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Executive Summary 

The bicycle offers an environmentally friendly transportation option that is space efficient, 

inexpensive and supportive of personal health through physical activity. Moreover, bicycling 

is often the fastest mode of transportation for short trips, particularly in urban areas. Despite 

the numerous advantages of bicycling, difficulties persist in integrating bicycle traffic into the 

road environment while protecting bicyclists’ safety and ensuring efficient traffic flow for all 

road users. A commonly used method for developing and evaluating measures to improve 

traffic safety and efficiency is microscopic traffic simulation. However, modified driver or 

pedestrian models are typically used to simulate bicycle traffic in these tools. These 

approaches do not adequately reflect the flexibility and adaptability of bicyclists.  

In this dissertation, real data from bicyclists at signalised intersections are used to specify, 

calibrate and validate behavioural models for application in microscopic traffic simulation. 

Video data is collected at four intersections, differing from one another in terms of geometry 

and traffic volume. Automated video analysis is used to extract trajectories, which quantify 

the spatial progression of road users, in a subset of the video data. Automated methods for 

classifying road users as bicyclists, pedestrians or motor vehicles, correcting distortion in the 

trajectory data resulting from a wide angle lens and identifying the manoeuvre (right turn, left 

turn or travelling straight across the intersection) of each bicyclist are implemented.  

Two methods for clustering the pathways used by bicyclists to carry out their desired 

manoeuvres are introduced. The first of which clusters the pathways of bicyclists arriving on 

a given approach of a given intersection. This information is used to specify the desired 

pathways in the forthcoming operational behaviour modelling approach. The second method 

generically clusters the types of pathways used by bicyclists to carry out a given manoeuvre 

(e.g. left turn) independent of the approach or intersection. The clustering results from the 

generic method are used in the subsequent modelling of the tactical decisions of bicyclists.  

Models are developed based on the clustered trajectories to better represent the behaviour 

of bicyclists in microscopic simulation on two levels; tactical and operational behaviour. 

Tactical behaviour encompasses conscious decisions made on a time scale of seconds to 

minutes that allow a road user to fulfil strategic plans while coping with the current situation. 

Behaviour at this level is modelled using logistic regression models with a choice set defined 

based on the results of the generic clustering method. Operational behaviour includes 

subconscious action patterns realised on a timescale of milliseconds to seconds in order to 

respond to the immediate situation. A modified social force model is specified here that 

enables the straightforward restriction of movement in the lateral and longitudinal directions. 

Models at both the tactical and operational level are calibrated and evaluated individually 

using K-fold cross validation.  



   

 

 

The resulting behavioural models are integrated with the microscopic traffic simulation 

software SUMO to evaluate the overall ability of the approach to realistically simulate bicycle 

traffic. The integrated models are evaluated by comparing the positions and speeds of 

simulated bicyclists (SUMO default approach and proposed modelling approach) and 

bicyclists observed in reality. The shape of simulated queues as well as the ability to 

realistically simulate left turn manoeuvres are evaluated. Results indicate that the proposed 

integrated modelling approach is capable of realistically simulating the flexible behaviour of 

bicyclists at signalised intersections. The dispersed positioning of bicyclists across the area 

of the intersection can be simulated without manually specifying a multitude of links and 

intersection points. This enables the realistic simulation of manoeuvres that are tedious to 

simulate in currently available simulation software. Particularly the simulation of left turn 

manoeuvres, including indirect left turns with and against the mandatory direction of travel, is 

simplified using the proposed approach. Finally, the simulation of bicycle queues that are 

irregular and differ between phases is possible.  

  



   

 

Zusammenfassung 

Das Fahrrad ist ein umweltfreundliches, platzsparendes und kostengünstiges Verkehrsmittel, 

das die persönliche Gesundheit des Nutzers durch körperliche Bewegung fördert. Des 

Weiteren stellt das Fahrradfahren auf kürzeren Entfernungen oft die schnellste 

Verkehrsmitteloption dar, insbesondere im urbanen Raum. Trotz der zahlreichen Vorteile der 

Fahrradnutzung treten weiterhin Schwierigkeiten bei der Integration des Fahrradverkehrs in 

den Straßenraum auf. So müssen sowohl Sicherheit als auch Effizienz unterschiedlicher 

Verkehrsteilnehmergruppen wie dem motorisierten Individualverkehr, Fußgängern und 

Radfahrern berücksichtigt werden, wodurch abweichende oder sogar gegensätzliche Ziele 

auftreten können. Eine häufig verwendete Methode zum Entwurf und zur Bewertung von 

verkehrlichen Maßnahmen, die auf die Verkehrssicherheit und -effizienz ausgerichtet sind, ist 

die mikroskopische Verkehrssimulation. Die angepassten Fahrzeug- oder Fußgängermodelle, 

die in der mikroskopischen Verkehrssimulation üblicherweise zur Abbildung des 

Radfahrerverhaltens verwendet werden, reichen jedoch nicht aus, um die gewünschte 

Genauigkeit und Realitätsnähe bei der Abbildung des Radverkehrs zu erreichen.  

In dieser Dissertation werden Realdaten von Radfahrern an signalisierten Knotenpunkten 

verwendet, um Verhaltensmodelle für den Einsatz in der mikroskopischen Verkehrssimulation 

zu spezifizieren, zu kalibrieren und zu validieren. Es werden Videodaten an vier städtischen 

Knotenpunkten erhoben, die sich jeweils in ihrer Geometrie und dem auftretenden 

Verkehrsaufkommen unterscheiden. Bei der Überquerung eines Knotenpunktes durch einen 

Verkehrsteilnehmer wird sein Bewegungsablauf räumlich und zeitlich quantifiziert. Diese 

Bewegungsabläufe werden mittels einer automatisierten Videodatenanalyse extrahiert. Zur 

Klassifizierung der Verkehrsteilnehmer als Radfahrer, motorisierte Fahrzeuge oder Fußgänger, 

zur Korrektur der Verzerrung in den Bewegungsabläufen, die durch das Weitwinkelobjektiv 

verursacht wurden, sowie zur Identifizierung der Fahrmanöver (Rechtsabbiegen, 

Linksabbiegen, Geradeausfahren) werden automatisierte Werkzeuge entwickelt und 

bewertet.  

Zur Gruppierung der Pfade, welche von den Radfahrern zur Umsetzung ihres gewünschten 

Fahrmanövers gewählt werden, werden zwei unterschiedliche Ansätze eingeführt. Der erste 

Ansatz gruppiert die Pfade der Radfahrer, die den betrachteten Knotenpunkt an einer 

bestimmten Zufahrt erreichen. Die aus der Gruppierung resultierenden repräsentativen Pfade 

dienen als Vorgabe für das entwickelte Modell zur Abbildung des operativen Verhaltens. 

Mithilfe des zweiten Ansatzes werden die Pfade gruppiert, die von Radfahrern zur 

Durchführung eines bestimmten Fahrmanövers (z.B. Linksabbiegen) genutzt werden. Im Falle 

des zweiten Ansatzes geschieht dies jedoch unabhängig vom Knotenpunkt oder der 

betrachteten Zufahrt. Diese Gruppierungsergebnisse fließen in die Modellierung der 

taktischen Entscheidungen der Radfahrer ein.  



   

 

 

Basierend auf den Ergebnissen der Gruppierungsanalyse werden Modelle entwickelt, um das 

Verhalten von Radfahrern in der mikroskopischen Verkehrssimulation auf zwei Ebenen besser 

abzubilden: der taktischen und der operativen Verhaltensebene. Taktisches Verhalten 

umfasst bewusste Entscheidungen, die in einem zeitlichen Horizont von Sekunden bis 

Minuten getroffen werden, um strategische Pläne zu erfüllen, während die aktuelle 

Verkehrssituation bewältigt wird. Das Verhalten auf dieser Ebene wird anhand von 

logistischen Regressionsmodellen prädiziert. Dabei werden die Alternativen für die Modelle 

basierend auf den Ergebnissen der Gruppierungsanalyse definiert. Das operative Verhalten 

beinhaltet hingegen unterbewusste Bewegungsmuster zur Reaktion auf die aktuelle Situation, 

die in einem zeitlichen Horizont von Millisekunden bis Sekunden realisiert werden. Bekannte 

Social Force Modelle werden um die Einschränkung der Bewegung in lateraler und 

longitudinaler Richtung erweitert. Modelle beider Verhaltensebenen werden mit den realen 

Daten kalibriert und mithilfe von k-facher Kreuzvalidierung bewertet.  

Die resultierenden Verhaltensmodelle werden zur Evaluierung der Gesamtleistungsfähigkeit 

der Ansätze in das mikroskopische Verkehrssimulationsprogramm SUMO integriert. Mit Hilfe 

von Heatmaps, welche Positionen und Geschwindigkeiten des Radfahrerkollektivs anzeigen, 

werden die entwickelten Modelle mit dem SUMO Standardmodell sowie den Realdaten der 

beobachteten Radfahrer verglichen. Des Weiteren werden die Form der simulierten 

Warteschlangen sowie die Fähigkeit des entwickelten Ansatzes, realistische 

Linksabbiegemanöver abzubilden, bewertet. Die Ergebnisse zeigen, dass der vorgestellte 

Modellierungsansatz das flexible und anpassungsfähige Verhalten der Radfahrer an 

signalisierten Knotenpunkten realistisch abbilden kann. Die im Knotenpunktbereich stark 

verteilten Positionen der Radfahrer können implizit simuliert werden, ohne eine Vielzahl von 

Pfaden und Konfliktpunkten manuell vorgeben zu müssen. Dies ermöglicht eine realitätsnahe 

Simulation verschiedener Fahrmanöver, die derzeit nur mit erheblichem Aufwand mit Hilfe 

herkömmlicher Simulationsprogramme abgebildet werden können. Insbesondere die 

Simulation von Linkabbiegemanövern, einschließlich dem indirekten Linkabbiegen mit und 

entgegen der vorgegebenen Fahrtrichtung, wird mit den entwickelten Ansätzen vereinfacht. 

Darüber hinaus ist eine realitätsnahe Abbildung von Warteschlangen möglich, die deren 

zeitlichen und räumlichen Unregelmäßigkeiten Rechnung trägt.   
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“Whatever you do, don't congratulate yourself too much, or berate yourself either. Your 

choices are half chance, so are everybody else's.”  

     

      Mary Theresa Schmich - Wear Sunscreen 
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 Introduction 

In this section, the motivation and framework for this research work are established. Starting 

with a historical review of bicycling as a mode of transport, the developments and current 

problems with safety and traffic efficiency relating to bicycling in urban areas are discussed. 

The scope and research questions pursued in this work are then defined are based on this 

contextual review and the methodology used to investigate the research questions is outlined. 

Finally, the contributions to research in the field of trajectory data processing and modelling 

the behaviour of bicyclists are presented.  

1.1 Context 

Since the introduction of the first two-wheeled vehicle, the Laufmaschine (dandy horse), by 

Baron Karl von Drais in Germany in 1817, the bicycle has played a pivotal role in providing 

utilitarian mobility and a leisure activity. Although first viewed as a daredevil machine for 

young, sporty men, design innovations quickly made the bicycle attractive and accessible to 

all. In the late 19th century and early 20th century, the bicycle enjoyed immense popularity in 

both Europe and North America. The growing bourgeoisie class rode for leisure in city parks 

and toured the countryside on bicycles. The practical applications of the bicycle were soon 

realised as well and the bicycle became popular for commuting and carrying out daily tasks 

[OLDENZIEL & ALBERT DE LA BRUHÈZE, 2011]. By the year 1930, there were over 40 million 

bicycles in Europe, more than seven bicycles for each car [EBERT, 2004].  

It was not until after World War I that the focus of urban developers and traffic engineers 

shifted to the needs of motorised vehicles. Bicyclists and pedestrians were held largely 

responsible for traffic congestion and accidents and a movement was made to relocate these 

modes to the side of the roadway on newly built sidewalks and bicycle lanes. Although the 

stated motivation for this shift was the safety and comfort of vulnerable road users, the 

underlying incentive was likely to clear the roadway for motor vehicles. This marginalisation, 

as well as the cultural trend of associating motor vehicles with the future of mobility and the 

bicycle with the poorer working class, resulted in a massive decrease in bicycling rates from 

the end of World War I until about 1970 [PUCHER & BUEHLER, 2008].  

In response to growing problems with traffic safety, environmental pollution and road 

congestion caused by automobiles, transport and land use policies in many European 

countries shifted back towards favouring bicycling during the 1970s. Taxation and policies 

that restricted motor vehicle use and increased driving costs were put in place, while bicycle 

infrastructure was expanded and bicycle use was politically supported. This resulted in an 

increase in bicycling in European countries such as Germany, the Netherlands and Denmark 

from the mid-1970s until today. Current cycling rates in Europe, measured as the percentage 
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of all trips, range from about 2% in the United Kingdom to about 30% in the Netherlands 

[PUCHER & BUEHLER, 2008].  

No such shift in policy took place during the 1970s in North America. Sprawling cities built 

during the motor vehicle centric years of the mid-20th century are less conducive to bicycle 

transportation and the lack of bicycling history made it difficult to reignite the cultural flame 

for utilitarian bicycling. Today, the United States and Canada have two of the lowest bicycling 

rates in the world with only 1% and 2% of all trips made by bicycle, respectively [PUCHER & 

BUEHLER, 2008]. Nevertheless, a movement to increase the attractiveness of bicycling has 

taken hold there as well during the last decades [DILL & CARR, 2003]. In response to many of 

the same motivating factors experienced in Europe in the 1970s, North American transport 

planners and urban policy makers today are seeking to (re-)build infrastructure and enact 

policies that reduce motor vehicle use and encourage bicycling.  

However, the safety of bicyclists must be protected if this mode is to be supported as a daily 

transport option. Due to the expansion and improvement of bicycle infrastructure, the 

reduction of speed limits in urban areas and numerous other factors, the number of bicyclist 

fatalities has decreased by about 70% in Germany, the Netherlands and Denmark since 1970 

[PUCHER & BUEHLER, 2008]. Although there is a general trend towards a safer road 

environment, the sheer number of serious injuries and fatalities per unit of exposure is much 

higher for bicyclists than motorised road users. In 2015, 19.7% of all injured and killed road 

users in Germany were bicycling [STATISTISCHES BUNDESAMT, 2016] despite an overall modal 

share of bicycling of 9.8% [RADKE, 2015]. This disproportion is even more pronounced in 

urban areas, where 27.9% of severe and minor injuries were inflicted on bicyclists. At urban 

intersections, GERSTENBERGER [2015] found that 39.1% of all collisions involve a bicyclist. 

The development of road fatalities and serious injuries for motorists (drivers and passengers) 

and bicyclists in Germany, the UK and the Netherlands per billion person-kilometres travelled 

are shown in Fig 1.1. Serious injuries and fatalities are defined and listed by the respective 

national traffic data analysts in the three countries (Germany: STATISTISCHES BUNDESAMT 

[2014; 2016], The Netherlands,: SWOV [2016], UK: DEPARTMENT FOR TRANSPORT [2017]). The 

exposure rate used is billion person-km and these data are also collected from respective 

national traffic data analysts (Germany: RADKE [2015], The Netherlands: KENNISINSTITUUT VOOR 

MOBILITEITSBELEID (KIM) [2013], UK: DEPARTMENT FOR TRANSPORT [2017]).  
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a) Serious injuries per billion person-km  

 

b) Fatalities per billion person-km 

 

 

Fig 1.1 Serious injuries (a) and fatalities per billion person-km in Germany, the Netherlands and 
the UK between 1995 and 2014 

In addition to concerns about traffic safety, bicycle traffic has a significant impact on overall 

traffic flow in cities with at least a moderate share of bicycling. If bicyclists share the road with 

motor vehicles, slower moving bicyclists can impede the movement of motor vehicles and 

slow the overall driving speed on road segments. Bicyclists too are impacted by congestion 

caused by motor vehicle traffic. In general, the influence of both modes on one another plays 

an important role in the overall efficiency and capacity of shared roadways. If bicycle traffic is 

separated from motor vehicle traffic on bicycle specific facilities, the segregated traffic 

streams must nonetheless interact at intersections. The most obvious impact of bicycle traffic 

on the capacity at intersections occurs due to the delay of left and right turning vehicles that 

share a signal phase with bicyclists travelling straight across the intersection. According to 

the traffic laws in many countries, these left and right turning vehicles must yield to the right 

of way of bicycles and pedestrians that are crossing the intersection in the same phase. At 

non-signalised intersections, the interactions and cooperation between bicyclists, 

pedestrians and motor vehicles strongly influence the safety and efficiency of all road users.  

As the demand for mobility continues to rise, with increasing motor vehicle, bicycle and 

pedestrian flows in urban centres, the need for innovative solutions to satisfy this demand 

using limited road space rises. Experts in many fields, including traffic engineering, urban 

planning and automotive engineering are creating solutions to improve bicyclist safety and to 

create the most efficient traffic flow for all road users. Advances in technologies for sensing 

and interpreting the road environment and then reacting safely to the perceived situation form 

the basis of advanced driver assistance systems (ADAS). Within the project UR:BAN (Urban 

Space: User oriented assistance systems and network management), innovative systems 
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were developed by partners in the automotive industry for the automated detection and 

reaction to vulnerable road users [UR:BAN PROJECT PARTNERS, 2016]. In the near future, 

automated motor vehicles must be able to identify bicyclists, predict their behaviour and 

respond safely in order to move independently through the urban environment. Innovations 

in the realm of intelligent transportation systems (ITS), including green light speed advice for 

bicyclists and adaptive traffic control capable of prioritising bicycle traffic, are also being 

developed and have the potential to further improve mobility for bicyclists.  

In addition to innovations in the realm of ADAS and ITS, the bicycle in itself is changing. 

Electrification is enabling bicycle use for longer trips and by a more diverse group of people. 

Cargo bicycles and trailers are becoming more popular for transporting goods and children 

in urban areas. Expected outcomes of these trends include wide-ranging dynamic 

characteristics (e.g. speed, acceleration and turning radii) and diverse tactical decisions (e.g. 

stopping at red lights or carrying out various left turn manoeuvre types) of bicyclists. The 

application of various ITS and ADAS measures to target the safety and efficiency of different 

types of bicycles and bicyclists will be an important aspect for future research. However, in 

order to develop these new measures, it is imperative to understand the behaviour of different 

types of bicyclists. Not only is an understanding of the behaviour necessary, but mathematical 

models for describing and predicting behaviour are essential for creating useful solutions and 

evaluating their effects.  

A tool used commonly for development and evaluation ADAS and ITS measures is 

microscopic traffic simulation. Simulation tools are built from a collection of models that 

desribe the behaviour of road users and the road environment. According to BARCELÓ [2010], 

the cornerstone of all types of traffic simulation is that traffic is a system comprised of many 

interconnected, complex and functionally related components, each of which can be 

modelled independently. The behaviour of the entire traffic system cannot be reduced to the 

sum of the individual components. In other words, interactions and interdependencies 

between the components lead to a traffic system that is more than the merely the sum of its 

components. This can be illustrated by a number of road users moving independently through 

the road environment. The independent motion of each road user can be predicted relatively 

easily. However, when road users interact with one another, it becomes more difficult to 

predict the actions of each individual road user. This is an example of an emerging complex 

system. The realistic simulation of the complete traffic system, therefore, requires accurate 

modelling of all the components of the system as well as realistic representations of the 

interactions and interdependencies between the components.  

This holistic view of traffic systems as well as the ensuing analysis of traffic using traffic 

simulation is particularly attractive for urban environments, where many actors and situational 

factors come into play simultaneously. A microscopic traffic simulation calibrated and 

validated using data from an existing scenario can be used to infer or predict the effects of 
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measures that are not yet in place or the large-scale deployment of existing measures. 

Microscopic traffic simulation offers an attractive solution for assessing the effect of ADAS 

and ITS. Due to the scale of microscopic traffic simulation, efficiency parameters such as the 

average and maximum travel time, the number of stops, delay and the speed profiles of 

individual road users can be examined. Although simulations are typically accident free, the 

interactions between road users and the resulting surrogate measures of safety, such as time 

to collision (TTC) and post-encroachment time (PET), can be investigated using microscopic 

traffic simulation, once a thorough calibration and validation have been carried out.  

Unfortunately, models currently used to include bicycle traffic in microscopic traffic 

simulations do not adequately reflect the unique and flexible behaviour of bicyclists in a 

realistic and detailed manner. There are many ways in which bicyclists take advantage of their 

small size, high manoeuvrability and wide range of travelling speeds to tactically move 

through the road environment. For example, bicyclists are able to choose between riding on 

the roadway, sidewalk or a bicycle facility. The direction of travel, as well as the type of turning 

manoeuvres carried out at intersections can be tactically selected by the bicyclist depending 

on their preferences, strategic goals and willingness to disobey traffic regulations. In a study 

of the accident risk and rule acceptance of bicyclists in six German cities, ALRUTZ ET AL. [2009] 

found that about 500 of the 1400 bicyclists (36%) violated a traffic regulation at least once 

during their trip. This flexible and occasionally non-compliant behaviour of bicyclists makes it 

a unique challenge to realistically model and simulate bicycle traffic.  

Despite these differences, bicycle traffic is typically simulated using the same models that are 

used to model the behaviour of motorised vehicles, with model extensions allowing simulated 

bicycles more freedom of movement in the lateral direction in some cases. It is nonetheless 

very difficult to simulate the high flexibility and the wide range of trajectories observed in 

reality using current simulation approaches. Particularly the complex tactical behaviour of 

bicyclists is difficult to simulate using commercially or publically available microscopic 

simulation software [BARCELÓ, 2010; KRAJZEWICZ ET AL., 2014; TWADDLE, SCHENDZIELORZ & 

FAKLER, 2014]. As a result of the unrealistic modelling of the bicycle traffic, the subsequent 

microscopic simulation of the entire traffic system is flawed due to the interactions between 

models in the simulation.  

Based on these motivating factors, the goal of this dissertation is to provide an approach for 

modelling the operational and tactical behaviour of bicyclists for application in microscopic 

traffic simulation. This method will enable more accurate investigations of the effects of ADAS, 

ITS and infrastructure design on the safety of bicyclists and the efficiency of traffic flow using 

microscopic traffic simulation.  
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1.2 Scope 

The three aspects explained below are used to define the focus area and boundaries of this 

dissertation.  

Location: The entire road network is relevant for the analysis of road safety and efficiency 

using microscopic traffic simulation. The scope of this dissertation, however, is confined to 

signalised intersections. This focus is justified by the disproportionately high safety risk to 

bicyclists at intersections in comparison to road segments [GERSTENBERGER, 2015; 

STATISTISCHES BUNDESAMT, 2016]. In addition, many measures for improving the safety and 

efficiency of bicycle traffic are deployed at signalised intersections. Examples of such 

measures include signal optimisation for bicyclists and ADAS systems that warn drivers of 

bicyclists approaching from behind a vehicle. Furthermore, the accurate modelling of 

interactions between motorised road users and bicyclists at intersections, which occur even 

when bicycle traffic is separated on a bicycle path, is paramount in the realistic simulation of 

urban networks.  

Behavioural level: According to MICHON [1985], the behaviour of road users can be classified 

into three categories depending on the time scale and consciousness of the decisions. At the 

strategic level, decisions about general mobility (e.g. housing and workplace location, 

recreational activities) and particular trips (e.g. destination, time of departure, mode of travel, 

route) are made. Once on a given trip, actions of a road user must be adjusted and controlled 

on a time horizon of minutes or seconds to cope with the immediate traffic situation. These 

behaviours, which include pathway planning and the adherence to traffic regulations, are 

included at the tactical level. At the bottom level of the categorization framework, the 

operational level, road users make subconscious decisions to realise the behaviours 

determined at the tactical level. These automatic action patterns include acceleration, 

deceleration and positioning. Although all levels are important for the realistic simulation of 

bicycle traffic, the scope of this dissertation is restricted the tactical choices and operational 

behaviour of bicyclists. This selection is made in consideration of the important role of the 

behaviour of bicyclists at these two levels in traffic safety and efficiency at signalised 

intersections.  

Simulation resolution: Three types of traffic simulation can be identified with regard to the 

level of aggregation. According to BARCELÓ [2010], macroscopic traffic simulation is based 

on an analogy to hydrodynamics; traffic streams with defined volumes, densities and speeds 

flow through the road network in the same way that a fluid flows through a network of pipes. 

Microscopic traffic simulation is based on a disaggregated approach in which the behaviour 

of each road user and the interactions between road users are modelled. The overall traffic 

flow results from the aggregation of the individual movements. Mesoscopic traffic simulation 

is an intermediate approach that makes use of simplified models. Microscopic traffic 
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simulation is most suitable for investigating the safety and traffic efficiency on specific road 

segments or intersections and is thus the focus of the dissertation research. 

The following research question guides the work done in this dissertation: 

How can the operational and tactical behaviour of bicyclists at signalised 

intersections be modelled to evaluate bicyclist safety and overall traffic efficiency 

using microscopic traffic simulation? 

In this dissertation, all bicyclists, including all types of people (e.g. gender, age, experience) 

and all forms of bicycles (e.g. pedelecs, e-bikes, cargo bikes), are included in one population. 

Although the dynamic characteristics and tactical behaviour of different types of bicyclists are 

assumedly very different, the aim here is to develop a generic model for all bicyclists that can 

be calibrated for different types of bicyclists in future applications.  

1.3 Methodology 

The methodology followed in this dissertation is summarised in Fig 1.2. In a first step, previous 

research investigating the behaviour of bicyclists is thoroughly reviewed (Section 2). 

Mathematical models proposed by researchers to replicate the operational and tactical 

behaviour of bicyclists are examined. Particular focus is placed on models that are currently 

implemented in commercially and publically available microscopic traffic simulation tools. The 

product of the literature review is a needs assessment derived from the critical comparison 

of the capabilities of current modelling approaches and the behaviour of bicyclists in reality. 

In Section 3, the experimental design is elaborated including data specification, the sampling 

approach and the selection of research intersections. In addition to the behavioural data from 

bicyclists, necessary data describing interacting road users and the situation in which the 

bicyclists find themselves are specified. Once the overarching procedure is determined, the 

specific methods for data collection and processing are defined. The medium for data 

collection and the techniques used to process the collected data are selected and necessary 

software extensions are identified. Finally, data collection and processing including video data 

collection, the automated extraction of road user trajectories, the post processing of the 

trajectory data and the manual collection of additional variables are explained.  

The trajectory data is clustered in Section 4 to gain an understanding of the pathways used 

by bicyclists to cross an intersection while performing different manoeuvres, including 

travelling straight across the intersection, turning right and turning left. An approach specific 

and generic clustering approach are presented.  
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Fig 1.2 Research workflow  

Models for the operational and tactical behaviour are specified in Section 5 based on 

knowledge gained through the literature review and behavioural hypotheses developed by 

observing the behaviour of bicyclists at the research intersections. The operational behaviour 

models are calibrated and validated using trajectory data from three of the four research 

intersections. This is performed using an iterative process in which a given model is specified, 

calibrated, validated, improved and then re-calibrated and validated until a final version 

emerges that accurately replicates the behaviour of bicyclists. Tactical models are developed 

using data from bicyclists observed carrying out selected behaviours at each of the four 

research intersection.  

The feasibility of the final models is evaluated in Section 6 using the microscopic simulation 

tool SUMO [KRAJZEWICZ ET AL., 2006; KRAJZEWICZ & HERTKORN, 2002]. The fourth research 

intersection, which was not used for the development and calibration of the operational 

behaviour models, is simulated. The ability of the models to replicate the behaviour of 

bicyclists at this intersection is assessed using measures that are important in the simulation 

of driver assistance and traffic control systems. 
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1.4 Contributions 

The overarching goal of this dissertation is to model the operational and tactical behaviour of 

bicyclists. In the process of accomplishing this objective, a number of additional research 

contributions are achieved. These contributions include:  

1 A thorough review of international literature concerning the operational and tactical 

behaviour of bicyclists as well as the methods for modelling and simulating these 

behaviours in microscopic traffic simulation.   

2 The extension of an existing software for the automated extraction of trajectory data 

and the subsequent processing of this data. In particular, a method for classifying road 

users as pedestrians, motor vehicles or bicyclists based on their spatial progression 

through the road geometry and their dynamic characteristics is developed and 

implemented. In addition, a method for post processing trajectory data to rectify 

distortion caused by collecting video data with a wide-angle lens by applying available 

image processing tools is proposed.  

3 The development and evaluation of two trajectory clustering approaches: 

 A method for generic pathway clustering, which is used to identify the general 

types of pathways used by bicyclists to carry out their desired manoeuvres (left 

turn, right turn, straight).  

 A method for approach specific pathway clustering, which identifies 

representative pathways used at a given approach of a given intersection.  

4 The specification, calibration and validation of models describing the tactical and 

operational behaviour of bicyclists, including: 

 A model of the operational behaviour of bicyclists based on the NOMAD social 

force model for pedestrian movement. Adaptations and extensions enable the 

explicit restriction in the change in direction and speed at each time step. A new 

parameter, the velocity direction factor, which accounts for the relative velocity of 

interacting road users, is added and is found to improve the simulation of 

situations in which bicyclists follow one another. 

 Logistic regression models to predict four tactical behaviours of bicyclists; 

infrastructure selection (bicycle facility, roadway or sidewalk), direction of travel 

(with or against the mandatory direction), compliance with traffic signals and the 

type of left turn (direct, indirect or indirect against the given direction of travel).  

5 The integration of the developed operational and tactical models with the microscopic 

traffic simulation software SUMO using the interface TraCI. This integration allows for 

the evaluation of the external models within a complete traffic environment. 
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 Literature review 

Modelling the behaviour of bicyclists at signalised intersections requires an extensive 

understanding of two main domains; the behaviour of bicyclists and the modelling of human 

behaviour within the context of road traffic. In his critical review of driver behaviour models, 

MICHON [1985] outlined three levels of driver control that are useful for classifying road user 

behaviour based on the time horizon of the decision and the type of action (Fig 2.1). At each 

behavioural level, road users are assumed to be well-informed, rational decision makers who 

collect and process situational input, predict the risks and benefits associated with each 

possible action and select the action with the highest expected utility.  

 

Fig 2.1 Categorization framework for road user behaviour (adapted from MICHON [1985]) 

Feedback mechanisms between the levels of the framework reflect the criteria and restraints 

resulting from decisions made at neighbouring levels. For example, the decision to stop at a 

red light (tactical level) is restrained by general mobility choices and route requirements 

established at the strategic level. It is also influenced by the current speed of the bicyclist and 

necessity to avoid other road users, both of which are determined at the operational level. 

Once the choice to stop at a red light is made, the outcome will govern action patterns at the 

operational level and influence future strategic decisions. Generally, task levels higher up in 

the hierarchy have both an activity initiating and a supervising and correcting function to lower 

task levels [VAN DER MOLEN & BÖTTICHER, 1988]. Lower task levels influence the choices made 

at task levels higher up in the hierarchy. The framework suggested by MICHON [1985] and 

extended by VAN DER MOLEN & BÖTTICHER [1988] is used to organise the review of the literature 

concerning bicyclist behaviour and modelling approaches. Later in this dissertation, the same 

framework is used to guide model development.  
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As defined in Section 1.2, the scope of this dissertation is limited to the operational and 

tactical behaviour of bicyclists. The framework shown in Fig 2.2 is used to facilitate a 

comprehensive and concerted literature review with regard to the research question. Specific 

aspects of the tactical and operational behaviour, which are shown as bullet points in Fig 2.2, 

are identified for review based on a preliminary investigation of the literature in the field. For 

each of the aspects, general findings, influential factors, safety effects and efficiency effects 

are explored. A review of existing approaches for modelling and simulating bicycle behaviour 

is carried out for tactical and operational behaviour. Three important model types for each 

behavioural level were identified in a preliminary review and are examined here in detail. 

 

Fig 2.2 Literature review framework 

Finally, the findings from both the behavioural review and the modelling review as well as the 

research motivation and scope defined in Section 1 are examined together to determine 

which behavioural analyses and model developments are necessary to enable the accurate 

microscopic simulation of bicycle traffic. This workflow is depicted in Fig 2.3. 

In Section 2.1, the findings of studies investigating the operational and tactical behaviour of 

bicyclists are presented according to the framework shown in Fig 2.2. The most important 

findings are summarised at the end of Section 2.1.1 and Section 2.1.2. Literature pertaining 

to modelling human behaviour in road traffic is thoroughly examined and summarised in 
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Section 2.2. Finally, in Section 2.3, a comparison of the findings is given along with the 

identified areas for further analysis and model development.  

 

Fig 2.3 Workflow for the research needs assessment 

2.1 Behavioural review 

Road user behaviour describes the decisions made and action patterns realised by motorists, 

bicyclists and pedestrians to fulfil goals. In Section 2.1.1, the findings from literature pertaining 

to the tactical behaviour of bicyclists are presented. Literature concerning the operational 

behaviour of bicyclists is reviewed in Section 2.1.2. In both sections, international literature 

describing bicyclist behaviour is summarised. Although the behaviour of bicyclists likely 

differs from country to country (and even between cities in one country), the relatively small 

number of studies that have examined the operational and tactical behaviour of bicyclists 

necessitates a broad-based review. Furthermore, the small number of studies makes it 

difficult to identify empirically quantified regional differences in bicyclist behaviour. For this 

reason, regional differences are not further investigated or specified in this review. However, 

this could be an important point to address in the future when more studies in this field have 

been published.  

2.1.1 Tactical behaviour of bicyclists 

The tactical behaviour of bicyclists, which includes conscious decisions made on a time 

horizon of seconds to minutes to cope with the immediate traffic situation, is an important 

and complex subject. Due to their size, manoeuvrability and ability to adapt to riding with 

motor vehicles on the roadway or with pedestrians on the sidewalk, a bicyclist is faced with 

a number of tactical decisions that are not faced by other types of road users. It is imperative 

to include these tactical behaviours in microscopic traffic simulations in consideration of the 

significant consequences these behaviours have on overall traffic safety and efficiency. Four 

particularly relevant tactical behaviours are investigated in this review; the reaction to a red 

traffic signal, the choice between using a bicycling facility, the roadway or the sidewalk, the 

direction of travel and the selection of a pathway across an intersection. In this section, the 

findings of research investigating these behaviours are summarised. Although there are other 

2.3 Research needs assessment

Aspects which must be improved to enable the accurate analysis of bicyclist safety and 
traffic efficiency using microscopic traffic simulation

2.1 Behavioural review 2.2 Modelling review
1.2 Scope and 

research questions
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tactical behaviours that may be interesting to investigate, these four aspects were found to 

be most relevant for traffic safety and efficiency at signalised intersections in a preliminary 

review. The review is separated into four sections corresponding to the four tactical decisions. 

Relationships identified in previous studies between each behaviour and traffic safety and 

efficiency are presented.  

Reaction to red traffic signal 

The propensity of bicyclists to stop at a red light has received a significant amount of attention 

from researchers. The resulting estimated compliance rates identified in these studies ranges 

greatly. In their review of 16 international studies pertaining to red light violations of bicyclists, 

RICHARDSON & CAULFIELD [2015] found percentages of red light violation (or self-reported 

violators for surveys) to range from 6.9% to 87.5%.  

Researchers collected revealed choice data at intersections and developed choice models 

that use the personal characteristics of the bicyclists and the situational parameters to predict 

red light violation [JOHNSON ET AL., 2011; PAI & JOU, 2014; RICHARDSON & CAULFIELD, 2015]. To 

supplement the observed data, JOHNSON ET AL. [2013] carried out a survey with the goal of 

understanding why bicyclists run red lights. The factors found to influence the decision to 

stop at a red light in these studies are summarised below:  

 Personal characteristics of the bicyclist: All four studies found that male bicyclists are 

more likely than female bicyclists to violate red lights. RICHARDSON & CAULFIELD [2015] 

found gender to be the second most significant determinant of red light infringements 

(after type of infrastructure). The age of the bicyclist was also found to have a significant 

effect on the likelihood of red light violations with younger bicyclists disobeying red lights 

more often than older bicyclists [JOHNSON ET AL., 2013]. Other characteristics of the 

bicyclist, such as the type of bicycle or clothing, were not found to be related to red light 

violations [JOHNSON ET AL., 2011]. JOHNSON ET AL. [2013] found that single or never married 

bicyclists are most likely to violate red lights and students are more likely than employed 

bicyclists to violate a red light. No significant correlation was found between the level of 

education or the income of the bicyclist and the propensity to violate a red light. 

Personality attributes, including aggressiveness and the tendency to violate traffic rules 

and regulations overall, are likely to be related to red light behaviour specifically. 

Bicyclists who have been charged with violating a red light while driving a car were found 

to be more likely to do so while bicycling than those who had not [JOHNSON ET AL., 2013]. 

PAI & JOU [2014] found wearing a helmet to be negatively correlated with disobeying at a 

red light, however, JOHNSON ET AL. [2011] did not find a significant relationship between 

these variables. Bicyclists who have experienced an accident while bicycling are more 

likely to violate a red light than those who have not [JOHNSON ET AL., 2013]. 
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 Type of infrastructure: Bicyclists using a ‘cycle track’ (“segregated cycling facility with 

bicycle lights that give cyclists right of way when they interact with other traffic” 

[RICHARDSON & CAULFIELD, 2015, P.67]) are much more likely to infringe on a red light than 

those using other types of bicycle lanes. At intersections, bicyclists were found to violate 

a red light slightly more often if an advanced stop line for bicyclists is provided [ALLEN ET 

AL., 2005]. Similarly, JOHNSON ET AL. [2011] found that bicyclists on a ‘centre lane’ (mixed 

traffic road with a bicycle stop box ahead of the stopped motor vehicle traffic) are more 

likely than bicyclists using other types of facilities to infringe on red lights. However, 

ZANGENEHPOUR ET AL. [2013] found that bicycle boxes significantly reduce the number of 

red light violations. 

 Traffic characteristics: The traffic flow at the intersection plays an important role in the 

red light compliance of bicyclists. Low traffic volumes on the crossing road lead to red 

light infringing behaviour [PAI & JOU, 2014; JOHNSON ET AL., 2013]. The presence of other 

road users on the same approach, either cars or other bicyclists, was found to have a 

deterring effect on red light violations [JOHNSON ET AL., 2011]. 

 Manoeuvre: The desired manoeuvre of the bicyclist (straight, right turn or left turn) was 

found to be related to red light violations. Bicyclists turning left in Australia (akin to turning 

right in countries with right-hand traffic) violate red lights more often than those carrying 

out other manoeuvres [JOHNSON ET AL., 2013; JOHNSON ET AL., 2011]. 

 Signal control: The length of the signal phase was found to be positively correlated with 

opportune infringing of a red light [PAI & JOU, 2014]. 

 Time of day and weather: PAI & JOU [2014] found that bicyclists are more likely to violate 

red lights in off-peak hours and in good weather conditions.  

According to the literature, the safety risk associated with bicyclists violating red lights is 

relatively low. BACCHIERI ET AL. [2010] studied a group of bicyclists over one year and did not 

find a significant correlation between reported red signal violation and accidents. LAWSON 

[1991] found that red light violation on the part of a bicyclist caused 1.8% of collisions. 

GERSTENBERGER [2015] did not report red light violation on the part of a bicyclist to be a 

considerable cause of accidents in Germany. In an analysis of Australian crash data, 

researchers found that traffic light violation on the part of a bicyclist caused 6.5% of accidents 

caused by bicyclists, which is 2.3% of all accidents involving at least one bicyclist [SCHRAMM 

ET AL., 2008].  

No studies were found that measure the effect of red light violations by bicyclists on the traffic 

flow at intersections. It is hypothesised that red light violations carried out opportunistically 

by bicyclists in situations with little or no traffic on the crossing roadway improve the overall 

efficiency at intersections by reducing waiting times for interacting traffic streams.  
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Infrastructure selection 

Unlike almost any other type of road user, bicyclists are able to make tactical decisions about 

where to travel. Although there are traffic regulations in some regions that mandate the use 

of available bicycle infrastructure, bicyclists still tend to choose between using a bicycle 

facility, riding with motor vehicles on the roadway or with pedestrians on the sidewalk. This 

choice has a considerable impact on the overall efficiency of traffic flow as well as on the 

safety of bicyclists and other road users. Unfortunately, little research has been done to 

examine infrastructure selection and the motivation of bicyclists to select the roadway or 

sidewalk when a bicycle facility is available. A number of studies have investigated the role of 

infrastructure within the framework of route choice. These studies, however, offer little insight 

as to which part of the infrastructure is actually used by the bicyclist once they are on-route.  

KULLER ET AL. [1986] carried out an observational study to determine how often bicyclists use 

the roadway or sidewalk when a bicycle facility is available. Interviews were carried out 

immediately after the behaviours were observed to uncover motivating factors. They found 

that bicyclists use the roadway when a bicycle facility is available for three main reasons; the 

bicycle facility is blocked by an obstacle or road user, the bicyclist is preparing for an 

anticipated manoeuvre, such as turning left, or the bicyclist is not satisfied with the quality of 

the bicycle facility. Bicyclists who use the sidewalk instead of a bicycle facility also cited 

obstacle avoidance, the anticipation of upcoming manoeuvre and the quality of the bicycle 

facility. In addition, they also referenced other rule-breaking behaviours, such as riding two 

abreast and riding against the given direction or travel, the desire to ride slowly and a feeling 

of safety as reasons for riding on the sidewalk.  

ALRUTZ ET AL. [2009] carried out an in-depth study of the accident risk and rule acceptance of 

bicyclists in Germany and found that 90% of bicyclists use a provided bicycle facility 

regardless of type. In cases where bicycle facility use is mandatory, 92% use the facility, while 

87% do so if bicycle facility use is not mandatory.  

Three studies were found that investigate factors motivating bicyclists’ choice between using 

different parts of the infrastructure [KULLER ET AL., 1986; ALRUTZ ET AL., 2009; GUO ET AL., 2013]. 

The factors identified by these studies are summarised below.  

 Personal characteristics of the bicyclist: Male bicyclists and younger bicyclists are 

more likely to ride on the roadway than female and older bicyclists [ALRUTZ ET AL., 2009]. 

KULLER ET AL. [1986] noted that women and people under 18 years of age are more likely 

to use the sidewalk than other bicyclists. 

 Infrastructure characteristics: The type of bicycle infrastructure available (e.g. 

physically separated bicycle paths, bicycle lanes on the roadway or marked roadways) 

has a strong influence on whether bicyclists will choose to use this facility. GUO ET AL. 
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[2013] studied the tendency of bicyclists to temporarily cross from a bicycle lane into the 

roadway and found that the width of the bicycle lane is negatively correlated with the 

probability of moving out of the bicycle lane. ALRUTZ ET AL. [2009] found that narrow 

bicycle lanes (<1 m wide) and on-road bicycle lanes have a lower rate of acceptance than 

other types of bicycle infrastructure.  

 Speed: The average speed of the bicyclist was found by GUO ET AL. [2013] to have a 

small, significant correlation with bicyclists moving from a bicycle lane into the roadway.  

 Parking: The presence of kerbside parking along an on-road bicycle lane has a positive 

correlation with bicyclists moving from a bicycle lane to the roadway [ALRUTZ ET AL., 

2009].  

 Traffic characteristics: Neither the volume of car traffic in the roadway nor the presence 

of a moving car in the adjacent driving lane are significant factors in the decision of a 

bicyclist to veer out of a bicycle lane into the roadway [GUO ET AL., 2013]. ALRUTZ ET AL. 

[2009] also found traffic volume does not play a role in the decision of a bicyclist to use 

a bicycle lane or not. The presence of another bicyclist riding against the given direction 

of travel, however, was found to have a strong positive correlation with moving from the 

bicycle lane into the roadway [GUO ET AL., 2013]. KULLER ET AL. [1986] found that bicyclists 

who rode on the sidewalk are likely to cite high traffic volume and speed as a reason for 

riding on the sidewalk rather than the roadway when no bicycle facility is available.  

Infrastructure selection appears to play a crucial role in bicyclists’ safety, although few studies 

have investigated this link. In his analysis of accidents in Germany, GERSTENBERGER [2015] 

found that “bicyclist used the wrong infrastructure” was the stated accident cause in nearly 

half of the cases in which a bicyclist was responsible for an accident. Similarly, WACHTEL & 

LEWISTON [1994] found that the average bicyclist faces a collision risk on the sidewalk 

(including separated bicycle paths) 1.8 times as great as on the roadway (including bicycle 

lanes on the roadway). A significant weakness of this study, however, is the coarse clustering 

of sidewalks and roadways with and without a bicycle facility.  

A number of studies have investigated the type of infrastructure available for bicyclists and 

the risk of injury [TESCHKE ET AL., 2012; RODGERS, 1995; RIVARA ET AL., 1997; REYNOLDS ET AL., 

2009; MORITZ, 1998; LUSK ET AL., 2011; AULTMAN-HALL & HALL, 1998]. In a review of 23 papers 

that studied the role played by the type of infrastructure in bicyclist safety, REYNOLDS ET AL. 

[2009, P.1] concluded that “sidewalks and multi-use trails pose the highest risk, major roads 

are more hazardous than minor roads, and the presence of bicycle facilities (e.g. on-road bike 

routes, on-road marked bike lanes, and off-road bike paths) was associated with the lowest 

risk”. Unfortunately, these studies are only marginally useful in determining the influence of 

tactical infrastructure selection because bicyclists may not use the intended facility. For 
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example, on busy roads, bicyclists may use the sidewalk instead of the roadway to avoid 

situations that make them feel unsafe [KULLER ET AL., 1986]. 

The effect of bicyclists’ tactical infrastructure selection on the traffic efficiency was not 

investigated directly in any studies found in this literature review. Due to their slower travelling 

speed, bicyclists who ride on the roadway can hinder the movement of motor vehicles driving 

in the same lane. The extent of this effect is presumably linked to the width and number of 

driving lanes, the volume of both bicycle and motor vehicle traffic in both directions and the 

portion of bicyclists who choose to use the roadway. Research has shown that bicyclists tend 

to move out of the bicycle facility and onto the sidewalk or roadway when passing a slower 

moving bicyclist in the bicycle facility [FALKENBERG ET AL., 2003]. While potentially degrading 

the traffic flow of motor vehicles in the adjacent road lane or the movement of pedestrians on 

the sidewalk, this behaviour likely improves the overall flow of bicycle traffic as faster moving 

bicyclists are able to pass slower individuals. To the knowledge of the author, neither of these 

premises have been quantified using observed data.  

Riding direction 

Most roads are either unidirectional or bidirectional and are comprised of a number of driving 

lanes, each characterised by a mandatory direction of travel. In regions with right-hand traffic, 

road users proceed along the right-hand side of the roadway and a dividing line on 

bidirectional roads indicates the width of the directional right of way. Similarly, bicycle 

facilities can be classified into two categories with regard to the direction of travel; 

unidirectional bicycle facilities, which are normally positioned on the respective side of the 

roadway, and bidirectional bicycle facilities, which are positioned on one side of the road and 

are used by bicyclists riding in both directions.  

Bicyclists, more so than motor vehicles, can tactically decide to ride with or against the 

mandatory direction of travel. Despite the fact that this behaviour can lead to dangerous 

situations in which the bicyclist approaches an intersection from an unexpected direction, 

KULLER ET AL. [1986] found that 11.1% of bicyclists ride against the mandatory direction on a 

bicycle facility, 1.0% do so on the roadway and 29.0% ride the wrong way on the sidewalk. 

In the United States, WACHTEL & LEWISTON [1994] found that 14.2% of bicyclists ride against 

the given direction of travel (5.3% on the roadway and 32.4% on the sidewalk).  

Two main reasons for riding against the given direction of travel were identified by KULLER ET 

AL. [1986] through interviews with bicyclists. First, bicyclists are more likely to violate traffic 

rules upon approaching their final destination or an intermediate goal. Consequently, many 

bicyclists ride the last few meters of the trip against the mandatory direction of travel. The 

second reason for riding against the mandatory direction of travel is route simplification. 
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Although the direction of travel plays a key role in the likelihood of a bicycle-motor vehicle 

collision occurring, only two research papers were found that investigate the factors 

associated with this behaviour [ALRUTZ ET AL., 2009; KULLER ET AL., 1986]. The findings of these 

studies are summarised below:  

 Personal characteristics of the bicyclist: ALRUTZ ET AL. [2009] found that men are more 

likely to ride against the mandatory direction of travel than women. They also found that 

children ride against the given direction of travel more often than adults. KULLER ET AL. 

[1986], however, found riding against the mandatory direction of travel to occur with equal 

frequency for all bicyclists, regardless of their personal characteristics.  

 Infrastructure characteristics: No information was found concerning the influence of 

the infrastructure design on the likelihood of bicyclists riding against the mandatory 

direction of travel. Findings from ALRUTZ ET AL. [2009] suggest that if a bicyclist rides 

against the mandatory direction of travel, there is a 66% likelihood he or she will use a 

bicycle facility and a 33% chance of using the sidewalk. If the bicycle facility is situated 

in the roadway, the portion of wrong way bicyclists using the sidewalk increases to 80%. 

The direction of travel is one of the key factors influencing the safety of bicyclists, particularly 

at intersections. A situation that dominates bicycle crash statistics in many countries occurs 

at non-signalised intersections when a vehicle turning right collides with a bicycle 

approaching from the right side who is travelling against the given direction of travel 

[HERSLUND & JØRGENSEN, 2003; GERSTENBERGER, 2015; RÄSÄNEN & SUMMALA, 1998; SUMMALA 

ET AL., 1996]. In this case, drivers expect conflicting vehicles or bicycles to approach from the 

left side, and as a consequence, scan the area to their left more thoroughly than the area to 

the right [SUMMALA ET AL., 1996]. Even if drivers do look to the right, they are more susceptible 

to a “look-but-failed-to-see-error” because the position of the bicycle does not belong to the 

driver’s fixed search strategy [HERSLUND & JØRGENSEN, 2003]. GERSTENBERGER [2015] found 

that more than half of the bicycle collisions recorded in the GIDAS (German In-Depth Accident 

Study) database occurred when a bicyclist approached from an unexpected direction. The 

accident situations with bicyclists riding against the expected direction of travel identified by 

GERSTENBERGER [2015] are shown in Fig 2.4. The bicycle location in the diagram does not 

indicate the type of bicycle facility used (on road or separated).  

 

Fig 2.4 Accident situations in which bicyclists approach from an unexpected direction and the 
percentage of bicycle-vehicle accidents (adapted from GERSTENBERGER [2015]) 
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In general, bicyclists riding against the mandatory direction of travel were found by WACHTEL 

& LEWISTON [1994] to face an increased risk of a collision with a motor vehicle of 3.6 times 

compared to those riding in the expected direction of travel. This is particularly true for 

bicyclists riding on the sidewalk, in which case a risk increase of 4.5 times was estimated.  

The effect of riding against the mandatory direction of travel on traffic flow was not analysed 

in any studies uncovered in the course of this literature review. Due to the infrequency of 

bicyclists riding the wrong way on the roadway [KULLER ET AL., 1986], the behaviour does not 

likely have a significant influence on the flow of motor vehicle traffic. The flow of bicycle traffic 

on bicycle facilities, however, will be affected by a bicyclist riding against the direction of 

travel. According to the theory formulated by BOTMA [1995] and implemented in the American 

Highway Capacity Manual [NATIONAL RESEARCH COUNCIL, 2000; NATIONAL RESEARCH COUNCIL, 

2010] and the German design guidelines “Handbuch für die Bemessung von 

Straßenverkehrsanlagen” [FORSCHUNGSGESELLSCHAFT FÜR STRAßEN- UND VERKEHRSWESEN, 

2015], the level of service on bicycle facilities is influenced by hindrance caused by meeting 

and passing events. When a bicyclist rides against the mandatory direction of travel, he or 

she creates meeting events for all other bicyclists using the facility in the expected direction.  

Path Selection  

The path of a bicyclist is understood here as movement through space with the purpose of 

realising a given manoeuvre. In the context of this work, path selection is limited to signalised 

intersections. The corresponding manoeuvres include turning right, turning left and riding 

straight across the intersection. An interesting example of this tactical behaviour is the path 

selection of bicyclists turning left. There are three main possibilities for bicyclists to carry out 

this manoeuvre, depicted in Fig 2.5.  

1. Direct left turn – bicyclists turn with the motor vehicle traffic in one signal phase.  

2. Indirect left turn – bicyclists turn over two phases using a pedestrian style turn.  

3. Indirect left turn (wrong way) – similar to the indirect left turn but the bicyclist rides against 

the mandatory direction of travel during both of the turning phases. 

The possible number of pathway options for bicyclists turning left explodes when 

combinations of infrastructure use (bicycle facility, roadway or sidewalk), the direction of 

travel (with or against the mandatory direction) and the left turn type are considered. Although 

less pronounced than in the case of bicyclists turning left, bicyclists turning right and those 

riding straight across the intersections also face choices concerning where and how to carry 

out their manoeuvre.  
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Fig 2.5 Depiction of the three main types of left-hand turns for bicyclists 

Although the pathfinding behaviour of bicyclists at intersections has important consequences 

concerning the overall safety and efficiency at intersections, very little research was found 

that examines this behaviour. AMINI, TWADDLE & LEONHARDT [2016] used revealed preference 

data collected at three intersections to examine the tactical path selection of bicyclists turning 

left. LING & WU [2009] developed a model for predicting the paths of bicyclists at signalised 

intersections. Unfortunately, the data used to validate the model and the model predictions 

were only briefly explained in the paper and no conclusions could be extracted for this review. 

The factors that influence the path selection of bicyclists turning left identified by AMINI, 

TWADDLE & LEONHARDT [2016] are summarised below. 

 Signal control: Bicyclists using a bicycle facility become less likely to make an indirect 

left turn against the mandatory direction of travel as the time since the red phase began 

increases. The green phase of the adjacent pedestrian signal increases the likelihood for 

an indirect left turn against the direction of travel. 

 Infrastructure selection: Path selection is strongly dependent on the infrastructure used 

upon arrival. Two discrete choice models were developed to predict the behaviour of 

bicyclists, one for those arriving on the roadway and another for those arriving on the 

bicycle facility or sidewalk, both during the red phase. Bicyclists using a bicycle facility 

or sidewalk either make an indirect left turn with or against the given direction of travel 

and not a direct left turn. Bicyclists using the roadway, on the other hand, carry out either 

a direct left turn or an indirect left turn against the direction of travel. 

No studies were found that examined the effect of path selection across an intersection and 

the overall traffic safety or efficiency. However, an effect concerning safety is expected due 

Indirect

Indirect (wrong way)

Direct
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to differing patterns of interaction between bicyclists and other road users. In addition, similar 

safety consequences as described in the riding direction section are expected for bicyclists 

who make indirect left turns against the direction of travel.  

With regard to traffic efficiency, the rate of indirect left turns against the direction of travel is 

expected to influence the flow of traffic at intersections. Similar to traffic signal violation, 

queue building at red signals is reduced by bicyclists who turn indirectly against the direction 

of travel. If bicycle traffic shares the road with motor vehicles, this can also reduce the effect 

of bicycle queues hindering vehicles at intersections.  

Summary 

A short overview of the tactical behaviours examined in Section 2.1.1 is presented in Tab. 2.1. 

Each of the four reviewed aspects is assessed with regard to the current state of knowledge 

and the influence of the behaviour on the safety of bicyclists and the overall traffic efficiency. 

The current state of knowledge is evaluated using a three-category ordinal scale (poor, fair, 

good). The influence of the behaviour on the safety of bicyclists and the overall traffic 

efficiency is rated using a second three-category ordinal scale (small, moderate, large).  
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Aspect Assessment 
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l General knowledge: More than 16 studies were found that examine the reaction 

to red traffic signals and identify the motivating factors for violation. Good 

Safety effects: The results of studies investigating the relationship between red 

light violations and accident rates indicate a surprisingly small relationship. Small 

Efficiency effects: Although no studies were found that investigated the 

relationship between red light violations and efficiency, it is hypothesised that 

bicyclists who violate red lights increase the capacity of signalised intersections, 

as they do not hinder other road users when the signal turns green. Moderate 
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 General knowledge: Although a number of studies used route choice as a 

surrogate measure of infrastructure preference, these studies provide limited 

insight into infrastructure selection while using a given road segment. Only three 

studies were found that examined tactical selection of infrastructure. Poor 

Safety effects: Although few studies have explored the link between infrastructure 

selection and bicyclist safety, the relationship appears significant. Large 

Efficiency effects: Overall traffic efficiency is highly dependent on where 

bicyclists choose to ride. Hindrance to motor vehicles and pedestrians can occur 

when bicyclists select the sidewalk or roadway instead of a bicycle facility. Large 
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General knowledge: Few studies investigated the probability and motivation for 

riding against the mandatory direction of travel. Poor 

Safety effects: Bicyclist approaching from an unexpected direction is arguably 

the most important factor leading to collisions involving bicyclists. The direction of 

travel is crucial to consider in evaluating bicyclist safety. Large 

Efficiency effects: Due to the infrequency of bicyclists riding against the 

mandatory direction of travel on the road, this is unimportant for vehicular traffic. 

Pedestrian and bicyclist level of service (LOS) and flow are affected. Moderate 
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General knowledge: Only two studies were identified regarding the path selection 

of bicyclists at intersections. There is great potential to build on the preliminary 

results offered by these papers. Poor 

Safety effects: Although the role of this aspect in bicyclist safety was not 

investigated in any studies uncovered in the literature review, it is hypothesised 

that the effect is similar to riding against the mandatory direction of travel. Large 

Efficiency effects: The path selection across the intersection is expected to 

influence the overall flow of traffic by influencing the position of bicyclists and the 

queuing of bicyclists at red signals. Moderate 

Tab. 2.1 Assessment of the current state of knowledge and traffic safety and efficiency effects of 

the analysed aspects of tactical behaviour 
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2.1.2 Operational behaviour of bicyclists 

The operational behaviour of road users is defined as subconscious action patterns that take 

place on a time horizon of milliseconds to seconds. Actions at this level are carried out to 

respond to the immediate situation while executing plans made at the tactical level and have 

important consequences concerning traffic flow and safety. The main differences between 

the operational behaviour of bicyclists and that of motor vehicles are the roles of physical and 

legal restraints. Whereas the speed travelled by motor vehicles is constrained by the speed 

limit (and the willingness to follow this limit), the speed travelled by bicyclists is controlled by 

many additional parameters, such as the preferences, physical fitness and skill of the bicyclist, 

the type and quality of the infrastructure, the road gradient and the weather. Similarly, the 

lateral spacing of motor vehicles is determined mainly by the width of the lanes. Bicyclists, on 

the other hand, are free to select their position within the infrastructure and their spacing to 

other road users. Six aspects of the operational behaviour of bicyclists at signalised 

intersections are selected for review: speed, acceleration, spacing between bicyclists and the 

resulting density and flow of bicycle traffic, overtaking and meeting events, gap acceptance 

and lateral position.  

Speed 

Most of the research that has been done to date concerning bicyclist speed has been 

motivated by the need to consider bicycle traffic in signal control plans [PEIN, 1997; RUBINS & 

HANDY, 2005; SHLADOVER ET AL., 2011; TAYLOR & DAVIS, 1999]. PEIN [1997] measured the speed 

and crossing time of bicyclists who started from a complete stop at a red light. The average 

crossing speed was found to be 4.3 m/s. RUBINS & HANDY [2005] measured crossing times at 

10 intersections in the USA and calculated the average speed of bicyclists starting from a 

standing, rolling or quasi-rolling state. They found an average crossing speed of 4.1 m/s for 

all bicyclists, 3.4 m/s for bicyclists starting from a standing state, 4.9 m/s for bicyclists starting 

from a rolling state and 3.6 m/s for bicyclists starting from a quasi-rolling state. The 

researchers noted a very large range in the crossing times and calculated crossing speeds, 

even among relatively homogeneous populations of bicyclists. SHLADOVER ET AL. [2011] 

analysed the trajectories of bicyclists crossing two signalised intersections in the USA to 

derive the average crossing speed. They found an average of 5.0 m/s with a large difference 

between the average speeds found at each of the two intersections. WU, LING & ZHAO [2004] 

measured speeds at signalised intersections in China and found an average of 3.2 m/s. 

Other studies focus on the level of service for bicycle traffic. KHAN & RAKSUNTORN [2001] 

analysed overtaking events in the USA to quantify the effects of hindrance events on speed. 

Hindrance occurs when a bicyclist passes another bicyclist travelling in the same direction, 

meets a bicyclist travelling in the opposite direction or a combination of both events. They 

found an average speed of 7.5 m/s for overtaking bicyclists and 4.9 m/s for bicyclists being 

overtaken. FALKENBERG ET AL. [2003] used video data collected at 21 road segments in 
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Germany to analyse the free flow speeds and the speed and spacing during overtaking and 

other types of hindrance events. They found an average free flow riding speed of 4.7 m/s, an 

average speed of 5.5 m/s while overtaking and an average speed of 3.6 m/s during hindrance 

events.  

The results of several speed studies were used to calibrate microscopic traffic simulations of 

bicycle traffic. RAKSUNTORN [2002] analysed the behaviour of bicyclists at five signalised 

intersections in the USA and found an average speed of 4.6 m/s. DE ZHAO ET AL. [2013] 

measured the operational behaviour of conventional bicycles and e-bikes in order to develop 

a calibrated cellular automaton simulation and found an average speed of 4.4 m/s.  

The free flow speed travelled by bicyclists is dependent on several factors, the role of which 

has been investigated by a number of researchers. The findings of these studies are briefly 

described below.  

 Type of bicycle: DE ZHAO ET AL. [2013] found an average speed of e-bicyclists of 6.2 m/s 

and an average speed of conventional bicyclists of 4.4 m/s. SCHLEINITZ ET AL. [2016] 

equipped the bicycles of 85 participants (conventional bicycles, pedelecs and e-bikes) 

with sensors to measure speed and distance as well as two cameras to record the 

environment and the face of the bicyclist. They found an average speed of 4.3 m/s, 4.8 

m/s and 6.8 m/s for conventional bicycles, pedelecs and e-bikes, respectively1. No 

studies were found that compared the speed of bicyclists using different types of 

conventional bicycles. 

 Personal characteristics of the bicyclist: There is little agreement in the findings of 

studies that investigate the effects of the age of the bicyclist on speed. While PARKIN & 

ROTHERAM [2010] found no significant difference in average bicycling speed based on the 

age of the bicyclist, SCHLEINITZ ET AL. [2016] performed a pairwise comparison of three 

age groups (≤ 40 years, 41-64 years and ≥65 years) and found that the younger group 

rides significantly faster than the older group in all cases. THOMPSON ET AL. [1997] 

analysed the speed of 152 recreational bicyclists divided into two groups (<14 years and 

≥14 years). They found a small, statistically insignificant difference between the average 

speeds of the two groups (4.0 m/s and 4.3 m/s, respectively). FALKENBERG ET AL. [2003] 

created a linear regression model to predict speed which included age as an ordinal 

variable with four categories (<18 years, 18-30 years, 31-60 years and >60 years) and 

found a decrease in the average speed of 0.4 m/s for each subsequent age category.  

This disagreement is even more pronounced concerning the role of gender. LING & WU 

[2004] found that women ride slightly faster than men, although this difference was found 

                                                

1 Pedelecs offer electric motor support up to 25 km/h while e-bikes offer support up to 45 km/h. 
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to be small (0.1 m/s) and insignificant. PARKIN & ROTHERAM [2010] found a small, 

significant difference in the speed of male and female bicyclists, though fewer data were 

collected from female bicyclists. They reported average speeds of 5.7 m/s and 6.1 m/s 

for female and male bicyclists, respectively. However, they found that including gender 

in the regression model for speed prediction had no significant influence. THOMPSON ET 

AL. [1997] found the average speed of male and female bicyclists to be 4.3 m/s and 4.0 

m/s, respectively but did not find this difference to be statistically significant. WHEELER, 

CONRAD & FIGLIOZZI [2010] found a small, significant difference between the average 

crossing speeds of male and female bicyclists at two intersections in the USA, one flat 

and one at a gradient, with men riding significantly faster than women. The linear 

regression model developed by FALKENBERG ET AL. [2003] indicates that women ride on 

average 0.6 m/s slower than men.  

In the only study found that investigated physical fitness and bicycling speed, PARKIN & 

ROTHERAM [2010] found no significant relationship between the Body Mass Index (BMI), 

which was used as an indicator of physical fitness, and the average speed of a bicyclist.  

 Gradient of the roadway: PARKIN & ROTHERAM [2010] found an average speed on flat 

segments of 6.0 m/s and an increase in the average speed of 0.24 m/s for each 1% 

decrease in gradient (downhill) and a decrease in the average speed of 0.40 m/s for each 

1% increase in gradient (uphill). FALKENBERG ET AL. [2003] included gradient as an ordinal 

variable with three categories (downhill, flat and uphill) in their regression model and 

found an increase and decrease of 0.8 m/s for bicyclists riding downhill and uphill, 

respectively.  

 Type of infrastructure: There is a high level of agreement between the few studies that 

examined the effect of infrastructure type on the speed of bicyclists. Researchers in the 

USA collected video data at 15 intersections to develop a multimodal intersection 

simulation [OPIELA ET AL., 1980]. They examined the average approach speed of bicyclists 

using four different types of infrastructure and found a mean speed on bicycle paths of 

5.6 m/s, on bicycle lanes of 6.9 m/s, on sidewalks of 5.1 m/s and on roadways of 5.3 m/s. 

In a naturalistic study of bicycle speeds, SCHLEINITZ ET AL. [2016] found the highest 

speeds on bicycle lanes and roadways (4.6 m/s), followed by the sidewalk (3.7 m/s). 

These speeds are quite a bit lower than those measured by OPIELA ET AL. [1980] but show 

the same tendency concerning the role of infrastructure type. FALKENBERG ET AL. [2003] 

found that bicyclists ride the fastest on bicycle lanes on the roadway, followed by 

separated bicycle lanes and bicycle paths (0.9 m/s decrease between subsequent 

infrastructure types). They did not measure the speed of bicyclists riding on the sidewalk 

or on the roadway in mixed traffic conditions. ALRUTZ ET AL. [2009] also found the 

bicyclists travel the fastest on bicycle lanes on the roadway than on any other type of 
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road infrastructure. The average speed for each type of infrastructure is included in the 

meta-analysis presented in Fig 2.6. 

 Manoeuvre: LING & WU [2004] used video data to measure the average speed of 331 

bicyclists in China while turning left and travelling straight across an intersection and 

found average values of 3.2 m/s and 3.7 m/s, respectively. RAKSUNTORN [2002] found an 

average crossing speed of 4.6 m/s for 997 bicyclists at five intersections in the USA. 

Bicyclists turning right were found to have an average speed of 3.1 m/s to 3.6 m/s when 

the traffic signal is red or green, respectively (N=43). 

 Miscellaneous: Other factors, such as the speed and direction of the wind and other 

weather-related aspects, likely influence the speed of bicyclists [TAYLOR & DAVIS, 1999].  

A meta-analysis is carried out in which all the reported means from the reviewed studies are 

aggregated. The average speed result from each study is included once in the dataset (studies 

are not weighted depending on the number of observations). The boxplots shown in Fig 2.6 

portray the results of the meta-analysis. 

 

Fig 2.6 Meta-analysis of the reported average speeds of bicyclists  

Speed is an important variable in traffic safety. RIVARA ET AL. [1997] studied the severity of 

injury of bicyclists involved in an accident and found the speed of the bicyclist, expressed by 

the dichotomous variable (< 6.7 m/s and ≥ 6.7 m/s), to be associated with a 1.4 times increase 

in the risk for severe injury, 1.5 times increased risk for hospital admission and 2.6 times 

increased risk for fatal injury (when speed ≥ 6.7 m/s) while controlling for the speed of the 
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other road user. Furthermore, the speed variation in a population of bicyclists likely plays a 

role in difficulties experienced by drivers in estimating gap sizes in conflicting streams of 

bicyclist traffic [HERSLUND & JØRGENSEN, 2003].  

Bicyclist speed is a determinant in overall traffic efficiency at intersections and on-road 

segments. Intergreen times, the length of which has a strong influence on the capacity of 

signalised intersections, must be allotted to ensure that all road users can cross the 

intersection before conflicting streams are allowed to enter the intersection. The maximum 

clearance time is determined from the distribution of speed and acceleration rates among 

bicyclists. This aspect has been thoroughly analysed by researchers with widely ranging 

results. The methodology used to estimate LOS in the Highway Capacity Manual assumes a 

normally distributed average speed of 5 m/s with a standard deviation of 0.8 m/s [NATIONAL 

RESEARCH COUNCIL, 2000; GOULD & KARNER, 2010]. No information is given concerning how 

different speed distributions can be implemented. Speed distribution, however, could be an 

important parameter to consider in analysing bicyclist traffic, as large speed disparities can 

cause problems with traffic safety and efficiency. No research was found that has investigated 

this link.   

In mixed traffic, particularly on single lane roads where motor vehicles cannot always overtake 

slower moving bicyclists, the speed travelled by bicyclists sets the overall travel speed on the 

roadway until a passing manoeuvre can be carried out. Although a number of papers were 

found that use microsimulation to analyse this situation [YAO ET AL., 2009; CHENG ET AL., 2008; 

GUO ET AL., 2013], none measured this effect in the field.  

A final application for average speed in traffic engineering is the design of coordinated traffic 

signals. The progression speed of signal coordination for bicyclists is determined using 

characteristics of the average speed distribution (mean and standard deviation) of the 

bicycling population. Even slight errors in the speed estimation can degrade the effectiveness 

of the coordination. No research was found investigating the effect of different progression 

speeds for signal coordination and the efficiency of bicycle and overall traffic.  

Acceleration and deceleration 

In relation to the number of studies that investigated the speed, relatively few were found that 

examine the acceleration and deceleration of bicyclists. It is important here to distinguish 

between instantaneous acceleration, which is an acceleration value at a particular point in 

time, an acceleration profile, which is a sequence of acceleration values over time, and mean 

acceleration, which is the average acceleration of an acceleration profile. LUO & MA [2016] 

carried out a detailed analysis of the acceleration and deceleration profiles of bicyclists using 

GPS data from 11 bicyclists in Stockholm, Sweden. They found acceleration rates to fall most 

often between 0.5-1.0 m/s2. The majority of bicyclists were found to complete an acceleration 

process from a stopped position within 10 s. The deceleration process was not quantified 
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precisely in the paper. However, for both acceleration and deceleration, the maximum 

acceleration or deceleration occurs near the mid-point of the process. PARKIN & ROTHERAM 

[2010] collected GPS data from 16 bicyclists in the United Kingdom for one week and 

examined the speed and acceleration characteristics. They found a mean and maximum 

acceleration of 0.25 m/s2 and 0.71 m/s2, respectively. A linear regression model was estimated 

to predict the acceleration given the gradient of the roadway. A model constant of 0.23 m/s2 

was estimated, which represents the acceleration without any gradient. This estimate leads 

to an acceleration duration of 26 s from a stop to an ultimate speed of 6.0 m/s, which is 

significantly longer than the acceleration duration estimated by LUO & MA [2016]. PEIN [1997] 

measured the acceleration of 442 bicyclists on a bicycle path in the USA and found mean 

acceleration rates to range between 0.82 m/s2 and 1.07 m/s2. The mean acceleration was 

estimated from the crossing time and the average a mean cruising speed estimation. In 

another study in the USA, TAYLOR [1993], measured the mean acceleration of 18 subjects and 

found the mean acceleration to range between 0.43 m/s2 and 1.15 m/s2. The limited number 

of factors identified in the literature review to influence the acceleration of bicyclists are 

summarised below. 

 Personal characteristics of the bicyclist: FIGLIOZZI, WHEELER, & MONSERE [2013] found 

no significant difference in the mean acceleration of male and female bicyclists, either at 

flat or graded intersections. They did note, however, that male bicyclists accelerate for a 

longer period of time than female bicyclists, reaching a higher speed by the end of the 

acceleration process. LUO & MA [2016] could not discern any significant difference in 

acceleration based on gender, although they suggest this is due to the small sample size 

in the experiment. PARKIN & ROTHERAM [2010] found a small but significant difference in 

the average acceleration of male and female bicyclists (0.26 m/s2 and 0.22 m/s2, 

respectively). However, including gender was not a significant predictor in the resulting 

regression model. 

 Gradient: FIGLIOZZI, WHEELER, & MONSERE [2013] studied the acceleration profiles of 

bicyclists at two intersections in the USA, one flat and one at a gradient, and found the 

largest portion of measured acceleration rates to fall between 1.5-1.8 m/s2 and 0.9-1.2 

m/s2, respectively. The mean, median and variation were not quantified in more detail in 

the paper. Using a linear regression model, PARKIN & ROTHERAM [2010] estimated that 

each degree of downhill gradient increases the mean acceleration by 0.02 m/s2 and each 

degree of uphill gradient decreases the mean acceleration by 0.01 m/s2.  

No research was found that thoroughly examined the deceleration (negative acceleration) of 

bicyclists.  

Acceleration and deceleration have a significant influence on traffic safety and efficiency. 

Acceleration from the stop line at intersections influences the overall crossing time and, 

therefore, the necessary intergreen times. Maximum deceleration rates are important 
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parameters in evaluating safety critical situations. No research was found, however, that 

investigates or quantifies either of these relationships. In general, the acceleration and 

deceleration characteristics of bicyclists share many of the influences on efficiency and safety 

with speed. These effects are explained in the previous section.  

Spacing, density and flow 

Motorised road traffic predominantly moves in single file along road lanes with intermittent 

lane changes. Spacing and density can therefore be reduced to one-dimensional parameters; 

the longitudinal following distance between two vehicles in the same lane and the resulting 

density given in vehicles/km. Although motor vehicles do not always drive in the centre of the 

lane and the lateral position is variable, the lateral component when calculating density is 

typically fixed by the width of the lane. Bicyclists, on the other hand, have significantly more 

freedom of lateral movement and can often pass one another in the same facility (road lane 

or bicycle facility), making it necessary to measure the spacing and density in two dimensions, 

longitudinally and laterally.  

KHAN & RAKSUNTORN [2001] examined 29 passing manoeuvres and found an average lateral 

spacing of 1.78 m with a range between 1.35 m and 2.36 m over the entire observation period. 

The average maximum lateral spacing, which is an average of the maximum lateral spacing 

observed for each bicycle during the observation period, was found to be 1.88 m with little 

variation. In their analysis of 135 passing manoeuvres in various German cities, FALKENBERG 

ET AL. [2003] found a much smaller average lateral spacing of approximately 0.60 m, with a 

minimum value of 0.20 m and a maximum of over a meter. This discrepancy could be related 

to the facility width, as KHAN & RAKSUNTORN [2001] studied a single 3 m wide bicycle path 

while FALKENBERG ET AL. [2003] investigated 21 facilities ranging in width from 1.2 m to 4.3 m. 

FALKENBERG ET AL. [2003] also measured the volume and speed of bicycle traffic on the 

observed road segments and used this information to calculate the density of bicycle traffic. 

They found values ranging between 1.6 bicyclists/km/lane and 17.9 bicyclists/km/lane. The 

following factors were found in the literature to have an influence on the spacing, density and 

flow of bicyclist traffic.  

 Speed: LING & WU [2004] measured the average density of 49 groups of bicyclists at 

normal speeds through a signalised intersection in China and found a value of 0.31 

bicyclists/m2. They also analysed the behaviour of 46 groups of bicyclists that were 

moving at a slower speed due to interference with motor vehicle traffic and found an 

average density of 0.42 bicyclists/m2. KHAN & RAKSUNTORN [2001], however, did not find 

a significant relationship between the speed of the bicyclists and the maximum lateral 

spacing. This could be due to the small sample size of 29 events.  

 Paired riding: A phenomenon unique to bicycle traffic is two or more bicyclists moving 

together or riding two abreast in order to chat. KHAN & RAKSUNTORN [2001] measured the 
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spacing between two bicyclists riding together over a distance of at least 91 m (300 ft.) 

and found an average lateral spacing of 1.05 m and an average longitudinal spacing of 

0.60 m. The lateral spacing is much lower than that found in overtaking or meeting events 

(1.78 m and 1.95 m, respectively).  

The spacing, density and flow of bicycle traffic likely influence bicyclist safety. However, to 

the knowledge of the author, the direct relationships between safety and bicyclists’ spacing, 

density and flow are yet to be studied. 

The spacing, density and flow of bicycle traffic have, per definition, an important impact on 

traffic efficiency, both on road segments and at intersections. The applicability and 

determination of the fundamental relationship between density, flow and speed for bicycle 

traffic, analogous to the relationship for vehicle traffic, have been pursued by a number of 

researchers. GOULD & KARNER [2010] provide a helpful review of research investigating the 

bicycle fundamental relationship. Estimates for maximum capacity for bicycle facilities range 

from 770 bicyclists/h/m [SMITH, 1972] to 4600 bicyclists/h/m [BOTMA & PAPENDRECHT, 1991]. 

The relatively large body of research in this area is not summarised here, however, as the 

focus of this dissertation is microscopic traffic analysis. Interested readers are referred to the 

papers by ALLEN ET AL. [1998], GOULD & KARNER [2010] and TAYLOR & DAVIS [1999]. 

Lateral position 

The position of the bicyclist is defined here as the physical location within the road space that 

a bicyclist selects for riding or stopping. The lateral position of bicyclists measured from the 

kerb or edge of the infrastructure is examined in a number of studies [DUTHIE ET AL., 2011; 

HARKEY & STEWART, 1997; HUNTER ET AL., 1999; HUNTER & STEWART, 1999; KROLL & RAMEY, 

1977; MCHENRY & WALLACE, 1985]. DUTHIE ET AL. [2011] observed the lateral position of 96 

bicyclists while they rode loops on a predefined circuit with multiple video data recording 

sites. They used the manually processed data describing the lateral position of the bicyclists 

to estimate a linear regression model. The base case of the model is a road with a wide kerb 

lane (no bicycle facility) during an overtaking event (car overtaking bicyclist). In this situation, 

the average lateral distance from the kerb face was found to be 0.5 m. During normal riding 

(no overtaking event), bicyclists are predicted to ride 0.7 m from the kerb face. KHAN & 

RAKSUNTORN [2001] analysed the lateral position of bicyclists riding on a 3 m wide separated 

bicycle path and found an average distance from the right side of the bicycle path of 0.9 m 

during normal riding and 0.6 m for a passed bicycle during an overtaking event. The factors 

described below were found to influence the position of bicyclists.  

 Infrastructure: The linear regression model developed by DUTHIE ET AL. [2011] indicates 

that bicyclists ride further from the kerb face if there is a bicycle lane. The width of the 

bicycle lane also plays a role with each additional 0.3 m in width leading to an increase 

of 0.1 m in distance from the kerb face. HARKEY & STEWART [1997] used video data of 
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1583 bicycle-motor vehicle interactions to estimate the lateral position of bicyclists and 

motor vehicles during overtaking events on roadways with different types of bicycle 

infrastructure. They found a lateral distance from the road edge of 0.4 m on roadways 

with wide kerb lanes and 0.8 m on roadways with a bicycle lane or paved shoulder. VAN 

HOUTEN & SEIDERMAN [2005] found bicycle lanes marginally increase the average distance 

from the kerb and decrease the distribution in observed distances. 

 Parking: DUTHIE ET AL. [2011] found the presence of parking to increase the distance from 

the kerb by 0.15 m and by 0.3 m if the parking facility is continuous.  

 Speed: KHAN & RAKSUNTORN [2001] found no significant relationship between the lateral 

positioning of the bicyclist and the speed.  

The position of bicyclists while riding along road segments and across intersections has an 

impact on the overall flow of traffic as well as bicyclist safety. On roadways without bicycle 

lanes, a bicyclist who chooses to ride further from the kerb can hinder motor vehicle traffic 

driving in the same lane to a larger extent than a bicyclist riding closer to the kerb. However, 

bicyclists riding close to cars parked along the side of the road put themselves in danger of 

being hit by a car door that is opened unexpectedly. No studies were identified in which these 

relationships were quantitatively investigated. 

Overtaking and meeting 

An overtaking event occurs when a faster bicyclist approaches a slower bicyclist travelling in 

the same direction and adjusts his or her speed and position to pass the slower bicyclist. A 

meeting event is defined as a situation in which two bicyclists travelling in opposite directions 

approach each other head on and must adjust their lateral position to move past one another 

without colliding.  

An overtaking event is characterised by a number of parameters, including the length of the 

event in time and distance, the speeds of the two bicyclists throughout the event and the 

spacing between the bicyclists. KHAN & RAKSUNTORN [2001] carried out a study of overtaking 

and meeting manoeuvres on a 3 m wide separated bicycle path in the USA. The analysis of a 

relatively small sample of 29 overtaking events yielded an average speed difference between 

the overtaking and passed bicyclists of 2.6 m/s, which was found to remain relatively constant 

throughout the manoeuvre. A minimum speed difference of 1.5 m/s was noted. If the 

difference dropped below this threshold, the overtaking bicyclist was found to increase his or 

her speed. The authors derived a linear equation to express the speed of the overtaking 

bicyclist as a function of the speed of the passed bicyclist. In contrast, BOTMA & PAPENDRECHT 

[1991] found overtaking bicyclists maintain a constant speed while carrying out an overtaking 

manoeuvre. FALKENBERG ET AL. [2003] observed 135 overtaking manoeuvres on 21 roadway 

sections in Germany and found that the overtaking bicyclist usually does not have to reduce 
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his or her riding speed in reaction to the bicyclist who is to be passed. KHAN & RAKSUNTORN 

[2001] found an average length of an overtaking manoeuvre to be 91.4 m (3 m wide bicycle 

path), while BOTMA & PAPENDRECHT [1991] found overtaking manoeuvre lengths of 57 m (11.0 

s) and 24 m (4.5 s) for 2.4 m and 1.8 m wide separated bicycle paths. As well as the type and 

width of the facility, other conditions, such as whether it was in an urban or rural region, may 

have had an influence on the results.   

Meeting events can be reduced to the lateral distance between two bicyclists as they move 

past one another. KHAN & RAKSUNTORN [2001] measured an average lateral spacing of 1.95 m 

on a 3 m wide separated bicycle path. Unlike overtaking events, the length and duration of 

the event are irrelevant. Although the speed of both bicyclists during the meeting event is 

likely important, this factor was not investigated in the study. No information was found 

regarding the factors that influence overtaking or meeting events. 

The number of overtaking and meeting events influences the LOS for bicyclists. BOTMA [1995] 

suggested using the number of hindrance events, which are overtaking, meeting or combined 

overtaking and meeting events, as an indicator of the LOS for bicycles on separated facilities 

[BOTMA, 1995]. The main idea of this concept is that each hindrance event causes bicyclists 

to adjust their speed or path, which in turn decreases the quality of the bicycle trip. This idea 

has been adopted in a modified form in both the American Highway Capacity Manual 

[NATIONAL RESEARCH COUNCIL, 2000; NATIONAL RESEARCH COUNCIL, 2010] and the German 

“Handbuch für die Bemessung von Straßenverkehrsanlagen” [FORSCHUNGSGESELLSCHAFT FÜR 

STRAßEN- UND VERKEHRSWESEN, 2015]. Although the number of overtaking and meeting events 

is widely used in determining LOS on bicycle facilities, GOULD & KARNER [2010] noted that 

they are relatively difficult to observe and measure in the field. 

Although the number and characteristics of the overtaking and meeting events likely impact 

the safety of bicyclists, research assessing this effect was not found in the literature review.  

Gap acceptance 

Gap acceptance plays an extremely important role in the interaction of conflicting traffic 

streams at intersections. At signalised intersections, conflicting streams that are serviced in 

the same signal group (partially conflicting streams) are regulated by priority rules. The most 

common examples here are left turning vehicles or bicyclists serviced in the same phase as 

vehicles or bicyclists moving straight across the intersection in the opposite direction. Another 

example is road users turning left or right that must pass through a stream of pedestrians or 

bicyclists crossing adjacently in the same phase. In all mentioned cases, the turning vehicle 

or bicyclist must wait for a large enough gap in the prioritised stream. The only factor found 

to affect the gap acceptance of bicyclists is the type of stop. The findings are explained below: 
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 Type of Stop: FERRARA [1975] investigated the gap acceptance behaviour of bicyclists 

crossing two lanes of motor vehicle traffic. He separated the observed bicyclists into two 

groups, those who came to a complete stop and those who came to a rolling stop. 

However, he had difficulty categorising the observed bicyclists and in any case found a 

critical gap of between 3.5 s and 4 s for both groups. He rejected the idea of differing 

behaviour between the groups and proposed a single linear model for gap acceptance. 

OPIELA ET AL. [1980] studied the gap acceptance of 260 bicyclists as they crossed two 

lanes of one-way motor vehicle traffic. They found gap acceptance to be affected by the 

type of stop, with bicyclists who came to a rolling stop accepting much shorter gaps 

compared to those who came to a complete stop. The observed gap acceptance data 

was found to follow a logarithmic distribution. The critical gap, which represents the 

intersection between the gap acceptance and gap rejection, was found to be 3.2 s.  

According to FERRARA [1975], SAITZ [1968] studied gap acceptance of bicyclists in East 

Germany and found critical gaps of 8.3 s and 8.0 s for bicyclists crossing two-way and one-

way streams of motor vehicle traffic, respectively (original publication could not be located). 

The reported critical gaps found by SAITZ [1968] are much larger than those found by other 

researchers.  

Overall traffic efficiency at intersections is significantly impacted by gap acceptance of road 

users. One factor affecting traffic efficiency is the delay of left and right turning vehicles or 

bicyclists due to interactions with partially conflicting streams, which are conflicting traffic 

streams that are included in the same signal phase. ALLEN ET AL. [1998] studied the 

relationship between the bicycle volume on a given intersection approach and the percentage 

of the green phase in which the conflict area for left and right turning vehicles is blocked by 

bicyclists. They concluded that there is very little impact on traffic flow for bicycle volumes 

less than 60 bicycle/h. A linear equation was developed to predict the proportion of green 

time during which the conflict zone is occupied based on the volume of bicycle traffic. 

Extrapolation was used to predict that a full blockage of the conflict zone occurs at 2646 

bicyclists/hour green. 

Gap acceptance plays a central role in the safety of bicyclists at intersections. A major safety 

concern at signalised intersections involves vehicles turning right in the same signal phase as 

bicyclists travelling straight across the intersection, which are often positioned to the right of 

the turning vehicle traffic. This leads to situations in which drivers do not see bicyclists (look-

but-failed-to-see-error) or accept gaps in bicycle traffic that are not large enough. This, 

however, is related to the gap acceptance behaviour of motor vehicle drivers and not 

bicyclists. The relationship between gap acceptance behaviour of bicyclists, the cause of 

different gap acceptance behaviours and bicyclist safety was not examined in the literature 

reviewed.  

 



Literature review  35 

 

Summary 

A short overview of the operational behaviours examined in Section 2.1.2 is presented in Tab. 

2.2. Each of the six reviewed aspects is assessed with regard to the current state of 

knowledge and the influence of the behaviour on the safety of bicyclists and the overall traffic 

efficiency. The current state of knowledge is evaluated using a three-category ordinal scale 

(poor, fair, good). The influence of the behaviour on the safety of bicyclists and the overall 

traffic efficiency are rated using a second three-category ordinal scale (small, moderate, 

large). 

Aspect Assessment 
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General knowledge: A relatively large number of studies were found that 

examine the speed of bicyclists crossing intersections (28). The link between 

tactical behaviour and speed was not investigated in previous studies. Good 

Safety effects: Bicyclist speed is positively correlated with the severity of 

accidents involving bicyclists. Speed variation also plays an important role in 

drivers misjudging gap size. Large 

Efficiency effects: Speed is crucial in the design and evaluation of traffic signals. 

At signalised intersections, the determination of intergreen times and the offset of 

coordinated signals depend largely on speed distribution. Large 
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General knowledge: In comparison with the large body of research investigating 

bicycle speed, only four papers have investigated acceleration. Poor 

Safety effects: Acceleration and deceleration are important parameters in the 

development of safety-critical situations. Moderate 

Efficiency effects: Acceleration controls speed and as such has a similar, but 

arguably, less pronounced effect on efficiency (explained above). Moderate 
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General knowledge: Spacing, density and flow have received a significant 

amount of attention in previous studies. However, relatively little information 

exists regarding the environmental factors that influence these parameters. Good 

Safety effects: Spacing, density and flow of bicycle traffic have not been shown 

in the literature to be significantly related to traffic safety. Small 

Efficiency effects: By definition, the efficiency of bicycle traffic is dependent on 

spacing, density and flow. The efficiency of vehicular and pedestrian traffic can 

also be impacted by these aspects of bicyclist behaviour. Large 

Tab. 2.2 Assessment of the current state of knowledge and traffic safety and efficiency effects of 

the analysed aspects of operational behaviour 
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Aspect Assessment 
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General knowledge: Although only a limited number of studies have investigated 

bicyclist position while riding, the most important parameters describing this 

aspect have been quantified. Good 

Safety effects: The main influence of riding position on bicyclist safety arise from 

the danger of the doors of parked cars being opened or motor vehicles overtaking 

with a small safety gap. Moderate 

Efficiency effects: The position of bicyclists mainly influences the efficiency of 

vehicular traffic when bicyclists ride on the roadway in narrow vehicle lanes. 

Otherwise, the effect is negligible. Small 
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 General knowledge: Although only a limited number of studies have investigated 

overtaking and meeting, the most important parameters describing these 

manoeuvres have been quantified. Fair 

Safety effects: No studies were found that investigated the safety impact of 

overtaking and meeting events. Due to the degree of interaction required, it is 

hypothesised that this relationship is important. Moderate 

Efficiency effects: The number of hindrance events (overtaking, meeting or both) 

is used to derive bicycle LOS in many countries. Large 
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General knowledge: Three relatively dated studies were found that examine the 

gap acceptance behaviour of bicyclists. A systematic investigation of gap 

acceptance in a wide variety of situations would be useful. Fair 

Safety effects: While the gap acceptance of vehicle drivers (particularly truck 

drivers turning right) has a strong, well-understood influence on bicyclist safety, 

the effect of bicyclists’ gap acceptance is not well studied. Moderate 

Efficiency effects: Gap acceptance on the part of bicyclists plays a role in bicycle 

and overall traffic efficiency depending on the manoeuvre and type of 

infrastructure used by bicyclists. Moderate 

Tab. 2.2 Assessment of the current state of knowledge and traffic safety and efficiency effects of 

the analysed aspects of operational behaviour (cont.) 

2.2 Modelling review 

Modelling human behaviour is an incredibly complex task. As drivers, humans are able to 

perceive an enormous amount of input from the environment, filter and process this 

information, and react to the situation, all within between 0.7 – 1.5 s [GREEN, 2007]. It is likely 

impossible to develop a comprehensive collection of models to exhaustively describe the 

situation, road user perception, filtering and processing of information and reaction 

mechanisms. Even if it were possible to completely model these aspects, execution in real 
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time would be challenging. Consequently, all simulations are a simplification of reality that 

can be useful in understanding some situations or predicting some future developments.  

In the 1970s and 1980s, road safety researchers established a collection of theories and 

models describing the balance maintained by a driver between the subjective risk or difficulty 

of a task and the expected benefit realized by carrying out the task [MICHON, 1985; NÄÄTÄNEN 

& SUMMALA, 1974; NÄÄTÄNEN & SUMMALA, 1975; TAYLOR, 1964; VAN DER MOLEN & BÖTTICHER, 

1988; WILDE, 1982; WILDE, 1988]. From a macroscopic viewpoint, these theories are used to 

explain why measures introduced to increase road safety, such as creating forgiving road 

infrastructure and improving vehicle design, do not always have the expected positive impact 

on accident rates. In conditions that are objectively safer or easier to navigate, drivers 

increase the riskiness of their behaviour to arrive at the same accepted level of subjective risk 

or task difficulty. From a microscopic perspective, the models can be used to predict the 

actions carried out by a given road user in a certain situation. An example given in the literature 

involves a car overtaking a slow-moving truck on a two-way road with one lane in each 

direction [VAN DER MOLEN & BÖTTICHER, 1988]. The psychological models can be used to 

predict whether or not the expected benefit of overtaking the truck outweigh the inherent risk 

of overtaking using the opposing lane. These theories developed by road safety researchers 

have acted as a backbone for subsequent model development for microscopic traffic 

simulation. Many simulation tools are built upon a common concept: modelled road users 

progress through the simulated environments by balancing the drive to move forward with 

the desired speed along the desired path with the necessity of avoiding conflicts with 

obstacles and other road users.  

Microscopic traffic simulation is used as a platform to interconnect many models that 

represent the behaviour of drivers, bicyclists and pedestrians, interactions between road 

users, the road environment and the traffic control. The resulting simulated traffic environment 

is a complex system in which the specific models interact to form an overall system that is 

more than the sum of all the models acting independently [BARCELÓ, 2010]. Once the traffic 

simulation is created, calibrated and validated using data from an existing situation, target 

aspects of the system can be manipulated by researchers to investigate the effects of these 

changes on the whole system. For example, engineers can use microscopic simulation to 

predict the effect of a given traffic control measure (e.g. coordinated traffic signals) on traffic 

efficiency before this measure is implemented. Surrogate indicators for traffic safety that 

describe the interactions between road users, such as Time-To-Collision (TTC), can be used 

to investigate probable changes in road safety. Because the local characteristics of the site 

are included in the simulation, the engineer does not solely rely on partially relevant 

experience at other sites in the planning and evaluation of traffic measures. Another 

motivation for using microscopic traffic simulation is to project the effects of a given measure 

or system when deployed on a large scale. For example, vehicle to vehicle (V2V) and vehicle 

to infrastructure (V2I) communication as well as automated driving technologies are still in the 
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development phase and can only be tested in reality on a relatively small scale. Microscopic 

traffic simulation tools are useful for predicting the effects of these technologies on road 

capacity, traffic flow and road safety with varying rates of equipment. 

The methods used for microscopic simulation can be classified based on the continuity of the 

simulation space and time. The vast majority of simulation tools run in discretised time steps 

of a given length. The position and attributes of each road user and the road environment are 

updated in each time step. Time step size can range from quite small (e.g. 0.04 s per time 

step) to relatively large (e.g. >1 s per time step) depending on the level of detail required from 

the simulation. The road space can be modelled either continually or in discrete sections. 

Cellular automata approaches, based on the idea first proposed by NAGEL & SCHRECKENBERG 

[1992], discretize the road space into an array of cells. Vehicles within the simulation follow 

predefined routes through the cell array using four driving regimes, acceleration, deceleration, 

randomization and update/move. Other simulation approaches define space continually in the 

longitudinal direction and discretely in the lateral direction. Car-following models are used to 

position road users at any point in the longitudinal direction based on the individual driving 

characteristics and the reaction to leading vehicles. Lateral movement is restricted to lane 

changes, which are modelled using rule-based or discrete choice models. A final method uses 

a continuous representation of space in both the lateral and longitudinal direction. The most 

common example of complete space continuity is found in pedestrian modelling. Models such 

as the social force model, first proposed by HELBING & MOLNAR [1995], allow pedestrians to 

move to any point on a continuous two-dimensional plane. 

A wide variety of commercial and open source tools are available for the microscopic 

simulation of traffic. The methods used for building the road network, including road 

segments, sidewalks, bicycle facilities and intersections, as well as the models and methods 

used to emulate road user behaviour vary widely between tools. The various tools are not 

reviewed in this dissertation due to the wealth of literature available in this field. If the reader 

is interested in learning more about available simulation tools, the book Fundamentals of 

Traffic Simulation [BARCELÓ, 2010] provides a good introduction to traffic simulation in general 

and more detailed information concerning selected simulation tools. In the German book 

Simulation des Straßenverkehrs in der Großstadt: das Mit-und Gegeneinander verschiedener 

Verkehrsteilnehmertypen, DALLMEYER [2014] summarises and evaluates a number of 

simulation tools.  

In the next sections, the state of the art in modelling the tactical and operational behaviour of 

bicyclists is presented. Only a handful of the reviewed approaches are implemented in 

currently available simulation tools. The remainder includes theoretical or independently 

implemented models that could be used to improve the simulation of bicycle traffic.  

In Section 2.2.1, existing models for recreating the tactical behaviour of bicyclists at signalised 

intersections are summarised. This overview is followed by a review of approaches for 



Literature review  39 

 

modelling the operational behaviour of bicyclists in Section 2.2.2. An assessment of the 

capability of existing modelling approaches to capture the complex behaviour of bicyclists is 

given at the end of each of the sections2.  

2.2.1 Tactical models 

Modelling and simulation approaches reviewed in this section are used to recreate the tactical 

behaviour of bicyclists, which is limited here to the four decisions defined in Section 2.1.1, 

infrastructure selection (bicycle facility, roadway or sidewalk), reaction to a red signal, 

travelling with or against the mandatory direction of travel and path selection across an 

intersection. Relatively few approaches for modelling the tactical behaviour of bicyclists were 

found in the literature review. Even fewer approaches were found that have been implemented 

in currently available microscopic simulation tools. In this section, three types of models are 

investigated, probabilistic approaches, discrete choice models and continuous pathfinding 

approaches. The first two types are based on the conceptualization of tactical behaviour as 

a set of discrete decisions that are made at a defined position or point in time. The third type 

formulates tactical behaviour as a continuous decision process. For each of the three 

approach types, examples are given and the application in currently available simulation tools 

is noted.  

Probabilistic approaches 

The most straightforward method of implementing tactical choice models in microscopic 

simulations is to use observed frequencies of certain behaviours. A number of previous 

studies have investigated the rate of various tactical behaviours occurring (see Section 2.1.1). 

These measured values can be used to specify the proportion of simulated road users 

carrying out a given behaviour. Some simulation tools offer users the option to specify 

frequencies of tactical behaviour directly. For example, using the microscopic simulation tool 

PTV Vissim [FELLENDORF & VORTISCH, 2010; PTV PLANUNG TRANSPORT VERKEHR AG, 2015], it is 

possible to regulate the percentage of road users who obey red traffic signals by adjusting 

the given parameter. The outcome of the tactical decision, in this case red light violation, is 

decided randomly based on the specified probability. Other tactical behaviours, such as 

infrastructure selection, are more difficult or impossible to simulate using the basic 

functionalities of the software and must be controlled using an Application Programming 

                                                

2 Parts of the text in this section were originally published in the paper:  

TWADDLE, H.; SCHENDZIELORZ, T. & FAKLER, O., Bicycles in Urban Areas: Review of Existing Methods for 

Modeling Behavior. Transportation Research Record: Journal of the Transportation Research Board, 

2434, pp.140–146. [TWADDLE, SCHENDZIELORZ & FAKLER, 2014] 
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Interface (API). Although the portion of bicyclists carrying out given behaviours can be 

calibrated to agree with reality, the main drawback of this approach is that the causation of 

the tactical behaviours is not taken into account. The simulated road users are therefore 

insensitive to the environment and cannot respond to different situations by realising different 

tactical behaviours.  

Discrete choice models 

The vast majority of the theoretic or independently implemented models for replicating or 

predicting the tactical behaviour of bicyclists are logistic regression models. In such 

approaches, observed choice outcomes are used to quantify relationships between 

independent variables describing the bicyclist and the environment and a nominal dependent 

variable describing a discrete tactical behaviour. These resulting models are used to predict 

the outcome of future choice situations. For example, JOHNSON ET AL. [2011] developed a 

binomial logistic regression model that relates the type of facility, gender of the bicyclist, 

direction of travel, presence of other road users, and average traffic volume to a red light 

violation. The resulting model predicts if a bicyclist in a given situation will violate a red signal.  

An overview of the regression models developed for predicting the selected tactical 

behaviours for bicyclists is given in Section 2.1.1. This type of model can be implemented in 

a number of traffic simulation tools with an API that allows for the direct manipulation of the 

simulated road users, such as the COM interface for PTV Vissim and TraCI for SUMO. These 

models can be implemented in the same way as probabilistic approaches. When the 

simulated bicyclist reaches a predefined decision point, the independent variables are 

extracted from the simulation using the API and the probabilities of the various choice 

outcomes are calculated using the logistic regression or discrete choice model. The option 

with the highest probability is selected and returned to the simulation. If for example, the 

model proposed by JOHNSON ET AL [2011] were implemented in a microscopic simulation tool, 

the simulated bicyclists would be instructed to stop or to violate a red traffic signal depending 

on the input parameters of the model. The advantage of this approach over probabilistic 

methods is that the causation of the tactical behaviour, and not only the proportion of 

behaviour observed to carry out a certain choice, is reflected in the simulation. No examples 

of the direct implementation of a discrete choice model for tactical behaviour in a currently 

available simulation tool were found. 

Pathfinding approaches 

Approaches in this category model the tactical behaviour of bicyclists continuously rather 

than discretely. Two approaches were identified in this review that model the pathfinding 

behaviour of bicyclists, one at non-signalised intersections and the other in shared space. 

SCHÖNAUER & SCHROM-FEIERTAG [2010] and SCHÖNAUER ET AL. [2012] added a tactical force 

vector to their social force model in order to simulate longer term tactical path selection in 
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order to avoid conflicts for bicyclists, pedestrians and vehicles in shared space environments. 

The movement of the road users is the result of the sum of an infrastructure guiding force, an 

adapted social force model and a tactical force model. The tactical force model is based on 

the game concept proposed by VON STACKELBERG [1934], which is a non-symmetric 

hierarchical game model with follower and leader players. In the application from SCHÖNAUER 

ET AL. [2012], potential conflicts between road users are identified based on the planned 

trajectories of the uninfluenced road users. Various possibilities for avoiding the conflict are 

considered by both road users. The range of options is created by first determining the 

strategy of the leading road user and then the reactive strategy of the following road users. 

The total utility of the strategy is the sum of the partial payoffs for both road users. The 

approach was validated using trajectory data from conflicts between vehicles and pedestrians 

and therefore the validity of the approach for bicycle traffic cannot be verified. 

LING & WU [2009] proposed a model that makes use of fuzzy logic rules to determine the path 

selection of bicyclists at uncontrolled intersections. The model consists of three sub-models: 

1. Situation detection – The speed, direction and position of other road users within a given 

area are detected. Conflict points with the detected road users are calculated and fuzzy 

logic rules are used to estimate the relative danger associated with each. 

2. Path sketching – Information collected with the situation detection model is used to 

determine possible trajectories. The directness, comfort and efficiency are estimated for 

each of the possible trajectories and fuzzy logic rules are used to evaluate each. 

3. Reactive path generation – The path choice is carried out and the information is sent to 

the situation detection model. 

The model was tested using empirical data and the results indicated that the modelled 

trajectories reflect those observed at the test site.  

Researchers in robotics are very active in the field of motion prediction and path planning. 

Robots, like simulated road users, must navigate around obstacles in their environment to 

reach a certain objective or location. A number of approaches use observed trajectories in 

given situations and pattern recognition algorithms to learn pathfinding behaviour from human 

actors. For example, KUDERER ET AL. [2013] and KITANI ET AL. [2012] use observed human 

trajectories through a room with furniture and a parking lot, respectively, to create pathway 

hypotheses based on the characteristics of the physical environment and the presence of 

interacting objects. A detailed review of methods for motion prediction, both in the realm of 

robotics and traffic analytics is given by MOHAMED & SAUNIER [2013]. 

None of the existing pathfinding approaches from robotics or traffic modelling are 

implemented in currently available microscopic simulation tools. The path selection across an 

intersection can be partially implemented by increasing the complexity of the network. Users 
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can define an exhaustive number of potential routes for bicyclists approaching and crossing 

an intersection. Routing methods used in the simulation tool can be used to define the path 

selection of the bicyclists. Although this is a viable solution for very small networks, the 

complexity associated with defining conflict points for many routes makes this option 

daunting for large networks. Furthermore, this option still represents a discrete choice for 

pathfinding and does not reflect the actual pathfinding choices of bicyclists made in a 

continuous two-dimensional space.  

No models were identified in this review that consider the choice between riding on a bicycle 

facility, the roadway or sidewalk. A method similar to that for path selection can be used to 

implement infrastructure selection in microscopic simulation tools. However, a critical issue 

in using this approach to simulate infrastructure selection is the current incompatibility 

between pedestrian simulation and road traffic simulation. In general, pedestrians in 

microscopic simulation tools are modelled using approaches that allow for continuous 

movement on a plane. Cars, bicycles and other road users, on the other hand, are confined 

to unidirectional facilities on the road. Interaction between the models is not currently 

possible, meaning that pedestrians cannot enter the roadway and interact with cars or 

bicyclists and cars and bicyclists cannot interact with pedestrians on the sidewalk. A 

workaround for this issue is to create a virtual pedestrian when a bicyclist moves on the 

sidewalk, which makes it possible for the other simulated pedestrians to react to the bicyclist. 

This approach, however, is cumbersome and decreases simulation speed dramatically.  

No models were identified that predict the direction of travel of bicyclists on segments with a 

mandatory direction of travel. The possibility of simulating the tactical choice concerning the 

direction of travel (riding with or against the mandatory direction of travel) differs depending 

on the simulation environment. In simulations with continuous lateral and longitudinal space, 

the direction of travel can be altered quite easily. Indeed, the challenge in these models is to 

restrain the direction of movement to realistically reflect the dynamics of riding a bicycle 

[SCHÖNAUER ET AL., 2012]. However, in simulations based on unidirectional links, such as the 

road segments in PTV Vissim and SUMO, movement is only possible in the predefined 

direction of travel. It is currently impossible to simulate road users travelling in the opposite 

direction. This restraint, however, has been recently relaxed in the simulation tool SUMO, with 

pedestrians moving on bidirectional pedestrian links. This approach could be extended for 

simulating bicycle traffic.  

Summary 

The current potential to model and simulate each of the aspects of tactical behaviour 

identified in Section 2.1.1 is assessed in Tab. 2.3. A three-category ordinal scale (poor, fair, 

good) is used to qualitatively evaluate the current modelling and simulating capabilities.  
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Aspect Current model capability 
R

e
a

c
ti

o
n

 t
o

 r
e

d
 s

ig
n

a
l 

It is currently possible to simulate this aspect of behaviour directly in microscopic 

traffic simulation tools by defining the proportion of road users that obey a red 

traffic signal using simulation parameters. It is also possible to use APIs to 

connect external discrete choice models to control the decisions of simulated 

bicyclists during predefined events or at given positions. Logistic regression 

models predicting this behaviour have been developed by previous researchers. 

However, many of these models use personal attributes of the bicyclist as 

predictors, which only exist if different types of simulated road users are created 

in current microscopic traffic simulations. Good 
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No models were found in this review that predict the infrastructure selection of 

bicyclists. This aspect of behaviour is difficult to simulate using currently available 

simulation tools due to the segregation of model types. Poor 

 

R
id

in
g

 d
ir

e
c

ti
o

n
 The ability to simulate riding against the given direction of travel varies greatly 

depending on how the road environment is simulated. If space is modelled 

continuously in two dimensions without a given direction of travel, bicyclists can 

theoretically move in all directions. However, no approaches were found in which 

bicyclists are simulated riding against the given direction using facilities that are 

characterised by a mandatory direction of travel. Poor 
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Two models were found in this review that examine the continuous path selection 

of bicyclists, one at non-signalised intersections and one for shared space. These 

approaches are most suitable for application in simulation tools with continuous 

two-dimensional space. With regard to simulation tools with directional 

infrastructure, complex path selection can be simulated by creating many 

possible pathways across an intersection and predefining routing probabilities or 

discrete models for route selection. However, the variety in pathfinding 

behaviours is limited by the number of predefined routes. Poor 

Tab. 2.3 Current model capability for the examined aspects of tactical behaviour 

2.2.2 Operational models 

In this section, approaches for modelling and simulating the operational behaviour of 

bicyclists are reviewed. The six aspects of this behaviour that were introduced and examined 

in Section 2.1.2, speed, acceleration and deceleration, overtaking and meeting, gap 

acceptance, position and spacing and density, are used to guide the review in this section. 

Three approaches for modelling the operational behaviour of all road users are selected based 

on the level of discretization of the road space. Cellular automata use complete discretization 
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of road space into an array of cells, car-following models generally use continuous 

longitudinal and discrete lateral space and social force models function in continuous two-

dimensional space. These modelling approaches are introduced and applications for 

modelling bicycle traffic are examined.  

Cellular Automata Models  

Cellular automata (CA) are time and space discrete models. In the first model by NAGEL & 

SCHRECKENBERG [1992], two-dimensional space is modelled as a one-dimensional array of 

cells, each having a length of 7.5 m (roughly the length of one car). This was later extended 

to model two-lane highway traffic by RICKERT ET AL. [1996]. In both cases, the cells in the array 

do not overlap each other and it is not possible for more than one road user to occupy a cell 

during one time step. For this reason, CA provide a simple and fast method for modelling 

homogeneous traffic flows that follow lane discipline. The possibilities for modelling mixed 

traffic streams and the interaction between different modes of transportation are limited. 

However, a number of extensions of the original CA have been suggested to make it possible 

to include bicycle traffic.  

One option for including many types of road users in CA is to create an array of cells sized in 

accordance with the dimensions of the smallest road user (width and length) and allow road 

users to occupy more than one cell per time step. This method was used by YAO ET AL. [2009] 

to model situations in China where more than one lane of bicycle traffic runs along a street 

with one or more lanes of car traffic. Each cell in the model represents 1m x 1m in reality. A 

bicycle occupies 3x1 cells and a car occupies 5x3 cells. Interactions between bicycles and 

cars are classified into two types: friction and blockage. The driving resistance for car drivers 

is determined based on the presence of bicycles in the next lane and by bicycles that move 

from the bicycle lane into car lanes. This model has not yet been empirically validated or 

calibrated. 

MALLIKARJUNA & RAMACHANDRA RAO [2008] used a similar approach to model mixed traffic 

streams in India. In this model, the cell lengths are based on the acceleration and deceleration 

properties of the road users and the cell widths are based on the width and observed lateral 

spacing maintained between different groups of road users. In order to consider the different 

lateral behaviour of the road user types, a two-lane road is divided into five sub-lanes and five 

types of lateral movements are defined. The lateral position of the road users is updated in a 

first step. In a second step, the longitudinal position is updated depending on the acceleration 

and deceleration characteristics of the road user type and the available space to move 

forward.  

VASIĆ & RUSKIN [2011A; 2011B; 2012A; 2012B] developed a CA to depict car traffic and single 

file bicycle traffic. In this model, a cell array with appropriately sized cells is created for each 

type of road user (in this case bicyclists and cars). When the pathways of multiple traffic 
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streams intersect, the cells in the CA model overlap. The movement of the vehicles is then 

determined by the impingement of the leading cells. A cell is impinged if it is occupied or any 

of the overlapping cells are occupied. The lateral interaction between bicycles and cars 

travelling in the same direction on the same roadway is only considered on ‘narrow roads’ 

where the velocity of the cars is limited based on the longitudinal distance to the next leading 

bicycle. The advantage of the model proposed by VASIĆ & RUSKIN is that the geometry of the 

intersection can be directly translated into a fitting array of cells. Complex interactions are 

extracted from this array.  

GOULD & KARNER [2010] used a CA to derive the macroscopic properties of bicycles travelling 

on a one-way bicycle facility. The simulated lane was divided into two hypothetical lanes and 

bicyclists were divided into two groups based on their speed (slow and fast). The model was 

operated using the extended rules proposed by RICKERT ET AL. [1996] and was validated and 

calibrated using empirical data. The results from the simulation were used to estimate the 

relationship between speed, density and flow of bicycle traffic. However, no observations 

were made in reality where the density of bicycles reached or passed a critical level and began 

to negatively affect the bicycle flow.  

A final option proposed for adapting the original CA for simulating bicycle traffic is to allow 

more than one road user to occupy a cell in one-time step [JIA ET AL., 2007; JIANG ET AL., 2004]. 

This provides a macroscopic approach to estimate the capacity of bicycle infrastructure and 

will not be discussed further due to the microscopic focus of this dissertation.  

Car-following models 

The majority of traffic simulation tools employ two components to independently model the 

longitudinal and lateral motion of road users (e.g. PTV Vissim, Aimsun, SUMO). The 

longitudinal motion models are space continuous and time discrete and typically use one of 

the three types of car-following models; Gazis-Herman-Rothery models, safety distance 

models, and psychophysical models [BARCELÓ, 2010]. All of these models use the speed and 

position of a leading road user to determine the behaviour of the following road user. If there 

are no other road users present, or a leading road user is far enough ahead not to influence 

the behaviour, road users strive to maintain a predefined speed. The lateral movement of road 

users is modelled using a rule-based or discrete choice model, where the position and speed 

of other road users and the desired route of the individual road user are taken into account in 

the lane choosing process. Lateral movement within a lane is not possible in simulations 

based on discrete lane selection. If mixed traffic streams are simulated using such 

approaches, single-file bicycle traffic quickly causes a moving bottleneck on the road, which 

is very rarely the case in reality as faster vehicles overtake bicycles at the earliest opportunity. 

The main strategy employed to improve the realism of bicycle simulation is to enable more 

freedom of movement in the lateral direction. The most straightforward method of 
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implementation is to divide the lane into a number of narrower sub-lanes. An extension of this 

idea is to create a continuous lateral axis rather than a discrete number of sub-lanes. This 

concept has been implemented by at least two microscopic simulation tools, PTV Vissim and 

SUMO. Users of both tools are able to adjust the global (SUMO) or vehicle specific parameters 

(PTV Vissim) such that all or specific road users can move freely in the lateral direction and 

can overtake one another in the same lane.  

The desired lateral position of the road users can be specified using a simulation parameter 

or road user characteristic. This position is favoured in situations in which the movement of 

the bicyclist is not impeded by the presence or actions of other road users and is adapted if 

the desired movement of the bicyclist is hindered. In PTV Vissim, the lateral position is 

selected with the aim of minimising the TTC to other road users. This model was proposed 

and calibrated by FALKENBERG ET AL. [2003] and is described by FELLENDORF & VORTISCH 

[2010]. In SUMO, on the other hand, bicyclists use two criteria to select their lateral position, 

speed maximisation and minimization of the distance to the desired lateral position. This 

feature was first made publically available in the core code of SUMO in 2016 and no 

documentation was found at the point of this review describing the exact implementation of 

the sub-lane concept.  

Social Force Models 

The first social force model was proposed by HELBING & MOLNAR [1995] to model pedestrian 

dynamics. The basic operating principle of this model is that pedestrians move in reaction to 

the sum of a number of attractive and repulsive forces acting upon them: 

 attraction towards a destination  

 repulsion from obstacles 

 repulsion from other pedestrians or road users 

The movement within social force models is not bound to the longitudinal and lateral axis, but 

modelled road users move freely on a two-dimensional plane. However, bicycle dynamics 

differ from pedestrians, mainly because bicyclists move primarily along the longitudinal axis 

and do not make abrupt turns. A small number of bicycle models based on an adapted form 

of the original social force model have been developed and are summarised below. 

SCHÖNAUER ET AL. [2012] and SCHÖNAUER & SCHROM-FEIERTAG [2010] used an adapted social 

force approach to simulate shared space. Motor vehicles, pedestrians and bicyclists select 

their path based on the geometry of the infrastructure and the behaviour of other road users. 

This is done using three models, an infrastructure model, an operational model and a tactical 

model. The infrastructure model builds a force field that uses repulsive forces from the 

infrastructure edges to push the road users into their intended path. The operational model, 
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which is used to move road users through the road space, is an adapted form of the model 

proposed by HELBING & MOLNAR [1995]. In order to consider the reduced degrees of freedom 

associated with motor vehicles and bicycles, the modified single track model for car dynamics 

proposed by KRAMER [2008] is implemented. The tactical model is discussed in Section 2.2.1. 

The approach was validated using trajectory data from vehicles and pedestrians, and as such, 

the validity of the approach for bicycle traffic is not verified.  

LI ET AL. [2011] developed a social force model that considers mixed bicycle-automobile 

traffic. The forces acting on bicyclists are a forward driving force that relates the current speed 

with the desired speed, repulsive forces from other bicyclists and a repulsive force from the 

edges of the infrastructure that keeps bicyclists within the bicycle lane. Bicyclists exit the 

bicycle lane onto the roadway if the repulsive forces from the other bicyclists (high density in 

the bicycle lane) overtake the repulsive force from the lane edge. The repulsive force enacted 

on bicyclists by the motor vehicles in the model is much larger than the force enacted by 

other bicyclists. This is intended to reflect the fact that cars have a greater influence within 

the road space than bicyclists. The proposed model was not yet validated or calibrated using 

empirical data.  

LIANG ET AL. [2012] developed a social force model that utilises two regimes, free flow traffic 

and congested traffic, to model bicycle traffic. In free flow conditions, the model uses two of 

the forces proposed by LI ET AL. [2011], a driving force and a repulsive force from other road 

users. Bicyclists are depicted within the model as ellipses. If the ellipses of two bicyclists 

overlap, a physical model takes over that prevents a collision from occurring. The two forces 

acting, in this case, are the contact force, which counteracts compression of the ellipse and 

the sliding friction force, which restricts relative tangential motion. The simulation results are 

compared with observed densities and velocities from bicyclist riding on a closed circuit.  

Summary 

The current capability to model and simulate each of the aspects of operational behaviour 

identified in Section 2.1.2 is assessed in Tab. 2.4. A three-category ordinal scale (poor, fair, 

good) is used to qualitatively evaluate the current modelling and simulating capabilities.  
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Aspect Current model capability 
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The capability of models to simulate speed accurately depends on the 

discretization of the simulated space. Simulation tools based on car-following 

approaches enable the user to define a distribution of desired speeds for simulated 

bicyclists. It is, however, difficult and work-intensive to simulate speed adaptations 

in response to features of the environment (e.g. type and quality of the facility) and 

the manoeuvre (e.g. turning). The resulting speed profiles of simulated bicyclists 

are more uniform than those observed in reality. Good 
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The most commonly used approach for this behaviour is the constant acceleration 

model, although this does not accurately reflect observed profiles. Accuracy 

increases when acceleration values can be specified for various speeds. If a direct 

possibility for controlling acceleration is not provided, this aspect is relatively 

simple to control using simulation interfaces. Like speed, the accuracy and realism 

of the acceleration and deceleration in simulation are highly dependent on the level 

of discretization. Fair 
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The desired lateral spacing can be adjusted in most simulations by specifying 

values at predefined speeds. It is not possible to specify desired spacing 

distributions in any simulation tool, although this would increase the realism of 

simulated bicycle flow. It is currently impossible to consider changes in the desired 

spacing due to the environment, manoeuvre or interactions with other road users. 

Simulated bicycle flows are more uniform and consistent than in reality. Fair 
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 The capability of current approaches to simulate overtaking events is similar to that 

described in the spacing, density and flow section above. Meeting events, 

however, are currently difficult to simulate using models based on unidirectional 

links. This behaviour can theoretically be simulated using social force models, but 

no examples of this were found in the literature. Poor 
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 Bicyclists tend to avoid stopping and use other tactics such as altering their path 

or reducing their speed over a longer period of time to avoid coming to a complete 

stop. This is particularly evident when streams of bicycle traffic intersect with 

streams of other road users. The simulation of this scenario does not reflect reality 

and no approaches were found that address this issue. Poor 
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CA are limited in their capacity to simulate bicyclist position accurately as road 

users proceed through the centre of the cells. The methods with continuous lateral 

space, however, offer a much more realistic depiction of positioning. In these 

approaches, bicyclists are assigned a desired lateral position and strive to maintain 

this position. Inter and intra bicyclist variations are difficult or work-intensive to 

simulate. Fair 

Tab. 2.4 Current model capability for the examined aspects of operational behaviour  
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2.3 Research needs assessment3 

The findings from the literature review are consolidated in this section. The scope and 

research question defined in Section 1 are reflected and the focus of the subsequent model 

development is defined. Two main questions are used to assess the need for further research: 

1. Which aspects of the operational and tactical behaviour are difficult to model and 

simulate realistically using currently available approaches? 

2. Which aspects of the behaviour are important to model realistically for the accurate 

evaluation of ADAS and ITS using microscopic traffic simulation? 

A summary of the qualitative evaluation of the capability of existing models to simulate the 

investigated behaviour aspects is shown in Fig 2.7 realistically, addressing the first point 

above. The impacts of the behaviour aspects on bicyclist safety and overall traffic efficiency 

are also given in Fig 2.7. The importance of the aspects for the improvement of microscopic 

simulation models is greatest in the upper left-hand corner of the figure and least in the lower 

right-hand corner. The second question in the list above can be answered using these 

qualitative assessments.  

The findings summarised in Fig 2.7 indicate that it is difficult to simulate three tactical 

behaviours using current models; the use of various facets of the infrastructure (bicycle 

facility, sidewalk or roadway), riding against the mandatory direction of travel and path 

selection. Path selection at signalised intersections is particularly in need of improvement as 

current modelling approaches focus on non-signalised intersections and shared space. These 

problems stem from the conceptualisation of road infrastructure as a network of links, which 

are unidirectional facilities in which the simulated road users travel in one way, and nodes 

where intersecting streams are managed using signal control and conflict rules.  

An important motivation for this work is the simulation of bicycle behaviour that allows for the 

development and evaluation of ADAS and automated vehicles. It is therefore important to 

consider which facets of bicyclist behaviour are most critical from this viewpoint. Generally, 

automated driving algorithms will require a prediction concerning the future trajectories, 

                                                

3 The research needs identified here were also used as a basis for the research done within the project 

UR:BAN. Results from this project work are published here: 

TWADDLE, H. [2017]: Analysis and Modelling of the Operational and Tactical Behaviour of Bicyclists. In 
K. Bengler, S. Hoffmann, D. Manstetten, A. Neukum, & J. Drüke, eds. UR:BAN Human Factors in Traffic. 
Springer. [TWADDLE, 2017] 

TWADDLE, H. & HOFFMANN, S. [2016]: Forschungsprojekt UR:BAN - Mensch im Verkehr Schlussbericht, 
Germany. [TWADDLE & HOFFMANN, 2016] 
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including the position and speed in each time step, of bicyclists in the vicinity of the 

automated (or ADAS supported) vehicle. In reference to the tactical and operational behaviour 

framework used in this review, the path and infrastructure selection, as well as the riding 

direction, are very important. The speed and acceleration, as well as the position within the 

infrastructure, will also be important elements to consider in the development of useful models 

for ADAS and automated driving development.  

 

Fig 2.7 Qualitative evaluation of the model capability and safety and efficiency effects of the 
investigated operational and tactical behaviour aspects 

Modelling approaches should be developed that reflect the flexible nature of bicycle traffic 

and are compatible with unidirectional link based simulation frameworks. An approach that 

makes it possible to simulate bicyclists using and switching between different parts of 

infrastructure (bicycle facility, roadway and sidewalk), riding with and against the mandatory 

direction of travel and selecting unique pathways across the intersection will greatly increase 

the realism of bicycle simulation. The compatibility with link based simulation environments 

will ensure usability with common simulation software. The development of such an approach 

will not only address the poor ability to model the tactical behaviours mentioned above, but 

also the simulation of meeting events.   
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 Experimental design, data collection and processing 

In order to solve the research problem defined in Section 1.2 and address the focus points 

identified in Section 2.3, it is necessary to collect and process data describing the identified 

aspects of the tactical and operational behaviour of bicyclists at signalised intersections. 

These data are subsequently used in Section 4 to analyse the pathfinding behaviour of 

bicyclists as well as in Section 5 to specify, calibrate and evaluate behavioural models to be 

applied in microscopic traffic simulation. The workflow described in this section is shown in 

the following figure. 

 

Fig 3.1 Flowchart for experimental design, data collection and processing  

The data specification and sampling approach, variable specification and selection of 

research intersections are presented in Section 3.1 and Section 3.2. The data collection 

system is explained in Section 3.3 followed by a description of the methods used for 

processing the data with an extended version of the open source software Traffic Intelligence 

[JACKSON ET AL., 2013] in Section 3.4. The post processing of the data as well as the 

extension of the database to include signal timing information and qualitative variables are 

described in Section 3.5 and Section 3.6, respectively. 

3.1 Data specification and sampling approach 

Model specification and calibration require data from a sample of bicyclists, interacting road 

users and the encompassing situation. Two types of data can be used for this purpose:  

Definition of data type and sampling method

Data specification 
tactical models

Data specification 
operational models

Identification of research intersections

Database extensions

Automated video analysis

Trajectory extraction
Trajectory post 

processing

Collection of video data
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 Stationary data collected at a limited number of locations for a large sample of 

subjects. 

 Floating vehicle (bicycle) data collected from a limited number of subjects that cover 

many locations.  

Using stationary data it is possible to extract a rich description of the location and situation, 

including the exact geometry of the intersection, the phases of the signal control and the 

behaviour of surrounding road users. However, it is difficult to collect information about each 

individual bicyclist (age, gender, level of experience, etc.) or long-term behaviour, such as 

average speed over the entire trip. In contrast, floating bicycle data offer detailed information 

about the bicyclist and his or her long-term behaviour, but little data describing the situation 

or interactions with other road users.  

For the purposes of this dissertation, stationary data is advantageous because interactions 

with other road users and a comprehensive description of the situation are readily available, 

both of which are imperative for model development. The intention of this thesis is to develop 

generic models of bicyclist behaviour that can be calibrated and applied to many different 

types of bicyclists. For this reason, all bicyclists are included in one inclusive population. Data 

describing the personal attributes of the observed bicyclists, including gender and age, or 

characteristics of the bicycle, such as electric motor support, are therefore not necessary to 

collect or analyse at this stage of model development.  

There are many methods for collecting stationary data, including manual observation, fixed 

detectors for motor vehicles, pedestrians and bicycles (e.g. inductive loop detectors and radar 

and laser detectors) and aerial view data collection. The most common parameters that are 

measured from stationary data include traffic volume, speed, road occupancy and vehicle 

characteristics (type and length). However, in order to develop and calibrate detailed models 

for bicyclist behaviour, detailed descriptions of the movement and interactions of bicyclists 

are required. For this reason, aerial data collection is selected for the data collection method. 

Video data, which provides a wealth of information describing the entire road system, is 

selected as the type of aerial data collection.   

A sampling approach is needed to identify a representative group of bicyclists from which it 

is possible to draw conclusions that apply to the entire population of bicyclists in Munich. To 

this aim, an observational study with partial variable control by means of intersection selection 

is implemented. The independent variables, which are introduced in the next section, describe 

the geometry of the intersection, the traffic flow and the signal control. In accordance with the 

experimental design, research intersections are selected to provide variation in the geometric 

and average traffic characteristics. Once the research intersections are selected, the 

approach transitions to an observational study in which the remaining variables, including the 

momentary traffic situation, the signal phase and the behaviour of road users, are not 

controlled by the experimenter. Behaviour data from all bicyclists crossing the intersection 
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during the observational study are analysed, which eliminates a potential selection bias. The 

particular considerations and requirements for the data needed to specify and calibrate the 

operational and tactical models are elaborated in the following sections.  

3.1.1 Data specification for tactical models 

Tactical behaviours can be represented using a finite number of choice outcomes and 

therefore models that predict categorical variables can be developed. The data required to 

specify and calibrate discrete choice models are therefore not derived from the trajectories of 

the observed bicyclists themselves, but rather from discrete tactical choices made by 

bicyclists while crossing an intersection. Logistic regression and discrete choice models are 

typically used to predict tactical behaviour. According to VAN DER PLOEG ET AL. [2014], the 

minimum number of observations necessary to estimate a logistic regression model with 

sufficient ability to predict the outcome of dichotomous and multinomial choice situations is 

ten observations per predictor (independent variable). More stable estimations of the beta 

parameters in the logistic regression are achieved with 20 observations per predictor. As data 

from each of the observed bicyclists can only be used to estimate the models coinciding with 

the choice situations met by that bicyclist, the total number of observations must include a 

sufficient number of bicyclists faced with each of the tactical choices. For example, in order 

to estimate a choice model for the reaction to a red signal, the number of bicyclists who 

encounter a red signal must be greater than 20 times the number of independent variables. 

The duration of the observational studies needed to obtain a sufficient sample size is given 

by the following equations.  

𝑁 = 20 𝐼𝑉 
 

Eq. 3.1 

𝑁 = 𝑇 𝑞 𝑃𝑚𝑖𝑛 Eq. 3.2 

𝑇 =
20 𝐼𝑉

𝑞 𝑃𝑚𝑖𝑛
 Eq. 3.3 

where 𝑁 is the number of observations, 𝐼𝑉 is the number of independent variables, 𝑇 is the 

duration of the observation period, 𝑞 is the average flow of bicycle traffic at the research 

intersections, and 𝑃𝑚𝑖𝑛 is the estimated proportion of bicyclists faced with the least frequent 

tactical choice.  

Two types of variables are necessary for the behavioural analyses and subsequent model 

development; variables describing the tactical behaviour of the bicyclist (dependent variables) 

and variables describing the situation (independent variables). In this research, automated 

methods for determining the manoeuvre, response to a red signal and pathway selection are 

developed and implemented. High-resolution data describing the geometry of the intersection 
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is required to relate the position of the bicyclist from the trajectory data to the physical 

infrastructure. Polygons are used to specify the contours of the various components of the 

intersection geometry, including bicycle facilities, roadways, sidewalks, crosswalks, grass 

areas and stop lines. The relation between the trajectory data and the geometric information 

enables the analysis of bicyclist position and infrastructure use. In addition to geometric 

information, data indicating the signal phase and timing are necessary. The timing data are 

synchronised with the video data to eliminate potential misalignment in the time stamps. This 

data makes it possible to relate the operational and tactical behaviour of the bicyclists to the 

state of the traffic signal.  

The situational variables found in the literature review or hypothesised to influence the tactical 

behaviour of bicyclists are clustered into three categories: 

 Geometric variables that describe the layout of a given intersection. 

 Traffic variables that describe the average traffic flow and composition as well as the 

speed and position of other road users at a given time 𝑡.  

 Signal control variables that describe the type of signal control used and the phase 

of the signal at a given time 𝑡.  

A visual representation of selected independent and dependent variables is shown in Fig 3.2.  

 

Fig 3.2 Selected tactical choices and situational factors 

a = bicyclist

b = roadway

c = bicycle lane (on roadway)

d = bicycle lane (on sidewalk)

e = sidewalk

f = current road

g = crossing road

h = approach

i = opposite approach

j = right approach

k = left approach

l = direct left turn

m = indirect left turn

n = indirect left turn (wrong way)

o = with direction of travel

p = against direction of travel
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A total of 37 independent variables describing the geometry of the intersection, the 

momentary and average traffic and the signal control are specified. Complete lists of the 

categorical and continuous independent variables analysed along with descriptive statistics 

of the collected data set are given in Tab. 3.5 and Tab. 3.6 (page 70 and 71). Adequate 

variation in the variables is assured through the selection of research intersections with 

approaches (16 approaches in total) differing from one another in terms of traffic flow and 

geometry. Variables describing the presence of other road users as well as the state of the 

signal control at the moment a given bicyclist arrives at the intersection provide further 

variation between the cases. 

As noted previously, data describing the personal characteristics of the observed bicyclists, 

including observable attributes such as age and gender and non-observable attributes such 

as bicycling experience and aggressiveness, are not collected. Similarly, the type of bicycle 

(e.g. electric motor support, cargo bicycles, bicycles with trailers, etc.) is not observed or 

recorded. Although these attributes play a significant role in the operational and tactical 

behaviour of bicyclists, they are omitted here because of the goal of creating generic bicycle 

behaviour models that can be calibrated for different types of bicyclists in the future.  

3.1.2 Data specification for operational models 

In order to calibrate and validate behavioural models on the operational level, data that 

catalogue the trajectories of a sample of bicyclists as they cross an intersection are required. 

Here, a trajectory is defined as a set of position coordinates  

𝑆𝑖 = {(𝑥𝑖, 𝑦𝑖)𝑡=0 (𝑥𝑖, 𝑦𝑖)𝑡=1 ⋯ (𝑥𝑖 , 𝑦𝑖)𝑡=𝑇𝑖  }, where (𝑥𝑖, 𝑦𝑖)𝑡 is the position coordinate of the 

road user 𝑖 at a given point in time 𝑡 after tracking of the road user begins. For each tracked 

road user, a trajectory is created that contains a position coordinate for each sequential video 

frame (25 fps) in which the road user can be seen in the video. The length of the trajectory 𝑆𝑖 

depends on the duration 𝑇𝑖 of the intersection crossing, both of which vary between 

trajectories depending on the pathway taken and the speed travelled by road user 𝑖. Speed 

and acceleration are derived from the position data in every time step. By collecting trajectory 

data from all road users, not only the movement of a specific individual can be studied, but 

also the interactions between individuals and surrounding road users.  

Operational models are built using a set of input variables 𝑋, which can include, for example, 

the position and speed of an individual bicyclist and interacting road users as well as the 

traffic signal state, and a set of parameters that control the magnitude of influence of the given 

input variables. Once the model form is specified, the model parameters are estimated using 

Maximum Likelihood Estimation (MLE) to best fit a set of observed data. The sample size 

used for this calibration must be sufficiently large to produce statistically viable parameter 

estimates. The desired sample size is therefore dependent on the desired statistical power, 

the variance in the input variables, the inter-correlation between the model parameters and 
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the number of parameters to be calibrated. Without prior knowledge of the variance of the 

input variables in a population of bicyclists and the inter-correlation between model 

parameters, a general rule of thumb is followed to ensure an adequate sample size [LONG, 

1997]. According to LONG [1997], calibrating models with fewer than 100 observations leads 

to unstable results and a lower threshold of 10 observations per parameter should be 

observed. Here, the number of observations available from each trajectory is related to the 

field of view of the camera (overall length in meters of the trajectory), the observation 

frequency and the speed of the bicyclist. Assuming an average speed of 5 m/s, a field of view 

of approximately 50 m by 50 m and a frame rate of 25 fps, an average of 250 observations 

per bicyclist is expected. This is more than double the recommended 100 observations 

required to achieve stable results.  

3.2 Research intersections 

The research intersections are selected with the goal of maximising the variety of situations 

with which the observed bicyclists are faced. One of the most important factors affecting 

bicyclist behaviour is the availability and type of bicycle infrastructure. Twelve types of bicycle 

infrastructure are defined in the German Road Traffic Regulations, Straßenverkehrs-Ordnung 

(StVO) [BUNDESMINISTERIUM FÜR VERKEHR BAU UND STADTENTWICKLUNG, 2013] and are listed in 

the right column of Tab. 3.1 (translation from German by the author). For this research, the 

types defined in the StVO are clustered into three groups based on the degree of separation 

between bicyclists and motorised vehicles (left column of Tab. 3.1). 

Cluster Type of Infrastructure 

Type 1: None 

Roadway without bicycle facility 

Restricted speed zone without bicycle facility (30 km/h) 

Roadway with traffic calming (without bicycle facility) 

Type 2: On-road  
Roadway with narrow bicycle lane (1.25 m – 1.5 m wide) 

Roadway with bicycle lane 

Type 3: Separated  

Physically separated bicycle path 

Bicycle path on sidewalk (bicycles and pedestrians separated) 

Bicycle path on sidewalk (bicycles and pedestrians mixed) 

Type 4: Other  

Bicycle path in green area 

Bicycle facility against the direction of travel on a one-way road 

Two-way bicycle facility 

Bicycle street (road with bicycle priority) 

Tab. 3.1 Types of bicycle infrastructure defined by the StVO clustered based on degree of 
separation between bicyclists and motor vehicles  
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In the German specialised guidelines for bicycle traffic, the Empfehlungen für 

Radverkehrsanlagen (ERA) [FORSCHUNGSGESELLSCHAFT FÜR STRAßEN- UND VERKEHRSWESEN, 

2010], five main categories of bicycle facilities are described in detail: roadway without bicycle 

facility, roadway with narrow bicycle lanes (Schutzstreifen), roadways with bicycle lanes, 

physically separated bicycle paths and two-way bicycle facilities. Special consideration is 

given in the ERA to combined bicycle and pedestrian facilities, bicycle facilities in bottlenecks, 

steep grades and bicycle facilities with bus or tram line considerations (tracks or stops). The 

clustering in the following table reflects the classification of bicycle infrastructure types in the 

ERA as well as in the StVO. 

The first selection criteria for the research intersections is the type of bicycle infrastructure. 

For the purpose of model development, it is necessary to collect data at intersections with an 

approximately uniform representation of bicycle infrastructure of Type 1, Type 2 and Type 3. 

Type 4 is not investigated in this dissertation due to the specialised nature of these options 

and the wide variety of infrastructure forms. The second requirement for intersection selection 

is the variation of motor vehicle, bicycle and pedestrian traffic volumes between the research 

intersections. Finally, the research intersections are selected based on practical requirements 

concerning the video data collection. Such requirements include the presence of a tall 

building as near as possible to the intersection and access to the roof or a high window of 

that building. The characteristics of the four research intersections are given in Tab. 3.2 and 

the resulting descriptive statistics of the independent variables are given in Tab. 3.5 and Tab. 

3.6 (page 70 and 71). The layout of the intersections can be found in Fig 3.3, where the camera 

views from the four research intersections are shown. The red areas that can be seen in 

Intersection 1 – Arcisstraße and Theresienstraße are road markings commonly used in Munich 

and other places in Germany to highlight the presence of bicyclists to motor vehicle drivers. 

The intersections are located within the city centre of Munich as shown in Fig 3.4.   
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1) Arcisstraße and Theresienstraße 

 

2) Arnulfstraße and Seidlstraße 

 

3) Karlstraße and Luisenstraße  

 

4) Marsstraße and Seidlstraße 

 

Fig 3.3 Camera view from the research intersections (numbered as in Fig 3.4 and Tab. 3.2) 

 

 

Fig 3.4 Location of the research intersections (background: https://www.openstreetmap.org/) 
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Approach 

Bicycle 

infrastructure 
Traffic 

Flow* 

(veh/h) 

% HDV** 

and 

buses* 

Pedestrian 

flow* (ped/h) 

Bicyclist 

flow* 

(bicycle/h) Type 
Width 

(m) 

In
te

r.
 1

 North Separated 1.3 420 0 100 220 

East None 0.0 780 6 40 80 

South On road 1.8 170 7 80 55 

In
te

r.
 2

 

North On road 2.2 900 1 520 550 

East None 0.0 240 0 1160 200 

South Separated 1.6 910 4 40 660 

West Separated 2.0 430 8 500 230 

In
te

r.
 3

 

North Separated 2.0 130 0 260 150 

East None 0.0 140 0 160 70 

South Separated 2.2 300 16 120 100 

West None 0.0 120 9 100 100 

In
te

r.
 4

 

North On road 1.6 1080 9 240 410 

East Separated 1.9 780 12 100 100 

South On road 2.0 580 6 320 370 

West Separated 1.6 530 5 100 120 

* Extracted from collected video data 

** Heavy Duty Vehicle 

Tab. 3.2 Characteristics of the research intersections 

3.3 Video data collection  

Video data were collected using a GoPro Hero3 Black Edition with a full HD resolution (frame 

size of 1920x1080 pixels) and a frame rate of 25 fps. A wide-angle lens was used to collect 

trajectory and situation data from the largest area possible using one camera. The distortion 

introduced by the use of a wide-angle lens was later rectified by post processing the trajectory 

data (see Section 3.4.2). Videos were recorded during the spring and summer months of 2013 

and 2014 for between two and four days per intersection. The observation period began at 

approximately 7:00 am and ended at about 7:00 pm, depending on the access to the roof of 

the buildings. Video data was saved on SD card with 128 GB of storage space, which 

provided enough space for approximately 14 hours of full HD video data. Power was provided 

by an external battery pack with a capacity of 13 000 mAh, which was sufficient for the 14 

hours of data collection. The data collection system is shown in Fig 3.5.  
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Fig 3.5 Data collection system 

From the total volume of data, a shorter duration of video data was selected for trajectory 

extraction and data processing. The duration of the observational study at each intersection 

is set in consideration of the number of tactical choice observation necessary to calibrate the 

logistic regression models.  

𝑇 =
20 𝐼𝑉

𝑞 𝑃𝑚𝑖𝑛
=

20 ∙ 37

3415 ∙ 0.2
= 1.08 ℎ 

Eq. 3.3 

where the total bicycle flow per hour from Tab. 3.2 is 3415 bicycle/h (sum across all 

approaches of all intersections) and the estimated average left turning rate is 0.2. This tactical 

behaviour is selected to calculate the duration of the observation study (Eq. 3.3) because it is 

the least frequently observed tactical choice in the video data. In order to guarantee a 

sufficiently large sample size, two hours of video data (almost double the minimum duration 

from Eq. 3.3) from the morning peak hour, about 7:30 am to 9:30 am, were selected for each 

intersection for trajectory extraction. Video data were collected for between two to four days 

at each intersection. From the available morning peak data, a segment of video was selected 

based on the camera angle, which differed slightly for each data collection day, the lighting 

conditions, which were deemed best if the sun did not create distinct shadows, and the 

absence of wind disturbances.  

The City of Munich provided data from the traffic signals at three of the four research 

intersections for the data collection period. Each of these signals is traffic actuated and 

information regarding the time of each phase transition is automatically catalogued (1-second 

precision). Intersection 4 is controlled by a fixed-time signal control and therefore the phase 

change time data is not recorded.  
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3.4 Automated video analysis4 

There are two methods for extracting trajectories from raw video data, manual processing or 

automated extraction. In manual processing, the position of each road user is marked by an 

analyst at a given frequency. Proponents of this method argue that the resulting trajectory 

data is highly accurate because issues with automated processes, such as occlusion, false 

classification and over and under grouping of features, are avoided. In addition, qualitative 

assessments of the situation can be incorporated into the data set. For example, the analyst 

can watch the video data and extract trajectories only in situations deemed critical in terms 

of safety. A number of tools exist to aid analysts in the manual extraction of trajectories. An 

example of which is the tool T-Analyst developed at Lund University [FACULTY OF ENGINEERING 

LTH, 2015]. However, manual extraction of trajectory data is extremely time-consuming and 

researchers are limited in the number of observations that can be generated using this 

method. As in all manual data collection processes, human error is also an issue. 

Automated methods for trajectory extraction use image processing techniques to identify and 

track moving objects in sequential video frames. Proponents of automated approaches for 

trajectory extraction point to the significantly larger sample of trajectories that can be 

extracted and processed as well as the elimination of human error in the extraction process. 

Several issues with automated video processing, including occlusion (full or partial blocking 

of one object by another object), problems with shifting shadows and lighting, as well as 

difficulties in extracting the trajectories of single road users when a group moves together 

(particularly pedestrians and bicyclists), account for high variance in the accuracy of the 

resulting trajectories. However, improvements in the field of computer vision offer increasing 

accuracy in automated extraction methods.  

In consideration of the large sample of trajectories required for model development, 

automated trajectory extraction is used for this research. 

3.4.1 Trajectory extraction 

There are four main approaches for detecting and tracking moving objects in video data: 

1. Region Based Tracking in which an area of pixels is identified, often using background 

subtraction, and tracked through the video frame. 

                                                

4 Sections of this text were originally published in the paper:  

TWADDLE, H.; SCHENDZIELORZ, T.; FAKLER, O. & AMINI, S. [2014]: Use of automated video analysis for the 
evaluation of bicycle movement and interaction. In Proc. SPIE 9026, Video Surveillance and 
Transportation Imaging Applications 2014. San Francisco. [TWADDLE, SCHENDZIELORZ, FAKLER, ET AL., 
2014]  
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2. Contour Based Tracking, which is similar to region based tracking except that only the 

outline, or contour, of a group of moving features is tracked, reducing the computational 

effort.  

3. 3D Model Based Tracking is a method in which the algorithm locates objects in the 

video frame based on their similarity to a provided road user model.  

4. Feature Based Tracking in which distinctive attributes (features), such as corners and 

edges, that move incrementally between subsequent video frames are tracked. The 

tracked features are grouped into road user hypotheses in a second step5. 

These approaches have been implemented in a wide variety of software tools developed for 

trajectory extraction. The majority of these tools are developed independently by researchers 

and traffic analysis teams and are not explicitly available for use by other analysts. Two 

companies were identified in the review that offer video processing and trajectory extraction 

as a service, MIOVISION [2016] and DATAFROMSKY [2015]. Two research institutions were found 

that offer trajectory extraction as a service, the University of British Columbia [SAYED ET AL., 

2016; PIN ET AL., 2015] and the German Aerospace Center [LOCE & SABER, 2015; LEICH ET AL., 

2015; JUNGHANS ET AL., 2015]. A single open source software for trajectory extraction and 

processing was found during the review, Traffic Intelligence [JACKSON ET AL., 2013; SAUNIER & 

SAYED, 2006]. This software implements a feature-based algorithm developed by Nicolas 

Saunier and his collaborators and was first published in 2006 [SAUNIER & SAYED, 2006]. It is 

currently available in a Bitbucket code repository called Traffic Intelligence [SAUNIER, 2016], 

which is continually updated as Nicolas Saunier and his team at the Polytechnique Montréal 

improve and extend the code. 

Traffic Intelligence is selected based on an evaluation of the functionality of the software. The 

cost effectiveness of using an open source software and the potential for adapting and 

extending the software also play an important role in the selection.  

The main functionality of the software, feature-tracking and feature-grouping, is available as 

a C++ code, which is developed using the open source library OpenCV (Open Source 

Computer Vision Library). The trajectory data extracted from the videos are stored in an 

SQLite database with four tables. The first table objects contains the road user identification 

number, the type of road user and the number of road users grouped into the identification 

                                                

5 A detailed summary of image processing and trajectory processing is out of the scope of this 

dissertation. However, if the reader is interested in obtaining more information the book Image 

processing, analysis and machine vision [SONKA ET AL., 2014] and the paper Looking at vehicles on the 

road: A survey of vision-based vehicle detection, tracking, and behavior analysis [SIVARAMAN & TRIVEDI, 

2013] are recommended. 
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number. The second table objects_features contains the feature-grouping information. Each 

of the tracked features is associated with an object id number listed in the objects table. The 

third table positions and the fourth table velocities contain the position and velocity vectors, 

respectively, for each feature listed in the objects_features table for each video frame in which 

it was tracked. Many Python scripts are available in the Traffic Intelligence code repository 

that access the data stored in the SQLite database and calculate a variety of parameters 

describing the behaviour and interactions between road users. On the right side of Fig 3.6 (a) 

the trajectories of all the tracked features belonging to one pedestrian are displayed. The 

object trajectory that results when the trajectories of the features belonging to the same object 

are grouped together is shown in Fig 3.6 (b). 

a) Tracked features: 

 

b) Grouped features (objects): 

 

Fig 3.6 An example of tracked (a) and grouped (b) features  

The feature motion is measured from the video data in pixels. The position and speed vectors 

are given using an arbitrary coordinate system based on the video frame, where the point 

0 𝑝𝑥, 0 𝑝𝑥 is located in the upper left hand corner of the frame. This information is translated 

to a real world local coordinate system using a homography matrix that rotates, scales and 

translates the points in the video frame to real world points. More information about using 

homography matrices to find a perspective transformation between two plans can be found 

on the Open CV website [OPENCV, 2015]. The units are changed from pixels to meters 

(projection from video frame to real world coordinates) using a meters per pixel factor from 

the real world image.  



64    Development of tactical and operational behaviour models for bicyclists 

 

The feature-based tracking algorithm is controlled using 22 parameters, 16 of which are used 

for feature-tracking, while the other six direct feature-grouping6. The feature-tracking 

parameters control the quality and dynamic characteristics of the features in the video frame 

that are to be tracked. In this context, a feature is a corner or a small patch of pixels with a 

strong gradient in the video frame that can be re-identified in subsequent frames. In road user 

tracking, features can be heads and hands of pedestrians, license plates and side mirror of 

cars and pedals and wheels of bicycles, amongst other distinguishable points or lines. 

Through the systematic altering of the control parameters, six parameters were found to play 

a particularly important role in feature-tracking: the maximum number of features tracked, the 

minimum feature quality, the size of the search window at each pyramid level, the 

displacements to test minimum feature motion, the minimum displacement to keep features 

and the maximum feature acceleration. The parameters must be adjusted in response to the 

height and angle of the video camera, the lighting conditions as well as the physical and 

dynamic characteristics of the road users to be tracked.  

Optimal parameters were found through the systematic adjustment of the parameters and 

evaluation of the tracking results. The results of the feature tracking were assessed based on 

two measures; the portion of bicycles, pedestrians and motorised road users tracked with a 

minimum of three features, and the delay between the instant the road user began moving 

and the start of trajectory tracking. The parameter set in Tab. 3.3 was found to be optimal for 

the four research intersections. Using the given values for the feature-tracking parameters, at 

least three features are tracked for the vast majority of road users. Values for slightly over 

sensitive tracking are selected in order to gain information from even the hardest to track road 

users. For this reason, most road users are tracked not only by one feature but by hundreds 

of features.  

Parameter Value 

Maximum number of features tracked 1200 

Minimum feature quality 0.005 

Size of the search window at each pyramid level 8 

Displacements to test minimum feature motion 2 

Minimum displacement to keep features 0.005 

Maximum feature acceleration 4 

Tab. 3.3 Selected parameters for feature tracking 

                                                

6 Refers to the parameters used in the version of Traffic Intelligence available during data analysis in 

2013. 
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In order to analyse the resulting trajectory data in a meaningful way, the feature trajectories 

must be clustered into road user hypotheses. Many qualities of the feature trajectories, 

including the distance between the features at the first instants of simultaneous tracking, the 

minimum speed and the segmentation distance (the difference between the maximum and 

minimum distance between the features over time), are taken into account in feature grouping. 

In situations with many different types of road users, it is very difficult to find a set of feature 

grouping parameters that provide sufficient results for all types of road users. The minimum 

feature speed and the maximum distance between features are significantly different when 

tracking pedestrians as opposed to large motor vehicles such as buses and trucks. In 

addition, the rigid nature of motorised vehicles enables one to achieve very good grouping 

results by allowing only very small differences in the direction of movement of the features. In 

contrast, different features belonging to a single pedestrian or bicyclist can move in 

significantly different directions. Consider, for example, the swaying arms of a pedestrian or 

the incongruent circular motion of a bicyclist’s feet as they pedal.  

As the analyses are carried out at busy urban intersections with considerable personal vehicle, 

heavy vehicle, pedestrian and bicycle traffic, a method for resolving this issue is proposed 

and implemented. The tracked features are pre-classified into two groups, probable motor 

vehicles and probable bicyclists or pedestrians, based on the positions along the entire 

trajectory. This is done using two types of polygons, touch-at-any-instant and touch-in-all-

instances polygons, as shown in Fig 3.7.  

 

Fig 3.7 Polygons for pre-classification of tracked features 

Touch-at-any-instant polygon Touch-in-all-instances polygon
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As the names suggest, if a feature touches one of the touch-at-any-instant polygons at any 

time during the trajectory it is classified as a feature belonging to a bicyclist or pedestrians. 

The second type of polygon, touch-in-all-instances, is used to classify road users that are 

tracked entirely within the bicycle facility as bicyclists. 

Pre-classified features are filtered into two separate SQLite databases, one for probable 

motor vehicles and one for probable pedestrians and bicyclists. Sets of feature-grouping 

parameters can be subsequently specified for each of the two groups. Feature-grouping 

parameters are selected using the same systematic altering of parameters that was used for 

the feature-tracking parameters. Five parameters were identified that had the most evident 

effect on the grouping results (Tab. 3.4). Each of these parameters was adjusted 

independently, starting at an extreme value (high or low) and then increasing or decreasing 

that value until the optimal results were achieved on a one-minute test video segment. The 

quality of the results was determined qualitatively by assessing the number of over-

segmented or over-grouped road users. Over-grouping refers to the grouping of features 

belonging to multiple road users into a single road user, while over-segmentation occurs when 

the features from one road user are grouped as multiple road users. Unfortunately, parameter 

adjustments that reduce over-grouping tend to increase over-segmentation. Inversely, if over-

segmentation is minimised, over-grouping will tend to increase. This is particularly true when 

objects with different physical and dynamic characteristics are analysed together. Although 

the separation of features into two databases with objects of similar size made it possible to 

correctly group features and minimise the occurrence of over-grouping and over-segmenting, 

such errors could not be completely eliminated. As the manual correction of over-

segmentation is much easier than that of over grouping, parameters were set to favour over-

segmentation.  

Parameter 
Bicycle/ 

Pedestrian 

Motor 

Vehicle 

Minimum number of frames to consider a feature for grouping 40 30-45 

Connection distance (distance at first instant) (m) 0.8 1.9-2.1 

Segmentation distance (difference between max. and min.) (m) 0.4-0.5 0.5-0.7 

Maximum distance (m) 0.8 1.9-2.1 

Minimum average number of features per frame  1 1-3 

Tab. 3.4 Selected parameters for feature grouping 

Once feature-grouping is complete, the bicyclists and pedestrians stored in a single SQLite 

database are classified based on the maximum speed travelled during the intersection 

crossing. A maximum speed for pedestrians of 9 km/h and a maximum speed of bicycles of 

30 km/h is used. The accuracy of the methodology used to track and classify cars, bicycles 

and pedestrians varies widely between the research intersections. The percentage of tracked 
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road users ranges from 72%-93%, while the percentage of correctly classified road users 

ranges from 28%-97%. The most accurate results were obtained for cars and bicycles at 

Intersection 4 Marsstraße and Seidlstraße. A number of factors contributed to the better 

results obtained at this intersection. First, the camera was installed at a relatively high vantage 

point, which enables better tracking of moving features. Second, the existence of bicycle 

facilities in all directions, as well as the high proportion of bicyclists that use this infrastructure 

made the hypothesis of road user type based on the position of the moving features quite 

accurate. Finally, the relatively large flow of vehicular traffic was found to restrict bicycle 

movement and behaviour to predictable patterns (use of bicycle facilities, crossing at intended 

times and locations), which again made road user classification more accurate.  

The percentage of missed bicycles and pedestrians at Intersection 1 Arcisstraße and 

Theresienstraße (28%) is much higher than at the other intersections. This could be due to 

the relatively low vantage point (14 m). Another problem at this intersection is the presence 

of a cable used to hang a street light over the intersection. This cable hangs directly between 

the camera and the intersection and causes issues regarding the grouping of features and 

classification of road users. Additionally, during data collection, a construction site on 

Arcisstraße blocked the use of the bicycle facility on the north approach. As a result, many 

bicyclists used the road with the motorised traffic and were therefore categorised as cars.  

3.4.2 Trajectory post processing 

A wide-angle lens was used to collect information from road users while approaching, 

crossing and exiting the intersections. The image distortion associated with wide-angle 

lenses, however, leads to the analogous distortion in the trajectories, which must be rectified 

before or after extraction. A method for post-processing trajectory data that has already been 

extracted from the video data is developed and implemented in this dissertation. The intrinsic 

and extrinsic parameters of the GoPro camera within the waterproof plastic casing are 

estimated using OpenCV. The resulting Camera Matrix (𝐾) and Distortion Coefficients (𝑑) are 

given below. 

𝐾 = [
2129.02613 0.0 950.917979

0.0 2102.04718 535.95449
0.0 0.0 1.0

] Eq. 3.1 

𝑑 = [−0.898305625 0.606958917 0.0 0.0 0.0] Eq. 3.2 

The video frame is rectified using the estimated parameters. The rectified frame (Fig 3.8 b) is 

used to create a second homography matrix that describes the perspective transformation 

between the rectified video image and the real world map. The trajectories of the tracked road 

users are corrected using the following steps: 
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1. Return the trajectory positions to the original, distorted image positions using the 

inversion of the original homography matrix for all road users. 

2. Remap the position coordinates from the original, distorted image to the rectified camera 

image using the estimated camera parameters (Eq. 3.1 and Eq. 3.2). This is done using 

the undistortPoints function belonging to the OpenCV Image Processing library [OPENCV, 

2015]. This function takes an array of points in the original image and remaps them to the 

rectified image.  

3. Transform the positions back to real-world coordinates using the second homography 

matrix relating the rectified camera image to the real world image. 

4. Recalculate the velocity vectors using the rectified position points. 

a) Distorted camera view b) Rectified camera view 

  

Fig 3.8 View from the video camera a) before and b) after rectification of distortion  

In addition to the trajectory rectification method, an algorithm was developed for merging 

segmented trajectories belonging to the same road user7. Traffic Intelligence tracks moving 

road users and as such, when a road user stops, which occurs frequently at signalised 

intersections, the track is temporarily lost. When the road user begins moving again, Traffic 

Intelligence again tracks the road user but using a different identification number. Trajectories 

are also disconnected when a road user passes behind an obstacle or another road user, 

temporarily blocking it from the view of the camera (occlusion). Even seemingly insignificant 

occlusion instances, such as when a road user passes under a thin electric cable, can lead to 

segmented trajectories. A simple rule-based algorithm that identifies trajectories that start or 

end within the inner region of the video frame and matches these trajectories based on 

                                                

7 Many of the functionalities developed here, such as rectification and classification, are now available 

from Traffic Intelligence (implemented slightly differently). These features were not yet available at the 

time of this work (2013). 
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temporal, spatial and dynamic similarity was developed and tested. The testing results 

showed that the algorithm performed very well for motor vehicles and lone pedestrians and 

bicyclists. However, in cases where two or more pedestrians or bicyclists bunched together, 

which often occurred at stop lines in the collected video data, the algorithm was not capable 

of correctly re-identifying the same road user. 

A final manual correction of the trajectory databases was deemed necessary despite the 

efforts in automated data post processing. Although the developed classification algorithm 

was quite successful at identifying the road users as motorised vehicles, bicyclists or 

pedestrians, incorrect classifications skew the results of the subsequent behavioural and 

interaction analyses. The automated method developed for merging segmented trajectories 

for the same road user was found to be unsatisfactory, particularly in situations with high-

density pedestrian or bicycle traffic. Therefore, the extracted trajectories were displayed over 

the raw video data and manually controlled for inconsistencies. Misclassified road users were 

corrected, fragmented trajectories belonging to the same road user were merged and 

erroneous or superfluous trajectories were deleted. This process was found to be tedious and 

time-consuming (200 hours for 8 hours of trajectory data and 5146 bicycle trajectories) but 

worthwhile for the increased accuracy and usability of the trajectory data. The effort required 

to correct the trajectory database is deemed considerably less than the effort that would be 

necessary to manually trace trajectories for the same number of bicyclists.  

3.5 Database extension 

The resulting trajectory database was extended to include qualitative behavioural variables 

as well as variables to describe the current situation that were difficult to collect using 

automated methods. This was done by watching the videos and recording the variables for 

each bicyclist.  

The exact timings of the signal phase transitions at three of the research intersections were 

obtained from the City of Munich. These three intersections are controlled with a traffic-

actuated signal and the data from the traffic sensors as well as the signal timing changes are 

recorded by the City of Munich. An older signal controller, which uses a fixed signal plan, is 

installed at Intersection 4, Marsstraße and Seidlstraße. It is not possible for the City of Munich 

to record the timing of the phase changes from this type of controller. It was, however, 

possible to obtain the fixed signal plan for the intersection and manually synchronise this 

information with the behaviour observed in the video data. This manual synchronisation is 

associated with a minor error because it is not possible to determine exactly when the traffic 

signal turns but only infer when this change occurs from when the road users start moving 

after they are given a green signal. The exact and inferred phase change timing information is 

linked with the trajectory database by matching the time log of the video data and the signal 

phase timing information. For this dissertation, the phase timing information is stored in a 
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comma separated value file for each of the intersections. The signal phase timing information, 

which is given in hours, minutes and seconds, is translated to the associated video file name 

and frame number. The given signal phase for any frame can then be extracted from the 

database.  

Complete lists of the independent variables collected using automated and manual data 

processing measures are shown below. This information is used in Section 5.1 to estimate 

logistic regression models for predicting the tactical choices of bicyclists. The categorical 

independent variables along with the number and percentage of observations in each 

category are listed in Tab. 3.5. The continuous independent variables with descriptive 

statistics measured from the collected video data are shown in Tab. 3.6. 

Independent variable Category 1 Category 2 Category 3 

Strategic / prior tactical choice 

Manoeuvre 
Straight 

N=4040 (80.4%) 

Right 

N=454 (9.0%) 

Left 

N=534 (10.6%) 

Infrastructure selection 
Bicycle facility 

N=3532 (94.8%) 

Roadway 

N=67 (1.8%) 

Sidewalk 

N=128 (3.4%) 

Geometry 

Bicycle facility 
None 

N=634 (12.4%) 

Bicycle facility 

N=4485 (87.6%) 

 

Bicycle facility type 
None 

N=634 (12.4%) 

On-road 

N=2070 (40.4%) 

Separated 

N=2415 (47.2%) 

Parking 
None 

N=2268 (44.3%) 

Parking 

N=2851 (55.7%) 

 

Left turn lane 
None 

N=2484 (48.5%) 

Left turn lane 

N=2635 (51.5%) 

 

Centre island 
None 

N=1729 (33.8%) 

Centre island 

N=3390 (66.2%) 

 

Traffic 

Right lane occupancy  
No 

N=1617 (33.5%) 

Yes 

N=3214 (66.5%) 

 

Signal control 

Signal phase  
Red/Yellow 

N=2817 (55.6%) 

Green 

N=2253 (44.4%) 

 

Specific bicycle signal 
Shared signal 

N=2438 (47.6%) 

Bicycle signal 

N=2681 (52.4%) 

 

Tab. 3.5 Description of categorical independent variables 
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Independent variable Unit Mean Std.Dev. Min. Max. 

Geometry 

Bicycle facility width m 1.5 0.7 0.0 2.2 

Sidewalk width m 3.5 1.6 0.9 9.3 

Roadway width (approach) m 7.9 3.0 0.0 12.0 

Roadway width (opposite approach) m 5.3 1.7 0.0 10.9 

Driving lanes (approach) - 2.4 0.9 0 4 

Driving lanes (opposite approach) - 1.6 0.6 0 2 

Total roadway width (current road) m 18.3 7.0 8.8 28.6 

Total roadway width (crossing road) m 16.8 5.5 8.8 28.6 

Total driving lanes (current road) - 4.0 1.4 2 6 

Total driving lanes (crossing road) - 3.6 1.2 2 6 

Traffic 

Cars in approach - 2.5 2.0 0 10 

Trucks in approach - 0.1 0.4 0 3 

Pedestrians in approach - 1.3 1.8 0 20 

Bicyclists in approach - 1.6 2.1 0 16 

Traffic volume (approach) veh/h 646.6 309.7 0 1800 

Traffic volume (crossing road) veh/h 523.9 286.6 0 1800 

Percentage HDV and buses (approach) % 4.9 4.0 0 16 

Percentage HDV and buses (crossing road) % 5.6 4.2 0 16 

Bicyclist volume (approach) bicycle/h 337.7 201.3 0 660 

Bicyclist volume (crossing road) bicycle/h 199.4 159.2 0 660 

Pedestrian volume (approach) ped/h 255.9 238.2 0 1160 

Pedestrian volume (crossing road) ped/h 329.5 358.3 0 1160 

Signal control 

Time since last phase change (red) s 25.5 16.2 0 98 

Time since last phase change (green) s 14.8 11.8 0 102 

Time until next phase change (red) s 28.0 17.9 0 91 

Time until next phase change (green) s 17.2 16.0 0 103 

Phase length  s 43.3 17.2 7 104 

Tab. 3.6  Description of continuous independent variables 
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 Trajectory clustering 

Although bicyclists employ different strategies to navigate across an intersection, it is 

presumed that common pathway types or shapes emerge when the trajectories of many 

bicyclists are analysed together. Two clustering approaches are developed here to identify 

common pathway types for subsequent use in the modelling of the operational and tactical 

behaviour of bicyclists. First, a clustering algorithm that is approach specific is used to identify 

the various pathways used by bicyclists at a given approach to cross the intersection. The 

number and form of these pathways depend on many factors, including the layout of the 

intersection, the availability and type of bicycle infrastructure, characteristics of the traffic 

signal, static and dynamic traffic attributes and the strategic routes of bicyclists. These 

clustered pathways are used in Section 5.2 to simulate operational behaviour. A second 

clustering approach is used to identify the general strategies used by bicyclists to carry out 

their desired manoeuvre. For example, bicyclists turning left may implement a direct or an 

indirect left turn. This clustering approach is generic and does not depend on the specific 

characteristics of the given approach or intersection. The results are used in Section 5.1 to 

develop tactical behaviour models.  

Although it is possible to manually examine trajectory data and designate a structure to 

classify the pathways, this process is subjective and can be work intensive. Furthermore, the 

classification structure designated for one intersection may not be transferable to other 

intersections. Once the classification structure is defined, the observations can be classified 

using manual or supervised learning approaches. The effectiveness of both strategies is highly 

dependent on the suitability of the classification structure.  

Another method for clustering the pathways used by bicyclists to cross an intersection is 

unsupervised learning. Clustering algorithms, otherwise known as unsupervised learning 

algorithms, assess the similarity of observations in a dataset and use various methods to 

separate these observations into clusters. The main advantage of clustering is that the 

practitioner does not have to make prior assumptions about the classification structure, 

resulting in data driven and non-subjective clusters. However, the quality of the clustering 

results is highly dependent on the amount of data, data accuracy, the shape, type and scale 

of the features used and the selection of an appropriate clustering algorithm. There are five 

main steps in clustering outlined by JAIN & DUBES [1988]: 

1. Pattern representation: Each observation is described using a vector of features. 

Feature selection is carried out by determining an effective number, type and scale of the 

original features of the observation. Feature extraction is the transformation of one or 

more original features to create salient features that have added value in describing the 

pattern in the observations.  



74    Development of tactical and operational behaviour models for bicyclists 

 

2. Proximity: The measure used to evaluate the similarity between observations in the 

dataset is selected in this step. A common metric used to discern similarity is the 

Euclidean distance, but many other metrics exist.  

3. Clustering: A wide variety of algorithms exist to assess the similarity between the vector 

representations of the observation set and form cluster hypotheses. Observations are 

assigned to a cluster using a hard or fuzzy approach. Hard clustering assigns the 

observation to one of the clusters while fuzzy clustering estimates the probability of an 

observation belonging to each of the clusters.  

4. Abstraction: Here, a simplified representation of the clustering structure, which is useful 

for further machine learning applications or human interpretation, is taken from the 

clustering results or is generated.  

5. Evaluation: The effectiveness of the clustering approach is assessed using an externally 

defined classification structure, an internal examination of the validity of the resulting 

clusters or a relative comparison between two clustering approaches.  

In order to avoid the subjective, specific and work-intensive manual definition of a 

classification structure for the pathway selection of bicyclists crossing intersections, an 

unsupervised learning approach is implemented and assessed. A first method is developed 

in Section 4.1 to cluster the pathways used by bicyclists at a given approach of a given 

intersection. A similar method is used to generically cluster the type of pathways selected by 

bicyclists to carry out their manoeuvre, such as direct or indirect left turns, regardless of the 

approach (Section 4.2). The steps and the notation defined by JAIN & DUBES [1988] will be 

used in the subsequent sections to develop the clustering approaches.  

4.1 Approach specific pathway clustering 

The approach specific clustering method examines the trajectories from bicyclists at a 

specific approach of a specific intersection. The objective is to identify representative 

pathways that are used by bicyclists to carry out their desired manoeuvres. For example, 

bicyclists turning left at a given approach may typically use one of three pathways to perform 

the turn. At another approach, only two pathways may be used typically by bicyclists to turn 

left. The specific shape of these pathways differs depending on the geometry and possibly 

other characteristics of the approach and intersection. The steps in the clustering approach 

are described in detail in Section 4.1.1 to 4.1.5. The representative trajectories of the resulting 

clusters are used subsequently in Section 5.2 to provide a desired pathway to the simulated 

bicyclists.    
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4.1.1 Pattern representation 

Pattern representation involves selecting or extracting features that describe a particular 

observation, where 𝑓𝑖𝑗
∗ is feature 𝑗 for observation 𝑖.  Here, 𝑁 is the total number of 

observations in the dataset and 𝑑 is the total number of features selected or extracted from 

each of the observations. Features can be continuous or categorical variables that define 

particular aspects of an observation. Feature selection involves choosing directly measured 

variables. Feature extraction is the augmentation of original features to provide information in 

another form to the clustering algorithm. The selection and extraction of features that 

adequately describe the data and include important attributes that make it possible to 

separate the observations into desirable clusters is a crucial step in the clustering process. 

All features pertaining to observation 𝑖 are arranged in a one dimensional feature vector 𝐹𝑖
∗ 

(the asterisk denotes that the features are raw and have not been normalised). The feature 

vectors from all observations in a dataset are combined to form a pattern matrix 𝒜∗. 

𝒜∗ = [𝐹𝑖=1
∗ 𝐹𝑖=2

∗ ⋯ 𝐹𝑖=𝑁
∗  ]𝑇 = [

𝑓11
∗ 𝑓12

∗ … 𝑓1𝑑
∗

𝑓21
∗ 𝑓22

∗ … 𝑓2𝑑
∗

⋮ ⋮ ⋱ ⋮
𝑓𝑁1

∗ 𝑓𝑁2
∗ … 𝑓𝑁𝑑

∗

] Eq. 4.1 

In this clustering application, the observations include raw trajectory data, which have the 

form: 

𝑆𝑖 = {(𝑥𝑖 , 𝑦𝑖)𝑡=0 (𝑥𝑖 , 𝑦𝑖)𝑡=1 ⋯ (𝑥𝑖, 𝑦𝑖)𝑡=𝑇𝑖 
} Eq. 4.2 

where (𝑥𝑖, 𝑦𝑖)𝑡 is the position coordinate of the road user 𝑖 at a given point in time 𝑡 after 

tracking of the road user began. Each trajectory contains a position coordinate for each video 

frame during the tracking of that road user (25 fps in this case). The length of the trajectory 𝑆𝑖 

depends on the duration 𝑇𝑖 of the trajectory, which varies between trajectories depending on 

the pathway taken and the speed travelled by road user 𝑖. In addition, the starting and ending 

point of the trajectories differ in space depending on where in the video frame the automated 

tracking of the road user began and ended.  

In a first step, the trajectory data is filtered and reshaped to increase the comparability of the 

trajectories. Short trajectories, which occur when a road user is only tracked during a portion 

of the intersection crossing, are removed from the dataset. This is done using a polygon 

representing the middle section of the intersection (blue polygons in Fig 4.1). Trajectories that 

start or end within this polygon, as well as trajectories with a cumulative length (Eq. 4.4) less 

than 10 m, are removed. The remaining trajectories are trimmed using a second polygon, 

shown in green in Fig 4.1. Position points at the beginning and end of the trajectory that are 

outside polygon are removed from the trajectory. The first and last position points that fall 

inside the polygon act as the new start and end of the trajectory. Position points along this 

trimmed trajectory that fall outside the polygon are not removed. This trimming enables 
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comparability between the start and end points of the trajectories. The feature selection and 

extraction is subsequently carried out using the filtered and trimmed trajectory dataset.  

1) Arcisstraße and Theresienstraße 

 

2) Arnulfstraße and Seidlstraße 

 

3) Karlstraße and Luisenstraße  

 

4) Marsstraße and Seidlstraße 

 

 

Fig 4.1  Polygons for trajectory filtering and trimming (background images: Google Earth 2013) 

In order to implement standard unsupervised clustering techniques, the number of features 

in the observation vectors must be uniform across the set of observations. This is not true for 

the trajectories, which range in length depending on the duration of the intersection crossing. 

To create observations with the same number of features, trajectories are reduced to a one-

dimensional vector containing the position data from a given number of position points. There 

are many options for selecting the position points from the complete trajectory 𝑆𝑖. The most 

evident of which is to divide the trajectory into equal temporal or spatial segments. To derive 

Inner polygon (filtering)Outer polygon (trimming)
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equal segments based on the temporal progression of the road user, the total duration of the 

trajectory 𝑇𝑖 is divided by 𝑛, yielding a vector with the form:  

𝐹𝑖
∗ = [𝑥𝑖 0 𝑦𝑖 0 𝑥𝑖 𝑇𝑖 𝑛⁄ 𝑦𝑖 𝑇𝑖 𝑛⁄ 𝑥𝑖 2𝑇𝑖/𝑛 𝑦𝑖 2𝑇𝑖/𝑛 ⋯ 𝑥𝑖 𝑇𝑖

𝑦𝑖 𝑇𝑖] Eq. 4.3 

The number of features in this vectors is given by 𝑑 = 2 ∗ (𝑛 + 1). The number of coordinates 

used in the feature vector is equal to 𝑛 + 1. This is multiplied by two because each point  

(𝑥𝑖, 𝑦𝑖) is divided into two features, the 𝑥 and the 𝑦 component. 

If 𝐹𝑖
∗ is derived based on the temporal progression, features 𝑓𝑖𝑗

∗ can be included multiple times 

if the road user stops during the crossing. Although this definition of the feature vector can 

be useful in clustering based on speed and stopping manoeuvres, a more general clustering 

based on the pathway followed can be achieved using the spatial progression of the road 

user. This is done by first calculating the cumulative distance travelled 𝐷𝑖 by road user 𝑖. 

𝐷𝑖 = ∑ √(𝑥𝑖 𝑡 − 𝑥𝑖 𝑡−1)2 +  (𝑦𝑖 𝑡 − 𝑦𝑖 𝑡−1)2

𝑇𝑖

𝑡=1

 Eq. 4.4 

To derive equal segments based on the spatial progression of the road user, the cumulative 

distance 𝐷𝑖 is divided by 𝑛. Cut-off cumulative distances are calculated based on 𝐷𝑖 and  

[0 𝐷𝑖 𝑛⁄ 2 ∗ 𝐷𝑖 𝑛⁄ 3 ∗ 𝐷𝑖 𝑛⁄ ⋯ 𝐷𝑖]. Position points nearest to each of the resulting cut-

off cumulative distances are selected. The coordinate (𝑥𝐷𝑖/𝑛, 𝑦𝐷𝑖/𝑛), for example, is the 

coordinate in trajectory 𝑆𝑖 that is located at the nearest cumulative distance from the first point 

of the trimmed trajectory to the calculated cut-off cumulative distance 𝐷𝑖/𝑛.The resulting 

trajectory vector has the form:  

𝐹𝑖
∗ = [𝑥𝑖 0 𝑦𝑖 0 𝑥𝑖 𝐷𝑖 𝑛⁄ 𝑦𝑖 𝐷𝑖 𝑛⁄ 𝑥𝑖 2𝐷𝑖/𝑛 𝑦𝑖 2𝐷𝑖/𝑛 ⋯ 𝑥𝑖 𝐷𝑖

𝑦𝑖 𝐷𝑖] Eq. 4.5 

Where the indices of the 𝑥 and 𝑦 coordinates indicate the respective cut-off cumulative 

distance. The resulting feature vectors describe the spatial progression of the bicyclist rather 

than the temporal progression. The 𝐹𝑖
∗ vectors from all the bicyclists in the dataset are 

combined to form a pattern matrix 𝒜∗, as shown in Eq. 4.11 with the shape 𝑁 𝑥 𝑑 where 𝑑 =

2 ∗ (𝑛 + 1) and 𝑁 is the number of observations.  

4.1.2 Proximity 

Proximity is the means of measuring similarity between observations in the dataset and is 

used in the clustering algorithm to identify groups within the data. There are a number of 

methods for measuring proximity, the most common of which are shown in Eq. 4.6 through 

Eq. 4.8 [LAROSE & LAROSE, 2015]. An appropriate measure must be selected by the practitioner 

to reflect the type of features included in 𝐹𝑖
∗ and in consideration of the character of the 

clustering problem. 
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Euclidean distance: 𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑖

 Eq. 4.6 

Manhattan distance: 𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|

𝑖

 Eq. 4.7 

Different (categorical variables):  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑥𝑖, 𝑦𝑖) = {
0 𝑖𝑓 𝑥𝑖 = 𝑦𝑖

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Eq. 4.8 

Euclidean distance (Eq. 4.6) is the most commonly used proximity measure and is applicable 

in cases in which the direct distance has an objective meaning. The Manhattan distance is 

useful in situations that are best represented using a grid (e.g. chessboard and city blocks) 

and in which the direct distance does not have a tangible meaning. The different measure 

reflects proximity for categorical variables for which physical distance cannot be measured. 

Another measure of proximity is the Hamming distance, which is the number of symbols that 

are different between two strings of equal length. This measure is useful for determining the 

similarity between words or sentences. There are a number of more complex methods for 

measuring the distance between trajectories and identifying similar trajectories. Examples of 

which include Dynamic Time Warping based measures, Edit Distance based measures and 

Longest Common Subsequence (LCSS) based measures. WANG ET AL. [2013] provide an 

overview and evaluation of six commonly used measures.  

In this application, direct distance precisely describes the clustering problem, which involves 

clustering the trajectories based on their similarity in space. No categorical or string variables 

are included in the features vector 𝐹𝑖
∗ for which the different measure must be incorporated.  

Depending on the characteristics of the data included in the pattern matrix 𝒜∗, it may be 

advantageous to normalise the dataset. This is typically necessary if there are considerable 

discrepancies between the magnitudes of the features in the feature vector 𝐹𝑖
∗. For example, 

if one wishes to cluster crop output observations based on field size and annual precipitation, 

where 𝑓𝑖1
∗  represents the field size in square kilometres (~101) and 𝑓𝑖2

∗  contains the annual 

precipitation in millimetres (~103), the scales will have a large effect on the resulting proximity 

measure. In addition, the magnitude of the features relative to one another will influence the 

weighting of the individual features in the clustering process. To mitigate this effect, all 

features in 𝒜∗ can be normalised. This is usually done using min-max normalisation (Eq. 4.9) 

or Z-score standardisation (Eq. 4.10). 

𝑥𝑖𝑗 =
𝑥𝑖𝑗

∗ − min (𝑥𝑗
∗)

max(𝑥𝑗
∗) − min (𝑥𝑗

∗)
 Eq. 4.9 

𝑍 𝑠𝑐𝑜𝑟𝑒 =
𝑋 − 𝜇

σ
 Eq. 4.10 
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Where 𝜇 is the mean and σ is the standard deviation of the attribute 𝑗. However, in this 

application, the features in 𝒜∗ are all described using the same units (m) and therefore no 

single feature or subset of features will dominate clustering. On the contrary, normalising the 

data would result in a loss of information about the actual distance between the observations. 

Therefore, the following pattern matrix is used for observation clustering:  

𝒜∗ = [

𝑥1 0 𝑦1 0 𝑥1 𝐷1 𝑛⁄  𝑦1 𝐷1 𝑛⁄  𝑥1 2𝐷1 𝑛⁄  𝑦1 2𝐷1 𝑛⁄  … 𝑥1 𝐷1
𝑦1 𝐷1

𝑥2 0 𝑦2 0 𝑥2 𝐷2 𝑛⁄  𝑦2 𝐷2 𝑛⁄  𝑥2 2𝐷2 𝑛⁄  𝑦2 2𝐷2 𝑛⁄  … 𝑥2 𝐷2
𝑦2 𝐷2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑥𝑁 0 𝑦𝑁 0 𝑥𝑁 𝐷𝑁 𝑛⁄  𝑦𝑁 𝐷𝑁 𝑛⁄  𝑥𝑁 2𝐷𝑁 𝑛⁄  𝑦𝑁 2𝐷𝑁 𝑛⁄  … 𝑥𝑁 𝐷𝑁

𝑦𝑁 𝐷𝑁

] Eq. 4.11 

4.1.3 Clustering 

Clustering is a well-developed field of data analytics and as such a wide selection of clustering 

algorithms is available. The most well-known types of clustering algorithms, including their 

strengths and weaknesses, are introduced briefly below. A complete overview of clustering 

algorithms can be found in Introduction to Data Mining [PANG-NING ET AL., 2006] or Data 

Mining and Predictive Analytics [LAROSE & LAROSE, 2015].  

 K-means is one of the most straightforward and commonly used clustering 

algorithms. The number of clusters is provided as input to the algorithm and that 

number of cluster centroids is randomly selected from the data sample. Each of the 

observations is assigned to the nearest cluster centroid based on the selected 

proximity measures. A new centroid for each cluster is selected which is nearest to 

the central point of the observations assigned to that cluster. All observations are then 

reassigned based on these new centroids. This is repeated until there is no change in 

the clusters or centroids. This algorithm is computationally inexpensive and can often 

provide excellent results if the number of clusters is known. However, poor results can 

emerge for clusters with differing sizes and densities and for non-globular clusters. 

Globular, or convex, is a term for clusters in which any line drawn in 𝑑 dimensional 

space between an observation and the cluster centre, or between two observations in 

one cluster, is within the boundary of that cluster. 

 Agglomerative Hierarchical Clustering is a means of clustering in which the 

observations are first included as individual clusters with one observation in each 

cluster. At each subsequent step, the closest pair of clusters is combined based on 

the definition of proximity. Clusters are combined in this fashion until the predefined 

number of clusters is reached. Alternatively, all observation can be included in one 

cluster in a first step and then split at each subsequent step based on dissimilarity 

(Divisive Hierarchical Clustering). These algorithms are particularly useful when the 

application requires a hierarchy (e.g. taxonomy). However, hierarchical clustering 

algorithms are computationally expensive, a number of clusters must be predefined 
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and the finality of the merges can be a source of error if the data is noisy or contains 

many dimensions.  

 Density-based clustering algorithms define clusters by identifying regions of high 

density that are separated by low-density regions (e.g. DBSCAN). In a first step, each 

of the observations is labelled as a core, border or noise observation based on the 

number of observations within a predefined radius defined using the proximity 

measure. The noise observations are deleted and the border observations are 

assigned to the most suitable cluster core. The advantages of this approach include 

high resistance to noise and the ability to cluster irregularly shaped data (non-

globular). However, clusters with widely varying densities and observations with many 

dimensions are difficult to analyse using density based approaches.  

In selecting a clustering algorithm, the nature of the observations to be clustered must be 

considered. Here, the expected pathway clusters vary with regard to the number of 

observations in each cluster (cluster size) and the degree of similarity between observations 

in the same cluster (cluster density). The resulting clusters are expected to be globular. 

Additionally, because the number of different pathways across the intersection is not known 

in advance, the number of clusters cannot be designated as an input to the algorithm.  

Based on the attributes of the clustering problem, the Affinity Propagation [FREY & DUECK, 

2007] clustering algorithm is selected. This algorithm is similar to K-means in that cluster 

centroids are identified and observations are assigned to the centroids based on their 

similarity. However, unlike the K-means algorithm, the number of clusters does not have to 

be specified in advance. All observations are considered simultaneously as cluster centroids, 

which are referred to as exemplars. An optimal set of exemplars is identified by exchanging 

two types of messages between data points:  

“The “responsibility” 𝑟(𝑖, 𝑘), sent from data point 𝑖 to candidate exemplar 𝑘, reflects the 

accumulated evidence for how well-suited point 𝑘 is to serve as the exemplar for point 

𝑖, taking into account other potential exemplars for point 𝑖.” [FREY & DUECK, 2007, P.972] 

“The “ability” 𝑎(𝑖, 𝑘), sent from candidate exemplar 𝑘 to point 𝑖, reflects the accumulated 

evidence for how appropriate it would be for point 𝑖 to choose point 𝑘 as its exemplar, 

taking into account the support from other points that point 𝑘 should be an exemplar.” 

[FREY & DUECK, 2007, P.972] 

Two parameters must be specified in the Affinity Propagation algorithm. The first of which, 

preference, which describes the suitability of each observation to be used as an exemplar. If 

the suitability of each observation is not known in advance, preference can be set to a 

common value such as the mean or median of all observation similarities. Preference carries 

the same unit as similarity, or negative proximity, which is quantified here using Euclidean 
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distance. The developers of the Affinity Propagation method recommend using the minimum, 

median or maximum similarity as an initial presumption for cluster creation [PROBABILISTIC AND 

STATISTICAL INFERENCE GROUP, 2009]. The magnitude of this value controls the number of 

clusters, where lower values lead to a larger number of clusters. The second parameter, 

damping 𝜆, prevents numerical oscillations by controlling the portion of each message taken 

from the previous iteration and the prescribed updated value (0 < 𝜆 < 1) [FREY & DUECK, 2007].  

The route across the intersection is identified for each of the observed bicyclists prior to 

clustering. A trail without first determining the route was initially carried out. However, this 

approach led to the clustering of bicyclists with similarly shaped trajectories but different start 

and end points. An example is a bicyclist who turned indirectly against the given direction of 

travel and a bicyclist who made a similar manoeuvre but continued riding straight, but on the 

opposite side of the road. If route is not first determined, the trajectories from these two 

bicyclists would likely be clustered together. To identify the route, the first position point 

(𝑥𝑖, 𝑦𝑖)𝑡=0 and last position point (𝑥𝑖, 𝑦𝑖)𝑡=𝑇𝑖
 of the original, untrimmed trajectory 𝑆𝑖 are used 

in combination with geometric information from the intersection. The method used to radially 

divide the intersection and assign the start and end approach is shown in Fig 4.2.  

 

Fig 4.2 Radial division of the intersection for route determination (background image: Google 
Earth 2013) 

The coordinates of the centre point of the intersection (large red point in Fig 4.2) as well as a 

point on the centre line of each arm of the intersection (smaller red points in Fig 4.2) are 

identified from the intersection plans. The points representing adjacent arms are connected 
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and points are located at the centre of the connecting lines (blue points in Fig 4.2). Finally, 

these coordinates and the intersection centre are used to divide the intersection radially into 

polygons representing each arm.  

The polygons within which the first and last position points are located dictate the approach 

and exit arm of the intersection. The final route label is a combination of the approach and 

exit arm. For example, if the first point of the observed trajectory is located within the polygon 

representing the North approach and the last point is within the East polygon, the trajectory 

is assigned the route NE. Bicycles that approach and exit on the same arm (e.g. NN) are 

excluded from the analysis.  

The route labels are used to divide the observations into a total of 𝑅 𝒜∗ matrices, where 𝑅 is 

the number of routes identified at each intersection. The scikit learn implementation of Affinity 

Propagation [SCIKIT-LEARN DEVELOPERS, 2014] is used to cluster the trajectory data in each 𝒜∗ 

matrix separately. The input parameter preference is systematically altered between the 

maximum and minimum similarity between the observations and the damping parameter is 

altered between 𝜆 = 0.5 and 𝜆 = 1.0 (limits defined by scikit learn). The resulting clustering 

structure of each preference/damping combination is evaluated using the mean Silhouette 

Score 𝑠̅  (see Eq. 4.12). The combination resulting in the highest 𝑠̅  is saved and used for the 

final clustering. The best parameter set for each of the pattern matrices is identified 

independently, meaning each route at each approach may have a different parameter set.  

Once the clusters are developed, the similarities between the observations included in each 

cluster are examined and observations found to be very dissimilar to the cluster are removed. 

To this aim, the Euclidean distance between all of the observations in a cluster and the cluster 

exemplar are calculated and used to calculate the 𝑍 − 𝑆𝑐𝑜𝑟𝑒 (Eq. 4.10) for each observation. 

This measure quantifies the number of standard deviations above or below the sample mean 

on which an observation lies in terms of distance from the cluster exemplar. Here, 

observations are removed from the cluster if 𝑍 − 𝑆𝑐𝑜𝑟𝑒 > 2.0 or 𝑍 − 𝑆𝑐𝑜𝑟𝑒 < −2.0  (where 𝜇 is 

the mean Euclidean distance from the cluster exemplar and σ is the standard deviation of the 

Euclidean distances). This is done to remove outliers in the clusters. These are observations 

that are not similar to the other trajectories in the cluster and tend to be unique behaviours 

that were observed for only one bicyclist.  

It was hypothesised that the number of position points extracted from the original trajectory 

𝑛 influences the quality of the clustering results. However, the clustering approach delivers 

high quality results for 𝑛 > 2. If 𝑛 = 2, the algorithm cannot differentiate between routes that 

start and end at the same position but follow different pathways across the intersection, such 

as different types of left turns. If 𝑛 = 10, important differences in the start and end point 

become less pronounced in comparison to the overall shape of the pathway, which was found 

to lead to over-grouping in some cases. Although the clustering results vary slightly for 

different values of 𝑛, this parameter is not found to play an important role in developing high 
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quality clusters. After assessing the Silhouette Score, over-segmentation and over-grouping 

for 𝑛 = [2,10] for all the intersections, 𝑛 = 5 is selected for final clustering and is shown on 

the right side of Fig 4.3. 

4.1.4 Abstraction 

Abstraction is an optional step in which clustering results are compacted or simplified, 

typically with the goal of either subsequent machine based analyses or the human 

assessment of the clusters. Humans are limited in their capacity to visualise more than three 

dimensions. If multi-dimensional observations form the basis of the clustering problem, it 

becomes difficult to subjectively assess the quality of the clusters. Abstraction in the form of 

simplification makes it possible for humans to visualise and assess the clusters. If the goal is 

subsequent analysis, a compact representation of the clustered dataset is often useful. This 

can be done using representative observations, or if available, centroid observations from 

each cluster.  

Here, despite the high dimensionality of the observations 𝑑 = 2(𝑛 + 1), the clusters can be 

easily assessed by humans by displaying the 𝐹𝑖 vectors as trajectories composed of (𝑥, 𝑦) 

coordinates. The original trajectory 𝑆𝑖 from the observations can be used to display all details 

from the trajectory (Fig 4.3, left). The dataset can be compacted for subsequent analyses by 

extracting the centroid, or exemplar, for each cluster. This is an advantage of centroid based 

clustering algorithms such as K-means and Affinity Propagation. The 𝐹𝑖 vectors shown as 

trajectories of the cluster exemplars for the same example are shown in Fig 4.3 (right). 

 

Fig 4.3  Clustered trajectories from bicyclists with the route NE at the intersection Marsstr. / 
Seidlstr. (left) and the cluster exemplars (right) with 𝑛 = 5 (background images: Google 
Earth 2013) 
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4.1.5 Evaluation 

Trajectory clustering is an unsupervised learning task and as such, there is no set of classified 

trajectories with which to compare the resulting clusters. The quality of the clusters must 

nevertheless be assessed to ensure that they reflect valid clusters in the data [LAROSE & 

LAROSE, 2015]. One useful measure for evaluating clusters is the Silhouette Score 𝑠𝑖, which 

compares the proximity 𝑎𝑖 of observation 𝑖 to its assigned exemplar 𝑘𝑖 with the proximity to 

the next nearest exemplar 𝑏𝑖: 

𝑠𝑖 =
𝑏𝑖 − 𝑎𝑖

max (𝑏𝑖, 𝑎𝑖)
 Eq. 4.12 

The resulting 𝑠𝑖 value ranges between 0 and 1, with higher values indicating better quality 

clusters. In addition to the disaggregate 𝑠𝑖 measure, the mean Silhouette Scores 𝑠̅ is useful in 

assessing the overall quality of the clustering structure. According to ROUSSEEUW & KAUFMAN 

[1990], 𝑠̅ > 0.70 indicates a strong clustering structure, 0.50 < 𝑠̅ ≤ 0.70 indicates a reasonable 

structure, 0.25 < 𝑠̅ ≤ 0.50 points to a weak structure that may be a mathematical construct 

and 𝑠̅ ≤ 0.25 shows that no substantial structure was found.  

In order to assess the accuracy and feasibility of this trajectory clustering approach, the 

results are also evaluated subjectively. This is done by identifying instances of over-

segmentation and over-grouping. Over-segmentation describes the clustering of 

observations in different clusters while they subjectively belong to the same cluster. Over-

grouping, on the other hand, is the clustering of observations that are subjectively different 

from one another into a single cluster. The sum of the over-segmented and over-grouped 

observations yields the total error in the resulting clustering structure. Outliers are the 

trajectories that are deleted from the clusters based on their proximity to the cluster centroid 

(𝑍 − 𝑆𝑐𝑜𝑟𝑒 > 2.0 or 𝑍 − 𝑆𝑐𝑜𝑟𝑒 < −2.0). The results for the four research intersections are 

shown in Tab. 4.1. 

 
Arcisstr. / 

Theresienstr. 

Arnulfstr. / 

Seidlstr. 

Karlstr. / 

Luisenstr. 

Marsstr. / 

Seidlstr. 

# of observations 502 488 395 1128 

# of routes 9 10 9 12 

# of clusters (total) 19 25 20 34 

Mean Silhouette Score 𝑠̅ 0.60 0.68 0.68 0.81 

# of outliers 25 (5.0%) 36 (7.4%) 16 (4.1%) 55 (4.9%) 

# of over-segmentation errors 3 (0.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

# of over-grouping errors 5 (1.0%) 3 (0.4%) 10 (2.5%) 10 (0.9%) 

# of total errors 8 (1.6%) 3 (0.4%) 10 (2.5%) 10 (0.9%) 

Tab. 4.1 Evaluation of the approach specific clustering approach  
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The number of observations is the number of trajectories included in the clustering procedure 

after removing short trajectories and those that started or ended within the centre region of 

the intersection. The route across the intersection includes the approach and exit arm of the 

intersection (e.g. NE), with a maximum of 12 potential routes. This maximum was only 

observed at Intersection 4 Marsstraße and Seidlstraße. Only a portion of the routes was 

observed at the other intersections due to various factors, including differing flows and turning 

rates and unique patterns of movement on the one-way road (Theresienstraße). 

The number of pathway clusters per route ranges between 2.1 and 2.8 for all the intersections. 

This makes logical sense as there are fewer pathway possibilities for the manoeuvres 

travelling straight and executing a right-hand turn than there are for carrying out a left-hand 

turn. There is no maximum number of theoretical pathway options as this will always depend 

on the geometry of the intersection.   

The mean Silhouette Score 𝑠̅ ranges from a low of 0.60 at Arcisstraße and Theresienstraße to 

a high of 0.81 at the intersection Marsstraße and Seidlstraße. The lowest score surpasses the 

cut-off for a reasonable structure while the remaining three scores are near or meet the 

requirement for a strong structure. In addition, the extremely low total error percentages, 

which range between 0.4% and 2.5%, suggest high quality clusters. The slight tendency 

towards over-grouping could be addressed by reducing the preference parameter.  

The resulting cluster centroids are used in Section 5.2 to model the operational behaviour of 

bicyclists as they cross the intersection. In this approach, simulated bicyclists require a 

desired pathway across the intersection, which they attempt to follow while reacting to 

obstacles and other road users. The cluster centroids act as these desired pathways.  

4.2 Generic pathway clustering 

The pathway clustering approach described in the previous section is useful for determining 

the physical pathways followed by bicyclists arriving on specific approach of a specific 

intersection. Although the shapes of the trajectories in the pathways clusters are comparable 

for approaches with similar geometrical characteristics, the classification structure found in 

Section 4.1 does not offer any insight into the general pathfinding behaviour of bicyclists. In 

this section, a generic method for clustering the pathways used by bicyclists to carry out 

desired manoeuvres (left turn, right turn and riding straight across the intersection) is 

developed. This generic approach combines and clusters trajectories from bicyclists 

approaching from all directions at multiple intersections, allowing for the analysis of the 

pathfinding strategies of bicyclists in general. The clustering results are used in the 

development of tactical behaviour models (Section 5.1). 
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The methodology used to generically cluster the pathways of bicyclists is very similar to the 

method presented in Section 4.1. The main difference in comparison to the approach specific 

clustering method is that here the trajectories from bicyclists at all approaches of all the 

research intersections are collected in one large sample. Additional augmentations are 

necessary in the pattern representation step to enable the comparison between pathway 

forms with differing sizes (due to the geometry of the intersection) and orientations (due to the 

approach direction). Once again, the five steps in unsupervised learning outlined by JAIN & 

DUBES [1988] are used to guide the development of the generic clustering approach. In cases 

where the method does not diverge from that of the approach specific method, readers are 

referred to Section 4.1. 

4.2.1 Pattern representation 

As described in detail in Section 4.1.1, trajectories are denoted using an ordered set of 

position coordinates, the length of which depends on the duration of the intersection crossing. 

For clustering, trajectories are reduced to a one-dimensional feature vector 𝐹𝑖
∗ containing data 

from selected position coordinates. If 𝐹𝑖
∗ is regarded as a two dimensional spline in which 

each position observation is a spline coordinate, the size and orientation of the pathway 

become apparent. These two characteristics are important because they distinguish 

observed trajectories from different approaches and different intersections. The trajectories 

are transformed in order simulate a situation in which the origin of all trajectories is the same 

point at the same intersection. Three transformations are applied here to assimilate 

trajectories differing in size and orientation, enabling clustering based only on the shape or 

form of the trajectories: 

1. Rotation: Least squares linear regression is carried out to find the line of best fit for all 

position coordinates from the start of the trajectory to the mid-point of the trajectory. The 

method also works if the line is fit using all points, but better results were achieved using 

only the first half. The angle of the slope 𝛼 of the resulting line is used to rotate the entire 

vector 𝐹𝑖
∗ by 

𝜋

2
− 𝛼 clockwise. The first position coordinate of the trajectory serves as the 

origin for the rotation.  

2. Translation: The rotated vectors are translated by −𝑥𝑖 0 in the x direction and −𝑦𝑖 0 in the 

y direction such that all features vectors begin at the point (0,0). 

3. Scaling – the rotated and translated vectors 𝐹𝑖
∗ are scaled based on the length and shape 

of all the filtered and trimmed trajectories from the same approach of an intersection. The 

intention is to gain information about the shape of the given approach and intersection 

based on all trajectories observed at that given approach. The maximum y-coordinates 

of all rotated and translated trajectories from each approach 𝑦max _𝑎𝑝𝑝 are determined and 

the feature vectors are scaled on the x and y axis by a factor of 𝑦max _𝑎𝑝𝑝
−1. The resulting 



Trajectory clustering  87 

 

trajectories have a maximum y coordinate of one and the original aspect ratio is 

maintained. This is repeated for all approaches of all four intersections. 

4.2.2 Proximity  

As in the approach specific clustering approach (Section 4.1.2), Euclidean distance is used 

as a proximity measure in the generic clustering approach. The pattern matrix is normalised 

through the transformation process described in the previous section. Therefore, 𝒜∗ is not 

further processed using min-max normalisation (Eq. 4.9) or Z-score standardisation (Eq. 4.10).  

4.2.3 Clustering 

The Affinity Propagation (Frey & Dueck 2007) algorithm, which is introduced in Section 4.1.3, 

is used once again for generic clustering. The conditions for the approach specific pathway 

clustering problem also hold true for generic clustering and include imbalanced cluster sizes 

and varying cluster density (see Section 4.1.3). Once again, it is advantageous that the 

number of clusters is not required as an input parameter by the Affinity Propagation algorithm. 

The number of different pathways used by bicyclists is an outcome of the clustering algorithm 

and is therefore not know in advance. As in Section 4.1, clusters are expected to be globular. 

In a first step, the manoeuvre of the bicyclist is identified using the method developed to 

extract route information in the approach specific pathway clustering approach. Each 

trajectory is assigned a starting and ending arm of the intersection (e.g. NE for a bicyclist 

approaching from the North and exiting on the East arm). This route information is generalised 

here to denote the manoeuvre associated with the route. Three manoeuvres are defined; 

travelling straight across the intersection (NS, EW, SN, WE), turning right (NW, EN, SE, WS) 

and turning left (NE, ES, SW, WN). Bicyclists that approach and exit on the same arm of an 

intersection are excluded from the dataset. Three pattern matrices 𝒜∗ are built from the 

rotated, translated and scaled feature vectors 𝐹𝑖
∗, one for each of the manoeuvres. 

Trajectories from bicyclists observed on all approaches of the four research intersections are 

included in each of the three pattern matrices. Effectively, the 40 pattern matrices generated 

for the approach specific clustering method are combined here into three generalised 

manoeuvre matrices.  

Once the pattern matrices are created, the preference and damping parameters of the Affinity 

Propagation algorithm are selected using the same systematic variation of parameters that is 

described in Section 4.2.3. The mean Silhouette score 𝑠̅ (Eq. 4.12) is used as an evaluation 

criterion and is maximized by adjusting the preference and damping 𝜆 parameters. The 

parameter set leading to the highest 𝑠̅ value is used to create the clusters for each manoeuvre. 

The best parameters set is found for each of the pattern matrices independently, meaning 

that different parameters are used for the clustering of each of the manoeuvres.  
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Once the cluster structures are developed for the three manoeuvres, observations are 

removed from the clustered dataset based on the 𝑍 − 𝑆𝑐𝑜𝑟𝑒. As in Section 4.1.3, observations 

are removed from the cluster if 𝑍 − 𝑆𝑐𝑜𝑟𝑒 > 2.0 or 𝑍 − 𝑆𝑐𝑜𝑟𝑒 < −2.0 (where 𝜇 is the mean 

Euclidean distance from the cluster exemplar and σ is the standard deviation of the Euclidean 

distances). 

As in the approach specific clustering method, the number of position points 𝑛 included in 

reduced feature vectors is found to play a marginal role in the quality of the generic clusters. 

In order to gain sufficient information about the cluster shape to differentiate between different 

forms of left turn 𝑛 = 3 is recommended as a lower boundary. A range of position points, 10 <

𝑛 < 25, is found to produce the best pathway clusters.  

4.2.4 Abstraction 

Abstraction enables human assessment of the resulting cluster structure or the simplification 

of the dataset for subsequent use. Here, the reduced feature vectors are plotted as splines 

overlaid over the plans of the research intersections. Splines are used here to display a 

smoothed trajectory. This can also be done as in Section 4.1.4, where the pathways are 

displayed as line segments with the coordinates from the feature vector 𝐹𝑖
∗. The rotated, 

scaled and translated feature vectors from bicyclists observed at all the research intersections 

were combined in mutual pattern matrices (one per manoeuvre) for clustering. The clustered 

observations are then returned to their original form and are plotted on the plan of their 

respective intersection. This allows for the assessment of the clustering results under the 

original conditions at the observation intersection. Agreeance between intersections can be 

evaluated by comparing the plotted trajectories belonging to the same cluster on the different 

intersection plans. Examples of the resulting four left turn clusters at the research 

intersections are shown in Fig 4.4.  

These examples are used in the qualitative evaluation of the approach along with the 

quantitative evaluation using the Silhouette Score. Additionally, the clustered transformed 

trajectories from all the bicyclists carrying out a given manoeuvre (from all intersections) were 

examined. This made it possible to identify potential errors or problems in the clustering 

approach that are difficult to recognise once the trajectories are returned to their original 

orientation and shape. 
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1) Arcisstraße and Theresienstraße  

 

2) Arnulfstraße and Seidlstraße 

 

3) Karlstraße and Luisenstraße  

 

4) Marsstraße and Seidlstraße 

 

 

Fig 4.4 Resulting left turn clusters (background images: Google Earth 2013) 

4.2.5 Evaluation  

The generic clustering approach is evaluated using the mean silhouette score 𝑠̅, the number 

of outliers removed from the trajectory set for each manoeuvre and the total number of over-

segmentation and over-grouping errors, which are determined qualitatively. These are the 

same measures used in Section 4.1.5 to evaluate the approach specific pathway clustering 

method. The evaluation results are shown for each of the three manoeuvres in Tab. 4.2.  

 

 

Direct left turn Indirect left turn Pedestrian style turnIndirect left turn (ww)
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Straight Left turn Right turn 

# of observations 1922 149 152 

# of clusters 2 4 2 

Mean Silhouette Score 𝑠̅ 0.88 0.47 0.77 

# of outliers 118 (6.1%) 12 (8.1%) 16 (10.5%) 

# incorrect group 0 (0.0%) 14 (9.4%) 4 (2.6%) 

# of over-segmentation errors 0 (0.0%) 0 (0.0%) 0 (0.0%) 

# of over-grouping errors 0 (0.0%) 0 (0.0%) 0 (0.0%) 

# of total errors 0 (0.0%) 14 (9.4%) 4 (2.6%) 

Tab. 4.2 Evaluation of the generic clustering approach 

The cluster structure resulting from the generic approach proves to be effective. The mean 

Silhouette Score 𝑠̅ for the right turning and straight manoeuvres exceed the threshold for a 

strong cluster structure of 𝑠̅ = 0.7 [ROUSSEEUW & KAUFMAN, 1990]. The score for the left turn 

manoeuvre is considerably lower and lies slightly below the threshold for a reasonable 

structure. Nevertheless, the qualitative assessment of the cluster structure for all three 

manoeuvres indicates excellent results that agree almost completely with the presumed 

manoeuvre types. For example, the three types of left turns identified in the review of the 

literature, direct, indirect and indirect against the given direction of travel (see Fig 3.2), are 

identified by the clustering approach. An additional type of left hand turn in which the road 

user ends the manoeuvre on the wrong side of the roadway and travels against the given 

direction of travel is identified. Trajectories of this type are shown in orange in Fig 4.4 and are 

referred to as a pedestrian type turn. 

The number (and corresponding percentage) of observations in each of the clusters for the 

three manoeuvres (right turn, left turn and straight) are shown in Fig 4.5. The Silhouette Score 

𝑠𝑖 for each of the observations in the clusters can be read along the x axis. The highest 

Silhouette Score is plotted on the top of the cluster globule and the lowest Silhouette Score 

at the bottom. A globule indicating perfect clustering would be a rectangle with a width of 1.0. 

As can be seen in Fig 4.5, the clusters for the straight and right turn manoeuvres are quite 

well defined, while those for left turning bicyclists tend to have lower Silhouette Scores. The 

small group of bicyclists that made an indirect straight manoeuvre arrived at the intersection 

travelling in the mandatory direction of travel and then switched sides of the road to ride 

against the mandatory direction of travel. It is hypothesised that these bicyclists were 

reaching their destination on the other side of the road.   
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Straight: 

 

Right turn: 

 
Left turn: 

 

Fig 4.5 Silhouette score distribution and number of observations in each cluster  
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 Modelling bicyclist behaviour 

In order to microscopically simulate traffic, it is necessary to implement models representing 

behaviour at the three levels of the hierarchy suggested by MICHON [1985]; strategic 

behaviour, tactical behaviour and operational behaviour. Within the context of this 

dissertation, models are developed to reflect the unique operational and tactical behaviour of 

bicyclists. Strategic behaviour, such as mode and route choice, is outside of the scope of this 

work. In this section, the modelling approaches for the tactical (Section 5.1) and operational 

(Section 5.2) behaviour are presented. Both sections begin with a detailed explanation of 

model specification followed by the methodology used to calibrate and validate the models 

using trajectory and situational data. The results of the model calibration and validation are 

presented at the end of each section.  

5.1 Tactical models 

In Section 2.3, Research needs assessment, the need to develop an approach for simulating 

bicyclists using and switching between different parts of infrastructure (bicycle facility, 

roadway and sidewalk), riding with and against the mandatory direction of travel and selecting 

unique pathways across the intersection was identified. To this aim, tactical models are 

estimated in this section to reflect four unique tactical behaviours of bicyclists; infrastructure 

selection, reaction to a red traffic signal, direction of travel and selection of a pathway turning 

left. The left turn manoeuvre was selected based on the results of the generic clustering 

carried out in Section 4.2. While bicyclists travelling straight across the intersection were 

found to use mainly one type of manoeuvre, bicyclists turning left were found to implement 

four types of turns with relatively similar frequencies. Bicyclists turning right were found to 

carry out a normal right turn 75% of the time and a right hand turn to travel in the wrong 

direction once completing their manoeuvre 25% of the time. These two types are not 

distinguished in this section as the manoeuvres are very similar and the direction of travel is 

analysed as a separate tactical choice.  

In order to predict the outcome of these tactical choices, binomial and multinomial logistic 

regression models are estimated using revealed preference data from the 4710 bicyclists 

observed at the four research intersections. This number is larger than the number of 

trajectories clustered in the previous section because bicyclists not tracked successfully 

throughout the video frame using Traffic Intelligence are also included here. Where possible, 

data were extracted using automated methods and the results of the generic manoeuvre 

clustering approach presented in 4.2. However, in cases where the trajectory data were 

incomplete, data describing the behaviour of the bicyclists and the situation were manually 

collected.  
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Logistic regression models are used to describe the relationship between a response variable 

and a set of explanatory variables. In this case, the explanatory variables describe the average 

and momentary traffic situation, the geometry of the intersection and the phase timing of the 

signal control. In addition, tactical decisions made previously by the bicyclist are taken into 

consideration as explanatory variables. This includes, for example, if a bicyclist arrives at the 

intersection using a bicycle facility, the sidewalk or the roadway. These variables are only 

included if they are always observable before the modelled tactical choice is made. All of the 

variables listed in Tab. 3.5 and Tab. 3.6 are used here as potential explanatory variables.  

5.1.1 Model specification 

Logistic regression models are used to predict categorical variables based on a set of 

observable independent variables, which can be continuous or categorical. The variable to be 

predicted can be binary (binary logistic regression) or have more than two possible outcomes 

(multinomial logistic regression). Logistic regression follows the principles of linear regression, 

such that the expected value of a given outcome 𝑌 is linearly related to a vector of explanatory 

variables 𝑥. Linear regression is defined below:  

𝐸(𝑌|𝑥) = 𝛽0 + 𝛽1𝑥 Eq. 5.1 

where 𝑥 is a vector of explanatory variables, 𝛽1 is a vector of parameters estimated from 

observed data that represent the relative influence of each of the explanatory variables and 

𝛽0 is the constant coefficient associated with the expected value of 𝑌.  

According to HOSMER ET AL [2013],  𝜋(𝑥) = 𝑃(𝑌 = 𝑖|𝑥) is used to represent the conditional 

mean of 𝑌 given 𝑥 for a logistic regression model. This is expressed below: 

𝜋(𝑥) = 𝑃(𝑌 = 𝑖|𝑥) =
𝑒𝛽0+𝛽1𝑥

1 + 𝑒𝛽0+𝛽1𝑥
 Eq. 5.2 

The equation above represents a dichotomous choice situation where Y can take on a value 

of 0 or 1. In a multinomial choice situation in which Y can take on 𝑛 > 2 values, the equation 

can be generalized to: 

𝜋(𝑥) = 𝑃(𝑌 = 𝑖|𝑥) =
𝑒𝛽𝑖0+𝛽𝑖1𝑥𝑖

∑ 𝑒𝛽𝑖0+𝛽𝑖1𝑥𝑖𝑛
𝑖=0

 Eq. 5.3 

The logit transformation is used to simplify Eq. 5.3 and capitalise on the useful properties of 

linear regression. This transformation is given by: 

𝑔(𝑥) = 𝑙𝑛 [
𝜋(𝑥)

1 − 𝜋(𝑥)
] = 𝛽0 + 𝛽1𝑥 Eq. 5.4 
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In linear regression, the outcome variable is often given as 𝑦 =  𝐸(𝑌|𝑥) + 𝜀, where 𝜀 is an error 

term that is typically assumed to follow the Gaussian distribution with a mean of zero and a 

variance that is constant across variables. The outcome of a dichotomous variable is 

expressed by 𝑦 =  𝜋(𝑥) + 𝜀, where the error term 𝜀 follows a distribution with a mean of zero 

and a variance 𝑉𝐴𝑅(𝜖) = 𝜋(𝑥)[1 − 𝜋(𝑥)]. Log likelihood maximisation is then applied to 

identify the set of 𝛽 parameters that produce the best fit for a set of observed explanatory 

variables and choice outcomes8.  

5.1.2 Model calibration 

A logistic regression model for each of the identified tactical choices is specified and 

calibrated using recursive feature elimination [GUYON & ELISSEEFF, 2003], which combines K-

fold cross validation and predictor selection based on the log likelihood of the model. Binomial 

and multinomial regression models are estimated and evaluated using the statistics software 

package R [THE R FOUNDATION, 2016]. The main effects and two-way interactions between the 

situational variables listed in Tab. 3.5 and Tab. 3.6 are used as an initial set of explanatory 

variables 𝑥. The following steps are taken to identify the optimal set of explanatory variables 

for each of the tactical choice models and estimate the corresponding 𝛽 parameters: 

1. Data pre-processing: Relevant cases are extracted from the complete dataset to 

analyse each of the tactical choices. For example, to estimate a regression model for 

predicting the response to a red signal, only cases where the bicyclist encounters a red 

signal are selected (N=1935). The data subset for each of the tactical model is, therefore, 

unique and must be pre-processed individually prior to model estimation. Variables are 

removed if they are constant or have very low variance in the subset. The pair-wise 

correlations between the remaining variables are assessed to identify inter-correlated 

variables. If a correlation greater than 0.6 is identified, the variable with the largest mean 

correlation with all other variables is removed from the dataset. Data pre-processing is 

carried out in two phases. In the first phase, the individual variables listed in Tab. 3.5 and 

Tab. 3.6 are assessed and variables with near to zero variance and high correlations with 

other variables are removed from the dataset. Pair-wise interaction terms for the 

remaining variables are created and the pre-processing procedure is repeated.  

2. Feature selection: There are a number of methods available for reducing the number of 

variables, including backwards and forwards elimination as well as grouping the variables 

into components (principle component analysis or PCA). In order to maintain the 

                                                

8 A detailed description of logistic regression is outside the scope of this dissertation. However, if the 

reader is interested, the book Applied Logistic Regression [HOSMER ET AL., 2013] provides an excellent 

overview of the topic.  
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interpretability of the model results and to avoid potential difficulties with including 

categorical data in PCA, it was decided to use the individual variables as well as two-way 

interactions of the variables themselves without first carrying out a principle component 

analysis. The main effects of the 37 variables in Tab. 3.5 and Tab. 3.6 and the two-way 

interactions between all variables generate an extremely large number of explanatory 

variables, even after a number of variables are removed in step 1. 

Here, recursive feature elimination is used to select the optimal set of explanatory 

variables (also know as predictors). This is done by dividing the resulting dataset into 𝑘 =

10 roughly equally sized subsets for a recursive feature elimination that incorporates 

resampling (see KUHN [2008]). The model is estimated using 𝑘 − 1 of the subsets and is 

evaluated using the remaining subset. This is repeated 𝑘 times using each of the data 

subsets once for evaluation. The backwards elimination process for feature selection is 

carried out within each of these folds.  

The model is estimated using all of the variables remaining after the pre-processing step. 

The predictive power of the model, which is assessed using the Area Under the Curve 

(AUC) for binomial logistic regression and accuracy (Eq. 5.5) for multinomial regression, 

is assessed using the held back dataset and the explanatory variables are ranked based 

on their importance. The least important variable is removed and the model is re-

estimated with the remaining variables. This is repeated until only one variable remains 

in the model. The optimal set of predictors (largest AUC or accuracy) is identified for each 

fold. The performance profiles of the variable subsets are calculated over all the samples, 

held back in turn in each of the 𝑘 folds of the cross-validation, and the optimal set of 

predictors is determined.  

The recursive feature elimination function of the classification and regression training 

package caret [KUHN, 2016] is used to identify the most powerful set of predictors. 

3. Full model estimation: The entire data subset is used to estimate the 𝛽 values for the 

identified optimal set of predictors. In order to improve the interpretability of the 

regression models, the main effects of both variables in two-way interaction terms are 

added to the optimal set of predictors for the final model. This is done even if the main 

effects do not improve the predictive power of the model.  

4. Simplified model estimation: The 𝛽 values are re-estimated for a reduced model 

comprised of only the predictors found to be statistically significant (𝑝 <  0.01) in the full 

model. In cases where the main effect can replace an interaction term, the main effect 

predictor is given preference to maintain model simplicity.  
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In this section, the calibrated simplified models are presented. The detail offered by these 

models is deemed sufficient for application in microscopic traffic simulation. However, if the 

reader is interested in the full model results, they are included in Appendix 1.  

5.1.3 Model validation 

The Receiver Operating Characteristic (ROC) curve, which compares the true positive rate 

(Sensitivity, Eq. 5.6) with the false positive rate (1- Specificity, Eq. 5.7) of a binary predictor at 

various classification thresholds, is used to assess the binomial logistic regression models 

and identify the optimal classification threshold. According to HOSMER ET AL. [2013, P.174], 

“this measure has now become the standard for evaluating a fitted model’s ability to assign, 

in general, higher probabilities of the outcome to the subgroup who develop the outcome 

(y=1) than it does to the subgroup who do not develop the outcome (y=0)”. The predictive 

power of the model can be deduced from the Area Under the Curve (AUC), which is the area 

that falls under the ROC curve. AUC values range between 0.5 and 1.0, where 0.5 indicates 

that the model is no better at predicting the outcome than random chance and 1.0 indicates 

a perfect prediction. In general, AUC values between 0.5-0.7 indicate poor discrimination, 

0.7-0.8 indicates acceptable discrimination, 0.8-0.9 signifies excellent discrimination and 

above 0.9 shows outstanding discrimination [HOSMER ET AL., 2013]. 

In addition to evaluating the power of the logistic regression model, the ROC Curve is useful 

for selecting a well-suited cut-off point for the classification. Typically the cut-off point for a 

classification model is set at 0.5 such that if 𝑃(𝑦 = 1) ≥ 0.5, the outcome is predicted to be 

one. This value can be shifted, however, to maximize the sensitivity (Eq. 5.6) and specificity 

(Eq. 5.7) of the regression model. Here, a cut-off point is selected for each of the models that 

is plotted on the upper most left corner of the ROC Curve.  

Along with AUC, the confusion matrix, an example of which is shown in Tab. 5.1, is used to 

evaluate the logistic regression models. 
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Tab. 5.1 Confusion matrix concept (adapted from FAWCETT [2006]) 
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The following metrics are derived from the confusion matrix and are used here to evaluate the 

predictive power of the full and simplified models (abbreviations are taken from the bolded 

letters in Tab. 5.1): 

Accuracy: 
𝑇𝑃 + 𝑇𝑁

𝑝 + 𝑛
 Eq. 5.5 

Sensitivity  

(True positive rate):  

𝑇𝑃

𝑝
 Eq. 5.6 

Specificity 

(True negative rate): 

𝑇𝑁

𝑛
 Eq. 5.7 

Positive predictive value 

(Positive precision): 

𝑇𝑃

𝑌
 Eq. 5.8 

Negative predictive value 

(Negative precision): 

𝑇𝑁

𝑁
 Eq. 5.9 

To evaluate multinomial logistic regression models, these evaluation parameters are 

generalised to the mean sensitivity, mean specificity, mean positive predictive value and mean 

negative predictive value across all choice categories. The confusion matrix for each of the 

multinomial logistic models is presented in addition.  

5.1.4 Results  

The simplified regression models estimated for the four tactical choices are presented in this 

section. For each of the tactical choices, the optimal set of predictors identified using 

recursive feature elimination and K-fold cross validation is given. The 𝑝 value is used to test 

the null hypothesis that the 𝛽 factors in the predicted model are equal to zero. The smaller 

the 𝑝 value is, the less likely that the null hypothesis is true, meaning that the 𝛽 factor in 

question is more likely to be different from zero. In this section, only the predictors found to 

be statistically significant (𝑝 ≤  0.01) are shown (simplified model). The full models with the 

complete set of predictors are given in Appendix 1. The predictors are sorted by their 

predictive power within the main effects and interaction effects. The most important 

predictors in each model are discussed and compared with the findings of previous studies. 

In total, data describing the tactical behaviour of 4710 bicyclists were collected. The tactical 

choices selected for analysis, all of which are described using nominal variables with two or 

three categories, are listed in Tab. 5.2 along with the number and percentage of bicyclists 

observed carrying out each of the choice outcomes. 
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Tactical choice Category 1 Category 2 Category 3 

Infrastructure selection 

(no bicycle facility) 

N=451 

Roadway 

N=428 (94.9%) 

Sidewalk 

N=23 (5.1%) 
n.a.  

Infrastructure selection 

(bicycle facility) 

N=3727 

Bicycle facility 

N=3532 (94.8%) 

Roadway 

N=67 (1.8%) 

Sidewalk 

N=128 (3.4%) 

Response to red signal 

N=1935 

Stop 

N=1552 (80.2%) 

Violate 

N=383 (19.8%) 
n.a.  

Direction of travel 

N=4710 

With direction  

N=4651 (98.7%) 

Against direction 

N=59 (1.3%) 
n.a.  

Left turn manoeuvre  

N=426 

Direct turn 

N=66 (15.5%) 

Indirect turn 

N=166 (39.0%) 

Indirect turn (wrong 

way) 

N=194 (45.5%) 

Tab. 5.2 Tactical choices with categories and observed counts and percentages 

Infrastructure selection without a bicycle facility 

Over 95% of the observed bicyclists use the roadway on approaches with no bicycle facility. 

A small optimal set of predictors was found for this tactical choice (Appendix 1). A simplified 

model consisting of only two predictors is found to provide acceptable predictive power (AUC 

= 0.76). Traffic attributes on the approach have an important influence on infrastructure 

choice; the ratio of probability (odds ratio) of using the roadway decreases by 1.72 (0.58-1) 

times for each additional car in the approach. This finding echoes that of KULLER ET AL. [1986], 

who found that high traffic volumes discourage roadway use. The manoeuvre of the bicyclist 

also affects the choice outcome. The manoeuvre (left turn) is included separately in the 

simplified model because the large effect of the interaction term stems mainly from the 

manoeuvre predictor. According to this model, the ratio of probability for using the roadway 

decreases by 6.25 (0.16-1) for bicyclists turning left. This finding seems counterintuitive but is 

because many bicyclists turning left ride against the mandatory direction of travel (route 

simplification) and therefore use the sidewalk rather than the roadway. 

Although roadway use is predicted with considerable success, the prediction of sidewalk use 

proves to be less reliable. This could indicate that bicyclists choose to use the sidewalk for 

reasons that are unobservable, such as a feeling of safety or the anticipation of upcoming 

manoeuvre. Additionally, the low number of sidewalk use observations limits the potential to 

identify patterns between the independent variables and this choice outcome. A high 

classification threshold of 0.95 is identified, which addresses the observed skewness in 
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choices by shifting predictions into the sidewalk category. In this case, the full model offers a 

substantially better prediction of infrastructure use without adding excessive complexity. 

N = 451  

Sidewalk use = 0, Roadway use = 1 
𝜷 

Odds 

ratio 
𝒑 

Intercept 4.24 69.20 0.000 

Cars in approach -0.54 0.58 0.000 

Manoeuvre (left turn) -1.81 0.16 0.000 

 

Classification threshold: 0.95 

AUC 0.76 

Accuracy 0.73 

Sensitivity 0.73 

Specificity 0.78 

Positive predictive value 0.98 

Negative predictive value 0.13 

Tab. 5.3 Simplified binomial logistic regression model with evaluation for infrastructure selection 
without bicycle facility 

 

Fig 5.1 ROC curve for the simplified binomial logistic regression model for infrastructure selection 
without bicycle facility 
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Infrastructure selection with a bicycle facility 

If a bicycle facility is provided, bicyclists tend to use this facility. Over 95% of bicyclists 

observed on approaches with a bicycle facility selected this infrastructure, which is slightly 

higher than the 90% found by ALRUTZ ET AL. [2009]. Infrastructure selection can be framed as 

a discrete choice with three possible outcomes, bicycle facility, roadway or sidewalk. Initially, 

a multinomial logistic regression model was estimated to predict infrastructure use. Although 

correlations were found between the predictors and the choice outcome, these correlations 

were not strong enough to estimate a model capable of predicting roadway or sidewalk use.  

In order to capitalise on the simplicity of binomial logistic regression as well as the adjustable 

classification threshold, the model shown in Tab. 5.4 is developed to predict whether a 

bicyclist will use an available bicycle facility or not. The strongest predictor of bicycle facility 

use is a right turn manoeuvre, which decreases the ratio of probability of using the bicycle 

facility by 6.03 (0.17-1) times due to increased sidewalk use. The width of the bicycle facility 

plays an important role in the choice, with the ratio of probability of bicycle facility use 

increasing by 1.25 times for each additional cm of width (𝑒
21.56

100 ). This effect is moderated by 

the volume of bicycle traffic on the approach, which decreases the probability ratio of bicycle 

facility use by 1.05 times for each additional bicycle per hour. The presence of other road 

users in the approach has an interesting effect on bicycle facility use. If there are only cars or 

only pedestrians present, the ratio of probability of bicycle facility use is reduced. If both are 

present, however, the interaction term increases the probability of bicycle facility use. This 

make intuitive sense as the presence of other road users on the sidewalk and roadway likely 

push bicyclists into an available bicycle facility. The presence of other bicyclists on the other 

hand, pushes bicyclists from the bicycle facility, particularly on separated facilities.  

The simplified model predicts bicycle facility use with acceptable overall accuracy. However, 

the prediction of bicycle facility use is more reliable than that of not using the bicycle facility. 

This is likely due to the overrepresentation of bicycle facility observations in the sample and 

the potential role of personal attributes and unobservable factors in the choice to use the 

roadway or sidewalk when a bicycle facility is available. The high classification threshold of 

0.96 coerces the prediction of not using the bicycle facility, but these predictions are often 

incorrect (low negative predictive value).  

The findings of previous studies indicate that the width and type of the bicycle facility are 

decisive in infrastructure selection while the traffic conditions do not play an important role 

[ALRUTZ ET AL., 2009; GUO ET AL., 2013]. According to the findings here, the number and type 

of road users in the approach have a strong influence on infrastructure choice. Previous 

studies found that wider bicycle facilities have a higher rate of acceptance, which is 

confirmed. However, unlike ALRUTZ ET AL. [2009], on-road bicycle lanes are found here to have 

a higher acceptance than physically separated facilities.  
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N = 3727 

No bicycle facility use = 0, Bicycle facility use = 1 
𝜷 

Odds 

ratio 
𝒑 

Intercept -30.86 0.00 0.000 

Manoeuvre (right turn) -1.80 0.17 0.000 

Bicyclist volume – approach (bicycle/h) 0.09 1.09 0.000 

Bicycle facility width (m) 21.56 2.32e9 0.000 

Bicycle facility type (separated) -5.65 0.00 0.001 

Driving lanes (same direction) 1.24 3.47 0.000 

Sidewalk width (m) -1.50 0.22 0.002 

Centre island  1.81 6.10 0.010 

Parking -1.67 0.19 0.000 

Pedestrians in approach -0.16 0.85 0.033 

Bicyclists in approach -0.04 0.96 0.421 

Cars in approach -0.01 0.99 0.828 

Bicycle facility width (m) * Bicyclist volume – approach 

(bicycle/h) 
-0.05 0.95 0.000 

Bicycle facility type (separated) * Bicyclists in approach -0.28 0.76 0.000 

Bicycle facility type (separated) * Sidewalk width (m) 0.75 2.11 0.056 

Cars in approach * Pedestrians in approach 0.06 1.06 0.047 

    

Classification threshold: 0.96 

AUC 0.76 

Accuracy 0.73 

Sensitivity 0.73 

Specificity 0.72 

Positive predictive value 0.98 

Negative predictive value 0.13 

Tab. 5.4 Simplified binomial logistic regression model with evaluation for infrastructure selection 
with bicycle facility 
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Fig 5.2 ROC curve for the simplified binomial logistic regression model for infrastructure selection 
with bicycle facility 

Response to a red signal  

When faced with a red traffic signal, roughly a fifth of the observed bicyclists violated the 

signal. A small subset of predictors is found to provide the best prediction of red light violation 

(full model in Appendix 1). The manoeuvre carried out by a bicyclist plays a very strong role 

in whether or not he or she will stop at a red light. Bicyclists turning right have a 134.15 times 

increase in the ratio of probability to run a red light than those riding straight across the 

intersection. On one-way roads, bicyclists turning left have a 13.76 times increase in the ratio 

of probability to violate a red light (Roadway width – opposite = 0). For each meter of roadway 

width in the opposite direction, this probability increases by 1.33 times. This is because, here, 

carrying out an indirect left turn against the mandatory direction of travel usually includes 

violating the first traffic signal (the signal that would have been waited for if the bicyclist had 

carried out an indirect left turn with the mandatory direction of travel). The time elapsed since 

the signal became red has a deterring effect on red light violations; bicyclists have a 1.35 

(
ଵ

௘షబ.బయ∗భబ
ሻ times decrease in the ratio of probability to violate the signal for each ten seconds 

passed since the signal change.  
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N = 1935 

Stop = 0, Violate = 1 
 ࢼ

Odds 

ratio 
 ࢖

Intercept -1.22 0.29 0.000 

Manoeuvre (right turn) 4.90 134.16 0.000 

Time since signal change – red (s) -0.03 0.97 0.000 

Manoeuvre (left turn) 2.62 13.76 0.000 

Roadway width – opposite (m) -0.28 0.76 0.000 

Manoeuvre (left turn) * Roadway width – opposite (m) 0.28 1.33 0.008 

 

Classification threshold: 0.46 

AUC 0.92 

Accuracy 0.91 

Sensitivity 0.85 

Specificity 0.93 

Positive predictive value 0.74 

Negative predictive value 0.96 

Tab. 5.5 Simplified binomial logistic regression model with evaluation for response to red signal 

 

Fig 5.3 ROC curve for the simplified binomial logistic regression model for response to red signal 
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The estimated binomial logistic regression model predicts the choice outcome with high 

accuracy. The prediction of signal compliance is slightly more reliable than that of signal 

violation. However, the prediction rates for both suggest that this behaviour is highly 

influenced by observable situational factors. In this case, the simplified model is found to 

provide excellent predictions with greater simplicity than the full model. 

The resulting model supports previous studies that found that turning right increases the 

probability of violating a red light [JOHNSON ET AL., 2011]. The influence of additional 

parameters, such as the signal timing, infrastructure selection and left turn manoeuvre, are 

identified here. 

Direction of travel 

The vast majority of the observed bicyclists ride in the mandatory direction of travel (98.7%). 

An extensive full model and a greatly simplified model are estimated to predict this heavily 

skewed tactical decision (full model in Appendix 1 and simplified model in Tab. 5.6). 

According to the simplified model, bicyclists turning left have a 9.25 times increase in the ratio 

of probability to travel against the direction of travel than those carrying out other 

manoeuvres. The availability of a left turn lane discourages travelling against the direction of 

travel to a large extent (6.36 (
1

𝑒−1.85
) times decrease in ratio of probability). The presence of 

parking facilities increases the ratio of probability of riding against the mandatory direction of 

travel by 2.67 times while the presence of a separated bicycle path decreases the ratio of 

probability by 9.87 (
1

𝑒−2.29
) times. Together, these two factors increase the ratio of probability 

of riding the wrong way by 2.31 (𝑒−2.29+0.98+2.15) times. 

The cross-validation indicates a high success rate for predicting riding with the direction of 

travel and a low success rate for predicting those riding against the given direction of travel. 

The very low classification threshold of 0.02 reflects the skewing in the choice observations 

and the low positive predictive value of 0.04 reflects the inaccuracy caused by manipulating 

the classification threshold. The full model does not offer a strong advantage over the 

simplified model. 

Far fewer bicyclists were observed riding against the mandatory direction of travel in this 

study than reported by KULLER ET AL. [1986] and WACHTEL & LEWISTON [1994]. The only finding 

that could be verified in this study is that bicyclists turning left are more likely to ride the wrong 

way, reflecting the goal of path simplification that was noted by KULLER ET AL. [1986]. 
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N =4710 

With direction = 0, Against direction = 1 
β 

Odds 

ratio 
𝒑 

Intercept -4.50 0.01 0.000 

Manoeuvre (left turn) 2.23 9.25 0.000 

Left turn lane -1.85 0.16 0.000 

Bicycle facility type (separated) -2.29 0.10 0.019 

Parking 0.98 2.67 0.202 

Parking * Bicycle facility type (separated) 2.15 8.60 0.035 

  

Classification threshold: 0.02 

AUC 0.77 

Accuracy 0.76 

Sensitivity 0.78 

Specificity 0.76 

Positive predictive value 0.04 

Negative predictive value 0.99 

Tab. 5.6 Simplified binomial logistic regression model with evaluation for direction of travel 

 

Fig 5.4 ROC curve for the simplified binomial logistic regression model for direction of travel  
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Left turn manoeuvre 

A multinomial regression model with three choice outcomes, direct left turn, indirect left turn 

and indirect left turn against the mandatory direction of travel, is estimated to predict the type 

of manoeuvre carried out by the bicyclist. The three choice outcomes are described in Section 

2.1.1 and are shown graphically in Fig 3.2. The estimated 𝛽 parameters are in reference to 

the base category, which is the direct left-hand turn.  

The most important predictor for the type of left turn is roadway use; bicyclists using the 

roadway have a more than 60 (
1

𝑒−4.12
) times decrease in the ratio of probability to carry out an 

indirect left turn and 20.5 (
1

𝑒−3.02
) times decrease in the ratio of probability to carry out an 

indirect left turn against the given direction of travel. Two characteristics of the infrastructure 

design, the type of bicycle facility and the presence of car parking, influence the choice 

outcome. The probability ratio of an indirect left turn increases by 3.42 times if there is only 

parking available and 6.05 times if only a separated bicycle path is present. If both these 

features are present, the ratio of probability of this manoeuvre increases by 4.43 

(𝑒1.80+1.23−1.54) times. A similar mechanism is at play for the choice to execute an indirect left 

turn against the mandatory direction of travel (5.18 times increase with parking only, 9.54 

times increase with a separated bicycle path only and 9.21 (𝑒2.26+1.64−1.68) times with both 

features). The signal phase and the presence of other road users also play important role in 

the left turn choice. A green signal encourages an indirect left turn (3.23 times increase in 

probability ratio) and discourages an indirect left turn against the mandatory direction of travel 

(8.41 (
1

𝑒−2.13
) times decrease in the probability ratio). For each bicyclist in the approach, the 

probability ratio of carrying out an indirect left turn decreases by 1.21 (
1

𝑒0.53+−0.73
) times and the 

probability ratio of carrying out an indirect left turn against the direction of travel decreases 

by 2.25 (
1

𝑒0.30+−1.11
) times. 

In contrast to the multinomial regression model for infrastructure selection, which failed to 

predict roadway and sidewalk use, the multinomial regression model for the left turning 

manoeuvre provides exceptional predictions for all three types of turns. The predictive power 

of this model suggests that this decision is greatly influenced by observable situational factors 

at the intersection. The simplified model provides a slightly less accurate prediction of the 

turning manoeuvre but enables a more straightforward interpretation of the predictors. 

The resulting model supports the findings of a previous study that found that bicyclists using 

the roadway often carry out direct left turns while bicyclists on the sidewalk and bicycle facility 

do not [AMINI ET AL., 2016]. The signal phase and the time since the last phase change are 

also found to play a role in manoeuvre selection, as previously found. 
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N = 426 

Base category = Direct left turn 
𝜷 

Odds 

ratio 
𝒑 
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Intercept -0.40 0.67 0.704 

Infrastructure selection (roadway) -4.12 0.02 0.000 

Bicycle facility type (separated) 1.80 6.05 0.052 

Parking 1.23 3.42 0.165 

Signal phase (green) 1.17 3.23 0.023 

Bicyclists in approach 0.53 1.69 0.008 

Parking * Bicycle facility type (separated) -1.54 0.22 0.158 

Signal phase (green) * Bicyclists in approach -0.72 0.49 0.003 
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Intercept 0.56 1.74 0.606 

Infrastructure selection (roadway) -3.02 0.05 0.000 

Bicycle facility type (separated) 2.26 9.54 0.020 

Parking 1.64 5.18 0.076 

Signal phase (green) -2.13 0.12 0.000 

Bicyclists in approach 0.30 1.34 0.121 

Parking * Bicycle facility type (separated) -1.68 0.19 0.136 

Signal phase (green) * Bicyclists in approach -1.11 0.33 0.022 

  

Accuracy 0.73 

Mean Sensitivity 0.70 

Mean Specificity 0.85 

Mean Positive predictive value 0.73 

Mean Negative predictive value 0.86 

Tab. 5.7 Simplified multinomial regression model with evaluation for left turn manoeuvre 

 

 
True class 

Direct Indirect Indirect (ww) 

P
re

d
ic

te
d

 

c
la

ss
 Direct 41 6 8 

Indirect 13 104 17 

Indirect (ww) 12 56 169 

Tab. 5.8 Confusion matrix for the simplified multinomial regression model for left turn manoeuvre 
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5.2 Operational models 

Operational behaviour models are required to move simulated bicyclists along their desired 

pathway across the intersection while reacting to other road users, obstacles and the signal 

control. This is realised by generating an acceleration vector 𝑎(𝑡) for each simulated bicyclist 

in every simulation time step. In car-following approaches, acceleration is reduced to a scalar 

quantity in the longitudinal direction. Longitudinal acceleration is calculated based on the 

position and velocity of a leading road user using the same link. The lateral position remains 

constant. An extension of this approach is typically used for simulating bicycle traffic in 

commercially or publically available simulation software such as PTV Vissim [FELLENDORF & 

VORTISCH, 2010] and SUMO [KRAJZEWICZ ET AL., 2014]. Traditional car-following models are 

extended to allow road users to vary their lateral position within a lane to optimise their 

progression in the longitudinal direction. However, using extended car-following models to 

simulate bicycle traffic has a number of disadvantages, most of which are caused by 

problems recreating the higher flexibility of bicyclists in comparison to vehicular traffic.  

Here, a social force model for pedestrian movement, the NOMAD model [HOOGENDOORN, 

2001], is adapted with the aim of simulating more flexible and realistic bicycle movement. The 

main advantage of using a force model over a car-following model is the potential for 

simulated bicyclists to interact with all other road users in a given vicinity rather than only the 

leading road users using the same one-directional link. However, in comparison with 

pedestrians, the dynamics of riding a bicycle limit the possible changes in direction and speed 

in each time step. It is, therefore, necessary to adapt social force models developed for 

pedestrians to represent realistic bicyclist movement.  

The original NOMAD model is described in detail in the report Normative pedestrian flow 

behavior theory and applications [HOOGENDOORN, 2001] and a simplified version is presented, 

calibrated and validated in the paper Microscopic Calibration and Validation of Pedestrian 

Models: Cross-Comparison of Models Using Experimental Data [HOOGENDOORN & DAAMEN, 

2007]. The simplified version of the NOMAD model for pedestrian movement specified by 

HOOGENDOORN & DAAMEN [2007] is given in Eq. 5.10. 

𝑎𝑝(𝑡) =
𝑣𝑝
0 − 𝑣𝑝(𝑡)

𝑇𝑝
− 𝐴𝑝 ∑ 𝑢𝑝𝑞(𝑡) 𝑒

−𝑑𝑝𝑞(𝑡)

𝑅𝑝

𝑞∈𝑄𝑝

 Eq. 5.10 

where:  

𝑑𝑝𝑞(𝑡) =  ‖𝑟𝑞(𝑡) − 𝑟𝑝(𝑡)‖ Eq. 5.11 

𝑢𝑝𝑞(𝑡) =
𝑟𝑞(𝑡) − 𝑟𝑝(𝑡)

𝑑𝑝𝑞(𝑡)
 Eq. 5.12 
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The desired velocity, which is a two-dimensional vector that points to the desired destination 

of pedestrian 𝑝, is denoted as 𝑣𝑝
0, the velocity at time 𝑡 as 𝑣𝑝(𝑡) and the position as 𝑟𝑝(𝑡). The 

set of pedestrians within a certain vicinity of pedestrian 𝑝 is given by 𝑄𝑝. Four pedestrian 

specific parameters, which remain constant for each pedestrian, are included in the model. 

These include the desired speed 𝑉𝑝
0, the necessary time for acceleration 𝑇𝑝, the interaction 

factor 𝐴𝑝 and radius of interaction 𝑅𝑝.   

An extension to the basic model that accounts for the anisotropic behaviour of pedestrians 

was proposed by HOOGENDOORN & DAAMEN [2007] and is given by Eq. 5.13. Anisotropy 

describes the tendency for pedestrians to react mainly to other pedestrians directly in their 

desired path of travel. Pedestrians positioned behind the simulated pedestrian have no 

influence on the movement while those ahead of the simulated pedestrian but off to the side 

of the desired path have a relatively small influence.  

𝑎𝑝(𝑡) =
𝑣𝑝
0 − 𝑣𝑝(𝑡)

𝑇𝑝
− 𝐴𝑝 ∑ 𝑢𝑝𝑞(𝑡) 𝑒

−𝑑𝑝𝑞
∗ (𝑡)

𝑅𝑝 1𝑢𝑝𝑞(𝑡)∙𝑣𝑝(𝑡)>0
𝑞∈𝑄𝑝

 Eq. 5.13 

where:  

𝑑𝑝𝑞
∗ (𝑡) =  

𝑢𝑝𝑞(𝑡) ∙ 𝑣𝑝(𝑡)

‖𝑣𝑝(𝑡)‖
+ 𝜂𝑝

𝑢𝑝𝑞(𝑡) ∙ 𝑤𝑝(𝑡)

‖𝑣𝑝(𝑡)‖
9 Eq. 5.14 

The vector 𝑤𝑝(𝑡) is perpendicular to 𝑣𝑝(𝑡) with the same magnitude. Pedestrian 𝑝 only 

responds to other pedestrians in front of him or herself, which is denoted by 1𝑢𝑝𝑞(𝑡)∙𝑣𝑝(𝑡)>0, an 

indicator function that takes the value 1 if the interacting pedestrian is in front of pedestrian 𝑝 

and zero if it is behind. The factor 𝜂𝑝 is constant and pedestrian specific and denotes the 

reaction difference of pedestrian 𝑝 to obstacles or interacting road users in front or to the side 

of the pedestrian (𝜂𝑝 > 1). Higher values of 𝜂𝑏 indicate a stronger relative importance of road 

users directly in the direction of travel compared to those to the left or right. This is because 

the adjusted distance 𝑑𝑝𝑞
∗ (𝑡) increases faster for higher values for 𝜂𝑝 for interacting road users 

further outside the direction of travel of pedestrian 𝑝. The vectors and distance scalar 𝑑𝑝𝑞(𝑡)  

of the original and extended NOMAD model for pedestrian movement are shown 

schematically in Fig 5.5. In this case, pedestrian 𝑝 will move to the right due to the positions 

of the destination and pedestrian 𝑞.  

                                                

9 In this disseration, dot products are denoted using a ∙ symbol and cross products are denoted using 

a × symbol.  
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Fig 5.5 Schematic of the vectors and distance scalar 𝑑𝑝𝑞(𝑡)  of the original and extended NOMAD 

model for pedestrian movement 

An extension of this model was developed by HOOGENDOORN & DAAMEN [2007] in which the 

delayed response of pedestrians to the situation is considered. This is realised through the 

addition of a reaction time 𝜏𝑝 such that 𝑎𝑝(𝑡) in Eq. 5.10 and Eq. 5.13 is replaced by 

𝑎𝑝(𝑡 + 𝜏𝑝). The three models (basic, anisotropic and delayed) are calibrated and validated 

using trajectory data from walking experiments on the university campus. This modelling 

concept and the approach for calibrating and validating the model presented by 

HOOGENDOORN & DAAMEN [2007] is used as the foundation for model specification, calibration 

and validation in this section. 

5.2.1 Model specification  

The NOMAD model is adapted here by using the norm and angle representation of the 

acceleration vector 𝑎(𝑡) and developing independent models to determine the change in 

speed ∆𝑉(𝑡) = ‖ 𝑎(𝑡)‖ and a change in direction ∆𝜃(𝑡) = tan−1[𝑎𝑦(𝑡) 𝑎𝑥(𝑡)⁄ ] in each time 

step. This enables the practical restriction of both ∆𝑉(𝑡) and ∆𝜃(𝑡) to reflect the dynamics of 

bicycling. Please note that vectors are signified using lower case letters and scalar quantities 

are shown using capital letters in this dissertation. The vector sign is omitted for simplicity.  

Basic model: 

The formulation of the separated norm and angle model for bicyclist behaviour is given in Eq. 

5.15 and Eq. 5.16, respectively.  

∆𝑉𝑏(𝑡) =
𝑉𝑏
0 − 𝑉𝑏(𝑡)

𝑇𝑣𝑏
− 𝐴𝑣𝑏 𝑒

−𝑚𝑖𝑛𝑖{𝐷𝑠,𝐷𝑏𝑖(𝑡)}
𝑅𝑣𝑏 1

𝜙<
𝜋
2
 Eq. 5.15 

∆𝜃𝑏(𝑡) =
𝜃𝑏
0(𝑡) − 𝜃𝑏(𝑡)

𝑇𝜃𝑏
− 𝐴𝜃𝑏 ∑ 𝑈𝑏𝑖(𝑡) 𝑒

−𝐷𝑏𝑖(𝑡)
𝑅𝜃𝑏

𝑖∈𝐼𝑅𝑈

1
𝜙<

𝜋
2
 Eq. 5.16 

 

𝑟𝑝(t) 𝑣𝑝(t)

𝑑𝑝𝑞(t)

𝑤𝑝(t)

𝑟𝑞(t)

𝑣𝑝
0

Destination

𝑢𝑝𝑞(t)
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where: 

𝑈𝑏𝑖(𝑡) =
𝑣𝑏(𝑡) × 𝑑𝑏𝑖(𝑡)

𝐷𝑏𝑖(𝑡) 𝑉𝑏(𝑡) sin𝜙
  𝜙 = cos−1

𝑑𝑏𝑖(𝑡) ∙ 𝑣𝑏(𝑡)

𝐷𝑏𝑖(𝑡) 𝑉𝑏(𝑡)
 Eq. 5.17 

In the change in speed equation (Eq. 5.15), the parameter 𝑉𝑏
0 is the desired speed of bicyclist 

𝑏, 𝑉𝑏(𝑡) is the current speed at time 𝑡, 𝑇𝑣𝑏 is a speed relaxation parameter unique to bicyclist 

𝑏 and 𝑅𝑣𝑏 is the radius of interaction for bicycle 𝑏 regarding the speed adjustment. The set of 

other road users within a predefined radius (e.g. 10 m) is given by 𝐼𝑅𝑈. The distance between 

road user 𝑖 and bicyclist 𝑏 is given by the vector 𝑑𝑏𝑖(𝑡) = 𝑝𝑖(𝑡) − 𝑝𝑏(𝑡), the scalar quantity of 

which is 𝐷𝑏𝑖(𝑡) = ‖𝑑𝑏𝑖(𝑡)‖. A graphical representation of the vectors and angles used in Eq. 

5.15 – Eq. 5.17 is shown in Fig 5.6. 

 

Fig 5.6 Graphical representation of the vectors and angles included in the specified models 

In response to the presence of the interacting road user 𝑖 in Fig 5.6, the depicted bicyclist 𝑏 

will reduce their speed (∆𝑉𝑏(𝑡) < 0) and will change direction away from the interacting road 

user in the clockwise direction (∆𝜃𝑏(𝑡) < 0). 

In addition to separating the model into the norm and angle representation of the velocity 

vector, the original model presented by HOOGENDOORN & DAAMEN [2007] is adapted in two 

important ways. First, the reaction to a traffic signal is included directly in the change in speed 

model. This is done by mimicking the reaction of a bicyclist to a large interacting road user 

that cannot be passed. The outline of the signalised intersection is denoted by a polygon that 

connects the stop lines of all the approaches. The nearest point on the stop line polygon to 

𝑝𝑏(𝑡) is selected as 𝑝𝑠(𝑡). The distance vector 𝑑𝑠(𝑡) = 𝑝𝑠(𝑡) − 𝑝𝑏(𝑡) and norm 𝐷𝑠(𝑡) = ‖𝑑𝑠(𝑡)‖ 

are analogous to the variables defined for interacting road users. This is only done for the 

change in speed model because bicyclists cannot manoeuvre around traffic signals.  

Second, instead of using a constant bicycle specific parameter to control the interaction 

response 𝐴𝑣𝑏, a variable is defined based on the current speed 𝑉𝑏(𝑡), the desired speed 𝑉𝑏
0 

and the speed relaxation parameter 𝑇𝑣𝑏 that ensures simulated bicyclists are able to stop in 

any simulation second. If the current speed 𝑉𝑏(𝑡) is large, the interaction response 𝐴𝑣𝑏 also 

increases in magnitude to allow for a stronger deceleration response to avoid collisions in all 

possible situations. In addition, this conversion reduces the number of parameters in the 

model by one, enabling a more stable prediction of the remaining model parameters.  

𝑝𝑏(t)

𝑝𝑖(t)

𝑣𝑏 t  
𝑣𝑏 t = 𝑉𝑏 𝑡 ,  𝑣𝑏 t = 𝜃𝑏(𝑡)

𝑑𝑏𝑖(t)
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Here: 

𝐴𝑣𝑏 =
𝑉𝑏
0 + (𝑇𝑣𝑏 − 1) 𝑉𝑏(𝑡)

𝑇𝑣𝑏
 Eq. 5.18 

The equation describing the change in direction ∆𝜃𝑏(𝑡) (Eq. 5.16) is formulated similarly; 𝜃𝑏(𝑡) 

is the direction of travel of bicyclist 𝑏 at time t, and 𝑇𝜃𝑏, 𝐴𝜃𝑏 and 𝑅𝜃𝑏 are constant bicyclist 

specific parameters controlling the change of direction specifically. 𝑈𝑏𝑖(𝑡) is introduced to 

specify the position of the interacting road user with respect to the desired path of travel and 

enables bicyclist 𝑏 to move to the left in response to a road user on the right and vice versa. 

𝑈𝑏𝑖(𝑡) can take a value of either −1 or 1 depending on the side of the interacting road user 

relative to the velocity of bicycle 𝑏. The main difference between Eq. 5.15 and Eq. 5.16 is that 

𝜃𝑏
0(𝑡) is not a static parameter, as 𝑉𝑏

0 is in Eq. 5.15, but rather changes to guide bicyclist 𝑏 

along his or her desired pathway across the intersection. The desired change in direction 

based on the desired position of bicyclists 𝑏 at time 𝑡 is shown in the following figure.  

 

Fig 5.7 Graphical representation of the definition of desired change of direction 

The summation across all interacting road users in the set 𝐼𝑅𝑈 is restricted to the change in 

angle equation (Eq. 5.16). This reflects the interacting behaviour of road users. It is presumed 

that a bicyclist adapts his or her speed based only on the most critical of interacting road 

users. For example, when riding in a single file platoon of bicyclists, a bicyclist does not ride 

slower if there are many bicyclists ahead in the platoon than he would if there were only one 

bicyclist ahead. The speed is determined to prevent a collision with the most critical 

interacting road user. In contrast, the direction is adapted as a response to many other road 

users within a given area. This enables the bicyclist to manoeuvre through a group of 

bicyclists. Furthermore, it is presumed that bicyclists do not react to road users positioned 

behind themselves and to this effect the indicator function 1𝜙<𝜋 2⁄  is deployed in all models 

including the basic model. This presumption was confirmed through initial evaluations of 

models including interacting road users in all directions. 

Anisotropic model: 

The first variation of the basic model examined here is an adaptation of the anisotropic model 

proposed by HOOGENDOORN & DAAMEN [2007], which takes into account the position of the 

interacting road user 𝑖 with respect to the direction of travel of bicyclist 𝑏. Using this approach, 

𝑝𝑏(t)

 𝜃𝑏(𝑡)

 𝜃𝑏
0(𝑡)

Desired position 
in next time step

𝑝𝑖(t)

𝑑𝑏𝑖(t)
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road users directly in the line of travel of bicyclist 𝑏 have the largest impact on the change in 

speed ∆𝑉𝑏(𝑡) and direction ∆𝜃𝑏(𝑡). The formulation of the anisotropic model is given in Eq. 

5.19 and Eq. 5.20: 

∆𝑉𝑏(𝑡) =
𝑉𝑏
0 − 𝑉𝑏(𝑡)

𝑇𝑣𝑏
− 𝐴𝑣𝑏 𝑒

−𝑚𝑖𝑛𝑖{𝐷𝑠
∗,𝐷𝑏𝑖

∗ (𝑡)}
𝑅𝑣𝑏 1

𝜙<
𝜋
2
 Eq. 5.19 

∆𝜃𝑏(𝑡) =
𝜃𝑏
0(𝑡) − 𝜃𝑏(𝑡)

𝑇𝜃𝑏
− 𝐴𝜃𝑏 ∑ 𝑈𝑏𝑖(𝑡) 𝑒

−𝐷𝑏𝑖
∗ (𝑡)
𝑅𝜃𝑏 1

𝜙<
𝜋
2

𝑖∈𝐼𝑅𝑈

 Eq. 5.20 

where: 

𝐷𝑏𝑖
∗ (𝑡) =

𝑑𝑏𝑖(𝑡) ∙ 𝑣𝑏(𝑡)

𝑉𝑏(𝑡)
+ 𝜂𝑏

𝑑𝑏𝑖(𝑡) ∙ 𝑤𝑏(𝑡)

𝑉𝑏(𝑡)
 Eq. 5.21 

Here, the distance between bicyclist 𝑏 and road user 𝑖 is divided into two components, one 

parallel and the other perpendicular to the direction of travel of bicyclist 𝑏. The vector 𝑤𝑏(𝑡) 

is perpendicular to 𝑣𝑏(𝑡) with the same scalar quantity and is oriented in the direction of road 

user 𝑖. The bicycle specific parameter 𝜂𝑏 describes the weighting of the distance of two 

components relative to one another (𝜂𝑏 > 1). Two different values of 𝜂𝑏 are solved for in the 

model, one for the ∆𝑉𝑏(𝑡) component (𝜂𝑣𝑏) and one for the ∆𝜃𝑏(𝑡) component (𝜂𝜃𝑏).  

Velocity anisotropic model: 

A final extension is proposed here to include the direction of travel of the interacting road user 

in the change of speed and change of direction model. The behaviour hypothesis behind this 

extension is that bicyclists have a less pronounced response to interacting road users moving 

with a similar velocity. For example, a bicyclist moving in a platoon of other bicyclists will only 

make minimal adjustments to his or her speed in response to a leading bicyclist moving in the 

same direction with a similar speed, even though this leading bicyclist may be very close in 

terms of distance. In contrast, the response to another road user moving towards bicycle 𝑏 

will be much larger, even if this road user is further away. To account for this aspect of 

behaviour, the effective distance 𝐷𝑏𝑖
∗∗(𝑡) is increased or decreased depending on the velocity 

vector of the interacting road user in relation to that of bicyclist 𝑏.  

∆𝑉𝑏(𝑡) =
𝑉𝑏
0 − 𝑉𝑏(𝑡)

𝑇𝑣𝑏
− 𝐴𝑣𝑏 𝑒

−𝑚𝑖𝑛𝑖{𝐷𝑠
∗,𝐷𝑏𝑖

∗∗(𝑡)}
𝑅𝑣𝑏 1

𝜙<
𝜋
2
 Eq. 5.22 

∆𝜃𝑏(𝑡) =
𝜃𝑏
0(𝑡) − 𝜃𝑏(𝑡)

𝑇𝜃𝑏
− 𝐴𝜃𝑏 ∑ 𝑈𝑏𝑖(𝑡) 𝑒

−𝐷𝑏𝑖
∗∗(𝑡)
𝑅𝜃𝑏 1

𝜙<
𝜋
2

𝑖∈𝐼𝑅𝑈

 Eq. 5.23 
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where: 

𝐷𝑏𝑖
∗∗(𝑡) =

𝑑𝑏𝑖(𝑡) ∙ 𝑣𝑏(𝑡)

𝑉𝑏(𝑡)
+ 𝜂𝑏

𝑑𝑏𝑖(𝑡) ∙ 𝑤𝑏(𝑡)

𝑉𝑏(𝑡)
+ 𝛾𝑏

𝑣𝑖(𝑡) ∙ 𝑣𝑏(𝑡)

𝑉𝑖(𝑡) 𝑉𝑏(𝑡)
 Eq. 5.24 

The parameter 𝛾𝑏 reflects the bicycle specific adjustment of the effective distance depending 

on the similarly between the velocity of the interacting road user 𝑖 and that of bicycle 𝑏. The 

cosine of the angle between 𝑣𝑖 and 𝑣𝑏 (
𝑣𝑖(𝑡)∙𝑣𝑏(𝑡)

𝑉𝑖(𝑡) 𝑉𝑏(𝑡)
) ranges between −1 and 1 and as such the 

parameter 𝛾𝑏 represents the adjustment of the effective distance in meters. Two different 

values of 𝛾𝑏 are solved for in the model, one for the ∆𝑉𝑏(𝑡) component (𝛾𝑣𝑏) and one for the 

∆𝜃𝑏(𝑡) component (𝛾𝜃𝑏). 

5.2.2 Model calibration  

For each of the proposed models, there are a number of bicyclist specific parameters to be 

calibrated using the observed trajectory data (Tab. 5.9).  

Model ∆𝑽𝒃(𝒕) ∆𝜽𝒃(𝒕) 

Basic 𝑉𝑏
0, 𝑇𝑣𝑏, 𝑅𝑣𝑏 𝑇𝜃𝑏, 𝐴𝜃𝑏, 𝑅𝜃𝑏 

Anisotropic 𝑉𝑏
0, 𝑇𝑣𝑏, 𝑅𝑣𝑏, 𝜂𝑣𝑏 𝑇𝜃𝑏, 𝐴𝜃𝑏, 𝑅𝜃𝑏, 𝜂𝜃𝑏 

Velocity anisotropic 𝑉𝑏
0, 𝑇𝑣𝑏, 𝑅𝑣𝑏, 𝜂𝑣𝑏, 𝛾𝑣𝑏 𝑇𝜃𝑏, 𝐴𝜃𝑏, 𝑅𝜃𝑏, 𝜂𝜃𝑏, 𝛾𝜃𝑏 

Tab. 5.9 Model parameters to be calibrated  

Observed values for 𝑝𝑏(𝑡), 𝑣𝑏(𝑡) and 𝑝𝑖(𝑡), 𝑣𝑖(𝑡) for all interacting road users in the set 𝐼𝑅𝑈 

are extracted from the trajectory data for each time step 𝑡 for each bicyclist 𝑏. Each trajectory 

has the form 𝑆𝑏 = [(𝑥𝑏 , 𝑦𝑏)𝑡=0 (𝑥𝑏 , 𝑦𝑏)𝑡=1 ⋯ (𝑥𝑏 , 𝑦𝑏)𝑡=𝑇𝑏  ], where (𝑥𝑏 , 𝑦𝑏)𝑡 is the position 

coordinate of bicyclist 𝑏 at time 𝑡 and 𝑇𝑏 is the duration of the trajectory. Here, the position 

observations are aggregated into groups of three and therefore the frequency of 25 

observations per second is reduced to 8.33 (25/3) observations per second. The noise in the 

position data was partially resolved through this aggregation. The aggregated position points 

are smoothed using the Savitzky–Golay filter [SAVITZKY & GOLAY, 1964]. The change in speed 

and change in direction observations are derived from the smoothed and aggregated 

trajectories. 

The remaining vectors 𝑑𝑏𝑖(𝑡) and 𝑤𝑏(𝑡), angle 𝜙 and the value 𝑈𝑏𝑖(𝑡) are calculated from the 

𝑝𝑏(𝑡), 𝑣𝑏(𝑡), 𝑝𝑖(𝑡) and 𝑣𝑖(𝑡) observations. In each time step, a presumed desired direction 

𝜃𝑏
0(𝑡) is inferred using the representative trajectory for the cluster to which bicyclist 𝑏 is found 

to belong (Section 4.1). The representative trajectory is assumed to embody the desired 

position points of each bicyclist along their trajectory. Without this assumed desired 

trajectory, it is not possible to generate a 𝜃𝑏
0(𝑡) in each time step. The desired direction in time 

step 𝑡 is found by locating the point on the representative trajectory nearest to 𝑝𝑏(𝑡) (point 𝑙1 
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in Fig 5.8). A second point is specified at a distance 𝑉0 further along the representative 

trajectory (point 𝑙1 + 𝑉
0̅̅̅̅  in Fig 5.8). The first point is necessary to act as a start point for 

measuring the distance 𝑉0 along the representative trajectory. A vector is drawn between 

𝑝𝑏(𝑡) and this second point, the angle of which is taken to be 𝜃𝑏
0(𝑡). A graphical representation 

of this approach is shown in Fig 5.8.  

 

 

Fig 5.8 Graphical representation of the approach for finding 𝜃𝑏
0(𝑡) 

The model parameters are calibrated to fit the observed behaviour using Maximum Likelihood 

Estimation (MLE). This method provides a means for deriving the values of a set of parameters 

𝛽 =  {𝛽0, 𝛽1, 𝛽2, … 𝛽𝑚} in a model to best fit a sample of data. This is achieved by expressing 

the likelihood as a joint probability mass function of the sample of observations as shown Eq. 

5.25 and Eq. 5.26. The likelihood 𝐿(𝛽) is a function of the parameter set 𝛽 and is maximized 

to find the optimal set of parameters. 

𝐿(𝛽) = 𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛) Eq. 5.25 

𝐿(𝛽) = 𝑓(𝑥1; 𝛽) ∙ 𝑓(𝑥2; 𝛽) ∙ ∙ ∙ 𝑓(𝑥𝑛; 𝛽) =∏𝑓(𝑥𝑖; 𝛽)

𝑛

𝑖=1

 Eq. 5.26 

Assuming that the observations are normally distributed, the probability mass function can 

be expressed using Eq. 5.27 and the joint probability mass function or likelihood of 𝛽 is given 

by Eq. 5.28 

𝑓(𝑥𝑖; 𝛽) =
1

√2𝜋𝜎2
𝑒
(−
(𝑥𝑖
𝑝𝑟𝑒𝑑

−𝑥𝑖
𝑜𝑏𝑠)2

2𝜎2
)

 
Eq. 5.27 

𝐿(𝛽) =∏𝑓(𝑥𝑖; 𝛽)

𝑛

𝑖=1

=∏
1

√2𝜋𝜎2
𝑒
(−
(𝑥𝑖
𝑝𝑟𝑒𝑑

−𝑥𝑖
𝑜𝑏𝑠)2

2𝜎2
)

𝑛

𝑖=1

 Eq. 5.28 

 

 

𝑝𝑏(t)

 𝜃𝑏(𝑡)

 𝜃𝑏
0(𝑡)

𝑙1

𝑙1 + 𝑉
0

representative 
trajectory
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For mathematical convenience, the log of the likelihood ℒ(𝛽) is typically maximized:  

ℒ(𝛽) = −
𝑛

2
ln(2𝜋𝜎2) −

1

2𝜎2
∑(𝑥𝑖

𝑝𝑟𝑒𝑑
− 𝑥𝑖

𝑜𝑏𝑠)
2

𝑛

𝑖=1

 Eq. 5.29 

The standard deviation 𝜎2 must be determined in order to numerically solve for the best fitting 

parameter set 𝛽. The maximum likelihood estimator of the variance is given in Eq. 5.30.  

𝜎̂2 =
1

𝑛
∑(𝑥𝑖

𝑝𝑟𝑒𝑑
− 𝑥𝑖

𝑜𝑏𝑠)
2

𝑛

𝑖=1

 Eq. 5.30 

The log likelihood function given 𝜎̂2 is expressed in Eq. 5.31. Using this function, the 

parameter set 𝛽̂ can be solved for using numerical optimization.  

ℒ(𝛽; 𝜎̂2) = −
𝑛

2
ln(

2𝜋

𝑛
∑(𝑥𝑖

𝑝𝑟𝑒𝑑
− 𝑥𝑖

𝑜𝑏𝑠)
2

𝑛

𝑖=1

) −
𝑛

2
 Eq. 5.31 

𝛽̂ = argmaxℒ(𝛽; 𝜎̂2) Eq. 5.32 

This method is used to calibrate the parameters in the models specified in Section 5.2.1 for 

each of the observed bicyclists at three of the four research intersections. The parameter set 

for each bicyclist is denoted as 𝛽𝑏 and includes the parameters shown in Tab. 5.9. The model 

parameters are calibrated for each observed bicyclist using the following equations:  

ℒ(𝛽𝑏; 𝜎̂𝑏
2) = −

𝑛

2
ln(

2𝜋

𝑛
∑(𝑎𝑖

𝑝𝑟𝑒𝑑
− 𝑎𝑖

𝑜𝑏𝑠)
2

𝑛

𝑖=1

) −
𝑛

2
 Eq. 5.33 

𝛽̂𝑏 = argmaxℒ(𝛽𝑏; 𝜎̂𝑏
2) Eq. 5.34 

where 𝑛 is the number of observation points along the aggregated trajectory. To ensure that 

𝑛 is large enough to find stable estimates of 𝛽̂𝑏, samples with fewer than 50 observations are 

filtered from the dataset. This reflects the recommendation by LONG [1997] to include at least 

10 observations per parameter. The majority of the trajectories include between 100 and 250 

observation points.  

The maximum log likelihood is numerically solved for using the SciPy Python implementation 

[THE SCIPY COMMUNITY, 2016] of the Constrained Optimization BY Linear Approximation 

(COBYLA) algorithm proposed by POWELL [1994]. Using this method, it is possible to set 

constraints that prevent the algorithm from locating an illogical, but mathematically optimal, 

minimum (e.g. extremely large desired velocity 𝑉𝑏
0 and relaxation time 𝑇𝑏 pairs). Initial 

estimates of the parameters are supplied to the algorithm. The values of these initial estimates 

are determined using an iterative process in which a set of values was specified, the models 
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were calibrated and the initial estimate was compared to the resulting parameter distribution. 

The same initial estimates were used for all observed bicyclists. The means of the resulting 

parameter distributions were used as the new initial estimates and the model was 

recalibrated. This process was terminated once stable initial estimates and parameter means 

were achieved. This prevented the algorithm from locating illogical minima to a large extent.  

5.2.3 Model validation 

The calibrated models are validated using K-fold cross-validation. Using this method, the 

sample of observations (𝑛 per bicyclist) is randomly divided into 𝐾 mutually exclusive sub-

samples of approximately equal size. The calibration of the parameter set is repeated 𝐾 times 

(or folds). In each fold, a sub-sample is held back from the model calibration and the 

parameter set 𝛽̂𝑏 𝑠𝑢𝑏−𝑠𝑎𝑚𝑝𝑙𝑒 is estimated using the remainder of the dataset. The calibrated 

model is then validated using the held back sub-sample. The model predictions are made by 

taking the observed position and velocity of the road users at each time step, extracting or 

calculating the model vectors and scalars and computing the predicted ∆𝑉𝑏(𝑡) and ∆𝜃𝑏(𝑡). 

These predictions are compared to the actual change in speed and angle observed at that 

time step. This type of validation reduces potential influence from the random splitting of the 

data because each of the observations is used exactly once for validation.  

In order to assess the predictive power of the models, the performance is compared to the 

constant velocity model in which acceleration equals zero in each time step (null case). 

Although this model is not capable of simulating traffic, it provides a useful method to 

determine if the predictions made in each time step are significantly better than a prediction 

of 0. Two measures are used to compare the developed models with this base model; the 

average improvement in log likelihood and the log likelihood ratio test. The average 

improvement in log likelihood, which indicates the overall improvement in model performance, 

is given by Eq. 5.35: 

𝐼 =
∑ ℒ(𝛽𝑏; 𝜎̂

2)𝑏∈𝐵 −∑ ℒ𝑏 𝑛𝑢𝑙𝑙𝑏∈𝐵

‖∑ ℒ𝑏 𝑛𝑢𝑙𝑙𝑏∈𝐵 ‖
 Eq. 5.35 

Where 𝐵 is the set of observed bicyclists and ℒ𝑏 𝑛𝑢𝑙𝑙 is the log likelihood of the constant 

velocity model. The log likelihood ratio test is a statistic that enables the comparison between 

models of differing complexities. Because model estimations inherently improve with each 

additional parameter, the magnitude of this improvement with respect to the increase in 

degrees of freedom must be examined to determine if a complex model is actually better. The 

test statistic for the log likelihood ratio test is given by: 

𝐷 = 2 (ℒ(𝛽𝑏; 𝜎̂𝑏
2) − ℒ𝑏 𝑛𝑢𝑙𝑙) Eq. 5.36 
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𝐷 is compared with the critical value 𝜒2 from the chi-squared distribution with degrees of 

freedom 𝑑𝑓 = 𝑑𝑓𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 − 𝑑𝑓𝑛𝑢𝑙𝑙. The degrees of freedom 𝑑𝑓𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 is the number of 

parameter for each model shown in Tab. 5.9. Models are accepted as significantly better if 

𝑝 < 0.1. The percentage of models (one model per observed bicyclist) that pass this test is 

used as an assessment measure for the overall model performance. The calibration and 

validation algorithm implemented here is shown in pseudo code below. All three model 

variations are tested using this approach.  

 

The models are tested using different delay times that represent the reaction times of the 

observed bicyclists. It is presumed that, like vehicle drivers, bicyclists do not respond 

immediately to stimuli in the road environment. Instead, a certain amount of time is required 

to collect sensory information, process this data and decide upon an appropriate response. 

Mean reaction times for car drivers have been estimated to lie between 0.7 – 1.5 s [GREEN, 

2007]. To reflect this reaction time, the acceleration observations are collected at 𝑡 + 𝜏 for 

observations from time step 𝑡. Values of 𝜏 ranging between 0.0 s and 1.5 s are tested and the 

model quality is assessed using 𝐼 (Eq. 5.35) and the percentage of models that pass the log 

likelihood ratio test (Eq. 5.36).  

5.2.4 Results 

The results of the calibration and K-fold cross-validation are presented in this section. The 

parameter distributions for the calibrated change in speed model are shown and are briefly 

discussed in the first section followed by the results for the calibrated change in angle model. 

The best-suited reaction time 𝜏 is located by examining the overall percent increase in the log 
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likelihood 𝐼 and the percent of calibrated models that pass the log likelihood ratio test for each 

reaction time 𝜏 between 0 s and 1.5 s at an interval of 0.12 s. The lowest reaction time 𝜏 

leading to markedly improved model performance is selected and the calibrated model 

parameters for this reaction time are presented.  

Change in speed  

The evaluation measures for the varying reaction time 𝜏 values are shown in Fig 5.9. A reaction 

time 𝜏 of 1.2 s leads to the best prediction of change in speed values. This lies within the 

range suggested by GREEN [2007] for car drivers but is considerably larger than the 0.28 s 

found by HOOGENDOORN & DAAMEN [2007] for pedestrians.  

  

 

Fig 5.9 Evaluation of the calibrated change in speed models for varying reaction times 𝜏 

Based on a qualitative assessment of the distributions shown in Fig 5.10 (page 122), the 

calibrated model parameters are deemed to be roughly represented by the normal 

distribution, although the lognormal distribution may be more appropriate for the parameters 

𝑇𝑣𝑏 and 𝛾𝑣𝑏.  Nevertheless, all parameters here defined using the mean and standard 

deviation, which are listed in Tab. 5.10 to Tab. 5.12. The magnitudes of these distribution 

parameters fall within an expected range of values and the consistency between parameters 

occurring in multiple models, 𝑉𝑏
0, 𝑅𝑣𝑏, 𝑇𝑣𝑏 and 𝜂𝑣𝑏, indicates stability of the parameters outputs 

from the maximum likelihood estimation. The resulting parameter distributions of the basic 

and anisotropic models closely resemble those shown for the velocity anisotropic model 

shown in Fig 5.10.  

The correlations between the model parameters are also important to consider and include in 

the subsequent traffic simulation to avoid incompatible parameter combinations. The Pearson 

correlation coefficient between the parameters is calculated using the formula below: 

𝑅𝑎𝑏 =
𝑛∑𝑎𝑏 − ∑𝑎∑𝑏

√(𝑛∑𝑎2 − (∑𝑎)2)(𝑛∑ 𝑏2 − (∑𝑏)2)
 Eq. 5.37 
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where 𝑛 is the number of observations, and 𝑎 and 𝑏 are variables for which the correlation is 

to be determined. The resulting correlation ranges between -1 and 1, with 0 indicating no 

correlation between parameters. 

 N=634 
Desired speed 𝑽𝒃

𝟎 

(m/s) 

Radius of 

interaction 𝑹𝒗𝒃 (m) 

Relaxation time 𝑻𝒗𝒃 

(s) 

Mean [CI] 5.20 [5.07, 5.33] 3.07 [3.00, 3.15] 3.75 [3.56, 3.94] 

Std. 1.47 0.83 2.15 

C
o

rr
e
la

ti
o

n
 

𝑅
𝑎
𝑏
 

𝑉𝑏
0 1 -0.10 0.04 

𝑅𝑣𝑏 - 1 0.05 

𝑇𝑣𝑏 - - 1 

Tab. 5.10 Calibration results for Δ𝑉𝑏(𝑡 + 𝜏) basic model (reaction time: 𝜏 = 1.2 𝑠) 

N=634 
Desired speed  

𝑽𝒃
𝟎 (m/s) 

Radius of 

interaction  

𝑹𝒗𝒃 (m) 

Relaxation 

time  

𝑻𝒗𝒃 (s) 

Anisotropic 

factor 𝜼𝒗𝒃 

Mean [CI] 
5.22  

[5.09, 5.36] 

3.13 

[3.05, 3.21] 

3.78 

[3.59, 3.98] 

2.05 

[2.02, 2.09] 

Std. 1.46 0.91 2.15 0.39 

C
o

rr
e
la

ti
o

n
 

𝑅
𝑎
𝑏
 

𝑉𝑏
0 1 -0.07 0.05 0.24 

𝑅𝑣𝑏 - 1 0.03 -0.14 

𝑇𝑣𝑏 - - 1 0.08 

𝜂𝑣𝑏 - - - 1 

Tab. 5.11 Calibration results for the Δ𝑉𝑏(𝑡 + 𝜏) anisotropic model (reaction time: 𝜏 = 1.2 𝑠) 

N=634 

Desired 

speed  

𝑽𝒃
𝟎 (m/s) 

Radius of 

interaction  

𝑹𝒗𝒃 (m) 

Relaxation 

time  

𝑻𝒗𝒃 (s) 

Anisotropic 

factor 𝜼𝒗𝒃 

Velocity 

direction 

factor 𝜸𝒗𝒃 

Mean [CI] 
5.24  

[5.11, 5.37] 

3.10 

[3.02, 3.17] 

3.81 

[3.61, 4.00] 

2.05 

[2.02, 2.08] 

1.03 

[1.00, 1.05] 

Std. 1.44 0.82 2.14 0.32 0.30 

C
o

rr
e
la

ti
o

n
  

𝑅
𝑎
𝑏
 

𝑉𝑏
0 1 -0.13 0.09 0.19 0.19 

𝑅𝑣𝑏 - 1 0.06 -0.04 -0.02 

𝑇𝑣𝑏 - - 1 0.08 0.06 

𝜂𝑣𝑏 - - - 1 0.52 

𝛾𝑣𝑏 - - - - 1 

Tab. 5.12 Calibration results for Δ𝑉𝑏(𝑡 + 𝜏) velocity anisotropic model (reaction time: 𝜏 = 1.2 𝑠) 
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Fig 5.10 Distributions of calibrated model parameters for the Δ𝑉𝑏(𝑡 + 𝜏) velocity anisotropic model  

In the meta-analysis of 28 studies that measure the speed of bicyclists (Fig 2.6), a median 

value of 4.6 m/s (16.5 km/h) was found. The higher value of 5.2 m/s (18.7 km/h) found here is 

logical because this value represents the desired speed of a population of bicyclists rather 

than the realised or observed speeds. Realised speeds are per definition lower as the bicyclist 

must slow to avoid other road users and obstacles and react to the signal control.  
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The relaxation time is a proxy measure for the maximum acceleration. If the mean relaxation 

time of 3.8 s is combined with the mean desired speed, a maximum acceleration of 1.4 m/s2 

emerges. The acceleration rate is slightly higher than those found in the literature (Section 

2.1.2) but falls within a reasonable range. This is also expected as it is based on desired speed 

and not observed speed. A radius of interaction of 3.1 m appears reasonable but cannot be 

assessed in comparison to the findings of other research because none were found. The 

applicability of this value is instead tested in the simulation environment (Section 6). The mean 

and standard variations of the parameters 𝜂𝑣𝑏 and 𝛾𝑣𝑏 are realistic and signify an average 

bicyclist that weights interacting road users directly in the path of travel with roughly twice 

the importance of those directly to the side. Roughly 1 m is subtracted from the effective 

distance 𝐷𝑏𝑖
∗∗ if the interacting road user is travelling with the same velocity as bicyclist 𝑏 and 

added if the velocity is opposite. 

The correlations between the calibrated model parameters are quite small. The most 

noteworthy correlations are the positive correlation between the desired speed and both the 

anisotropic and velocity direction factor, the negative correlation between the desired speed 

and the radius of interaction and the correlation between the anisotropic factor and the 

velocity direction factor. Together these correlations indicate that bicyclists who aim to travel 

with a higher speed have a slightly smaller interaction zone and are more focused on 

interacting road users directly in their planned pathway and those with an opposing velocity 

vector. This may point to a group of bicyclists who are faster, more confident and have a high 

risk acceptance. 

Change in angle 

The equation for predicting the change in angle proved to be much more difficult to calibrate 

than that for the change in speed. This is due to the inherent difficulty in isolating the desired 

change in angle. Here, the representative trajectory of a cluster of bicyclists is used to 

approximate the desired direction of travel of a bicyclist at each position while crossing the 

intersection. The desired direction in each time step 𝜃𝑏
0(𝑡) is therefore based on the 

representative trajectory for the cluster to which bicyclist 𝑏 is assigned. It is very likely, 

however, that the actual desired direction 𝜃𝑏
0(𝑡) varied (slightly or greatly) from the 

approximated value. Another difficulty arises due to noise in the trajectory data. Although the 

high angle of the video camera to the intersections and smoothing the trajectory data reduced 

the amount of noise, small variations in the tracked centroid likely have a small impact on the 

quality of the model calibration. Nevertheless, the calibrated models proved to be a significant 

improvement over the constant velocity model for more than half of the observed bicyclists. 

Considering that Δ𝜃𝑏(𝑡) lies very close to zero in each time step of 0.12 s and the lack of 

concrete data describing the desired direction, the results presented below are exceptional.  



124    Development of tactical and operational behaviour models for bicyclists 

 

The evaluation parameters for the calibrated models, the average improvement in log 

likelihood 𝐼 (Eq. 5.35) and percent passing the log likelihood ratio test, for reaction times 𝜏 

ranging between 0 s and 1.5 s with an interval of 0.12 s are shown in Fig 5.11.  

  

 

Fig 5.11 Validation values from the Δ𝜃𝑏(𝑡 + 𝜏) models for varying reaction times 𝜏 

The optimal reaction time 𝜏 lies between 0.4 s and 0.8 s, which is lower than the range 

identified for the Δ𝑉𝑏(𝑡) portion of the model (~1.2 s). Although the perception and processing 

components of the reaction time are the same for both actions, the different levels of 

complexity associated with the tasks may account for the difference in overall reaction time. 

This may indicate that bicyclists can react faster to stimuli by adjusting their direction of travel 

rather than their speed. A reaction time of 𝜏 = 0.6 𝑠 for change in direction is selected and the 

calibrated model parameters from this reaction time are presented and evaluated. 

The calibrated model parameter distributions are shown in Fig 5.12 (page 126). Based on a 

qualitative assessment of the distributions, the hypothesis of normal distribution is rejected 

for the interaction factor 𝐴𝜃𝑏, the radius of interaction 𝑅𝜃𝑏, the anisotropic factor 𝜂𝜃𝑏 and the 

velocity direction factor 𝛾𝜃𝑏. All of these factors show a very small deviation around a centric 

value. For this reason, the median value of each calibrated parameter is selected as a constant 

for the entire population of bicyclists. This simplifies the models for the simulation. The means, 

confidence intervals and standard deviations are nevertheless reported in Tab. 5.13 – Tab. 

5.15 if the reader is interested. The relaxation time 𝑇𝜃𝑏 is deemed to be normally distributed 

and as such a bicycle specific parameter is used.  
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N=613 
Interaction factor 

𝑨𝜽𝒃 

Radius of 

interaction 𝑹𝜽𝒃 (m) 
Relaxation time 𝑻𝜽𝒃 

Mean [CI]  0.48 [0.47, 0.49] 1.92 [1.91, 1.93] 1.17 [1.11, 1.23] 

Median 0.50 1.99 0.99 

Std. 0.10 0.14 0.74 

C
o

rr
e
la

ti
o

n
 

𝑅
𝑎
𝑏
 

𝐴𝜃𝑏 1 0.36 -0.39 

𝑅𝜃𝑏 - 1 -0.33 

𝑇𝜃𝑏 - - 1 

Tab. 5.13 Calibration results for the Δ𝜃𝑏(𝑡 + 𝜏) basic model (reaction time: 𝜏 = 0.6 𝑠) 

N=613 
Interaction 

factor 𝑨𝜽𝒃 

Radius of 

interaction  

𝑹𝜽𝒃 

Relaxation 

time  

𝑻𝜽𝒃 

Anisotropic 

factor 𝜼𝜽𝒃 

Mean [CI] 
0.48 

[0.47, 0.49] 

1.91 

[1.91, 1.92] 

1.15 

[1.09, 1.21] 

1.96  

[1.95, 1.97] 

Median 0.50 1.99 0.98 1.99 

Std. 0.10 0.14 0.72 0.10 

C
o

rr
e
la

ti
o

n
 

𝑅
𝑎
𝑏
 

𝐴𝜃𝑏 1 0.33 -0.32 0.30 

𝑅𝜃𝑏 - 1 -0.48 0.41 

𝑇𝜃𝑏 - - 1 -0.21 

𝜂𝑏 - - - 1 

Tab. 5.14 Calibration results for the Δ𝜃𝑏(𝑡 + 𝜏) anisotropic model (reaction time: 𝜏 = 0.6 𝑠) 

N=613 
Interaction 

factor 𝑨𝜽𝒃 

Radius of 

interaction  

𝑹𝜽𝒃 

Relaxation 

time  

𝑻𝜽𝒃 

Anisotropic 

factor 𝜼𝜽𝒃 

Velocity 

direction 

factor 𝜸𝜽𝒃 

Mean [CI] 
0.48 

[0.48, 0.49] 

1.92  

[1.91, 1.93] 

1.12 

[1.06, 1.17] 

1.97  

[1.97, 1.98] 

0.97 

[0.96, 0.98] 

Median 0.50 1.99 0.97 1.99 1.00 

Std. 0.08 0.14 0.66 0.07 0.09 

C
o

rr
e
la

ti
o

n
  

𝑅
𝑎
𝑏
 

𝐴𝜃𝑏 1 0.53 -0.51 0.23 0.21 

𝑅𝜃𝑏 - 1 -0.59 0.28 0.30 

𝑇𝜃𝑏 - - 1 -0.30 -0.42 

𝜂𝜃𝑏 - - - 1 0.72 

𝛾𝜃𝑏 - - - - 1 

Tab. 5.15 Calibration results for the Δ𝜃𝑏(𝑡 + 𝜏) velocity anisotropic model (reaction time: 𝜏 = 0.6 𝑠) 
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Fig 5.12  Distributions of calibrated model parameters for the Δ𝜃𝑏(𝑡 + 𝜏) velocity anisotropic model  

The calibrated parameters have the expected magnitude and sign. However, it is difficult to 

compare the results to the findings of other studies because no studies were identified that 

examined the response to other road users regarding the change in direction (without change 

in speed). The mean of the interaction factor 𝐴𝜃𝑏̅̅ ̅̅ ̅ = 0.48 𝑟𝑎𝑑/𝑠 (28°/s) signifies the maximum 
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response to an interacting road user. The calibrated relaxation time for the change in direction 

models is considerably lower than that in the change in speed portion of the model. This 

makes logical sense as changes in direction, which tend to be quite small, are realised without 

significant delay. This value, however, is highly dependent on the desired direction 𝜃𝑏
0(𝑡), 

which as stated before, is difficult to isolate based on observed trajectory data. The 

anisotropic factor 𝜂𝜃𝑏 and the velocity direction factor 𝛾𝜃𝑏 agree very strongly with the 

calibrated values found for the change in speed portion of the model and appear to be 

realistic.  

The Spearman correlation coefficient 𝑅𝑎𝑏 between the parameters (assuming normal 

distribution) are shown in Tab. 5.13 – Tab. 5.15 but are not investigated further as the bicyclist 

specific parameters 𝐴𝜃𝑏, 𝑅𝜃𝑏, 𝜂𝜃𝑏, 𝛾𝜃𝑏 were found to be adequately represented by the 

population parameters 𝐴𝜃, 𝑅𝜃, 𝜂𝜃, 𝛾𝜃. These population parameters are set as the median 

value for the observation.  
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 Implementation and evaluation  

In order to evaluate the feasibility of the proposed models as an integrated approach for 

simulating bicycle traffic, the operational and tactical models presented in Section 5 are 

implemented in a microscopic traffic simulation environment. Microscopic traffic simulation 

is a useful tool for the design and evaluation of traffic measures because it recreates the road 

environment as a complex system in which numerous components interact and influence one 

another. Although the developed behaviour models have been independently calibrated and 

validated using K-fold cross validation, the interaction between the proposed models is still 

to be examined. Furthermore, the interactions between the proposed models and other facets 

of the simulated road environment, including traffic signals and other road users, are explored 

in this section. 

6.1 SUMO simulation 

SUMO is an open source microscopic, multi-modal traffic simulation software that is 

developed by the Institute of Transportation Research at the German Aerospace Centre (DLR) 

[KRAJZEWICZ ET AL., 2006]. Development of the tool began in 2000 and the models and 

software have been continually advanced and improved since then. SUMO is mainly a link-

based program in which road users progress along lanes of roadway links. The car-following 

model developed by KRAUß [1998] is used as a default in the simulation, but several other car-

following models are directly implemented in the software and can be selected by the user. 

The default lane changing model was developed by ERDMANN [2015] and is based on a four-

layer hierarchy for lane changing decisions. Several improvements in recent years have 

enabled overtaking within the same lane [SEMRAU ET AL., 2016] as well as travelling in two 

directions on a lane. These features have improved the potential for realistically simulating 

pedestrians and bicyclists [KRAJZEWICZ ET AL., 2014]. 

SUMO is used in this dissertation to implement and test the proposed models for the 

operational and tactical behaviour of bicyclists. The open source code, a well-developed API 

and the support at DLR made using this software an excellent choice for model development 

and testing. The operational model is calibrated and validated using data from three of the 

four research intersections in Section 5.2. The remaining research intersection, Marsstraße 

and Seidlstraße is simulated in SUMO to evaluate the modelling approach (Fig 6.1). 

The traffic volumes and turning rates for cars, trucks and bicycles are based on observations 

from the video data (see Tab. 3.2). Pedestrians are not included in this test of the bicyclist 

models. All road users are simulated using default models for the given vehicle types in 

SUMO. The sublane feature of SUMO is activated, which divides lanes into an adjustable 

number of narrower sublanes. Simulated road users can flexibly adapt their lateral position 
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within the lane by selecting the most suitable sublane. The SUMO default model is used for 

bicycle traffic until they reach the model controlled simulation zone, within which bicyclist 

movement is controlled using the models developed in this dissertation. Other than the 

parameters shown in Tab. 6.1, the default SUMO model parameters are used. Several 

additional parameters, including the desired lateral position, the maximum lateral speed and 

the minimum lateral distance, must specified for each type of road user when using the 

sublane feature. The intersection is controlled by a fixed time control with a cycle length of 

90 s, both in reality and in the simulation. 

 

Fig 6.1 Simulation of the intersection Marsstraße and Seidlstraße in SUMO (background image: 
Google Earth 2013) 

The parameters in the following table are selected based on data measured from the video 

data or assumptions based on the average characteristics of vehicles in Germany. A 

distribution of speeds amongst a population of road users is achieved using the speed factor 

and speed deviation parameters. Setting the speed factor to 1.0 and speed deviation to 0.1 

will lead to a situation in which 95% of the road users move at a speed between 80% and 

120% of the given maximum speed. No distribution in the other parameters, including 

acceleration, deceleration and desired headway, are included in the current version of SUMO. 
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Bicycles Passenger cars 

Trucks and 

buses 

Maximum speed (m/s) 5.2 13.9 11.1 

Speed factor 1.4 1.2 1.05 

Speed deviation (m/s) 0.1 0.1 0.1 

Acceleration (m/s2) 1.0 1.5 0.8 

Deceleration (m/s2) 2.0 4.5 3.0 

Length (m) 2.0 5.0 10.0 

Desired headway (s) 1.5 1.5 1.5 

Minimum lateral gap (m) 0.05 0.30 0.30 

Lateral alignment compact center center 

Sublane resolution 0.4 

Tab. 6.1 Selected parameter values for SUMO vehicle behaviour models 

6.2 Integration of modelling approach with SUMO10 

The models described in Section 5 are to be integrated with the simulation software SUMO 

in order to evaluate feasibility. Model development was carried out using the computer 

programming language Python. In order to connect these behaviour models written in Python 

with the simulation software SUMO, the interface TraCI is used. TraCI offers a generic 

interface for connecting road traffic simulators with a network simulator [WEGENER ET AL., 

2008]. The use of this interface in conjunction with SUMO enables the extraction and 

manipulation of many attributes of the simulated road users and road environment. Here, 

TraCI is used to control the position and speed of the simulated bicyclists as well as to extract 

the position and velocity of the other road users and attributes describing the phase of the 

traffic signal.  

The bicyclists are introduced to the network using the standard SUMO method for creating 

bicycle traffic. A vehicle type “bicycle” is defined with the attributes shown in Tab. 6.1. Each 

                                                

10 Research similar to the final work presented in this section was published in the papers:  

TWADDLE, H.; GRIGOROPOULOS, G. & BUSCH, F. [2016A]: An approach for simulating bicycle traffic using 
observed trajectory data. In SUMO Conference 2016 Post Conference Proceedings. Berlin. [TWADDLE 

ET AL., 2016A] 

TWADDLE, H.; GRIGOROPOULOS, G. & BUSCH, F. [2016B]: Integration of an external bicycle model in SUMO. 
In SUMO 2016 Conference Proceedings. Berlin. [TWADDLE ET AL., 2016B] 
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simulated bicycle has a different desired speed that is assigned randomly based on the 

maximum speed, speed factor and speed deviation used to parameterise the vehicle type. 

The other behaviour parameters are the same for all bicyclists. Bicycle flows are created for 

each of origin/destination (OD) pair in the simple network based on the observed volume of 

bicycle traffic at the intersection. Routes are defined to specify the links used by bicyclists 

belonging to each of the OD pairs.  

The proposed modelling approach is applied while the simulated bicyclists are within the 

model controlled simulation zone, which corresponds roughly to the area shown by the areal 

image in Fig 6.1. This section is slightly larger than the field of view of the video frame and 

includes the area in which observed trajectory data are available. In order to simplify the initial 

integration of the modelling approaches with SUMO, only bicyclists who approach and exit 

the intersection travelling in the correct direction of travel are included in the simulation. 

Although the modelling approaches are capable of simulating bicyclists travelling against the 

mandatory direction of travel, SUMO is not yet able to route bicycle traffic such that simulated 

bicyclists travel against the direction of travel on certain segments of their journey through 

the network. This makes it impossible to test the direction aspect of the tactical behaviour 

that was examined in Section 5.1 within the framework of a working SUMO simulation 

network. For this reason, this tactical behaviour was not further investigated in this feasibility 

study.  

Within the model controlled simulation zone, the movement of the simulated bicyclists is 

controlled by the operational model presented in Section 5.2. While travelling through the 

model controlled simulation zone, the position and speed of the bicyclists are controlled using 

the moveToXY and setSpeed TraCI methods in accordance with the output of the operational 

model. The keepRoute option of the moveToXY method is set to 2 to allow bicyclists to move 

outside of the simulated road network. This makes it possible for simulated bicyclists to move 

on sidewalks and other infrastructure elements that are not explicitly included in the test 

network. The SUMO option time-to-teleport is used to remove vehicles from the simulation 

that cannot complete the route through the network in a predefined time duration. The SUMO 

road users are modelled such that they react to the movement patterns of other SUMO 

simulated road users. However, issues were found to arise when the moveToXY function is 

used to move externally simulated bicyclists to unexpected positions in the road network. For 

example, bicyclists carrying out an indirect left turn stop within the intersection after 

completing the first phase of the crossing. Although lanes are not obstructed by the stopped 

bicyclist, SUMO simulated road users moving in parallel lanes sometimes stop and do not 

pass the waiting bicyclist. Gridlocks are prevented by removing problematic road users that 

stop for an extended duration within the intersection. Blockages that still occur tend to be 

brief and do not have a significant impact on the overall simulation. However, this issue should 

be addressed if the bicycle models were to be integrated permanently into the simulation 

software.  



Implementation and evaluation  133 

 

6.2.1 Network alignment 

A challenge when integrating an external model with a simulation tool is the alignment of the 

coordinate systems of two environments. This problem can be eliminated by developing both 

environments using the same coordinate system. However, in some cases, the externally 

developed model operates on a uniquely defined coordinate system and adjusting this system 

to fit the coordinate system of the simulation environment is tedious. Here, the trajectories 

extracted from the video data use a local coordinate system in which the point (0 px, 0, px) is 

located at the top left corner of the real world image used for video calibration. The movement 

of the road users, which is originally measured in pixels per frame, is translated to a local 

coordinate system in meters using a perspective transformation of the coordinates and a 

measured meter per pixel value. The resulting position and speed data are based on a 

coordinate system defined by this initial perspective transformation. Unfortunately, it is 

relatively difficult to construct a road network in SUMO-based on this coordinate system.  

To address this issue, the same perspective transformation approach that was implemented 

to translate the video frame to the local coordinate system is used again. Using the method 

findHomography of the open source library OpenCV, a perspective transformation matrix 𝐻 

is found between two plans defined by a number of corresponding points. The coordinates 

of points identified in both the model (original plane) and simulation (target plane) 

environments, such as start and end points of stop lines at intersections, are input into the 

method. The resulting perspective transformation matrix 𝐻 is then used to translate the 

coordinates of the representative trajectories from each of the identified clusters to those of 

the simulation environment.  

6.2.2 Pathway selection 

Upon entering the model controlled simulation zone, each bicyclist is assigned a desired 

pathway based on the planned manoeuvre (straight, right turn or left turn) assigned by SUMO. 

The potential pathways are the exemplars of the trajectory clusters identified in Section 4.1 

for each approach of each intersection. Bicyclists turning right or travelling straight across the 

intersection are assigned a pathway corresponding to the direct option, as shown in Section 

4.2. The other pathway options are not possible to carry out without moving against the 

mandatory direction of travel, which is not tested here. Bicyclists turning left, however, have 

three possible pathway options that approach and exit the intersection in the expected 

direction of travel (the fourth pathway option identified in Section 4.2 is excluded due to 

difficulties simulating road users travelling against the given direction of travel in SUMO). The 

tactical model estimated in Section 5.1 (Tab. 5.6) is used to select the type of pathway across 

the intersection. The necessary situational data for the choice model, including the number of 

bicyclists in the approach and the signal phase, are extracted from SUMO using TraCI. 
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Relevant characteristics of the intersection, such as the type of bicycle facility and the 

availability of parking, are stored for each approach.  

It is assumed that the ratio of the probability of choosing one option over the probability of 

choosing another option is independent of the presence of additional alternatives 

(Independence-from-Irrelevant-Alternatives (IIA) axiom [BEN-AKIVA & LERMAN, 1985]) and the 

random components of the utility of each option are independent across alternatives. The 

utility 𝑈𝑞𝑖 of option 𝑞 for road user 𝑖 can then be reduced to the systematic element 𝑉𝑞𝑖 

[HENSHER ET AL., 2005].   

𝑈𝑞𝑖 = 𝑉𝑞𝑖 =∑𝛽𝑞𝑘𝑖𝑋𝑞𝑘𝑖

𝐾

𝑘=1

 Eq. 6.1 

Where 𝑋𝑞𝑘𝑖 is the value of attribute 𝑘, 𝛽𝑞𝑘𝑖 is the alternative specific weighting parameter for 

road user 𝑖 and attribute 𝑘 and 𝐾 is the total number of attributes. The probability 𝑃𝑞𝑖 of road 

user 𝑖 choosing alternative 𝑞 is given using the basic multinomial logit model: 

𝑃𝑞𝑖 =
𝑒𝑉𝑞𝑖

∑ 𝑒𝑉𝑞𝑗𝐽
𝑗=1

 Eq. 6.2 

The total number of alternatives is denoted by 𝐽. The probabilities of the potential alternatives 

for the manoeuvre, which are limited here to three options for bicyclists turning left, are 

calculated using Eq. 6.2 and ordered based on the magnitude of 𝑃𝑞𝑖 (highest to lowest). A 

random number 𝑟𝑛 between zero and one is drawn and used to assign the preference order 

for each simulated bicyclist. The alternative corresponding to the random number is 

appended as the first choice for the bicyclist. The options to the left of the first choice option 

are appended to the end of the sorted alternative list. An example is shown in Fig 6.2. This is 

done to ensure that all bicyclists do not continually select the most probable option. 

 

Fig 6.2 Use of random number to select alternative priorities 

The actual pathway to be followed across the intersection is found by augmenting the 

approach specific pathway into the form of the generic feature vectors. The trained Affinity 

Propagation matrix is used to categorise each of the approach specific pathways into one of 

the generic manoeuvre clusters. The generic clusters correspond with the manoeuvre 

alternatives (i.e. direct and indirect left turns), which are organised in an ordered option set 

  = 𝟎.    = 𝟎.    = 𝟎.  

0 1
𝑟𝑛  0. 

choice set: [2, 1,  ]
0. < 𝑟𝑛  0.8

choice set: [1,  , 2]
𝑟𝑛 > 0.8

choice set: [ , 2, 1]
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using the method demonstrated in Fig 6.2. This step builds a crucial bridge between the 

approach specific pathways followed across the intersection, which vary in form depending 

on the geometry of the intersection, and the type of manoeuvre used to cross the intersection. 

The bicyclist is assigned the approach specific pathway corresponding to the selected 

alternative in the ordered options set. Each approach is characterised by a number of 

pathways options, which may not represent all of the possible tactical alternatives. This is 

because not all of the general manoeuvre pathways are observed at all intersection 

approaches. For example, at one approach specifically, there may not have been any 

bicyclists observed carrying out a direct left turn. If the first choice is not available at the given 

approach, the bicyclist is assigned a pathway corresponding to the second alternative in the 

ordered choice set, and so forth. Conversely, each tactical manoeuvre may be represented 

by a number of approach specific clusters. If this is the case, one of the clusters is selected 

randomly for the simulated bicyclist.  Finally, certain manoeuvre alternatives can be exempt 

from the choice set using flags that can be set by the practitioner as necessary.  

Once selected, the pathways are extended to the entry and exit points of the model controlled 

simulation zone. The entry point is the position where the simulated bicyclist first touches the 

model controlled simulation zone. The exit point is defined by the intersection between the 

boundary of the model controlled simulation zone and a line representation of the SUMO edge 

to be used after crossing the intersection. The desired pathway is extended to the entry and 

exit points of the model controlled simulation zone using splines such that a complete 

pathway is generated through the entire model controlled simulation zone. The resulting 

pathways are shown in Fig 6.3 below for the test intersection. The actions taken by the 

simulated bicyclist to follow this pathway while responding to other road users and the traffic 

signal are determined using the operational model described in Section 5.2.  

 

Fig 6.3 Example of the desired pathways for bicyclists simulated at the example intersection 
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6.2.3 Operational model implementation 

The operational model specified, calibrated and validated in Section 5.2 is implemented and 

tested within the model controlled simulation zone. All three model variations, the basic, 

anisotropic and velocity anisotropic models, were implemented in the simulation and the 

results were subjectively assessed. Although the most complex model, the velocity 

anisotropic model, was not found to perform significantly better in the model validation 

(Section 5.2.3) than the other two models, it was found to improve the behaviour of bicyclists 

in the simulation. The varied reaction to other road users based on the relative position and 

velocity of both interacting road users was found to recreate behaviour that is much more 

realistic. Particularly following situations in which bicyclist 𝑏 moved behind another road user 

travelling in nearly the same direction at nearly the same speed were simulated more 

realistically using the velocity anisotropic model.  

The parameters of the velocity anisotropic model are calibrated using observed trajectory 

data. A number of the parameters are found to be normally distributed amongst the 

population of bicyclists. In the simulation, the calibrated distribution of these parameters, 

including the covariance between the parameters, is used to assign each simulated bicyclist 

with a realistic combination of attributes. Maximum and minimum values for the parameters 

assigned using distributions are defined to prevent the occurrence of unrealistic parameters 

and are given in Tab. 6.2. As discussed in Section 5.2.4, the bicycle specific parameters, 𝐴𝜃𝑏, 

𝑅𝜃𝑏, 𝜂𝜃𝑏 and 𝛾𝜃𝑏, are substituted with population parameters, 𝐴𝜃, 𝑅𝜃, 𝜂𝜃 and 𝛾𝜃, that are 

assigned to all bicyclists (median values from the calibration results).  

Parameter Mean (𝝁) Std. (𝝈) Minimum Maximum 

Desired speed (m/s) 𝑉𝑏
0 5.2 1.4 3.0 10.0 

Relaxation time - speed (s) 𝑇𝑣𝑏 3.8 2.1 3.0 5.0 

Radius of interaction (m) 𝑅𝑣𝑏 3.1 0.8 1.0 5.0 

Anisotropic factor 𝜂𝑣𝑏 2.0 0.3 1.0 3.0 

Velocity direction factor 𝛾𝑣𝑏 1.0 0.3 0.5 1.5 

Relaxation time – direction (s) 𝑇𝜃𝑏 1.1 0.1 1.0 1.2 

Tab. 6.2 Mean, standard deviation, minimum and maximum values for operational model 
parameter distributions estimated in Section 5.2 

Additional parameters are applied to the simulation to ensure realistic bicyclist behaviour and 

simulation feasibility. The first of which is a designated minimum lateral and longitudinal safety 

distance. Here, the longitudinal safety distance is modelled using a normal distribution (𝜇 =

0.  𝑚, 𝜎 = 0.1 𝑚) with a maximum and minimum safety distance of 0.7 𝑚 and 0.  𝑚, 

respectively. The lateral safety distance is modelled in the same way with a mean of 𝜇 = 0.4 𝑚, 

a standard deviation of 𝜎 = 0.1 𝑚 and a minimum and maximum safety distance of 0.2 𝑚 and 

0.6 𝑚, respectively. These parameters have not yet been calibrated, as it was not possible to 
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extract this information from the trajectory data. However, once calibrated, these parameters 

could prove instrumental in simulating bicyclist impatience.  

Because ∆𝑉𝑏(𝑡) and ∆𝜃𝑏(𝑡) are calculated separately, there is no link between the change in 

speed and change in angle in each time step. This was found to lead to unrealistic situations 

in which bicyclists moving very slowly continue to change direction at the same rate as 

bicyclists travelling quickly. In order to address this issue, the angle change per simulation 

time step is controlled based on the current speed of the bicyclist. If the speed drops below 

0.5 m/s, the change in angle ∆𝜃𝑏(𝑡) is multiplied by the speed. This ensures that bicyclists 

that are not moving, or are moving slowly, do not change direction in an unrealistic manner. 

The total change of angle in response to all interacting road users is limited to 𝐴𝜃, which 

prevents simulated bicyclists from changing direction drastically in one time step. These 

stipulations were not included in the original model in Section 5.2 and were not calibrated or 

validated using the trajectory data. This extra control may not be necessary, considering that 

it is possible for bicyclists to pivot (slowly) without moving forward. In any case, model testing 

should be carried out to determine if it is necessary to link speed with change in angle and to 

calibrate and validate of these stipulations if necessary in future work.  

The shape of bicyclists and all other road users is recreated in the simulation using a simple 

rectangle. Simulation of bicyclists using a diamond shape, as proposed by FALKENBERG ET AL. 

[2003] and implemented in PTV Vissim, was tested but no advantages were found. The 

diamond shape allowed bicyclists to queue in a more compactly, although this was not found 

to be more realistic than the rectangle shape using the calibrated parameters.  

6.2.4 Signal control 

The reaction of bicyclists to the signal control proved to be difficult to simulate within the 

SUMO environment. Road users simulated in SUMO travel along the network edges until they 

reach a node (intersection) which is defined by a polygon. The stop line of the approach is the 

intersection between the edge and the intersection polygon. Once road users receive a green 

signal and are able to cross the stop line, they enter the intersection polygon and complete 

their manoeuvre. Here, the polygon representations of the intersection (and signal control) in 

SUMO are extracted and forwarded to the operational behaviour models. The operational 

reaction of the simulated bicyclists to the signal, including decelerating towards the stop line 

at a red signal head, is modelled using the same approach as the reaction to other road users. 

When the signal is red for a bicyclist on a given approach, the polygon of the intersection is 

activated, forcing the bicyclists to react and stop at the stop line. The polygon is then 

deactivated when the signal becomes green. Once a bicyclist has entered the intersection 

polygon, it can no longer react to the presence of the intersection polygon when it is activated. 

This is not a problem for bicyclists that only react to one signal during the intersection 
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crossing. However, the reaction to the signal of bicyclists requiring two signal phases to cross 

the intersection, such as those carrying out indirect left turns, is difficult to simulate. 

To address this issue, an approach is proposed to allow for the flexible reaction of simulated 

bicyclists to different signal heads along their intersection crossing. Each edge approaching 

the intersection is characterised by angle, shown by the vectors 𝑁⃗⃗ , 𝐸⃗ , 𝑆  and 𝑊⃗⃗⃗  in Fig 6.4, and 

a principal signal head. The phase of the signal head associated with the approaching edge 

currently used by the simulated bicyclist is used to activate or deactivate the intersection 

polygon. Bicyclists are assigned an edge upon entering the model controlled simulation zone 

based on the route (e.g. NE). In each simulation step, the difference between the direction of 

travel of the bicyclist 𝜃𝑏(𝑡) and the angle of all approaching edges is calculated. The bicyclist 

is assigned the edge with the smallest difference. A factor of 1.1 is applied to the angle 

differences of all approaches not currently used by the bicyclist. This buffer prevents 

simulated bicyclists from oscillating between signal heads.  

The shape of the polygon is modified to allow bicyclists to react to a second signal head once 

they are already within the intersection polygon (Fig 6.4). This is particularly important for 

bicyclists performing indirect left turns. The polygon is modified in the time step in which a 

bicyclist first switches signal heads (approach edge). This is done using a direction change 

polygon (B in Fig 6.4), which is defined by taking the current position of the bicyclist 𝑝𝑏(𝑡) as 

a starting point for the vector 𝐷⃗⃗  with an angle equal to that of the newly assigned edge. The 

length of the vector is inconsequential. The polygon is defined by offsetting vector 𝐷⃗⃗  5 m to 

the right hand side and 5 m to the left hand side. Polygon B is defined by the start and end 

points of the two offset vectors. The intersection of the original intersection polygon and the 

direction change polygon is the modified intersection polygon. This polygon is used to 

represent the signal control for the given bicyclist for the remainder of the intersection 

crossing or until there is another change in the approaching edge (signal head). An example 

of a signal head change is shown in Fig 6.4.  

 

Fig 6.4 Example of the derivation of the modified intersection polygon during an indirect left turn 
at the test intersection 

Intersection polygon A Direction change polygon B Modified intersection polygon A∩B
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In this example, a bicyclist approaches the intersection from the west and carries out an 

indirect left turn. The signal is green upon approaching the stop line and the bicyclist proceeds 

across the intersection. When the bicyclist turns to carry out the second portion of the left 

turn manoeuvre, the south signal head is activated and a new intersection polygon is created. 

6.3 Simulation evaluation 

The main goal of this work is to develop an approach for simulating the flexible behaviour of 

bicyclists at signalised intersections. Bicyclists, unlike motor vehicles or pedestrians, are able 

to use different parts of the infrastructure (bicycle facility, roadway and sidewalk) to tactically 

select their pathway across an intersection. Typical measures used to assess the realism of 

traffic simulations, such as travel time, speed distribution and traffic flow, do not enable the 

assessment of flexible pathway selection. In order to compare patterns of movement of 

bicyclists in reality and the traffic simulation, the area encompassing the intersection is 

discretized into an array of cells (1.5 m by 1.5 m). Two measures are calculated for each cell 

in the array, the occupancy, which measures the proportion of time a cell is occupied by at 

least one bicyclist, and the average speed of bicyclists while in the cell. The results are 

compared using heat maps, which exhibit the relative occupancy and average speed in each 

of the cells. Three cases are compared, observed trajectories from the test intersection, the 

trajectories of bicyclists simulated using the default SUMO simulation approach and bicyclists 

simulated using the proposed operational and tactical behaviour models. Observations for 

both occupancy and speed are taken every one second along the trajectory of the observed 

and simulated bicyclists.   

In order to account for the variation in simulation runs, several runs for both of the two 

simulation cases are carried out. The simulation is stochastic due to the behaviour parameter 

distributions both in the SUMO models and in the proposed operational behaviour model. 

The arrival of the road users, their assigned desired routes across the intersection and the 

selection of manoeuvres based on the proposed tactical model creates further stochasticity. 

A period of 60 minutes is assessed for both of the simulation cases. The network is allowed 

200 s to fill before the 60-minute simulation time is started. The number of simulation runs is 

determined based on a predetermined confidence interval, which is given by the equation 

below [DOWLING ET AL., 2004].  

𝐶𝐼1−𝛼% = 2𝑡(1−𝛼
2
),𝑁−1

𝑠

√𝑁
 Eq. 6.3 

Where 𝑡
(1−

𝛼

2
),𝑁−1

 is Student’s t-statistic, 𝑠 is the standard deviation of the results (variables 

occupancy and average speed) and 𝑁 is the number of runs. Due to the exploratory nature of 

this simulation experiment, a relatively high ratio of the confidence interval divided by the 

standard deviation of 2.0 is selected. According to DOWLING ET AL. [2004], this ratio with a 
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confidence of 95% can be reached with a minimum of eight simulation runs. To ensure 

statistically significant results, ten simulation runs are carried out here. The actual confidence 

interval from the ten runs is calculated. The ten simulation runs are accepted if 𝐶𝐼 < 2𝜎. 

Otherwise, two additional runs are carried out and the confidence interval is recalculated. This 

is repeated until an acceptable confidence interval is reached.  

The developed modelling approach is compared with observed data from the intersection 

Marsstraße and Seidlstraße. The performance of the integrated modelling approaches 

proposed in this dissertation and the currently available method for simulating bicycle traffic 

in SUMO are compared. This comparison is slightly biased because the simulation of bicycle 

traffic can be improved to some extent with simulation tricks, such as creating a multitude of 

links representing the potential pathways for bicyclists. However, implementing simulation 

tricks can be tedious and makes the simulation prone to errors (e.g. in the definition of conflict 

points). Moreover, the intention of this work is to create a method for explicitly modelling 

flexible behaviour. Therefore, a comparison with the default SUMO bicycle simulation 

approach is deemed appropriate. The performance of the developed model in comparison to 

the default approach for simulating bicyclist traffic in SUMO is quantitatively assessed using 

the root mean square error (𝑅𝑀𝑆𝐸).  

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑥)

2𝑛
𝑖=1

𝑛
 Eq. 6.4 

Where 𝑥𝑖 is the observed occupancy or average speed and 𝑥 is the simulated value in each 

cell of the array. The average speed is set to 0.0 in array cells where no bicyclists are observed 

or simulated. This makes it possible to compare all cells in the array but makes the 𝑅𝑀𝑆𝐸 

measure sensitive to the presence of bicyclists in the cell throughout the observation or 

simulation period. The mean and standard deviation of the 𝑅𝑀𝑆𝐸 values for the ten simulation 

runs of the two simulation approaches are shown in Tab. 6.3. The percent improvement of 

the developed approach in comparison to the SUMO approach is shown in the right column.  

 SUMO default 

approach 

Proposed 

approach 

Percent 

improvement 

Occupancy  
Mean 𝑅𝑀𝑆𝐸 (std.) 0.361 (0.001) 0.318 (0.004) 

12.7 
CI [0.360, 0.362] [0.315, 0.321] 

Average speed 

(m/s) 

Mean 𝑅𝑀𝑆𝐸 (std.) 1.421 (0.005) 1.341 (0.016) 
5.6 

CI [1.417, 1.425] [1.329, 1.353] 

Tab. 6.3 𝑅𝑀𝑆𝐸 for the SUMO default and proposed simulation approach compared to observed 
trajectories 
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In addition to this quantitative assessment, the simulation approach is further evaluated based 

on a qualitative assessment of the heat maps shown in Fig 6.5. Here the occupancy (left 

column), which is measured as the percentage of time which the cell is occupied by at least 

one bicyclist, and the average speed in each cell (right column) are shown.  

As expected, bicyclists observed in reality (top row in Fig 6.5) cover a large portion of the 

intersection. Not only the bicycle facilities but also sections of the sidewalks, crosswalks and 

roadway are used by bicyclists as they cross the intersection. The highest average speeds 

are reached by bicyclists using the bicycle facility while slower average speeds are observed 

at the stop lines and on the sidewalks and crosswalks. The cells with the highest occupancy 

rate are those directly in front of the stop lines of the approaches with the highest volume of 

bicycle traffic (north and south).  

The bicyclists simulated using the default SUMO model move in a more consistent manner 

with very little variation in the speed or pathway used, as shown in the bottom row of Fig 6.5. 

This consistency in the realised trajectories is expected as simulated bicyclists are limited to 

predefined edges and pathways through the intersection. However, the average speed of the 

bicyclists in each of the cells is also much more uniform across space than the average speed 

observed in reality. Decreases in speed are simulated only at the stop lines and points of 

intersection/interaction with other flows of traffic. Because bicyclists are limited to predefined 

pathways, lower speeds when using the crosswalks or sidewalks were not possible to 

simulate.  

The proposed approach shows a higher potential for simulating the dispersed movement of 

bicyclists as they cross the intersection. In comparison to the SUMO default approach, a 

larger portion of the cells is occupied by at least one bicyclist during the simulation. The 

distribution of the desired speed parameter 𝑉𝑏
0 calibrated using the trajectory data resulted in 

lower overall average speeds in the cells than is observed in reality. However, the speeds in 

the cells show more variation in space than those in the default SUMO simulation.  

Perhaps the most important advantage of the proposed simulation approach in comparison 

to the SUMO approach is the ability to simulate indirect left turns, both with and against the 

expected direction of travel. Currently, it is only possible to include direct left turns of 

bicyclists in the SUMO simulation [DLR, 2016]. If a simulated bicyclist turning left uses a 

bicycle facility upon approaching the intersection, the bicyclist unrealistically crosses in front 

of road users travelling straight on the adjacent roadway lanes. The resulting left turn 

pathways can be seen in the SUMO default simulation heat maps in Fig 6.5. This behaviour 

causes improbable situations to arise at the intersection, the outcome of which is often 

congestion that is not observed in reality.  
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Fig 6.5 Heat maps of occupancy (left column) and speed (right column) for all manoeuvres  
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Using the approach outlined in Fig 6.4, the relevant signal head is adapted depending on the 

orientation of the simulated bicyclist and not only on the route assigned by SUMO. This allows 

bicyclists carrying out left turn manoeuvres, particularly indirect left turns, to respond to the 

correct signal head at any given moment along their trajectory without this information being 

explicitly supplied to the simulation. Moreover, the dynamic definition of stop lines in 

accordance with the orientation and position of the bicyclist within the intersection makes it 

possible to realistically simulate the waiting position of bicyclists making left-hand turns over 

two signal phases. Examples of the progression of two simulated bicyclists, one carrying out 

an indirect left turn in the expected direction of travel (Fig 6.6) and the other an indirect left 

turn against the given direction of travel (Fig 6.7) are displayed below. The red circle locates 

the bicyclist throughout the manoeuvre. 

 

Fig 6.6 Indirect left turn manoeuvre with the expected direction of travel  

 

Fig 6.7 Indirect left turn against the expected direction of travel  

In addition to simulating realistic left turning behaviour of bicyclists, the proposed approach 

also enables the recreation of non-uniform queues at red signals. The default approach for 

simulating bicycle traffic in SUMO includes sublanes, which makes it possible for road users 

t1) t2) t3)

t1) t2) t3)
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to move beside one another in the same lane. Nevertheless, the queues formed by bicyclists 

at the stop line are undeviating and the resulting length of the queue varies linearly with the 

number of bicyclists in the queue. In reality, the form of bicycle queues varies greatly 

depending on the behaviour of the particular bicyclists in the queue. To examine the realism 

of the queues resulting from the proposed approach, the volume of bicycle traffic is doubled 

at the test intersection. Four examples of queues are shown in the figure below. The first three 

result from the proposed simulation approach while the last is taken from the SUMO default 

approach for simulating bicycle traffic with sublanes.  

 

Fig 6.8 Queues from the proposed approach (a, b and c) and the default SUMO approach (d) 

Queues observed at the Marsstraße and Seidlstraße intersection are shown in Fig 6.9. The 

observed variation in the queue length and density, as well as the position of the bicyclists in 

the queue, varied enormously between signal cycles. The developed approach for modelling 

the operational behaviour is found to better reproduce this randomness than the current 

SUMO approach.  

a) b) c) d)
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Fig 6.9 Examples of observed queues at Marsstraße / Seidlstraße (adapted from TAHEDL [2014]) 

The preference of the bicyclists between the three type of left turn manoeuvre is modelled in 

the simulation using the simplified logistic regression model introduced in Section 5.1 (Tab. 

5.7). An element of randomness is introduced using the method demonstrated in Fig 6.2. The 

mean, standard deviation (std.) and resulting confidence interval (CI) are shown for the 

percentage of each type of left turn manoeuvre assigned in the simulation.  

 
Simulated values 

Observed 
Mean (%) Std. (%) CI 

Direct left turn 6.6 2.4 [ 3.8, 9.3 ] 18.8% 

Indirect left turn 63.5 5.7 [ 57.0, 70.0 ] 53.1% 

Indirect left turn against the 

mandatory direction of travel 
30.0 4.2 [ 25.1, 34.8 ] 28.1% 

Tab. 6.4 Simulated and observed types of left turns  

The observed percentage of bicyclists carrying out the three types of left-turn manoeuvres is 

extracted from the generic clustering resulting from the Marsstraße and Seidlstraße 

intersection. Just over half of the bicyclists turning left at this intersection carried out an 

indirect left turn in the expected direction of travel. This falls slightly below the mean 

percentage of bicyclists carrying out this type of manoeuvre in the simulation. This 

discrepancy is accounted for in the direct left turns, with fewer bicyclists carrying out direct 

left turns in the simulation environment than in reality. The proportion of bicyclists carrying 

out an indirect left turn against the expected direction of travel is very similar in both reality 

and the simulation environment. To improve the proportion of direct left turns and indirect left 

turns in the expected direction of travel, it may be worthwhile to implement the full model for 

the left turn manoeuvre in Appendix 1 in the simulation.  
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 Conclusions 

The research and contributions in this dissertation include the automated extraction of 

trajectories from video data, the processing of this data, operational and tactical behaviour 

model specification, calibration and validation as well as the implementation of the developed 

models within the existing simulation software SUMO. A summary of these contributions is 

given in Section 7.1, followed by the limitation of the work presented in Section 7.2. Finally, 

an outlook for future work based on the findings of this dissertation is given in Section 7.3. 

7.1 Summary 

In this dissertation, approaches for modelling the behaviour of bicyclists for application in 

microscopic traffic simulation are presented. High-resolution trajectory data is used to specify 

and calibrate models of bicyclist behaviour. Although behaviour modelling is the overarching 

goal of the work, the data collection and analysis methods applied to reach this goal are 

further contributions to the state-of-the-art. Historically, traffic analysis and evaluation have 

been based on point observations (e.g. inductive loops), which yield traffic parameters at a 

given cross section (e.g. traffic volume, average speed, etc.). Alternatively, road user 

recognition techniques, such as Bluetooth and Automatic Number Plate Recognition (ANPR), 

provide the travel times between two data collection points (e.g. on a road segment). 

Trajectory data, in contrast, provides a rich description of the spatial progression of road 

users and their interactions with the environment and other road users. Previously, the ability 

of researchers to collect trajectory data has been limited by the extremely high time effort 

required to create trajectories manually. Recent advances in computer vision have made 

automated trajectory extraction possible. However, methods for analysing and using 

trajectory data to specify and calibrate models have remained rudimentary.  

The work in this dissertation adds to the budding field of behavioural analysis and model 

development using trajectory data. Automated methods for extracting trajectory data from 

video data and processing the trajectories are extended and developed. A method for 

classifying road users as bicyclists, pedestrians or motor vehicles based on their positions 

throughout the crossing manoeuvre relative to the road geometry and their maximum speed 

is developed and implemented. An approach for correcting the distortion in trajectories 

resulting from a wide-angle lens by applying available image processing tools is presented 

here, which is found to rectify the trajectories adequately.  

Two methods for clustering the extracted trajectory data to identify types of pathways used 

by bicyclists to cross an intersection are developed and evaluated; a generic pathway 

clustering method and an approach specific clustering method. The generic clustering 

method classifies the type of pathways used by bicyclists to travel straight across or carry 
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out a left or right-hand turn at any intersection with four approaches. This approach can be 

applied directly to classify trajectories collected at intersections not examined within this 

dissertation, eliminating the need for time-consuming manual classification in future work. In 

contrast, the approach specific clustering method developed in this dissertation enables the 

identification of representative pathways used by bicyclists at a particular approach of a 

particular intersection. These pathways can be imported directly into a microscopic traffic 

environment to provide the desired pathways for simulated bicyclists across the intersection.  

Behaviour models describing the tactical and operational behaviour of bicyclists are specified 

in this dissertation. The clustered trajectory data is used to calibrate and validate these 

models. Binomial and multinomial logistic regression models are estimated for four tactical 

choices using a dataset of observed choice outcomes; the reaction to a red traffic signal, the 

choice between using a bicycling facility, the roadway or the sidewalk, the direction of travel 

and the selection of a pathway across an intersection. There is considerable variation between 

the predictive power of the four regression models. The models estimated to predict the 

reaction to a red signal and the type of left turn manoeuvre are capable of predicting each of 

the choice categories with exceptional accuracy. In contrast, the infrastructure selection 

models and the direction of travel model have difficulty predicting seldom occurring choice 

outcomes. A possible explanation for this variation could be that the four tactical behaviours 

are motivated by different types of factors. The tactical behaviours that are highly explainable 

using the developed regression models are likely motivated by situational factors that are 

externally observable. The difficulty in predicting at least one of the outcomes for the 

remaining behaviours, the direction of travel and infrastructure selection, suggests that the 

motivating factors for these choices are intrinsic or cannot be observed in the restricted 

observation area. 

The predictive power of the estimated models, as well as the variables that were found to be 

significant in the logistic regression models, are useful in determining which rule breaking 

behaviours can be addressed through infrastructure design and traffic signal control 

measures and which are rooted in non-observable factors. In this dissertation, all the variables 

that were investigated are externally observable, meaning that they are related to externally 

controllable factors (infrastructure and signal design). The high predictive power of the models 

for the reaction to a red signal and the type of left turn manoeuvre suggests that these 

behaviours can be modified by altering the situation at the intersection. Riding against the 

given direction of travel and riding on the sidewalk, on the other hand, may be more 

responsive to softer measures such as safety campaigns and traffic rule enforcement.  

An operational behaviour model is specified to reflect the unique characteristics of bicyclists. 

The NOMAD model, which is a simple force model for pedestrian movement, is adapted to 

reflect the restrained dynamics of bicycling. This is accomplished by using the norm and angle 

representation of the velocity and acceleration vectors. Two equations, one for the change in 
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speed and one for the change in angle, are specified and calibrated using trajectory data. This 

model allows for the direct control of the maximum change in speed and change in direction 

at each time step. Furthermore, a delay 𝜏 is integrated in the model that represents the 

reaction time of the observed bicyclists. Two reaction times are estimated, one for each of 

the models. The reaction time is estimated for the population of bicyclists by maximising the 

number of observations passing the log likelihood ratio test over the entire sample and are 

found to be 𝜏 = 0.6 𝑠 for change in direction and 𝜏 = 1.2 𝑠 for change in speed. The total 

reaction time is the sum of the time taken to perceive a situation, develop a strategy to cope 

with the situation and execute this strategy. The duration of time used to execute a strategy 

is dependent upon the complexity of the task. Here, it is argued that the tasks ‘change 

direction’ and ‘change speed’ have different complexity levels and therefore lead to different 

reaction times.   

In order to evaluate the modelling approaches, the operational and tactical behaviour models 

are integrated with the microscopic traffic simulation software SUMO, which is an open 

source system developed by the German Aerospace Center (DLR). The position and velocity 

of the simulated bicyclists are specified using the models presented in this dissertation and 

are communicated with SUMO using functions of the interface TraCI. This method was found 

to be extremely useful for development and evaluation. 

Within the simulation environment, the developed modelling approach is found to offer a more 

realistic simulation of bicycle traffic compared to the model that is available in SUMO. The 

bicyclists are able to move and respond to other road users in a way that better reflects the 

operational behaviour observed in reality. The flexible pathway selection across the 

intersection, which results in a wide dispersion of bicyclists, is simulated with success. 

Although it is possible to generate the dispersed movement in other simulation tools, this is 

usually done by specifying a multitude of routes and interaction points at an intersection. 

Using this approach, the flexible behaviour is implicitly modelled. This results in a more 

realistic simulation of bicyclists, in particular when performing an indirect left turn. The 

simulated queueing behaviour is also found to reflect the non-uniform shape of bicyclist 

queues realistically in a way that is not possible with many other simulation software.  

There are a number of practical applications for the presented approach for modelling the 

tactical and operational behaviour of bicyclists in microscopic traffic simulation. For example, 

signal control measures for bicyclists, including the integration of bicyclists in actuated or 

adaptive signal control algorithms and the prioritisation of bicyclists at signalised 

intersections, can be developed more precisely using the methods proposed in this 

dissertation. The predicted progression (positions and speed) can be taken into account when 

planning the coordination of signals. Predictions about the tactical behaviour of bicyclists 

developed in this dissertation, including red light violations and travelling direction, can 

provide further inputs for signal control algorithms in the future.  
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Another example is advanced driver assistance systems (ADAS) that are developed and 

implemented today to alert drivers to the presence and position of bicyclists and intervene by 

breaking or swerving if a collision is imminent. Microscopic traffic simulation is often used for 

the initial development and testing of such systems. Clearly, in order to create a realistic 

simulation environment and extract correct results, the models of bicyclist behaviour in the 

simulation must be realistic and precise. The operational and tactical models developed in 

this dissertation and the method for integrating the models with the microscopic simulation 

SUMO offer a means to develop and test ADAS systems. Particularly the highly accurate 

prediction of the position and speed of bicyclists as they cross the intersection is necessary 

to evaluate the performance of ADAS. This prediction is greatly improved with the models and 

methods proposed in this dissertation.   

If one looks further into the future, automated vehicles that operate in complex urban 

environments will require extremely accurate and realistic models of the behaviour of other 

road users. The behaviour of bicyclists and pedestrians is particularly important to understand 

and predict because these vulnerable road users may not be equipped with the means to 

communicate their positions and planned movements electronically, for example with 

Cooperative Awareness Messages (CAM), as proposed with connected vehicles. If automated 

vehicles are to adopt strategies that guarantee the safety of vulnerable road users, models 

that accurately predict the tactical decisions of bicyclists, as well as their movement in the 

next instant, will be of vital importance. Models that combine situational parameters, personal 

characteristics of the bicyclist, the type, position and velocity of surrounding road users, the 

state of the traffic signal and the previous actions of the bicyclist to predict behaviour must 

be developed. The behaviour models presented in this dissertation offer the first step in this 

direction. However, it will be necessary to collect significantly more data from a multitude of 

locations to specify and calibrate models with sufficient accuracy and robustness to meet the 

needs of automated vehicles. 

7.2 Limitations 

Although the work in this dissertation was completed successfully, the following limitations 

are noted:  

 The method developed for classifying road users as pedestrians, motor vehicles and 

bicyclists is based on the spatial progression of the road users with respect to the 

geometry of the intersection and the maximum speed. This basic method of 

classification works well at intersections with separated bicycle traffic (e.g. bicycle 

facility). However, in mixed traffic situations, the results were less satisfactory and 

manual correction was necessary. Additionally, a method was developed for post 

processing trajectory data to remove distortion caused by collecting data with a wide-

angle lens. This method was found to remove distortion adequately. Nevertheless, 
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rectification of video data before the extraction of trajectory data is recommended. 

This prevents variation in the effects of the parameters that control the trajectory 

extraction process across the distorted video frame. 

 The clustering methods proposed were found to produce excellent clusters for the 

four research intersections examined in this dissertation. This sample size is relatively 

small, however, and better results that are applicable to a wider variety of intersections 

could be achieved if a larger pool of data were collected.  

 Although the calibration and validation of the operational behaviour model were 

successful, the estimation of the change in direction model was hindered by the lack 

of knowledge concerning the desired direction of the observed bicyclist in each 

moment. Here, this value was estimated using the approach specific pathways 

identified using the clustering approach. However, this is only an estimate based on 

all observed bicyclists arriving on the given approach and does not necessarily match 

the desired direction of an individual bicyclist. Furthermore, a stipulation was 

implemented during the integration of the operational model with SUMO that 

constrains the change in angle of simulated bicyclists at low speeds. This stipulation 

was not included in the model specification and was not calibrated or validated using 

the trajectory data.  

 The predictive power of two of the tactical choice logistic regression models is limited 

by the low number of observations describing bicyclists performing one or more of the 

options. The prediction of bicyclists riding on the roadway or sidewalk when a bicycle 

facility is available, as well as the prediction of bicyclists riding against the mandatory 

direction of travel, are particularly problematic due to unbalanced observation sets. 

The collection of more data, particularly from bicyclists executing seldom-occurring 

behaviours would enable a better prediction of the choice outcome.  

7.3 Outlook 

This dissertation offers an example of using trajectory data directly to improve the 

microscopic simulation of bicycle traffic. However, rapid advances in the fields of computer 

vision and data analytics are likely to forge a more fluid connection between reality and traffic 

simulation. The potential to distinguish movement patterns and quantify the underlying 

causation of bicyclist behaviour is continually increasing. The transfer of this information into 

the simulation environment will greatly increase the realism of traffic simulation and the 

consequent meaningfulness of simulation results. 

To this aim, more advanced methods for the automated extraction of trajectories are needed. 

Potential improvements that were noted during this work include a more advanced method 
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for road user classification that takes into account the physical shape and the movement 

patterns of the different types of road users. The calibration of the software used for 

automated trajectory extraction is currently tedious and could be improved with a (semi-

)automated calibration algorithm. Furthermore, methods to improve the automated extraction 

and post processing of trajectory data, including merging of trajectories belonging to the 

same road user (e.g. after a stop) or deleting erroneous trajectories would be helpful in the 

future.  

The automated classification of manoeuvres and pathways is also necessary for the fluid 

connection of reality and simulated environments. Here, a pathway generic clustering method 

is proposed that is trained for application at signalised, four arm intersections. However, the 

method used to create the clustering structure can be applied to trajectory datasets collected 

at other types of locations, such as road segments or T-intersections. The addition of 

trajectories from other intersections to the existing dataset would improve the overall quality 

of the clustering structure, as clustering algorithms tend to perform best and deliver more 

robust results with more observations.  

The work in this dissertation provides a step forward in the creation of realistic and accurate 

models of bicyclist behaviour. However, there is still much to be done before these models 

can be applied in many situations (e.g. use in automated vehicles). The methods proposed 

here for calibrating behaviour models using observed trajectory data will continue to have 

applications. However, considering the difficulties in isolating the desired direction of travel 

for the calibration of the change in direction component of the operational model, other 

methods for observing reactions while controlling the desired direction are necessary. 

Possibilities for such data collection include the use of a bicycle simulator in which the test 

subject follows a prescribed path. This could enable the identification of parameter 

distributions rather than population point estimates, which were used in this dissertation 

because a number of the parameters in the change in direction model were found to have 

very little variation.   

Furthermore, both the operational and tactical models are calibrated using data representing 

the complete population of bicyclists in Munich. The models are specified to describe the 

generic movement of all types of bicyclists and the methods outlined in this dissertation can 

be used to calibrate the models for specific types of bicyclists. Possible attributes to consider 

in identifying types of bicyclists include personal attributes (e.g. gender and age) and type of 

bicycle (e.g. E-bike, pedelecs and cargo bicycles). This would enable a more specific 

prediction of behaviour depending not only on the situation but also based on the bicyclist 

himself or herself.  
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Variable list 

Section 3 – Experimental design, data collection and processing 

𝑁 Number of observations  

𝐼𝑉 Number of independent variables 

𝑇 Duration of the observation 

𝑞 Average bicycle traffic flow 

𝑃𝑚𝑖𝑛 Estimated proportion of bicyclists faced with the least frequent tactical choice 

𝑖 Road user 

𝑆𝑖 Trajectory of road user 𝑖 

𝑡 Time step 

(𝑥𝑖 , 𝑦𝑖)𝑡 Position coordinate of road user 𝑖 at time step 𝑡 

K Camera matrix 

𝑑 Distortion coefficients matrix 

Section 4 – Trajectory clustering 

𝑓𝑖𝑗
∗ Feature 𝑗 for road user 𝑖 

𝐹𝑖
∗ Feature vector for road user 𝑖 

𝒜∗ Pattern matrix of all feature vectors 

𝐷𝑖 Distance travelled by road user 𝑖 

𝑟(𝑖, 𝑘) “Responsibility” for observation 𝑖 and exemplar 𝑘 (Affinity Propagation) 

𝑎(𝑖, 𝑘) “Ability” for observation 𝑖 and exemplar 𝑘 (Affinity Propagation) 

𝜆 Damping parameter (Affinity Propagation) 

𝑛 Number of points in a trajectory (clustering) 

𝑠𝑖 Silhouette score for observation 𝑖 

𝑎𝑖 Proximity of an observation 𝑖 to its assigned exemplar 𝑘𝑖 

𝑏𝑖 Proximity of an observation 𝑖 to the next nearest exemplar  

𝑠̅ Mean silhouette score 

Section 5 – Modelling bicycle behaviour 

𝐸(𝑌|𝑥) Expected value of 𝑌 given 𝑥 (linear regression model) 

𝜋(𝑥) Conditional mean of 𝑌 given 𝑥 (logistic regression model) 

𝑥 Vector of explanatory variables 

𝛽0 Constant coefficient associated with the expected value of 𝑌 

𝛽1 Vector of weighting parameters for 𝑥 estimated using observed data 
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𝑏 Modelled bicyclist 

∆𝑉𝑏(𝑡) Change in speed of bicyclist 𝑏 at time 𝑡 

𝑉𝑏
0 Desired speed of bicyclist 𝑏 

𝑣𝑏(𝑡) Velocity vector of bicyclist 𝑏 at time 𝑡 

𝑉𝑏(𝑡) Speed of bicyclist 𝑏 at time 𝑡 

𝑇𝑣𝑏 Relaxation parameter unique to bicyclist 𝑏 (speed) 

𝑅𝑣𝑏 Radius of interaction for bicycle 𝑏 (speed) 

𝐴𝑣𝑏 Stopping parameter for bicyclist 𝑏 calculated from 𝑉𝑏
0, 𝑉𝑏(𝑡) and 𝑇𝑣𝑏 

∆𝜃𝑏(𝑡) Change in direction of bicyclist 𝑏 at time 𝑡 

𝜃𝑏
0(𝑡) Desired direction of bicyclist 𝑏 at time 𝑡 

𝜃𝑏(𝑡) Current direction of bicyclist 𝑏 at time 𝑡 

𝑇𝜃𝑏 Relaxation parameter unique to bicyclist 𝑏 (direction) 

𝐴𝜃𝑏 Weighting parameter for reaction to interacting road users 

𝑅𝜃𝑏 Radius of interaction for bicyclist 𝑏 (direction) 

𝑈𝑏𝑖(𝑡) Relative position value 

𝑑𝑏𝑖(𝑡) Distance between road user 𝑖 and bicyclist 𝑏 (vector) 

𝐷𝑏𝑖(𝑡) Distance between road user 𝑖 and bicyclist 𝑏 (scalar) 

𝜙 Angle between the vectors 𝑣𝑏(𝑡) and 𝑑𝑏𝑖(𝑡) 

𝑤𝑏(𝑡) Vector perpendicular to 𝑣𝑏(𝑡) oriented in the direction of road user 𝑖 

𝑝𝑏(𝑡) Position of bicyclist 𝑏 at time 𝑡 

𝑝𝑖(𝑡) Position of interacting road user 𝑖 at time 𝑡 

𝐷𝑏𝑖
∗ (𝑡) Adjusted distance between road user 𝑖 and bicyclist 𝑏 (Anisotropic model) 

𝐷𝑏𝑖
∗∗(𝑡) 

Adjusted distance between road user 𝑖 and bicyclist 𝑏 (Velocity anisotropic 

model) 

𝜂𝑏 Relative position weighting parameter (bicyclist 𝑏 and road user 𝑖) 

𝛾𝑏 Relative velocity weighting parameter (bicyclist 𝑏 and road user 𝑖) 

ℒ(𝛽) Log likelihood of a model for observed data given parameter set 𝛽 

ℒ(𝛽; 𝜎̂2) 
Log likelihood of a model for observed data given parameter set 𝛽 and standard 

deviation 𝜎̂2 

𝛽̂ Parameter set leading to the maximum ℒ(𝛽; 𝜎̂2) 

𝛽̂𝑏 Parameter set leading to the maximum ℒ(𝛽; 𝜎̂2) for bicyclist 𝑏 

𝐼 Average improvement in log likelihood 

𝐷 Test statistic for the log likelihood ratio test 

𝑅𝑎𝑏 Correlation between the parameters 𝑎 and 𝑏 
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Section 6 – Implementation and evaluation 

𝑞 Tactical choice option 

𝑘 Attribute of an option 

𝑖 Road user making tactical choice 

𝑈𝑞𝑖 Utility of option 𝑞 for road user 𝑖 

𝛽𝑞𝑖 Alternative specific weighting parameter for road user 𝑖 and option 𝑞 

𝑋𝑞𝑘𝑖 Value of attribute 𝑘 

𝑃𝑞𝑖 Probability of road user 𝑖 choosing alternative 𝑞 

𝐽 Total number of alternatives 

𝑅𝑀𝑆𝐸 Root mean square error 
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Glossary 

Cargo bicycle A type of bicycle that is equipped with large 

compartments for carrying cargo. 

Direct left turn A left turn carried out in the manner of vehicle traffic. The 

bicyclist queues with traffic in the left most lane of the 

roadway and crosses the intersection during one signal 

phase. 

E-bike A type of bicycle that offers electric motor support to the 

bicyclist until they reach a speed of 45 km/h. 

Features (computer vision) Distinctive attributes or patches of pixels with strong 

gradients in a video or picture frame, such as object 

corners and edges.  

Indirect left turn A turn carried out over two signal phases. Within the first 

phase, the bicyclist crosses the intersection as if riding 

straight across the intersection. The bicyclist then stops 

once across the intersection and waits for the next signal 

phase to continue the second part of the manoeuvre. 

Indirect left turn against the 

mandatory direction of travel 

A turn carried out over two signal phases. Within the first 

phase, the bicyclist crosses the approaching road. The 

bicyclist then stops once across the roadway and waits for 

the next signal phase to continue across the intersection 

and complete the second part of the manoeuvre. 

Instantaneous 

speed/acceleration 

A speed/acceleration value at a particular point in time. 

Manoeuvre Movement carried out by a bicyclist or other road user to 

realise a route planned at the strategic behavioural level. 

Examples of manoeuvres include right turns, left turns and 

riding straight across an intersection. 

Mean acceleration/speed The average speed/acceleration of a speed/acceleration 

profile. 

On-road bicycle facility A bicycle facility within the roadway that is marked using a 

solid or dashed line. 
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Operational behaviour Behaviour at this level includes subconscious action 

patterns that are carried out to realise a manoeuvre while 

reacting to other road users and obstacles in the 

environment. Behaviour at this level includes acceleration, 

deceleration and changing direction. 

Path Movement through space to realise a given manoeuvre. 

Examples of paths include direct and indirect left turns. 

Pedelec A type of bicycle that offers electric motor support to the 

bicyclist until they reach a speed of 25 km/h. 

Separated bicycle facility A marked bicycle facility that is physically separated from 

the roadway by a curb, a green strip, parked vehicles or 

another type of barrier. 

Shared facility A facility that is shared by bicycle traffic and motor 

vehicles and/or pedestrians. 

Speed/acceleration profile A sequence of speed/acceleration values over time. 

Tactical behaviour Behaviour at this level includes conscious decisions made 

by a road user to achieve strategic goals while coping with 

the current situation. Examples of behaviour at this level 

include path planning and infrastructure selection 

(roadway, sidewalk or bicycle facility). 

Trajectory Observed movement through space, which is 

characterised by vectors of position coordinates. Velocity 

and acceleration coordinates can be derived from the 

position coordinates. 
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Appendix 1  

Full model parameters binomial and multinomial regression models 

N = 451  

Sidewalk use = 0, Roadway use = 1 

 

𝜷 
Odds 

Ratio 
𝒑 

Intercept 3.75 42.35 0.002 

Cars in approach -0.56 0.57 0.001 

Pedestrians in approach 0.15 1.16 0.126 

Manoeuvre (right turn) -0.88 0.41 0.211 

Trucks in approach -0.81 0.45 0.273 

Driving lanes (same direction) 0.26 1.30 0.713 

Manoeuvre (left turn) * Driving lanes (same direction) -1.00 0.37 0.000 

    

Classification threshold: 0.94 

AUC 0.83 

Accuracy 0.80 

Sensitivity 0.80 

Specificity 0.78 

Positive predictive value 0.99 

Negative predictive value 0.17 

Tab 1 Full binomial logistic regression model with evaluation for infrastructure selection without 
bicycle facility 
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N = 3727 

No bicycle facility use = 0, Bicycle facility use = 1 

 

𝜷 
Odds 

Ratio 
𝒑 

Intercept -38.82 0.00 0.000 

Manoeuvre (right turn) -2.11 0.12 0.000 

Bicyclist volume – approach (bicycle/h) 0.10 1.10 0.000 

Bicycle facility width (m) 27.02 5.43e11 0.000 

Bicycle facility type (separated) -6.99 0.00 0.000 

Driving lanes (same direction) 1.26 3.51 0.000 

Sidewalk width (m) -1.96 0.14 0.000 

Centre island  2.67 14.48 0.000 

Parking -1.74 0.17 0.001 

Right lane occupied -0.68 0.51 0.047 

Pedestrians in approach 0.87 2.38 0.059 

Bicyclists in approach -0.03 0.97 0.544 

Cars in approach -0.02 0.98 0.725 

Manoeuvre (left turn) 0.43 1.54 0.776 

Bicycle facility width (m) * Bicyclist volume – 

approach (bicycle/h) 
-0.06 0.94 0.000 

Bicycle facility type (separated) * Bicyclists in 

approach 
-0.27 0.77 0.001 

Bicycle facility type (separated) * Sidewalk width (m) 1.11 3.03 0.006 

Cars in approach * Pedestrians in approach 0.08 1.08 0.007 

Bicycle facility width (m) * Pedestrians in approach -0.58 0.56 0.016 

Right lane occupied * Parking 0.95 2.59 0.026 

Manoeuvre (left turn) * Bicycle facility width (m) -1.28 0.28 0.116 

Right lane occupied * Manoeuvre (right turn) -0.41 0.66 0.309 

    

Classification threshold: 0.95 

AUC 0.76 

Accuracy 0.73 

Sensitivity 0.73 

Specificity 0.78 

Positive predictive value 0.98 

Tab 2 Full binomial logistic regression model with evaluation for infrastructure selection with 
bicycle facility 
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N = 1935 

Stop = 0, Violate = 1 

 

𝜷 
Odds 

Ratio 
𝒑 

Intercept -1.61 0.20 0.000 

Manoeuvre (right turn) 4.87 129.80 0.000 

Time since signal change (s) -0.03 0.97 0.000 

Manoeuvre (left turn) 2.45 11.53 0.000 

Roadway width – opposite (m) -0.35 0.71 0.000 

Infrastructure selection (sidewalk) 0.76 2.13 0.025 

Bicycle facility 0.90 2.46 0.039 

Cars in approach -0.52 0.60 0.047 

Pedestrians in approach 0.16 1.17 0.056 

Bicyclists in approach -0.14 0.87 0.233 

Manoeuvre (left turn) * Roadway width – opposite (m) 0.32 1.38 0.004 

Bicycle facility * Pedestrians in approach -0.07 0.93 0.460 

    

Classification threshold: 0.36 

AUC 0.93 

Accuracy 0.91 

Sensitivity 0.85 

Specificity 0.92 

Positive predictive value 0.73 

Negative predictive value 0.96 

Tab 3 Full binomial logistic regression model with evaluation for response to red signal 
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N =4710 

With direction = 0, Against direction = 1 

  

𝜷 
Odds 

Ratio 
𝒑 

Intercept -5.24 0.01 0.000 

Manoeuvre (left turn) 2.19 8.92 0.000 

Left turn lane -2.59 0.08 0.000 

Bicycle facility type (separated) -4.25 0.01 0.011 

Sidewalk width (m) 0.55 1.73 0.043 

Cars in approach 0.24 1.27 0.161 

Roadway width – opposite (m) -0.10 0.90 0.364 

Manoeuvre (right turn) 0.79 2.20 0.505 

Parking -0.05 0.95 0.965 

Pedestrians in approach 0.01 1.01 0.971 

Parking * Bicycle facility type (separated) 4.84 126.34 0.008 

Roadway width – opposite (m) * Cars in approach -0.08 0.92 0.043 

Bicycle facility type (separated) * Cars in approach 0.27 1.31 0.214 

Parking * Pedestrians in approach 0.17 1.19 0.266 

Roadway width – opposite (m) * Pedestrians in 

approach  
0.05 1.05 0.291 

Parking * Manoeuvre (right turn) -1.17 0.31 0.401 

 

Classification threshold: 0.02 

AUC 0.84 

Accuracy 0.82 

Sensitivity 0.80 

Specificity 0.82 

Positive predictive value 0.06 

Negative predictive value 0.99 

Tab 4 Full binomial logistic regression model with evaluation for direction of travel 

  



Appendix 1   

 

N = 426 

Base category = Direct left turn 

 

𝜷 
Odds 

Ratio 
𝒑 

In
d

ir
e

c
t 

le
ft

 t
u

rn
 

Intercept -0.42 0.66 0.650 

Infrastructure selection (roadway) -4.46 0.01 0.000 

Bicycle facility type (separated) 1.59 4.89 0.004 

Parking 0.91 2.48 0.089 

Signal phase (green) 1.31 3.70 0.017 

Right lane occupied 0.85 2.34 0.056 

Bicyclists in approach 0.49 1.63 0.023 

Pedestrians in approach -0.43 0.65 0.144 

Trucks in approach -0.34 0.71 0.680 

Bicycle facility width (m) -0.41 0.67 0.361 

Sidewalk width (m) -0.08 0.93 0.625 

Time since last phase change (s) 0.03 1.03 0.057 

Pedestrian volume (peds/h) 0.00 1.00 0.173 

Parking * Bicycle facility type (separated) -0.84 0.43 0.201 

Signal phase (green) * Bicyclists in approach -0.68 0.51 0.010 

Signal phase (green) * Trucks in approach 0.52 1.69 0.659 

Pedestrians in approach * Sidewalk width (m) 0.12 1.13 0.205 

Tab 5 Full multinomial regression model with evaluation for left turn manoeuvre 
  



 Development of tactical and operational behaviour models for bicyclists 

 

N = 426 

Base category = Direct left turn 

   

𝜷 
Odds 

Ratio 
𝒑 

In
d

ir
e

c
t 
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ft

 t
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rn
 (

w
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) 

Intercept 0.07 1.07 0.935 

Infrastructure selection (roadway) -2.96 0.05 0.000 

Bicycle facility type (separated) 3.44 31.19 0.000 

Parking 2.71 15.07 0.000 

Signal phase (green) -2.31 0.10 0.000 

Right lane occupied 0.23 1.25 0.608 

Bicyclists in approach 0.33 1.40 0.108 

Pedestrians in approach -0.34 0.71 0.167 

Trucks in approach 0.31 1.36 0.672 

Bicycle facility width (m) 0.09 1.09 0.820 

Sidewalk width (m) -0.34 0.71 0.030 

Time since last phase change (s) -0.02 0.99 0.338 

Pedestrian volume (peds/h) 0.00 1.00 0.001 

Parking * Bicycle facility type (separated) -2.72 0.07 0.000 

Signal phase (green) * Bicyclists in approach -1.19 0.31 0.016 

Signal phase (green) * Trucks in approach -0.49 0.61 0.748 

Pedestrians in approach * Sidewalk width (m) 0.21 1.23 0.021 

  

Accuracy 0.76 

Mean Sensitivity 0.73 

Mean Specificity 0.87 

Mean Positive predictive value 0.75 

Mean Negative predictive value 0.87 

Tab 6 Full multinomial regression model with evaluation for left turn manoeuvre (cont.) 
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