presented. Pre-stresses in S3 are smaller compared with the other two
sets. For α = 9◦ at this pre-stress state wrinkles develop in the membranes
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(Fig. 6.16), which suggests that higher pre-stresses are needed for α = 9◦ at
the studied wing configuration. It must be noted, that a detailed investigation
of the wrinkling process would require a significantly refined structural mesh.
These local structural instabilities have not been the topic of the current project.

Figure 6.16: Development of wrinkles on membrane’s surface for S3
pre-stress set at α = 9.0◦.

Table 6.7: Membrane displacement (m) at the monitored point for different
pre-stresses

α(deg) S1 S2 S3
0.0 0.0273 0.0315 0.0368
1.5 0.0290 0.0343 0.0402
3.0 0.0320 0.0368 0.0433
4.5 0.0342 0.0393 0.0459
6.0 0.0363 0.0416 0.0482
7.5 0.0382 0.0436 0.0501
9.0 0.0400 0.0454 -

Displacement of the monitored point over time for the S2 pre-stress set is plot-
ted in Fig. 6.17. It should be mentioned that during the first 10 time steps
no force and displacement transfer between the two solvers has been done to
avoid initial overshoots in the membrane deformation because of high pressure
spikes at the beginning of the unsteady solution process. As it can be seen, for
smaller angles of attack up to 4.5◦ the membrane reaches the steady state after
initial vibrations in the membrane, but for higher angles of attack vibrations
are not damped over time and the membranes continue to oscillate.

These flow-induced vibrations are explored via spectral analysis of the re-
sponse of the system, which is displayed in Fig. 6.18 for the three pre-stress
sets at the studied angles of attack. As a result of membrane oscillations, vor-
tices are shed in the wake of the wing. Development of the wake panels is
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Figure 6.17: Displacement at the monitored point on the suction side, S2
pre-stress set.

shown in Fig. 6.19 for the S2 pre-stress set. For the cases where membrane
oscillations are not damped with time, wake panels have an oscillatory pat-
tern, too. The frequency of the oscillatory pattern in the wake panels correlates
with the frequency of membrane oscillation, which itself correlates with the
dominant frequency in spectral analysis of the lift coefficient.
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Figure 6.19: 2D slice of wake panels at the mid-span section of the wing,
development of wake vortices for S2 pre-stress set.

Even though this dominant frequency is not exactly the same for the three stud-
ied pre-stress levels, the difference in the dominating frequency is not large
and for all sets, it is about 21.5Hz. As presented in Table 6.6, the first natu-
ral frequency for the 3 pre-stress sets are in the range of about 15Hz, 13Hz
and 10Hz, respectively. But for all these sets the membrane is oscillating at
a higher frequency. The difference in the natural frequencies of the unloaded
membrane wing is due to the difference in the pre-stress level. The actual
stress in the membrane is the sum of the pre-stress and the additional stress
due to the elastic deformation of the membrane. In the presence of the aerody-
namic loading the stress level in the membrane, and consequently, the natural
frequency of the structure increases. The mean actual stress in chord direc-
tion for the three pre-stress sets is visualized in Fig. 6.20. The increase in
pre-stress level from S3 to S2 is 100% and from S2 to S1 it is 50%. Yet the
difference in the actual stress level is only about 4% in the consequent pre-
stress cases. It shows that for the studied membrane with Young’s modulus of
E = 84MPa, induced stresses as a result of elastic deformation of the mem-
brane have a greater contribution to the actual stress state, compared with the
pre-stress. Since the actual stress level under the loading is quite similar for the
three pre-stress cases, they should also have similar natural frequencies in the
actual loading condition. This explains why for all the three studied pre-stress
levels, the membrane oscillates at approximately the same frequency.

Comparison with the baseline rigid wing: Camber line

Next, the aerodynamic performance of the membrane wing is compared with
that of the baseline rigid wing. Cross section of the membrane wing varies
along the span, the profile of wing’s cross section at the mid-span of the wing
is shown for the S2 pre-stress set in Fig. 6.21. The red curve shows the cross
section of the undeformed configuration (t = 0.0 s), the green one shows the
deformed configuration at t = 3.0 s and the blue curve is for the S809 air-
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S1 pre-stress S2 pre-stress S3 pre-stress

Figure 6.20: Distribution of mean stress in chordwise direction.

foil profile (rigid wing). Membrane’s deformation changes the cross section
properties of the wing like the maximum camber and thickness. The original
S809 airfoil has a maximum camber of 1% at 82.3% chord position, but for the
membrane wing, the maximum camber and its location change with the angle
of attack (Table 7.6). It is also shown in Fig. 6.22 that with the increase of an-
gle of attack the maximum camber increases as well and the point of maximum
camber moves slightly towards the leading edge of the wing.
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Figure 6.21: Cross section comparison at mid-span section of the wing. Blue:
S809 Airfoil, Red: Undeformed configuration (output of form finding

analysis), Green: deformed configuration.

Comparison with the baseline rigid wing: Pressure distribution

Pressure coefficient distribution at the mid-span section of the membrane wing
for α = 6.0◦ is plotted in Fig. 6.23 for the three studied pre-stress levels.
The distribution of the pressure coefficient of the membrane wing has kinks at
x/c = 0.15 positions where the membrane is attached to the leading edge mast.
The reason for that is the discontinuity in surface’s slope at the attachment
point. The area enclosed by the cp curve shows the lift coefficient. It can be
qualitatively seen that the membrane wing has a higher lift coefficient at its
steady state for S2 and S3 pre-stress sets.
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Table 6.8: Maximum camber and its location for the mid-span section

α(deg) maximum camber (%) maximum camber location
0.0 0.67 69.61
1.5 1.00 69.60
3.0 1.38 69.57
4.5 1.82 69.54
6.0 2.28 69.50
7.5 2.67 64.73
9.0 3.05 64.72
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Figure 6.22: Comparison of camber line for S2 pre-stress case with S809
airfoil’s camber line.

Cross section of the membrane wing at the mid-span section is plotted in Fig.
6.24 together with the S809 airfoil profile. The upward displacement of the
trailing edge slightly reduces the effective angle of attack. It is not in favor of
a higher lift coefficient compared with the rigid base wing, but the change in
the profile due to membrane flexibility changes the pressure distribution over
wing’s surface. Comparing the pressure distributions of the base wing with the
membrane wing (Fig. 6.23) it is observed that for the most part of the suction
side, pressure coefficient for the membrane wing is lower (higher suction) than
the rigid base wing. The difference increases with the increase of membrane’s
flexibility from S1 to S3 pre-stress level and as a result, the lift coefficient for
the membrane wing is higher than that of the rigid base wing for S2 and S3
pre-stress levels. A quantitative comparison is made in the next section.
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Figure 6.23: Comparison between pressure distribution over the mid-span
section of the conventional S809 profile wing with membrane wing with

different pre-stress levels.
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Figure 6.24: Comparison of the converged cross section profile at mid-span
section for different pre-stress levels (α = 6◦).

Comparison with the baseline rigid wing: Lift coefficient

Comparison of the lift coefficient for different pre-stress levels is made in Fig.
6.25. For all three pre-stress sets the membrane wing has smaller lift coefficient
at zero angle of attack. The slope of the lift curve increases as the flexibility of
the membrane wing is increased by reducing the pre-stress level. For all three
cases, the lift curve of the membrane wing has a higher mean slope than the



6.2 Transient FSI 119

conventional rigid wing. As a result, after a certain angle of attack (depending
on the pre-stress level) the membrane wing demonstrates better lift character-
istics. In the case of S3 there is an improvement in lift coefficient even for
α = 1.5◦, while for a stiffer membrane wing configuration (S1), the improve-
ment in lift coefficient is observed only for α = 7.5◦ and α = 9.0◦. Table
6.9 summarizes the percentage of change in lift coefficient for the three cases
compared with the conventional rigid wing. The reason for the decline in lift
coefficient for α = 0.0◦ compared to the base wing is that at the unloaded sit-
uation the membrane wing has a quite symmetric airfoil profile (red curves in
Fig. 6.21). For α = 0.0◦ the lift coefficient of the membrane wing is compared
with a non-symmetric wing profile (S809 airfoil) and as a result, the highest de-
cline is observed at α = 0.0◦. For other angles of attack, the membrane wing’s
profile becomes more unsymmetrical with the increase in angle of attack and
its lift coefficient compares better with the baseline rigid wing.
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Figure 6.25: Lift coefficient for different pre-stress sets.

Table 6.9: Percentage of change in cL compared with conventional rigid wing

α 0.0 1.5 3.0 4.5 6.0 7.5 9.0
S1 -41.3 -17.2 -8.4 -3.8 -0.9 1.0 2.3
S2 -35.7 -11.0 -1.8 3.2 6.1 7.6 8.7
S3 -22.9 5.4 14.9 18.2 19.1 18.1 -
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Trailing edge flexibility

Finally, the influence of trailing edge flexibility on the overall response of the
coupled system is presented. As summarized in Table 6.10, elastic deformation
of the trailing edge cable causes a slight improvement in the lift coefficient. The
table compares the lift coefficient of the membrane wing with an elastic trailing
edge cable with that of the wing with a rigid trailing edge.

Table 6.10: Percentage of change in cL compared with the membrane wing
with rigid trailing edge

α(deg) 0.0 1.5 3.0 4.5 6.0 7.5 9.0
%∆cL 4.50 2.01 1.69 2.07 2.07 2.13 2.32

Converged cross section profile and camber line at the mid-span section of the
membrane wing are shown in Fig. 6.26 for α = 4.5◦. The membrane wing has
higher camber and airfoil thickness in the case of an elastic trailing edge cable.
The elastic deformation of the trailing edge influences the structural response
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Figure 6.26: Cross section and camber line (dashed) comparison between
rigid trailing edge(blue) and elastic trailing edge(red).

of the wing as well. While for the elastic trailing edge the membrane oscilla-
tions are present for α = 7.5◦ and α = 9.0◦ and are damped for smaller angles
of attack, for the case of rigid trailing edge cable the membrane continues to
oscillate for angles of attack bigger than α = 3.0◦. The fact that the trailing
edge shape adapts itself to membrane’s deflection proves to help to mitigate
the vibration of the membrane. It postpones not only the oscillatory response
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to higher angles of attack for a specific set of pre-stress but also reduces the
amplitude of the oscillations as shown in Fig. 6.27 for α = 7.5◦. The fig-
ure presents the spectral analysis of displacement at the monitor point. For
the rigid trailing edge, there are more than only one dominant frequency and
the amplitude of the oscillations is higher compared with the case of an elastic
trailing edge cable.
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Figure 6.27: Spectral analysis of membrane oscillation, comparison of rigid
and elastic trailing edge.

6.2.3 Conclusion

The panel method enables faster exploration of the design space. On a standard
PC (3.40 GHz, 8 M Cache, 15 GB RAM) it takes about 90 minutes to run three
seconds of FSI simulation (transient approach). Transient results converge to
the results obtained from the steady approach for the cases where a steady state
solution exists. Even though using panel method for flow modeling facilitates
faster design evaluations and a comprehensive study of the design envelope
at a lower cost during early design stages, limitations of the method should
also be considered. Since no boundary layer model is coupled with the cur-
rent panel method implementation, viscous drag is not included in the model.
In determining the final shape of the membrane, pressure force plays a much
more important role than the viscous drag. However, the final design should
inevitably be studied using a high-fidelity FSI analysis which is done in the
upcoming chapter.



122 Chapter 6 FSI Analysis Using Panel Method

Comparing the performance of the membrane wing with the baseline rigid
wing, the following main observations have been made:

1. Increase in the camber for the membrane wing as well as shifting of the
point of maximum camber towards the leading edge.

2. Higher lift curve slope for the membrane wing. A lower lift coefficient
for zero angle of attack is observed for the membrane wing, but due to
the higher lift curve slope, the membrane wing has higher lift coefficient
than the baseline wing for higher angles of attack.

3. Vortex-induced oscillations have been observed for the membrane wing
at higher angles of attack. Depending on the pre-stress level, they have
been present either from α = 6.0◦ or from α = 7.5◦. For both cases, the
stall point is not reached yet, but as a consequence of membrane vibra-
tion, oscillations in lift coefficient are observed for the membrane wing
even before the stall angle of attack. The lift coefficient in these cases
oscillates around a constant mean which is higher than that of the base-
line rigid wing. The actual stress state in the membrane is dominated
by induced stresses due to the elastic deformation. Even though differ-
ent pre-stresses are set for the initial configuration, resulting in different
natural frequencies for the membrane wing configuration, actual stress
distribution is quite the same regardless of the pre-stress value. Conse-
quently, membrane oscillations in the three different pre-stress configu-
ration share approximately the same frequency.

4. Elastic deformation of the trailing edge cable improves the lift coefficient
of the membrane wing and postpones membrane vibration to higher an-
gles of attack. The flexibility of the trailing edge reduces the amplitude
of the membrane vibration as well.



7The Membrane Blade

This chapter utilizes the methods discussed so far in the thesis for the analysis
of the membrane blade concept. The analysis is done in three levels. Every
level of the analysis compares the performance of the membrane blade with
the baseline rigid blade which is the NASA-Ames Phase VI blade (Appendix
B).

First, steady-state and transient FSI analysis of the blade in non-rotating con-
figuration is performed. The steady-state analysis follows the idea of multi-
fidelity analysis by using both panel method and CFD for solving the fluid
problem.

Next, a workflow for using the blade element momentum (BEM) method, as
the most common tool for aerodynamic analysis of wind turbines, for the anal-
ysis of the membrane blade is proposed and tested in both steady-state and
transient condition, considering the rotation of the rotor. In classical BEM,
look-up tables for the lift and drag coefficients at different angles of attack and
for a range of Reynolds number are used. For BEM analysis of the membrane
blade, these tables are substituted with the two-dimensional panel code solver
discussed in Section 3.1.

Finally, high-fidelity FSI analysis of the membrane blade in steady-state con-
dition is presented in Section 7.4. The rotation of the blade is modeled using
the Multi Reference Frame (MRF) approach in OpenFOAM. At all of the three
levels of the analysis, the membrane blade promises certain advantages over
the rigid baseline blade in terms of the lift force or the generated power which
are discussed in the upcoming sections.

123
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Parts of the results presented in this chapter have been published in Wind En-
ergy Science Journal [68] and Journal of Physics [69]. They are presented here
with written consent from the publisher.

7.1 The Membrane Blade Concept

The Sailwing concept was proposed by Ormiston during the 70′s [15]. The
basic schematic of the sailwing can be seen in Fig. 7.1. The main frame of the
sailwing consists of a leading edge mast which is assumed to be rigid and a
number of ribs which are connected to the leading edge mast along the span of
the wing. Upper and lower surfaces of the wing are elastic, pre-stressed mem-
branes connected to the mast and to the ribs. The membranes are supported
at the trailing edge by pretensioned edge cables. The form of the wing in the
operating condition depends on the interaction between the internal forces of
the wing configuration and the aerodynamic loading.

Figure 7.1: Sailwing construction concept, from [15]

In the absence of aerodynamic loads, the shape of the sailwing is determined
by the equilibrium of membrane and edge cable forces. In the unloaded state,
membranes form a concave, double-curved surface. In the operating condition,
the applied aerodynamic load deforms the membranes and edge cables. The
interaction between external aerodynamic force and the internal pretensions
governs the form of wing’s surface and its aerodynamic characteristics. As a
result, fully-coupled fluid-structure interaction analysis is needed to evaluate
the actual performance of the sailwing. Having the upper and lower surface
of the wing made out of membranes with a weight of about 1 − 1.5 kg/m2

facilitates light-weight construction of the wing. The flexibility of the sailwing
enables it to adapt itself to the flow condition to some extent which promises a
favorable loading on the wing in terms of fatigue life.

The studied membrane blade is inspired by the sailwing concept. It can be
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seen in Fig. 7.2. It is basically the layout of the NASA-Ames Phase VI rotor
with a length of 5.029m [70]. The chord length varies along the blade, with
0.73m at the root of the blade (after the transition from cylindrical hub profile
to the airfoil profile) to 0.35m at the tip of the blade. The upper and lower
membranes are attached to the rigid leading edge which extends up to 15% of
the chord length. The membranes are supported by 4 ribs and by 4 edge cables
at the trailing edges. The 4 ribs divide the blade into 4 segments with equal
span.

Root and transition region

Leading edge

Membrane

Ribs

Trailing edge cable

x

y

z

Segment 1

Segment 2

Segment 3

Segment 4

Figure 7.2: Membrane blade planform (without twist)

7.2 Membrane blade in non-rotating configuration

In this section analysis of the membrane blade in non-rotating, uniform flow
condition is presented. The blade does not need to be twisted since the non-
rotating condition is studied. Steady-state and transient FSI analysis of the
membrane blade follows in the sequel:

7.2.1 Steady-state FSI analysis

Two different modeling levels are being used for the steady-state FSI analy-
sis of the membrane blade. A lower-fidelity approach is utilized by the cou-
pling between the panel method solver and the structural solver as discussed
in chapter 6. The low fidelity approach is very robust and efficient for early-
stage design space exploration, specially for deciding about the pre-stresses.
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Comparison of the low-fidelity approach and high-fidelity FSI simulation us-
ing OpenFOAM as the fluid solver is presented in the upcoming sections. The
analysis starts with form finding simulation. In form finding, the equilibrium
state of the wing is calculated, i.e. the state where the membrane and edge
cable’s internal forces are in equilibrium. This is the initial shape of the blade
surface in the absence of external forces. FSI simulations start from this initial
state. In the following sections fluid, structure and coupling related aspects
are explained in detail. The overall simulation workflow is shown in Fig. 7.3,
which demonstrates the sequence of the analysis.

The process of solving the flow problem for both approaches is presented in
the figure as well. At each coupling iteration, the fluid solver receives the
displacement from the structural solver and updates the mesh. Then the fluid
problem is solved for the updated mesh. It should be noted that in solving the
problem using finite volume method all the steps include operations performed
on a three-dimensional mesh, whereas in panel method the mesh consists of a
two-dimensional surface discretization. For the case of mesh update in partic-
ular, for the panel method discretization updating the mesh means adding the
displacement at each node to the original coordinate of the node, but for the
three-dimensional volume mesh, in addition to applying the displacement on
the boundary, the displacement of the interior points should also be calculated.
In addition to the higher computational cost of the three-dimensional mesh
morphing, it is also a challenge to keep the quality of the volume elements as
they deform.

7.2.1.1 Model setup

The blade configuration and its decomposition into different structural parts is
shown in Fig. 7.2. The properties of the three different structural parts are
summarized in table 7.1:

Table 7.1: Properties of the structural parts.

Membrane Edge cable Rib
E 84MPa E 125GPa E 190GPa
ρ 1400 kg/m3 ρ 7800 kg/m3 ρ 7800 kg/m3

t 0.48mm radius 4mm A 2 cm× 12 cm

The pre-stresses in the membranes and the edge cables are summarized in Ta-
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Figure 7.3: Schematic representation of the multi-fidelity analysis work flow
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ble 7.2. For the membrane pre-stresses, the superscript distinguishes between
membranes on the upper (suction) and lower (pressure) side of the blade, while
the subscript designates the direction of the applied pre-stress. These pre-
stresses correspond to the pre-stresses in the first segment of the blade. For the
remaining three segments the pre-stresses are scaled according to the dimen-
sions of the segment. Since all segments have the same span, the pre-stress in
spanwise direction is the same at all segments. But, the pre-stress in chordwise
direction is scaled with the mean chord length for the three other segments.

Table 7.2: Membrane and edge cable pre-stresses.

σuchordwise 180 kPa
σuspanwise 480 kPa
σlchordwise 180 kPa
σlspanwise 480 kPa
σlcable 30MPa

7.2.1.2 Form finding

The equilibrium state of the blade with the structural parameters presented in
Tables 7.1 and 7.2 is calculated in form finding analysis. The deformed state is
compared with the undeformed state in Fig. 7.4.

Membranes and the edge cables pull against each other and as a result, the edge
cables are moved toward the leading edge with maximum displacement at the
middle of each blade segment. Because of the pre-stresses in the membranes
and the curved structural frame to which the membranes are connected, double-
curved membrane surfaces are formed where the upper membranes are moved
downwards and lower membranes are moved upwards. Fig. 7.5 shows how
the cross section at the middle of the second segment deviates from the initial
cross section (which is the S809 airfoil profile) and how the upper and lower
membranes pull the elastic trailing edge cable toward the leading edge.

7.2.1.3 Fluid setup

For the fluid side, SimpleFoam solver from OpenFOAM has been used for
performing steady state CFD simulations. The schematic representation of the
blocking strategy is presented in Fig. 7.6. The Computational domain together
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Top view

undeformed

deformed

displacement contour

deformed

undeformed

Section view

Figure 7.4: Form finding of the membrane blade. Undeformed and deformed
geometry from top and front views.

undeformed

deformed

Figure 7.5: Form finding of the membrane blade (mid-span section, second
segment).
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with the mesh in the vicinity of the blade are shown in Fig. 7.7.

Figure 7.6: Blocking structure for the fluid mesh

inlet

outlet

sideWalls

blade

Figure 7.7: Left: Fluid Domain, Right: Fluid mesh in the vicinity of the blade

The domain size is 15m × 15m × 45m, which results in a blockage ratio of
about 0.3%. The tip of the blade has a distance of 10m to the far field bound-
ary. The domain is discretized with a total of 2.9 million cells (hexahedral and
prism elements ), which results in a maximum y+ value of about 70. Fig. 7.8
presents the result of the mesh convergence study performed for the rigid blade
configuration at α = 4.0◦. As it can be seen, CL has converged for the mesh
with 2.9 million elements.

The k − ωSST model has been used for turbulence modeling. OpenFOAM
wall functions have been used at blade’s surface, kqRWallFunction for k and
omegaWallFunction for ω. The velocity at the inlet is 30m/s. The boundary
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conditions for the fluid simulation are summarized in table 7.3.

0.5 1 1.5 2 2.5 3

number of elements ×10
6

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

c
L

Figure 7.8: Mesh convergence study for the rigid blade, α = 4.0◦

Table 7.3: Boundary conditions for CFD simulations

boundary U p k ω

inlet fixedValue
uniform (u, v, w)

zeroGradient
fixedValue

uniform k =
0.1U2

∞
ReL

fixedValue
uniform ω = 10∗U∞

L

outlet zeroGradient fixedValue
uniform 0 zeroGradient zeroGradient

sideWalls symmetryPlane symmetryPlane symmetryPlane symmetryPlane

blade fixedValue
uniform (0, 0, 0)

zeroGradient
kqRWallFunction

uniform 1−10

omegaWallFunction
uniform ω = 10 6ν

β1(∆d1)2

7.2.1.4 FSI Simulations

FSI simulations have been done for 6 different angles of attack from 0◦ to 9◦.
In the following FSI CFD is used for simulations using finite volume method
for the fluid side and FSI Panel is used for simulations which use the panel
method for flow modeling. Because of blade’s deformation in FSI simulations,
the fluid solver should in addition to solving the fluid flow problem, take care
of the movement in the mesh as well. For the FSI CFD case the deformation of
the blade, which is applied to the blade patch is diffused into the fluid domain.
This means that the boundary motion is distributed into the volume mesh and
zero displacement condition is applied at the far field boundaries of the fluid
domain.To solve the mesh motion problem the displacementLaplacian based
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solver from OpenFOAM has been used with the quadratic inverseDistance
diffusion method.

Convergence to steady state solution for the case of using the panel method
solver is about 30 times faster than using the simpleFoam solver from Open-
FOAM as the fluid solver. The panel code was run on a single processor, while
for OpenFOAM simulations 10 processors were used. For both cases, a relax-
ation factor of 0.15 has been used for the displacement field for all angles of
attack except for α = 7.5◦ and α = 9.0◦, where the relaxation factor was re-
duced to 0.1 to improve stability in the FSI run. Under relaxation is applied in
order not to send the total calculated displacement at an increment to the fluid
solver, but to send a fraction of that to improve the stability of the coupling
algorithm and preserve the quality of the mesh on the fluid side:

dn+1
ΓI,sent

= ωrd
n+1
ΓI,calculated

+ (1− ωr)dnΓI (7.1)

The relaxation factor (ωr) should be kept below some limit (which is case-
dependent) for FSI CFD simulations, otherwise, the quality of the finite vol-
ume mesh cannot be preserved during the simulation and the simulation might
crash as a result of having highly distorted elements in the mesh. The same re-
laxation factor has been used for FSI Panel case. The reason for using the same
relaxation factor is to have a rather fair comparison between the convergence
behavior of the two approaches, but it must be mentioned, that for FSI Panel
cases a higher relaxation factor can be used as well to have faster convergence
without getting stability problems due to distorted elements in the mesh, which
is in this case just a discretized surface.

First, the convergence behavior of the displacements to the steady state solution
for each approach is compared (Fig. 7.9). Displacement of the point at the
mid-span section of segment 2 (Fig. 7.2) with x/c = 0.5 is compared (c is the
chord length). While with the panel method convergence is reached within 25
iterations, FSI simulation using SimpleFoam takes 450 iterations to converge.
The time each iteration takes is also different in the two approaches. Overall,
in the case of the panel method convergence is reached approximately 30 times
faster. For this particular case, FSI CFD simulation has taken about 10 hours
to converge using 10 processors, but FSI Panel has converged within about
20 minutes on a single processor. For α = 4◦ the converged displacement is
0.0221m from FSI Panel and 0.0211m from FSI CFD, which demonstrates
clearly the applicability of the low-fidelity approach, provided that the blade
operating condition is in agreement with the respective modeling assumptions.

Comparison of the two approaches for the selected monitor point is summa-
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Figure 7.9: Convergence of the displacement for the selected monitor point.
Left: FSI CFD. Right: FSI Panel.

rized in Table 7.4. For α = 0◦ the difference in the calculated displacement
from the two approaches is 2.87%. The difference increases with angle of at-
tack. For the base airfoil of the studied blade, the S809 profile, stall happens at
α ≈ 10◦. With the emergence of stall and flow separation, the assumptions of
the panel method are no more valid. This explains the increased deviation of
FSI Panel result from FSI CFD result for α = 9◦.

Table 7.4: Comparison of displacement (m) in y direction for different angles
of attack

α(deg) FSI Panel FSI CFD %diff

0.0 0.0175 0.0170 2.87
2.0 0.0198 0.0189 4.74
4.0 0.0221 0.0211 4.73
6.0 0.0241 0.0231 4.38
7.5 0.0252 0.0241 4.53
9.0 0.0255 0.0237 7.68

After local comparison of the calculated displacements from the two approaches
in Table 7.4 for a single monitor point, a more global comparison is made by
comparing the converged cross section shape at the steady-state. Fig. 7.10
shows the cross section of the blade in the middle of segment 2. For the upper
surface of the blade, there is a very good agreement between the two methods,
even though the difference increases with the increase of the angle of attack
which is to be expected. The difference in the converged shape is higher for
the lower surface and particularly for α = 7.5◦ and α = 9.0◦. It can be ex-
plained by the increased discontinuity in the slope of the surface at the point
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where the lower membrane is attached to the leading edge mast. There is a
kink at the point of attachment which is much more visible for higher angles
of attack. The local flow separation downstream of the kink is not captured
by the panel method, which results in different pressure distributions and as a
consequence different converged shapes for the two approaches.

α = 0.0° α = 2.0°

α = 4.0° α = 6.0°

α = 9.0°α = 7.5°

FSI_CFD

FSI_Panel method

Figure 7.10: Comparison of the converged cross section at the mid-span
section of the second segment.

The membrane blade concept facilitates a lighter blade construction due to the
optimal load carrying behavior and also due to its capability to alleviate peak
loading because of its deformation. It should also have an improved perfor-
mance compared to rigid blade configurations in the stall region because of the
so-called ”soft stall characteristics” of the membrane wings [7]. In order to
assess the aerodynamic performance of the studied blade, lift coefficient, drag
coefficient and lift to drag ratio of the blade are compared with the baseline
rigid blade. As it can be seen in Fig. 7.11, for smaller angles of attack the
membrane blade has a smaller lift and drag coefficient compared with the rigid
blade; however, with the increase of angle of attack higher lift and drag coeffi-
cients are observed for the membrane blade. Table 7.5 provides a quantitative
comparison of the change in these coefficients compared with the rigid blade.
The cross section of the membrane blade in the absence of aerodynamic load
was shown in Fig. 7.5 (the red curve). The membrane blade has a pretty much
symmetric profile in the unloaded state. For α = 0.0◦, the converged cross
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section is also a rather symmetric profile (Fig. 7.10). This explains the big
decrease in the lift coefficient of the membrane blade at α = 0.0◦, compared
with the rigid blade with the asymmetric S809 airfoil. With the increase of
angle of attack, the loading on the blade, and as a consequence the converged
cross section profile, becomes more and more asymmetric which can be seen
in Fig. 7.10. Moreover, the displacement in the membranes increases with the
increase of the angle of attack. It increases the camber of the blade profile and
as a consequence, there is an improvement in the lift coefficient of the mem-
brane blade compared with the rigid blade for higher angles of attack. The
drag coefficient increases as well with the increase of angle of attack and the
drag coefficient of the membrane blade is higher than that of the rigid blade.
But the improvement in the lift coefficient is larger compared with the increase
of the drag coefficient and consequently for α = 4.0◦ and higher angles of
attack the lift to drag ratio for the membrane blade is higher compared with
the baseline rigid blade. While having a higher lift coefficient and lift to drag
ratio is not desired for stall controlled turbine like the NASA-Ames Phase VI
rotor, it should be mentioned that the purpose of the analysis is to investigate
the characteristics of the membrane blade concept and make a comparison be-
tween the membrane blade and a conventional blade. No conclusion could be
made at this stage, whether the concept should be utilized for pitch-controlled
or stall-controlled turbines.

Table 7.5: Percentage change in aerodynamic characteristics of the membrane
blade compared with the rigid blade

α(deg) 0.0 2.0 4.0 6.0 7.5 9.0

∆cL -75.5 -12.5 7.5 15.0 17.7 13.9
∆cD -4.2 -5.3 -1.4 3.4 5.9 2.9

∆(L/D) -74.5 -7.5 9.1 11.2 11.1 10.7

The cross section of the membrane blade varies along the span. Membrane
deformation changes cross section properties of the blade like the maximum
camber and thickness. The original S809 airfoil has a maximum camber of
about 1% at 82.3% chord position, but for the membrane blade maximum cam-
ber and its location change with the angle of attack (Table 7.6). It is also shown
in Fig. 7.12 that with the increase of angle of attack the maximum camber in-
creases as well and in general the point of maximum camber moves towards
the leading edge of the blade.

The increase in the lift coefficient of the membrane blade could also be seen in
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Figure 7.11: Comparison between the aerodynamic characteristics of the mem-
brane blade and the rigid blade
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Figure 7.12: Comparison of the camber line at the middle span section of the
second segment.

the pressure coefficient distribution over blade’s surface. The pressure coeffi-
cient distribution over the middle span section of segment 2 is plotted in Fig.
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Table 7.6: Maximum camber and its location for the middle span section of
the second segment from the root

α(deg) 0.0 2.0 4.0 6.0 7.5 9.0

Maximum Camber % 0.34 0.93 1.91 2.82 3.29 3.17
Location of maximum camber 71.48 73.53 73.51 71.45 69.40 69.40

7.13 and is compared with pressure coefficient distribution of the rigid blade
for α = 6.0◦. The kink in the cp distribution is due to slope discontinuity at
the point where the lower membrane is attached to the rigid leading edge mast.
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Figure 7.13: Pressure coefficient distribution over the middle span section of
the second segment.

To sum up, comparing the performance of the membrane blade with its repre-
sentative rigid counterpart the following main observations are made:

1. A higher lift curve slope for the membrane blade is observed. Even
though at zero angle of attack the membrane blade has a smaller lift
coefficient than the rigid blade, due to the higher slope of the lift curve,
the membrane blade shows higher lift coefficient compared with the rigid
blade for higher angles of attack.

2. With the increase of angle of attack the lift to drag ratio of the membrane
blade becomes higher than that of the rigid blade.

3. The maximum camber and its location for a membrane blade depends
on the angle of attack. The maximum camber of the membrane blade is
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higher than the rigid blade. With the increase of angle of attack, there is
a slight shift of the point of maximum camber toward the leading edge.

7.2.2 Transient FSI analysis

This section presents the transient FSI analysis of the membrane blade with the
same structural properties and pre-streeses as in section 7.2.1.

For solving the fluid problem pimpleDyMFoam solver is used with slight mod-
ification for managing the data exchange between the fluid and the structural
solver. The computational domain together with its discretization near the
blade is presented in Fig. 7.7. As in the steady FSI simulations, the simu-
lations are done for a uniform far-field velocity of 30m/s and up to an angle
of attack of α = 15.0◦ is simulated. Until α = 11.0◦, the same mesh as in the
steady state simulations has been used, but for α = 13.0◦ and α = 15.0◦ a finer
mesh consisting of about 4.4 million elements has been used. The refinement
has been mainly made near the blade and in the wake region.

The coupled problem of the interaction between membrane deformation and
external fluid flow is solved for a total of 6 seconds with a time step size of
0.001 seconds. In order to improve the stability, the calculated displacement
at each iteration is relaxed by a factor (ωr) between 0.1 and 0.3 (depending on
the angle of attack) before being sent to the fluid solver (Eqn. 7.1).

Blade profile comparison

As a result of the applied aerodynamic load, the membrane on the upper side
of the blade moves upward and on the lower side, depending on the angle of
attack, the membrane moves either downward or upward. Blade’s cross section
at the ribs remains unchanged (S809 profile), but apart from the 5 ribs, the
cross section changes along the blade. Comparison of the mean cross section
profile with the undeformed cross section and the S809 profile is made in Fig.
7.14 for the mid-span section of segment 2. There are small oscillations in
the membranes up to α = 11.0◦ (Fig. 7.15). Since the amplitude of these
oscillations is small, the time-averaged profiles are represented in Fig. 7.14.
Due to the unsteadiness of membrane’s vibration at α = 11.0◦ α = 13.0◦

and α = 15.0◦ and due to wave-type oscillations in the membranes, no time-
averaged profile is shown for these angles of attack.
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α = 11.0°α = 9.0°α = 7.5°

α = 6.0°α = 4.0°α = 2.0°

Figure 7.14: Blade’s cross section comparison: S809 profile (black), unde-
formed profile (blue) and deformed profile (red).

Displacement over Time

Displacement of the membrane at a selected monitor point on the upper mem-
brane which is located at x/c = 0.5 position on the mid-span cross section of
segment 2 is plotted in Fig. 7.15. For the seven studied angles of attack oscilla-
tions in the membrane are damped out with time for all except α = 11.0◦. For
this case, displacement at the monitor point oscillates around a mean value of
0.0181mwith a standard deviation of 2.54×10−5. As it can be seen in the fig-
ure, for α = 0.0◦ to α = 9.0◦, displacement is increasing with angle of attack
but for α = 9.0◦ and α = 11.0◦ there is a decrease in the displacement. Taking
the acting forces on the blade into account, it is not the lift force which corre-
lates with the displacement of the membrane, but a correlation exists between
the displacement of the monitor point and the lift to drag ratio (Fig. 7.16).
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Figure 7.15: Membrane displacement at the monitor point
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Camber Line

As a result of membrane’s deflection, blade’s camber changes. As previously
mentioned, the S809 airfoil has a maximum camber of about 1% located at
82.3% chord position. Under the action of the applied aerodynamic load, the
maximum camber increases with the angle of attack. As shown in Fig. 7.17
and as seen in the steady-state analysis, the point of maximum camber shifts
toward the leading edge. Starting from α = 4.0◦ the membrane blade has
higher camber compared with the baseline blade.
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Figure 7.17: Camber line at the mid-span section for the second segment form
blade’s root.
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Table 7.7: Maximum camber and its location for the membrane blade

α(deg) 0.0 2.0 4.0 6.0 7.5 9.0 11.0

Max Camber (%) 0.38 0.67 1.14 1.78 2.26 2.52 2.63
Location of Max Camber 65.2 63.2 63.2 63.2 61.2 60.0 52.0

Aerodynamic Coefficients

Because of vortex shedding at the cylindrical part of the blade, flow separation
at higher angles of attack (α = 9.0◦ and α = 11.0◦) and slight oscillations in
the membrane, the force acting on the membrane blade has also an oscillatory
behavior (Fig. 7.18). Spectral analysis of the lift coefficient is shown in Fig.
7.19, the two dominant frequencies correspond to vortex shedding at the root
section of the blade and flow separation over the blade.
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Figure 7.18: Lift coefficient for the membrane blade, α = 9.0◦.

Membrane vibrations change the spectral response of the loading on the blade
which is of utmost importance in fatigue analysis of the blade. The compari-
son of the spectra of the lift coefficient between the membrane blade and the
baseline blade is shown in Fig. 7.20. There is a shift toward the right for
the dominant frequency of the membrane wing. Furthermore, the amplitude
of the oscillation in the lift coefficient at the dominant frequencies is less for
the membrane blade, which can be an advantage over the rigid blade regarding
fatigue lifetime of the blade.

Comparison of the lift coefficient, drag coefficient and the lift to drag ratio
between the membrane blade and its rigid counterpart is made in Fig. 7.21. As
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Figure 7.19: Spectral analysis of the lift coefficient, α = 9.0◦.
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Figure 7.20: Change of the dominant frequencies for the membrane blade com-
pared with the rigid blade.

in the steady-state analysis, for α = 0.0◦ the membrane blade has a smaller
lift coefficient compared with the rigid blade, but with the increase of angle
of attack the camber, and consequently the lift coefficient increases for the
membrane blade. Even though the zero angle of attack lift coefficient is smaller
for the membrane blade, the slope of the lift curve is higher for the membrane
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blade and starting from α ≈ 4.5◦ the lift coefficient is higher for the membrane
blade.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

c
L

Rigid Blade

Membrane Blade

0 2 4 6 8 10 12 14 16
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

c
D

Rigid Blade

Membrane Blade

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

L
/D

Rigid Blade

Membrane Blade

Figure 7.21: Comparison between the aerodynamic characteristics of the mem-
brane blade and rigid blade

Pressure Distribution Comparison

Improvement of the lift coefficient for the membrane blade over the rigid base-
line blade can also be seen in the pressure distribution over the blade. The
comparison is made in Fig. 7.22 for the pressure coefficient at the mid-span
section of segment 2. The kink in the pressure coefficient distribution for the
membrane blade is due to discontinuity in surface slope at the point where the
membrane is attached to the rigid leading edge.

In summary, the lift coefficient at zero angle of attack is smaller for the mem-
brane blade, but due to the higher lift curve slope the membrane blade demon-
strates higher lift coefficient and lift to drag ratio for higher angles of attack
compared with the rigid blade. An increase of camber with the angle of attack
and also shifting of the point of maximum angle toward the leading edge is ob-
served for the membrane blade. The maximum lift to drag ratio is also larger
for the membrane blade. These results together with the lighter construction of
the membrane blade promise the potential of this concept for wind turbines.
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Figure 7.22: Pressure distribution comparison, rigid blade (blue), membrane
blade (red)

7.3 BEM for Analysis of the Membrane Blade

As already discussed in chapter 2, the blade element momentum (BEM) method
is the most common approach for calculating aerodynamic loads on a wind tur-
bine and analyzing its aerodynamic performance [21]. The method is very fast
and provides good results if accurate lift and drag coefficient data as a function
of the angle of attack are available. The classical BEM method cannot be ap-
plied to the membrane blade because the actual shape of blades’s cross section
is not known in advance for a specific operating condition of the turbine (wind
speed, rotational speed and pitch angle). Consequently, lift and drag coeffi-
cients for the 2D sections of the blade cannot be read from look-up tables.

This section introduces the coupled panel-BEM approach for analyzing the
membrane blade via FSI. The proposed method uses the three-dimensional
panel code solver (Section 3.2) for calculating the pressure distribution over
the surface of the blade in order to estimate the aerodynamic loading for calcu-
lating the shape of the blade, combined with the two-dimensional panel method
solver (Section 3.1) for polar calculations of the 2D blade sections. The 2D vor-
tex panel method replaces the look-up tables for the lift and drag coefficients
and calculates these coefficients on the run during the FSI iterations.

7.3.1 Steady-State FSI Analysis via Panel-BEM Coupling

A typical FSI analysis using the staggered approach consists of a fluid solver
and a structural solver with the two solvers exchanging information at the
fluid-solid interface. Evaluating the aerodynamic performance of the mem-
brane blade via BEM-Panel coupling in a fluid-structure interaction workflow
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requires two levels of coupling and hence two levels of communication. First
of all, the structural solver needs to communicate with the fluid solver in or-
der to exchange loading and displacement data. Secondly, on the fluid side,
the vortex panel solver needs to receive the induced velocities from the BEM
solver at each iteration in order to update the relative velocity at each blade
section.

During the explicit coupling iteration these steps are performed for each itera-
tion in the following order:

1. The BEM solver calculates the induced velocities for all radial blade
sections and sends them to the 3D panel solver.

2. The panel solver updates the relative velocity by taking the induced ve-
locities into account and solves the fluid problem. The resulting forces
are then sent to the structural solver.

3. The structural solver calculates the displacements and sends them to the
BEM solver, the 2D panel solver and the 3D panel solver.

The above-mentioned steps are taken for each iteration until convergence is
reached. For the iterative solution of the BEM a relative tolerance of 10−6 for
the convergence of the axial and tangential induction factors is used. The same
tolerance is also used for the convergence of the coupling iterations between the
fluid solver and the structural solver. The schematic representation of a single
coupling iteration is shown in Fig. 7.23. The individual blocks are explained
in more detail in the following sections.

7.3.1.1 BEM Solver

The solution procedure for the classical BEM method is presented in Section
2.3.3. In order to utilize the BEM method for analysis of the membrane blade,
the look-up tables for lift and drag coefficients should be substituted by some
tool which receives the actual 2D profile of the blade at different radial sections
and calculates the lift and drag coefficients on the run.

For this purpose, the 2D panel code solver, presented in section 3.1, is inte-
grated into the BEM solution procedure. The iterative solution algorithm for
the BEM method coupled with the 2D panel solver is summarized in Algorithm
5. The output of the BEM solver are the induced velocities which are sent to
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Figure 7.23: Realization of FSI coupling: sequence of data transfer between
the solvers.

the 3D panel solver in order to update the relative velocity before calculating
the pressure distribution over the blade.

for each element do
initialize a and a′;
while convergence = false do

calculate the relative flow angle (eqn. 2.28);
calculate angle of attack (eqn. 2.29);
// 2D Panel method
2D profile discretization;
calculate panel properties;
calculate the influence coefficients;
calculate the RHS;
solve for vortex strength;
calculate pressure distribution;
calculate Cl and Cd;
calculate Cn and Ct (eqn. 2.31);
calculate a and a′ (eqns. 2.40 and 2.41);
check convergence;

end
do the post-processing;

end

Algorithm 5: The iterative BEM solution for the membrane blade.
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7.3.1.2 3D Panel Solver

Both, the geometry of the blade and the velocity seen by the blade, should be
updated at each iteration. The geometry update is made after receiving the new
displacement field from the structural solver. The velocity at rotating blade
consists of three components. They are: wind velocity, rotational velocity and
the induced velocity:

urel = U0 + Urot + W (7.2)

These components are shown in Fig. 7.24. The 3D panel solver receives the
induced velocities, calculated by the BEM solver, and updates the total velocity
vector before solving the problem for the new coupling iteration.

Rotor plane

z

yU

U

W U

rel

0

rot

Figure 7.24: Components of the total velocity vector.

7.3.1.3 Structural Solver

In the last step of each coupling iteration, the structural finite element solver
(CARAT++) receives the loading from the fluid solver and calculates the dis-
placement. The calculated displacement is sent back to the fluid solver. The
Fluid mesh is updated by applying the received displacement to the mesh
nodes. Mortar mapping is used for interpolating the data at the non-matching
FSI interface.

The overall algorithm for performing the steady-state FSI analysis of the mem-
brane blade via Panel-BEM coupling is presented in algorithm 6. The color
coding in the algorithm follows that of Fig. 7.23. The proposed workflow
is verified by testing it for the NASA-Ames Phase VI wind turbine, which is
used as the baseline rigid blade. The obtained pressure distribution at the radial
position of r

R = 0.8 for a wing velocity of U = 7m/s and a pitch angle of
θp = 3◦ is presented in Fig. 7.25. The comparison is made with the numerical
and experimental results in [39].
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Figure 7.25: Comparison of the pressure distribution obtained using the
proposed work flow with numerical and experimental data.

7.3.1.4 results

FSI analysis of a membrane blade via Panel-BEM coupling is presented in
this section for a specific membrane blade based on the NASA-Ames Phase
VI turbine. The finite element model of the blade (consisting of the 5 parts is
shown in Fig. 7.2) is shown in Fig. 7.26.

Segment 1

Segment 2

Segment 3

Segment 4

Figure 7.26: The finite element model of the membrane blade.
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while convergence = false do
for each coupling iteration do

update the fluid mesh;
for each radial element do

initialize a and a′;
while BEMconvergence = false do

calculate the relative flow angle (eqn. 2.28);
calculate angle of attack (eqn. 2.29);

// 2D Panel method
2D profile discretization;
calculate panel properties;
calculate the influence coefficients;
calculate the RHS (eqn. 3.19);
solve for vortex strength;
calculate pressure (eqn. 3.21);
calculate Cl and Cd;

calculate Cn and Ct (eqn. 2.31);
calculate a and a′ (eqns. 2.40 and 2.41);
check BEMconvergence;

end
end
write BEM output;
calculate panel properties; // 3D panels
update the local velocity (eqn. 7.2);
calculate 3D influence coefficients;
calculate the RHS;
solve for vortex strength;
calculate pressure;
send force;
write output;
receive force;
calculate displacement;
send displacement;

end
check convergence;

end
Algorithm 6: The iterative BEM solution for the membrane blade.

Blade’s root, as well as its leading edge, are assumed to be rigid. Upper and
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lower surface of the blade are modeled using membrane elements, the ribs are
modeled as beams and the pre-stressed edge cables are modeled as trusses.
Their properties are summarized in table 7.1.

The membrane’s pre-stress is set individually for the upper and lower mem-
branes of the four segments of the membrane blade. Since the rotational veloc-
ity, and consequently the loading, increases towards the tip of the blade, higher
pre-stress should be applied to the to the outer segments of the blade. This
scaling is made via the local scaling factor (Sl). In addition to the scaling with
respect to the local rotational velocity, the variation of membrane dimensions
should also be reflected in assigning the pre-stresses. This is taken care of by
introducing a geometrical scaling factor for the pre-stresses (Sg). The four seg-
ments of the blade have similar span length, but their chord length decreases
towards the tip. As a result, the pre-stresses in chordwise direction should de-
crease towards the tip of the blade. The goal of introducing the scaling factors
for the pre-stress distribution at different blade segments is to minimize the
difference in membrane deflection at different sections and to ensure sufficient
flexibility of the membranes. After deciding for a reference pre-stress state in
the membranes and the edge cables, these reference pre-stresses are scaled with
a geometrical scaling factor (Sg) and a local scaling factor (Sl) and assigned to
the corresponding structural parts:

σc,i = σc,0 × Sl,i × Sg,i (7.3)

σs,i = σs,0 × Sl,i (7.4)

σcable,i = σcable,0 × Sl,i × Sg,i (7.5)

Where σc and σs are respectively membrane’s pre-stress in chordwise and
spanwise direction and σcable is the pre-stress in the edge cable.

In order to study the pre-stress dependent performance of membrane blade,
three sets of pre-stresses are examined. These pre-stresses are summarized
in Table 7.8. The superscripts u and l are used respectively for pre-stresses
of the upper and lower membranes. Compared with the S1 pre-stresses, in
pre-stress set S2 the pre-stress in spanwise direction is doubled for the lower
membranes. In the S3 pre-stress set all the pre-stresses are reduced by about
33% compared with S1. Deflection of the membrane at the suction side of the
blade for the S3 pre-stress set is shown in Fig. 7.27. For each segment, the
maximum displacement occurs at the middle of the segment.
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Table 7.8: Pre-stress sets and the scaling factors according to Eqns. 7.3 and
7.4.

S1 S2 S3
σuc,0(kPa) 25 25 16.6
σus,0(kPa) 67 67 44.6
σlc,0(kPa) 25 25 16.6
σls,0(kPa) 67 134 44.6

σcable,0(kPa) 4160 4160 4160
Sl,1 2.2 2.2 2.2
Sg,1 1.0 1.0 1.0
Sl,2 2.4 2.4 2.4
Sg,2 0.86 0.86 0.86
Sl,3 4.6 4.6 4.6
Sg,3 0.72 0.72 0.72
Sl,4 6.0 6.0 6.0
Sg,4 0.59 0.59 0.59

Figure 7.27: Displacement (m) distribution for the suction side of the blade
for the S3 pre-stress set. (U = 8m/s, θp = 5◦)

Comparison of the power produced by the membrane blade with the baseline
blade is made in Fig. 7.28. The generated power for the rigid blade is also
calculated using lift and drag coefficients calculated by the 2D panel code. It
should be kept in mind that the method over-predicts the power because viscous
effects are neglected in the panel method, but the over-prediction is happening
for both the rigid blade and the membrane blade. The percentage change in the
power compared to the rigid blade is reported in Table 7.9. With the increase
of membrane’s deflection for higher wind speed, the power generated by the
membrane blade exceeds that of the rigid blade. The S3 pre-stress set provides
the highest improvement among the three examined pre-stress levels. This is
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due to higher flexibility of the membrane blade for the S3 pre-stress set, which
results in higher deflection of the membranes and consequently higher camber,
which will be examined in more detail in the following sections.

Figure 7.28: Power comparison: membrane blade vs rigid blade.

Table 7.9: Percentage change in power compared with the rigid blade.

Wind speed (m/s) 5.0 6.0 7.0 8.0 9.0 10.0
S1 -6.7 -0.5 3.0 4.7 5.7 6.2
S2 -9.3 -3.8 -0.4 1.6 2.9 3.7
S3 -5.5 1.4 4.6 6.0 6.9 7.1

Comparison of the Deformed Shapes

The cross section of the membrane blade at the middle of the third segment is
presented in Fig. 7.29. The figure shows the results of the S3 pre-stress set for
different wind velocities (U ). Both deformed and undeformed cross sections
are presented. For lower wind velocities there are suction regions on both sides
of the blade and parts of the lower membrane move downward, causing the
profile thickness to increase. But as the wind speed increases, above 8m/s
in this case, only positive pressure is observed at the side of the blade which
faces the wind. With the upward movement of the lower membrane, the profile
thickness decreases and at the same time the camber increases. Comparison of
the change in camber is made in the next section.
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U = 5 m/s U = 6 m/s

U = 7 m/s U = 8 m/s

U = 9 m/s U = 10 m/s

Figure 7.29: Profile comparison at the middle of the third segment (S3
pre-stress set). The arrows and the legends correspond to the displacement

(m).

Camber Comparison

The cross section and consequently the camber line changes for the membrane
blade along the span. Fig. 7.30 shows the camber line for the middle section
of the third segment. The camber line is plotted for the converged profile and
is compared with that of the baseline conventional rigid blade, i.e. the S809
airfoil. The change in the horizontal position of the trailing edge by the increase
of wind speed from 5m/s to 10m/s is about 0.1% and is hardly visible in
the figure. For the same velocity increase, the vertical displacement of the
trailing edge increases by a factor of 2.7. The maximum camber increases
with the increase of wind speed. The point of maximum camber is as well
shifted towards the leading edge. For the S809 airfoil the maximum camber is
about 1% and its location is at x/c = 0.823. For the membrane blade at the
middle section of the third segment, the maximum camber and its location are
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Table 7.10: Maximum camber and its location for the middle section of the
third segment. (S3 pre-stress set.)

Wind speed (m/s) 5.0 6.0 7.0 8.0 9.0 10.0
Maximum camber % 1.22 2.31 3.33 4.23 5.12 5.60
Location of maximum
camber (xc × 100)∗

73.6 70.7 66.7 63.7 60.7 55.9

summarized in Table 7.10.
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Figure 7.30: Camber line comparison at the middle of the third segment. (S3
pre-stress set)

Comparison of the Angle of Attack

In this section, the local angle of attack along the blade for the flexible mem-
brane blade is compared with the baseline rigid blade. The variation of the
angle of attack (and chord length) with the deflection of the trailing edge (Fig.
7.31) is taken into account in calculating the effective angle of attack and chord
length for the membrane blade.

The comparison is depicted in Fig. 7.32 for the wind speed of U = 8m/s at
the pitch angle of θp = 5◦. The vertical lines show the position of the ribs.
The maximum local angle of attack along the blade is about 10.2◦. Apart from
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|AB| = undeformed chord length

|AC| = deformed chord length

Figure 7.31: Change of the angle of attack and chord length as a result of
trailing edge’s deflection.

a portion of the first segment, for the other segments the membrane blade the
local angle of attack for the membrane blade is smaller than the stall angle of
attack for the S809 airfoil. Therefore, for this operating condition of the turbine
the results from panel method are valid .
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Figure 7.32: Comparison of the local angle of attack between the membrane
blade and the baseline rigid blade for the S3 pre-stress set. (U = 8m/s,

θp = 5◦ )

Apart from the first segment, for the other segments the membrane blade has a
smaller local angle of attack compared to the rigid blade. Despite lower local
angle of attack along most parts of the blade for the membrane blade compared
with the rigid blade, the generated power by the membrane blade is higher. This
should be attributed to the change in blade’s cross section and the increase of
camber in the membrane blade. This is also reflected in the distribution of the
lift coefficient along the blade which is shown in Fig. 7.33. Since for each
blade segment the maximum deflection of the membrane occurs at the middle
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of the segment, the camber of the blade’s profile has a local maximum in the
middle of each segment. Consequently there exists a local maximum for the
lift coefficient at the middle of each segment as well. At the first segment the
lift coefficient is smaller for the membrane blade (which is discussed in the
next section), but at the other three segments, the membrane blade has higher
lift coefficient. Base on the Betz theory, for an ideal rotor and with neglecting
the drag force and wake rotation the optimum energy extraction from the wind
occurs at an axial induction factor of 1

3 . For the three outer segments of the
blade, the axial induction factor of the membrane blade is higher than the rigid
baseline blade (Fig. 7.34). Overall, the axial induction factor along the blade
is nearer to the optimum axial induction factor for the membrane blade.
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Figure 7.33: Comparison of the 2D lift coefficient between the membrane
blade and the baseline rigid blade for the S3 pre-stress set. (U = 8m/s,

θp = 5◦ )

Pressure distribution comparison

In order to investigate the difference between the lift coefficient of the mem-
brane blade and the rigid blade for the operating condition presented in the
previous section, first the converged blade cross section is compared with the
rigid blade’s airfoil profile (S809 airfoil). This comparison is made in Fig.
7.35. Both the thickness and the camber of the airfoil increase toward the tip
(segment 4).

The higher lift coefficient at segments 2 to 4 and lower lift coefficient at the first
segment of the membrane blade compared with the rigid blade can be explained
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Figure 7.34: Comparison of the axial induction factor between the membrane
blade and the baseline rigid blade for the S3 pre-stress set. (U = 8m/s,

θp = 5◦ )

Segment 1 Segment 2

Segment 3 Segment 4

Figure 7.35: Comparison of membrane blade’s cross section and the rigid
blade cross section (black) at the middle of the 4 segments.(S3 Pre-stress set,

U = 8m/s, θp = 5◦ )

by the pressure distribution over the membrane blade and its comparison with
the baseline rigid blade. Fig. 7.36 shows the distribution of the pressure coeffi-
cient at the middle of the four blade segments. The area enclosed by the curve
measures the lift coefficient. As it can be seen, for the first segment the pres-
sure difference between the suction and the pressure side is higher for the rigid
blade and as a result, the rigid blade demonstrates a higher lift coefficient at
the first segment. With the increase in profile’s camber the pressure difference
between the suction side and the pressure side of the membrane blade increases
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and the area enclosed by the cp curve of the membrane blade gets larger than
that of the rigid blade.
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Figure 7.36: Pressure coefficient distribution comparison between the mem-
brane blade and the rigid blade for the S3 pre-stress set. (U = 8m/s, θp = 5◦)

Tangential force comparison

The tangential force (pT ) is the force component whose work generates power
in a wind turbine. As reported in Table 7.9, depending on the wind speed,
the power generated by the membrane blade is higher than the rigid blade.
This holds apart from the wind speed of U = 5m/s, which is also reflected
in the distribution of the tangential force along the blade, presented in Fig.
7.37 for the S3 pre-stress set. For U = 5m/s the tangential force is lower
for the membrane blade at each of the four segments. For U = 8m/s and
U = 10m/s, the membrane blade has lower tangential force at segment 1,
but a higher tangential force at the 3 other segments and overall higher power.
However, the distribution of the tangential force for the membrane blade is not
as smooth as for the rigid blade which is due to the variation of the blade’s
profile in the radial direction.
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Figure 7.37: Comparison of tangential force distribution between the rigid
blade (full line) and the membrane blade (dashed line). (S3 Pre-stress set,

θp = 5◦ )

7.3.2 Transient FSI Analysis via Panel-BEM Coupling

The methodology presented in section 7.3.1 can also be applied for performing
unsteady FSI analysis of the membrane blade. For the transient FSI analysis,
instead of the steady state BEM solver and panel code, the corresponding un-
steady versions presented respectively in sections 2.5 and 3.3 are used together
with a dynamic analysis solver for the structure side.

Unsteady FSI analysis of the same membrane blade configuration as in section
7.3.1 with the same structural properties (Table 7.1) is presented in this section.
The coupled problem of the interaction between the rotating membrane blade
and wind is simulated for 10 seconds with a time step size of ∆t = 0.01s and
for the wind speed range of 5− 10m/s. The analysis is performed for the S3
pre-stress set (Table 7.8). On the structural side, the Newmark-Beta method is
used for the time integration and structural damping is modeled via Rayleigh
damping. The transient response of the membrane to the uniform wind as well
as to the mean atmospheric wind profile (including wind shear) is analyzed.

7.3.2.1 Uniform Wind

Unsteady FSI analysis of the membrane blade is presented in this section. The
aeroelastic behavior of the blade in the case of steady uniform wind can be
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used as a benchmark to verify the presented unsteady FSI workflow utilizing
the unsteady BEM solver and the unsteady vortex panel method. If there exists
a steady state solution, the result of the unsteady FSI analysis should converge
the steady state solution (already covered in section 7.3.1) or should oscillate
around the steady state solution in the case of a transient response.

Under the applied aerodynamic load the membrane starts to deform. For all
of the studied wind speeds, the membrane experiences an initial overshoot and
starts oscillating around a constant mean after about 2 seconds which corre-
sponds to approximately 2.5 revolutions of the blade. Fig. 7.38 shows the
membrane displacement at the middle of the suction side of the blade in seg-
ment 3 (Fig. 7.26). The amplitude of the oscillations is very small, with the
maximum amplitude for the 6 studied wind speeds being about 0.2% of the
mean displacement.
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Figure 7.38: Membrane displacement at the selected monitor point, θp = 5◦.

These small oscillations of the membrane surface cause fluctuations in the gen-
erated power. This is plotted in Fig. 7.39 for the wind speed of U = 8m/s.
Similar to the displacement oscillations, the amplitude of the power fluctua-
tions due to membrane vibration is also small. The maximum amplitude of
power fluctuations for the 6 studied wind speeds is about 1% of the mean
power. Furthermore, the transient power is oscillating around the steady-state
solution. Convergence of the transient solution to the steady state one demon-
strates the consistency between the two approaches.

As illustrated in Fig. 7.28, the membrane blade is more efficient in extracting
power from the wind and it becomes more efficient compared with the rigid
blade as the wind speed, and consequently membranes deformation, increases.
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Figure 7.39: Fluctuations in the generated power by the membrane blade
rotor, ( U = 8m/s, θp = 5◦).

This could also be confirmed by the distribution of the axial induction coeffi-
cient (Eqn. 2.12). The comparison of the axial induction coefficient between
the membrane blade and the rigid blade is made in Fig. 7.40. The red curves
correspond to the rigid blade and the blue ones show the convergence course
of the axial induction coefficient over time. The axial induction factor is a = 1

3
for the Betz-optimized rotor. As it can be seen in the figure, for U = 5m/s
the axial induction factor is higher for the rigid blade all over the blades. This
explains the higher power production by the rigid blade, compared with the
membrane blade at this velocity. With the increase of wind speed, the axial
induction factor of the membrane blade surpasses that of the rigid blade at the
outer segments of the blade, but not for segment 1. Overall, for the membrane
blade the axial induction factor is higher than the rigid blade and the blade op-
erates nearer to the Betz-optimized blade. This clarifies the higher predicted
power for the membrane blade, compared with the rigid blade.

7.3.2.2 Wind Shear

In this section aeroelastic behavior of the membrane blade including wind shear
is presented. The logarithmic velocity profile (Eqn. 2.105) is used rather than
the uniform profile. Consequently, the blade experiences a transient harmonic
loading with a period corresponding to blade’s rotational speed (72 RPM). This
increases the vibrations in the upper and lower membranes compared with the
case of uniform wind profile.
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Figure 7.40: Comparison of the distribution of the axial induction coefficient
over the blade between the membrane blade (blue) and the baseline rigid blade
(red) for different wind speeds.

Fig. 7.41 compares displacement of the membrane at the selected monitor
point in the middle of the suction side of segment 3. The amplitude of the
oscillations is obviously higher with wind shear. This should also lead to higher
fluctuations in the extracted power.

Fig. 7.42 presents the comparison of the generated power between the mem-
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Figure 7.41: Membrane displacement at the selected monitor point taking
wind shear into account (full line) and without wind shear (dot-dash line),

θp = 5◦.

brane blade and the rigid blade. Similar to the uniform flow situation (Fig.
7.28 and Fig. 7.40), also for the case of including wind shear the rigid blade
produces more power than the membrane blade for the hub-height wind speed
of U = 5m/s. For U = 6m/s the generated power is quite the same, but
for higher wind speeds, and with the increase of membrane deflection, the ex-
tracted power by the membrane blade surpasses that of the rigid blade. At
the same time power fluctuation due to wind shear is higher for the membrane
blade which is because of membrane’s vibration (Fig. 7.41).

Finally, the local change in axial induction factor over time is compared for the
two blades. Fig. 7.43 shows the local axial induction factor at the middle of
segment 3 for the membrane blade and the rigid blade. The same trend as in
the extracted power can be seen here as well, namely starting from the wind
speed of U = 6m/s the axial induction factor of the membrane blade is higher
than the rigid blade and consequently the membrane blade is more efficient.

7.4 High-fidelity FSI analysis of the rotating membrane blade

Multi-fidelity analysis of the non-rotating membrane blade has been presented
in section 7.2 and in section 7.3 analysis of the membrane blade using the
panel-BEM coupling approach has been covered for both steady state situa-
tion in non-rotating configuration and transient case including blade’s rotation.
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Figure 7.42: Comparison of the extracted power from the wind over time be-
tween the membrane blade and its corresponding rigid blade for different wind
speeds.

The proposed workflow for the transient FSI analysis of the membrane blade
in section 7.3.2 is a low-fidelity approach to facilitate accelerated analysis of
the membrane blade. The method is mainly based on panel method and, in
general, over-predicts the performance for both the membrane blade and its
corresponding baseline rigid blade. To overcome this shortcoming, the final
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Figure 7.43: Comparison of the axial induction factor between the membrane
blade and its corresponding rigid blade for different wind speeds.

design of the membrane blade needs to be analyzed using high-fidelity models
utilizing CFD for flow modeling. This section discusses the performance of
the membrane blade in rotating configuration via high-fidelity steady-state FSI
analysis. Multiple Reference Frame (MRF) solver in OpenFOAM is used for
modeling of the rotating blade. In the coming sections, first the model setup
in OpenFOAM is presented and verified for the case of the rigid blade. The
verified setup is then used for the FSI analysis of the membrane blade. Finally,
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comparison of the performance of the membrane blade with the baseline rigid
blade is discussed. Similar to the previous sections, the NASA-Ames Phase VI
wind turbine has been taken as the baseline rigid blade.

7.4.1 Simulation setup

Schematic representation of the computational domain used in the analysis is
presented in Fig. 7.44. The NASA-Ames Phase VI wind turbine is a two-
bladed turbine. Only one blade is modeled using periodic boundary condition
for the boundaries cyclicAMI1 and cylcicAMI2. The same blocking structure
as the one in Fig. 7.6 is used for generating the finite volume mesh using the
blockMeshDict in OpenFOAM. The utilized boundary conditions are summa-
rized in Table 7.11.

inlet

outlet

cyclicAMI1

blade

cyclicAMI2

farFieldWall

5R

3R

7R

Figure 7.44: Computational domain and its dimensions. R is rotor’s radius.

7.4.2 CFD analysis of the baseline rigid blade

Steady-state analysis of the rotating blade problem is performed using the sim-
pleFoam solver. Rotation of the blade is taken into account via Multi Reference



7.4 High-fidelity FSI analysis of the rotating membrane blade 167

Table 7.11: Boundary conditions for CFD simulations.

boundary U p nut nuTilda

inlet fixedValue
uniform (u, v, w)

zeroGradient fixedValue
uniform 1.03e− 5

fixedValue
uniform 6e− 5

outlet zeroGradient fixedValue
uniform 0 zeroGradient zeroGradient

farFieldWall slip slip slip slip

blade fixedValue
uniform (0, 0, 0)

zeroGradient nutkWallFunction fixedValue
uniform 0

cyclicAMI1&2 cyclicAMI cyclicAMI cyclicAMI cyclicAMI

Frame (MRF) in OpenFOAM. The SpalartAllmaras model is used for turbu-
lence modeling. The mesh consists of about 9.3 million elements. The blade
is discretized into 75 elements in the spanwise direction and into 240 elements
in the chordwise direction. The structure of the vortices in the wake of the
rotor and the induced rotation in the flow is graphically presented in Fig. 7.45
(U = 7m/s, θp = 5◦).

Figure 7.45: Vortex structures in the wake of the rotor.

To verify the simulation setup the obtained results have been compared with the
available experimental and numerical results. Comparison of the distribution
of the pressure coefficient over the blade with experimental and numerical data
reported in [39] is shown in Fig. 7.46 at r/R = 0.3 section and in Fig. 7.47
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at r/R = 0.8 section of the blade. There is a good agreement between the
OpenFOAM results and the reference results.
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Figure 7.46: comparison of the pressure coefficient at r/R = 0.3
(U = 7m/s, θp = 3◦)
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Figure 7.47: comparison of the pressure coefficient at r/R = 0.8
(U = 7m/s, θp = 3◦)

Next, comparison of the predicted power generation is made in Fig. 7.48 for
the pitch angle of θp = 5◦ and for wind speeds of 5, 7 and 9m/s. Again,
the calculated results match very well the reference results, with their relative
difference being less than 5%. The verified fluid setup is then used in the next
section for FSI analysis of the membrane blade.
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Figure 7.48: comparison of the calculated power (θp = 5◦).

7.4.3 FSI analysis of the rotating membrane blade

This section discusses the steady-state FSI analysis of the membrane blade in
rotating, uniform flow condition. The analysis is done for the pitch angle of
θp = 5◦ and for three different wind speeds: 5, 7 and 9m/s. The pre-stresses
are the same as the S3 pre-stresses reported in Table 7.8.

Suction side

Pressure side

Figure 7.49: Membrane deformation (U = 7m/s, θp = 5◦).

Form comparison

The geometry of the blade at the beginning of the FSI analysis is the outcome
of form finding analysis, which represents the equilibrium shape of the blade.
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Under the applied aerodynamic wind load, the membranes deform. The steady
state deformation of the blade for U = 7m/s is shown in Fig. 7.49.

Comparison of blade’s cross section (at the middle of each segment) between
the membrane blade and the baseline rigid blade is made in Fig. 7.50. Mem-
brane’s displacement increases toward the tip of the blade (segment 4), which
leads to higher camber in blade’s profile toward the tip. Next, the change in
camber is compared.

Segment1

Segment2

Segment3

Segment4

U=5 m/s U=7 m/s U=9 m/s

Figure 7.50: comparison of blade’s cross section. Red: rigid blade, Black:
undeformed membrane blade, Blue: deformed membrane blade.

Camber line comparison

Comparison of the camber line between the membrane blade and the baseline
rigid blade is presented in Fig. 7.51. The camber line in the middle of seg-
ment 1 and 4 is depicted in the figure. For U = 5m/s the rigid blade has a
higher camber . Furthermore, the point of maximum camber is shifted toward
the leading edge for the membrane blade. With the increase of membrane’s
deflection with the increase of wind speed, for U = 7m/s and U = 9m/s the
camber for the membrane blade is higher than the baseline rigid blade.
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Figure 7.51: Camber line comparison in the middle of blade segments.

Power comparison

Fig. 7.52 compares the generated power between the membrane blade and the
baseline rigid blade. The same trend from section 7.3.1 is observed in the high-
fidelity analysis of the membrane blade. The initial shape of the membrane
blade which is the result of form finding analysis is not an aerodynamically
optimal shape. In the initial shape, the cross section of the membrane blade at
different spanwise locations looks like shrunk airfoils. It is the deflection of the
membranes which changes the cross section profile of the blade and converts
the initial shape to a more airfoil-like shape. At the wind speed of U = 5m/s
the deflection of the membranes is apparently smaller than 7 and 9m/s and the
power generated by the membrane blade is slightly lower than that of the base-
line rigid blade. But with the increase of wind speed and respectively the in-
crease of membrane’s deflection and profile’s camber, the membrane blade sur-
passes the baseline blade in generating power. For U = 5m/s the membrane
blade generates about 1.5% less power, but for U = 7m/s and U = 9m/s
the membrane blade produces respectively 9.2% and 7% more which should
be mainly due to increase of profile’s camber compared with the rigid blade.

Pressure distribution comparison

Finally, the pressure distribution over the two blades is compared. The com-
parison is made in Fig. 7.53 for the wind velocity of U = 7m/s. The enclosed
area within the pressure coefficient curve shows the pressure difference be-
tween the suction and the pressure side of the blade which is the main contrib-
utor to the lift force. The membrane blade produces more power atU = 7m/s,
so it should have generated more lift. This is approved by the comparison of
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Figure 7.52: Comparison of the generated power.

the pressure distribution over the blade. Compared with the rigid blade the
enclosed area within the pressure coefficient curve of the membrane blade is
larger. For the first segment, the difference is less significant, but the relative
difference increases toward the tip of the blade.
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Figure 7.53: Comparison of pressure coefficient distribution at the middle of
blade segments (U = 7m/s).



8Summary and Conclusion

The goal of this dissertation was twofold: to develop an environment for multi-
fidelity aeroelastic analysis of wind turbine blades, and to analyze the potential
of using the sailwing concept for the design of wind turbine blades. To realize
the multi-fidelity analysis workflow, three methods were utilized for predicting
the aerodynamic loading on wind turbines. These methods are (ordered by in-
creasing complexity): the blade element method (BEM), vortex panel method
and CFD analysis.

Steady state and transient implementations of the BEM method were discussed.
The implementations were used for evaluating the performance of the NASA-
Ames Phase VI wind turbine and evaluating the loading on its blades. Further-
more, the transient BEM solver was linked with a turbulent inflow generator
for predicting the unsteady aerodynamic loading on the blade (taking both, at-
mospheric turbulence, as well as wind shear into account) and was coupled
with the developed structural dynamic solver based on modal decomposition
for aeroelastic simulation of the blade.

Implementation of 2D, 3D steady state and 3D transient panel method was dis-
cussed and the implementations were verified against reference results obtained
from XFLR5. Examples including simple wing geometries like a rectangular
wing were solved for cases like sudden acceleration and pitching oscillation of
the wing. The implemented 3D transient code was furthermore tested for more
complex geometries, i.e. wind turbine rotors. A good agreement between the
obtained result and the reference experimental and numerical (CFD) results
were observed.

The implemented panel method was then employed as the fluid solver to de-
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velop a low-fidelity FSI workflow via coupling between the panel code and
CARAT++. The developed workflow was tested for steady and transient anal-
ysis and was verified against high-fidelity FSI analysis using CFD for the fluid
side. The low-fidelity approach was about 25 times faster in the steady state
analysis and about 13 times faster in transient FSI analysis. The range of ap-
plicability of the low-fidelity FSI environment was studied and a very good
agreement between the low-fidelity and high-fidelity FSI simulations was ob-
served at this range.

Application of the sailwing concept to a sample membrane blade for wind tur-
bines was analyzed in three levels: multi-fidelity analysis in non-rotating con-
figuration, FSI analysis of the blade via panel-BEM coupling in transient and
steady state operation and finally, high-fidelity FSI analysis of the membrane
blade in rotating configuration. For the examined example in the non-rotating
configuration the slope of the lift curve and also profile’s camber were higher
for the membrane blade than the rigid baseline blade.

A methodology for FSI analysis of the membrane blade via panel-BEM cou-
pling was introduced. Two levels of coupling were utilized for evaluating the
performance of the membrane blade via BEM. The first level is the coupling
between the fluid solver and the structural solver in a typical FSI coupling it-
eration loop for calculating membrane’s deflection. The second level is the
coupling between the panel code and the BEM code, where the BEM solver
initially receives the lift and drag coefficients from the 2D panel code and then
sends the induced velocities to the 3D panel code for calculating the loading
on the blade. Using the proposed FSI analysis procedure for the membrane
blade via panel-BEM coupling, higher power production was predicted for the
membrane blade and the membrane blade was in general closer to the Betz-
optimum blade than the rigid baseline blade for the studied membrane blade
which has the same planform as the NASA-Ames Phase VI rigid blade.

Finally, high-fidelity FSI analysis of the membrane blade was performed us-
ing CFD for the fluid side. The rotation of the blade was modeled using the
Multi Reference Frame (MRF) approach in OpenFOAM. The same trend was
observed in the high-fidelity analysis as well. For lower wind speeds (5m/s in
the studied example) the rigid blade generates more power than the membrane
blade. But, for higher wind speeds and with the increase of membrane’s de-
flection and the consequent increase in profile’s camber, the membrane blade
generated more power.

To the author’s opinion, the membrane blade concept could have a great poten-
tial in facilitating the light-weight construction of wind turbines and reducing
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the cost of energy production from wind. However, the main focus of this
contribution was on evaluating the aerodynamic performance of such a blade
concept via FSI analysis. The following items list worthwhile topics for fur-
ther research in the membrane blade and possible challenges in the realization
of the concept.

• Analysis of the blade at higher wind speeds and unsteady operating con-
ditions.

• Coupling of the implemented panel method solver with boundary layer
models for modeling the viscous effects.

• Fatigue lifetime analysis of the membranes to gain insights about whether
the pre-stressed membranes could last for the typical 20-25 year lifespan
of a wind turbine.

• The problem of leading edge erosion for designs in which the mem-
branes are not attached to the leading edge mast at some distance away
form the leading edge, but are wrapped around it (as in the Princeton
sailwing windmill).

• Providing the required bending stiffness for the membrane blade. In
conventional blades, the stiffness of the blade is provided by internal
components like shear webs, which are glued to the pressure and suction
side of the blade and foam panels which are used to increase the stiffness
in the trailing edge. The membrane blade apparently requires a differ-
ent design for realizing the stiffness of the blade against the edgewise
and flapwise loading. The internal structural components in the space
between the pressure and the suction side of the blade could also prevent
the deformation of the membranes, in particular on the pressure side of
the blade.

• Integration of morphing mechanisms into the blade design to realize a
semi-active adaptive blade and exploiting the advantage of operating at
the optimal local angle of attack by actively adjusting the twist in the
blade segments at the ribs.
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AHypergeometric function

The hypergeometric function, 2F
1(a, b, c, z), is a solution of the hypergeomet-

ric differential equation,

z(1− z)F ′′ = abF − [c− (a+ b+ 1)z]F ′ (A.1)

where primes denote d
dz . For generation of anisotropic turbulence, the eddy

life time is calculated using this function. The arguments of the function for
this special case are:

a =
1

3
,

b =
17

6
,

c =
4

3
,

and
z = −(kL)2.

Analytic solution of Eqn. A.1 is available for special set of arguments, but
for the above set there is no analytic solution and function value should be
calculated by path integration method. For calculating the function value at
z1, the method starts from a point, z0, where the value of the function and its
derivative are known. z0 is connected to z1 via a line parameterized by:

z(s) = z0 + s(z1 − z0). (A.2)

Eqn. A.1 is written as a set of two first order equations:

dF

ds
= (z1 − z0)F ′, (A.3)
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and
dF ′

ds
= (z1 − z0)

(
abF − [c− (a+ b+ 1)z]F ′

z(z − 1)

)
. (A.4)

The line connecting z0 to z1 is divided to a number of segments. Starting
from z0 and using equations A.3 and A.4, at each step the value of function
and its derivative are calculated for the neighboring point until z1 is reached.
In the current the algorithm from [29] is used to calculate the hypergeometric
function.



BThe NASA-Ames Phase VI turbine

The NASA-Ames Phase VI turbine [70] is a two-bladed research wind tur-
bine designed and tested during the 80s (Fig. B.1). The primary purpose of
the testing campaign has been to provide experimental data regarding three-
dimensional aerodynamic behavior of horizontal axis wind turbines. It is a
stall controlled machine with the nominal rotational speed of 72 RPM. The
blade length is approximately 5.5 meters in the extended version and 5 meters
in the baseline blade. Blade’s cross section is the S809 profile. Chord and twist

Figure B.1: NASA-Ames Phase VI turbine, from [70]

distribution for the blade and its structural properties are summarized in Tables
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Table B.1: Blade chord and twist distribution, from [70].

Radial position (m) Chord (m) Twist (deg)
0 0.218 0

0.66 0.218 0
0.883 0.183 0
1.008 0.349 6.7
1.133 0.544 13.4
1.258 0.737 20.05
1.522 0.710 14.04
1.798 0.682 9.67
2.075 0.654 6.75
2.352 0.626 4.84
2.628 0.598 3.48
2.905 0.570 2.40
3.181 0.542 1.51
3.458 0.514 0.76
3.735 0.486 0.09
2.772 0.483 0.00
4.011 0.459 -0.55
4.288 0.431 -1.11
4.565 0.403 -1.55
4.841 0.375 -1.84
5.030 0.356 -2.00
5.118 0.347 -2.08
5.395 0.319 -2.36
5.533 0.305 -2.50

B.1 and B.2. The transition from cylindrical part at the root of the blade into
the airfoil sections takes palace from r = 0.883 to r = 1.257.
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