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Abstract: We discuss the discrete formulation of sys-
tems of conservation laws in port-Hamiltonian form on
dual chain complexes. Based on integral balance equa-
tions and topological information, this representation
is exact and qualifies as a control model. The finite-
dimensional approximation requires an energy discretiza-
tion that yields discrete constitutive equations. We give
(i) a brief overview of discrete modeling of conserva-
tion laws on 𝑛-complexes and (ii) extend existing re-
sults by allowing for mixed physical types of boundary
inputs. This requires the construction of a primal and
a dual complex based on the underlying staggered grids
and the localization of the inputs on the system bound-
ary. Finally, (iii) we discuss the properties of the result-
ing structure-preserving discretization scheme based on a
consistency analysis for the 2D nonlinear shallow water
equations.
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Zusammenfassung: Wir diskutieren die diskrete
Beschreibung von Systemen von Erhaltungsgleichun-
gen auf dualen Kettenkomplexen in Port-Hamiltonscher
Form. Die Darstellung beruht auf den integralen Bilanz-
gleichungen und der Topologie der Diskretisierungsgit-
ter. Sie ist exakt und eignet sich als Regelungsmod-
ell. Die endlich-dimensionale Näherung erfordert eine
Diskretisierung des Energiefunktionals, welche auf
diskrete Konstitutivgleichungen führt. Wir geben (i)
einen kurzen Überblick über die diskrete Modellierung
von Erhaltungsgleichungen auf 𝑛-Komplexen. Die sys-
tematische Konstruktion der dualen Komplexe auf
Grundlage versetzter Gitter und der Verortung der Ran-
deingriffe erweitert (ii) bestehende Ergebnisse um die Ab-
bildung verschiedenartiger physikalischer Randeingänge.
Schließlich diskutieren wir (iii) am Beispiel der nicht-
linearen 2D-Flachwassergleichungen und auf Basis einer
Konsistenzanalyse die Eigenschaften des resultierenden
strukturerhaltenden Diskretisierungsverfahrens.

Schlüsselwörter: Erhaltungsgleichungen, Port-
Hamiltonsche Systeme, diskrete Formulierung, struk-
turerhaltende Diskretisierung, Finite Volumen.

1 Introduction
In a port-Hamiltonian (PH) system description, see Duin-
dam et al. (2009) for an overview PH-based modeling and
control, the interconnection structure (and the dissipative
structure) is separated from the constitutive equations.
The first describes the lossless exchange of power between
different types of energy, different system parts and the
exterior in terms of port variables, i. e. pairs of collocated,
power-conjugated physical quantities. Constitutive or clo-
sure equations can be derived from the stored energy or
another potential and determine the nature of the con-
sidered finite- or infinite-dimensional system (linear or
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nonlinear, hyperbolic or parabolic, see e. g. Baaiu et al.
(2009), Zwart et al. (2016)). Power ports as interfaces
between system parts make the PH approach appealing
for modeling, simulation and control of multiphysics, cou-
pled systems, see Falaize and Hélie (2016) and Cardoso-
Ribeiro et al. (2017) for two recent examples.

For the numerical treatment of infinite-dimensional
PH systems, see e. g. Altmann and Schulze (2017) for the
non-trivial example of the Navier-Stokes reactive flow, a
spatial (and finally temporal) discretization is necessary.
The range of existing methods that preserve the PH struc-
ture in the finite-dimensional approximate model runs
from mixed finite element methods using simple approx-
imation forms (Golo et al., 2004) or higher order shape
functions (Farle et al., 2013) up to pseudo-spectral meth-
ods (Moulla et al., 2012; Vu et al., 2017).

The approach presented in Seslija et al. (2012), Ses-
lija et al. (2014) employs the language of discrete exte-
rior geometry to formulate an integral representation of
two conservation laws on a simplicial triangulation and
its dual. The discrete linear constitutive relations are ob-
tained by use of a diagonal discrete Hodge operator. In
van der Schaft and Maschke (2013) and van der Schaft
and Maschke (2011), the PH formulation of conservation
laws on graphs and 𝑘-complexes is discussed. Hiemstra
et al. (2014) give an extensive overview over geometric
discretization – yet without boundary ports – which is
based on the purely topological description of the con-
servation laws on the one hand, and approximations of
the field variables, which commute with (exterior) differ-
entiation on the other hand. The latter “guarantees that
conservation and balance laws remain exactly satisfied in
the discrete setting” (p. 1456).

In the present paper, we refer mainly to the results in
Seslija et al. (2012), Seslija et al. (2014) and extend them
in the following directions. We derive discrete input-/out-
put representations for systems of two conservation laws
with arbitrary combinations of boundary inputs (in the
sense of their physical quantity, or causality of the bound-
ary port variables). To this end, we construct dual chain
complexes, based on the relations of primal and dual dis-
cretization grid and the system boundary. We show by
means of a nonlinear 2D example on rectangular grids
that the numerical approximation of the flux functions
(integral efforts) by a centered control volume scheme is
consistent of order 2 in the interior, which extends the
1D result in Kotyczka (2016). The shifted grids require
to assume values for different state variables along the
boundary. We discuss exemplarily the errors due to an
(in-)consistent assignment of these ghost values.

The paper is organized as follows. We briefly present
the necessary preliminaries on PH systems, differential
forms and chain complexes in Section 2. Section 3 con-
tains as first result the (exact) discrete formulation of
conservation laws with arbitrary boundary inputs, based
on a concise construction of the primal and the dual
grid/complex. In Section 4, we consider the numerical
approximation of the constitutive equations, which is the
bridge to classical finite volume (control volume) schemes.
By means of the 2D example of the nonlinear shallow wa-
ter equations, we discuss the consistency of the method,
followed by a series of remarks. We conclude with a sum-
mary and perspectives for future work in Section 5.

2 Preliminaries
We summarize and explain some basic ideas on PH sys-
tems, conservation laws, differential forms and the notion
of (co)chain complexes in order to keep the exposition in
Sections 3 and 4 self-contained. For details on the dif-
ferent aspects of the PH system representation, we refer
to Duindam et al. (2009), van der Schaft and Maschke
(2002), van der Schaft and Maschke (2013) and van der
Schaft and Maschke (2011). In Flanders (1963) and Chap-
ter 7 of Arnold (1989), the reader finds a concise and
illustrative introduction to differential forms, their inte-
gration on discrete objects, (co)chains and the complex
property. We frequently refer to Seslija et al. (2012), Ses-
lija et al. (2014), where modeling of conservation laws
using the “discrete exterior geometry approach” has been
presented for control inputs of uniform physical type, and
without treating the numerical approximation, in partic-
ular for nonlinear systems.

2.1 Finite-dimensional PH systems
Definition 1. A dynamical system of the form

�̇� = (𝐽(𝑥) − 𝑅(𝑥))∇𝐻(𝑥) + 𝐺(𝑥)𝑢 (1a)
𝑦 = 𝐺𝑇 (𝑥)∇𝐻(𝑥) + 𝐷(𝑥)𝑢 (1b)

with state vector 𝑥 ∈ R𝑛, in- and (collocated, power
conjugated) outputs 𝑢, 𝑦 ∈ R𝑚, interconnection, damp-
ing and feedthrough matrices 𝐽 = −𝐽𝑇 , 𝑅 = 𝑅𝑇 ≥ 0
and 𝐷 = −𝐷𝑇 and an energy (or Hamiltonian) function
𝐻 : R𝑛 → R, which is bounded from below, is called
finite-dimensional port-Hamiltonian (PH) system.

From the structure of the equations and the definiteness
properties, the power balance �̇� ≤ 𝑦𝑇 𝑢, and hence pas-
sivity of the PH state representation, immediately fol-
lows. If 𝑥* is an isolated minimum of 𝐻, the Hamiltonian
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serves (at least locally) as a Lyapunov function for the
stable equilibrium 𝑥* of the unforced system. Defining
pairs of port variables (vectors of flows and efforts) as-
sociated to energy storage (𝑓 := −�̇�, 𝑒 := ∇𝐻(𝑥)), dis-
sipation (𝑒𝑅 := −𝑅(𝑥)∇𝐻(𝑥), 𝑓𝑅 := ∇𝐻(𝑥)), and the
interconnection with the environment (𝑢, 𝑦), the state
representation (1a), (1b) can be recast as⎡⎣ 𝑓

𝑓𝑅

𝑦

⎤⎦ =

⎡⎣−𝐽 −𝐼 −𝐺

𝐼 0 0
𝐺𝑇 0 0

⎤⎦⎡⎣ 𝑒

𝑒𝑅

𝑢

⎤⎦ , (2)

and the the power balance 𝑒𝑇 𝑓 + 𝑒𝑇
𝑅𝑓𝑅 + 𝑢𝑇 𝑦 = 0

becomes evident. This relation between pairs of power-
conjugated variables defines (as a formal representation
of power continuity) a Dirac structure. The energy-based
system description and power-preservation are the basic
ingredients for the success of PH methods for modeling of
multiphysics, coupled systems and energy-based control
like Control by Interconnection or IDA-PBC, see e. g. Or-
tega et al. (2001), Ortega et al. (2002), Kotyczka (2013).

2.2 PH formulation of conservation laws
We recall how PH systems may be generalized to dis-
tributed parameter (infinite-dimensional) systems, more
precisely, systems of conservation laws. Therefore, we
briefly summarize some definitions of integral calculus de-
fined on differential forms.

2.2.1 Differential forms

An essential characterization of (exterior) differential
forms (of degree 𝑘, or 𝑘-forms) is given on page 1 of
Flanders (1963) as “things which occur under integral
signs”. However, they are not merely “densities”, but
they have an orientation, i. e. they contain the infor-
mation about the sense of integration. Typical exam-
ples from electromagnetism1 in R3 are the electric field
one-form 𝐸𝑥𝑑𝑥 + 𝐸𝑦𝑑𝑦 + 𝐸𝑧𝑑𝑧, the current density 2-
form 𝐽𝑥𝑑𝑦 ∧ 𝑑𝑧 + 𝐽𝑦𝑑𝑧 ∧ 𝑑𝑥 + 𝐽𝑧𝑑𝑥 ∧ 𝑑𝑦 or the charge
density 3-form 𝜌 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧. In R𝑛, the differentials
{𝑑𝑥1, . . . , 𝑑𝑥𝑛} form the basis of differential one-forms.
Higher order basis forms are constructed using the wedge
(or exterior) product, which due to its skew-symmetry
(𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗 = −𝑑𝑥𝑗 ∧ 𝑑𝑥𝑖, 𝑖 ̸= 𝑗, 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑖 = 0) induces
the orientation. The exterior derivative d is a unique dif-
ferential operator which maps 𝑘-forms to (𝑘 +1)-forms.

1 See e. g. the recent article Warnick and Russer (2014) for an
illustrative introduction to Maxwell’s equations in terms of dif-
ferential forms, with an abundant list of references.

Acting on a 0-form (a function)/1-form/2-form in R3, it
corresponds to the grad/rot/div operations from vector
calculus and allows to generalize the different integration
formulas by the generalized Stokes’ theorem2.

Theorem 1. Let 𝜔 be a differential 𝑘-form and Ω a
(𝑘+1)-dimensional, oriented and bounded open manifold
with Lipschitz-continuous boundary 𝜕Ω. Then∫︁

Ω

d𝜔 =
∫︁

𝜕Ω

tr 𝜔. (3)

The trace operator tr defines the restriction of the 𝑘-form
𝜔 to the boundary3. For convenience, the symbol tr is
frequently omitted, i. e.

∫︀
𝜕Ω 𝜔 :=

∫︀
𝜕Ω tr 𝜔.

2.2.2 Conservation laws

We consider (lossless) systems of two conservation laws on
an 𝑛-dimensional open domain Ω with Lipschitz bound-
ary 𝜕Ω. An integral representation is given by

𝑑

𝑑𝑡

∫︁
Ω

𝛼𝑝 +
∫︁

𝜕Ω

𝛽𝑝 = 0,
𝑑

𝑑𝑡

∫︁
Ω

𝛼𝑞 +
∫︁

𝜕Ω

𝛽𝑞 = 0. (4)

The differential forms 𝛼𝑝, 𝛼𝑞 of degree 𝑝 and 𝑞, respec-
tively, represent the conserved quantities and 𝛽𝑝, 𝛽𝑞 (dif-
ferential forms of degree 𝑝 − 1 and 𝑞 − 1, respectively) de-
note the flux functions. The relation 𝑝 + 𝑞 = 𝑛 + 1 holds,
see van der Schaft and Maschke (2002). For the PH formu-
lation, the fluxes are related to a Hamiltonian functional
𝐻 =

∫︀
Ω ℋ(𝛼𝑝, 𝛼𝑞), where ℋ is the Hamiltonian density

𝑛-form. Defining the effort (or co-state) variables 𝑒𝑝, 𝑒𝑞

as its variational derivatives4

𝑒𝑝 = 𝛿𝛼𝑝𝐻, 𝑒𝑞 = 𝛿𝛼𝑞 𝐻, (5)

the fluxes are set as[︂
𝛽𝑝

𝛽𝑞

]︂
=
[︂
0 (−1)𝑝𝑞+1

1 0

]︂ [︂
𝑒𝑝

𝑒𝑞

]︂
. (6)

Applying Theorem 1 to both conservation laws in (4) on
any domain included in Ω, and replacing the flux func-
tions, leads to

𝜕

𝜕𝑡
𝛼𝑝 = (−1)𝑝𝑞d𝑒𝑞,

𝜕

𝜕𝑡
𝛼𝑞 = −d𝑒𝑝. (7)

2 In Arnold (1989), it is nicely called Newton-Leibniz-Gauss-
Green-Ostrogradskii-Stokes-Poincaré formula.
3 See e. g. Brezis (2011), Section 9.8, pp. 315-316, or Quar-
teroni and Valli (1994), Section 1.3, p. 10, on the introduction of
the trace operator in terms of functional analysis. Arnold et al.
(2010) give in Section 4.1 a definition for differential forms.
4 For the definition in terms of differential forms, see Duindam
et al. (2009), p. 232, Prop. 4.2.
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The exponent 𝑝𝑞 takes into account the orientations of
the differential forms. The definition of a boundary port
(𝑓𝜕 , 𝑒𝜕) yields the following definition.

Definition 2. The differential formulation of a PH sys-
tem of two conservation laws is given by[︂

𝜕
𝜕𝑡 𝛼𝑝
𝜕
𝜕𝑡 𝛼𝑞

]︂
=
[︂

0 (−1)𝑝𝑞d
−d 0

]︂ [︂
𝑒𝑝

𝑒𝑞

]︂
(8a)[︂

𝑓𝜕

𝑒𝜕

]︂
=
[︂
tr 0
0 (−1)𝑝tr

]︂ [︂
𝑒𝑝

𝑒𝑞

]︂
(8b)

In accordance with the finite-dimensional case, the power
balance, which results from the structure of the equations
and the application of Stokes’ theorem, becomes

�̇� =
∫︁
Ω

𝛿𝛼𝑝𝐻 ∧ �̇�𝑝 + 𝛿𝛼𝑞 𝐻 ∧ �̇�𝑞 =
∫︁

𝜕Ω

𝑓𝜕 ∧ 𝑒𝜕 . (9)

Remark 1. Based on differential forms and Stokes’ the-
orem, Stokes-Dirac structures can be defined as the
infinite-dimensional counterpart of Dirac structures, see
e. g. van der Schaft and Maschke (2002). However, as we
adopt a discrete/integral modeling perspective, it is not
necessary to make use of them in this article.

2.3 The primal 𝑛-complex
Systems of conservation laws may also be expressed di-
rectly in a finite-dimensional/discrete space, as it is done
e. g. in van der Schaft and Maschke (2011), Seslija et al.
(2012). To introduce the necessary notions for the integra-
tion of differential forms on discrete objects, we consider
Fig. 1 which we will identify as the graphical representa-
tion of a 2-complex. The non-rectangular, oriented mesh
could result from a polyhedral tessellation5 𝐾 on a subset
of R2. The mesh is based on five nodes 𝑛1, . . . , 𝑛5 ∈ 𝒩 ,
connected by six oriented edges 𝑒1, . . . , 𝑒6 ∈ ℰ which di-
vide the convex hull of the nodes into two oriented faces
𝑓1, 𝑓2 ∈ ℱ . The sets of nodes, edges and faces have car-
dinalities |𝒩 | = 5, |ℰ| = 6, |ℱ| = 2.

Remark 2. We have arbitrarily defined the object in Fig.
1 to represent a mesh on R2. It could also display some
“folded” two-dimensional manifold in R3. To know about
the shape of the underlying object, the topological infor-
mation must be completed by geometric data.

5 To distinguish from a simplicial triangulation as in Seslija
et al. (2014).

e1
e2

e3

e4

e6

e5

n1

n2

n3

n4n5

f1

f2

Fig. 1. A non-simplicial mesh in 2D, composed of oriented cells

2.3.1 𝑗-cells, 𝑗-chains and 𝑗-cochains

We start with the definition of the most important dis-
crete objects of a chain complex.

Definition 3 (Arnold (1989), p. 184). A 𝑗-dimensional
cell or 𝑗-cell of an 𝑛-dimensional smooth manifold 𝑀 is
characterized by an oriented convex polyhedron 𝐷 ⊂ R𝑗 ,
and a differentiable map6 𝑓 : 𝐷 → 𝑀 .

Nodes, edges and faces in Fig. 1 represent 0-cells, 1-cells
and 2-cells, with orientations indicated by the arrows. The
sets 𝒩 , ℰ , ℱ (or subsets thereof) are the bases of 𝑗-chains
(𝑗 = 0, 1, 2) according to the following definition.

Definition 4 (Arnold (1989), p. 185). A 𝑗-dimensional
chain or 𝑗-chain is a finite-dimensional collection (or a
formal sum) of 𝑗-cells 𝜎𝑖, weighted by scalars (multiplici-
ties) 𝑚𝑖: 𝑐𝑗 = 𝑚1𝜎1 + . . .+𝑚𝑟𝜎𝑟. The linear vector space
of 𝑗-chains on a tessellation 𝐾 is denoted7 𝐶𝑗(𝐾;R).

According to the definition, the simplest 𝑗-chain is a 𝑗-
cell. If the multiplicities are restricted to {−1, 0, 1}, a 𝑗-
chain can be considered as the concatenation of several
𝑗-cells, e. g. the 1-chain 𝑒3 + 𝑒4 + 𝑒5 − 𝑒6 =: 𝜕2𝑓2, which
forms the (oriented) boundary of the 2-cell 𝑓2.

Definition 5 (Frankel (2011), p. 638). A 𝑗-cochain is a
linear functional on the 𝑗-chains.

The linear functional on the 𝑗-chains can be understood
via the duality pairing ⟨·, ·⟩ : 𝐶𝑗(𝐾;R) × 𝐶𝑗(𝐾;R) →
R, where 𝐶𝑗(𝐾;R) denotes the linear vector space of
cochains. Hence, 𝑗-cochains 𝑐𝑗 ∈ 𝐶𝑗(𝐾;R) are alge-
braically8 dual objects with respect to this pairing. In our
context, 𝑗-cochains will contain the integral values of 𝑗-
forms on 𝑗-cells. Later on, we will define discrete state and

6 This map is 𝑓 = id if 𝑀 = R𝑛.
7 R indicates that the multiplicities are real-valued.
8 In contrast to topological duality based on which the dual
grid/complex is constructed.
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effort vectors which can be understood as vector-valued
representations of such 𝑗-cochains.

2.3.2 Boundary maps and chain complex

Each 𝑗-cell has a boundary which is composed of (𝑗−1)-
cells whose orientation is induced by the orientation of
the 𝑗-cell, see e. g. 𝜕2𝑓2 as defined above. The sym-
bol 𝜕𝑗 will at the same time denote the boundary map
𝜕𝑗 : 𝐶𝑗 → 𝐶𝑗−1 and its matrix representation. Let
�̂�ℱ
𝑘 (�̂�ℰ

𝑙 ) be a |ℱ|-dimensional (|ℰ|-dimensional) unit vec-
tor. Then 𝜕2�̂�ℱ

𝑘 (𝜕1�̂�ℰ
𝑙 ) returns the |ℰ|-dimensional (|𝒩 |-

dimensional) vector with elements from {−1, 0, 1} indi-
cating the edges (nodes) that form the boundary of the
2-cell 𝑓𝑘 (the 1-cell 𝑒𝑙). The boundary or incidence9 ma-
trices for the depicted example are

𝜕1 =

⎡⎢⎢⎢⎣
−1 0 0 0 1 1
1 −1 0 0 0 0
0 1 −1 0 0 −1
0 0 1 −1 0 0
0 0 0 1 −1 0

⎤⎥⎥⎥⎦, 𝜕2 =

⎡⎢⎢⎢⎢⎢⎣
1 0
1 0
0 1
0 1
0 1
1 −1

⎤⎥⎥⎥⎥⎥⎦ .

It is easy to verify at the example that 𝜕1 ∘ 𝜕2 = 0, i. e.
the range of 𝜕2 spans the kernel of 𝜕1. This property holds
for any concatenation of two subsequent boundary maps:
“[T]he boundary of each chain itself has zero boundary”
(Flanders (1963), p. 59) and is known in general as the
complex property. We can illustrate the relations between
the spaces of 𝑗-chains and the boundary maps with 𝜕𝑗−1 ∘
𝜕𝑗 = 0, 𝑗 = 2, . . . , 𝑛, by the sequence diagram

𝐶𝑛(𝐾;R) 𝜕𝑛−→ 𝐶𝑛−1(𝐾;R) 𝜕𝑛−1−→ · · · 𝜕1−→ 𝐶0(𝐾;R).
(10)

Figure 1 represents such a chain complex for 𝑛 = 2. By
identifying the graphical representation with the object
behind, we will for brevity refer to it as a 2-complex.

Remark 3. A (chain) complex is in a general manner de-
fined as a sequence of abelian groups (e. g. vector spaces),
connected by homomorphisms, i. e. mappings that pre-
serve the group operation10. Famous examples are (i) the
sequence of smooth function spaces, connected via the dif-
ferential operations grad/rot/div and (ii) the so-called de
Rham complex with spaces of (smooth) differential forms,
connected via the exterior derivative d.

9 As in van der Schaft and Maschke (2011), we will use rather
the terms (co-)incidence maps instead of (co-)boundary maps to
distinguish from the boundary port variables.
10 See e. g. Jänich (2001), p. 127.

ê1
ê2

ê3

ê4

ê5

ê6

n̂1

n̂2

f̂1

f̂2

f̂3

f̂4f̂5

êB1

êB2

êB3

êB4êB5

n̂B1
n̂B2

n̂B3

n̂B4

n̂B5

Fig. 2. The dual 2-complex and the dual boundary

2.3.3 Coboundary maps and cochain complex

Using the duality pairing between chains and cochains,
the coboundary operator d𝑗 can be defined via

⟨𝑐𝑗−1, 𝜕𝑗𝑐𝑗⟩ = ⟨d𝑗𝑐𝑗−1, 𝑐𝑗⟩, (11)

which gives rise to the sequence diagram

𝐶0(𝐾;R) d1
−→ 𝐶1(𝐾;R) d2

−→ · · · d𝑛

−→ 𝐶𝑛(𝐾;R)
(12)

of the cochain complex with d𝑗 ∘ d𝑗−1 = 0, 𝑗 = 2, . . . , 𝑛.
Assuming the chain 𝑐𝑗 represented by a column vec-
tor and the cochain 𝑐𝑗−1 by a row vector, the rela-
tion between the matrix representations of boundary and
coboundary map becomes evident:

d𝑗 = (𝜕𝑗)𝑇 . (13)

Remark 4. The co-incidence operator d𝑗 is the discrete
counterpart of the exterior derivative, and therefore can
be understood as discrete exterior derivative (Seslija
et al., 2014). Accordingly, 𝑗-cochains in the discrete set-
ting correspond naturally to 𝑗-forms and Eq. (11) can be
considered the discrete version of Stokes’ theorem.

2.3.4 Trace operators

The trace operators tr𝑗 : 𝐶𝑗(𝐾;R) → 𝐶𝑗(𝜕𝐾,R), 𝑗 =
0, . . . , 𝑛 − 1, isolate the 𝑗-chains on the boundary of the
𝑛-complex. For the example, and again identifying the
operator with its matrix representation, we have

tr0 = 𝐼5, tr1 =
[︀
𝐼5 05×1

]︀
. (14)

2.4 The dual 𝑛-complex
To each 𝑗-cell on a 𝑛-complex, we can associate a topolog-
ically dual (𝑛−𝑗)-cell, which can have different geometric
realizations (e. g. barycentric, circumcentric). In our 2D
example, a node has a dual surrounding face, an edge has
a dual edge across it, see Fig. 2, left. When we refer to
“topological duality”, which manifests itself in the rela-
tion of primal and dual (co-)incidence matrices, see below,
we tacitly associate it with its geometric realization.
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Relations of the co-incidence matrices
Between the co-incidence matrices of an 𝑛-complex and
its dual, the following relation holds11 (first formula in
Section 3.3 of Seslija et al. (2014), in our notation)

d̂𝑛−𝑗+1 = (−1)𝑗(d𝑗)𝑇 . (15)

In our example we have d̂1 = (d2)𝑇 and d̂2 = −(d1)𝑇 .
The construction of dual (𝑛−𝑗)-cells leaves out the bound-
ary 𝜕𝐾 of the original complex, which is represented by
a boundary (𝑛−1)-chain. The dual 𝑛-complex is provided
with a boundary (𝑛−1)-chain (whose 𝑗-cells are indexed
𝐵) by topological duality on 𝜕𝐾. With the second for-
mula in Section 3.3 of Seslija et al. (2014) in our notation,

d̂𝑛−𝑗
𝐵 = (−1)𝑗(tr𝑗)𝑇 , (16)

we obtain in our example d̂1
𝐵 = −(tr1)𝑇 and d̂2

𝐵 = (tr0)𝑇 .

3 Discrete conservation laws on
𝑛-complexes

We study systems of two conservation laws in integral
PH form (4) on an 𝑛-dimensional domain Ω ⊂ R𝑛. We
consider the cases 𝑝 = 𝑛 ∈ {1, 2, 3}, 𝑞 = 1 and illustrate
the approach at the example 𝑛 = 2 on rectangular grids,
before we state the general result.

3.1 Mixed boundary inputs
Constructing the dual 𝑛-complexes as sketched above, we
can observe the following concerning the inputs for the
integral PH formulation of the conservation laws. If all
the 𝑛-cells on the primal complex are integration domains
for the conserved quantity 𝛼𝑝, then the boundary inputs
will be exclusively related to the (𝑛−1)-cochain represent-
ing the integrals of 𝑒𝑞 on the boundary. Correspondingly
for 𝛼𝑞 on the dual 1-cells and the 0-cochain of boundary
values of 𝑒𝑝. This situation of a unique causality of the
boundary ports is treated in the previous works van der
Schaft and Maschke (2011) and Seslija et al. (2014).

However, in most practical cases for modeling and
control, a given physical variable will play the role of an
input on parts of the boundary, while its power-conjugate
will be the input on the rest. The causality along the
boundary depends on the boundary conditions which
shall be imposed. This situation is designated mixed in-
puts and must be accounted for in the formulation of the
dual complexes relative to the system boundary.

11 We denote all quantities on the dual complex (in particular
the dual 𝑛-cells and the (co)incidence maps) with a “hat”.

ni1nb1

nb2 nb3

nB1

nB2

n̂i1

n̂b1 n̂b2

n̂b3n̂B1

n̂B2

Fig. 3. Definition of nodes on the primal and dual 2-complex

3.2 Construction of the dual complexes
Based on two given staggered meshes and the system
boundary, we will construct two 𝑛-complexes, the first
one representing the integration domains (𝑛-cells) for 𝛼𝑝

and their boundary (𝑛−1)-cells, associated to 𝑒𝑞. The sec-
ond (or dual) 𝑛-complex contains the integration domains
(1-cells) for 𝛼𝑞 and their boundaries (0-cells) at which the
function values of 𝑒𝑝 are evaluated. To define the different
subsets of 𝑗-cells, related to state and co-state variables,
boundary in- and outputs, we exploit topological duality
on both complexes and the boundary. The classification
of cells on the primal and dual complex, as illustrated
below for 𝑛 = 2, can be adapted in a straightforward
manner for the other cases 𝑛 = 1 and 𝑛 = 3.

3.2.1 Example: Two-dimensional rectangular grids

We adopt the notation from the previous section with a
“hat” for quantities on the dual complex and refer to 0-
/1-/2-cells as nodes/edges/faces. Figure 3 shows two stag-
gered rectangular grids (primal: black, dual: red) with
their nodes. The system boundary (dashed blue) coin-
cides everywhere with either a line of the primal or the
dual mesh. The classification of primal and dual 𝑗-cells,
as introduced below, is illustrated in Figs. 4 and 5.

Classification of 𝑗-cells
We classify the different sets of 𝑗-cells as follows. The
indices 𝑖 and 𝑏 denote interior and boundary objects
that are constructed based on nodes of the primal and
dual grid that lie within or on the system boundary. The
capital letter 𝐵 refers to additional (or complementary)
boundary nodes and edges.
1. Nodes. 𝑛𝑖,· ∈ 𝒩𝑖 and 𝑛𝑏,· ∈ 𝒩𝑏: Nodes of the primal

mesh, within and on the boundary.
�̂�𝑖,· ∈ �̂�𝑖, �̂�𝑏,· ∈ �̂�𝑏: Nodes of the dual mesh, within
and on the boundary.

2. Additional boundary nodes. 𝑛𝐵,· ∈ 𝒩𝐵 and
�̂�𝐵,· ∈ �̂�𝐵 : Additional nodes on the intersection
of interior edges and the system boundary.



Paul Kotyczka and Bernhard Maschke, Discrete port-Hamiltonian formulation of conservation laws 7

ei1

ei2

ei3 ei4

eb1

eb2

x
fi1

x
fb1

x
fb2

x
fb3
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Fig. 4. Interior and boundary edges
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êB2
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Fig. 5. Complementary boundary edges

3. Primal edges. 𝑒𝑖,· ∈ ℰ𝑖 and 𝑒𝑏,· ∈ ℰ𝑏, interior and
boundary edges: Connect the above-defined primal
nodes and lie within and on the system boundary,
respectively.

4. Dual edges. 𝑒𝑖,· ∈ ℰ̂𝑖 and 𝑒𝑏,· ∈ ℰ̂𝑏: Connect the
above-defined dual nodes. Their indices follow from
topological duality to the primal edges 𝑒𝑖,· ∈ ℰ𝑖 and
𝑒𝑏,· ∈ ℰ𝑏.

5. Faces. 𝑓𝑖,· ∈ ℱ̂𝑖 and 𝑓𝑏,· ∈ ℱ̂𝑏: Dual faces, topologi-
cally dual to primal nodes 𝑛𝑖,· ∈ 𝒩𝑖 and 𝑛𝑏,· ∈ 𝒩𝑏.
𝑓𝑖,· ∈ ℱ𝑖 and 𝑓𝑏,· ∈ ℱ𝑏: Primal faces, topologically
dual to dual nodes �̂�𝑖,· ∈ �̂�𝑖 and �̂�𝑏,· ∈ �̂�𝑏.

6. Additional boundary edges. 𝑒𝐵,· ∈ ℰ𝐵 and 𝑒𝐵,· ∈
ℰ̂𝐵 : Edges (more precisely 1-cells) on the system
boundary that complete the boundaries of the faces
𝑓𝑏,· ∈ ℱ𝑏 and 𝑓𝑏,· ∈ ℱ̂𝑏.

Table 1 shows the cardinalities of the defined sets
of 𝑗-cells on both complexes, and thereby illustrates the
duality between the different cells. By the proposed con-
struction, the following objects are topologically dual on
the boundary: �̂�𝑏,· and 𝑒𝐵,· / �̂�𝐵,· and 𝑒𝑏,· / 𝑛𝑏,· and 𝑒𝐵,· /
𝑛𝐵,· and the edges 𝑒𝑖,· on the system boundary.

Incidence matrices
The primal and dual 2-complex in the example have the
following incidence matrices (faces to edges and edges to
nodes), for which the complex property 𝜕1 ∘ 𝜕2 = 0 and
𝜕1 ∘ 𝜕2 = 0 can be immediately verified:

𝜕2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1 0
1 0 0 −1

−1 1 0 0
0 0 1 −1
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

𝜕1 =

⎡⎢⎢⎢⎢⎢⎣
1 −1 −1 1 0 0 0 0 0
0 0 1 0 1 0 −1 0 0
0 0 0 0 −1 1 0 0 0
0 1 0 0 0 −1 0 0 1

−1 0 0 0 0 0 1 −1 0
0 0 0 −1 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎦ ,

𝜕2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0
1 0 0 −1
1 −1 0 0

−1 0 0 0
0 −1 1 0
0 0 −1 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

𝜕1 =

⎡⎢⎢⎢⎢⎢⎣
0 1 −1 0 1 1 0 0 0
1 0 1 0 0 0 1 0 0

−1 0 0 1 0 0 0 0 0
0 −1 0 −1 0 0 0 0 −1
0 0 0 0 −1 0 −1 1 0
0 0 0 0 0 −1 0 −1 1

⎤⎥⎥⎥⎥⎥⎦ .

Incidence submatrices
The incidence matrices 𝜕𝑗 on the primal complex are par-
titioned according to the involved 𝑗- and (𝑗 −1)-chains,

𝜕2 =

⎡⎣ 𝜕𝑖𝑖
2 𝜕𝑖𝑏

2
𝜕𝑏𝑖

2 0
0 𝐼

⎤⎦ , 𝜕1 =

⎡⎣ 𝜕𝑖𝑖
1 0 0

𝜕𝑏𝑖
1 𝜕𝑏𝑏

1 𝜕𝑏𝐵
1

𝜕𝐵𝑖
1 0 𝜕𝐵𝐵

1

⎤⎦ . (17)

The zero matrices and the identity matrix result from the
construction of the subsets12 indexed 𝑖, 𝑏 and 𝐵. On the
dual complex, the structure of the incidence matrices is

𝜕2 =

⎡⎣ 𝜕𝑖𝑖
2 𝜕𝑖𝑏

2
0 𝜕𝑏𝑏

2
0 𝐼

⎤⎦ , 𝜕1 =

⎡⎣ 𝜕𝑖𝑖
1 𝜕𝑖𝑏

1 0
𝜕𝑏𝑖

1 0 𝜕𝑏𝐵
1

0 −𝐼 𝜕𝐵𝐵
1

⎤⎦ . (18)

12 𝜕𝑏𝑏
2 = 0 as the 𝑏-edges lie on the boundary of 𝑖-faces. 𝜕𝐵𝑖

2 = 0
as the 𝐵-edges lie on the boundary of the 𝑏-faces. 𝜕𝐵𝑏

2 = 𝐼

by definition of the 𝐵-edges to complete the boundary of the
positively oriented 𝑏-faces. 𝜕𝑖𝑏

1 = 0 and 𝜕𝑖𝐵
1 = 0 as 𝑖-nodes are

at the terminals of 𝑖-edges only. 𝜕𝐵𝑏
1 = 0 as the 𝑏-edges are

terminated only by 𝑏-nodes.
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Table 1. Cardinalities of the sets of primal and dual 𝑗-cells

Primal 𝒩𝑖 𝒩𝑏 𝒩𝐵 ℱ𝑖 ℱ𝑏, ℰ𝐵 ℰ𝑖 ℰ𝑏
Dual ℱ̂𝑖 ℱ̂𝑏, ℰ̂𝐵 �̂�𝑖 �̂�𝑏 �̂�𝐵 ℰ̂𝑖 ℰ̂𝑏
# 1 3 2 1 3 2 4 2

The different locations of the zero matrices result from the
definition of dual objects. For example 𝑏-indexed edges
on the dual complex do not lie on its boundary. 𝜕𝐵𝑏

1 =
−𝐼 comes from the one-to-one relation of 𝐵-nodes and
𝑏-edges on the dual complex, and the orientation of the
edges 𝑒𝑏,·, which is induced by the positive orientation of
the primal boundary.

3.2.2 Duality relations of incidence submatrices

Using the duality relations (15), (16), and based on an
analogous construction of the dual complexes for 𝑛 ∈
{1, 2, 3}, the following duality relations between the (co-)
incidence submatrices can be given. Given the incidence
matrices (on either the primal or the dual complex), the
co-incidence matrices result from transposition:

d𝑗
𝛼𝛽 = (𝜕𝛽𝛼

𝑗 )𝑇 , 𝛼, 𝛽 ∈ {𝑖, 𝑏, 𝐵}. (19)

The submatrices of 𝜕𝑗 and d𝑗 (upper or upper left subma-
trices in the above example) that relate 𝑖 and 𝑏 indexed
cells will be designated (𝑖, 𝑏). As the relations between
the 𝑖 and 𝑏 indexed cells are well-defined by topological
duality, Eq. (15) applies accordingly:

d̂𝑗
(𝑖,𝑏) = (−1)𝑛−𝑗+1(d𝑛−𝑗+1

(𝑖,𝑏) )𝑇 . (20)

For the dual co-incidence matrices that relate 𝑏-indexed
(𝑗−1)-cells (in the interior) and 𝐵-indexed 𝑗-cells (on the
boundary), the following holds:

d̂𝑗
𝑏𝐵 = (−1)𝑛−𝑗𝐼. (21)

This relation corresponds to Eq. (16), where the trace
matrix boils down to the identity matrix due to the fact
that all 𝐵-indexed cells live on the boundary.

3.3 Discrete PH representation
The integral conservation laws are now written in a com-
pact form, exploiting the topological description of the
primal and dual mesh in terms of dual 𝑛-complexes. We
introduce the following notation. 𝑃 𝑖 ∈ R|ℱ𝑖|, 𝑃 𝑏 ∈ R|ℱ𝑏|

and �̂�𝑖 ∈ R|ℰ̂𝑖|, �̂�𝑏 ∈ R|ℰ̂𝑏| are vector representations
of the primal 2-cochains and dual 1-cochains that corre-
spond to the integral conserved quantities on the primal
2-cells and dual 1-cells. 𝑒𝑞

𝑖 ∈ R|ℰ𝑖|, 𝑒𝑞
𝑏 ∈ R|ℰ𝑏|, 𝑒𝑞

𝐵 ∈ R|ℰ𝐵 |

and �̂�𝑝
𝑖 ∈ R|�̂�𝑖|, �̂�𝑝

𝑏 ∈ R|�̂�𝑏|, �̂�𝑝
𝐵 ∈ R|�̂�𝐵 | are the vec-

tor representations of the primal 1-cochains and dual 0-
cochains with the values of the boundary fluxes to the

integration domains (the co-energy variables at the in-
tegration boundaries). For the “interior” integration do-
mains we obtain, combining the integral representation
(4), the definition of flux functions (6), and the topology
in terms of the co-incidence matrices,

�̇� 𝑖 = d𝑝
𝑖𝑖(−1)𝑝𝑞𝑒𝑞

𝑖 + d𝑝
𝑖𝑏(−1)𝑝𝑞𝑒𝑞

𝑏 (22a)
˙̂
𝑄𝑖 = −d̂𝑞

𝑖𝑖�̂�
𝑝
𝑖 − d̂𝑞

𝑖𝑏�̂�𝑝
𝑏 . (22b)

Accordingly for the “boundary” integration domains:

�̇� 𝑏 = d𝑝
𝑏𝑖(−1)𝑝𝑞𝑒𝑞

𝑖 + d𝑝
𝑏𝐵(−1)𝑝𝑞𝑒𝑞

𝐵 (23a)
˙̂
𝑄𝑏 = −d̂𝑞

𝑏𝑖�̂�
𝑝
𝑖 − d̂𝑞

𝑏𝐵 �̂�𝑝
𝐵 . (23b)

Applying the duality relations

d̂𝑞

𝑖𝑖 = (−1)𝑝(d𝑝
𝑖𝑖)

𝑇 ,

d̂𝑞

𝑖𝑏 = (−1)𝑝(d𝑝
𝑏𝑖)

𝑇 , d̂𝑞

𝑏𝑖 = (−1)𝑝(d𝑝
𝑖𝑏)𝑇 , (24)

as well as

d𝑝
𝑏𝐵 = 𝐼, d̂𝑞

𝑏𝐵 = (−1)𝑝−𝑞𝐼, (25)

we can write

𝑑

𝑑𝑡

[︂
𝑃 𝑖

�̂�𝑖

]︂
=
[︂

0 d𝑝
𝑖𝑖

−(d𝑝
𝑖𝑖)𝑇 0

]︂ [︂
(−1)𝑝�̂�𝑝

𝑖

(−1)𝑝𝑞𝑒𝑞
𝑖

]︂
+
[︂

0 d𝑝
𝑖𝑏

−(d𝑝
𝑏𝑖)

𝑇 0

]︂ [︂
(−1)𝑝�̂�𝑝

𝑏

(−1)𝑝𝑞𝑒𝑞
𝑏

]︂
(26a)

and[︂
(−1)𝑝𝑞𝑒𝑞

𝐵 − 𝑑
𝑑𝑡 𝑃 𝑏

−(−1)𝑝−𝑞�̂�𝑝
𝐵 − 𝑑

𝑑𝑡 �̂�𝑏

]︂
=
[︂

0 −d𝑝
𝑏𝑖

(d𝑝
𝑖𝑏)𝑇 0

]︂ [︂
(−1)𝑝�̂�𝑝

𝑖

(−1)𝑝𝑞𝑒𝑞
𝑖

]︂
.

(26b)
We can now state the following main result:

Proposition 1. The discrete formulation of a system of
two conservation laws with 𝑝 = 𝑛 ∈ {1, 2, 3}, 𝑞 = 1 on
two staggered grids with a system boundary that gives rise
to the definition of a primal and a dual 𝑛-complex as
sketched above, reads

𝑑

𝑑𝑡

[︂
𝑃 𝑖

�̂�𝑖

]︂
⏟  ⏞  

�̇�

= (−1)𝑛

[︂
0 d𝑛

𝑖𝑖

−(d𝑛
𝑖𝑖)𝑇 0

]︂
⏟  ⏞  

𝐽

[︂
�̂�𝑝

𝑖

𝑒𝑞
𝑖

]︂
⏟ ⏞ 

𝑒

+ (−1)𝑛

[︂
0 d𝑛

𝑖𝑏

−(d𝑛
𝑏𝑖)𝑇 0

]︂
⏟  ⏞  

𝐺

[︂
�̂�𝑝

𝑏

𝑒𝑞
𝑏

]︂
⏟ ⏞ 

𝑢

(27a)

(−1)𝑛

[︂
𝑒𝑞

𝐵

�̂�𝑝
𝐵

]︂
− 𝑑

𝑑𝑡

[︂
𝑃 𝑏

�̂�𝑏

]︂
⏟  ⏞  

𝑦

= (−1)𝑛

[︂
0 −d𝑛

𝑏𝑖

(d𝑛
𝑖𝑏)𝑇 0

]︂
⏟  ⏞  

𝐺𝑇

[︂
�̂�𝑝

𝑖

𝑒𝑞
𝑖

]︂
⏟ ⏞ 

𝑒

.

(27b)
𝑑𝑛

𝑖𝑖, 𝑑𝑛
𝑖𝑏, 𝑑𝑛

𝑏𝑖 are co-incidence matrices relating (𝑛−1)-cells
and 𝑛-cells on the primal complex. 𝑃 𝑖/𝑏, �̂�𝑖/𝑏, 𝑒𝑞

𝑖/𝑏/𝐵
,
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�̂�𝑝
𝑖/𝑏/𝐵

, are vector representations of the 𝑗-cochains with
the integral values of the 𝑛-forms, 1-forms, (𝑛 − 1)-
forms and 0-forms on the corresponding discrete objects
(𝑗-chains) of the primal and dual complex.

Proof. Primal and dual 𝑛-complex can be constructed in
analogy to above for 𝑛 = 1 and 𝑛 = 3 with complete
duality between 𝑖 and 𝑏 indexed cells and the definition of
𝐵 indexed cells. This allows to apply the duality formulas
(20), (21) to (26a), (26b), which yields (27a), (27b).

The discrete formulation of the system of two conserva-
tion laws is exact. It is written in form of the input-output
representation of a finite-dimensional Dirac structure for
which the power balance −𝑒𝑇 �̇� + 𝑦𝑇 𝑢 = 0 holds. How-
ever, it can not be understood as a finite-dimensional PH
system, as the vector of co-energy variables 𝑒 is not de-
rived from a finite-dimensional energy function. A finite-
dimensional PH system is obtained if the energy func-
tional is replaced by a finite-dimensional approximation
and discrete constitutive relation are established. In other
words, or more general, the true boundary fluxes at the in-
tegration domains have to be replaced by numerical flux
functions, which is the key ingredient of classical finite
volume discretization.

Remark 5. The collocated pairs of boundary variables
(�̂�𝑝

𝑏 , 𝑒𝑞
𝐵) and (𝑒𝑞

𝑏 , �̂�𝑝
𝐵) are not exactly power-conjugated.

This is due to the presence of 𝑑
𝑑𝑡 𝑃 𝑏 and 𝑑

𝑑𝑡 �̂�𝑏 in the out-
put equation13. Vice-versa, 𝑦 does not exactly represent
fluxes at the system boundary. This effect, which is due to
the staggered dual grids, decreases with grid refinement.

Remark 6. The results from Seslija et al. (2014) with
identical boundary inputs can be recovered if the system
boundary is drawn exclusively along (𝑛−1)-cells of the
primal or the dual mesh.

4 Numerical approximation
The topological information, coded in the primal and dual
𝑛-complex yields the exact discrete formulation of the
two conservation laws in input-/output form (27a), (27b).
The elements of the state vector 𝑥 and the co-state/effort
vector 𝑒 are the integral quantities on the integration do-
mains of the primal and dual mesh. However, the con-
stitutive relations (5) are formulated locally between the
corresponding differential forms.

13 In Seslija et al. (2014), this fact is less obvious.

For a numerical approximation model in PH form, a
discrete energy must be defined in terms of the discrete
states, and the discrete efforts must be derived from this
approximate energy. We present this structure-preserving
discretization of the constitutive equations on the exam-
ple of the 2D shallow water equations, and discuss its
properties, in particular the relation of some aspects to
“classical” finite volume schemes.

Remark 7. In Seslija et al. (2014), a quadratic discrete
energy is directly expressed in terms of the cochains on
both complexes. The linear constitutive relations are ex-
pressed involving the discrete Hodge operator14. Such a
direct formulation of the approximate energy is less obvi-
ous for non-quadratic energies and spatial dependencies.

4.1 Example: 2D shallow water equations
Consider the 2D shallow water equations (SWE) in stan-
dard vector calculus form15[︂

𝜕𝑡𝑠

𝜕𝑡𝑢 + 𝑞𝐹 ⊥

]︂
=
[︂

0 −div
−grad 0

]︂[︂1
2 𝑢 · 𝑢 + 𝑔𝑠 + 𝑔𝑏

𝑠𝑢

]︂
, (28)

where 𝑠(𝑥, 𝑦) denotes the elevation of the free wa-
ter surface over the bottom profile 𝑏(𝑥, 𝑦), 𝑢(𝑥, 𝑦) =
[𝑢(𝑥, 𝑦) 𝑣(𝑥, 𝑦)]𝑇 is the 2-dimensional velocity vector
and 𝑔 the gravitational acceleration. The term 𝑞𝐹 ⊥ with
𝐹 ⊥ = [𝑠𝑣 − 𝑠𝑢]𝑇 represents the acceleration due to
rotation of the flow and stems from the transport term
in the momentum equation. 𝑞 = 1

𝑠 (𝜕𝑥𝑣 − 𝜕𝑦𝑢) denotes
the potential vorticity16. The vector on the right of (28)
contains the hydrodynamic pressure 𝑝𝑑𝑦𝑛 and the vec-
tor of discharge per unit width in 𝑥- and 𝑦- direction.
𝑝𝑑𝑦𝑛 and the components of 𝑠𝑢 can be expressed as vari-
ational derivatives of the Hamiltonian 𝐻 (equivalently
partial derivatives of the Hamiltonian density ℋ) with
respect to 𝑠, 𝑢 and 𝑣 with the energy per unit mass

𝐻 =
∫︁
Ω

ℋ 𝑑𝑥𝑑𝑦, ℋ = 1
2𝑠𝑢2 + 1

2𝑔𝑠2 + 𝑔𝑠𝑏. (29)

We consider a rectangular domain Ω ⊂ R2. For flow
problems with negligible rotational acceleration 𝑞𝐹 ⊥, the
SWE have the canonical form of a PH system (8a) with
𝑛 = 𝑝 = 2, 𝑞 = 1. The states and co-states in terms of

14 See Desbrun et al. (2005), Definition 6.1.
15 See e. g. Arakawa and Lamb (1981).
16 It satisfies the balance equation 𝜕𝑡𝑞 + 𝑢 · ∇𝑞 = 0, i. e. it is
advected with the fluid flow see e. g. Arakawa and Lamb (1981).
It plays an important role in the long-time numerical simulation
of large scale flow problems.
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s̄1

(s̄I) (s̄II)

s̄2

ū1

ū2

(ūI)

(ūIII)

(ūII)

(ūIV )

v̄1 v̄2

(v̄I) (v̄II)

Fig. 6. 2D (sub-)domains associated with the discrete states

differential forms17 are then 𝛼𝑝 = *𝑠, 𝛼𝑞 = 𝑢♭, 𝑒𝑝 = 𝑝𝑑𝑦𝑛

and 𝑒𝑞 = −(*(𝑠𝑢)♭). For brevity, we assume 𝑏(𝑥, 𝑦) ≡ 0.

4.2 Finite-dimensional PH model
We consider uniform rectangular grids that are shifted by
half the grid size Δ𝑥/2 and Δ𝑦/2 in each direction. The
discrete state vector 𝑥𝑑 =

[︀
𝑆𝑇

𝑑 𝑈𝑇
𝑑 𝑉 𝑇

𝑑

]︀𝑇 with com-
ponents 𝑆𝑑,𝑗 , 𝑗 = 1, . . . , |ℱ𝑖|, 𝑈𝑑,𝑘, 𝑘 = 1, . . . , |ℰ̂𝑥

𝑖 |, and
𝑉𝑑,𝑙, 𝑙 = 1, . . . , |ℰ̂𝑦

𝑖 |, represents the approximate area inte-
grals of 𝑠 on the interior primal faces and the approximate
line integrals of 𝑢 and 𝑣 on the horizontal/vertical inte-
rior edges of the dual grid. Denote �̄� =

[︀
�̄�𝑇 �̄�𝑇 �̄�𝑇

]︀𝑇
the vector of average states on the corresponding primal
2-cells and dual 1-cells, which are given by

𝑠𝑗 =
𝑆𝑑,𝑗

Δ𝑥Δ𝑦
, �̄�𝑘 =

𝑈𝑑,𝑘

Δ𝑥
, 𝑣𝑙 =

𝑉𝑑,𝑙

Δ𝑦
, (30)

where Δ𝑥Δ𝑦 = |𝑓𝑗 | is the area of a primal face and
Δ𝑥 = |𝑒𝑥

𝑘|, Δ𝑦 = |𝑒𝑦
𝑙 | are the lengths of the dual edges.

We understand the average state values as approxima-
tions of 𝑠(𝑥, 𝑦), 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) on the interior primal
faces and the surrounding areas of the dual interior edges,
respectively. These domains may lie partially outside Ω,
see the shaded regions in Fig. 6. The superposition of the
dual grids divides the whole spatial domain into control
volumes with identical values of average states, indexed
𝐼 = (𝑗, 𝑘, 𝑙) ∈ ℐ, see the Fig. 7. Their sizes for regular,
uniformly shifted grids is Δ𝑥Δ𝑦/4.

We define the discrete Hamiltonian as

𝐻𝑑(𝑥𝑑) = Δ𝑥Δ𝑦

4
∑︁
𝐼∈ℐ

ℋ
(︁𝑆𝑑,𝑗(𝐼)

Δ𝑥Δ𝑦
,

𝑈𝑑,𝑘(𝐼)
Δ𝑥

,
𝑉𝑑,𝑙(𝐼)

Δ𝑦

)︁
, (31)

17 The Hodge star * converts a 𝑘-form to a (𝑛−𝑘)-form, index
lowering ♭ generates the 1-form associated to a vector field, vice-
versa index raising ♯. With these operations, the vector calculus
operators div and grad can be expressed in terms of the exterior
derivative d. For details see e. g. Holm (2011).

(I,1,·) (II,1,·)

(I,I,1) (I,1,1) (II,1,2) (II,II,2)

(1,III,1) (1,2,1) (2,2,2) (2,IV,2)

(1,III,I) (1,2,I) (2,2,II) (2,IV,II)

(eud,1)

eud,2

evd,1 evd,2

esd,1 esd,20

0

Fig. 7. 2D control volumes with multi-index 𝐼 = (𝑗, 𝑘, 𝑙) . A
point · denotes that the corresponding state is not needed to
compute an effort. Black and red: Discrete efforts computed from
∇𝐻(𝑥𝑑). As it does not affect a state differential equation, 𝑒𝑢𝑑,1
is set in parentheses. Blue: Boundary efforts = input variables.

where 𝑗(𝐼), 𝑘(𝐼), 𝑙(𝐼) are the components of the multi-
index 𝐼. In the boundary regions, where no discrete states
are defined, we need to impose additional ghost values
for the states, denoted in brackets in Fig. 6. We assign
constant ghost values, based on reasonable assumptions,
e. g. given boundary conditions or the steady state. The
consistency of the effort approximation depends on the
validity of these assumptions, see further below.

Remark 8. Usually, the ghost values are computed by ex-
trapolation from the interior discrete states18. We could
do accordingly, and assign the adjacent discrete states to
the ghost cells (zero order extrapolation). For a consistent
energy approximation, this would impose an enlargement
of the 𝑗-cells to which the discrete states are associated.
This re-interpretation of the discrete states and their spa-
tial domains is, however, not consistent with the exact PH
representation of the conservation laws (27a), (27b).

The vector of discrete efforts is derived from the dis-
crete Hamiltonian,

[︀
(𝑒𝑠

𝑑)𝑇 (𝑒𝑢
𝑑)𝑇 (𝑒𝑣

𝑑)𝑇
]︀𝑇 = 𝑒𝑑 :=

∇𝐻𝑑(𝑥𝑑). In particular, we express the single discrete
efforts as

𝑒𝑠
𝑑,𝑗 := 𝜕𝐻𝑑

𝜕𝑆𝑑,𝑗
=
∑︁
𝐼∈ℐ𝑠

𝑗

Δ𝑥Δ𝑦

4
1

Δ𝑥Δ𝑦

𝜕ℋ
𝜕𝑠

⃒⃒⃒⃒
�̄�𝐼

,

𝑒𝑢
𝑑,𝑘 := 𝜕𝐻𝑑

𝜕𝑈𝑑,𝑘
=
∑︁

𝐼∈ℐ𝑢
𝑘

Δ𝑥Δ𝑦

4
1

Δ𝑥

𝜕ℋ
𝜕𝑢

⃒⃒⃒⃒
�̄�𝐼

,

𝑒𝑣
𝑑,𝑙 := 𝜕𝐻𝑑

𝜕𝑉𝑑,𝑙
=
∑︁

𝐼∈ℐ𝑣
𝑙

Δ𝑥Δ𝑦

4
1

Δ𝑦

𝜕ℋ
𝜕𝑣

⃒⃒⃒⃒
�̄�𝐼

. (32)

The notation (·)|�̄�𝐼 denotes the evaluation of the partial
derivatives of ℋ at (𝑠𝑗 , �̄�𝑘, 𝑣𝑙) = ( 𝑆𝑑,𝑗(𝐼)

Δ𝑥Δ𝑦 ,
𝑈𝑑,𝑘(𝐼)

Δ𝑥 ,
𝑉𝑑,𝑙(𝐼)

Δ𝑦 ).

18 See e. g. LeVeque (2002), Chapter 7.
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ℐ𝑠
𝑗 , ℐ𝑢

𝑘 and ℐ𝑣
𝑙 are the sets of multi-indices that refer to

the 2 × 2 control volumes associated with 𝑆𝑑,𝑗 , 𝑈𝑑,𝑘 or
𝑉𝑑,𝑙, respectively. For the corresponding average efforts

�̄� =
[︁
(𝑒𝑠

𝑑)𝑇 (𝑒𝑢
𝑑 )𝑇

Δ𝑦
(𝑒𝑣

𝑑)𝑇

Δ𝑥

]︁𝑇

, we obtain

𝑒𝑠
𝑗 =
∑︁
𝐼∈ℐ𝑠

𝑗

1
4

𝜕ℋ
𝜕𝑠

⃒⃒⃒⃒
�̄�𝐼

, 𝑒𝑢
𝑘 =

∑︁
𝐼∈ℐ𝑢

𝑘

1
4

𝜕ℋ
𝜕𝑢

⃒⃒⃒⃒
�̄�𝐼

, 𝑒𝑣
𝑙 =

∑︁
𝐼∈ℐ𝑣

𝑙

1
4

𝜕ℋ
𝜕𝑣

⃒⃒⃒⃒
�̄�𝐼

.

(33)

Proposition 2. The finite-dimensional PH model

�̇�𝑑 = 𝐽𝑒𝑑 + 𝐺𝑢𝑑 (34a)
𝑦𝑑 = 𝐺𝑇 𝑒𝑑, (34b)

with 𝐽 and 𝐺 as defined in (27a), (27b), and 𝑒𝑑 =
∇𝐻𝑑(𝑥) derived from the discrete Hamiltonian (31), is
a consistent approximation of the 2D SWE, if the ghost
values on the boundary control volumes are chosen con-
sistent with the boundary conditions.

Proof. We sketch the proof of this statement on consis-
tency order. To this end, we consider the differential equa-
tion of the finite-dimensional PH model in terms of the
average states and efforts (see Appendix A.1):

˙̄𝑥 = 1
Δ𝑥

�̄� �̄� + 1
Δ𝑥

�̄��̄�, (35)

where the elements of �̄� , �̄� are in {0, ±1, ± Δ𝑦
Δ𝑥 }. The

(local) approximation error, which determines the consis-
tency order19 is

𝜖𝑙𝑜𝑐 = ‖ ˙̄𝑥* − 1
Δ𝑥

�̄� �̄�|* − 1
Δ𝑥

�̄� �̄�|* ‖Δ𝑥 (36)

for Δ𝑥 → 0. ˙̄𝑥* contains the time derivatives of the exact
solution at the centers of the 2×2 control volumes, and is
given by the right hand side of the PDE (28). The average
efforts �̄� are computed based on the true solution of the
PDE. The * denotes the replacement

* =
(︁

𝑠𝑗 =

𝑦𝑠
𝑗,𝑢𝑝∫︁

𝑦𝑠
𝑗,𝑙𝑜𝑤

𝑥𝑠
𝑗,𝑟𝑖𝑔∫︁

𝑥𝑠
𝑗,𝑙𝑒𝑓

𝑠(𝑥, 𝑦)
Δ𝑥Δ𝑦

𝑑𝑥𝑑𝑦,

�̄�𝑘 =

𝑥𝑢
𝑘,𝑟𝑖𝑔∫︁

𝑥𝑢
𝑘,𝑙𝑒𝑓

𝑢(𝑥, 𝑦𝑢
𝑘 )

Δ𝑥
𝑑𝑥, 𝑣𝑙 =

𝑦𝑣
𝑙,𝑢𝑝∫︁

𝑦𝑣
𝑙,𝑙𝑜𝑤

𝑣(𝑥𝑣
𝑙 , 𝑦)

Δ𝑦
𝑑𝑦
)︁

. (37)

The limits of integration with the subscripts 𝑙𝑒𝑓 , 𝑟𝑖𝑔, 𝑙𝑜𝑤,
𝑢𝑝 refer to the boundaries of the considered 2 × 2 con-
trol volume in 𝑥- and 𝑦-direction. 𝑦𝑢

𝑘 and 𝑥𝑣
𝑙 denote the

corresponding center coordinates. The norm

19 See Iserles (2009), Eq. (3.19)

‖𝑓‖Δ𝑥 :=
(︁

Δ𝑥

𝑁∑︁
𝑗=1

|𝑓𝑗 |
)︁ 1

2 (38)

is the discrete counterpart of the 𝐿2-norm for functions.
Assuming the boundary inputs exactly known, they can-
cel from (36). The order of the error 𝜖𝑙𝑜𝑐 is certainly
𝒪(Δ𝑥𝑝), if for all integer 𝑗, 𝑘, 𝑙, the errors

𝜖𝑠,𝑥
𝑗 =

⃒⃒⃒
𝜕

𝜕𝑥
𝑒𝑠

𝑗 − 1
Δ𝑥

𝑒𝑠
𝑗

⃒⃒
*

⃒⃒⃒
Δ𝑥

, 𝜖𝑠,𝑦
𝑗 =

⃒⃒⃒
𝜕

𝜕𝑦
𝑒𝑠

𝑗 − 1
Δ𝑦

𝑒𝑠
𝑗

⃒⃒
*

⃒⃒⃒
Δ𝑥

𝜖𝑢
𝑘 =
⃒⃒⃒

𝜕

𝜕𝑥
𝑒𝑢

𝑘 − 1
Δ𝑥

𝑒𝑢
𝑘 |*
⃒⃒⃒
Δ𝑥

,

𝜖𝑙
𝑣 =
⃒⃒⃒

𝜕

𝜕𝑦
𝑒𝑣

𝑙 − 1
Δ𝑦

𝑒𝑣
𝑙 |*
⃒⃒⃒
Δ𝑥

(39)

are of order 𝒪(Δ𝑥𝑝) for Δ𝑥, Δ𝑦 → 0. We denote 𝑒𝑠
𝑗 , 𝑒𝑢

𝑘 ,
𝑒𝑣

𝑙 the true efforts at the centers of the 2 × 2 control
volumes. By Taylor series expansion, it can be verified
that on superposed, regular grid with constant grid size
Δ𝑥
2 × Δ𝑦

2 , the errors (39) are of order 𝒪(Δ𝑥2), if their
computation does not involve ghost values for the average
states. If the shifts between primal and dual grid are dif-
ferent from Δ𝑥

2 , Δ𝑦
2 , the order decreases to 𝒪(Δ𝑥). If the

discrete efforts are computed based on ghost values, the
consistency error is of order ≥ 1 only if the ghost values
are consistent with the boundary conditions. In Appendix
A.2, the computations of three consistency errors for the
efforts depicted in Fig. 7 are sketched: based on (i) no,
(ii) consistent, and (iii) inconsistent ghost values.

4.3 Remarks
The numerical approximation of the Hamiltonian and the
efforts, and the subsequent consistency analysis, give rise
to the following complementary remarks.

1. The output equation of the discretized average
model is simply written �̄� = 𝐺𝑇 �̄�, without scaling.
Assigning constant ghost values for the states on the
boundary integration domains corresponds to 𝑑

𝑑𝑡 𝑃 𝑏 = 0,
𝑑
𝑑𝑡 �̂�𝑏 = 0 in (27b). Consequently, 𝑦𝑑 and �̄� can be un-
derstood as integral/average numerical approximations of
the output boundary efforts for Δ𝑥, Δ𝑦 → 0.

2. The resulting finite-dimensional model is in PH
form, i. e. the discretization scheme is structure preserv-
ing. The PH structure implies, for 𝐻𝑑 positive definite,
Lyapunov stability of the unforced equilibrium.

3. For the average discretized model in PH form, nu-
merical stability (more precisely, numerical stability of
the semi-discretization method, see Iserles (2009), Sec-
tion 13.2) can be shown: For bounded �̄�(𝑡), there exists
on every time interval [0, 𝑡*] a bound 𝑐(𝑡*) < ∞ such that
‖�̄�(𝑡)‖Δ𝑥 < 𝑐(𝑡*).
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4. As discussed above, the consistency order of the
effort approximation for the nonlinear SWE is 2 inside
the spatial domain. This is due to the uniform shift of
the primal and dual grid, which implies a centered ap-
proximation of the constitutive equations. The order can
be increased by computing the numerical fluxes based on
a wider stencil, using a semi-discrete generalized Leapfrog
scheme, see Iserles (1986), or Fornberg (1990) from the
finite-difference perspective and Kotyczka (2016) for the
application to 1D PH systems.

5. The grid shifts in 𝑥- and 𝑦-direction can be un-
derstood as design degrees of freedom to parametrize nu-
merical schemes which take into account the direction of
propagation (of the solution), in the sense of upwinding20.
For such non-centered schemes, the consistency order in-
side the spatial domain reduces to 1.

6. The bottleneck for the consistency order of the
overall numerical scheme is the assignment of constant
ghost values, which can be inconsistent with the bound-
ary conditions. The usual approach to extrapolate the
ghost values from the interior discrete states, ensures con-
sistency. This measure, however, disturbs the PH struc-
ture of the approximate model, as not all numerical fluxes
are derived exclusively from the discrete, time-invariant
Hamiltonian. The corresponding numerical error acts as a
disturbance to the PH model. Its effect can be dissipated
if the model contains physical damping/friction.

7. If, as in the acoustic example of Trenchant et al.
(2015), the Hamiltonian is separable, the computation
of the discrete efforts does not rely on the ghost values,
which guarantees consistency of the scheme.

8. For linear PDEs, consistency and numerical stabil-
ity of the approximation directly imply convergence of the
numerical scheme according to the Lax-Richtmyer equiva-
lence theorem21. For a further discussion on convergence,
we refer to the corresponding literature, e. g. Quarteroni
and Valli (1994), Eymard et al. (2000), LeVeque (2002),
or more specifically, Eymard and Herbin (2005)22.

5 Conclusions
We proposed the integral/discrete PH formulation of sys-
tems of two conservation laws on staggered grids on 𝑛-

20 We write in the sense of, as the grid shift is fixed and based
on a priori assumptions on the flow direction. For upwinding
methods, see e. g. LeVeque (2002), Chapter 4.
21 See Iserles (2009), Section 13.2 for semi-discretization.
22 As a related steady-state problem, the convergence of a cen-
tered scheme on two staggered finite volume grids for the incom-
pressible Navier-Stokes equations in 2D is discussed.

dimensional spatial domains, by using the topological in-
formation in terms of (co-)incidence matrices of the re-
lated 𝑛-complexes. We extended known results by allow-
ing for boundary input variables of mixed type as a basis
to tackle a wider class of control problems. We related the
numerical approximation of the energy to classical finite
volume approaches and determined the consistency order
for a nonlinear example in 2D.

The main directions of future work on the numerical
side are structured PH modeling and energy approxima-
tion on non-regular grids, understanding the shifts be-
tween primal and dual grid as design parameters and
the relation to other discretization approaches like mixed
FEM. For control, issues like structural system properties
are of major interest, as well as control design based on
the integral formulation of conservation laws.
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A Consistency analysis
A.1 Model in terms of average states
We sketch the the transition from the integral to the av-
erage model. The matrices 𝐽 and 𝐺 in (27a), (34a) for
the 2D SWE are partitioned as follows:

𝐽 =

⎡⎣ 0 𝐽1 𝐽2
−𝐽𝑇

1 0 0
−𝐽𝑇

2 0 0

⎤⎦ , 𝐺=

⎡⎣ 0 𝐺1 𝐺2
𝐺3 0 0
𝐺4 0 0

⎤⎦ . (40)

Integral and average states and efforts are related via

𝑥𝑑 = Δ𝑥(Δ𝑥, Δ𝑦)�̄�, 𝑒𝑑 = Δ𝑒(Δ𝑥, Δ𝑦)�̄�, (41)

where Δ𝑥(Δ𝑥, Δ𝑦) := blockdiag{Δ𝑥Δ𝑦𝐼, Δ𝑥𝐼, Δ𝑦𝐼}
and Δ𝑒(Δ𝑥, Δ𝑦) := blockdiag{𝐼, Δ𝑦𝐼, Δ𝑥𝐼}. Note that
Δ𝑥Δ𝑒 = Δ𝑥Δ𝑦𝐼. With the discrete Hamiltonian density

�̄�𝑑(�̄�) := 1
Δ𝑥Δ𝑦

𝐻𝑑(Δ𝑥(Δ𝑥, Δ𝑦)�̄�) (42)

such that

∇�̄�𝑑(�̄�) = 1
Δ𝑥Δ𝑦

Δ𝑥(Δ𝑥, Δ𝑦)∇𝐻𝑑(𝑥𝑑)

= (Δ𝑒(Δ𝑥, Δ𝑦))−1∇𝐻𝑑(𝑥𝑑), (43)

Eq. (34a) transforms to the average model (35) with �̄� :=
∇�̄�𝑑(�̄�) and �̄� = Δ𝑥(Δ𝑥)−1𝐽Δ𝑒, �̄� = Δ𝑥(Δ𝑥)−1𝐺Δ𝑒.
In particular, 𝐽 = �̄� and 𝐺 = �̄� for Δ𝑥 = Δ𝑦.
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A.2 Computations of consistency errors
For the Hamiltonian density (29) with 𝑏 ≡ 0, the average
discrete efforts �̄� according to (33), have the components

𝑒𝑠
𝑗 = 1

2

(︃
𝑈2

𝑙𝑒𝑓 + 𝑈2
𝑟𝑖𝑔

2Δ𝑥2 +
𝑉 2

𝑙𝑜𝑤 + 𝑉 2
𝑢𝑝

2Δ𝑦2

)︃
+

𝑔𝑆𝑑,𝑗

Δ𝑥Δ𝑦

𝑒𝑢
𝑘 =

𝑆𝑙𝑒𝑓 + 𝑆𝑟𝑖𝑔

2Δ𝑥Δ𝑦

𝑈𝑑,𝑘

Δ𝑥

𝑒𝑣
𝑙 =

𝑆𝑙𝑜𝑤 + 𝑆𝑢𝑝

2Δ𝑥Δ𝑦

𝑉𝑑,𝑙

Δ𝑦
. (44)

where 𝑙𝑒𝑓 , 𝑟𝑖𝑔, 𝑙𝑜𝑤, 𝑢𝑝 refer to the left, right, lower and
upper parts of the considered 2 × 2 control volume. We
show the consistency errors for three representative cases
of the sample grid shown in Fig. 7. For simplicity, in all
three cases, we consider (𝑥, 𝑦) = (0, 0) as the center co-
ordinates of the 2 × 2 control volume and we omit the
arguments of the functions where clear from the context.

No ghost value
The numerical approximation of the discharge 𝑒𝑢

2 = 𝑠𝑢

between the faces 𝑓1 and 𝑓2 on the primal grid does
not depend on ghost values. We replace 𝑆𝑙𝑒𝑓 + 𝑆𝑟𝑖𝑔 =∫︀ Δ𝑦

2
− Δ𝑦

2

∫︀Δ𝑥

−Δ𝑥
𝑠(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 and 𝑈𝑑,2 =

∫︀ Δ𝑥
2

− Δ𝑥
2

𝑢(𝑥, 0) 𝑑𝑥 in

𝑒𝑢
2
⃒⃒
*. The Taylor series expansion of

𝜖𝑢
2 =
⃒⃒⃒
𝜕𝑒𝑢

2
𝜕𝑥

⃒⃒⃒
(0,0)

− 1
Δ𝑥

𝑒𝑢
2
⃒⃒
*

⃒⃒⃒
Δ𝑥

=
⃒⃒⃒
Δ𝑥

𝜕𝑒𝑢
2

𝜕𝑥

⃒⃒⃒
(0,0)

− 𝑒𝑢
2
⃒⃒
*

⃒⃒⃒
, (45)

yields order 𝒪(Δ𝑥2).

Consistent ghost value
Consider the numerical approximation 𝑒𝑠

1 of the pres-
sure 𝑒𝑠

1 = 1
2 (𝑢2 + 𝑣2) + 𝑔𝑠 in the center of primal face

𝑓1. If we assume zero external inflows to 𝑓1, as indi-
cated in Fig. 7, it is reasonable, to set the ghost ve-
locities �̄�𝐼𝐼𝐼 = 0 and 𝑣𝐼 = 0. Replace 𝑈𝑙𝑒𝑓 = 𝑉𝑢𝑝 =
0, 𝑈𝑟𝑖𝑔 =

∫︀ Δ𝑥
2

0 𝑢(𝑥, 0) 𝑑𝑥, 𝑉𝑙𝑜𝑤 =
∫︀ 0

− Δ𝑦
2

𝑣(0, 𝑦) 𝑑𝑦, and

𝑆𝑑,1 =
∫︀ Δ𝑥

2
− Δ𝑥

2

∫︀ Δ𝑦
2

− Δ𝑦
2

𝑠(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 in 𝑒𝑠
1
⃒⃒
*. The Taylor series

expansion of

𝜖𝑠
1 =

⃒⃒⃒
𝜕𝑒𝑠

1
𝜕𝑥

⃒⃒
(0,0)−

1
Δ𝑥

𝑒𝑠
1
⃒⃒
*

⃒⃒⃒
Δ𝑥

=
⃒⃒⃒
Δ𝑥

𝜕𝑒𝑠
1

𝜕𝑥

⃒⃒
(0,0)−𝑒𝑠

1
⃒⃒
*

⃒⃒⃒
, (46)

together with the zero velocity conditions 𝑢(− Δ𝑥
2 , 𝑦) =

𝑣(𝑥, Δ𝑦
2 ) = 0 on the outer boundary, yields 𝜖𝑠

1 = 𝒪(Δ𝑥).

Inconsistent ghost value
Now consider the numerical approximation of the dis-
charge 𝑒𝑣

1 = 𝑠𝑣 into face 𝑓1 from below. The error

𝜖𝑣
1 =

⃒⃒⃒
𝜕𝑒𝑣

1
𝜕𝑦

⃒⃒⃒
(0,0)

− 1
Δ𝑦

𝑒𝑣
1
⃒⃒
*

⃒⃒⃒
Δ𝑥

=
⃒⃒⃒
Δ𝑥

𝜕𝑒𝑢
1

𝜕𝑦

⃒⃒⃒
(0,0)

− Δ𝑥

Δ𝑦
𝑒𝑣

1
⃒⃒
*

⃒⃒⃒
(47)

is computed based on 𝑆𝑢𝑝 =
∫︀ Δ𝑥

2
− Δ𝑥

2

∫︀Δ𝑦

0 𝑠(𝑥, 𝑦) 𝑑𝑥𝑑𝑦,

𝑉𝑑,1 =
∫︀ Δ𝑦

2
− Δ𝑦

2
𝑣(0, 𝑦) 𝑑𝑦 and 𝑆𝑙𝑜𝑤 = Δ𝑥Δ𝑦𝑠𝐼 , where 𝑠𝐼 is

the ghost value, based e. g. on the steady state. As 𝑠𝐼 does
not contain information on the actual state, the local er-
ror can be bounded only by (𝑓𝐼 = [− Δ𝑥

2 , Δ𝑥
2 ] × [− Δ𝑦

2 , 0])

𝜖𝑣
1 ≤ 𝒪(Δ𝑥2) + 𝑐 · max

(𝑥,𝑦)∈𝑓𝐼

|𝑣(𝑥, 𝑦)(𝑠(𝑥, 𝑦) − 𝑠𝐼)|. (48)
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