
NO MORE DEADLOCKS – APPLYING THE TIME WINDOW ROUTING
METHOD TO SHUTTLE SYSTEMS

Thomas Lienert
Johannes Fottner

Institute for Materials Handling, Material Flow, Logistics
Technical University of Munich

Boltzmannstraße 15, 85748 Garching, Germany
Email: lienert@fml.mw.tum.de, kontakt@fml.mw.tum.de

KEYWORDS
Shuttle systems, Routing, Deadlock handling

ABSTRACT

Autonomous vehicle-based storage and retrieval systems
are used in order to supply picking or production areas
based on the goods-to-person principle. In one such
system, several vehicles move within the same rail
system. Hence, routing and deadlock handling is an
important issue that has to be resolved carefully to run
these systems efficiently and robustly. One possibility
for coping with deadlocks is deadlock avoidance by
routing with time windows.
In this paper, we present a modelling approach that
allows us to apply the time window routing method to
shuttle systems. We model the system as a mixed graph
and present a concept for moving vehicles safely and
efficiently through the storage system.

INTRODUCTION

In addition to stacker-crane-based automated storage
and retrieval systems (AS/RS), a new technology has
been introduced to the market, based on autonomous
vehicles. Autonomous vehicle-based storage and
retrieval systems (AVS/RS) are used for storing unit
loads in order to supply picking and production areas
based on the goods-to-person principle (VDI- Richtlinie
2692).
AVS/RS, also known as shuttle systems, are
characterized by horizontally operating vehicles. These
vehicles travel within a rail system that is integrated into
the storage rack. Lifts positioned along the periphery of
the storage rack system are used to perform storage and
retrieval transactions (Malmborg 2002).
Over the course of recent developments, different
system configurations have evolved, which can be
classified by the movement space of the vehicles. In the
most common configuration, the vehicles are restricted
to a single storage aisle and tier. By contrast, in other
configurations, the vehicles are able to change tier by
using lifts and move between storage aisles by using
cross aisles, which are positioned orthogonally to the
storage racks.
Figure 1 provides an overview of the four configurations
that result from different movement spaces of the

vehicles. The x-axis corresponds to the storage aisles,
the y-axis to the lifts, and the z-axis to the cross aisles.

Figure 1: Shuttle System Configurations

Shuttle systems with aisle- and tier-captive vehicles
provide the highest throughput, as the vertical and
horizontal movements are completely decoupled from
each other. Shuttles hand over the storage units to buffer
locations and do not have to wait for the lifts.
But as the number of degrees of freedom increases, the
flexibility of the system improves. One important
characteristic of shuttle systems with aisle-to-aisle and
tier-to-tier vehicles is that every vehicle can reach every
single position within the storage system. Therefore it is
possible to run the whole system with a single shuttle. If
needed, the number of shuttles can be gradually
increased in order to achieve a higher throughput. As
every storage unit can be delivered to every lift and
therefore to every input/output location (I/O location),
no merges are required within the pre-storage area.
Furthermore, the storage units can be delivered in the
desired sequence at every I/O location.
However, such a configuration requires a more complex
control strategy in order to run the system robustly and
efficiently. The main issues that have to be addressed by
the control are dispatching and routing: Where and when
should a vehicle travel? And which route should be
taken to reach a designated position?
In our research we investigate these questions, focusing
on shuttle systems with aisle-to-aisle and tier-to-tier
configurations (see figure 2), and evaluating the
developed strategies based on simulations.

Characteristics

Change of
an aisle not possible possible

Change of
a tier not possible possible

Degree of
freedom

Movement
axes x / y x / z x / y / zx

Confi-
guration

aisle-to-aisle
tier-captive

aisle-captive
tier-to-tier

aisle-to-aisle
tier-to-tier

aisle-captive
tier-captive

Proceedings 31st European Conference on Modelling and
Simulation ©ECMS Zita Zoltay Paprika, Péter Horák, Kata Váradi,
Péter Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics (Editors)
ISBN: 978-0-9932440-4-9/ ISBN: 978-0-9932440-5-6 (CD)

mailto:lienert@fml.mw.tum.de

Figure 2: Example of a System

The routing must not only choose the routes themselves,
but must also take deadlocks into account, since several
shuttles are moving within the same rail system. The
notion of deadlock describes a situation where one or
more concurrent processes in a system are blocked
forever because the requests for resources by the
processes can never be satisfied (Kim et al. 1997). In the
context of routing vehicles, the processes correspond to
the execution of each route and the resources correspond
to the layout segments along these routes.
Three generic approaches can be distinguished in
deadlock handling: static deadlock prevention; detection
and recovery; and dynamic deadlock avoidance, which
generally allows the highest resource utilization (Liu and
Hung 2001). One possibility for avoiding deadlocks is
the time window routing method, which was introduced
by Kim and Tanchoco (Kim and Tanchoco 1991). The
main idea of this approach consists in modelling the
layout as a graph. For each node, the algorithm
maintains a list of time windows reserved by routed
vehicles and a list of free time windows in which
vehicles can be routed.
Since the algorithm is guaranteed to find the fastest
deadlock-free path for the vehicles from their start node
to their destination node at the specified start time, it is a
promising approach. Adapting this algorithm for routing
shuttles seems worth investigating and is the object of
this paper.

LITERATURE REVIEW

In this section, we give a review of the research into
control strategies for tier-to-tier and aisle-to-aisle
configurations, followed by a presentation of some
applications that implement the time window routing
method in different logistical contexts.
Most of the recent research concerning AVS/RS
considers tier- and aisle-captive configurations and
investigates the performance of the considered system in
terms of parameters such as the number of storage bays
and tiers or different velocity profiles for the vehicles
and lifts. Only a few papers consider control strategies
for tier-to-tier and aisle-to-aisle configurations.

Ekren et al. (Ekren et al. 2010) investigated the effect of
several design factors on the performance of the storage
system. The authors varied the dwell point and the I/O
location and used basic dispatching rules to assign
storage or retrieval transactions to vehicles.
Roy et al. (Roy et al. 2014) developed simple protocols
to cope with deadlocks. If there is a deadlock within a
storage aisle, the rearmost vehicle travels to the last
available bay location where it waits until the other
vehicle completes its task in that aisle. These blocking
effects were quantified by an analytical model based on
queuing network theory. Their strategy is not robust, as
several vehicles can enter into a deadlock, and the
applicability is limited to the specific layout that they
considered.
Penners (Penners 2015) examined a simplified, isolated
tier of an aisle-to-aisle system. He adapted two
deadlock-avoiding routing algorithms and compared the
performance by conducting a simulation study. He came
to the conclusion that the time window routing method,
modified by ter Mors et al. (ter Mors et al. 2007),
achieves a considerably higher throughput than modified
Banker’s routing, which was described by Kalinovcic et
al. (Kalinovcic et al. 2011). He modelled the tier as a
graph, where the nodes represent lifts, lift buffers,
storage aisles and crossing aisles. The use of the nodes
is exclusive, which means that only one shuttle can
occupy any given storage aisle at the same time, which
does not take into account the real size of the aisles.
The concept of time window routing, which showed
promising results, was first introduced by Kim and
Tanchoco (Kim and Tanchoco 1991) for the conflict-
free routing of automated guided vehicles in a
bidirectional network whose nodes represent important
locations such as load transfer stations, parking lots, and
battery charging stations. These nodes are
interconnected by lanes, which are either unidirectional
or bidirectional. The size of the nodes corresponds to a
check zone size, which protects vehicles from collisions.
The use of the nodes is exclusive, but several vehicles
can move along the same edge, as long as head-on and
catching-up conflicts are prevented. Maza and Castagna
(Maza and Castagna 2005) considered automated guided
vehicles and implemented time window routing as
proposed by Kim and Tanchoco. They developed a
procedure to avoid deadlocks in the presence of
interruptions while maintaining the planned routes. They
showed that the absence of deadlocks is guaranteed if
the node’s crossing order of the vehicles based on the
conflict-free scheduled date is fulfilled, even if the
arrival dates are not.
Busacker (Busacker 2004) developed an time-window-
based routing algorithm for optimizing aircraft taxi
traffic at airports. The airport is modelled as a graph
whose edges correspond to taxiways, parking positions,
or any other locations that aircraft might occupy. The
edges are weighted by the travel time of the airplanes
and connected by nodes that do not have any physical
size. As the use of the edges is exclusive, long edges are

x-axis

y-axis

z-axis

I/O locationscross aislestorage aisle

lift

shuttle

divided into several shorter edges in order to obtain a
higher utilization of resources. The size of the airplanes
is not modelled.
Stenzel (Stenzel 2008) used the time window routing
approach to route automated guided vehicles within
container terminals. The moving area is modelled by a
grid graph. Routes are computed in two steps. Firstly, a
time window route is calculated, followed by a
readjustment that takes into account the real size of the
vehicles.
Ter Mors (ter Mors 2010) presented a generic model for
routing agents through an infrastructure graph. To
calculate the route, a resource graph is generated whose
nodes correspond to the nodes and edges of the
infrastructure graph. The edges of the resource graph
can be interpreted as a successor relation. His version
achieves better worst-case performance than the original
algorithm by Kim and Tanchoco and calculates a
solution in real time.
In summary, routing and deadlock handling for aisle-to-
aisle configurations have so far only been considered in
a few papers, and only in idealized terms that do not
allow the developed strategies to be applied efficiently
to real systems. It has been shown that the time window
routing method is a promising approach that has so far
been successfully applied to different contexts, and
diverse answers have been given to the question of how
the infrastructure of the considered system can be
modelled as a graph. We will apply the time window
routing method to shuttle systems. We therefore adapt
the generic version by ter Mors. His approach is
described in the following section.

TIME WINDOW ROUTING METHOD

The time window routing method is used to obtain
deadlock-free routes for vehicles moving through
infrastructure modelled by a graph. For each node, the
algorithm maintains a list of free time windows through
which vehicles can be routed. Each free time window is
defined by the end of the preceding reserved time
window and the beginning of the subsequent reserved
time window, apart from the final free time window at
each node, which is endless (see figure 3).

Figure 3: Free Time Windows 𝑓𝑓𝑖𝑖 on the Node 𝑟𝑟𝑖𝑖

The algorithm inputs consist of the start node 𝑟𝑟1, the
start time, and the destination node 𝑟𝑟𝑛𝑛. The output is a
plan 𝜋𝜋.

𝜋𝜋 = ({𝑟𝑟1, [𝑡𝑡1, 𝑡𝑡′1]}, … , {𝑟𝑟𝑛𝑛, [𝑡𝑡𝑛𝑛, 𝑡𝑡′𝑛𝑛]}) (1)

The plan 𝜋𝜋 (1) contains all the nodes along the fastest
path 𝑟𝑟1, … , 𝑟𝑟𝑛𝑛 and the corresponding time windows,

which are defined by the entry times 𝑡𝑡𝑖𝑖 and the exit
times 𝑡𝑡′𝑖𝑖 at the nodes 𝑟𝑟𝑖𝑖.
The algorithm consists of two consecutive steps that are
executed iteratively. These steps are:

1. Investigate the reachability of all free time windows

on all neighbouring nodes.
2. Select the most promising time window for the next

iteration.

Starting with the initial time window on the start node,
each iteration of the algorithm investigates the
reachability of all free time windows on all neighbouring
nodes (see figure 4). This procedure is called time
window expansion.

Figure 4: Time Window Expansion

In order for a free time window to be reachable, some
conditions must be met. A free time window on a
neighbouring node is reachable from the current free
time window if:

- the free time window is larger than the minimal

duration required for a vehicle to enter, traverse,
then exit the resource again,

- both free time windows overlap,
- the current free time window can be completely

exited before it ends,
- the remaining duration after entering the free time

window is large enough to traverse and exit the
resource.

If a free time window is reachable, it is added to a list
called open list, which contains the time windows for
further expansions.
In the next iteration, the most promising time window is
selected from the open list and removed. The most
promising time window is the one that allows the final
destination to be reached in the theoretical minimal
time. This time 𝑦𝑦(𝑓𝑓) is the sum of earliest possible exit
time 𝑐𝑐(𝑓𝑓) from the current node and the estimated time
ℎ(𝑓𝑓) required to complete the routing to the destination:

𝑦𝑦(𝑓𝑓) = 𝑐𝑐(𝑓𝑓) + ℎ(𝑓𝑓) (2)

The algorithm terminates as soon as a free time window
belonging to the destination node is selected for the next
iteration. Once this happens, the plan 𝜋𝜋 is constructed
using back pointers and the corresponding time windows
are reserved.

𝑟𝑟𝑖𝑖
𝑡𝑡

𝑓𝑓𝑖𝑖,1 𝑓𝑓𝑖𝑖,2

reserved time windows

 𝑟𝑟𝑗
? ?

??
 𝑟𝑟𝑘

 𝑟𝑟𝑖𝑖 𝑓𝑓𝑖𝑖,1

𝑡𝑡

The example in figure 5 shows a graph and the fastest
path through the free time windows from the start node
𝑟𝑟1 to the destination node 𝑟𝑟5. The overlapping between
free time windows is illustrated. Note that the fastest
path might visit a node twice.

Figure 5: Fastest Path from the Start Node 𝑟𝑟1 to the
Destination Node 𝑟𝑟5

If a free time window needs to be selected for the next
iteration from the open list but the open list is empty,
there is no route available. This can happen if the time
window on the start node is not endless or if vehicles are
allowed to dwell on nodes indefinitely.
The search for the fastest path through the free time
windows is an application of the A* algorithm, which is
used to find a shortest path in a graph (Hart et al. 1968).
Each free time window corresponds to a node in a so-
called free time window graph. The arcs between these
nodes represent the reachability between pairs of free
time windows. The algorithm runs in polynomial time in
the size of this time window graph. Hence, assuming a
feasible number of nodes in the resource graph and a
feasible number of vehicles, the algorithm returns a
solution in real time.
As a closing remark, we should note that the sequence in
which vehicles are routed matters. The algorithm finds
an optimal solution for a single vehicle under the given
reserved time windows but does not find the global
optimum (e.g. the makespan). In the shuttle system, the
most commonly encountered process is that of a single
shuttle that occasionally arrives on a storage tier needing
to be routed. Apart from initialization, it is unlikely that
a larger number of shuttles will need be routed at the
same time. Hence the presented approach can be used
for our purposes.

In the remainder of this paper, we model the tier of the
shuttle system as a graph in order to apply the time
window routing method, which allows high resource
utilization to be achieved. We must therefore answer the
question of what the nodes and edges should represent,
and how their sizes should be determined.
Below, we modify the time window routing method
proposed by ter Mors (ter Mors 2010) in order to use it
to route the shuttles on a storage tier.

Finally, we present a control strategy that allows the
calculated routes to be executed even if there are delays
and uncertainties.

MODELLING THE SYSTEM

The components of a shuttle system are the storage rack,
the rail system, the lifts, and the shuttles. In order to
apply the time window routing method, the rail system
must be modelled as a graph. We apply the concept of
the resource graph, which means that the edges simply
represent a successor relation and do not have any
physical size. The nodes are divided into the following
types (see figure 6):

- Storage aisle nodes

Storage aisle nodes are placed within a storage
aisle. In order to access a storage location, shuttles
must occupy these nodes.

- Cross aisle nodes
Cross aisles are positioned orthogonally to the
storage racks. The nodes are placed between the
crossing nodes and are used to travel between
storage aisles.

- Crossing nodes
Crossing nodes interconnect at least three aisle
nodes and allow a shuttle to perform a 90 degree
turn in order to move from a cross aisle into a
storage aisle or vice versa.

- Buffer nodes
Buffer nodes are placed at the edges of storage
aisles or cross aisles and are used for buffering idle
shuttles. This prevents idle shuttles from blocking
other shuttles that are performing a storage or
retrieval transaction.

- Lift buffer nodes
Lift buffer nodes are placed on both sides in front of
the lifts and are used as input and output buffers on
every storage tier.

- Lift nodes
Lift nodes represent the lifts. They can be entered
only if the lift is empty and is currently located on
that tier.

Figure 6: Different Types of Nodes on a Storage Tier

Except for the lift buffer nodes, all nodes can be
traversed in both directions. We therefore use a mixed
graph in which only the edges incident to the lift buffer
nodes are directed, since lifts are accessed from one side
and exited from the other side, as this allows a higher
throughput to be achieved.

𝑟𝑟1

𝑟𝑟5
𝑡𝑡

𝑟𝑟4

𝑟𝑟2

start

destination

 𝑟𝑟3

buffer nodecrossing node
lift buffer nodeslift node

cross aisle nodestorage aisle nodes

Every node has an attribute that represents the axis
along which the vehicle is travelling at that node. For
instance, aisle nodes allow only movement along the x-
axis and cross aisle nodes allow only movement along
the z-axis. Crossing nodes allow both orientations.
Whenever a time window is expanded to a time window
on a crossing node, the orientation of the vehicle
entering the crossing node is stored. If the subsequent
node has a different orientation, a 90-degree turn on the
crossing node is necessary.
In order to model the rail system, we enforce the
following conditions:

1. The use of each node is exclusive.
2. The size of any given node must not be smaller than

the size of the shuttle.

The first condition ensures that no sub-routing is
required on single nodes, as only one shuttle at a time is
allowed to move on the node. The second condition
avoids having to take into account more than two nodes
for the reachability check, which would considerably
increase the complexity of the algorithm. To achieve
high resource utilization, the nodes should be as small as
possible.
The size of the buffer nodes, lift nodes and cross nodes
corresponds to the layout data, as we assume only one
shuttle can occupy these nodes. The length 𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 of both
the storage aisles and cross aisles between two crossing
intersections is also given, as well as the length of the
shuttles 𝐿𝐿𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒, which could be replaced by the
minimum node length. The number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 of nodes
within a storage or cross aisle and their lengths 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
are calculated as follows:

𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(
𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐿𝐿𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

)

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐿𝐿𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 +
𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 𝐿𝐿𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

If a shuttle needs to be buffered or needs to use a lift, it
will be routed to the corresponding node. By contrast,
the aisle nodes do not represent destinations in the
system themselves.
In order to fulfil a storage or retrieval request, a shuttle
must be routed to a storage location. Since the size of
the shuttles exceeds the size of the storage units and
therefore the size of the storage locations, the size of the
storage locations is smaller than the length of the aisle
nodes.
In the example shown in figure 7, the storage aisle
consists of four nodes. In order to access a storage
location, for some storage locations it is sufficient to
reserve a single node (e.g. storage location no. 2),
whereas for some storage locations two nodes must be
reserved (e.g. storage location no. 9).

Figure 7: Storage Aisle Nodes

The nodes that have to be reserved in order to perform a
storage or retrieval transaction can be easily identified
by considering the shuttle’s exact position when
accessing the location.

MODIFICATIONS TO THE ALGORITHM

In order to use the described time window routing
method, some modifications are necessary, which we
will describe below.

1. We select the most promising time window for the

next iteration in a slightly different way, as we
cannot assign an earliest possible exit time to a time
window.

2. The algorithm does not necessarily stop as soon as
the destination node is reached for the first time,
since the time window must guarantee a minimal
remaining size after entrance.

3. Instead of a single destination node, we use a set of
destination nodes, as it might be necessary to
reserve several nodes in order to access a storage
location.

Recall that the most promising time window is identified
by the value

𝑦𝑦(𝑓𝑓) = 𝑐𝑐(𝑓𝑓) + ℎ(𝑓𝑓) (2)

We cannot associate an earliest possible exit time with
each time window, because this time also depends on
the orientation of the neighbouring node. If a 90-degree
turn is necessary, the exit time is postponed. Hence, for
the expression 𝑐𝑐(𝑓𝑓), we use the arrival time at the node,
which describes the moment when the shuttle is located
at the centre of the node. Furthermore, to estimate the
remaining travel time ℎ(𝑓𝑓), we use the fastest possible
path from the current node (and orientation) to the
destination node without any reservations within the
system.
The described version of time window routing
terminates as soon as a time window belonging to the
destination node is selected. For our purposes, in some
cases the time window must be large enough to
guarantee a minimal remaining length. Shuttles travel
across each storage tier in order to perform storage or
retrieval transactions. Each of these transactions requires
a certain amount of time. Therefore, if a storage or
retrieval transaction needs to be fulfilled at a destination
node, the remaining size of the time window must allow

1 42 3 5 6 7 8 9 10 11
Storage locations

Storage aisle nodes

𝑟𝑟1 𝑟𝑟2 𝑟𝑟3 𝑟𝑟4

Position of a
shuttle for
accessing
storage
location no. 2

the performance of the transaction and full exit from the
node.
Instead of a single destination node, we use a set of
destination nodes called the destination set. This set
usually contains a single node, but when routing towards
the storage locations, it contains all the nodes that must
be reserved in order to perform the storage or retrieval
transaction. Hence, the set contains either one or two
nodes. As soon as a time window belonging to the
destination set is selected for the next iteration, the
algorithm checks whether there is another node in the
set. If there is, there must be a free time window on that
node that is reachable from the current time window.
The overlapping of these two time windows must not
only allow the movement of the vehicle from one node
to the other, but also must be long enough to allow the
storage or retrieval transaction to be performed.
If no time window is reachable on the other node, or the
remaining size of the time window does not allow the
storage or retrieval transaction to be performed, the
search through the free time windows is continued until
a later free time window is found that guarantees these
conditions.

IMPLICATIONS FOR THE CONTROL

The result of the routing process is a list with the nodes
that have to be visited in order to reach all designated
destinations on a tier and the corresponding time
windows during which shuttle will move to and occupy
these nodes. As the route is calculated using idealistic
times and neither accelerations and decelerations are
fully taken into account, it is not sufficient to move the
shuttles according to their reserved time windows.
Furthermore shuttles are routed to the lifts. But when the
routing is calculated, it is not obvious when the shuttle
will enter the lift and exit the previous node, as the
control of the lifts is decoupled from the routing.
Consequently, delays will be passed from one node to
another on each storage tier.
Therefore it is not possible to navigate the shuttles by
the time windows alone; only according to the sequence
of reserved time windows on the nodes. As Maza and
Castagna (Maza and Castagna 2005) showed, the
absence of deadlocks is guaranteed as long as the nodes’
crossing order is preserved.
Hence we introduce the concept of claiming nodes. A
shuttle is allowed to enter a node only if it has
previously claimed that node. A node can be claimed by
a shuttle if and only if the earliest reserved time window
on that node was reserved by the shuttle. Therefore a
node cannot be claimed by several shuttles
simultaneously.
In order to clarify this process, we consider the
following simplified example, shown in figure 8, with
three shuttles that must be routed.

Figure 8: Routing on a Storage Tier

Firstly, shuttle A routes and reserves its time windows,
followed by shuttle B and shuttle C. Note that shuttle B
has to wait a certain period of time on node 𝑟𝑟14 before it
can enter node 𝑟𝑟15, and shuttle C also has to wait on
node 𝑟𝑟6.

Figure 9: Reserved Time Windows by the Shuttles

For each node, we know which shuttle will occupy the
node during each time period. We therefore also know
the sequence of shuttles that will cross this node. If we
consider the reservation list of crossing node 5, we get
the following information.

Table 1: Reserved Time Windows on Node 5

Shuttle Entry Time Exit Time
A 00:00:08 00:00:12

C 00:00:12 00:00:15

B 00:00:17 00:00:21

At this node, the sequence of shuttles is A, C, B. This
sequence has to be established so that deadlocks can be
avoided even if the shuttles are late for some reason.
Whenever a shuttle starts moving, we identify the nodes
that could be traversed by the shuttle. These nodes are
then claimed by the shuttle. In the example, the
following nodes are claimed.

Table 2: Nodes Claimed by the Shuttles

Shuttle Claimed Nodes
A 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4, 𝑟𝑟5, 𝑟𝑟10, 𝑟𝑟15, 𝑟𝑟16, 𝑟𝑟17, 𝑟𝑟18

B 𝑟𝑟11, 𝑟𝑟12, 𝑟𝑟13, 𝑟𝑟14

C 𝑟𝑟9, 𝑟𝑟8, 𝑟𝑟7, 𝑟𝑟6

A

B

C

𝑟𝑟1 𝑟𝑟2 𝑟𝑟3 𝑟𝑟4 𝑟𝑟5 𝑟𝑟6 𝑟𝑟7 𝑟𝑟8 𝑟𝑟9

𝑟𝑟10

𝑟𝑟11 𝑟𝑟12 𝑟𝑟13 𝑟𝑟14 𝑟𝑟15 𝑟𝑟16 𝑟𝑟17 𝑟𝑟18 𝑟𝑟19 𝑟𝑟20

A

B

C

Shuttle A was able to claim its whole route, whereas
shuttle B and C could claim only part of their routes. If a
shuttle was able to claim at least one other node, it starts
moving and stops as soon as it finishes a claimed
segment. It will then start claiming the next segment of
nodes again.
If a shuttle cannot claim a single node, it will register as
waiting shuttle at this node. Whenever a shuttle exits a
node completely, not only is the reserved time window
deleted, but the algorithm also checks whether any other
shuttle is registered as waiting for that node. If another
shuttled is registered on the node, it is triggered and will
claim its next segment.
The concept of claiming nodes is necessary. Examining
how far a shuttle is allowed to travel is insufficient,
since another shuttle can reserve the earliest time
window at any moment. The shuttle that had previously
reserved the earliest time window would then no longer
be allowed to enter that node. Therefore, whenever the
earliest time window is reserved on a node, the
algorithm checks whether that node has already been
claimed by another shuttle. If it has, the node is released
by that shuttle, as well as all subsequent nodes along the
route that have been already claimed.

SUMMARY

In this paper we described shuttle systems as a
technology for storing small unit loads. We focused on
systems with a tier-to-tier and aisle-to-aisle
configuration, which provide high flexibility. In these
systems, every vehicle can reach every storage location.
From the perspective of control, routing becomes an
important issue due the possibility of deadlocks among
the shuttles, which must be dealt with.
As a concept for routing and handling deadlocks, we
referred to the time window routing method that has
already been successfully applied in different logistical
contexts. We adapted the time window routing method
and modelled the tier of the shuttle system as a graph in
order to apply the method. Finally, we described a
concept that enables the vehicles to execute the
calculated routes.
The time window routing method was implemented in a
generic simulation model kit for shuttle systems, as well
as the concept of claiming nodes. In future work, these
concepts will be evaluated by simulation experiments.
The concept of claiming nodes could be expanded. It
might be possible to allow nodes to be claimed by
shuttles that did not reserve the earliest time window on
these nodes if this improves the overall efficiency and
the absence of deadlocks can be guaranteed.
Furthermore, fully integrating the lifts into the time
window routing scheme might be interesting.

REFERENCES
Busacker, T. 2005. Steigerung der Flughafen-Kapazität durch

Modellierung und Optimierung von Flughafen-Boden-
Rollverkehr – Ein Beitrag zu einem künftigen

Rollführungssystem. Dissertation. Technische Universität
Berlin.

Ekren, B. Y., Heragu, S. S., Krishnamurthy A. and Malmborg
C. J., 2010. “Simulation based experimental design to
identify factors affecting performance of AVS/RS.”
Computers & Industrial Engineering 58, No.1, 175-185.

Hart, P. E., Nilsson, N. J. and Raphael, B. 1968. “A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths” IEEE Transactions of Systems Science and
Cybernetics 4, No.2, 100-107.

Kalinovcic, L. , Petrovic, T. , Bogdan, S. and Bobanac V.,
2011. “Modified banker’s algorithm for scheduling in
multi-agv systems.” Automation Science and Engineering
(Trieste, Italy, Aug. 24-27), 351–356.

Kim C. W. and Tanchoco J. M. A., 1991. “Conflict-free
shortest-time bi-directional AGV routing.” International
Journal of Production Research 29, No.12, 2377-2391.

Kim C. W., Tanchoco J. M. A. and Koo P., 1997 “Deadlock
Prevention in Manufacturing Systems with AGV Systems:
Banker’s Algorithm Approach.” Journal of Manufacturing
Science and Engineering 119, No.4, 849-854.

Liu F. and Hung P., 2001. “Real-time deadlock-free control
strategy for single multi-load automated guided vehicle on
a job shop manufacturing system.” International Journal
of Production Research 39, No.7, 1323-1342.

Malmborg C. J., 2002. “Conceptualizing tools for autonomous
vehicle storage and retrieval systems.” International
Journal of Production Research 40, No.8, 1807-1822.

Maza, S. and Castagna, P., 2005. “A performance-based
structural policy for conflict-free routing of bi-directional
automated guided vehicles.” Computers in Industry 56,
No.7, 719-733.

Penners L. T. M. E., 2015. Investigating the effect of layout
and routing strategy on the performance of the Adapto
system. Master’s Thesis. Eindhoven University of
Technology.

Roy, R., Krishnamurthy, A. and Heragu, S. S. 2014.
“Blocking Effects in Warehouse Systems With
Autonomous Vehicles.” IEEE Transactions on
Automation Science and Engineering 11, No. 2, 439-451.

Stenzel, B. 2008. Online Disjoint Vehicle Routing with
Application to AGV Routing. Dissertation. Technische
Universität Berlin.

ter Mors, A. W., Zutt, J. and Witteveen C., 2007. “Context-
Aware Logistic Routing and Scheduling.” In Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (Providence, USA, Sep. 22-26),
328-335.

ter Mors, A. W. 2010. The world according to MARP.
Dissertation. Technische Universiteit Delft

VDI-Richtlinie 2692 Blatt 1, 2015. Automated vehicle storage
and retrieval systems for small unit loads. Berlin: Beuth.

THOMAS LIENERT has been working as a research
assistant at the Institute for Materials Handling, Material
Flow and Logistics, Technical University of Munich,
since 2014. His research deals with the development of
control strategies for autonomous vehicle-based storage
and retrieval systems. His email address is:
lienert@fml.mw.tum.de.

JOHANNES FOTTNER is professor and head of the
Institute for Materials Handling, Material flow,
Logistics at the Technical University of Munich.

mailto:lienert@fml.mw.tum.de

