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ABSTRACT 

Autonomous vehicle-based storage and retrieval systems 
are used in order to supply picking or production areas 
based on the goods-to-person principle. In one such 
system, several vehicles move within the same rail 
system. Hence, routing and deadlock handling is an 
important issue that has to be resolved carefully to run 
these systems efficiently and robustly. One possibility 
for coping with deadlocks is deadlock avoidance by 
routing with time windows. 
In this paper, we present a modelling approach that 
allows us to apply the time window routing method to 
shuttle systems. We model the system as a mixed graph 
and present a concept for moving vehicles safely and 
efficiently through the storage system. 

INTRODUCTION 

In addition to stacker-crane-based automated storage 
and retrieval systems (AS/RS), a new technology has 
been introduced to the market, based on autonomous 
vehicles. Autonomous vehicle-based storage and 
retrieval systems (AVS/RS) are used for storing unit 
loads in order to supply picking and production areas 
based on the goods-to-person principle (VDI- Richtlinie 
2692). 
AVS/RS, also known as shuttle systems, are 
characterized by horizontally operating vehicles. These 
vehicles travel within a rail system that is integrated into 
the storage rack. Lifts positioned along the periphery of 
the storage rack system are used to perform storage and 
retrieval transactions (Malmborg 2002). 
Over the course of recent developments, different 
system configurations have evolved, which can be 
classified by the movement space of the vehicles. In the 
most common configuration, the vehicles are restricted 
to a single storage aisle and tier. By contrast, in other 
configurations, the vehicles are able to change tier by 
using lifts and move between storage aisles by using 
cross aisles, which are positioned orthogonally to the 
storage racks. 
Figure 1 provides an overview of the four configurations 
that result from different movement spaces of the 

vehicles. The x-axis corresponds to the storage aisles, 
the y-axis to the lifts, and the z-axis to the cross aisles. 

Figure 1: Shuttle System Configurations 

Shuttle systems with aisle- and tier-captive vehicles 
provide the highest throughput, as the vertical and 
horizontal movements are completely decoupled from 
each other. Shuttles hand over the storage units to buffer 
locations and do not have to wait for the lifts. 
But as the number of degrees of freedom increases, the 
flexibility of the system improves. One important 
characteristic of shuttle systems with aisle-to-aisle and 
tier-to-tier vehicles is that every vehicle can reach every 
single position within the storage system. Therefore it is 
possible to run the whole system with a single shuttle. If 
needed, the number of shuttles can be gradually 
increased in order to achieve a higher throughput. As 
every storage unit can be delivered to every lift and 
therefore to every input/output location (I/O location), 
no merges are required within the pre-storage area. 
Furthermore, the storage units can be delivered in the 
desired sequence at every I/O location. 
However, such a configuration requires a more complex 
control strategy in order to run the system robustly and 
efficiently. The main issues that have to be addressed by 
the control are dispatching and routing: Where and when 
should a vehicle travel? And which route should be 
taken to reach a designated position? 
In our research we investigate these questions, focusing 
on shuttle systems with aisle-to-aisle and tier-to-tier 
configurations (see figure 2), and evaluating the 
developed strategies based on simulations. 
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Figure 2: Example of a System 

The routing must not only choose the routes themselves, 
but must also take deadlocks into account, since several 
shuttles are moving within the same rail system. The 
notion of deadlock describes a situation where one or 
more concurrent processes in a system are blocked 
forever because the requests for resources by the 
processes can never be satisfied (Kim et al. 1997). In the 
context of routing vehicles, the processes correspond to 
the execution of each route and the resources correspond 
to the layout segments along these routes. 
Three generic approaches can be distinguished in 
deadlock handling: static deadlock prevention; detection 
and recovery; and dynamic deadlock avoidance, which 
generally allows the highest resource utilization (Liu and 
Hung 2001). One possibility for avoiding deadlocks is 
the time window routing method, which was introduced 
by Kim and Tanchoco (Kim and Tanchoco 1991). The 
main idea of this approach consists in modelling the 
layout as a graph. For each node, the algorithm 
maintains a list of time windows reserved by routed 
vehicles and a list of free time windows in which 
vehicles can be routed. 
Since the algorithm is guaranteed to find the fastest 
deadlock-free path for the vehicles from their start node 
to their destination node at the specified start time, it is a 
promising approach. Adapting this algorithm for routing 
shuttles seems worth investigating and is the object of 
this paper. 

LITERATURE REVIEW 

In this section, we give a review of the research into 
control strategies for tier-to-tier and aisle-to-aisle 
configurations, followed by a presentation of some 
applications that implement the time window routing 
method in different logistical contexts. 
Most of the recent research concerning AVS/RS 
considers tier- and aisle-captive configurations and 
investigates the performance of the considered system in 
terms of parameters such as the number of storage bays 
and tiers or different velocity profiles for the vehicles 
and lifts. Only a few papers consider control strategies 
for tier-to-tier and aisle-to-aisle configurations. 

Ekren et al. (Ekren et al. 2010) investigated the effect of 
several design factors on the performance of the storage 
system. The authors varied the dwell point and the I/O 
location and used basic dispatching rules to assign 
storage or retrieval transactions to vehicles. 
Roy et al. (Roy et al. 2014) developed simple protocols 
to cope with deadlocks. If there is a deadlock within a 
storage aisle, the rearmost vehicle travels to the last 
available bay location where it waits until the other 
vehicle completes its task in that aisle. These blocking 
effects were quantified by an analytical model based on 
queuing network theory. Their strategy is not robust, as 
several vehicles can enter into a deadlock, and the 
applicability is limited to the specific layout that they 
considered. 
Penners (Penners 2015) examined a simplified, isolated 
tier of an aisle-to-aisle system. He adapted two 
deadlock-avoiding routing algorithms and compared the 
performance by conducting a simulation study. He came 
to the conclusion that the time window routing method, 
modified by ter Mors et al. (ter Mors et al. 2007), 
achieves a considerably higher throughput than modified 
Banker’s routing, which was described by Kalinovcic et 
al. (Kalinovcic et al. 2011). He modelled the tier as a 
graph, where the nodes represent lifts, lift buffers, 
storage aisles and crossing aisles. The use of the nodes 
is exclusive, which means that only one shuttle can 
occupy any given storage aisle at the same time, which 
does not take into account the real size of the aisles. 
The concept of time window routing, which showed 
promising results, was first introduced by Kim and 
Tanchoco (Kim and Tanchoco 1991) for the conflict-
free routing of automated guided vehicles in a 
bidirectional network whose nodes represent important 
locations such as load transfer stations, parking lots, and 
battery charging stations. These nodes are 
interconnected by lanes, which are either unidirectional 
or bidirectional. The size of the nodes corresponds to a 
check zone size, which protects vehicles from collisions. 
The use of the nodes is exclusive, but several vehicles 
can move along the same edge, as long as head-on and 
catching-up conflicts are prevented. Maza and Castagna 
(Maza and Castagna 2005) considered automated guided 
vehicles and implemented time window routing as 
proposed by Kim and Tanchoco. They developed a 
procedure to avoid deadlocks in the presence of 
interruptions while maintaining the planned routes. They 
showed that the absence of deadlocks is guaranteed if 
the node’s crossing order of the vehicles based on the 
conflict-free scheduled date is fulfilled, even if the 
arrival dates are not. 
Busacker (Busacker 2004) developed an time-window-
based routing algorithm for optimizing aircraft taxi 
traffic at airports. The airport is modelled as a graph 
whose edges correspond to taxiways, parking positions, 
or any other locations that aircraft might occupy. The 
edges are weighted by the travel time of the airplanes 
and connected by nodes that do not have any physical 
size. As the use of the edges is exclusive, long edges are 
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divided into several shorter edges in order to obtain a 
higher utilization of resources. The size of the airplanes 
is not modelled. 
Stenzel (Stenzel 2008) used the time window routing 
approach to route automated guided vehicles within 
container terminals. The moving area is modelled by a 
grid graph. Routes are computed in two steps. Firstly, a 
time window route is calculated, followed by a 
readjustment that takes into account the real size of the 
vehicles. 
Ter Mors (ter Mors 2010) presented a generic model for 
routing agents through an infrastructure graph. To 
calculate the route, a resource graph is generated whose 
nodes correspond to the nodes and edges of the 
infrastructure graph. The edges of the resource graph 
can be interpreted as a successor relation. His version 
achieves better worst-case performance than the original 
algorithm by Kim and Tanchoco and calculates a 
solution in real time. 
In summary, routing and deadlock handling for aisle-to-
aisle configurations have so far only been considered in 
a few papers, and only in idealized terms that do not 
allow the developed strategies to be applied efficiently 
to real systems. It has been shown that the time window 
routing method is a promising approach that has so far 
been successfully applied to different contexts, and 
diverse answers have been given to the question of how 
the infrastructure of the considered system can be 
modelled as a graph. We will apply the time window 
routing method to shuttle systems. We therefore adapt 
the generic version by ter Mors. His approach is 
described in the following section. 
 
TIME WINDOW ROUTING METHOD 

The time window routing method is used to obtain 
deadlock-free routes for vehicles moving through 
infrastructure modelled by a graph. For each node, the 
algorithm maintains a list of free time windows through 
which vehicles can be routed. Each free time window is 
defined by the end of the preceding reserved time 
window and the beginning of the subsequent reserved 
time window, apart from the final free time window at 
each node, which is endless (see figure 3). 
 

 
 

Figure 3: Free Time Windows 𝑓𝑓𝑖𝑖 on the Node 𝑟𝑟𝑖𝑖 
 
The algorithm inputs consist of the start node 𝑟𝑟1, the 
start time, and the destination node 𝑟𝑟𝑛𝑛. The output is a 
plan 𝜋𝜋. 
 

𝜋𝜋 = ({𝑟𝑟1, [𝑡𝑡1, 𝑡𝑡′1]}, … , {𝑟𝑟𝑛𝑛, [𝑡𝑡𝑛𝑛, 𝑡𝑡′𝑛𝑛]})  (1) 
 
The plan 𝜋𝜋 (1) contains all the nodes along the fastest 
path 𝑟𝑟1, … , 𝑟𝑟𝑛𝑛 and the corresponding time windows, 

which are defined by the entry times 𝑡𝑡𝑖𝑖 and the exit 
times 𝑡𝑡′𝑖𝑖  at the nodes 𝑟𝑟𝑖𝑖. 
The algorithm consists of two consecutive steps that are 
executed iteratively. These steps are: 
 
1. Investigate the reachability of all free time windows 

on all neighbouring nodes. 
2. Select the most promising time window for the next 

iteration. 
 
Starting with the initial time window on the start node, 
each iteration of the algorithm investigates the 
reachability of all free time windows on all neighbouring 
nodes (see figure 4). This procedure is called time 
window expansion. 
 

 
 

Figure 4: Time Window Expansion 
 
In order for a free time window to be reachable, some 
conditions must be met. A free time window on a 
neighbouring node is reachable from the current free 
time window if: 
 
- the free time window is larger than the minimal 

duration required for a vehicle to enter, traverse, 
then exit the resource again, 

- both free time windows overlap, 
- the current free time window can be completely 

exited before it ends, 
- the remaining duration after entering the free time 

window is large enough to traverse and exit the 
resource. 

 
If a free time window is reachable, it is added to a list 
called open list, which contains the time windows for 
further expansions. 
In the next iteration, the most promising time window is 
selected from the open list and removed. The most 
promising time window is the one that allows the final 
destination to be reached in the theoretical minimal 
time. This time 𝑦𝑦(𝑓𝑓) is the sum of earliest possible exit 
time 𝑐𝑐(𝑓𝑓) from the current node and the estimated time 
ℎ(𝑓𝑓) required to complete the routing to the destination: 
 

𝑦𝑦(𝑓𝑓) = 𝑐𝑐(𝑓𝑓) + ℎ(𝑓𝑓)    (2) 
 
The algorithm terminates as soon as a free time window 
belonging to the destination node is selected for the next 
iteration. Once this happens, the plan 𝜋𝜋 is constructed 
using back pointers and the corresponding time windows 
are reserved. 
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The example in figure 5 shows a graph and the fastest 
path through the free time windows from the start node 
𝑟𝑟1 to the destination node 𝑟𝑟5. The overlapping between 
free time windows is illustrated. Note that the fastest 
path might visit a node twice. 
 

 
 

Figure 5: Fastest Path from the Start Node 𝑟𝑟1 to the 
Destination Node 𝑟𝑟5 

 
If a free time window needs to be selected for the next 
iteration from the open list but the open list is empty, 
there is no route available. This can happen if the time 
window on the start node is not endless or if vehicles are 
allowed to dwell on nodes indefinitely. 
The search for the fastest path through the free time 
windows is an application of the A* algorithm, which is 
used to find a shortest path in a graph (Hart et al. 1968). 
Each free time window corresponds to a node in a so-
called free time window graph. The arcs between these 
nodes represent the reachability between pairs of free 
time windows. The algorithm runs in polynomial time in 
the size of this time window graph. Hence, assuming a 
feasible number of nodes in the resource graph and a 
feasible number of vehicles, the algorithm returns a 
solution in real time. 
As a closing remark, we should note that the sequence in 
which vehicles are routed matters. The algorithm finds 
an optimal solution for a single vehicle under the given 
reserved time windows but does not find the global 
optimum (e.g. the makespan). In the shuttle system, the 
most commonly encountered process is that of a single 
shuttle that occasionally arrives on a storage tier needing 
to be routed. Apart from initialization, it is unlikely that 
a larger number of shuttles will need be routed at the 
same time. Hence the presented approach can be used 
for our purposes. 
 
In the remainder of this paper, we model the tier of the 
shuttle system as a graph in order to apply the time 
window routing method, which allows high resource 
utilization to be achieved. We must therefore answer the 
question of what the nodes and edges should represent, 
and how their sizes should be determined. 
Below, we modify the time window routing method 
proposed by ter Mors (ter Mors 2010) in order to use it 
to route the shuttles on a storage tier. 

Finally, we present a control strategy that allows the 
calculated routes to be executed even if there are delays 
and uncertainties. 
 
MODELLING THE SYSTEM 

The components of a shuttle system are the storage rack, 
the rail system, the lifts, and the shuttles. In order to 
apply the time window routing method, the rail system 
must be modelled as a graph. We apply the concept of 
the resource graph, which means that the edges simply 
represent a successor relation and do not have any 
physical size. The nodes are divided into the following 
types (see figure 6): 
 
- Storage aisle nodes 

Storage aisle nodes are placed within a storage 
aisle. In order to access a storage location, shuttles 
must occupy these nodes. 

- Cross aisle nodes 
Cross aisles are positioned orthogonally to the 
storage racks. The nodes are placed between the 
crossing nodes and are used to travel between 
storage aisles. 

- Crossing nodes 
Crossing nodes interconnect at least three aisle 
nodes and allow a shuttle to perform a 90 degree 
turn in order to move from a cross aisle into a 
storage aisle or vice versa. 

- Buffer nodes 
Buffer nodes are placed at the edges of storage 
aisles or cross aisles and are used for buffering idle 
shuttles. This prevents idle shuttles from  blocking 
other shuttles that are performing a storage or 
retrieval transaction. 

- Lift buffer nodes 
Lift buffer nodes are placed on both sides in front of 
the lifts and are used as input and output buffers on 
every storage tier. 

- Lift nodes 
Lift nodes represent the lifts. They can be entered 
only if the lift is empty and is currently located on 
that tier. 

 

 
 

Figure 6: Different Types of Nodes on a Storage Tier 
 

Except for the lift buffer nodes, all nodes can be 
traversed in both directions. We therefore use a mixed 
graph in which only the edges incident to the lift buffer 
nodes are directed, since lifts are accessed from one side 
and exited from the other side, as this allows a higher 
throughput to be achieved. 
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Every node has an attribute that represents the axis 
along which the vehicle is travelling at that node. For 
instance, aisle nodes allow only movement along the x-
axis and cross aisle nodes allow only movement along 
the z-axis. Crossing nodes allow both orientations. 
Whenever a time window is expanded to a time window 
on a crossing node, the orientation of the vehicle 
entering the crossing node is stored. If the subsequent 
node has a different orientation, a 90-degree turn on the 
crossing node is necessary. 
In order to model the rail system, we enforce the 
following conditions: 
 
1. The use of each node is exclusive. 
2. The size of any given node must not be smaller than 

the size of the shuttle. 
 
The first condition ensures that no sub-routing is 
required on single nodes, as only one shuttle at a time is 
allowed to move on the node. The second condition 
avoids having to take into account more than two nodes 
for the reachability check, which would considerably 
increase the complexity of the algorithm. To achieve 
high resource utilization, the nodes should be as small as 
possible. 
The size of the buffer nodes, lift nodes and cross nodes 
corresponds to the layout data, as we assume only one 
shuttle can occupy these nodes. The length 𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 of both 
the storage aisles and cross aisles between two crossing 
intersections is also given, as well as the length of the 
shuttles 𝐿𝐿𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒, which could be replaced by the 
minimum node length. The number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 of nodes 
within a storage or cross aisle and their lengths 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
are calculated as follows: 
 

𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(
𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐿𝐿𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

) 

 

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐿𝐿𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 +
𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 𝐿𝐿𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 

 
If a shuttle needs to be buffered or needs to use a lift, it 
will be routed to the corresponding node. By contrast, 
the aisle nodes do not represent destinations in the 
system themselves. 
In order to fulfil a storage or retrieval request, a shuttle 
must be routed to a storage location. Since the size of 
the shuttles exceeds the size of the storage units and 
therefore the size of the storage locations, the size of the 
storage locations is smaller than the length of the aisle 
nodes. 
In the example shown in figure 7, the storage aisle 
consists of four nodes. In order to access a storage 
location, for some storage locations it is sufficient to 
reserve a single node (e.g. storage location no. 2), 
whereas for some storage locations two nodes must be 
reserved (e.g. storage location no. 9). 
 

 
 

Figure 7: Storage Aisle Nodes 
 
The nodes that have to be reserved in order to perform a 
storage or retrieval transaction can be easily identified 
by considering the shuttle’s exact position when 
accessing the location. 
 
MODIFICATIONS TO THE ALGORITHM 

In order to use the described time window routing 
method, some modifications are necessary, which we 
will describe below. 
 
1. We select the most promising time window for the 

next iteration in a slightly different way, as we 
cannot assign an earliest possible exit time to a time 
window. 

2. The algorithm does not necessarily stop as soon as 
the destination node is reached for the first time, 
since the time window must guarantee a minimal 
remaining size after entrance. 

3. Instead of a single destination node, we use a set of 
destination nodes, as it might be necessary to 
reserve several nodes in order to access a storage 
location. 

 
Recall that the most promising time window is identified 
by the value 
 

𝑦𝑦(𝑓𝑓) = 𝑐𝑐(𝑓𝑓) + ℎ(𝑓𝑓)    (2) 
 
We cannot associate an earliest possible exit time with 
each time window, because this time also depends on 
the orientation of the neighbouring node. If a 90-degree 
turn is necessary, the exit time is postponed. Hence, for 
the expression  𝑐𝑐(𝑓𝑓), we use the arrival time at the node, 
which describes the moment when the shuttle is located 
at the centre of the node. Furthermore, to estimate the 
remaining travel time ℎ(𝑓𝑓), we use the fastest possible 
path from the current node (and orientation) to the 
destination node without any reservations within the 
system. 
The described version of time window routing 
terminates as soon as a time window belonging to the 
destination node is selected. For our purposes, in some 
cases the time window must be large enough to 
guarantee a minimal remaining length. Shuttles travel 
across each storage tier in order to perform storage or 
retrieval transactions. Each of these transactions requires 
a certain amount of time. Therefore, if a storage or 
retrieval transaction needs to be fulfilled at a destination 
node, the remaining size of the time window must allow 
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the performance of the transaction and full exit from the 
node. 
Instead of a single destination node, we use a set of 
destination nodes called the destination set. This set 
usually contains a single node, but when routing towards 
the storage locations, it contains all the nodes that must 
be reserved in order to perform the storage or retrieval 
transaction. Hence, the set contains either one or two 
nodes. As soon as a time window belonging to the 
destination set is selected for the next iteration, the 
algorithm checks whether there is another node in the 
set. If there is, there must be a free time window on that 
node that is reachable from the current time window. 
The overlapping of these two time windows must not 
only allow the movement of the vehicle from one node 
to the other, but also must be long enough to allow the 
storage or retrieval transaction to be performed. 
If no time window is reachable on the other node, or the 
remaining size of the time window does not allow the 
storage or retrieval transaction to be performed, the 
search through the free time windows is continued until 
a later free time window is found that guarantees these 
conditions. 
 
IMPLICATIONS FOR THE CONTROL 

The result of the routing process is a list with the nodes 
that have to be visited in order to reach all designated 
destinations on a tier and the corresponding time 
windows during which shuttle will move to and occupy 
these nodes. As the route is calculated using idealistic 
times and neither accelerations and decelerations are 
fully taken into account, it is not sufficient to move the 
shuttles according to their reserved time windows. 
Furthermore shuttles are routed to the lifts. But when the 
routing is calculated, it is not obvious when the shuttle 
will enter the lift and exit the previous node, as the 
control of the lifts is decoupled from the routing. 
Consequently, delays will be passed from one node to 
another on each storage tier. 
Therefore it is not possible to navigate the shuttles by 
the time windows alone; only according to the sequence 
of reserved time windows on the nodes. As Maza and 
Castagna (Maza and Castagna 2005) showed, the 
absence of deadlocks is guaranteed as long as the nodes’ 
crossing order is preserved. 
Hence we introduce the concept of claiming nodes. A 
shuttle is allowed to enter a node only if it has 
previously claimed that node. A node can be claimed by 
a shuttle if and only if the earliest reserved time window 
on that node was reserved by the shuttle. Therefore a 
node cannot be claimed by several shuttles 
simultaneously. 
In order to clarify this process, we consider the 
following simplified example, shown in figure 8, with 
three shuttles that must be routed. 
 

 
 

Figure 8: Routing on a Storage Tier 
 

Firstly, shuttle A routes and reserves its time windows, 
followed by shuttle B and shuttle C. Note that shuttle B 
has to wait a certain period of time on node 𝑟𝑟14 before it 
can enter node 𝑟𝑟15, and shuttle C also has to wait on 
node 𝑟𝑟6. 
 

 
 

Figure 9: Reserved Time Windows by the Shuttles 
 

For each node, we know which shuttle will occupy the 
node during each time period. We therefore also know 
the sequence of shuttles that will cross this node. If we 
consider the reservation list of crossing node 5, we get 
the following information. 
 

Table 1: Reserved Time Windows on Node 5 
 

Shuttle Entry Time Exit Time 
A  00:00:08 00:00:12 

C  00:00:12 00:00:15 

B  00:00:17 00:00:21 
 
At this node, the sequence of shuttles is A, C, B. This 
sequence has to be established so that deadlocks can be 
avoided even if the shuttles are late for some reason. 
Whenever a shuttle starts moving, we identify the nodes 
that could be traversed by the shuttle. These nodes are 
then claimed by the shuttle. In the example, the 
following nodes are claimed. 
 

Table 2: Nodes Claimed by the Shuttles 
 

Shuttle Claimed Nodes 
A  𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4, 𝑟𝑟5, 𝑟𝑟10, 𝑟𝑟15, 𝑟𝑟16, 𝑟𝑟17, 𝑟𝑟18 

B  𝑟𝑟11, 𝑟𝑟12, 𝑟𝑟13, 𝑟𝑟14 

C  𝑟𝑟9, 𝑟𝑟8, 𝑟𝑟7, 𝑟𝑟6 
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Shuttle A was able to claim its whole route, whereas 
shuttle B and C could claim only part of their routes. If a 
shuttle was able to claim at least one other node, it starts 
moving and stops as soon as it finishes a claimed 
segment. It will then start claiming the next segment of 
nodes again. 
If a shuttle cannot claim a single node, it will register as 
waiting shuttle at this node. Whenever a shuttle exits a 
node completely, not only is the reserved time window 
deleted, but the algorithm also checks whether any other 
shuttle is registered as waiting for that node. If another 
shuttled is registered on the node, it is triggered and will 
claim its next segment. 
The concept of claiming nodes is necessary. Examining 
how far a shuttle is allowed to travel is insufficient, 
since another shuttle can reserve the earliest time 
window at any moment. The shuttle that had previously 
reserved the earliest time window would then no longer 
be allowed to enter that node. Therefore, whenever the 
earliest time window is reserved on a node, the 
algorithm checks whether that node has already been 
claimed by another shuttle. If it has, the node is released 
by that shuttle, as well as all subsequent nodes along the 
route that have been already claimed. 
 
SUMMARY 

In this paper we described shuttle systems as a 
technology for storing small unit loads. We focused on 
systems with a tier-to-tier and aisle-to-aisle 
configuration, which provide high flexibility. In these 
systems, every vehicle can reach every storage location. 
From the perspective of control, routing becomes an 
important issue due the possibility of deadlocks among 
the shuttles, which must be dealt with. 
As a concept for routing and handling deadlocks, we 
referred to the time window routing method that has 
already been successfully applied in different logistical 
contexts. We adapted the time window routing method 
and modelled the tier of the shuttle system as a graph in 
order to apply the method. Finally, we described a 
concept that enables the vehicles to execute the 
calculated routes. 
The time window routing method was implemented in a 
generic simulation model kit for shuttle systems, as well 
as the concept of claiming nodes. In future work, these 
concepts will be evaluated by simulation experiments. 
The concept of claiming nodes could be expanded. It 
might be possible to allow nodes to be claimed by 
shuttles that did not reserve the earliest time window on 
these nodes if this improves the overall efficiency and 
the absence of deadlocks can be guaranteed. 
Furthermore, fully integrating the lifts into the time 
window routing scheme might be interesting. 
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