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ABSTRACT:

Building datasets (e.g. footprints in OpenStreetMap and 3D city models) are becoming increasingly available worldwide. However, the
thematic (attribute) aspect is not always given attention, as many of such datasets are lacking in completeness of attributes. A prominent
attribute of buildings is the year of construction, which is useful for some applications, but its availability may be scarce. This paper
explores the potential of estimating the year of construction (or age) of buildings from other attributes using random forest regression.
The developed method has a two-fold benefit: enriching datasets and quality control (verification of existing attributes). Experiments
are carried out on a semantically rich LOD1 dataset of Rotterdam in the Netherlands using 9 attributes. The results are mixed: the
accuracy in the estimation of building age depends on the available information used in the regression model. In the best scenario
we have achieved predictions with an RMSE of 11 years, but in more realistic situations with limited knowledge about buildings the
error is much larger (RMSE = 26 years). Hence the main conclusion of the paper is that inferring building age with 3D city models is
possible to a certain extent because it reveals the approximate period of construction, but precise estimations remain a difficult task.

1. INTRODUCTION

Nowadays many places around the world are covered with GIS
building data (2D footprints and 3D city models). While the
completeness of building datasets is continuously improving, at-
tributes are often lacking, and they have to either be integrated
from other sources or estimated (Kunze and Hecht, 2015; Hecht
et al., 2013; Barron et al., 2013). The issue is of both homoge-
neous and heterogeneous nature: (1) a certain attribute may not
collected at all due to the data specification not requiring it (e.g.
not uncommon in official data (Hecht et al., 2015)); and (2) the
completeness is varying across a dataset, which is a case inherent
to volunteered geoinformation (Camboim et al., 2015).

While most 3D GIS analyses rely primarily on the building ge-
ometry (e.g. line of sight analyses), there is a sizeable number of
analyses requiring particular attributes (Biljecki et al., 2015). For
example, energy demand estimation is such a case relying on sev-
eral attributes about buildings (Nouvel et al., 2015). Furthermore,
there are also some analyses in which attributes are not essential
but they provide added value to certain application domains. As
an example, population estimation is possible using only the ge-
ometry of a building. However, the knowledge of the type of
buildings significantly improves the results because it enables fil-
tering out non-residential structures (Ural et al., 2011; Biljecki et
al., 2016a).

There have been a few studies investigating the thematic com-
pleteness of GIS datasets (Mobasheri et al., 2017). For example,
Fan et al. (2014) analyse the attribute completeness of buildings
in OpenStreetMap (OSM) in Germany. The study reveals that
only 8.5% of buildings have the information on their type, and
less than 0.1% the number of storeys. In the only study we could
find that includes the year of construction of buildings, Agugiaro
(2016b) suggests that even relatively populated datasets such as
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the official dataset of Vienna (cf. 86% building use and 84% num-
ber of storeys), have lower levels of completeness (76%) of the
year of construction. While OSM has a tag for noting the year
of construction of a building (Goetz and Zipf, 2012), we did not
find studies investigating its completeness in practice. A quick in-
spection of OSM data covering different spatial extents revealed
that the completeness of the year of construction of a building is
scarce in most cases. This is not surprising considering the chal-
lenges to collect such information.

The goal of this paper is to investigate whether it is possible to
infer the age (i.e. year of construction) of buildings with 3D GIS
and machine learning. This work has multiple benefits, primar-
ily: (1) enriching datasets with this additional attribute (or supple-
menting datasets that have partial completeness of such informa-
tion); and (2) applications in data quality, i.e. verifying the values
of existing attributes, a topical subject since thematic quality of
building data is not very good in practice (Agugiaro, 2016a). Be-
cause building age is a standard attribute in many building data
specifications, this work has benefits for both 2D (building foot-
prints) and 3D GIS (e.g. CityGML).

Our work builds on other papers dealing with classifying and es-
timating building characteristics (Section 2). To the extent of our
knowledge, the estimation of year of construction of a building
has not been investigated, and in Section 3 we present our method
to infer it. We perform experiments on data representing build-
ings in Rotterdam in the Netherlands (Section 4).

Because the age of a building and its year of construction are both
used in literature, in this paper we use both terms interchangeably.
The year of construction is the attribute that is usually stored in
databases, from which age is often calculated in order to use them
in spatial analyses.
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2. BACKGROUND

2.1 Building age / year of construction

The attribute is conceptually featured in many papers in the
field (Isikdag and Zlatanova, 2009), and it is often collected by
authorities of different countries (Dalmau et al., 2014; Nouvel et
al., 2017). In the CityGML 2.0 standard of the Open Geospatial
Consortium (2012) the year of construction is one of the key at-
tributes for buildings and other features such as tunnels (Gröger
and Plümer, 2012).

While the year of construction is regularly part of many different
specifications, the attribute is in practice not always available, as
the introduction of this paper suggests. A possible reason for
such omission is that the year of construction of a building is
difficult to procure, in comparison with other usual (and ‘visually
obvious’) attributes such as building type, number of storeys, and
roof type.

Furthermore, there are not many papers demonstrating the at-
tribute’s use and value in practice. For example, the information
about the year of construction of a building is useful in applica-
tions such as urban planning (Dalmau et al., 2014). Most promi-
nently, it is relied heavily on in energy demand estimation (Mas-
trucci et al., 2014; Nouvel et al., 2015; Agugiaro, 2016a; Krüger
and Kolbe, 2012), as it may serve as a proxy for their energy
efficiency. Some researchers also include the year of refurbish-
ment in their simulations (Agugiaro, 2016a). Another possible
application of the attribute of building age is in procedural mod-
elling (Smelik et al., 2014), where the procedures may be context-
aware in such a way that a certain architectural style typical for
an era may be used for a building depending on its year of con-
struction.

Besides infrequent literature, a hindrance is that the papers do not
mention what is the acceptable level of quality of this attribute.
Hence, the results that we obtain in this paper cannot be evalu-
ated with respect to their usability in practice (e.g. it is uncertain
whether an estimation error of 10 years would still be acceptable).

2.2 Related work

There have been many research papers in GIS and remote sensing
on inferring additional knowledge of features, such as semantics
of surfaces in 3D city models (Rook et al., 2016), roof type from
2D data (Henn et al., 2013), and building type (Neidhart and Ses-
ter, 2004; Meinel et al., 2009).

Among other research efforts, our paper is influenced by the fol-
lowing related research in 3D GIS. Henn et al. (2012) use super-
vised learning (support vector machines — SVM) automatically
classifying the type of building from LOD1 models containing
a few building attributes (e.g. number of storeys) and several at-
tributes about the surrounding context (e.g. distance to nearest
school). The year of construction is however not mentioned in
the paper. Their work suggests that the building geometry (incl.
height) gives a hint at the building type, thus we investigate in this
paper whether age could also be successfully estimated in a simi-
lar fashion. A similar work was carried out by Hecht et al. (2015)
using a Random Forest classifier and by integrating multiple data
sources. In a regression problem, Biljecki et al. (2017) use several
building attributes (e.g. type, age) for predicting their heights, in
order to generate LOD1 models without elevation measurements.
Some of our work is inversely based on this paper, because among

other attributes we use the building height to predict age. Impor-
tant takeaways from the paper are: (1) building age is moderately
associated to storey height (older buildings in general tend to have
taller ceiling height; such a relation was also noticed by Kaden
and Kolbe (2013)); and (2) the complexity of the shape of the 2D
footprint may reveal additional information about the building.

3. METHODOLOGY

3.1 Random forest regression

In our work we use random forest (RF), which is an ensem-
ble learning method that can be used for regression (Breiman,
2001). RF fits a large number of decision trees on subsets of
the dataset. Advantages of RF are that it controls over-fitting
and enables computing measures to evaluate the importance of
different variables (i.e. feature importance) used for the predic-
tions (Grömping, 2009).

For the implementation we use Python and Scikit-learn (Pe-
dregosa et al., 2011).

3.2 Study area, data, and attributes

For the experiments we use a 3D city model generated from the
cadastral (2D) dataset of the City of Rotterdam and the Dutch
Kadaster obtained in 2015 (Figure 1), and a dense point cloud
from the national elevation dataset of the Netherlands (AHN).
The two datasets were combined with the open-source software
3dfier1 creating an extruded LOD1 model. An illustration of 3D
data generated from open resources of Dutch authorities is shown
in Figure 2.

Figure 1. Building footprints with the values of the year of con-
struction in the cadastral database of the City of Rotterdam and
Dutch Kadaster.

For each building we have the following attributes: (0) year of
construction (Figure 3 shows the distribution of values in Rotter-
dam), which we use for training and testing the regression model;
(1) building use (residential, mixed, non-residential); (2) building
height (which was calculated as the 90th percentile of the eleva-
tion of lidar points within the footprint, in order to avoid outliers
and vegetation (Biljecki et al., 2016b)); (3) footprint area; (4)
number of storeys above ground; and (5) building volume. We
also calculate (6) the ceiling height by dividing the height of the

1
https://github.com/tudelft3d/3dfier
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Figure 2. 3D city model of Rotterdam (LOD1). The model was
generated with 3dfier (open source software by TU Delft).

building with the number of storeys (see the discussion in Sec-
tion 2); (7) number of neighbouring buildings (in a buffer of 30
m around each building, in accordance with related work dis-
cussed in Section 2); (8) the complexity of the shape of the 2D
footprint (using a formula defined by Angel et al. (2010), which
indicates the compactness of the shape by comparing the ratio of
the perimeter of the equal-area circle with the perimeter of the
shape in question); and following the evident observation in Fig-
ure 1 that in many cases adjacent buildings have similar year of
construction we also calculate (9) the average year of construc-
tion of neighbouring buildings (using the same buffer of 30 m).
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Figure 3. Distribution of buildings in Rotterdam by year of con-
struction. The share of buildings constructed before 1860 is neg-
ligible.

Because RF is a supervised learning method, a training dataset is
required. Therefore we split the dataset into two halves: a training
(50%) and a test (50%) dataset.

3.3 Scenarios of completeness

As hinted at in the introduction, there are different situations of
attribute completeness in practice. For simplicity, we describe
three general situations. An attribute may: (1) not be available
since it is not supposed to be collected or its availability may
be scarce (it is supported but rarely acquired hence practically
non-existent, e.g. number of storeys in OSM is an example from
practice); (2) it might have heterogeneous completeness (e.g. it
is available for many but not all features); and (3) it might reach
full completeness (i.e. our dataset, which we use for training and
testing the method). Such scenarios are important to consider
when designing the predictive models, because in the case (2)
it would be possible to use the attribute where available to enrich
buildings where such is not available (e.g. calculating the average

age of buildings in the immediate neighbourhood and applying it
to other buildings, which would not be possible in the situation
(1) because of the lack of required information).

In parallel, because we rely on other attributes to infer the age
of a building, we should also consider different scenarios of their
completeness. For example, some building datasets might con-
tain the building use, but not the number of floors. This is espe-
cially the case in OSM.

Hence, we design and train 8 different prediction models repre-
senting different scenarios of completeness in practice, and we
evaluate their performance. The models will be given in the
next section in a tabular form (Table 1), and here a rationale be-
hind their design is explained. The model 0 takes advantage of
the building height and number of floors to calculate the ceil-
ing height, a potentially useful predictor of the building age as
discussed in recent literature (Biljecki et al., 2017). Model 1
adds building use, while model 2 includes also the geometric at-
tributes: footprint area, number of neighbours, volume, and shape
complexity of the footprint. Model 3 relies only on the five ge-
ometric attributes that are always available in 3D city models,
including in LOD1 models without semantics. The remaining
models focus on the surrounding context of a building: the aver-
age age of other buildings in the buffer around the building since
they tend to have equal or similar year of construction (Figure 1).
In practice, such an attribute would not be always available: this
prediction model would be applicable only in situations of hetero-
geneous completeness, being useful to improve the completeness
of existing datasets, filling missing attributes of other buildings.
Model 4 is therefore composed only of using the average year of
construction (no 3D GIS operation is actually used here), while
model 5 adds ceiling height, building height, and the number of
floors. Model 6 further upgrades model 5 with building use. Fi-
nally, model 7 includes all 9 attributes. Model 7 is also useful to
investigate how different variables interact with each other, and
to determine what are the most useful attributes for predicting the
year of construction of a building.

In the models 4–7 using data on the average year of construction
of adjacent buildings, about 1.5% of buildings were not consid-
ered because they did not have neighbours that are close enough
to consider them.

4. RESULTS AND DISCUSSION

4.1 General results

The errors are presented in both the mean absolute error (MAE)
and root mean square error (RMSE) following the recommenda-
tion of Chai and Draxler (2014). Furthermore, in order to obtain
a better understanding of the accuracy, for each model the per-
centile rank of a score was calculated. That is, the share of pre-
dictions that is below a certain value, in our case 15 years (this
quantity was chosen arbitrarily). For example, the value 60 indi-
cates that 60% of estimations have an error smaller or equal to 15
years.

The performance of the eight considered models is presented in
Table 1. The RMSE errors range from 14 to 28 years, while the
MAE errors are from 6 to 20 years. The percentile rank values
vary from 53% to 91%, meaning that in the worst performing
model a bit more than half of the estimations have an estima-
tion error within 15 years. The distribution of errors of the eight

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W5, 2017 
12th 3D Geoinfo Conference 2017, 26–27 October 2017, Melbourne, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W5-17-2017 | © Authors 2017. CC BY 4.0 License.

 
19



prediction models is also depicted in Figure 4, giving a visual
impression of their performance.

The different statistical models give different insights in what
can be achieved by having a certain combination of building at-
tributes. In the continuation of the section we will elaborate on
the performance of each model.

�40 �20 0 20 40

Error [years]

7

6

5

4

3

2

1

0

C
on

si
d
er

ed
m

od
el

s

Figure 4. Distribution of errors for all models as box plots. The
boxes span the interquartile range (the middle 50%). The line in-
side the rectangle indicates the median, while the whiskers cover
80% of the errors (10th and 90th percentile).

Model 0, targeted at taking advantage of the association of the
ceiling height and building age, without considering other at-
tributes, performed poorly with a mean absolute error of two
decades. Adding building use (model 1) improved the results
only marginally. While such an accuracy might still be accept-
able for some users, it should be noted that the errors span a large
range that in practice is not far from the lifespan of most buildings
(Figure 4). The results much improved by including the number
of floors and geometric attributes: the MAE dropped to 11.6 years
(model 2).

Model 3 considers a basic set of attributes which, being derived
from the geometry, are always available in LOD1 models. The re-
sults are similar to those of the previous model (model 2), which
contains the building use and number of storeys. This means that
the added set of semantics helps, but in this particular combina-
tion their value is not paramount.

The remaining models are suited for datasets that have partial
completeness, in which the average age of the neighbouring
buildings may be available. Only by considering the age of sur-
rounding buildings the results are much better than the previous
four models: the MAE drops to 7 years (model 4). Combining
this attribute with the attributes from model 0 yields predictions
with a mean absolute error of 6 years (model 5), while adding
building use (model 6) brings a minuscule improvement. Finally,
in model 7 all available attributes are combined. The MAE of the
estimations is less than 5 years, which would probably be accept-
able in applications such as energy demand estimation. How-
ever, it should be noted that such an estimation model requires
a dataset that is rich in semantics. The final model is interesting
also because it enables examining the relative contributions of the
variables (explained in the next section).

4.2 Feature importance

Table 2 overviews the importance of each variable in each model.
The two most important variables in each model are emphasised
in the table.

Ceiling height appears to be valuable for such predictions, since
in most models where it is used it was found to be among the two
most important features. However, a disadvantage of this attribute
is that it requires the information on the number of storeys, which
is not readily available, especially not in volunteered geoinforma-
tion. Furthermore, calculating ceiling height is subject to errors
and inconsistencies, as a fair share of buildings does not have a
constant ceiling height (e.g. the height of the lobby of a hotel may
be larger than the height of upper storeys).

In model 3, which features only geometric attributes, the building
height and shape complexity have the highest importance. The
latter is dependent on the architecture of the building. Hence a
possible explanation is that the geometry of the building footprint
is characterised by a certain period of construction of a building,
which in turn indicates its approximate age.

Models 4–7 involve the knowledge of the age of adjacent build-
ings, which has the predominant feature importance. When such
information is available, all other attributes have marginal feature
importance.

4.3 A closer look on model 2

Because of the large number of models and results, we rather
consider one model in more detail. Model 2 is selected as a rep-
resentative model for a closer inspection because it has an average
performance, but also because it is the model that would likely be
used in practice: it contains a standard set of attributes in datasets
that do not have information on the year of construction of build-
ings.

Figure 5 shows the histogram of errors of the estimations. The
errors have a mean around zero, and while the mean absolute
error is 11.6 years (Table 1), there is a share of predictions with
errors larger than 40 years.
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Figure 5. Histogram of errors for model 2.

Figure 6 offers more insight related to the percentile rank of score
presented in Table 1. For example, almost half (48.6%) of the
estimations are within 5 years, while 85.5% of the estimations
are within a quarter of century. Such performance might still be
acceptable for applications in which only the approximate period
of construction is needed. However, because no paper (to the
extent of our knowledge) discusses the required quality for the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W5, 2017 
12th 3D Geoinfo Conference 2017, 26–27 October 2017, Melbourne, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W5-17-2017 | © Authors 2017. CC BY 4.0 License.

 
20



Models
Attribute(s) 0 1 2 3 4 5 6 7

Ceiling height • • • • • •
Building height • • • • • • •
Number of storeys • • • • • •
Building use • • • •
Footprint area • • •
No. neighbours • • •
Volume • • •
Shape complexity • • •
Avg. neigh. age • • • •

RMSE [years] 26.5 26.3 19.4 21.0 14.6 12.9 12.8 11.3
MAE [years] 19.4 19.1 11.6 12.9 7.3 6.1 6.0 4.9
Percentile rank (score = 15 y) 52.9 53.6 73.8 70.6 85.4 87.9 88.2 91.0

Table 1. Combinations of attributes and the performance (accuracy) of the predictive models.

Feature importance per model/attribute
Attribute(s) 0 1 2 3 4 5 6 7

Ceiling height 0.63 0.59 0.32 0.05 0.05 0.03
Building height 0.36 0.35 0.17 0.38 0.05 0.05 0.02
Number of storeys 0.01 0.01 0.01 0.01 0.01 0.00
Building use 0.05 0.01 0.01 0.00
Footprint area 0.13 0.18 0.03
No. neighbours 0.09 0.11 0.02
Volume 0.11 0.12 0.02
Shape complexity 0.16 0.20 0.02
Avg. neigh. age 1.00 0.89 0.89 0.85

Table 2. Feature importance in the eight considered scenarios. The two most important variables in each model are emphasised.
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Figure 6. Cumulative histogram of estimation errors for model 2.

year of construction we can only speculate about the usability of
values with a specific degree of uncertainty.

Figure 7 illustrates the errors decomposed by decade of con-
struction. The classified boxplots reveal that the predictions ex-
hibit different behaviour depending on the age of the building,
in which the age of older buildings (i.e. from the 19th century)
tends to be overestimated. The overestimations are large. How-
ever, considering that the share of such buildings is low (see the
right side of the plot, or Figure 3), such an error does not signif-
icantly affect the overall results (see the rather narrow joint box
plot at the bottom). Such a finding is also observable in the ob-
served vs. estimated scatter plot given in Figure 8. In future work
it would be beneficial to investigate whether this behaviour can

be compensated reducing the errors.

Thanks to the availability of the attribute on building use, we have
also classified errors depending on it (Figure 9). It appears that
residential buildings have better estimates, indicating that build-
ing type plays a role in the estimations.

4.4 Limitations

A limitation of our work is that in order to derive building at-
tributes (in this case age), we need other building attributes,
which in practice may suffer from the same completeness issues
(e.g. according to the German study of Fan et al. (2014) only
0.06% of buildings in OSM contain the information on the num-
ber of floors). For that reason we have evaluated different scenar-
ios of availability of predictors. One of these scenarios (model
3) uses only features that are always available in LOD1 models
because they are derived from the geometry and no attributes are
used.

Another limitation is also related to completeness: supervised
learning requires training data including the year of construction
of a building. Training is inhibited by poor completeness, as it
might be not possible to obtain data in the area where the predic-
tions are carried out. Hence it might be required to train the mod-
els in one area and apply them to another area, which may exhibit
different relationships. However, we did not run experiments us-
ing data from other spatial extents, thus we cannot hypothesise
on the performance of the method in another city or country. It
would be interesting to investigate this aspect in future work.
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Figure 7. Errors in model 2 classified by period (decade) of con-
struction with the indication of the quantity of the relative sample
size (histogram on the right).

Figure 8. Observed vs. estimated plot (model 2) of the year of
construction of a building.

5. CONCLUSIONS AND FUTURE WORK

While it is one of the key building attributes in standards such
as CityGML, the year of construction of a building has not been
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Figure 9. Errors by type of building in model 2. The decom-
posed errors reveal varying accuracy depending on the type of
the building.

given much attention in practice and research. In fact, a literature
review did not reveal much use of the attribute (with the excep-
tion of energy demand estimation), and mentions of the attribute
are mostly found in papers related to standardisation. One pos-
sible reason for indifference towards this attribute is that even in
governmental datasets in many developed countries the year of
construction is either unavailable or only partially available. The
cause for the frequent omission of the year of construction of a
building is that it is difficult to obtain it in comparison to other
attributes such as building use or the number of storeys.

In this paper we made an attempt to fill such void by developing
a method that would automatically enrich 2D and 3D building
datasets with the value of the building year of construction. We
implemented and trained a random forest regression model to in-
fer the building age from a set of geometric and non-geometric
attributes commonly and some of them less frequently found in
3D city models. We hope that this paper will raise awareness of
such omission, and that it will help towards the increased avail-
ability of this attribute.

While most of the results that we have achieved are not very accu-
rate, at least they approximately indicate the period (i.e. decade)
when the building was constructed. Some of the prediction mod-
els did yield a fairly good estimation of the year of construction
of a building (e.g. model 7 predicted 91% with an error smaller
than 15 years), but they also exhibit a certain share of gross errors
(Figure 5).

Another interesting finding is that while attributes derived from
3D city models may help in determining the age of a building,
the knowledge of the age of neighbouring buildings is by far the
most useful indicator because adjacent buildings usually are con-
structed in the same period. However, that information is rarely
available.

In this paper we have used LOD1 models. Perhaps in future we
would obtain better results by using more detailed datasets. For
example, LOD2 models contain a generalised roof structure, as
opposed to flat top surfaces intrinsic to LOD1 models. The shape
of the roof would be known in such a case potentially providing
additional cue, and also a more accurate height of the building
could be obtained. Considering that in our method we have used
a percentile value of the lidar point cloud, the height of the build-
ing may be prone to errors not always indicating the top of the
roof (ridge height). Such an error may propagate to an error in
determining the ceiling height, a key piece of information for the
prediction of the building age, as we have demonstrated in Sec-
tion 4. With even more detailed models (LOD3), it might be
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possible to analyse patterns in the geometry identifying the archi-
tectural style of a building (see the paper of Dehbi et al. (2016)
for related work in 2D), which would perhaps hint at its period of
construction.

Furthermore, an interesting variable to investigate would be the
energy consumption. Building age is associated with energy ef-
ficiency (Nouvel et al., 2015; Kaden and Kolbe, 2013), thus it
might be useful to investigate whether the data on energy con-
sumption may be used to improve the predictions. Finally, it
would be interesting to research whether the age could be inferred
with remote sensing techniques (e.g. analysing roof reflections).
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Machine Learning in Python. Journal of Machine Learning
Research 12(Oct), pp. 2825–2830.

Rook, M., Biljecki, F. and Diakité, A. A., 2016. Towards auto-
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