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1 Introduction

In this thesis we take a look at two models from the �eld of random processes in random
environments. A random process is a sequence of variables where each variable depends
on the previous ones in a random fashion. The basic random process for this thesis
is the random walk (RW). To visualize a random walk, imagine it as a disoriented
group of tourists in a city with a modern grid street plan that stretches endlessly in
all directions. As the tourists are notoriously bad with their maps and GPS does
not work well in deep canyons of high-rise buildings, at each junction they discuss
where to go. Because they cannot decide on the right way, they determine the new
direction by coin tossing. It is lucky for the tourists that streets are predominantly
two-dimensional structures and they are sure to reach their destination eventually. It
is unlucky for them that it will probably take a very long time and an extensive detour
to get there. Of course, this scenario is completely unrealistic. In reality, the tourists
would never toss coins, but rather look at each of the four directions and then decide
based on what they see. It is far more likely that they choose a street that promises
to have the best shops and food-stores over a bleak and dirty one. If we want to
describe realistic tourist behaviour mathematically, we need to take the attraction of
each street on a group of tourists into account. We do this by de�ning an environment,
which rates the attractiveness of each street in numbers. The type of shops in each
street and how much our tourists like them is usually not very deterministic. Thus we
may choose the environment randomly. The resulting tourist behaviour is a random
walk in random environment. If in addition there is construction work in the city and
some streets are completely blocked, then the model of choice for the environment
is a percolation cluster. Since in a percolation certain passages are blocked, a city
with major construction work looks like a maze to a tourist. We will talk about these
models in the �rst part of the thesis. To make matters worse, in real life there is
usually more than one group of tourists in the same city. Tourist groups often try to
avoid each other to get the most authentic experience of the place. We may assume
that a tourist group will never pick a street that leads to a junction which is already
occupied by other tourists. Such a system is mathematically an interacting particle
system. We will deal with interacting particles that avoid each other in the second
part of the thesis. Returning from stories about tourists to mathematics, we will start
with the general aim of this thesis.

Since the �eld of random processes in random environments is rather young, there
are two approaches to achieve progress. One can try to push general results and
techniques further to establish a universal theory. Unfortunately, there has only been
good progress, if the random environment is nice and these methods cannot be used
to tackle any other cases. The second approach is to search for special models that
show interesting behaviour under scaling to explore all the possible results that a
universal theory needs to cover. This thesis falls into the second category. We will
explore and describe two models and their scaling behaviour. The �rst model is a
variation of random walks on oriented percolation clusters, where we explore how
adding random weights onto the percolation structure a�ects the scaling limits. In
the second model a �nite number of particles perform a random walk simultaneously
in the same environment with some simple rules for the interaction. The random
environment is a recurrent environment on the integers. The �rst important result on
the localization of random walks in recurrent one-dimensional i.i.d. environments was
published by Sina�� (1982) and we refer to them as Sina�� environments in this thesis.

In the �rst part of the thesis we discuss random walks on random environments
to establish the context for the main result on random walks on oriented percolation
clusters. We �rst give the most general de�nition and then establish methods for
the case of reversible random walks, as there are many results known in this speci�c
case. We will make use of the concept of resistor networks that are applicable in
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this case. Then, we use the rather simple example of random walks on the integers
to explore the di�erent possible scaling behaviours. While the di�erent behaviours
are completely understood in one-dimensional lattices, this is far from true for any
higher dimension. Random walks on the strip live in between both worlds and are a
generalization of random walks on the integers. We discuss them brie�y in the �rst
part of the thesis as they are relevant to interacting particle systems with �nitely many
particles, which we discuss in the second part. On higher dimensional lattices, we will
focus on known results about percolation and then give scaling limits for random
walks on weighted, oriented percolation clusters. Random walks on oriented graphs
are a model for ancestral lineages in a population model where the amount of o�spring
depends locally on the occupation of neighbouring sites. In this way, it is a simple
population model that incorporates competition, since each site can only be occupied
by one particle at a time. Random walks on oriented percolation clusters correspond
to a population model, where some sites are not habitable. We go a step further
and introduce a random �eld that represents the maximal occupation number of each
site. Thus, some sites might have enough resources to support many individuals, while
others can feed one individual at a time. The random �eld acts like weights on the
random walk in this environment. In this work, we demonstrate how the independent
percolation structure can be used to show scaling limits even in the presence of mixing
weights. The proofs for these results can be found in Section 4 at the end of the thesis.

During the �rst part of the thesis, we deal with ordinary Markov chains. For the
second part, we need more general theory on Markov processes, as they provide the
main language to describe interacting particle systems. After a basic introduction of
de�nitions and notation we focus on the exclusion process. The big remaining open
question of the thesis is to establish a limit theorem for the tagged particle of an
exclusion process in Sina�� environments. The hope is, to see how the localization
behaviour of the Sina�� environment a�ects the scaling in addition to the exclusion
dynamics, which already cause a change of scale in the limit theorem compared to a
single particle. To date there are few results for the exclusion process, let alone the
tagged particle, in any inhomogeneous environment. The known results on exclusion
processes that are relevant to this question are presented. Then we focus on an inter-
acting particle system with exclusion dynamics but with �nitely many particles. These
models have been studied before and are known as spiders. We add our own results to
what is known and do some tentative steps towards tackling the full exclusion process
with in�nitely many particles. All proofs for these results can be found in Section 5
at the end of the thesis.

The two rather di�erent models presented in the two parts of the thesis aim to
show how di�erent known mechanisms in random processes in random environment
combine to produce new behaviour. We examine whether one mechanism dominates
over the other as in the �rst model, or whether both mechanisms act together to a
maximized e�ect as in the second model. Any general theory in the �eld must aim to
incorporate these results. But until then and possibly also after that, we need concrete
examples to help our understanding along.
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2 Random walks in random environments

Random walks are Markov chains on graphs, which can be used to represent many
di�erent real world phenomena. In many models the transition probabilities of the
Markov chain are not homogeneous on the graph, but depend on local properties.
Whenever these local properties can be described by a random �eld or even a random
process, the model falls into the class of random walks in random environments. Clas-
sical examples can be found in abundance all over natural sciences. One of them is the
di�usion of a particle in a �uid that contains obstacles, which could be an emulsion
or a porous stone. Random walks in random environments can also be used to model
ancestral lineages in populations in an environment with non-homogeneous resources
or it may be used to model the propagation of information in a randomly chosen graph.

The formal de�nition of random walks in random environments (RWRE) is as
follows. Let G = (V,E) be an in�nite, oriented graph with countable vertex set V and
edge set E. If two vertices v, w ∈ V are adjacent, i.e. connected by an edge (v, w) ∈ E,
we write v ∼ w. The set of all adjacent vertices Nv = {w ∈ V : w ∼ v} is called the
neighbourhood of v. For each vertex we denote the family of all probability measures
on V with support on Nv by M1(Nv) and equip it with the weak topology to get a
Polish space. Denote by F the Borel-σ-algebra on Ω =

∏
v∈V M1(Nv), which is the

σ-algebra generated by cylinder events. We �x a probability measure P on (Ω,F),
which we call the environment law. A random environment ω ∈ Ω with law P is an
element of the probability space (Ω,F ,P).

A random walk in random environment is a Markov chain (Xn)n∈N with state
space V and transition law Pω that depends locally on the environment ω. For any
x ∈ V and y ∈ Nv it has transition probabilities

Pω (Xn+1 = y|Xn = x) = ωx(y),

where the random walk starts at the origin, Pω(X0 = 0) = 1. We call the law Pω of
the random walk for a �xed environment the quenched law. The quenched law is a
probability measure on (V N,F ′), where F ′ is again the σ-algebra generated by cylinder
events. This also de�nes a measure P = P⊗Pω on the product space (Ω×V N,F×F ′).
Its marginal on V N is also denoted by P and called the annealed law. The annealed
law describes the law of the random walk, when we average over di�erent realizations
of the random environment.

In many situations, especially if the environment is nice, the behaviour of the
random walk is very similar under the quenched and annealed law. For example take
the integer lattice V = Zd and an i.i.d. environment law. If P is uniform on the
neighbourhood up to a small perturbation, the random walk in random environment
under the quenched law should behave very similar to a simple random walk. This is
indeed the case, but the proof is not easy. It was �rst done for dimensions d ≥ 4 by
Bolthausen and Sznitman (2002). They also present an example, where the quenched
and annealed behaviour are very di�erent. Take the lattice V = Zd as the vertex set
with nearest-neighbour edges E = {(x, y) : x, y ∈ V and ||x − y||2 = 1}, where || · ||2
is the usual Euclidean norm on Zd. For each v ∈ V choose one vector e from the
Euclidean basis uniformly and independent of all other vertices and set ω(v,v+e) = 1
and ω(v,w) = 0 for all w 6= v + e. Thus, in d = 2 dimensions the transitions from
each vertex are only allowed either to the north or to the east neighbour uniformly
at random. Consequently, under the quenched law, when ω is �xed, then the random
walk is deterministic. On the other hand, since the random walk can never return to a
vertex that it has visited before, under the annealed law the random walk performs a
normal north & east random walk, which has a non-degenerate central limit theorem,
since it has i.i.d. increments that are not constant.

Technically, both the quenched law and the annealed law have their own di�culties
when we want to prove scaling limits. The random walk in random environment is a
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Markov chain under the quenched law. However, in d ≥ 2 it is not reversible without
further assumptions. Reversibility allows us to use methods from harmonic analysis
and homogenization theory and we will discuss reversible models in Section 2.1. The
random walk under the annealed law, on the other hand, su�ers from the problem
that it is not Markovian, since it uncovers the environment as it moves and when it
returns some parts of the environment are already known.

The general aim for every model is to prove a law of large numbers and annealed
and quenched central limit theorems. Usually, if a central limit theorem holds, then a
functional version of the theorem can be proved with only little more e�ort. A more
di�cult question is to establish local central limit theorems and large deviation results.
However, these are not the topic of this thesis. We begin with the de�nition of the
limit theorems that we are interested in. We write Eω and E for the expectation under
the quenched and annealed law, respectively.

De�nition 2.1. Let (Xn)n∈N be a random walk in random environment (ω(x,y))x,y∈Zd
with annealed measure P and quenched measure Pω and associated expectations E and
Eω respectively.

(i) A law of large numbers (LLN) holds, if there is a constant ~µ ∈ Rd such that

Pω

(
Xn

n

n→∞−−−−→ ~µ

)
= 1 for P -almost every ω.

Let X ∼ N (0,Σ) be a normal random variable on Rd with covariance matrix Σ.
Denote by Cb(Rd) the set of all continuous, bounded functions f : Rd → R. We say
that:

(ii) An annealed central limit theorem (aCLT) holds, if for all f ∈ Cb(Rd)

E
[
f

(
Xn − n~µ√

n

)]
n→∞−−−−→ E [f(X)] .

(iii) A quenched central limit theorem (qCLT) holds, if for all f ∈ Cb(Rd)

Eω

[
f

(
Xn − n~µ√

n

)]
n→∞−−−−→ E [f(X)] for P -almost every ω.

For any t ≥ 0, denote the scaled linear interpolation of the discrete random walk by

X
(n)
t =

1√
n

(
Xbntc + (tn− btnc)

(
Xbtnc+1 −Xbtnc

)
− nt~µ

)
.

Fix T > 0 and write (C[0, T ],WT ) for the space of continuous functions from the
interval [0, T ] to Rd equipped with the σ-algebra WT of Borel sets relative to the
supremum topology. We say that:

(iv) An annealed functional central limit theorem (aFCLT) holds, if for all T > 0,

the law of
(
X

(n)
t : 0 ≤ t ≤ T

)
under P converges as n→∞ on C([0, T ],WT ) to

the law of Brownian motion (Bt : 0 ≤ t ≤ T ) on Rd with covariance matrix Σ.

(v) A quenched functional central limit theorem (qFCLT) holds, if for all T > 0

and for P-almost every ω, the law of
(
X

(n)
t : 0 ≤ t ≤ T

)
under Pω converges as

n→∞ on C([0, T ],WT ) to the law of Brownian motion (Bt : 0 ≤ t ≤ T ) on Rd
with covariance matrix Σ.
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Note that from this de�nition it is not guaranteed that the limits are non-degenerate,
i.e. that Σ is of full rank. Proving non-degeneracy of the limit is often more di�cult
than proving the central limit theorem itself. In the previous de�nition of the qCLT
the drift is deterministic, which is not always the case. We will see a quenched limit
theorem on the integers with random centring, Theorem 2.13, where the quenched
expectation replaces the annealed expectation n~µ. In this case, the limit laws of the
quenched and annealed limit theorems do not coincide.

2.1 Conductance model

For the random conductance model we build the transition probabilities such that the
random walk is reversible. Let (ωe)e∈E be a family of positive random numbers ωe ≥ 0
with the symmetry condition ω(x,y) = ω(y,x) for any (x, y) ∈ E. The random variable
ω(x,y) is called the conductance between vertices x and y in a reference to its role in
the representation of the model as a resistor network. We give a short introduction
to resistor networks in Section 2.1.1. For a more comprehensive treatment, see for
example the book of Lyons and Peres (2016).

De�nition 2.2. A random conductance model with conductances (ωe)e∈E is called
uniformly elliptic, if there is a constant κ ∈ (0, 1) such that

κ < ωe <
1

κ
for all e ∈ E.

It is called elliptic, if

0 < ωe <∞ for all e ∈ E.

We call κ the ellipticity constant. Ellipticity is important, since it ensures that all
parts of the graph are connected. Otherwise, one has to check that there is an in�nite
connected component in the graph to get non-trivial behaviour of the random walk.
The problem to decide, whether there is an in�nite connected component, is known as
percolation and discussed in Section 2.4. The random walk (Xn)n≥0 with transition
probabilities

p(x, y) = Pω (Xn+1 = y|Xn = x) =
ω(x,y)∑
z∼x ω(x,z)

is reversible with stationary measure

π(x) =
∑
z∼x

ω(x,z).

The reversibility follows from the symmetry of the conductances,

π(x)p(x, y) = ω(x,y) = ω(y,x) = π(y)p(y, x).

Note that the random walk is well de�ned, if π(x) < ∞ for all x ∈ V . This is
automatically satis�ed, if the environment is elliptic and the graph is locally �nite.

2.1.1 Resistor networks

We can use an analogue with resistor or electrical networks to express events for the
random conductance model in a convenient way. We interpret the values ω(x,y) as
conductances c(x, y) in the resistor network. In other words, we place a resistor with
resistance 1/ω(x,y) onto any edge of the graph and connect them at the vertices, as
depicted in Figure 1. When we create a voltage di�erence between two di�erent parts
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v|D = 0D

v|S = 1S

Figure 1: Simple resistor network for a two dimensional lattice graph that has a battery
with 1 Volt hooked up between sets S and D. These two sets are highlighted by grey
boxes. Each edge has a resistor assigned, where the resistance is determined by the
environment. The resistors are connected at the vertices, which are represented by
small black circles.

of the network, an electrical current �ows through the resistor network. Following
the book of Lyons and Peres (2016), for any �nite graph (V,E) with conductances
c(x, y) = ω(x,y) we can de�ne the voltage or potential v between two disjoint subsets
S and D of the vertex set V . We set v(x) = 1 for x ∈ S and v(x) = 0 for x ∈ D. The
voltage is the unique function v : V → R such that for every x ∈ V \ (S ∪D)

v(x) =
1

π(x)

∑
y∼x

c(x, y)v(y).

By de�nition v is harmonic on V \ (S ∪ D). We can imagine a battery with 1 Volt
hooked up between the two sets S and D, which are the source and drain for the
current. The set-up is shown in Figure 1. The current i(x, y) between two adjacent
vertices x ∼ y has to obey Ohm's law, so

v(x)− v(y) = i(x, y)r(x, y),

where r(x, y) = 1/c(x, y) is the resistance. Furthermore, by Kircho�'s law all currents
that �ow in and out of any vertex have to sum up to zero.

The most important use of the representation as resistor networks is the ability to
express probabilities of hitting times. Let τA be the �rst hitting time of a set A ⊂ V
of the random walk. That is

τA = inf {n ≥ 0 : Xn ∈ A} .

For convenience, we want to denote the law of the random walk starting in z ∈ V by
P zω(·) = Pω(·|X0 = z). Then, by the Markov property of the random walk for every
z /∈ A ∪D

P zω(τA < τD) =
∑
z∼y

p(z, y)P yω(τA < τD) =
1

π(z)

∑
z∼y

c(z, y)P yω(τA < τD)

and we see that P zω(τA < τD) is a harmonic function in z on V \ (A ∪D). Since v is
both harmonic and linear in v(a) by the superposition principle, we get for a singleton

12



set A = {a}

P zω(τ{a} < τD) =
v(z)

v(a)
.

Furthermore, we can set the �rst return time of the random walk that is starting in a
vertex a to the same vertex a,

τ+
a = inf {n > 0 : Xn = a when X0 = a} ,

in relation with the voltage

v(a) =

∑
x∼a i(a, x)

π(a)P aω (τD < τ+
a )

=:
∑
x∼a

i(a, x)R(a↔ D). (2.1)

In the last equation we have implicitly de�ned the e�ective resistance R(a ↔ D)
between a and D. Its reciprocal is called the e�ective conductance C(a ↔ D) =
R(a↔ D)−1. The e�ective resistance tells us, whether the random walk is recurrent,
see e.g. Grimmett (2010). Let d(x, y) be the graph distance between two vertices
x, y ∈ V . Then, we can exhaustively cover any graph with increasingly large boxes
around the origin. De�ne their boundaries as

Λn = {x ∈ V : d(x, 0) = n} .

The e�ective resistance between the origin and in�nity is de�ned as

R(0↔∞) = lim
n→∞

R(0↔ Λn).

By Rayleigh's principle, the e�ective resistance is a non-decreasing function of the
edge-resistances, which implies that the previous limit exists. We can now conclude
from Equation (2.1) that recurrence of the random walk can be determined by this
e�ective resistance, since it implies

P 0
ω

(
τΛn < τ+

0

)
=

1

π(0)R(0↔ Λn)
.

By taking the limit n → ∞, we get the probability for the random walk to escape
towards in�nity.

Corollary 2.3. The Markov chain (Xn)n∈N in the random environment with con-
ductances (c(x, y))x,y∈V is recurrent if and only if R(0 ↔ ∞) = ∞. Otherwise it is
transient.

If the Markov chain is recurrent and its stationary measure is �nite, then∑
x∈V

π(x) =
∑
x,y∈V

ω(x,y) <∞

and the Markov chain is positive recurrent. Otherwise it is null-recurrent. The follow-
ing lemma relates the hitting times of two sets with e�ective resistances.

Lemma 2.4. Let G = (V,E) be any �nite graph such that |V |, |E| < ∞. Take two
subsets of vertices A,B ⊂ V such that A ∩B = ∅ and a starting point for the random
walk z /∈ A ∪ B. Denote by P zω the law of the random walk (Xn)n∈N on the graph G
with conductances (ω(x,y))x,y∈V and such that X0 = z. Then we have

P zω(τA < τB) ≤ R(z ↔ B)

R(z ↔ A)
. (2.2)

13



Proof. De�ne the �rst return time to the start vertex by

τ+
z = inf{n > 0: X(n) = z}.

We consider the events

R =
{
τ+
z < τA∪B

}
and

S = {τA < τB} ∩Rc,

where Rc = Ω \ R denotes the complement of R. We can decompose the time to
hit either the set A or the set B into successive excursions from z. By the Markov
property these excursions are independent. On the event R we have neither hit A nor
B before returning to z and thus we may try again. On the event S the random walk
successfully hits A before hitting B or returning to z and

S =
{
τA < τB < τ+

z

}
∪
{
τA < τ+

z < τB
}
⊂
{
τA < τ+

z

}
.

Thus, we can rewrite the event {τA < τB} in terms of events R and S and get the
upper bound

P zω(τA < τB) =

∞∑
r=0

P zω (S) (P zω (R))
r

=
P zω (S)

1− P zω (R)
≤ P zω(τA < τ+

z )

P zω(τA∪B < τ+
z )
.

According to Section 2.2 of Lyons and Peres (2016), we have on any �nite graph

P zω(τA < τ+
z )

P zω(τA∪B < τ+
z )

=
R(z ↔ A ∪B)

R(z ↔ A)
≤ R(z ↔ B)

R(z ↔ A)
, (2.3)

which proves the lemma.

One may observe that whenever R(z ↔ B) > R(z ↔ A), then the upper bound
provided by the previous lemma is trivial. However, in this case we get a non-trivial
lower bound, since

P zω(τA < τB) = 1− P zω(τB < τA) ≥ 1− R(z ↔ A)

R(z ↔ B)
> 0.

2.2 RWRE on the integers

A random walk on the integers can easily get trapped by the random environment as
a short sequence of exceptionally small conductance is enough to form a strong barrier
for the random walk. Therefore, the behaviour of random walks on the integers is
di�erent from random walks on integer lattices in higher dimensions. However, the
one-dimensional case lets us demonstrate which di�erent limit laws can occur. It
is very well understood and in this section we present what is known about them.
Random walks in higher dimensional environments are covered in Section 2.4.

Let (Ω,F ,P) be a probability space, where Ω = [0, 1]Z and P is a product measure
on Ω. Let ω = (ωx)x∈Z be a random environment with values in Ω. Let the random
variables ωx be mutually independent and identically distributed for all x ∈ Z. The
random environment is best described using a sequence (ρx)x∈Z of random variables
de�ned as

ρx =
1− ωx
ωx

.
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To exclude the trivial cases we assume that the random environment is non-degenerate
and elliptic, namely

Var(log ρ0) > 0 and

∃κ ∈ (0, 1/2) such that P (κ ≤ ω0 ≤ 1− κ) = 1.

We assume that these conditions hold for all results in this section. Most results are
known to hold under more general assumptions then i.i.d. conductances. The most
general known assumptions for each claim are mentioned after the theorem and proof.
We consider a nearest-neighbour random walk (Xn)n∈N in the environment (ωx)x∈Z.
At each step the random walk at site x will move either to the right with probability
ωx or to the left with probability 1− ωx. Thus, for any start point z ∈ Z and vertices
x, y ∈ Z it has transition probabilities

p(x, y) := P zω (Xn+1 = y|Xn = x)

=


ωx if y = x+ 1

1− ωx if y = x− 1

0 if y � x

,

where we write x ∼ y if and only if x and y are neighbours, |x − y| = 1. Using the
detailed balance equation we can calculate a reversible measure (π(x))x∈Z through the
recurrence relation

π(x+ 1) = π(x)
p(x, x+ 1)

p(x+ 1, x)
= π(x)

ωx
1− ωx+1

.

By choosing π(0) = 1/ω0, we �nd that a reversible measure for all sites x > 0 is

π(x) = π(0)
ω0

1− ω1
· ω1

1− ω2
· . . . · ωx−1

1− ωx
=

1

ωx

x∏
i=1

ρ−1
i .

The reversible measure for all sites x < 0 is accordingly

π(x) =
1

ωx

0∏
i=x+1

ρi.

We de�ne a function V : Z→ R by

V (x) =


∑x
i=1 log ρi if x > 0

0 if x = 0∑0
i=x+1− log ρi if x < 0

. (2.4)

Note that

1

ωx
=
ωx + (1− ωx)

ωx
= 1 + ρx.

Thus, we can conveniently express the reversible measure in terms of V ,

π(x) = (1 + ρx) e−V (x) = e−V (x) + e−V (x−1). (2.5)

If the random walk in random environment is viewed as a resistor network, we can
write the random conductances (c(x, y))x,y∈Z as

c(x, x+ 1) = π(x+ 1)p(x+ 1, x) =
1− ωx+1

ωx+1

x+1∏
i=1

ρ−1
i
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for any x > 0. A similar expression holds for x < 0. This implies

c(x, x+ 1) = e−V (x).

We can also express the e�ective resistance Ryx = R(x ↔ y) between two sites x < y
by

Rxy = Ryx =

y−1∑
i=x

1

c(i, i+ 1)
=

y−1∑
i=x

eV (i)

using the function V de�ned in Equation (2.4). Therefore, we may view (Xn)n∈N as
a random walk in the random potential V . The random potential is itself a random
walk with drift

lim
x→∞

V (x)

x
= E [log ρ0] .

We can now determine whether the random walk in random environment is recurrent
or transient depending on the value of E [log ρ0], which was �rst done by Solomon
(1975).

Lemma 2.5 (Solomon (1975)). The random walk (Xn)n∈N is recurrent if and only if
E [log ρ0] = 0. In particular, we have the following.

(i) If E [log ρ0] < 0, then Xn → +∞ as n→∞ P-almost surely.

(ii) If E [log ρ0] > 0, then Xn → −∞ as n→∞ P-almost surely.

(iii) If E [log ρ0] = 0, then lim inf Xn = −∞ and lim supXn = +∞ P-almost surely.

We prove this lemma by evaluating hitting times, which we de�ne as

τx = inf {k ≥ 0: Xk = x}

for the hitting time of a site x ∈ Z. Then, we have the following lemma.

Lemma 2.6. Let sign(n) 6= sign(m). Then

P 0
ω (τn < τm) =

(
1 +
R0
n

Rm0

)−1

.

Proof. The law of the event {τn < τm} for the random walk on Z is the same as for
the random walk on the �nite set [n,m]∩Z. Thus, the lemma is a direct consequence
of a variation of Lemma 2.4, which applies to any �nite one-dimensional graph. On
the integers we can turn all inequalities in the proof of the Lemma into equalities,
since every excursion from the start point z = 0 can only hit the set {n} or the set
{m} before returning to the origin and never both. This implies S = {τn < τ+

0 } and
consequently

P 0
ω(τn < τm) =

P 0
ω(τn < τ+

0 )

P 0
ω(τn∧m < τ+

0 )
.

We can also use the fact that resistances are always in series to express them explicitly
as

R(0↔ {n,m}) =

(
1

R0
n

+
1

Rm0

)−1

.

Using both equalities in Equation (2.3), we prove the claim.
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Proof of Lemma 2.5. Having Lemma 2.6 in mind, we want to consider three di�erent
cases.

(i) If R0
−∞ =∞ and R∞0 <∞, then for any k > 0

lim
n→∞

P 0
ω (τn < τ−k) = lim

n→∞

(
1 +

Rn0
R0
−k

)−1

> 0

and

lim
k→∞

lim
n→∞

P 0
ω (τn < τ−k) = lim

k→∞
lim
n→∞

(
1 +

Rn0
R0
−k

)−1

= 1.

Thus

P 0
ω

(
lim
n→∞

X(n) =∞
)

= 1,

and the random walk is transient to the right.

(ii) If R0
−∞ <∞ and R∞0 =∞, then we get similarly

P 0
ω

(
lim
n→∞

X(n) = −∞
)

= 1

and the random walk is transient to the left.

(iii) If R0
−∞ =∞ and R∞0 =∞, then for any k > 0

lim
n→∞

P 0
ω (τk < τ−n) = lim

n→∞

(
1 +

Rk0
R0
−n

)−1

= 1

and

lim
n→∞

P 0
ω (τ−k < τn) = lim

n→∞

(
1 +
R0
−k
Rn0

)−1

= 1.

Thus

P 0
ω

(
lim inf
n→∞

X(n) = −∞ and lim sup
n→∞

X(n) =∞
)

= 1

and the random walk is recurrent. Alternatively, the total e�ective resistance in
this electrical network is

R =

(
1

R∞0
+

1

R0
−∞

)−1

.

Thus, by applying Corollary 2.3, we get recurrence directly. Together with irre-
ducibility of the random walk, the claim follows.

The rest of the proof is taken from Zeitouni (2004). Note that {R∞0 < ∞} and
{R0
−∞ <∞} are 0-1-events and by de�nition of the potential V in Equation (2.4) and

stationarity of ω we have

R∞0 <∞ =⇒ R0
−∞ =∞ and

R0
−∞ <∞ =⇒ R∞0 =∞.
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Therefore, we need to show that

P 0
ω (R∞0 <∞) ⇐⇒ E [log ρ0] < 0 and

P 0
ω

(
R0
−∞ <∞

)
⇐⇒ E [log ρ0] > 0.

Here, we only prove the �rst claim, as the second claim can be proven analogously.
First, assume E [log ρ0] < 0. Then, we can �nd constants ε(ω) > 0 and N(ω) ∈ N such
that

V (n)

n
=

1

n

n−1∑
k=1

log ρk < −ε

for n > N(ω) chosen large enough by the ergodic theorem. Consequently, for almost
every ω ∈ Ω exists some constant C(ω) such that

R∞0 = C(ω) +

∞∑
k=N

eV (k) ≤ C(ω) +

∞∑
k=N

e−kε <∞.

On the other hand, if R∞0 =
∑∞
k=0 e

V (k) <∞, then V (n)→ −∞ as n→∞. Since ω
is stationary, we can apply a theorem from Kesten (1975) to get

lim
n→∞

V (n)

n
< 0.

This implies directly the desired result, E [log ρ0] < 0.

The lemma is true for a much wider range of environment laws P. In particular
it holds true, whenever Birkho�'s ergodic theorem applies to the averaged potential,
i.e. if P is stationary and ergodic and log ρ0 is integrable on the probability space
(Ω,F ,P). In fact, it is even enough that E [log ρ0] is well de�ned, including values
±∞, see Theorem 2.1.2 in Zeitouni (2004) for a proof.

Corollary 2.7. If the random walk (Xn)n∈N is recurrent, then it is null-recurrent.

Proof. If the random walk is recurrent, then R∞0 = ∞. By the de�nition of the
potential and shift invariance of the environment, we have almost surely

R∞0 =∞ ⇐⇒
∑
x<0

π(x) =∞.

Thus, the stationary measure π is not �nite and the random walk is null-recurrent.

The behaviour of the random walk is very di�erent in the recurrent versus the
transient regime. In the recurrent regime the potential traps the random walk and
causes localization behaviour, while in the transient regime we can get limit theorems,
if the potential is not too rough.

2.2.1 Recurrent Regime

In the recurrent regime the potential V is a random walk with zero drift. Consequently,
it returns to the origin in�nitely often and performs increasingly large excursions in
between,

lim inf
|x|→∞

V (x) = −∞ and lim sup
|x|→∞

V (x) = +∞.

A random walk in such a potential discovers increasingly large valleys as it explores
the environment. Denote the location of the largest discovered valley up to time n by
bn. These valleys trap the random walk for a su�cient amount of time to reduce its
�uctuations around bn to a squared logarithm.
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Theorem 2.8 (Sina�� (1982)). There exists a random process (b(n))n∈N that depends
only on ω such that for all η > 0

P
(∣∣∣∣X(n)− b(n)

log2 n

∣∣∣∣ > η

)
→ 0 as n→∞.

The probability distributions of b(n)/ log2 n converge weakly to some limit distribution
as n→∞ under the environment law P.

The theorem also holds under more general assumptions. The main requirement
on the law of the environment P is that there exists some variance σ2

P
> 0 such that

a functional invariance principle holds for (V (±n)/
√
nσ2

P
)n∈N. A very neat version

of the proof can be found in the lecture notes of Zeitouni (2004), of which we give a
short summary here. As we will see in the sketch of the proof, the random process
(b(n))n∈N is in fact equal to the sequence of locations of valleys (bn)n∈N. We formally
de�ne a valley of the potential as a triple (a, b, c), a < b < c, such that

V (a) = max
a≤x≤b

V (x),

V (b) = min
a≤x≤c

V (x) and

V (c) = max
b≤x≤c

V (x).

The depth of the valley is

d(a, b, c) = min {V (a)− V (b), V (c)− V (b)} .

Now, we can de�ne (an, bn, cn) to be the smallest valley with an < 0 < cn and with
depth d(an, bn, cn) ≥ log n. We will typically �nd such a valley on a scale of log2 n,
i.e. such that |an| + |cn| ≤ J log2 n for some large constant J . We will also most
likely �nd a valley such that it does not contain another valley with height larger than
(1 − δ) log n, neither in the interval [an, bn] nor in [bn, cn] for any small δ > 0. The
notation is illustrated in Figure 2, which shows an example potential together with
the logarithmic lower bound on the depth of the valley and a selected smallest valley.

n

V

d(an, bn, cn)

an 0 bn cn

Figure 2: The potential (thick black line) has a smallest valley (an, bn, cn) of height
d(an, bn, cn). The logarithmic lower bound for the height of the valley relative to the
bottom bn is shown as a thick grey line.

In such a situation the random walk reaches the site bn before time n with high
probability,

P 0
ω (τbn ≤ n)→ 1 as n→∞. (2.6)
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Once the random walk has reached the bottom of the valley bn, it stays there for n
time steps,

max
k≤n

P b
n

ω

(∣∣∣∣X(k)− bn
log2 n

∣∣∣∣ > δ

)
→ 0 as n→∞. (2.7)

Therefore, a valley (an, bn, cn) will trap the random walk up to time n. The random
process (b(n))n∈N can be identi�ed as the sequence (bn)n∈N of locations of smallest
valleys. The random walk is forced to stay close to b(n) = bn until it can escape to
the next deeper valley around bn+1. Since a valley has a width of log2 n, this is the
scale on which the random walk shows its localization behaviour.

Furthermore, Theorem 2.8 implies that the distribution of X(n)/ log2 n converges
weakly for n → ∞ to the same limit distribution as b(n)/ log2 n under the annealed
law P. This limit distribution was identi�ed later by Golosov (1983) and Kesten (1986)
independently.

Theorem 2.9 (Golosov (1983), Kesten (1986)). Denote by σ2 := E
[
log2 ρ0

]
the vari-

ance of the increments of V . The distribution of

σ2b(n;ω)

log2 n

converges weakly under the environment measure P to the distribution of L, where L
is a functional of Brownian motion with density

dP(L ≤ x)

dx
=

2

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π

2(2k + 1)2

8
|x|
)
dx.

We have seen previously that the random walk is null-recurrent in the original
environment. However, the particle visits increasingly deep valleys as it performs its
excursions and explores the environment. As a consequence the environment seen from
the particle converges to an in�nitely large valley. More precisely, the stationary limit
of the environment seen from the particle has the same law as the original environment,
conditioned to be non-negative on the positive integers and strictly positive on the
negative integers. The environment seen from the particle is positive recurrent. As a
consequence, the random walk centred around the sequence of valley locations (bn)n∈N
converges without any scaling to some limit distribution.

Theorem 2.10 (Golosov (1984)). (i) The distribution of the random process (X(n)−
b(n;ω))n∈N converges to a limit function Fσ for any σ > 0.

(ii) There exists a distribution function G such that

lim
σ→0

Fσ

( x
σ2

)
= G(x).

The last result implies that with high probability and for large times n the random
walk stays in a �nite neighbourhood of b(n), which is of size 1/σ2.

2.2.2 Transient Regime

In the transient regime there is a phase transition in the speed of the random walk.
In one phase the speed of the walk is zero, while in the other it is strictly positive.
We also have a second phase transition for the existence of a di�usive central limit
theorem. Without loss of generality take E[log ρ0] < 0 throughout this section, so that
almost surely the random walk is transient to the right, X(n)→ +∞ for n→∞. The
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case where the random walk is transient to the left follows by re�ection. Then, the
two phase transitions can be characterized by the number

s := sup {r : E[ρr0] < 1} , (2.8)

which is the largest moment of ρ0 that exists and is bounded by one. Note that s
may take values in [0,∞)∪{∞}. The two phase transitions occur at values s = 1 and
s = 2 respectively. Since we look at random walks that are transient to the right, we
need to be concerned with moments of hitting times

τ1 = inf{n > 0 : X(n) = 1}.

In particular it has been shown that for all γ < s the following moments exist,

E0 [(Eωτ1)
γ
] <∞ and E0 [τγ1 ] <∞,

where the superscript indicates that X(0) = 0 almost surely. For the �rst estimate,
see for example Peterson (2008). The second estimate is shown in Dembo et al. (1996).
Thus, we see that the phase transitions occur exactly at those points at which we gain
a �rst and second moment of the hitting times.

The transient regime has been intensely studied and by now we have an almost
complete characterization, which is mainly due to the works of Solomon (1975) for the
results on the speed, Kesten et al. (1975) for the annealed results and Goldsheid (2007)
and the works of Peterson and Zeitouni for the quenched results. All these results are
summarized in Table 1 at the end of this section. For i.i.d. random environments the
limit theorems are known, except for quenched limit laws for critical values s = 1 and
s = 2. The �rst phase transition at s = 1 concerns the speed of the random walk,
which is

v := lim
n→∞

X(n)

n
.

Theorem 2.11 (LLN, Solomon (1975)). The speed of the random walk is zero P-
almost surely if and only if s ≤ 1. The speed is positive, if s > 1. Then

v =
1− E[ρ0]

1 + E[ρ0]
> 0 P-almost surely.

Note that the de�nition of s implies that E[ρ0] < 1 if and only if s > 1. Annealed
scaling limits are known for all s > 0. The two limit laws that can appear are Gaussian
laws and stable laws. Let Φ be the distribution function of a Gaussian random variable,

Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2 dy. (2.9)

Let Fα,β , α 6= 0, be the distribution function of a stable law with characteristic function

F̂α,β(t) = exp
(
−β|t|α

(
1− i · tan

(πα
2

)
sign(t)

))
. (2.10)

Theorem 2.12 (Annealed scaling limits, Kesten et al. (1975)). Assume that the en-
vironment is such that s > 0, E log ρ0 < 0 and E[ρs0 log ρ] < ∞. Assume furthermore
that the distribution of log ρ0 is non-lattice, i.e. it is not concentrated on a set of points
{ax+ b}x∈Z, for any a, b ∈ R.
(i) If s ∈ (0, 1), then an annealed stable limit law holds with

P
(
X(n)

ns
≤ x

)
→ 1− Fs,β(x−1/s) as n→∞,

where β has been identi�ed explicitly in Enriquez et al. (2009).
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(ii) If s = 1, then there exist a constant 0 < C1 < ∞ and function δ(n) ∼
n/(C1 log n) such that an annealed stable limit law holds with

P
(
X(n)− δ(n)

n−1 log2 n
≤ x

)
→ 1− F1,β(−C2

1x) as n→∞,

where β is not explicitly known.

(iii) If s ∈ (1, 2), then an annealed stable limit law holds with

P
(
X(n)− nv
v1+1/sn1/s

≤ x
)
→ 1− Fs,β(−x) as n→∞,

where β is not explicitly known.

(iv) If s = 2, then a super-di�usive central limit theorem holds with deterministic
variance σa > 0,

P
(
X(n)− nv
σa
√
n log n

≤ x
)
→ Φ(x) as n→∞. (2.11)

(v) If s > 2, then an annealed CLT holds with deterministic variance σ2
a > 0,

P
(
X(n)− nv
σa
√
n

≤ x
)
→ Φ(x) as n→∞. (2.12)

Under the quenched law, there are no limit laws for certain values of s. A fur-
ther speciality to random walks in one-dimensional environments compared to higher
dimensions is that the quenched variance of the limit theorem is smaller than the an-
nealed one. The reason is that the quenched expectation Eω [X(n)] �uctuates around
the annealed expectation nv. Thus, a part of the total variance is contained in those
�uctuations.

Theorem 2.13 (Quenched scaling limits). (i) (Goldsheid (2007); Peterson (2008))
For s > 2, a quenched central limit theorem holds with deterministic variance
σ2
q < σ2

a and quenched expectation. That is, for P-almost every ω,

Pω

(
X(n)− Eω [X(n)]

σq
√
n

≤ x
)
→ Φ(x) as n→∞. (2.13)

(ii) (Peterson and Zeitouni (2009); Peterson (2009) ) For s ∈ (0, 1) and s ∈ (1, 2)
no quenched limit laws exist. In fact, for almost every ω there exist two di�erent
random sub-sequences along which we can observe di�erent limit laws.

The �rst statement of the theorem holds for a much wider class than i.i.d. en-
vironments. Independently of each other, Peterson (2008) proved the statement for
α-mixing environments, while Goldsheid (2007) could show the result even for ergodic
environments. The previous results about transient one-dimensional random walks in
random environment are summarized in Table 1.

Eventually, a local limit theorem for the annealed and quenched law in the di�usive
regime s > 2 was proven by Dolgopyat and Goldsheid (2013). These results allowed
them to show that the environment seen from the particle converges for almost every
environment.

Theorem 2.14 (Dolgopyat and Goldsheid (2013)). For every continuous function
f : Ω→ R

Eω
[
f
(
θX(n)ω

)] n→∞−−−−→ E [ρ0f ]

E[ρ0]
for P-almost every ω

where (θnω)(x) = ωx+n is the usual shift operator.
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s ∈ (0, 1) s = 1 s ∈ (1, 2) s = 2 s > 2

LLN v = 0 v = (1− Eρ0)/(1 + Eρ0)

annealed LLs s-stable limit law aCLT with σ2
a > 0

quenched LLs qCLT, 0 < σ2
q < σ2

a

Table 1: Characterization of limit laws in the transient regime. The results in the
crossed out cells have been disproven, while the results for the empty cells are still
open.

2.3 RWRE on the strip

Random walks in random environments on the strip Z × {1, . . . ,M} are studied as
a generalization of one-dimensional models. This class includes in particular random
walks in one-dimensional random environments with bounded jumps. It can be also
applied to certain interacting particle systems with a �nite number of particles, which
we will discuss later in Section 3.4.3. We call the set {k} × {1, . . . ,M} a layer of the
strip and consider a family of transition matrices (ωk)k∈Z = {(Pk, Qk, Rk)}k∈Z with
three matrices Pk, Qk, Rk ∈ RM×M for each layer. Each triplet (Pk, Qk, Rk) is chosen
such that all matrices are positive de�nite and (Pk +Qk +Rk)1 = 1. The matrix Pk
contains the transition probabilities from layer k to layer k + 1, the matrix Qk from
layer k to layer k−1 and the matrix Rk are the transition probabilities within layer k.
The random walk in this set-up can only jump within layers or to neighbouring layers.
Let (Xn)n∈N be a discrete time Markov chain with state space Z×{1, . . . ,M}, where
Xn = (ηn, ξn). Thus, ηn denotes the layer and ξn denotes the vertex within the layer
for the position of the the random walk at time n. Then, the transition probabilities
relate to the matrices {(Pk, Qk, Rk)}k∈Z according to

Pk(i, j) = P (Xn+1 = (k + 1, j)|Xn = (k, i)) ,

Qk(i, j) = P (Xn+1 = (k − 1, j)|Xn = (k, i)) and

Rk(i, j) = P (Xn+1 = (k, j)|Xn = (k, i)) ,

for each n ∈ N, k ∈ Z and i, j ∈ {1, . . . ,M}. The matrices form the random environ-
ment of the random walk on the strip. They are chosen such that the sequence

{(Pn, Qn, Rn)}n∈Z is stationary and ergodic . (C1)

De�ne the matrix norm

||A|| = max
1≤i≤M

M∑
j=1

|A(i, j)|

for any A ∈ RM×M . We require further that �rst inverse logarithmic moments exists,

E

[
log (1− ‖Pk +Rk‖)−1

]
<∞ and

E

[
log (1− ‖Qk +Rk‖)−1

]
<∞ (C2)

for all k ∈ Z. This condition implies that for all 1 ≤ i ≤M
M∑
j=1

Pk(i, j) > 0 and
M∑
j=1

Qk(i, j) > 0.
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ηt

ξt

k − 1

k

k + 1

Qk

Pk

Rk

Figure 3: One-dimensional random walk Xn = (ηn, ξn) with jumps bounded by max-
imal distance M = 4 represented as a random walk on the strip Z × {1, . . . , 4}. All
allowed transitions are marked by an edge. All missing edges are for transitions which
have probability zero.

We may also assume that for all 1 ≤ j ≤M
M∑
i=1

Pk(i, j) > 0 and
M∑
i=1

Qk(i, j) > 0. (C3)

We furthermore need some form of irreducibility. The minimal irreducibility assump-
tion would require the whole strip to be in one communicating class. Usually, stronger
assumptions need to be made. Note that it is not reasonable to assume all matrix
elements to be positive, since such an assumption would be violated whenever the
model is derived from a one-dimensional random walk. As an example consider the
one-dimensional random walk (Yn)n∈N in random environment with bounded jumps
and let M be the maximal distance for a jump. Assume furthermore that all jump
probabilities for the one-dimensional random walk are strictly positive,

p(i, j) = P(Yn+1 = j|Yn = i) > 0

for all i, j ∈ Z such that 1 ≤ |i − j| ≤ M and n ∈ N. By chopping the integers into
pieces {1, . . . ,M}, {M + 1, . . . , 2M}, . . . and so on, we can represent the state space
of this random walk as the strip Z× {1, . . . ,M}. The corresponding random walk on
the strip is the Markov chain (Xn)n∈N such that

Xn = (ηn, ξn) with ηn = bYn/Mc and ξn = Yn mod M.

Here, b·c denotes the largest integer that bounds the argument from below. While all
transitions within layers have positive probability, this is not the case for transitions
to neighbouring layers. This is illustrated in Figure 3, where all transitions with
positive probability are marked by an edge between states. For the de�nition of a
strong irreducibility assumption which is not too restrictive, set the �rst hitting time
of neighbouring layers +1 and −1 to be

τ+ = inf{n ≥ 0 : ηn = 1} and τ− = inf{n ≥ 0 : ηn = −1}.
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We want a positive probability for the event that a walker starting at site (n, i) reaches
the neighbouring layers upon �rst entry of the layer at the sites (n+1, j) and (n−1, j)
respectively,

Pθnω(ξτ+ = j|ξ0 = i) > ε P− a.s. for all 1 ≤ i, j ≤M (C4.1(ε))

Pθnω(ξτ− = j|ξ0 = i) > ε P− a.s. for all 1 ≤ i, j ≤M. (C4.2(ε))

These two assumptions imply Condition (C2). It is a result of Bolthausen and Gold-
sheid (2000) that there exists a unique sequence of M ×M matrices (ψn)n∈Z that
satis�es the equation

ψk+1 = Pk +Rkψk+1 +Qkψkψk+1.

Also, de�ne the matrices

Ak = (I −Rk −Qkψk)
−1
Qk.

Then, by Kingman's subadditive ergodic theorem,

λ+ = lim
k→∞

1

k
log

∥∥∥∥∥
k∏
i=1

Ai

∥∥∥∥∥
exists almost surely and is constant. Using this constant, we can determine recurrence
and transience just as in the one-dimensional case.

Theorem 2.15 (Recurrence and Transience, Bolthausen and Goldsheid (2000)). As-
sume that conditions (C1), (C2) and (C3) hold and that the zeroth layer (and conse-
quently every layer) is in the same communicating class.

(i) If λ+ > 0, then limn→∞ ηn = −∞ almost surely,

(ii) If λ+ < 0, then limn→∞ ηn = +∞ almost surely and,

(iii) If λ+ = 0, then lim infn→∞ ηn = −∞ and lim supn→∞ ηn = +∞ almost surely.

As one would expect, if the distribution of (Pk, Qk, Rk) is equal to the distribution
of (Qk, Pk, Rk), then λ+ = 0 and the random walk on the strip is recurrent. There is
also a law of large numbers, which was proven independently in two papers. For the
random walk on Z, the positivity of the speed was determined by the constant s as
de�ned in Equation (2.8). This role is now taken over by

s = sup

{
r : lim sup

n→∞

1

n
log |E ‖A1 . . . An‖r| < 0

}
.

Theorem 2.16 (LLN, Goldsheid (2008); Roitershtein (2008)). Assume that conditions
(C1), (C3) and (C4.1(ε)), (C4.2(ε)) hold for some ε > 0 and that the zeroth layer is
in the same communicating class. Then, the limit

v = lim
n→∞

ηn
n

exists and is constant P-almost surely. Furthermore, if λ+ < 0, then P-almost surely

v > 0 if s > 1 and

v = 0 if s < 1.

In the transient case, we get annealed and quenched central limit theorems, where
we have a quenched correction of the speed as for the random walk in one-dimensional
environments, Theorems 2.12 and 2.13.
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Theorem 2.17 (Annealed and quenched CLT, Goldsheid (2008); Roitershtein (2008)).
Assume that conditions (C1), (C3) and (C4.1(ε)), (C4.2(ε)) hold for some ε > 0 and
that the zeroth layer is in the same communicating class. Assume furthermore that
s > 2. Then, there is an annealed and quenched central limit theorem with quenched
correction of the speed.

While Conditions (C3) and (C2) or (C4.1(ε)), (C4.2(ε)) in Theorems 2.15, 2.16
and 2.17 might not be satis�ed if the random walk on a strip is derived from a one-
dimensional model, Goldsheid (2008) claims that it may be proven under milder as-
sumptions. He requires that the whole strip is one communicating class and that there
is some ε > 0 such that either (I − R)−1P (i, j) ≥ ε or (I − R)−1Q(i, j) ≥ ε for all
1 ≤ i, j ≤M instead.

If the random walk on the strip is recurrent, we get the same behaviour as on Z
and the random walk concentrates around some random sequence (b(n))n∈N.

Theorem 2.18 (Bolthausen and Goldsheid (2008)). Let the random walk on the strip
(Xn)n∈N be recurrent and set Xn = (ηn, ξn). Assume that

(i) the sequence (Pk, Qk, Rk)k∈Z is i.i.d. with law µ,

(ii) there exists ε > 0 and l <∞ such that Conditions (C4.1(ε)) and (C4.2(ε)) hold
and such that ||Rl|| < 1− ε,

(iii) supp(µ) 6⊆ {π(P0 −Q0)1 = 0 ∈ Z}, where π is the unique row vector such that

π(P0 +Q0 +R0) = π and
∑M
i=1 πi = 1.

Then, there exists a sequence of random variables (bn) = (b(n;ω)) which converges
weakly as n→∞ and for every constant δ > 0,

P
(∣∣∣∣ηn − bnlog2 n

∣∣∣∣ > δ

)
→ 0 as n→∞.

In their paper Bolthausen and Goldsheid (2008) remark that the theorem could
also be proved under less strict conditions, by replacing Condition (ii) of the theorem
with the assumption that the strip is the only communicating class of the random walk
and that there is an ε > 0 and a triple (P,Q,R) ∈ supp(µ) such that either Assumption
(C4.1(ε)) or Assumption (C4.2(ε)) hold. They also remark that Condition (iii) of the
theorem is necessary by giving an example where the violation of this condition leads
to Gaussian behaviour. Finally, Bolthausen (2008) remarks in his lecture notes that
for constant transition matrices (P,Q,R) the third condition is equivalent to λ+ = 0,
i.e. to the recurrence of the random walk.

2.4 RWRE on integer lattices

The picture for random walks in random environments on integer lattices in more than
two dimensions is much less clear than on the integers. First, while random walks on
the integers are always reversible and can be expressed as a random conductance
model, this is not the case in higher dimensions. Thus, we lack much of the machinery
presented so far. Even if we restrict ourselves to random conductance models on
Zd, there are still many di�culties. This is partially due to the fact that traps can
take much more complicated shapes. In very high dimensions, traps are less likely
to form, since many conductances have to work together to form a trap. For an
illustration of this e�ect consider the simplest possible trap, which is a single large
conductance between to sites x and y, while all other conductances adjacent to x and
y are small. In d = 2 this requires six conductances to be small. In general we need
to control 2(2d − 1) conductances to get a trap. Thus, the probability for such an
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event in an i.i.d. conductance model decreases as p4d−2, where p is the probability
for a conductance to be small enough. In addition to that, we also have to �nd an
estimate on the probability for the random walk to enter a trap. On the integers, this
is much easier, since the random walker has to enter and leave every trap that lies on
its way at least once.

Another complication is that we may allow non-elliptic environments. On the
integers Z, whenever the probability for a zero conductance is positive, the random
walk becomes con�ned to �nite intervals of Z. For d ≥ 2, one can obtain an in�nite
connected component, if the probability for conductances to be zero is small. This
e�ect is known as percolation. If there is an in�nite connected component, the random
walk has non-trivial behaviour on this sub-graph. We will �rst brie�y describe the most
recent results for random conductance models with no intention to cover the topic.
Then we summarize the results for random walks on percolation clusters. We conclude
the chapter with our own results on random walks on oriented percolation clusters.
Thus, some of the material presented here has already appeared in Miller (2016).

2.4.1 In elliptic environments

Let (Xn)n≥0 be a random walk in a random elliptic i.i.d. environment on Zd. As the
situation is already complicated in d = 1, one might expect it to be even more so in
d ≥ 2. Indeed, in general cases it is not even known what the precise conditions for
transience or ballisticity of a random walk should be. As these results are not of direct
importance for the main result of this section, we refer for example to Zeitouni (2004)
for an overview. Most results are known for the random conductance model. Here,
the strict ellipticity condition on the conductances was removed in recent works on the
topic and replaced by moment conditions, for example Andres et al. (2015). However,
in contrast to percolating environments, the conductances have to be strictly between
zero and in�nity. One may also allow conductances to change in time. These models
are known as dynamic random conductance models. For the previously mentioned
model the dynamic version has been treated in Andres et al. (2016). We can reduce
a dynamic random conductance model on Zd to a static one, by adding another di-
mension for the time such that the state space is Zd × Z or Zd × R. Then, we force
the random walk to be transient with speed one in the time direction. The same
e�ect is caused by choosing an oriented graph as we do for random walks on oriented
percolation clusters.

2.4.2 On percolation clusters

In this section, we will only consider percolation on integer lattices, although percola-
tion on more general graphs is a big �eld of research in itself. Denote by V = Zd the
vertex set and let E be the set of all nearest-neighbour edges of V ,

E = {(x, y) : x, y ∈ V and ||x− y||2 = 1} .

Then, the pair G = (V,E) is a graph. We say two vertices x, y are adjacent in the
graph G if (x, y) ∈ E. We say two edges (x, y) and (x′, y′) are adjacent, if they share a
vertex, i.e. either x ∈ {x′, y′} or y ∈ {x′, y′}. We may now assign a Bernoulli random
variable either to each vertex v ∈ V or each edge e ∈ E. We write I for the index set
of the family of random variables and choose I = V or I = E. Then, a percolation
is a family (ωx)x∈I of i.i.d. Bernoulli random variables with parameter p ∈ [0, 1] such
that ωx ∈ {0, 1} for all x ∈ I. If I = V , we get site percolation, if I = E we get bond
percolation. We say that a vertex or edge x is open, if ωx = 1 and closed if ωx = 0.
Thus, a vertex or edge is open with probability p and closed with probability 1 − p
independent of all other vertices or edges. We say two vertices x and y are connected
by an open path, if two things happen. First, there is a sequence of vertices z1, . . . , zN
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such that z1 = x, zN = y and zi and zi+1 are adjacent. Second, we require for site
percolation that all vertices z1, . . . , zN are open and for edge percolation that all edges
(z1, z2), . . . , (zN−1, zN ) are open. We write x→ y to denote that there is an open path
from x to y.

In this thesis, we generally work with site percolation. Thus, the following notation
is for I = V . We de�ne the connected open component Cx of a site x as the set of all
vertices that can be reached from x by an open path. If x is closed, then Cx = ∅. If x
is open, then

Cx = {y ∈ V : x→ y}.

We say that (ωx)x∈V percolates if there is some x ∈ V such that |Cx| =∞. We de�ne
the critical probability as

pc = sup {p ≥ 0 : P(|C0| =∞) = 0} .

We say that the percolation is supercritical, if the probability for an edge or vertex to be
open is bigger than the critical probability, p > pc. The main theorem on percolation
states that this phase transition happens at a non-trivial critical probability pc.

Theorem 2.19. For percolation on integer lattices with d ≥ 2, we have that 0 < pc <
1. Provided that p > pc, the in�nite connected component is unique.

For a proof of this theorem, see for example Grimmett (2010), Theorem 3.2 and
Theorem 5.22, which was originally shown in Aizenman et al. (1987). The random
walk on a percolation cluster is the random walk that chooses its next step uniformly
from all adjacent open sites. Assume that the origin is in the in�nite cluster, 0 ∈ C∞.
The random walk on C∞ is a Markov chain (Xn)n∈N with state space Zd starting at
X0 = 0 with transition probabilities

P 0
ω (Xn+1 = y|Xn = x) =

1{y∈C∞}∑
z∼x 1{z∈C∞}

for every environment ω such that 0 ∈ C∞.
The next two theorems were proven for bond percolation only. With some extra

work one can transfer the proofs to site percolation as well. The annealed central limit
theorem on a percolation cluster on integer lattices was proven for d = 2 by De Masi
et al. (1989), while the result for general dimensions follows from Gaussian bounds on
the transition densities proven in Barlow (2004).

Theorem 2.20 (Annealed central limit theorem for random walk on percolation clus-
ters, De Masi et al. (1989); Barlow (2004)). Let (Xn)n∈N be a random walk on super-
critical bond percolation on Zd with d ≥ 2 and such that X0 = 0 almost surely. Then,
an annealed invariance principle holds for (Xn)n∈N.

The quenched central limit theorem was �rst shown by Sidoravicius and Sznitman
(2004) for dimensions d ≥ 4 and then by Berger and Biskup (2007) and independently
by Mathieu and Piatnitski (2007) for dimensions d = 2, 3.

Theorem 2.21 (Quenched central limit theorem for random walk on percolation
clusters, Sidoravicius and Sznitman (2004); Berger and Biskup (2007); Mathieu and
Piatnitski (2007)). Let (Xn)n∈N be a random walk on supercritical bond percolation
on Zd with d ≥ 2 and such that X0 = 0 almost surely. Then, a quenched functional
invariance principle holds for (Xn)n∈N.

Going back to the most general de�nition of random walks in random environments,
we can add orientation to the edges of the graph and only allow the random walk to pass
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Figure 4: Oriented lattice graph for d = 1. The vertices of the underlying lattice
Zd×Z are shown in grey. We see that there is in fact two disjoint copies of this graph
on Zd × Z. One of them is shown in here, the second can be obtained by translation
along the x-axis. We choose the connected component that contains the origin.

an edge following its orientation. Such a model is not a random conductance model.
In oriented percolation, the orientation of the edges distinguishes one dimension and
breaks the symmetry. Thus, we work on the discrete space V := Zd × Z, which we
will refer to as the full lattice. The �rst d ≥ 1 dimensions in V are space dimensions
and the last dimension is the time dimension. We turn the lattice V into an oriented
graph (V,E) with vertices V by adding edges

E := {|(x, n), (y, k)〉 : (y, k) ∈ U+(x, n))},

where |(x, n), (y, k)〉 denotes an oriented edge from (x, n) to (y, k) and

U+(x, n) := {(y, k) ∈ V : ||x− y||∞ = 1, k = n+ 1} (2.14)

is the set of consecutive vertices of (x, n). The speci�c choice of the set of consecutive
vertices U+ is not important as long as it is �nite and symmetric. The corresponding
oriented graph for our choice of U+ and d = 1 is shown in Figure 4. There is always
more than one disjoint connected component of this graph and only one of them is
shown. We will always work on the component that contains the origin, without
further mentioning.

Let (ω(x, n))(x,n)∈V be a family of independent and identically distributed Bernoulli
random variables with parameter p ∈ (pc, 1] that represents a supercritical site per-
colation on the vertex set V . The constant 0 < pc < 1 is the critical probability
of oriented site percolation on (V,E). Existence and non-triviality of pc was proven
in Grimmett and Hiemer (2002), similar to Theorem 2.19. As before, we say a site
(x, n) ∈ V is open, if ω(x, n) = 1. Otherwise, we call it closed. With the notion of
open sites we can de�ne open paths. A directed path on the oriented graph (V,E)
from vertex (x, n) to vertex (y,m) is called open, if all vertices on that path are open.
For an open directed path from (x, n) to (y,m) we write (x, n)→ (y,m). Analogously,
we write (x, n) → ∞ if there is an in�nite, directed open path on (V,E) starting in
(x, n). The oriented percolation cluster is not a good graph for a random walk, as it
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would get trapped in �nite time. We de�ne the percolation process ξP := (ξPn )n∈Z by

ξPn (x) :=

{
1 if (x, n)→∞
0 otherwise.

Any random walk on the oriented percolation cluster has to be con�ned to sites that
are open in the percolation process to avoid traps. Since a site (x, n) can only ever
be visited, if ξPn (x) = 1, we refer to ξP as the environment. The place of the oriented
percolation cluster as the sub-graph for the random walk is thus taken by its backbone,
which is denoted by

C := {(x, n) ∈ V : (x, n)→∞}
and is a proper subset of the oriented percolation cluster. It describes all sites that lie
on an in�nite directed open path on (V,E). Since the random walk is only non-trivial,
if it starts on the backbone, we de�ne a new measure conditioned on the origin being in
the backbone. We can do this, since this event has a positive probability in supercritical
percolation. We therefore write P̃(·) = P(·|0 ∈ C) for the annealed measure conditioned
on the backbone containing the origin. The random walk (Xn)n∈N on the environment
ξP such that 0 ∈ C has transition probabilities

P 0
ξ (Xn+1 = y|Xn = x) =

1{(y,n+1)∈U+(x,n)∩C}∑
z∼x 1{(z,n+1)∈U+(x,n)∩C}

. (2.15)

The usual limit theorems for this model were shown recently.

Theorem 2.22 (Scaling limits for random walk on oriented percolation clusters,
Birkner et al. (2013)). Let (Xn)n≥0 be a random walk on the backbone of an oriented
bond percolation on Zd × Z for d ≥ 1. Then

(i) a law of large numbers holds with ~µ = 0,

(ii) an annealed central limit theorem holds with non-degenerate covariance matrix
Σ and

(iii) a quenched central limit theorem holds with the same limit law as for the annealed
case.

The random walk on the backbone of an oriented percolation cluster is a simple
model for ancestral lineages in populations with local competition. The connection
to a population model is shown in Figure 5 on the example of a �nite section of V .
Each open site in V can be inhabited by at most one individual. However, an open
site cannot be inhabited if there is no individual in the previous generation that can
become its parent. The local construction is as follows. First, we put individuals at
all open sites at some initial time, here s = 1. In the �gure this �rst generation is
highlighted by the grey box. Each of these individuals places o�spring to neighbouring
sites in the next time step s+1 in case the new site is open. The backbone is the set of
all sites that are inhabited eventually by progeny of the �rst generation. It is shown in
black in the top panel of the �gure. For the global construction of the backbone C, we
take the �rst generation back to time −∞. We can see that in many occasions a site
can receive o�spring from two parents. In this case, only one of the potential parents
can place their o�spring, which is a simple form of local competition. An ancestral
line is the path of its ancestors backwards through the generations. It is shown in
black in the bottom panel. To construct the ancestral line, �rst take an individual
from the backbone that lives in the last generation. Successively, we choose one of the
possible parents from generation s− 1 uniformly at random. If there is no choice, we
pick the only parent available. This makes the ancestral line a simple random walk
on the backbone. By construction, when we follow the path of the random walk with
time t, we go backwards through the generations s.
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Figure 5: The construction of the backbone is shown in the top panel. Open sites in
V are denoted by dots and individuals are placed initially at all open sites in the grey
box. The locally constructed backbone is shown in black. The bottom panel shows an
ancestral line in the backbone.
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2.4.3 On weighted, oriented percolation clusters

Random walks in non-elliptic environments are always random walks on the sub-graph
that is the open cluster of the origin, since every conductance that is equal to zero is
equivalent to a closed edge in a percolation. Starting from Bernoulli percolation as
random environment, we observe that changing all non-zero conductances to i.i.d. uni-
formly elliptic ones does not lead to di�erent behaviour of the random walk. Thus,
for most of the results on random walks on percolation clusters this fact was already
mentioned by the authors as in Birkner et al. (2013) or the result was directly proven
for bounded conductances, as in De Masi et al. (1989).

We generalize the pure percolation model introduced in the previous section by
adding a random �eld (Kx)x∈V . The percolation process denoted by ξK = (ξKn )n∈Z
becomes

ξKn (x) :=

{
K(x, n) if (x, n)→∞
0 otherwise.

We modify the transition kernel to be

P 0
ξ (Xn+1 = y|Xn = x) =

K(y, n+ 1)1{(y,n+1)∈U+(x,n)∩C}∑
z∼xK(z, n+ 1)1{(z,n+1)∈U+(x,n)∩C}

, (2.16)

for every environment ξK such that 0 ∈ C. The random �eld K acts as weights for the
random walk on the backbone. The orientation of the percolation cluster implies that
the environment seen from the particle changes dynamically in time, since the particle
can never return to a previously visited site. The percolation process with additional
weights ξK has exactly the same non-zero sites as ξP . Thus, the backbone C is the
same. This independence between the percolation (ωx)x∈V and the weights (Kx)x∈V
makes it possible to transfer methods from Birkner et al. (2013) to this model. The
weights allow us to have a slightly more realistic population model. Each site can still
be habitable or not habitable depending on ω. In addition, if a site is habitable, it
can now support K individuals instead of only one. We choose one of the possible
parents to put its o�spring at a new site and populate it to its capacity K. In order to
construct the ancestral line, we simply pick one of those potential parents uniformly
at random, which makes the ancestral line the same as a weighted random walk on C
with weights K.

Before stating the results, we �rst have to be more speci�c on the random �eld K.
We introduce some notion of mixing for random �elds. For a brief overview on mixing
conditions we refer the reader to the survey paper of Bradley (2005).

De�nition 2.23 (Mixing conditions and mixing coe�cients). Let K be a random
�eld on V . Denote by

σ(K) := σ {K(v) : v ∈ V }

the σ-algebra of the weights and by

supp(A) :=
⋂
{U ⊂ V : A ∈ σ(K(v) : v ∈ U)}

the support of an event A ∈ σ(K). Furthermore, we say that a set C is a cone with
apex in (x, l) ∈ V , if

C = {(y, k) ∈ V : k ≥ l and ||x− y||∞ ≤ |k − l|} .

This de�nes a cone with aperture π/2.
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(i) We say that K is α-mixing (or strongly mixing) in space w.r.t. the law P if the
mixing coe�cients (αn)n∈N satisfy αn

n→∞−−−−→ 0, where

αn := sup {|P(A ∩B)− P(A)P(B)| : (2.17)

A,B ∈ σ(K),dists(supp(A), supp(B)) > n}

and we take the distance in the �rst d coordinates (space coordinates), i.e.

dists(U,W ) = inf {||x− y||∞ : (x, n) ∈ U, (y,m) ∈W} . (2.18)

(ii) We say that K is φ-mixing (or uniformly mixing) in time w.r.t. the law P if the
mixing coe�cients (φn)n∈N satisfy φn

n→∞−−−−→ 0, where

φn := sup {|P(B|A)− P(B)| : (2.19)

A,B ∈ σ(K),P(A) > 0, supp(B) ⊆ C,C is a cone and

distt(supp(A), C) > n
}

and we take the distance in the last coordinate of V (time coordinate),

distt(U,W ) = inf {|n−m| : (x, n) ∈ U, (y,m) ∈W} . (2.20)

This de�nition of φ-mixing is in fact a cone mixing condition since the usual de�ni-
tion of φ-mixing for random sequences does not generalize well to random �elds. While
the notion of α-mixing makes sense on its own for random �elds, the usual de�nition
of φ-mixing applied to random �elds is a form of �nite dependence. Bradley (1989)
shows that there is a constant r > 0 such that φn ∈ {0, 1} for all n ≥ r. However, since
the neighbourhood U+ is �nite, we use a φ-mixing condition on cone-shaped subsets.
With this de�nition of mixing, we obtain the following scaling limits similar to ori-
ented percolation without weights. We choose K stationary, mixing and independent
of ω for all our results. Note that for the results, ω denotes only the percolation. The
full environment including the weights K is represented by the environment process
ξ. The following results were published in Miller (2016) and a proof can be found in
Section 4.

Lemma 2.24 (LLN for polynomially time-mixing weights). Let d ≥ 1 and p ∈ (pc, 1].
If K is independent of ω, strictly positive, stationary and φ-mixing in the time coor-
dinate with mixing coe�cients φn ∈ O(n−(1+δ)) for some δ > 0, then a LLN holds,
i.e. there is a constant ~µ ∈ Rd such that ||~µ||∞ < 1 and

P 0
ξ

(
Xn

n

n→∞−−−−→ ~µ

)
= 1 for P̃- almost every ξK . (2.21)

Theorem 2.25 (Annealed CLT for polynomially time-mixing weights). Let d ≥ 1
and p ∈ (pc, 1). If K is independent of ω, strictly positive, stationary and φ-mixing in
the time coordinate with mixing coe�cients φn ∈ O(n−(2+δ)) for some δ > 0, then an
annealed CLT holds, i.e. for all continuous and bounded functions f ∈ Cb(Rd)

Ẽ
[
f

(
Xn − n~µ√

n

)]
n→∞−−−−→ Φ(f), (2.22)

where ~µ is the same drift vector as in Lemma 2.24, Φ(f) :=
∫
f(x)Φ(dx) and Φ is a

non-trivial centred d-dimensional Gaussian law with full rank covariance matrix Σ.

While the LLN, Lemma 2.24, holds for p = 1, we can prove the central limit
theorems under the given mixing conditions only for p < 1. For the aCLT on the full
lattice, p = 1, the main di�culty is to show non-degeneracy of the limit, since we have
no assumptions on moments of the random �eld K.
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Theorem 2.26 (Quenched CLT for exponentially space-time-mixing weights). Let
d ≥ 2 and p ∈ (pc, 1). If K is independent of ω, strictly positive, stationary, φ-mixing
in the time coordinate with mixing coe�cients φn ∈ O(e−c1n) and α-mixing in space
with mixing coe�cients αn ∈ O(e−c2n), 0 < c1, c2 < ∞, then a quenched CLT holds
with the same limit as in Theorem 2.25, i.e. for all continuous and bounded functions
f ∈ Cb(Rd)

E0
ξ

[
f

(
Xn − n~µ√

n

)]
n→∞−−−−→ Φ(f) for P̃-almost every ξK , (2.23)

where ~µ is the same drift vector as in Lemma 2.24 and Φ is the same law as in Theorem
2.25.
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3 Interacting particle systems with exclusion

The standard reference for interacting particle systems is Liggett (1985). He describes
them in his introduction as follows:

�A typical interacting particle system consists of �nitely or in�nitely
many particles which, in the absence of the interaction, would evolve
according to independent �nite or countable state Markov chains. Su-
perimposed on this underlying motion is some type of interaction. As
a result of the interaction, the evolution of an individual particle is
no longer Markovian.�

Typical examples of interacting particle systems are the Ising model, the voter
model, the contact process and the exclusion process. The latter will be described in
the Section 3.3. For that we need some general theory for Markov processes.

3.1 Markov processes

Interacting particle systems are usually described as Markov processes. The state space
of a Markov process is a compact metric space endowed with the σ-algebra of Borel
sets. The canonical path space Ω is the set of all cad-lag functions ω : [0,∞) → X.
Let F be the smallest σ-algebra on Ω such that the mapping ω 7→ ω(t) is measurable
for all t ≥ 0 and ω ∈ Ω.

De�nition 3.1 (Liggett (1985)). A Markov process on the state space X is a collec-
tion of probability measures (Pζ)ζ∈X on Ω together with a right-continuous �ltration
(Ft)t≥0 on Ω to which the random variables η(t, ω) = ω(t) are adapted. Furthermore,
for every ζ ∈ X it satis�es

(i) Pζ (η(0) = ζ) = 1,

(ii) ζ 7→ Pζ(A) is measurable for every A ∈ F and

(iii) for every ζ ∈ X and A ∈ F

Pζ (ηs+· ∈ A| Fs) = Pηs(A) Pζ-almost surely.

Let P be the set of probability measures on X with the topology of weak conver-
gence. If we start a Markov process with law (Pζ)ζ∈X from some initial distribution
µ ∈ P we may de�ne the measure of this process by

Pµ =

∫
X

Pζ µ(dζ),

which turns the Markov process into a stochastic process. Let C(X) be the collection
of all continuous functions on the state space X, which is a Banach space with norm
||f || = sup |f(η)|. The Markov semi-group of a Markov process (Pζ)ζ∈X is a collection
of linear operators (S(t))t≥0 such that

Eζf(ηt) = S(t)f(ζ)

for all f ∈ C(X), ζ ∈ X and t ≥ 0. We prefer to work with Feller processes instead of
Markov processes, since they have two convenient representations.

De�nition 3.2 (Liggett (1985)). A Markov process is a Feller process, if for every
f ∈ C(X) and for all t ≥ 0 we have S(t)f ∈ C(X).
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There is a one-to-one correspondence between Feller processes, their Markov semi-
group (S(t))t≥0 and their Markov generators L, which is explained in detail in Liggett
(1985). We need a few de�nitions, before we can state the ergodic theorem for Markov
processes and discuss interacting particle systems.

De�nition 3.3 (Liggett (1985)). A measure µ ∈ P is said to be invariant for the
process, if µS(t) = µ for all t ≥ 0 and we write

I = {µ ∈ P : µS(t) = µ for all t ≥ 0}
for the set of all invariant measures. Let Ie be the set of extreme points of I.

We are interested in the set of all invariant measures for the process, because they
help us to identify the limit of µS(t) as t→∞.

Theorem 3.4 (Liggett (1985)).

(i) µ ∈ P is invariant for the Feller process if and only if∫
S(t)f dµ =

∫
f dµ

for all f ∈ C(X) and t ≥ 0.

(ii) I is not empty.

(iii) I is the closed convex hull of Ie.
(iv) If ν = limµS(t) as t→∞ exists for some µ ∈ P, then ν ∈ I.
De�nition 3.5 (Liggett (1985)). A Markov process (ηt)t≥0 is called

(i) stationary, if the joint distributions of (ηs1+t, . . . , ηsN+t) are independent of t for
all N ∈ N and (s1, . . . , sN ),

(ii) ergodic, if I = {ν} is a singleton and limµS(t) = ν as t→∞ for all µ ∈ P.
If we have a Markov process (Pζ)ζ∈X and take a measure µ ∈ I from the set of

invariant measures for this process, we can construct a new stationary Markov process
Pµ by taking the invariant measure µ as initial distribution. For such a stationary
Markov process we have a connection between µ being extremal and ergodicity of the
process.

Theorem 3.6 (Liggett (1999)). Let (ηt)t≥0 be a stationary Markov process such that
the distribution of ηt is equal to µ ∈ I for all t ≥ 0. Then, the process is ergodic in
the sense of De�nition 3.5 (iii), if and only if µ ∈ Ie.

Finally, we conclude this section with the ergodic theorem for Markov processes as
it is stated in Liggett (1999).

Theorem 3.7 (Birkho�'s Ergodic Theorem. Birkho� (1931)). Let (ηt)t≥0 be a Markov
process.

(i) If (ηt)t≥0 is stationary, then

lim
t→∞

1

t

∫ t

0

f(ηt) ds

exists for any bounded, measurable function f , but may not be constant.

(ii) If (ηt)t≥0 is stationary and ergodic, then

1

t

∫ t

0

f(ηt) ds
t→∞−−−→ E [f(η0)] almost surely

for any bounded, measurable function f .
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3.2 Interacting particle systems

Using the notation we have introduced for Feller processes, we can now proceed to
interacting particle systems. For the general set-up as described in Liggett (1985),
denote a countable set of sites by S and by W a compact metric space. The state
space of the interacting particle system is X = WS . We describe the dynamics of
the system using transition measures for any �nite subset T ⊂ S. Let the transition
rates qT (η,dζ) be a �nite positive measure for any η ∈ X such that η 7→ qT (η,dζ) is
a continuous mapping with the topology of weak convergence. De�ne

ηζ(x) =

{
ζ(x) if x ∈ T
η(x) if x /∈ T

for any η ∈ X and ζ ∈WT . These transition rates provide us with a pre-generator on
the Lipschitz functions on X.

Lemma 3.8 (Liggett (1985)). If

sup
x∈S

∑
T3x

sup
{
qT (η,WT ) : η ∈ X

}
<∞,

then for any Lipschitz function f on X the operator L de�ned by

Lf(η) =
∑
T

∫
WT

qT (η,dζ)
[
f(ηζ)− f(η)

]
is a Markov pre-generator.

We obtain a Markov generator with associated semi-group (S(t))t≥0 by taking the
closure of the pre-generator, if the transition rates depend not too much on a single
coordinate in the con�guration. A measure of this dependence is de�ned by

qT (y) = sup
{
‖qT (η1,dζ)− qT (η2,dζ)‖TV,WT : η1(z) = η2(z) ∀z 6= y

}
, (3.1)

where || · ||TV,WT is the total variation norm on the subspace WT .

Theorem 3.9 (Liggett (1985)). Assume that

sup
x∈S

∑
T3x

∑
y 6=x

qT (y) <∞.

Then the closure of L is a Markov generator of a Markov semi-group S(t).

3.3 Exclusion process

The exclusion process is an in�nite interacting particle system, where each site can
be occupied by at most one particle. A particle at site x tries to jump to site y,
whenever its exponential clock with rate q(x, y) rings. It performs the jump, if the
target site y is empty. If the target site is already occupied, it does not move and waits
for its exponential clock to ring again for another try. Thus, the exclusion process is
a continuous time Markov process (ηt)t≥0 on the state space X = {0, 1}S , where we
consider only the lattice and take S = Zd. We say the site x is occupied at time t if
ηt(x) = 1 and it is empty if ηt(x) = 0. Let (p(x, y))x,y∈S be the transition probabilities
of the single particle associated with the transition rates (q(x, y))x,y∈S , namely for all
x, y ∈ S

p(x, y) =
q(x, y)∑
z∈S q(x, z)

.
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Denote by ηx,y the same con�guration as η but with coordinates x and y inter-
changed. Now, we can de�ne the pre-generator L that acts on any Lipschitz function
f : {0, 1}S → R by

Lf(η) =
∑
x,y∈S

η(x)(1− η(y))p(x, y) [f(ηx,y)− f(η)] .

The generator says that the con�guration changes from η to ηx,y, if the site x is
occupied, the site y is not occupied and we choose this jump with probability p(x, y).
The closure of L is the generator of the semi-group (S(t))t≥0 of a Markov process on
{0, 1}S , if

sup
y∈S

∑
x∈S

p(x, y) <∞. (3.2)

We may check that both conditions in Lemma 3.8 and Theorem 3.9 are satis�ed,
if Equation (3.2) holds. We can explicitly calculate the measure of dependence of
transition rates qT for �nite subsets T ⊂ Zd as de�ned in Equation (3.1). Firstly,
qT = 0, whenever |T | 6= 2, since there are exactly two particles involved in every
transition. Thus, take T = {x, y} for some x, y ∈ S. If η ∈ X is such that η(x) =
η(y), then q{x,y}(η,dζ) = 0, since no transition is possible. If, however, η(x) = 1
and η(y) = 0, then the particle at x can jump to y and the measure qT (η,dζ) puts
mass p(x, y) on ηx,y and mass 1 − p(x, y) on η. Since qT = 0 whenever |T | 6= 2,
and qT (y) = max{p(x, y), p(y, x)} for any T = {x, y}, both assumptions follow from
Equation (3.2).

If the transition probabilities of the single particle (p(x, y))x,y∈S are either doubly
stochastic or if there is a reversible measure (α(x))x∈S associated to them, then the
product measures with marginals

να{η : η(x) = 1} = α(x) (3.3)

are invariant for the dynamics of the Markov process, which is the following result.

Theorem 3.10 (Liggett (1985)).

(i) If the transition probabilities (p(x, y))x,y∈S are doubly stochastic, then να ∈ I
for every constant α ∈ [0, 1].

(ii) If the motion of a single particle is reversible under (p(x, y))x,y∈S, i.e. there
exists a function (π(x))x∈S such that

π(x)p(x, y) = π(y)p(y, x) for all x, y ∈ S, (3.4)

then να ∈ I, where

α(x) =
π(x)

1 + π(x)
.

Note here that any reversible measure may be multiplied by a constant and is still
reversible. Thus, the measures να form a one-parameter family. Let the reversible
measure be scaled such that π(0) = 1. Then, every constant c ∈ [0,∞] corresponds to
a reversible measure cπ and function α such that

α(x) =
cπ(x)

1 + cπ(x)
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for every x ∈ S. If α ≡ ρ ∈ [0, 1] is constant, then ρ corresponds to the density of the
particles on S. In fact, α is constant if and only if (p(x, y))x,y∈S is symmetric, since

π(x) = π(y)
p(y, x)

p(x, y)
= π(y) ⇐⇒ p(y, x)

p(x, y)
= 1.

If α is not constant, then α(x) is the local density and we write να≡ρ, where να
is de�ned in Equation (3.3). Thus, we can parametrize the family of measures by
α(0) ∈ [0, 1] and the whole family is {να : 0 ≤ α(0) ≤ 1}. However, not every α
corresponds to a global particle density, since the limit

lim
x→∞

1

x

x∑
y=1

α(y)

may not exist. For example, consider the case when the transition probabilities
(p(x, y))x,y∈Z are nearest-neighbour and i.i.d. such that

E
[
log

p(x, x− 1)

p(x, x+ 1)

]
= 0,

which corresponds to an exclusion process in a Sinai environment. In this case log π(x)
is a symmetric simple random walk, which performs increasingly large excursions as
x→∞ and thus there are regions of all sizes which have very high or very low particle
density.

In order to �nd all invariant measures, we try to describe the extremal invariant
measures, since the set of all invariant measures I is the convex hull of the set of
extremal invariant measures Ie, see De�nition 3.3. Once we know that a measure
is extremal for a class of measures, we get ergodicity with respect to time shifts by
applying Theorem 3.6 for the process started from any distribution µ ∈ Ie. For the
remainder of this section, we �rst describe results for spatially homogeneous systems,
which are well understood. Afterwards, we summarize what is known for spatially
inhomogeneous systems. We then consider the exclusion process on the full lattice Zd
although there are some results known for S = N, see for example Chapter III.3 in
Liggett (1999). For S = N very little is known about the tagged particle process, as
the system is not translation invariant.

3.3.1 Homogeneous environments

In this section we consider exclusion processes on Zd with translation invariant tran-
sition probabilities (p(x, y))x,y∈S , i.e. p(x, y) = p(0, y − x) for all x, y ∈ S. The �rst
goal is to determine the invariant measures for translation invariant systems. Write T
for the set of all translation invariant measures for the exclusion process,

T = {µ ∈ P : θxµ = µ for all x ∈ S} ,

where (θx)x∈S is the usual shift operator on S such that (θxη)(y) = η(x + y) for any
η ∈ X and x, y ∈ S. We do not know the complete set of invariant extremal measures,
but only those which are also translation invariant. De�ne for any t ≥ 0 and x, y ∈ S

pt(x, y) = e−t
∞∑
n=0

tn

n!
pn(x, y),

where (pn(x, y))x,y∈S are the n-step transition probabilities of the Markov chain with
transition law (p(x, y))x,y∈S .
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Theorem 3.11 (Liggett (1976); Andjel (1981)). Take S = Zd and assume that for
every x, y ∈ S there is some t ≥ 0 such that

pt(x, y) + pt(y, x) > 0. (3.5)

(i) If the transition probabilities (p(x, y))x,y∈S are translation invariant, then the
product measures να are extremal in the class of all stationary and translation
invariant distributions,

(I ∩ T )e = {να : 0 ≤ α(0) ≤ 1} .

(ii) Let the starting distribution µ be translation invariant with density ρ = µ{η :
η(x) = 1}. Then the limit

µ̄ = lim
t→∞

µS(t)

exists and µ̄ = να≡ρ.

In the special case of the nearest-neighbour one-dimensional homogeneous system,
p(x, x+1) = p, p(x, x−1) = q and p+q = 1 for all x ∈ Z, we know the set of all extremal
invariant measures explicitly. This includes the totally asymmetric exclusion process,
which we get be setting p = 1. In the previous theorem, the condition of irreducibility
has been replaced by Condition (3.5), which includes the totally asymmetric exclusion
process. However, for the asymmetric exclusion process, p ∈ (0, 1) and p 6= 1/2, the
extremal invariant measures are known anyway.

De�ne another one-parameter family of measures (νn) that we obtain by condi-
tioning να de�ned as in Equation (3.3) on the events

An =


{η :

∑
x
η(x) = n} if

∑
x
α(x) <∞

{η :
∑
x

(1− η(x)) = n} if
∑
x

(1− α(x)) <∞

{η :
∑
x∈T

η(x)− ∑
x∈T c

(1− η(x)) = n} otherwise

,

where T ⊂ S is chosen such that
∑
x∈T α(x) <∞ and

∑
x∈T c(1− α(x)) <∞. De�ne

the measures by

νn(·) =


να(·|An) if n ∈ Z
the point mass on η ≡ 1 if n =∞
the point mass on η ≡ 0 if n = −∞

. (3.6)

These measures are independent of the choice of T and the choice of α(0) ∈ [0, 1].

Theorem 3.12 (Liggett (1976)). Let (p(x, y))x,y∈Z be homogeneous and nearest neigh-
bour with p 6= 1/2. Then

Ie = {να≡ρ : 0 ≤ ρ ≤ 1} ∪ {νn : −∞ < n <∞} .
A detailed study of the asymmetric exclusion process can be found in Chapter III.2

in Liggett (1999).

3.3.2 Inhomogeneous environments

We can state the set of extremal invariant measures explicitly, when the translation
probabilities have asymptotically zero mean and there is a reversible measure as de�ned
in Equation (3.4). The following result does not require translation invariance, but
we want the transition probabilities to be irreducible, such that all states in the state
space are in the same communicating class. In fact, for the next result it is enough if
the system is asymptotically translation invariant.
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Theorem 3.13 (Jung (2003)). Let S = Z and assume (p(x, y))x,y∈S is irreducible
and reversible with να and π de�ned as in Theorem 3.10. Assume further that there
exist two transition kernels (qi(x))x∈Z, i ∈ {1, 2} such that

(i)
∑
x∈Z xqi(x) = 0 for i ∈ {1, 2},

(ii)
∑
x∈Z |x|qi(x) <∞ for i ∈ {1, 2},

(iii) limK→∞
∑
x≥0

∑
|y|≥|x−K| |p(x, x+ y)− q1(y)| = 0 and

(iv) limK→∞
∑
x≤0

∑
|y|≥|x+K| |p(x, x+ y) + q2(y)| = 0.

Then, the extremal invariant measures are explicitly known and the three cases are as
follows.

(i) If
∑
i αi(1− αi) =∞, then

Ie = {να : 0 ≤ α(0) ≤ 1} .

(ii) If
∑
i αi(1− αi) <∞ and either

∑
i π(x) <∞ or

∑
i 1/π(i) <∞, then

Ie = {νn : 0 ≤ n ≤ ∞} .

(iii) If
∑
i αi(1− αi) <∞, but

∑
i π(x) =∞ =

∑
i 1/π(i), then

Ie = {νn : −∞ ≤ n ≤ ∞} .

A simpler version of the following theorem has been �rst proven by Liggett (1976).
Note that the condition of asymptotically zero mean is a necessary condition for the
reversible measures (νn) to be the only invariant measures. The existence of non-
reversible invariant measure has been proven in Chayes and Liggett (2007).

Unfortunately, very little is known if the transition probabilities are not transla-
tion invariant and the environment of the exclusion process is inhomogeneous except
under the previous assumption of asymptotically zero mean. The invariant extremal
measures are known only in the special case that the transition probabilities are posi-
tive recurrent. Then, the system converges in law to total occupancy of all sites. The
measures (νn) are de�ned as in Equation (3.6).

Theorem 3.14 (Liggett (1974)). Let (p(x, y))x,y∈S be positive recurrent, reversible
and irreducible. Then

(i) Ie = {νn : 0 ≤ n ≤ ∞}.

(ii) If µ{η :
∑
x η(x) =∞} = 1, then

ν∞ = lim
t→∞

µS(t),

where ν∞ is the point mass on η ≡ 1.

We can see that for positive recurrent Markov chains the invariant measures are
independent of the initial particle density whenever we start with in�nitely many
particles. In fact, part (ii) of this theorem says that the exclusion process converges
weakly to the fully occupied state and we can imagine the particles to �ll the valley of
the potential over time. It is still an open problem to show almost sure convergence,
i.e. that under the same assumptions Pη(ηt(x) = 1) → 1 as t → ∞ for all x ∈ S and
η ∈ X.
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3.3.3 The tagged particle

Much work has been dedicated into understanding the motion of a selected particle,
which is traced while it moves as part of the exclusion process. Up to now, results
are only known in the case where the transition probabilities are translation invariant
as in Section 3.3.1. To start with, the motion of the so called tagged particle is not
Markovian since it does not keep track of the positions of any other particles. We can
make the system Markovian by observing the tagged particle zt together with the full
process ηt. The generator of this Markov process is

Lf(z, η) =
∑

x,y∈S\{z}
η(x)(1− η(y))p(x, y) [f(z, ηx,y)− f(z, η)]

+
∑
x∈S

p(x)(1− η(z + x)) [f(z + x, ηz,z+x)− f(z, η)] .

If (p(x, y))x,y∈S is translation invariant, then we can rewrite this generator in the
reference frame of the tagged particle and get a Markovian description of the con�gu-
ration seen from the tagged particle. Denote the con�guration seen from the particle
by ξt = θztηt, where θ is the usual shift operator such that ξt(x) = ηt(x + zt). Now,
the new process ξt is itself a Markov process with an explicit generator. We get the
following result about invariant measures, which tells us that the process seen from
the tagged particle is stationary. It can be found for example as Propositions 4.3 and
4.8 in Liggett (1999), where ergodicity is due to Saada (1987).

Lemma 3.15 (Liggett (1999); Saada (1987)). Let (p(x, y))x,y∈S be translation invari-
ant, irreducible and have �nite range.

(i) The Bernoulli product measures conditioned to have the origin occupied ν′ρ(·) =
να≡ρ{·|η(0) = 1 and 0 ≤ ρ ≤ 1} are all invariant for the process (ξt)t≥0.

(ii) The process (ξt)t≥0 is stationary and ergodic.

Using the stationary distribution of the process seen from the tagged particle, we
get a law of large numbers.

Lemma 3.16 (Spitzer (1970); Kipnis (1986); Saada (1987)). Let
∑
y ||y||p(0, y) <∞

and start the exclusion process from a stationary initial distribution να as described in
the previous Lemma 3.15. Then

lim
t→∞

zt
t

= (1− α)
∑
y∈S

yp(0, y)

almost surely and in L1.

The expectation E[zt] was �rst computed by Spitzer (1970). He also showed the
existence of the limit almost surely and in L1. However, he could not show that
the limit was constant almost surely. Later, Kipnis (1986) proved the result for the
one-dimensional asymmetric nearest-neighbour case and Saada (1987) proved the re-
maining cases.

It is generally believed, that the tagged particle exhibits exceptional behaviour
only, if the dynamics are nearest neighbour, d = 1 and p(0, 1) = p(0,−1) = 1/2 but is
di�usive in all other cases. This conjecture can be found for example in Sethuraman
(2006), which contains also a recent summary of the topic.

Conjecture 3.17 (Sethuraman (2006)). Let (p(x, y))x,y∈S be translation invariant
and start the exclusion process from a stationary initial distribution να with 0 < α < 1.
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(i) For any continuous bounded function f ∈ Cb(Rd)

E
[
f

(
zt − µt√

t

)]
→ E [f(Z)] as t→∞,

where µ ∈ Rd is the deterministic drift and Z ∼ N (0,Σ) is a centred Gaussian
random variable with covariance matrix Σ.

(ii) The covariance matrix Σ is non-degenerate for all cases but the exceptional case,
i.e. d = 1 and p(0, 1) = p(0,−1) = 1/2.

The covariance matrix is not explicit except for the one-dimensional nearest-neigh-
bour case. Let p = p(x, x + 1) and q = p(x, x − 1) such that p + q = 1 and p > 1/2.
Then Z ∼ N (0, σ2) and the limiting variance of the tagged particle is

σ2 =
1− α
p− q ,

which was �rst calculated by De Masi and Ferrari (1985). This result includes the
totally asymmetric case, p = 1, which was attributed to H. Kesten in Spitzer (1970).

The conjecture has been proven for a number of cases starting with the totally
asymmetric simple exclusion process on Z, where the particles can only jump to the
right by Spitzer (1970). It was followed by the proof for all nearest-neighbour asym-
metric cases in dimension d = 1 by Kipnis (1986). In the same year Kipnis and
Varadhan (1986) obtained a proof for general symmetric translation probabilities ex-
cluding the exceptional case. The result for asymmetric translation probabilities with
zero mean was obtained by Varadhan (1995) and in general for dimensions d ≥ 3 by
Sethuraman et al. (2000).

Theorem 3.18 (The central limit theorem except for the exceptional case). Let S =
Zd and (p(x, y))x,y∈S be translation invariant. The conjecture holds in each of the
following cases except for the exceptional case (d = 1 and p(x, x + 1) = p(x, x− 1) =
1/2).

(i) If d = 1 and translation probabilities are nearest-neighbour p(x, x + 1) = 1 −
p(x, x− 1) 6= 1/2.

(ii) If d = 1, 2 and the translation probabilities are symmetric, p(x, y) = p(x, y) for
all x, y ∈ S.

(iii) If d = 1, 2 and the translation probabilities have zero mean,∑
y∈S

yp(0, y) = 0.

(iv) If d ≥ 3.

All the remaining cases, where the translation probabilities are asymmetric with
non-zero mean in dimensions one and two are open, but Sethuraman (2006) made
some progress towards a proof.

The tagged particle in the exceptional case shows signi�cant reduction in �uctua-
tions and the central limit theorem is sub-di�usive.

Theorem 3.19 (The exceptional case, Arratia (1985)). Let d = 1 and p(0, 1) =
p(0,−1) = 1/2. Start the exclusion process from a stationary initial distribution ν′ρ
with density ρ and the tagged particle at zero. Then, for any function f ∈ Cb(R)

E
[
f
( zt
t1/4

)]
→ E [f(Z)] as t→∞,
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where Z ∼ N (0, σ2) is a centred Gaussian random variable with variance

σ2 =

√
2

π

[
1− ρ
ρ

]
.

A central limit theorem is also known for the tagged particle of an exclusion process
in a random environment with bond disorder. Jara and Landim (2008) show a central
limit theorem for the tagged particle starting from non-equilibrium distributions. The
generator for the exclusion process on Z is

Lf(η) =
∑
x∈Z

ωx [f(ηx,x+1)− f(η)]

=
∑
x,y∈Z

η(x)(1− η(y))q(x, y) [f(ηx,y)− f(η)] . (3.7)

where (ωx)x∈Z is the random environment and transition rates are q(x, y) = 0 if
|x− y| 6= 1 and

q(x, x+ 1) = ωx and q(x, x− 1) = ωx−1 if |x− y| = 1.

Note that this environment is not of the site disorder type described in Section 2.2.
Here, the jump rates are not constant and equal to one and the potential of the
environment is not a random walk, but independent for each x ∈ S up to scaling by
ω0,

V (x) =

x∑
i=1

log

(
p(i, i− 1)

p(i, i+ 1)

)

=

x∑
i=1

log

(
ωi−1

ωi

)
= log

(
ω0

ωx

)
.

The quenched non-equilibrium central limit theorem of Jara and Landim (2008) implies
in particular the quenched equilibrium central limit theorem with the same scaling as
in the exceptional case studied by Arratia (1985), Theorem 3.19.

Theorem 3.20 (Quenched central limit theorem in inhomogeneous environments,
Jara and Landim (2008)). Let (ωx)x∈Z be i.i.d. and uniformly elliptic. Let (zt)t≥0

be the tagged particle of the exclusion process starting in zero with generator as in
Equation (3.7). Let the initial distribution ν′ρ be a Bernoulli distribution with density
ρ and particle at the origin. Then, for any continuous bounded function f ∈ Cb(R)

Eω

[
f
( zt
t1/4

)]
t→∞−−−→ E [f(Z)] for P− almost every ω,

where Z ∼ N (0, σ2) is a centred Gaussian random variable with variance

σ2 =
2√

πE[ω−1
0 ]

[
1− ρ
ρ

]
. (3.8)

Note that this is consistent with the result of Arratia (1985), Theorem 3.19, where
the exclusion process runs in a constant environment such that ω ≡ 1/2, which implies
E[ω−1

0 ] = 2. We retrieve the equilibrium variance σ2 as a corollary of Theorem 2.3
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in Jara and Landim (2008) by calculating Eω[W 2
t ], where Wt = zN2t/

√
N . Set γ =

E[ω−1
0 ]. Then, using their formula with constant density ρ we get

Eω[W 2
t ] =

2

γ

1− ρ
ρ

∫ t

0

∫ ∞
−∞

(√
γ

2π(t− r) exp

(
− γv2

2(t− r)

))2

dv dr

=
1√
πγ

1− ρ
ρ

∫ t

0

1√
t− r dr

=
2√
πγ

1− ρ
ρ

√
t.

From this, the variance in Equation (3.8) follows by identifying σ2 in Eω[W 2
t ] = σ2

√
t.

There is no equivalent result for exclusion processes with site disorder and constant
jump rate. The random walk in such environments was discussed in Section 2.2.
For these environments the potential V performs a random walk, which has large
excursions. In this model one would expect that �uctuations of a tagged particle are
reduced due to the combined e�ect of the exclusion process and trapping in valleys
of the potential. A �rst step towards an answer is made in Section 5. Before that
we discuss results for �nite interacting particles systems with exclusion dynamics to
understand the e�ect of the potential better.

3.4 Spider random walks

Spider random walks were introduced in the papers by Gallesco et al. (2011b,a). Spi-
ders are �nite systems of nearest-neighbour random walks with exclusion dynamics,
so that no two particles can be at the same site at the same time. Furthermore, the
particles can have at most some distance L from one another. Usually, spiders have
�nite span L, but we will also consider the case L = ∞. Since we have a �nite num-
ber of particles, we take discrete-time random walks and only one particle can move
at the same time-step. All results hold for spiders in continuous time with constant
speed random walks as well. While Gallesco et al. (2011a) consider spiders on general
graphs, we will restrict our attention to Z, as it was done in Gallesco et al. (2011b).
A spider on Z with �nite number of legs N and span L ≥ N or L = ∞ is de�ned by
a �nite set of admissible leg con�gurations,

C ⊆ {(x1, . . . , xN ) : x1 = 0, xN ≤ L, x1 < . . . < xN ∈ Z} ⊂ ZN ,

where the �rst leg is at the origin. All other admissible con�gurations are obtained by
translation of the set C by the shift operator θx,

Cx = θxC =
{

(x, x2 . . . , xN ) ∈ ZN : (0, x2 − x . . . , xN − x) ∈ C
}
.

The set of all admissible leg con�gurations is

L =
⋃
x∈Z

Cx.

Spiders obtained through translation of a �nite con�guration are called transitive
spiders. We allow the spider to move one leg at a time to an adjacent unoccupied
vertex. Thus, a spider may move from con�guration x ∈ L to con�guration y ∈ L if
||x − y||2 = 1. In this case we write x

L∼ y, otherwise x
L� y. We can represent all

allowed transitions for the spider as edges in a graph. Let

E =
{

(x,y) : x
L∼ y
}
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be the set of all nearest-neighbour edges in L. We call the graph G = (L, E) the spider
graph. By construction, this graph is invariant under translations by integer multiples
of the vector (1, 1, . . . , 1). We de�ne an environment for the spider as a collection of
random variables (ωx)x∈Z, with ρx = (1−ωx)/ωx, which are elliptic and not constant,

∃κ ∈ (0, 1/2) such that P(κ ≤ ωx ≤ 1− κ) = 1 and (A1)

Var(log ρx) > 0. (A2)

for all x ∈ Z. The spider walk in a random environment is a discrete time Markov
chain (S(n))n∈N, where S(n) = (S1(n), . . . , SN (n)) denotes the positions of the N legs
at time n. A leg at site x can move to site x + 1 with probability ωx, if the new
con�guration is in L. It can also move to site x− 1 with probability 1−ωx, if the new
con�guration is in L. In particular, since no two legs can be at the same site at the
same time in the set of con�gurations L, a particle can only move if the target site
is empty. Thus, a spider random walk is a N -particle random walk simultaneously in
the same environment with exclusion dynamics. Furthermore, if the span L is �nite,
then a further restriction on the spider walk is that the �rst and the last leg cannot
be further apart than distance L, SN (n)− S1(n) ≤ L for all n ∈ N.

Let z ∈ L be the start con�guration for the spider random walk. The transition
probabilities given the environment are

p(x,y) :=P zω (S(n+ 1) = y|S(n) = x)

=
1

N
·


ωxi if y L∼ x and ∃i : yi = xi + 1,

1− ωxi if y L∼ x and ∃i : yi = xi − 1,

p(x) if y = x,

0 if y L� x and y 6= x

(3.9)

for any x,y ∈ L and any ω ∈ Ω. Any leg stays at its position, if its chosen target site
is not admissible. Therefore, the spider random walk stays in con�guration x with
probability

p(x) =
∑

1≤i≤N
ωx1{x+ei /∈L} + (1− ωx)1{x−ei /∈L}, (3.10)

where (e1, . . . , eN ) is the canonical basis of ZN . The spider graph for a simple two-
legged spider with corresponding transition rates is shown in Figure 6.

Since spiders are interacting particle systems with a �nite number of particles, we
can describe them as discrete time Markov chains. We could have de�ned the spider
random walk as a continuous time Markov chain as well by interpreting the ωx and
1−ωx as transition rates to the right and left respectively. However, since both models
are equivalent up to a relabelling of time, we will work here with the discrete time
Markov chain, which allows for slightly easier notation.

Not all choices of C yield a connected graph G for the spider random walk. We
can obtain a connected spider graph, if we require it to be of bounded span as it was
de�ned in Gallesco et al. (2011a).

De�nition 3.21. A transitive spider on the graph G has bounded span, if

C = {(x1, . . . , xN ) : x1 = 0, xN ≤ L, x1 < . . . < xN ∈ Z} .

The spider graph for a spider with two legs and with bounded span is shown in
Figure 7, left panel. All spider graphs for spiders with bounded span are connected. As
an example for a spider that is not of bounded span, consider a two-legged spider with
C = {(x, x+ 1), (x, x+ 2), (x, x+ 4), (x, x+ 5)}, as shown in Figure 7, right panel. In
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x2

x1

(1, 2)

(1, 3)

(0, 2)
1− ω1

ω0

ω2
1− ω3

Figure 6: Con�guration graph for a two-legged spider with admissible con�gurations
C = {(x, x + 1), (x, x + 2)}, i.e. N = 2 and L = 3. Transition rates q from or to
con�guration (1, 2) are marked on their respective arrows. Transition probabilities are
calculated from the rates as p(·, ·) = q(·, ·)/N . The random walk also has a chance to
stay at site (1, 2). This happens with probability (ω1 + (1− ω2))/N .

this case, the con�guration graph has two connected components, each corresponding
to the graph for a spider with C = {(x, x+1), (x, x+2)}. For a spider to be non-trivial,
we only need to have that

G has an in�nite connected component G ⊂ G and initial con�guration z ∈ G. (B1)

However, as the example shows, if the spider graph has more than one in�nite con-
nected component, then we may as well reduce the spider graph to one of its connected
components. Thus, we can simplify our notation and require

G is connected. (B2)

While for two legged spiders, N = 2, the spider graph is connected if and only if
the spider has bounded span, this is not the case for more legs. Observe the example

C = {(x, x+ 1, x+ 2), (x, x+ 1, x+ 3), (x, x+ 2, x+ 3), (x, x+ 2, x+ 4)},

which is shown in Figure 8. The con�gurations (x, x+1, x+4) and (x, x+3, x+4) are
missing and the spider is not of bounded span. However, the spider graph is connected
nonetheless. While most arguments for spider random walks need only Condition (B2)
to work, it might be more convenient to ask for a little more and require

G has bounded span. (B3)

3.4.1 Transient spiders on Z

Spiders with bounded span and L < ∞ were studied in Gallesco et al. (2011b) for
environments (ωx)x∈Z that are i.i.d. and transient to the right for the random walk of
a single particle,

E[log ρ0] < 0, (A3)

where ρx = (1 − ωx)/ωx as shown in Lemma 2.5. They work with continuous-time
spiders, where each leg performs a constant-speed random walk. Under the above as-
sumptions on the environment together with (A1) and (A2) there is a unique constant
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x2

x1

x2

x1

Figure 7: The left panel shows the con�guration graph for a two-legged spider of
bounded span with L = 5. Consequently, the spider graph has admissible con�gu-
rations C = {(x, x + 1), (x, x + 2), (x, x + 3), (x, x + 4), (x, x + 5)}. The right panel
shows the con�guration graph for a two-legged spider, which is not of bounded span
and the graph is not connected. This spider graph has admissible con�gurations
C = {(x, x+ 1), (x, x+ 2), (x, x+ 4), (x, x+ 5)}.

x1

x2

x3a

θ1ea

θ2ea

θ3ea

θ4ea

Figure 8: Spider graph for three-legged spider with con�guration set C = {(x, x +
1, x+2), (x, x+1, x+3), (x, x+2, x+3), (x, x+2, x+4) is drawn in black. The vertex
a = (1, 2, 3) and its translations by multiples of the vector e = (1, 1, 1) are labelled.
The missing vertices and edges to turn the spider into a spider with bounded span
with L = 5 are shown in grey.
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s > 0 such that

s = sup{r > 0 : E[ρr0] < 1}. (3.11)

Consequently, we have E[ρs0] = 1. We have already seen this de�nition in the context
of normal random walks in transient one-dimensional transient environments, Section
2.2.2. Then, not only a single particle but also the spider is transient to the right, see
Proposition 2.1 in Gallesco et al. (2011b) and we de�ne the speed of the spider v as
the speed of the �rst leg

v = lim
t→∞

S1(t)

t
.

De�ne furthermore the �rst return time to the initial con�guration z ∈ L or to any
shifted-version θxz by

τθz = inf
{
t > 0 : S1(t) > 0 and S(t) = θS1(t)z

}
.

There is a phase transition in the speed of the transient spider.

Theorem 3.22 (Gallesco et al. (2011b)). Let Assumptions (A1) and (A3) hold for
the environment and let Assumption (B2) hold for the spider graph G with bounded
span L <∞. Assume furthermore that

P(ω0 > 1/2) > 0 and P(ω0 ≤ 1/2) > 0.

The speed of a spider with N legs and constant s > 0 de�ned in Equation (3.11) is
well de�ned.

(i) If s/N < 1, then v = 0.

(ii) If s/N > 1, then

v =
E
[
S1(τθz )

]
E[τθz ]

> 0.

The speed of the spider in the critical case s/N = 1 is so far not known.

3.4.2 Recurrent spiders on Z

Recurrent spiders on Z are spiders in Sina�� environments, which means we require
them to be recurrent,

E[log ρ0] = 0, (A3')

where ρx = (1−ωx)/ωx. In such environments we can show that for any �nite number
of particles the results for random walks in recurrent random environment from Section
2.2 hold. We work with discrete-time spiders. They are of bounded span and L ≥ N
or L =∞. Write Sj(n) for the j-th leg of S(n), where j ∈ {1, . . . , N}.

Theorem 3.23. Fix L ≥ N or L = ∞. For any z ∈ L and small constant η > 0
there exists a random process (b(n))n∈N = (b(n;ω))n∈N such that

Pz
(∣∣∣∣Sj(n)− b(n)

log2 n

∣∣∣∣ > η

)
→ 0 as n→∞. (3.12)

This theorem implies that all N particles stay close to the same process b(n) and
therefore all particles stay together as well.
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Corollary 3.24. If L =∞, then for any z ∈ L and η > 0

Pz
(∣∣∣∣SN (n)− S1(n)

log2 n

∣∣∣∣ > η

)
→ 0 as n→∞. (3.13)

Lemma 3.25. The Markov chain (S(n))n∈N is recurrent for all L ≥ N and L = ∞.
In particular

lim inf
n→∞

|SN (n)− S1(n)| = N − 1 and

lim sup
n→∞

|SN (n)− S1(n)| = L.

So far we have dealt with the law of single particles. However, the positions of all
N particles of the process converge simultaneously to some limit process under the an-
nealed law. We denote the mean vector of the process by b(n;ω) = b(n;ω)(1, 1, . . . , 1)
for any n ∈ N. This vector is used in the following theorem to shift the spider or N -
particle exclusion process (i.e. every single leg) by b(n;ω), so that we can observe its
�uctuations around b(n;ω). The shifted N -particle process converges to a stationary
limit similar to the result for one particle shown in Golosov (1984).

Theorem 3.26. Let L ≥ N or L = ∞. The �nite dimensional marginals of the
random process (S(k+n)−b(k;ω))n∈N converge under the annealed law P to those of
a stationary random process (Y(n))n∈N as k →∞. The process (Y(n))n∈N is positive
recurrent.

We call (Y(n))n∈N the N -particle exclusion process in the in�nite well. For the
exclusion process with in�nitely many particles in positive recurrent environments, it
was shown that the process converges in law to full occupancy, which is the con�gu-
ration where each site is occupied by a particle, see Theorem 3.14. However, so far
the convergence was not shown to hold almost surely. In a con�guration where each
site is occupied, any particle motion is forbidden. Thus, naturally the tagged particle
becomes localized at some point and its �uctuations around the point of localization
vanish. Thus, if we study the exclusion process in recurrent environments, we have
to expect particles to get trapped in the large excursions of the potential. It is a
natural extension of these results to show limit theorems for the tagged particle in an
exclusion process in recurrent environment. In light of the localization e�ect of both
the potential as well as the exclusion dynamics it is an interesting question whether
the combination of both leads to even stronger localization.

The proofs for the results in this section can be found in Section 5. We conclude
this chapter with a discussion of the relationship between spiders and random walks
on a strip, which were presented in Section 2.3. This connection could also be used to
prove results for spiders in random environments. However, all results presented here
are proven with direct methods.

3.4.3 Spiders as Random Walk on a Strip

Spiders with bounded span and L <∞ can be described as a random walk on a strip,
since the set of leg con�gurations C is �nite. Choose any mapping of leg con�gurations
to integers C → {1, . . . , |C|} and let the position of the �rst leg S1 determine the layer
in the strip, while the second coordinate is given by the integer assigned to the leg
con�guration. Then, the movement of the spider is a random walk on Z×{1, . . . , |C|}.
This set-up is described brie�y in Section 2.3. The transition matrices do not obey the
usual ellipticity conditions for random walks on strips, as many transitions between
layers are forbidden and the corresponding matrix elements are zero. A depiction
of the strip is shown in Figure 9. All transitions with strictly positive probability
are marked by an edge. We can compare this embedding in the strip to the normal
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x1

|C|

Figure 9: Two-legged spider with bounded span and L = 5 represented as a random
walk on the strip Z× {1, . . . , 5}. All possible transitions of the spider are marked by
an edge in the graph with the strip as the vertex set. We see that most transitions are
forbidden.

parametrization as it is shown in Figure 6, left panel. In the following paragraph, we
will see whether the conditions for random walks on a strip presented in Section 2.3
hold true for spiders.

Let us consider a spider with N = 2 legs and maximal span L > N . The transition
matrices for the random walk on a strip are identically distributed and thus we may
set (P,Q,R) = (P0, Q0, R0) for P,Q,R ∈ RL×L. We have for transitions from layer 0
to layer 1

P =
1

2


0 0

ω0 0

. . .
. . .

0 ω0 0

 ,

for transitions from layer 0 to layer −1

Q =
1

2


0 1− ω0 0

0
. . .
. . . 1− ω0

0 0

 ,
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and for transitions within layer 0 we have a tridiagonal matrix

R =
1

2



ω0 + 1− ω1 ω1 0

1− ω2 0 ω2

1− ω3 0 ω3

1− ω4 0
. . .

. . .
. . . ωL−1

0 1− ωL 1− ω0 + ωL


.

Naturally, Condition (C1) is always valid, the triples (Pk, Qk, Rk) are identically dis-
tributed and thus stationary and ergodic. However, the matrices (Rk)k∈N are clearly
not mutually independent. For Condition (C2) we calculate

‖P +R‖ =
1

2
max {1 + ω0, 1, 2} = 1 and

‖Q+R‖ =
1

2
max {2, 1, 2− ω0} = 1.

Thus, the second condition cannot hold. Also, Condition (C3) does not hold, since
the column sums of the �rst column of Q and the last column of P are zero. We
can see from the graph in Figure 9, that it is impossible to enter layer 1 from layer 0
at the site (1, L) and from layer 0 to layer −1 at site (−1, 1). Therefore, Conditions
(C4.1(ε)) and (C4.2(ε)) cannot hold. Thus, spiders do not �t into the usual set of
conditions for random walks in random environment on a strip. However, they do ful�l
alternative conditions given in Goldsheid (2008), which imply the result on recurrence
and transience, Theorem 2.15, the law of large numbers, Theorem 2.16, and the central
limit theorem, Theorem 2.17. The alternative condition that we have to check is that
(I −R)−1(i, j) > 0 for all 1 ≤ i, j ≤ L, where I is the identity matrix. In our case, we
want to show that the matrix T = 2(I −R) with

I −R =
1

2



1− ω0 + ω1 −ω1 0

−(1− ω2) 2 −ω2

−(1− ω3) 2
. . .

. . .
. . . −ωL−1

0 −(1− ωL) 1 + ω0 − ωL


has a strictly positive inverse. A matrix is positive inverse if and only if it is monotone,
i.e. Tv ≥ 0 implies v ≥ 0 for all v ∈ RL. The inequalities have to hold element-wise.
We need to strengthen the result in one direction to get a condition for a strictly
positive inverse.

Lemma 3.27. Let T ∈ RL×L and v ∈ RL. If Tv ≥ 0 implies v > 0 for all v 6= 0,
then T−1 > 0.

Proof. For a proof by contradiction we assume that T−1 contains a non-positive entry
and denote the column containing this entry by c. Then, Tc is a column of the identity
matrix and thus Tc ≥ 0. Since c contains a non-positive entry we have c ≯ 0, which
is a contradiction.

Thus, we only need to check that T is strictly monotone in the sense of Lemma
3.27, which can be easily done using the tridiagonal matrix algorithm (TDMA) for
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the solution of a tridiagonal matrix equation Tv = x, where the column vector x 6= 0
has non-negative entries x ≥ 0. The algorithm can be found for example in Conte and
Boor (1980) and is a simpli�ed version of Gaussian elimination. Denote the entries of
the tridiagonal matrix T by three sequences (an)Ln=1, (bn)Ln=1 and (cn)L−1

n=1 ,

T =


b1 c1 0

a2
. . .

. . .
. . .

. . . cL−1

0 aL bL

 .

We set a1 = 0. We calculate two sequences (γn)L+1
n=1 and (βn)L+1

n=1 recursively starting
from γ1 = β1 = 0 by

γn+1 =
−cn

anγn + bn
and βn+1 =

xn − anβn
anγn + bn

.

Then, we can solve the system by backwards substitution starting from vL+1 = 0 using

vn−1 = γnvn + βn. (3.14)

We will now show that γn > κ/2 for all 2 ≤ n ≤ L using uniform ellipticity of the
environment. We start by bounding γ2 from below,

γ2 =
ω1

1− ω0 + ω1
≥ κ

1− κ+ (1− κ)
=

κ

2(1− κ)
>
κ

2
.

From here, we can show by induction that the bound holds for the remaining elements
of the sequence. For all 2 ≤ n ≤ L− 1

γn+1 =
ωn

2− (1− ωn)γn
≥ κ

2− (1− κ)κ/2
>
κ

2
.

We need to take special care of the last element of the sequence. Since bL = 1− ω0 +
ωL ≤ 2− 2κ < 2, we get the same lower bound as before and γL+1 > κ/2. From that
follows βn ≥ 0 for all 2 ≤ n ≤ L again by induction starting from β1 = 0 and using

βn+1 = γn+1
xn − anβn
−cn

≥ 0,

since xn ≥ 0, −an > 0 and −cn > 0. Furthermore, x 6= 0 implies that there is some
1 ≤ i ≤ L such that xi > 0 and we get strict positivity of βn for all i < n ≤ L+ 1. In
particular, this implies βL+1 > 0. Using the backwards substitution formula, Equation
(3.14), it follows that v > 0 element-wise. Thus, by Lemma 3.27, the alternative
condition from Goldsheid (2008) includes spider random walks. Consequently, we can
apply Theorems 2.16 and 2.17 to transient spiders. The result on the speed of the
spider random walk in transient environments by Gallesco et al. (2011b) is of course
more explicit than the results for random walks on strips.

For recurrent spiders we cannot apply the results from random walks on a strip. For
the localization theorem for recurrent random walks on a strip, Theorem 2.18, there
are two conditions that do not hold true for spiders. First, the sequence of transition
matrices is not i.i.d., though it is �nitely dependent and usually with some work proofs
can be extended to cover that case. Since neither (C4.1(ε)) nor (C4.2(ε)) hold, the
proposed weaker condition for cases, where the walk is derived from a one-dimensional
model, does not help. It should still be possible to �nd a suitable condition that covers
spiders and prove results using the methods used in Bolthausen and Goldsheid (2008).
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To conclude this section, we establish the implications of Condition (iii) in Theorem
2.18 for spiders. For simplicity, take L = 2 for a two-legged spider. We want to solve
π(P +Q+R) = π for a normalized row vector π = (π1, π2),

π

ω0 + 1− ω1 1− ω0 + ω1

ω0 + 1− ω2 1− ω0 + ω2

 = 2π.

Then we get from the equation for the �rst coordinate and from π1 + π2 = 1 that

π1(ω0 + 1− ω1) + (1− π1)(ω0 + 1− ω2) = 2π1,

which we solve to

π1 =
1− ω2 + ω0

2− ω2 + ω1
and π2 =

1− ω0 + ω1

2− ω2 + ω1
.

Now, we ask which law the environment needs to have such that

π(P −Q)1 = −π1(1− ω0) + π2ω0 = 0. (3.15)

A quick calculation shows that this is equivalent to

ω0 − ω2ω0 + ω1ω0 + ω2 = 1. (3.16)

Since the environment (ωx)x∈Z is i.i.d., we can set µ = E[ω0] and σ2 = Var(ω0) and
determine these moments from Equation (3.16). This gives us that Condition (iii) in
Theorem 2.18 is violated, if µ = 1/2 and σ2 = 0. Thus, the only law such that all
environments in supp(µ) solve (3.16), is by setting ωn ≡ 1/2 for all n ∈ Z. This case
is exactly what is excluded by Assumptions (A2) and (A3') for normal spiders.
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4 Proofs for RWs on weighted, oriented percolation

clusters

The key ingredient of our proofs is the mixing property of the percolation structure
and environment. We will use it to show that we can de�ne a regeneration structure,
which is mixing itself, such that standard results for stationary, mixing sequences of
random variables apply.

Lemma 4.1 (The environment is mixing). Let d ≥ 1 and K be stationary and inde-
pendent of ω.

(i) The processes ξP and ξK are stationary under the law P.

(ii) The processes ξP is mixing in space-time under the law P in the following sense:
Fix n ∈ N. Let VB ⊂ V be any cone shaped subset of V , i.e. there is a site
(x, l) ∈ V and angle β ∈ [π/4, π/2] such that

VB := {(y, k) ∈ V : k ≥ l and ||x− y||∞ ≤ |k − l| tan(β)}. (4.1)

Let VA ⊂ V be such that L := |VA| <∞ and dist(VA, VB) ≥ n. Then there exist
constants 0 < c,C <∞ such that for any two events A,B ∈ σ(ξPk (y) : (y, k) ∈ V )
with supp(A) ⊆ VA and supp(B) ⊆ VB we have

αPn (A,B) := |P(A ∩B)− P(A)P(B)| ≤ C2LL2e−cn. (4.2)

Remark 4.2. The environment is not stationary under the conditional law P̃. However,
the environment is mixing under the conditional law P̃, since the event B0 can either
be included in the event A or in the event B in Lemma 4.1. Therefore Equation (4.2)
holds with constants L′ = L+ 1 and c′ = c/2 also for P̃.

Proof of Lemma 4.1. (i) The process ξP is stationary with respect to P, which follows
from the fact that the time-reversed process is a stationary discrete time contact
process as explained in Birkner et al. (2013). The environment ξK is stationary with
respect to P, since it is the product of two independent stationary processes.

(ii) First, de�ne the length of the longest path on the oriented percolation cluster
given by ξP and starting in some point (y, k) ∈ V by

l(y, k) := sup{n ≥ 1 : ∃(y′, k + n) ∈ V : (y, k)→ (y′, k + n)}. (4.3)

Note that l(y, k) = ∞ if (y, k) ∈ C. De�ne a subset VB ⊂ V and event B as in
Lemma 4.1. We will successively consider more complicated events for A. To begin
with, let the second event be A1 := {ξPk1(x1) = 0} for some (x1, k1) ∈ V such that
dist({(x1, k1)}, VB) ≥ n. By Lemma A.1 in Birkner et al. (2013) we know that

P (A1 ∩ {l(x1, k1) ≥ n}) ≤ Ce−cn. (4.4)

The event {l(x1, k1) < n}∩A1 is measurable with respect to σ(ω(v) : v ∈ V \VB) and
therefore independent of B. We can write

P(A1 ∩B) = P(A1 ∩B ∩ {l(x1, k1) < n}) + P(A1 ∩B ∩ {l(x1, k1) ≥ n})
≤ P(B)P(A1 ∩ {l(x1, k1) < n}) + P(A1 ∩ {l(x1, k1) ≥ n})
≤ P(B)P(A1) + P(A1 ∩ {l(x1, k1) ≥ n})

and similarly

P(A1 ∩B) ≥ P(B)P(A1 ∩ {l(x1, k1) < n})
= P(B) (P(A1)− P(A1 ∩ {l(x1, k1) ≥ n}))
≥ P(B)P(A1)− P(A1 ∩ {l(x1, k1) ≥ n}).
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We conclude, using Equation (4.4), that

αPn (A1, B) = |P(A1 ∩B)− P(A1)P(B)| ≤ Ce−cn. (4.5)

The same upper bound follows for αPn (Ac1, B) with Ac1 := {ξPk1(x1) = 1}, if we use that

P(Ac1) = 1− P(A1) and

P(B ∩Ac1) = P(B)− P(B ∩A1).

We want to generalize this result to events that have support of more than one point.
Consider events of the form

A0
L :=

{
ξPk1(x1) = 0

}
∩ . . . ∩

{
ξPkL(xL) = 0

}
for L points (x1, k1), . . . , (xL, kL) ∈ V such that

dist ({(x1, k1), . . . , (xL, kL)} , VB) ≥ n

By subadditivity, using the same steps as before, we get

αPn (A0
L, B) ≤ CLe−cn. (4.6)

Observe that an arbitrary event of the form

AsL :=
{
ξPk1(x1) = s1

}
∩ . . . ∩

{
ξPkL(xL) = sL

}
for any s := (s1, . . . , sL) ∈ {0, 1}L can be written as the disjoint union of two events of
the form AL+1. For example A0

1 = A
(0,0)
2 ·∪ A(0,1)

2 . Since we have already established
the mixing property for events A0

1 and A
(0,0)
2 in Equation (4.6), we can use the triangle

inequality to get the mixing property for A(0,1)
2 . The same argument allows us to derive

the bounds for arbitrary sets AsL, where we have to pay a price on the upper bound
for each time we apply the triangle inequality. After adding all the upper bounds of
the appearing terms, we get

αPn (AL, B) ≤ CL2e−cn. (4.7)

Finally, it remains to observe that any event A, with L = |VA|, can be written as a
disjoint union of at most 2L events of the type Asl , 1 ≤ l ≤ L and the claim follows.

4.1 The Law of Large Numbers

The process ξK is not stationary with respect to P̃, so we need to use a regeneration
structure that has stationary increments. The de�nition of the appropriate regenera-
tion structure is similar to the case of i.i.d. weights K in Birkner et al. (2013). It uses
additional random permutations to achieve a local construction of the random walk.
For every (x, n) ∈ V we let ω̃(x, n) be a random permutation of sites in U+(x, n),
which is chosen from the set of all permutations according to the law

P ( ω̃(x, n) = (y1, . . . , yN )|K) =

2d∏
l=1

K(yl, n+ 1)∑N
k=lK(yk, n+ 1)

. (4.8)

The sum runs over all consecutive vertices of (x, n). The number of consecutive ver-
tices |U+(x, n)| = 2d is the number of corners in a d-dimensional hypercube. Our
construction of the local path will be measurable with respect to the σ-algebra of all
weights and permutations in the time interval of interest,

Gmn := σ
(
ω(y, k), ω̃(y, k), y ∈ Zd, n ≤ k < m

)
. (4.9)
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We need to know the length of the longest open path l(x, n) starting at (x, n). Then
lk(x, n) := l(x, n)∧k is measurable with respect to Gn+k+1

n . For the local construction
of the path we furthermore need the set of possible next steps if we want to stay on
paths, which have at least length k. For any k ≥ −1, we de�ne this set as

Mk(x, n) :=

{
U+(x, n) if k = −1,{
v ∈ U+(x, n) : lk(v) = maxz∈U+(x,n) lk(z)

}
otherwise.

(4.10)

Finally, we complete our auxiliary notation by choosing mk(x, n) ∈Mk(x, n) to be the
�rst element in the permutation ω̃(x, n). Given a percolation ω, a permutation ω̃ and
a starting point (x, n) ∈ V we �nally de�ne the local path γk = γ

(x,n)
k by

γk(j) :=

{
(x, n) if j = 0,

mk−j−1(γk(j − 1)) if j = 1, 2, . . . , k.
(4.11)

The law of the local path (γ
(x,n)
∞ (j))j≥0 is the same as the law of the random walk

(Xj , n+ j)j≥0 by Lemma 2.1 in Birkner et al. (2013). A more detailed description of
this construction and a picture can be found in their paper as well.

For p < 1 we want the set S2m to contain all sites (x, n) ∈ V for which every
directed open path returns to the space coordinate x after 2m steps,

S2m := {(x, n) ∈ V : (x, n)→ (x, n+ 2m), P(Xn+2m = x|Xn = x) = 1} . (4.12)

Note that we get a strictly positive lower bound on the probability that any site
(x, n) ∈ V is in this set conditioned that it is on the backbone C by considering a
single path. Since it is already on the backbone we only need to make sure that all
sites that are adjacent to the single path are closed, i.e. if p < 1

P̃ (v ∈ S2m| v ∈ C) ≥ (1− p)2m(2d−1) > 0. (4.13)

Our de�nition of the regeneration times di�ers from the paper of Birkner et al. (2013)
in the additional requirement that a regeneration can only happen at points in S2m.
De�ne the regeneration times recursively by T0 = 0 and

Tn := inf {k ≥ Tn−1 + 2m : γk−2m(k − 2m) ∈ C ∩ S2m} . (4.14)

The corresponding regeneration increments are

τn := Tn − Tn−1 and Yn := XTn −XTn−1 .

The regeneration times are those times at which the local construction discovers a
point that is in the backbone and is followed by an episode in the percolation cluster
that forces the random walk to return after 2m steps independent of the weights K.
Since behaviour of the random walk during these episodes does not depend on the
weights K it can be used to decrease dependency between regeneration increments by
increasing m. Later in the proof we will choose m large, see Equation (4.32), to show
that the covariance matrix has full rank.

The regeneration times are not measurable with respect to the past of the environ-
ment (Gn0 )n. The local construction allows us to de�ne potential regeneration times
(σk)k≥0 for the (i+ 1)th regeneration by σ0 = Ti and

σk+1 = σk + l(γσk(σk)) + 2. (4.15)

The potential regeneration times are those times at which the local construction dis-
covers that a local path was �nite and jumps to another branch, see Figure 10. The
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construction ends when the new branch is part of the backbone and we have discov-
ered an in�nite path. In this case, we have found the next regeneration time as these
times are (Gn0 )n-measurable and therefore stopping times. We only need to check at
potential regeneration times (i.e. jumps to the next branch) whether all conditions for
a regeneration are met. With this procedure we achieve minimal dependence on the
future.
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Figure 10: Example for the regeneration structure in dimension d = 1. The vertex set
V is not shown. The visible edges are those that can be reached from the origin (0, 0)
by visiting open sites only. These edges are in the oriented percolation cluster of the
origin. For a better visualization the permutations ω̃ are chosen non-randomly and
such that sites with smaller space coordinates are visited �rst. The local construction
discovers three �nite branches of the cluster before �nding a regeneration time T1. The
end of each of these branches is marked by a circle. Afterwards the local discovery
of the cluster is continued at the sites marked by the thin arrows. In this example
only the topmost branch is connected by an open path to in�nity and thus is in the
backbone C.

Lemma 4.3 (Increments of the random walk are ergodic). Let d ≥ 1, K be inde-
pendent of ω, stationary and φ-mixing in the time coordinate with mixing coe�cients
(φn)n∈N. Then the process (Yn, τn)n∈N is stationary and φ-mixing with respect to P̃
with mixing coe�cients

(φXn )n∈N = (φ2mn + 2αP2mn)n∈N, (4.16)

where αPn = Ce−cn, n ∈ N are the mixing coe�cients for ξP from Lemma 4.1, Equation
(4.2).

Proof. Fix a site (x, l) ∈ V such that ||x||∞ ≤ l. Then P̃(γTn(Tn) = (x, l)) > 0. We
observe that for all n ∈ N by the local construction of the random walk there exists
an event

A′ ∈ σ (ω(y, k), ω̃(y, k) : (y, k) ∈ V, 0 ≤ k < l)

such that

{γTn(Tn) = (x, l)} = A′ ∩ {(x, l)→∞} ⊂ B0. (4.17)

Let θz : Ω 7→ Ω, z ∈ V be the standard shift operator such that (θzω)(z′) = ω(z + z′)
for any ω ∈ Ω, z, z′ ∈ V . Then we can write

θ−1
(x,l)({γTn(Tn) = (x, l)}) = θ−1

(x,l)(A
′) ∩B0. (4.18)
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Thus, for every event A ∈ σ(ξKk (y) : (y, k) ∈ V ) and (x, l) we have

P
(
θ(x,l)(A) ∩B0

∣∣ γTn(Tn) = (x, l)
)(4.17)

= P
(
θ(x,l)(A)

∣∣ γTn(Tn) = (x, l)
)

= P
(
A
∣∣∣θ−1

(x,l)({γTn(Tn) = (x, l)})
)

(4.18)
= P

(
A ∩B0

∣∣∣θ−1
(x,l)({γTn(Tn) = (x, l)})

)
,

which implies

P(θγTn (Tn)(A) ∩B0)

=
∑
(x,l)

P
(
θ(x,l)(A) ∩B0

∣∣ γTn(Tn) = (x, l)
)
P (γTn(Tn) = (x, l))

= P(A ∩B0).

Consequently P̃(θγTn (Tn)(A)) = P̃(A) and both processes are stationary with respect
to P̃.

Denote by W the σ-algebra that contains all possible paths of the random walk
between regeneration times, namely

W l
k := σ

(
{(Yi(ω), τi(ω))}li=k : ω ∈ Ω

)
and W =W∞0 . Then, the mixing coe�cients for the process (Yn, τn)n∈N are given by

φXn = sup
N∈N

sup
W∈W,

AN :=W∩WN
0 ,

BN :=W∩W∞N+n

∣∣∣∣∣ P̃(AN ∩BN )

P̃(AN )
− P̃(BN )

∣∣∣∣∣ . (4.19)

Note that by de�nition of the random walk and since K > 0 we have P̃(AN ) > 0 for
all AN ∈ W ∩ WN

0 . We will from now on leave out the subscripts of the suprema.
Furthermore, note that for every (x, l) ∈ V exists an event

AN(x,l) ∈ σ(ω(y, k), ω̃(y, k) : y ∈ Zd, k < l)

such that

AN ∩ {(XN , TN ) = (x, l)} = AN(x,l) ∩ {ξPl (x) = 1}.

This allows us to split up the events into disjoint subsets depending on where the path
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ends. We rewrite the mixing coe�cients as

φXn = sup sup
1

P̃(AN )

∣∣∣∣∣∣
∑

(x,l)∈Zd+1

P̃
(
AN ∩BN ∩ {(XN , TN ) = (x, l)}

)

− P̃
(
AN ∩ {(XN , TN ) = (x, l)}

)
P̃
(
BN
)∣∣∣∣∣∣

= sup sup
1

P̃(AN )

∣∣∣∣∣∣
∑
(x,l)

P̃
(
AN(x,l) ∩BN ∩ {ξPl (x) = 1}

)

− P̃
(
AN(x,l) ∩ {ξPl (x) = 1}

)
P̃
(
BN
)∣∣∣∣∣∣

= sup sup
1

P(B0)P̃(AN )

∣∣∣∣∣∣
∑
(x,l)

P
(
AN(x,l) ∩BN ∩ {ξPl (x) = 1}

)

− P
(
AN(x,l) ∩ {ξPl (x) = 1}

)
P̃
(
BN
)∣∣∣∣∣∣ .

The last equation follows from the fact that B0 ⊂ AN(x,l) ∩ {ξPl (x) = 1}. We can use
independence of AN(x,l) and {ξPl (x) = 1} and the mixing property of the weights K to
get

φXn ≤ sup sup
1

P(B0)P̃(AN )

∣∣∣∣∣∣
∑
(x,l)

P
(
AN(x,l)

)
P
(
BN ∩ {ξPl (x) = 1}

)
(4.20)

− P
(
AN(x,l)

)
P
(
{ξPl (x) = 1}

)
P̃
(
BN
)∣∣∣∣∣∣+ E1(n),

where

E1(n) := ess sup
1

P(B0)

∑
(x,l) P

(
AN(x,l)

)
P̃(AN )

φTN+n−TN . (4.21)

This error term has a deterministic upper bound. We use stationarity of the environ-
ment and P(B0) > 0 to see that in fact

P̃(AN ) =
∑
(x,l)

P
(
AN(x,l) ∩ {ξPl (x) = 1}

)
P(B0)

=
∑
(x,l)

P
(
AN(x,l)

)
. (4.22)

Since regeneration increments include a deterministic path, they have a length of at
least 2m and thus we get

E1(n) ≤ 1

P(B0)
φ2mn. (4.23)

Note that since K is φ-mixing instead of α-mixing, the factor
∑

(x,l) P(AN(x,l)) appears
in the upper bound in Equation (4.23), which cancels with the denominator and makes
the error term �nite.
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We can use the mixing property of ξP from Lemma 4.1 to factor P(BN ∩{ξPl (x) =

1}) and P̃(BN ) = P(BN ∩B0)/P(B0). This leads to the upper bound

φXn ≤ sup sup
1

P(B0)P̃(AN )

∣∣∣∣∣∣
∑
(x,l)

P
(
AN(x,l)

)
P
(
BN
)
P
(
ξPl (x) = 1

)
(4.24)

− P
(
AN(x,l)

)
P
(
ξPl (x) = 1

)
P
(
BN
)∣∣∣∣∣∣+ E1(n) + 2E2(n)

= E1(n) + 2E2(n), (4.25)

with

E2(n) := ess sup
1

P(B0)

∑
(x,l) P

(
AN(x,l)

)
P̃(AN )

αPTN+n−TN ≤
1

P(B0)
αP2mn. (4.26)

Combining Equations (4.23), (4.22) and (4.26) tells us that overall the sequence of
regeneration increments is φ-mixing and the mixing coe�cients are bounded above by

φXn ≤
1

P(B0)

(
φ2mn + 2αP2mn

)
. (4.27)

With this preparation the LLN, Lemma 2.24, follows directly from the previous
results.

Proof of Lemma 2.24. By Lemma 4.3, the sequence (Yn)n∈N is stationary and mixing
and therefore ergodic. The law of large numbers follows from the ergodic theorem
(Birkho�, 1931) together with standard arguments from renewal theory and the drift
vector takes the usual form,

~µ =
Ẽ[XT1

]

Ẽ[T1]
. (4.28)

The next example shows that the average ~µ can indeed be non-zero on the full
lattice, even if the weights K are independent in time. The example was provided in
private communication by Noam Berger.

Example 4.4. Let d = 1 and take p = 1. We construct an environment from bounded
weights that are independent in time such that the random walk is ballistic in the space
coordinate, i.e. µ 6= 0. Let (β(n))n∈N be a family of independent random variables,
each of them uniformly distributed on the set {0, 1, 2}. Choose weights for all x ∈ Z
according to

K(x, n) = ((β(n) + 3|x|+ x) mod 3) + 1 ∈ {1, 2, 3}.

Then the average speed is

µ = E
[
K(1, n)−K(−1, n)

K(1, n) +K(−1, n)

]
= −1/90 < 0

for any n ∈ N.
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4.2 The Annealed Central Limit Theorem

The aCLT follows without much additional work from the results we already estab-
lished for the LLN.

Proof of Theorem 2.25. We begin with the proof for p < 1, where we have to consider
the percolation cluster. As de�ned in Equation (4.3) the random variable τ (x,n) denotes
the length of the longest open path starting at the site (x, n). The proof is similar to the
proof of Lemma 2.5 in Birkner et al. (2013), sinceK is independent of ω and the bounds
derive from the structure of the open cluster. In particular, the increments (σk+1 −
σk) ≤ l(γσk(σk)) are dominated by a random variable, which is independent of the
weights K. Furthermore the number of trials to �nd a regeneration time is dominated
by a geometric random variable with success probability P(B0)(1− p)2m(2d−1) > 0 by
Equation (4.13). Consequently, the �rst regeneration time has exponential tails,

P̃ (T1 > n) ≤ Ce−cn. (4.29)

The same bound holds for the space increment ||Y1||∞, since ||Y1||∞ ≤ T1 for all n ∈ N.
We have shown in Lemma 4.3 that the sequence of regeneration increments (Yn, τn)n∈N
is stationary and φ-mixing with coe�cients φXn for n large enough. Therefore, all
increments have exponential tail bounds. Under the mixing conditions of Theorem
2.25, φn ∈ O(n−(2+δ)) for some δ > 0, we get that

∞∑
k=1

(φXk )
1
2 ≤ 1

P(B0)1/2

∞∑
k=1

(φ2mk + 2αP2mk)
1
2 <∞. (4.30)

This is the condition of Ibragimov and Linnik (1971) for the CLT for φ-mixing se-
quences, Theorem 18.5.2. We prove the aCLT �rst in the case d = 1. De�ne centred
random variables Zn = Yn − Ẽ[Yn] = Yn − Ẽ[Y1] for all n ∈ N. By Equation (4.29) we
know that Ẽ

[
|Zn|D+2

]
< ∞ and Ẽ[τD+2

n ] < ∞. Since Zn is centred, Theorem 17.2.3
in Ibragimov and Linnik (1971) and Equation (4.30) imply that∣∣∣∣∣

∞∑
n=1

Ẽ[Z0Zn]

∣∣∣∣∣ ≤ 2

∞∑
n=1

Ẽ[Z2
0 ]1/2Ẽ[Z2

n]1/2(φXn )1/2

= 2Ẽ[Z2
0 ]

∞∑
n=1

(φXn )1/2 <∞. (4.31)

Furthermore, the sum can be made arbitrary small if we choose m large enough.
Choose m so that |∑∞n=1(φXn )1/2| < 1/4. Then the variance is strictly positive,

σ2 = Ẽ[Z2
0 ] + 2

∞∑
n=1

Ẽ[Z0Zn] ≥ Ẽ[Z2
0 ]

(
1− 4

∞∑
n=1

(φXn )1/2

)
> 0. (4.32)

This choice of the distance 2m between two pieces of the regeneration increments al-
lows us to conclude that the variance is strictly positive and the central limit theorem
has a non-degenerate limit. Here, we use the percolation cluster explicitly to bound the
variance away from zero. Using a central limit theorem for stationary and φ-mixing
sequences, e.g. Theorem 18.5.2 in Ibragimov and Linnik (1971), and renewal argu-
ments (Kuczek, 1989) we get a non-degenerate central limit theorem for the sequence
(Yn, τn)n∈N.

Furthermore, we can generalize this result to the multivariate case using e.g. Lévy's
continuity theorem as in Rio (2013), Corollary 4.1. In this case, we have to choose m
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large enough, such that the covariance matrix Σ has full rank. The covariance matrix
Σ := (Σij)1≤i,j≤d is given by

Σij = Ẽ [〈Z0, ei〉〈Z0, ej〉] + 2

∞∑
k=1

Ẽ[〈Z0, ei〉〈Zk, ej〉], (4.33)

where 〈·, ·〉 denotes the usual Euclidean scalar product and {e1, . . . , ed} is the canonical
basis of Zd.

4.3 The Quenched Central Limit Theorem

The main idea for the proof is to study a pair of random walks on the same environment
and show that their behaviour is close enough to the behaviour of two random walks
on independent copies of the environment. As we did for the regeneration structure
for a single random walk we de�ne the sequence of regeneration times for two random
walks starting at times T0 = T ′0 = 0 for j ≥ 1 by

Tj := inf
{
k > Tj−1 + 2m : γ

(x,0)
k−2m(k − 2m) ∈ C ∩ S2m

}
,

T ′j := inf
{
k > T ′j−1 + 2m : γ

′(x′,0)
k−2m (k − 2m) ∈ C ∩ S2m

}
.

(4.34)

Set J0 = J ′0 = 0 and for m ∈ N and de�ne auxiliary times

Jj := inf{k > Tj−1 : Tk = T ′k′ for some k′ > J ′j} and

J ′j := inf{k > T ′j−1 : T ′k′ = Tk for some k > Jj}.
(4.35)

De�ne the sequence of simultaneous regeneration times by

T sim
m := TJm = T ′J′m , m ≥ 0 (4.36)

or recursively T sim
0 = 0 and

T sim
m = min

(
{Tj : Tj > T sim

m−1} ∩ {T ′j : T ′j > T sim
m−1}

)
. (4.37)

The increments Yk, Y ′k, τk and τ ′k are de�ned as in the single walk case and we set for
m, l ∈ N

X̃m := XTm , X̃ ′m := X ′T ′m
X̂l := XT sim

l
, X̂ ′l := X ′T sim

l
.

(4.38)

Finally denote the pieces between simultaneous regenerations Ξm ∈ W := F × F ×
Zd × Zd by

Ξm :=

(
(Yk, τk)Jmk=Jm−1+1, (Y

′
k, τ
′
k)
J′m
k=J′m−1+1, XTJm

, X ′T ′
J′m

)
, (4.39)

where F :=
⋃∞
n=1(Zd × N)n. We need some more notation to indicate when we are

considering two random walks simultaneously on the same percolation cluster. Take
two starting points for the random walks x, x′ ∈ Zd. Let

Bx,x′ := {ξP0 (x) = 1} ∩ {ξP0 (x′) = 1}

be the event that both starting points are in the backbone C. Conditioned on Bx,x′
let X := (Xn)n and X ′ := (X ′n)n be two independent random walks started at (x, 0)
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and (x′, 0) respectively and both with transition probabilities as in Equation (2.15).
Write for the law of the two walkers conditioned on Bx,x′

P̃joint
x,x′ (·) = Pjoint

x,x′ ( · |Bx,x′) = Pjoint ( · |X0 = x,X ′0 = x′, Bx,x′) , (4.40)

where the superscript indicates that the two walks run on the same realization of
the environment. We will describe the joint law by comparing it to the law of two
independent random walks P̃ind

x,x′ , which is the product measure of two independent
copies of single random walks with laws P̃1

x and P̃2
x′ on two independent copies Ω1,Ω2

of the environment,

P̃ind
x,x′(·) = P̃1

x(·)P̃2
x′(·).

To describe the second random walk, let ω̃′ be another, independent random permu-
tation distributed like ω̃ and de�ne paths γ′(x,n)

k analogously to γ(x,n)
k using ω̃′ instead

of ω̃. For given n, k the construction of both paths are measurable w.r.t

Ĝkn := σ
(
ω(y, i), ω̃(y, i), ω̃′(y, i) : y ∈ Zd, n ≤ i < k

)
. (4.41)

Conditioned on Bx,x′ we may couple the random walks by

(Xk, k) = lim
n→∞

γ(x,0)
n (k), (X ′k, k) = lim

n→∞
γ′(x

′,0)
n (k).

The proof of Theorem 2.26 is analogous to the proof of Theorem 2 in the paper of
Birkner et al. (2013). However, some of the lemmas along the way have to be modi�ed.
Most of the proofs in this paper are kept rather short, if a similar and more detailed
version can be found in the original paper. Here, we will list the essential adaptations
needed to make it suitable for our problem. We get the exponential bounds on the
joint regeneration times with the same argument as in the proof of Theorem 2.25,
Equation (4.29), i.e. for all x, x′ ∈ Zd

P̃joint
x,x′

(
T sim

1 > n
)
≤ Ce−cn. (4.42)

Also, the sequence of joint regeneration increments is again stationary and α-mixing
by a similar reasoning as is used in Lemma 4.3.

Lemma 4.5 (Total variation distance of joint and independent law, cf. Lemma 3.4 in
Birkner et al. (2013)). There exist constants 0 < c,C <∞ such that for all x, x′ ∈ Zd∥∥∥Pjoint

x,x′ (Ξ1 = ·)− Pind
x,x′(Ξ1 = ·)

∥∥∥
TV

≤ Ce−c||x−x′||,

where || · ||TV is the total variation norm.

Proof. As in the original paper, without loss of generality, we prove the lemma for two
start points x = 0 and x′e1, where e1 is the �rst coordinate vector in Zd and x′ > 2m.
Let Ω1, Ω2 and Ω3 be three independent copies of environment and permutations Ωi,
i.e. for all i ∈ {1, 2, 3} we de�ne

Ωi := {ωi(v),Ki(v), ω̃i(v) : v ∈ V }.

Throughout this proof, we will add Ωi as an argument to our random variables to
indicate which realization of percolation and permutation is used in the construction.
Detailed de�nitions can be found in the proof of Lemma 3.4 in Birkner et al. (2013).
For example, we write

Bx,x′(Ωi,Ωj) := {ξP0 (x; Ωi) = ξP0 (x′; Ωj) = 1}
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for the condition to start the walks on the backbones of Ωi and Ωj respectively,

T sim
i,j := T sim(Ωi,Ωj)

:= inf
{
n ≥ 1 : ξPn (γ(x,n)

n (n; Ωi); Ωi) = ξPn (γ(x,n)
n (n; Ωj); Ωj) = 1

}
for the simultaneous regeneration times and

Ξ1(Ωi,Ωj)

:=
(

(Yk(Ωi), τk(Ωi))
J1(Ωi,Ωj)
k=1 , (Y ′k(Ωj), τ

′
k(Ωj))

J′1(Ωi,Ωj)
k=1 , XT sim

i,j
(Ωi), X

′
T ′simi,j

(Ωj)
)
.

for the simultaneous regeneration increments. To construct a simultaneous regenera-
tion increment of two independent walks Ξind

x,x′ , we will start one random walk at x = 0
on Ω1 and another random walk at x′ on Ω2. Similarly we construct the simultaneous
regeneration increment of two walks on the same cluster Ξjoint

x,x′ by starting two random
walks in x and x′ respectively both on Ω3. It is convenient to write

Ξjoint
x,x′ :=

{
Ξ1(Ω3,Ω3), if Bx,x′(Ω3,Ω3) occurs,
∆ otherwise,

Ξind
x,x′ :=

{
Ξ1(Ω1,Ω2), if Bx,x′(Ω1,Ω2) occurs,
∆ otherwise,

with some cemetery state ∆. If we start the random walks far enough apart, then
with high probability the regeneration event will happen in two disjoint subsets of
V that have a distance of x′/2. This allows us to use the mixing properties of the
environment, Lemma 4.1. De�ne the two disjoint subsets of S1, S2 ⊆ V by

S1 := {(y, k) ∈ V : |y| ≤ k for all 0 ≤ k ≤ |x− x′|/4},
S2 := {(y, k) ∈ V : |y − x′| ≤ k for all 0 ≤ k ≤ |x− x′|/4}.

Then dist(S1, S2) = x′/2 as shown in Figure 11. Finally, de�ne the events

L1 := {l(x, 0; Ω1) ∨ l(x′, 0; Ω2) ∨ l(x, 0; Ω3) ∨ l(x′, 0; Ω3) ≤ |x− x′|/4},
L2 := {ξP0 (x; Ω1) = ξP0 (x′; Ω2) = ξP0 (x; Ω3) = ξP0 (x′; Ω3) = 1}

∩ {T sim
1,2 ≤ |x− x′|/4} ∩ {T sim

3,3 ≤ |x− x′|/4}.

Conditioned on these events the two random walks stay far enough apart. Note that
the events L1 and L2 are disjoint. Since the probabilities of the complements of both
sets have exponential bounds in x′ by Lemma A.1 in Birkner et al. (2013) and Equation
(4.29), we know that P(Lc1 ∩ Lc2) has an exponential tail bound in x′/4. So,∣∣∣P(Ξjoint

x,x′ = w)− P(Ξind
x,x′ = ω)

∣∣∣
≤
∣∣∣P({Ξjoint

x,x′ = w} ∩ L1)− P({Ξind
x,x′ = ω} ∩ L1)

∣∣∣
+
∣∣∣P({Ξjoint

x,x′ = w} ∩ L2)− P({Ξind
x,x′ = ω} ∩ L2)

∣∣∣
+ Ce−cx

′/4. (4.43)

On the event L1 the regeneration increments are supported on the sets S1 and S2.
Thus, since on L1 both increments are equal to the cemetery state ∆, we have∣∣∣P({Ξjoint

x,x′ = w} ∩ L1)− P({Ξind
x,x′ = w} ∩ L1)

∣∣∣ = 0. (4.44)
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Figure 11: Conditioned on either of the events L1 and L2 both regeneration increments
depend on percolation cluster and permutations only in the sets S1 and S2 respectively.
Since both sets have at least distance x′/2, we can use the mixing property of the
environment to bound the di�erence of probabilities of a joint versus an independent
pair of regeneration increments.

Very similar to what we did in the proof of Lemma 4.3 we obtain the bounds on our
second term by summing over all possible endpoints for the increment. For every site
(y, k) ∈ Sr, r ∈ {1, 2} there exist events

A(y,k)
r (Ωi) ∈ σ(ω(z, l); Ωi), ω̃(z, l; Ωi) : (z, l) ∈ Sr)

such that

{Ξjoint
x,x′ = w} ∩

{(
XT sim

3,3
(Ω3), X ′T sim

3,3
(Ω3), T sim

3,3

)
= (y, y′, k)

}
∩ L2

= A
(y,k)
1 (Ω3) ∩A(y′,k)

2 (Ω3) ∩ {ξPk (y; Ω3) = 1} ∩ {ξPk (y′; Ω3) = 1}

and

{Ξind
x,x′ = w} ∩

{(
XT ind

1,2
(Ω1), X ′T ind

1,2
(Ω2), T ind

1,2

)
= (y, y′, k)

}
∩ L2

= A
(y,k)
1 (Ω1) ∩A(y,k)

2 (Ω2) ∩ {ξPk (y; Ω1) = 1} ∩ {ξPk (y′; Ω2) = 1}.

Therefore∣∣∣P({Ξjoint
x,x′ = w} ∩ L2)− P({Ξind

x,x′ = w} ∩ L2)
∣∣∣

≤
∑
k

∑
y:(y,k)∈S1

y′:(y′,k)∈S2

(4.45)

∣∣∣P(A(y,k)
1 (Ω3) ∩ {ξPk (y; Ω3) = 1} ∩A(y′,k)

2 (Ω3) ∩ {ξPk (y′; Ω3) = 1}
)

− P
(
A

(y,k)
1 (Ω1) ∩ {ξPk (y; Ω1) = 1}

)
P
(
A

(y′,k)
2 (Ω2) ∩ {ξPk (y′; Ω2) = 1}

)∣∣∣
≤

∑
(y,k)∈S1

φx′/4 + αXx′/4 ≤ |S1|
(
φx′/4 + αXx′/4

)
. (4.46)

Using |S1| = x′d+1/8, we can combine the three previous estimates in Equations (4.43),
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(4.44) and (4.45) to obtain∥∥∥Pjoint
x,x′ (Ξ1 = ·)− Pind

x,x′(Ξ1 = ·)
∥∥∥
TV

= sup
w∈W∪{∆}

∣∣∣P(Ξjoint
x,x′ = w)− P(Ξind

x,x′ = w)
∣∣∣

≤ Ce−cx′/4 + αx′/2 +
x′d+1

8

(
φx′/4 + αXx′/4

)
.

The conclusion of the lemma follows since all mixing coe�cients are exponentially
decreasing.

We have established that the total variation distance between the laws of two
independent walks and two walks on the same cluster becomes small if the walks start
far apart. Now, we need estimates on the probabilities to �nd two independent walks
closer together or further apart after some time. For this, we compare it with standard
Brownian motion and estimate exit probabilities from an annulus.

Lemma 4.6 (Escape time from an annulus, cf. Lemma 3.6 in Birkner et al. (2013)).
Let U be the linear, bijective map that decomposes the inverse covariance matrix from
Theorem 2.25, Σ−1 = UTU . Write for r > 0

h(r) := inf{k ∈ N : ||U(X̂k − X̂ ′k)||∞ ≤ r}
H(r) := inf{k ∈ N : ||U(X̂k − X̂ ′k)||∞ ≥ r}

and set for r1 < r < r2

fd(r; r1, r2) =


log(r)−log(r1)
log(r2)−log(r1) for d = 2
r2−d1 −r2−d
r2−d1 −r2−d2

for d ≥ 3.

Then for every ε > 0 there are large constants R and R̃ such that for all r2 > r1 > R
and r2 − r1 > R̃ and for all starting points x, y ∈ Zd such that r = ||U(x − y)||∞,
r1 < r < r2,

(1− ε)fd(r; r1, r2) ≤ P̃ind
x,y(H(r2) < h(r1)) ≤ (1 + ε)fd(r; r1, r2).

Proof. Under the law P̃ind the two copies of the random walk (X̂k)k∈N and (X̂ ′k)k∈N
are independent and their di�erence is again a random walk with �nite variance and
zero mean. By Theorem 2.2 in Merlevède (2003) or Theorem 4.3 in Rio (2013) we get
a functional central limit theorem for (X̂k − X̂ ′k)k∈N under the same assumptions as
in Theorem 2.25. The limit law is Brownian motion with some covariance operator Σ.
Since the covariance matrix Σ is symmetric and positive semi-de�nite it has a Cholesky
decomposition. It has full rank and so the inverse has a decomposition Σ−1 = UTU ,
where U has full rank as well. Then the limit law of the random walk (Xn) under the
map U has identity covariance matrix. If we de�ne h and H as above, we can compare
the random walks to the standard estimates of the exit probability from annuli for
Brownian motion, which gives the conclusion.

Lemma 4.7 (Separation lemma, cf. Lemma 3.8 in Birkner et al. (2013)). For dimen-
sion d ≥ 2 there are constants b1, b2 ∈ (0, 1/2), b3 > 0, b4 ∈ (0, 1), C > 0 such that
for large n

P̃joint
0,0

(
H(nb1) ≥ nb2

)
≤ Ce−b3nb4/2 . (4.47)
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Proof. For the proof, we have to be a little bit more careful as our environment ξK does
not have the Markov property and the regeneration increments are not independent.
In the �rst step of the proof of Equation (4.47) we observe that instead of forcing
two paths on the same cluster to move in opposite directions by choosing ω̃, we can
as well choose the percolation ω to our needs. In this case, we get the required
bounds, Equation (3.29) in Birkner et al. (2013), with the further advantage that the
construction depends on the percolation only. This allows us to rely on the Markov
property of ξP . Furthermore, de�ne the event

An := {(X̂n, X̂
′
n) has reached distance nb1 in at most n3b1 + nb6 steps}.

Following the proof in Birkner et al. (2013) we know from their Equations (3.34) and
(3.35) that there exist b1 ∈ (0, 1/6) and b6 ∈ (0, 1/2) such that P̃joint

x,y (An) > δ for
some δ > 0 and uniformly in x, y. This bound is based on the escape time estimates
of Lemma 4.6. We can pick b2 ∈ (3b1 ∨ b6, 1/2) such that nb2 ≥ n3b1 +nb6 . We get the
required upper bound for the probability to fail to reach the distance nb1 at least nb4
times by looking only at every second regeneration increment and then using mixing
properties to bound dependencies between them. This way we get

P̃joint
0,0

nb4⋂
k=1

Ack

 ≤ P̃joint
0,0

 nb4⋂
k=1,k odd

Ack


≤ P̃joint

0,0 (Ac1)P̃joint
0,0

 nb4⋂
k=3,k odd

Ack

+ αn3b1+nb6

≤ . . . ≤
nb4∏

k=1,k odd

P̃joint
0,0 (Ack) +

nb4

2
αn3b1+nb6

≤ (1− δ)nb4/2 + Cnb4e−cn
3b1−cnb6

≤ Cnb4e−b3nb4/2

≤ Ce−b3nb4/2

for n large enough, b3 := min{− log(1− δ), c} and b4 < min{6b1 ∨ 2b6, b2 − 3b1 ∨ b6}.
By construction these attempts take at most

nb4(n3b1 + nb6) ≤ nb2−3b1∨b6n3b1∨b6 = nb2

steps. This proves Equation (4.47) for d ≥ 3 and similarly in d = 2, see Birkner et al.
(2013).

Lemma 4.8 (cf. Lemma 3.10 in Birkner et al. (2013)). For d ≥ 2 there exist constants
b, C > 0 such that for every pair of bounded Lipschitz functions f, g : Rd → R with
Lipschitz constants Lf and Lg respectively∣∣∣∣∣Ẽjoint

0,0

[
f

(
X̃n − nµ̃√

n

)
g

(
X̃ ′n − nµ̃√

n

)]
− Ẽind

0,0

[
f

(
X̃n − nµ̃√

n

)
g

(
X̃ ′n − nµ̃√

n

)]∣∣∣∣∣
≤ C (1 + ||f ||∞ + Lf ) (1 + ||g||∞ + Lg)n

−b,

where µ̃ := E[τ1]~µ and ~µ is as in Theorem 2.25.

Proof. The proof remains almost the same as in Birkner et al. (2013), using the sep-
aration lemma, Lemma 4.7, and a coupling of dependent and independent Ξ-chains,
introduced in their Lemma 3.9. Furthermore, we do not have standard large deviation
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estimates. Instead, we need use the Markov inequality together with an estimate on
the expectation of the product of mixing random variables, e.g. Theorem 17.2.2 in
Ibragimov and Linnik (1971) to get

P̃joint
0,0

(
T sim
n ≥ Kn

)
≤ e−KnẼjoint

0,0

[
n∏
k=1

eτ
joint
k

]

≤ e−Kn
n∑
k=1

α
D
D+2

2m Ẽjoint
0,0

[
eτ

joint
k

]k
≤ nα

D
D+2

2m exp
(

log Ẽjoint
0,0

[
eτ

joint
k

]
n−Kn

)
.

Since the time increments τ sim
n have exponential moments under the joint law by

Equation (4.29), we can choose the constant K > log Ẽjoint
0,0 [eτ

sim
1 ] to get exponential

tail bounds

P̃joint
0,0 (T sim

n ≥ Kn) ≤ Ce−cn. (4.48)

This shows that Equation (3.47) in Birkner et al. (2013) holds in our case and completes
the proof by following their steps.

Proof of Theorem 2.26. As in Birkner et al. (2013) we show that for any bounded
Lipschitz function f : Rd → R∣∣∣∣Eξ [f (Xn − n~µ√

n

)]
− Φ(f)

∣∣∣∣ n→∞−−−−→ 0 for P̃-a.e. ξK , (4.49)

where Φ(f) =
∫
f(x)Φ(dx) and Φ is a non-trivial d-dimensional normal law and ~µ is

as in Theorem 2.25. We do this by �nding an upper bound of di�erent terms and show
that each of these terms converge individually as n → ∞. Let Lf be the Lipschitz
constant of f and write∣∣∣∣Eξ [f (Xn − n~µ√

n

)]
− Φ(f)

∣∣∣∣
≤
∣∣∣∣∣Eξ

[
f

(
Xn − n~µ√

n

)]
− Eξ

[
f

(
X̃[n/Eτ1] − n~µ√

n/Eτ1
1√
Eτ1

)]∣∣∣∣∣ (4.50)

+

∣∣∣∣∣Eξ
[
f

(
X̃[n/Eτ1] − n~µ√

n/Eτ1
1√
Eτ1

)]
− Φ(f)

∣∣∣∣∣ , (4.51)

where we write [n] for the integer part of an index n. In Term (4.50) we split the
position of the random walk according to

Xn − n~µ√
n

=
Xn − X̃Vn√

n
+
X̃Vn − X̃[n/E[τ1]]√

n
+
X̃[n/E[τ1] − n~µ√

n/E[τ1]

1√
E[τ1]

, (4.52)

where

Vn := max{k > 0 : Tk ≤ n}.

Conditioning on three suitable events (see terms (i)-(iii) in Equation (4.53)) and using
the properties of Lipschitz functions we get for constants 0 < γ′ < 1/2 < β < 1 and
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γ ∈ (β/2, 1/2)∣∣∣∣∣Eξ
[
f

(
Xn − n~µ√

n

)]
− Eξ

[
f

(
X̃[n/Eτ1] − n~µ√

n/Eτ1
1√
Eτ1

)]∣∣∣∣∣ (4.53)

≤ Lf
nγ
′
+ nγ√
n

+ 2||f ||∞

Pξ (∥∥∥Xn − X̃Vn

∥∥∥ ≥ nγ′)
(i)

+ Pξ

(∣∣∣∣Vn − n

Eτ1

∣∣∣∣ ≥ nβ)
(ii)


+ 2||f ||∞Pξ

(
sup

|k−n/Eτ1|<nβ

∥∥∥X̃k − X̃[n/Eτ1]

∥∥∥ ≥ nγ)
(iii)

.

For term (i) in Equation (4.53) we need to look at polynomial tails instead of logarith-
mic tails as in the original paper. For every ε > 0 we get from the Markov inequality
and stationarity of the joint regeneration increments under the annealed law that

P̃
(
Pξ

(
τn ≥ nγ

′)
> ε
)
≤ 1

ε
Ẽ
(
Pξ

(
τn ≥ nγ

′))
=

1

ε
P̃
(
τn ≥ nγ

′) ≤ C

ε
e−cn

γ′

is summable in n for every ε > 0. We conclude by Borel-Cantelli that

Pξ

(∥∥∥Xn − X̃Vn

∥∥∥ ≥ nγ′) ≤ Pξ (τn ≥ nγ′) n→∞−−−−→ 0 for P̃− a.e. ξK , (4.54)

since ||Xn − X̃Vn || ≤ τn. For term (ii) in Equation (4.53) we proceed as in Birkner
et al. (2013) and use their equations (3.64) and (3.67) to show almost sure convergence.
Here we only need to remark that their Equation (3.64) holds by a law of the iterated
logarithm for stationary mixing sequences, e.g. Theorem 6.4 in Rio (2013). For term
(iii) in Equation (4.53) we use Equations (3.68) and (3.69) from Birkner et al. (2013),
where Equation (3.69) holds by Inequality (I.6) in Rio (2013). Therefore, Term (4.50)
converges for P̃-a.e. ξK to 0 as n→∞.

For Term (4.51), we choose Φ to be a rescaled normal law Φ(f(·)) := Φ̃(f(·/√Eτ1))
and the almost sure convergence follows from Lemma 4.8 together with Lemma 3.12
in Birkner et al. (2013). Lemma 4.8 is used to control the covariance of two walks
under Pjoint by comparing it to the variance of a single walker under the annealed law.
Then Lemma 3.12 turns this into a quenched CLT for X̃n. The proof of their Lemma
3.12 holds true in our case as there is a moderate deviation principle for stationary,
strongly mixing sequences, Theorem 4 in Merlevède et al. (2009). We complete the
proof of Theorem 2.26 with the remark that any continuous bounded function can be
approximated by bounded Lipschitz functions in a locally uniform way and Equation
(4.49) holds for any continuous bounded function.
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5 Proofs for exclusion dynamics in recurrent environ-

ments

A survey of random walks in recurrent environments is given in the lecture notes of
Zeitouni (2004). We mostly use his notation in this paper. De�ne the potential of the
environment ω as the random process (V (x))x∈Z such that for all x ∈ Z

V (x) =


∑x
i=1 log ρi if x ≥ 1

0 if x = 0∑0
i=x+1− log ρi if x ≤ −1

, (5.1)

where ρx = (1− ωx)/ωx.

Lemma 5.1. The Markov chain (S(n))n∈N on the state space L with transition prob-
abilities as in Equation (3.9) has an invariant reversible measure π which is given
by

π(x) =

N∏
j=1

[
e−V (xj) + e−V (xj−1)

]
for any x ∈ L.
Proof. The reversible measure π̃ for the 1-particle system is

π̃(x) =
1

ωx
e−V (x) = e−V (x) + e−V (x−1)

for any x ∈ Z. The reversible measure for N -particles on the same environment with
state space ZN is the product measure

π(x) =

N∏
j=1

π̃(xj),

since the detailed balance condition still holds in every coordinate and the remaining
terms are a constant factor on both sides. Restricting the state space from ZN to L
does not change the reversible measure, since the restriction only a�ects diagonal terms
p(x,x) = p(x) for x ∈ ZN , which do not appear in the detailed balance equation.

5.1 Valleys

We de�ne a valley of the potential V as a triple (a, b, c), with a < b < c and such that
V attains a local maximum at a and c and a local minimum at b,

V (a) = max
a≤x≤b

V (x),

V (b) = min
a≤x≤c

V (x) and

V (c) = max
b≤x≤c

V (x).

A valley (a, b, c) has depth

d(a, b, c) := (V (a)− V (b)) ∧ (V (c)− V (b)), (5.2)

where we denote the minimum of two numbers a, b by a ∧ b := min{a, b}. We can
obtain a smaller valley (a, b′, c′) such that a < b′ < c′ < b by a left re�nement, if the
new valley is such that

V (c′)− V (b′) = max
a≤b′′<c′′≤b

V (c′′)− V (b′′).
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The same procedure also allows us to de�ne a right re�nement. By a �nite sequence of
re�nements of any valley (an0 , b

n
0 , c

n
0 ), with an0 < 0 < cn0 and depth d(an0 , b

n
0 , c

n
0 ) ≥ log n

for any n ∈ N, we can �nd the smallest valley (an, bn, cn) with depth d(an, bn, cn) ≥
log n such that an < 0 < cn. Denote by (anδ , b

n
δ , c

n
δ ) the smallest valley with anδ < 0 <

cnδ , while d(anδ ,b
n
δ ,c

n
δ ) ≥ (1 + δ) log n. Fix δ > 0, J > 0 and de�ne the event

AJ,δn :=



ω ∈ Ω : 1) bn = bnδ ,

2) any re�nement (a, b, c) of (anδ , b
n
δ , c

n
δ ) s.t. b 6= bn

has depth d(a,b,c) < (1− δ) log n,

3) |anδ |+ |cnδ | ≤ J log2 n,

4) mink∈[an,cn]\[bn−δ log2 n,bn+δ log2 n] {V (k)− V (bn)}
> δ3 log n


.

By the invariance principle and the properties of Brownian motion

lim
δ→0

lim
J→∞

lim
n→∞

P
(
AJ,δn

)
= 1. (5.3)

Note that all claims for Sj , 1 ≤ j ≤ N , with bn > 0 and S(0) = z hold also for SN−j+1

with bn < 0 and S(0) = (−zN , . . . ,−z1), since the re�ected environment ω such that
ωx = ω−x for all x ∈ Z is recurrent and strictly elliptic as well. Therefore we can
assume bn > 0 without loss of generality.

5.2 Localization for N-particle exclusion processes

After de�ning hitting times for single particles of the process

τj,x = inf{n ≥ 0 : Sj(n) = x}

for some j ∈ {1, . . . , N} and x ∈ Z, we are ready to state the next lemma.

Lemma 5.2. Let the Markov chain (S(n))n∈N start at vertex z = S(0) and choose
z1 = 0. Fix δ > 0 small enough and J, k large enough such that ω ∈ AJ,δn for all n ≥ k,
then

P zω
(
τj,bn < τ1,anδ ∧ τN,cnδ

) n→∞−−−−→ 1, (5.4)

where a ∧ b := min{a, b}.

Proof. Assume without loss of generality an < 0 < bn. Take n large enough such that
z ∈ (an, bn)N . Since the minimum bn is to the right of all particles in their initial
con�guration z, bn > zN , the leftmost particle S1 will be the last of all particles to
reach the minimum at bn, i.e. τj,bn ≤ τ1,bn for all j ∈ {1, . . . , N}. Thus, we only
work with the �rst particle S1, and Equation (5.4) follows directly from that for all
other particles j > 1. De�ne the time of the �rst return to the starting position z
as τ+

z = inf{n > 0 : S(n) = z}. Let τ̃A and τ̃+
z have the same laws as τA and τ+

z ,
except that the Markov chain (S(n))n∈N is re�ected at the sets {x ∈ L : x1 = anδ }
and {x ∈ L : xN = cnδ }. We now consider the Markov chain on the �nite graph G̃
with vertices L̃ = L ∩ [anδ , c

n
δ ]N . Note that the events {τ̃1,bn < τ̃1,anδ ∧ τ̃N,cnδ } and

{τ1,bn < τ1,anδ ∧ τN,cnδ } have the same probability. If we can show

P zω
(
τ̃1,anδ ∧ τ̃N,cnδ < τ̃+

z

)
P zω
(
τ̃1,bn < τ̃+

z

) n→∞−−−−→ 0, (5.5)
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then by Equation (2.2) the statement of the lemma, Equation (5.4), follows.
Let Rω(a ↔ B) be the e�ective resistance between the point a ∈ L̃ and the set

B ⊂ L̃. Since we are on a �nite graph G̃, we can apply Equation (2.3) to get

P zω
(
τ̃1,anδ ∧ τ̃N,cnδ < τ̃+

z

)
P zω
(
τ̃1,bn < τ̃+

z

)
≤
P zω
(
τ̃1,anδ < τ̃+

z

)
+ P zω

(
τ̃N,cnδ < τ̃+

z

)
P zω
(
τ̃1,bn < τ̃+

z

)
=
Rω(z↔ {x ∈ L̃ : x1 = bn})
Rω(z↔ {x ∈ L̃ : x1 = anδ })

+
Rω(z↔ {x ∈ L̃ : x1 = bn})
Rω(z↔ {x ∈ L̃ : xN = cnδ })

. (5.6)

By Rayleigh's principle, e.g. Theorem 1.29 in Grimmett (2010), the e�ective resistance
is non-increasing in edge resistances of the electrical network. Therefore, we may
remove edges until only a single path γ remains to connect {a} and B and thus get
an upper bound on the e�ective resistance between them. We then write a

γ←→ B, if a
is connected to B by the path γ. Also, we may add edges until the vertex set is the
whole lattice ZN to get a lower bound.

Let γ = {y0, . . . ,yM} be the unique path connecting y0 with some end point yM ,
M ∈ N. Then the e�ective resistance along the path is the sum of the edge resistances
along the path,

Rsingle path
ω (γ) =

M−1∑
i=0

(
π(yi)p(yi,yi+1)

)−1

=

M−1∑
i=0

1

p(yi,yi+1)

N∏
j=1

[
e−V (yij) + e−V (yij−1)

]−1

. (5.7)

Note that by Assumption (A1) all transition probabilities are bounded

κ/N < p(x,y) < 1− κ/N for all x L∼ y.

Thus, we may write for any path γ such that yM ∈ {x ∈ L̃ : x1 = bn}

Rω(z↔ {x ∈ L̃ : x1 = bn}) ≤ Rsingle path
ω

(
z

γ←→ {x ∈ L̃ : x1 = bn}
)

≤
M−1∑
i=0

exp

 N∑
j=1

V
(
yij
) N(1− κ)N

κ
. (5.8)

From here on, we need to treat the case L =∞ and the spider random walk, L <∞,
separately. In the �rst case any two particles can cross high parts of the potential
separately, so the particle system behaves similar to N independent particles in the
same potential. In the second case, all particles have to cross obstacles together and
the particle system behaves similar to a single particle with a slowdown in time by a
factor of N , as we will see in Lemma 5.3. This is equivalent to an increase of the height
of the potential by a factor of N , see for example Equation (5.15) versus Equation
(5.19).

Case L = ∞: For the estimate of the resistance along a single path we need to
choose the path γ connecting z with {x ∈ L̃∞ : x1 = bn} such that the e�ective resis-
tance does not grow too fast and behaves similar to the resistance of N independent
particles in the same potential. A good choice is to send the N -th particle to the min-
imum bn �rst, then send the (N − 1)-th particle and continue until the �rst particle
reaches the bottom of the valley. This ensures that at most one particle has to cross
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any local maximum of V on the interval [z1, b
n] at the same time. In particular, choose

γ = {y0, . . . ,yM}, such that y0 = z and yM = βn, where the �nal con�guration is

βn := (bn, bn + 1, . . . , bn + (N − 1)). (5.9)

Denote by lj := |bn + (j − 1)− zN−j+1| the distance that the (N − j + 1)-th particle
has to travel to reach yMN−j+1 and set

yi := yi−1 +

N∑
k=1

ek1{∑k−1
m=1 lm<i≤

∑k
m=1 lm}, (5.10)

where (e1, . . . , eN ) is the canonical basis of ZN . Then the number of steps in γ is
bounded by

M ≤ N |bn +N − z1| ≤ N(J log2 n+N) ≤ 2N2J log2 n.

Using Equation (5.8) we have

Rsingle path
ω

(
z

γ←→ {x ∈ L̃∞ : x1 = bn}
)

≤ 2N3J(1− κ)N log2 n

κ
exp

max
y∈γ

N∑
j=1

V (yj)


≤ 2N3J(1− κ)N log2 n

κ
exp

 max
x∈[0,bn+N ]

V (x) +

N−1∑
j=1

V (zj) ∨ V (bn + j)

 .

(5.11)

The last inequality holds, since the maximum of the sum of the potential over all
particles is attained when one particle is at the local maximum while all other particles
are still at their respective starting positions zj or already at their respective end
positions βnj . Finally, by ellipticity of ω we can bound

max
x∈(bn,bn+N ]

V (x) +

N−1∑
j=1

V (zj) ∨ V (bn + j) ≤ 2(N − 1)zN log

(
1− κ
κ

)
.

De�ning the constant

C1(N,κ, z) :=
2N3J(1− κ)N

κ

(
1− κ
κ

)2(N−1)zN

,

we obtain the desired upper bound on the resistance

Rω(z↔ {x ∈ L̃ : x1 = bn}) ≤ C1(N,κ, z) log2 n exp

(
max

x∈[0,bn]
V (x)

)
. (5.12)

For the corresponding lower bound we work on the integer lattice graph with vertex
set ZN . On the lattice graph we can calculate the voltage function u : ZN → R
explicitly, which gives us a direct bound on the e�ective resistance between z and
{x ∈ L̃∞ : x1 = anδ } by

Rfull lattice
ω (z↔ {x ∈ L̃∞ : x1 = anδ }) =

u(z)∑
y∼z

i(z,y)
. (5.13)
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Here i(z,y) is the unit electrical current �owing from z to y and the voltage u is such
that u ≡ 0 on {x ∈ L̃∞ : x1 = anδ }. The same trick works for the e�ective resistance
between z and {x ∈ L̃∞ : xN = cnδ }. The voltage u is a harmonic function on the
electrical network. A harmonic function f : ZN → R on a graph solves the equation

f(x) =
∑
y∼x

f(y)p(x,y). (5.14)

A solution to Equation (5.14) on the integer lattice satisfying the boundary condition
u ≡ 0 on {x ∈ L̃∞ : x1 = anδ } is

u(x1, . . . , xN ) =

x1−1∑
i=anδ

eV (i).

To check that u solves Equation (5.14), we calculate∑
y∼x

u(y)p(x,y)

=
1

N

N∑
i=1

u(. . . , xi + 1, . . .)ωxi + u(. . . , xi − 1, . . .)(1− ωxi)

=
1

N

N x1−1∑
i=anδ

eV (i) − eV (x1−1)ωx1
+ eV (x1−2)(1− ωx1

)


= u(x).

With our expression for the voltage we can also bound the outgoing current of the
start vertex z by a constant∑

y∼z
i(z,y) =

∑
y∼z

c(z,y)[u(z)− u(y)]

≤ 2N sup
y∼z

c(z,y)[u(z)− u(y)]

≤ 2(1− κ)π(z) max
1≤k≤N

eV (zk−1)

≤ 2(1− κ)π(z)

(
1− κ
κ

)zN
=: C2(N,κ, z).

Consequently, it follows that

Rω(z↔ {x ∈ L̃∞ : x1 = anδ }) ≥
eV (anδ )

C2(N,κ, z)
. (5.15)

We get the same bound for the e�ective resistance Rω(z↔ {x ∈ L̃∞ : x1 = cnδ }). By
Equations (2.2) and (5.6) and both bounds from Equations (5.12) and (5.15) we �nd
that

P zω
(
τ̃1,anδ ∧ τ̃N,cnδ < τ̃+

z

)
P zω
(
τ̃1,bn < τ̃+

z

) ≤ C3 log2 n · maxx∈[0,bn] e
V (x)e−V (bn)eV (bn)

eV (anδ )∧V (cnδ )

≤ C3 log2 n · maxx∈[0,bn] e
V (x)−V (bn)

eV (anδ )∧V (cnδ )−V (bn)

≤ C3 log2 n · n

n1+δ

n→∞−−−−→ 0, (5.16)
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where C3(N,κ, z) := 2C1(N,κ, z)C2(N,κ, z). This proves the lemma for pure exclu-
sion dynamics.

Case L <∞: For the spider Markov chain, we proceed in the same way as before,
now trying to get estimates on the resistances that are similar to the behaviour of a
single particle in the potential with some scaling by a factor of N . For the lower bound
on the resistance we take a path γ = {y0, . . . ,yM} such that y0 = z, yM = βn, where
βn is de�ned as in Equation (5.9). The intermediate points 0 < i < M are chosen
such that all particles move with minimal possible distance between them,

yi = yi−1 +

N∑
k=1

ek1{k=i−bi/Nc+1}, (5.17)

where bxc := max{i ∈ N : i ≤ x}. Then by Equation (5.11)

Rsingle path
ω

(
z

γ←→ {x ∈ L̃L : x1 = bn}
)

≤ 2N3J(1− κ)N log2 n

κ
exp

max
y∈γ

N∑
j=1

V (yj)


≤ 2N3J(1− κ)N log2 n

κ
exp

(
max

x∈[0,bn+N ]
NV (x) +NL log

(
1− κ
κ

))
≤ C ′1(N,κ, L)(log2 n) exp

(
max

x∈[0,bn+N ]
NV (x)

)
, (5.18)

where

C ′1(N,κ, L) :=
2N3J(1− κ)N

κ

(
1− κ
κ

)LN
.

For the estimate on the lower bound we identify all vertices in the electrical network
with the same �rst coordinate x1. There are |{x ∈ LL : x1 = k}| ≤ (L − N + 2)N

such vertices for all k ∈ N. Then the new conductances cident between neighbouring
identi�ed vertices are bounded around e−NV (x1), since all other particles stay close to
the �rst one in the chosen path γ. In particular

cident(k, k + 1) := c ({x ∈ LL : x1 = k} , {x ∈ LL : x1 = k + 1})
≤ C ′2(N,κ, L)e−NV (k),

where

C ′2(N,κ, L) :=
κ(L−N + 2)N

(1− κ)N

(
1− κ
κ

)LN
.

Then

Rω(z↔ {x ∈ L̃L : x1 = anδ }) ≥
anδ∑
k=0

(
cident(k, k + 1)

)−1

≥ 1

C ′2(N,κ, L)
eNV (anδ ). (5.19)

Overall, by the same calculation as in Equation (5.16)

P zω
(
τ̃1,anδ ∧ τ̃N,cnδ < τ̃+

z

)
P zω
(
τ̃1,bn < τ̃+

z

) ≤ C ′3 log2 n
Nn

(Nn)1+δ

n→∞−−−−→ 0,

where C ′3(N,κ) := 2C ′1(N,κ, L)C ′2(N,κ, L). This proves the lemma for spider dynam-
ics.
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Lemma 5.3. Fix δ > 0 small enough and J, k large enough such that ω ∈ AJ,δn for all
n ≥ k. For any z ∈ L such that z1 = 0 and j ∈ {1, . . . , N}

P zω (τj,bn > n)
n→∞−−−−→ 0 for L =∞ and

P zω (τj,bn > Nn)
n→∞−−−−→ 0 for L <∞.

Proof. De�ne the set Bn = [anδ , c
n
δ ]N and the hitting time τ̃j,bn of the re�ected Markov

chain on L̃ = L ∩Bn as in Lemma 5.2. Also, de�ne the �rst return time on L̃ as

τ̃+
x =

{
n > 0 : S̃(n) = x

}
.

Since P zω (τ̃j,bn > n) ≤ P zω (τ̃1,bn > n), we may only consider the case j = 1. We use a
technique due to Golosov (1984). Take n large enough. De�ne the number of times
the Markov chain visits a site x before arriving at the bottom of the largest valley as
Zx = {k < τ̃1,bn : S(k) = x}. Set λx = P xω (τ̃1,bn < τ̃+

x ). Then the random variable Zx
is dominated by a geometric random variable, since for all l ∈ N

P zω (Zx = l) = P zω
(
τ̃+
x < τ̃1,bn

)
(1− λx)l−1λx ≤ (1− λx)lλx.

Consequently Ezω [Zx] ≤ λ−1
x . On the �nite graph G̃ we have (e.g. by Proposition 9.5

in Levin et al. (2009)) that

λ−1
x = π(x)Rω(x↔ {y ∈ L̃ : y1 = bn}).

Case L = ∞: Choose γ as in Equation (5.10), i.e. we take one particle at a time
from xj to the minimum of the valley at bn. Then we get

Ezω [τ̃1,bn ] =
∑
x∈Bn

P zω(τ̃+
x < τ̃1,bn)Exω [Zx]

≤
∑
x∈Bn

π(x)Rsingle path
ω

(
x

γ←→ {y ∈ L̃ : y1 = bn}
)

≤ C1|γ| log2 n
∑
x∈Bn

exp

− N∑
j=1

V (xj) + max
x∈γ

N∑
j=1

V (xj)

 .

As before, |γ| ≤ 2N2J log2 n and |Bn| ≤ JN (log n)2N . De�ne a new constant C4 :=
C4(N,κ, z) := 2C1(N,κ, z)N2JN+1. The term in the exponent is only positive, if the
maximum of the potential along the path γ is bigger than the potential V (xj) at the
respective starting positions xj . If this is the case, then on ω ∈ AJ,δn the potential at
the maximum can be at most (1− δ) log n bigger than V (xj) and we get the bound

Ezω [τ̃1,bn ] ≤ C1|γ| log2 n
∑
x∈Bn

exp

(
max

1≤j≤N

(
−V (xj) + max

xj<y≤bn
V (y)

))
≤ C4(log n)2(N+2)e(1−δ) logn.

By Markov's inequality we conclude that

P zω (τ̃1,bn > n) ≤ Ezω [τ̃1,bn ]

n
≤ C4(log n)2(N+2)n−δ

n→∞−−−−→ 0. (5.20)

Case L <∞: For the spider case, choose the path γ as in Equation (5.17) and use
the upper bound for the resistance from Equation (5.18). Then

Ezω [τ̃1,bn ] ≤ C ′1|γ||Bn| log2 n(Nn)1−δ,

77



and again by Markov's inequality

P zω (τ̃1,bn > Nn) ≤ Ezω [τ̃1,bn ]

Nn
≤ C ′4(log n)2(N+2)N−δn−δ

n→∞−−−−→ 0, (5.21)

where C ′4 = 2C ′1N
2JN+1.

Now, we know that all N particles move to the bottom of the valley before time
n and without hitting the boundary ∂Bn := {x ∈ Bn : ∃y ∼ x s.t. y /∈ Bn}. We still
need to show that once the N particles arrive at the bottom of the valley, they will
not leave before time n.

Lemma 5.4. De�ne βn = (bn, bn + 1, . . . , bn +N − 1). Then for any j ∈ {1, . . . , N}

sup
ω∈AJ,δn

max
k≤n

P β
n

ω

(∣∣∣∣Sj(k)− bn
log2 n

∣∣∣∣ > δ

)
n→∞−−−−→ 0 if L =∞ and

sup
ω∈AJ,δn

max
k≤Nn

P β
n

ω

(∣∣∣∣Sj(k)− bn
log2 n

∣∣∣∣ > δ

)
n→∞−−−−→ 0 if L <∞.

Proof. Let again τ+
βn := inf{n > 0 : S(n) = βn} be the �rst return time to the starting

vertex, but now we start the walk at βn = (bn, bn + 1, . . . , bn + N − 1). If we do not
leave the set Bn = [anδ , c

n
δ ]N before time n, we may again restrict our attention to

the �nite sub-graph with vertices in Bn. By the detailed balance equation for any
x ∈ Bn ∩ L such that x1 = anδ or xN = cnδ we get the following estimate

P β
n

ω (τx ≤ n) ≤
n∑
i=1

P β
n

ω (S(i) = x)

=

n∑
i=1

π(x)

π(βn)
P xω (S(i) = βn)

≤ n π(x)

π(βn)
. (5.22)

From this we get a bound on the time the Markov chain stays in the valley by

P β
n

ω

(
τ1,anδ ∧ τN,cnδ ≤ n

)
≤ |Bn| sup

{x∈Bn:x1=anδ or xN=cnδ }
P β

n

ω (τx ≤ n)

≤ |Bn| sup
{x∈Bn:x1=anδ or xN=cnδ }

n
π(x)

π(βn)
. (5.23)

Case L = ∞: The supremum in Equation (5.23) for L = ∞ is attained either
at approximately x = (anδ , b

n + 1, . . . , bn +N − 1) or otherwise at approximately x =
(bn, bn + 1, . . . , bn +N − 2, cnδ ),

P β
n

ω

(
τ1,anδ ∧ τN,cnδ ≤ n

)
≤ |Bn|

(
1− κ
κ

)N
n exp

(
−V (anδ ) ∨ V (cnδ )− (N − 1)V (bn) +NV (bn)

+

N−1∑
i=1

(V (bn + i)− V (bn))

)

≤ |Bn|
(

1− κ
κ

)N
n exp

(
−(1 + δ) log n+N2 log

(
1− κ
κ

))
≤ C(log n)Nn−δ

n→∞−−−−→ 0. (5.24)
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Thus, we may again consider the Markov chain re�ected at {x ∈ L : x1 = anδ or xN =

cnδ } and denote it by S̃. By the Carne�Varopoulos bound, Varopoulos (1985), we get

P β
n

ω

(
S̃(k) = x

)
≤
√

π(x)

π(βn)
for any k ∈ N

and therefore

P β
n

ω

(∣∣∣S̃j(k)− bn
∣∣∣ > δ log2 n

)
≤

∑
x∈Bn:|xj−bn|>δ log2 n

P β
n

ω

(
S̃(k) = x

)

≤ |Bn|
(

1− κ
κ

)N
max

x∈Bn:|xj−bn|>δ log2 n
exp

(
1

2

N∑
i=1

−V (xi) + V (βni )

)

≤
(
J log2 n

)N (1− κ
κ

)N2

n−δ
3/2, (5.25)

which is uniform in k for all k ≤ n. This proves the claim for S̃j and by Equation
(5.24) also for Sj .

Case L < ∞: The bound in Equation (5.25) is in fact also uniform for all times
k ≤ Nn, provided that the Markov chain is con�ned to Bn ∩ LL until time Nn with
high probability. Indeed, similar to Equation (5.24), the supremum is now attained
for some x ∈ LL such that either x1 = anδ or xN = cnδ , while all other particles can be
at most distance L away, thus

P β
n

ω

(
τ1,anδ ∧ τN,cnδ ≤ Nn

)
≤ |Bn|

(
1− κ
κ

)N
Nn exp

(
−N (V (anδ ) ∨ V (cnδ )) +NL log

(
1− κ
κ

)
+NV (bn) +

N−1∑
i=1

(V (bn + i)− V (bn))

)
≤ C(log n)N (Nn)−δ

n→∞−−−−→ 0 (5.26)

which completes the proof for L <∞.

Proof of Theorem 3.23. We choose the starting position of the Markov chain z ∈ L
without loss of generality such that z1 = 0. By translation invariance of the environ-
ment the results hold for all other choices of z, but the de�nition of bn would be for
valleys centred around z1 instead of 0. Fix δ < η/2 and take J and k large enough
such that ω ∈ AJ,δn for all n ≥ k. By putting Lemma 5.3 and Lemma 5.4 together we
get for L =∞

P zω

(∣∣∣∣Sj(n)− bn
log2 n

∣∣∣∣ > η

)
≤ P zω (τj,bn > n) + max

k≤n
P β

n

ω

(∣∣∣∣Sj(k)− bn
log2 n

∣∣∣∣ > δ

)
and for L <∞

P zω

(∣∣∣∣Sj(n)− bn
log2 n

∣∣∣∣ > η

)
≤ P zω (τj,bn > Nn) + max

k≤Nn
P β

n

ω

(∣∣∣∣Sj(k)− bn
log2 n

∣∣∣∣ > δ

)
.

Therefore, choosing b(n;ω) = bn, we prove the claim by using Equation (5.3) and
taking the limits.
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Remark 5.5. The result in Theorem 3.23 holds for L = ∞ in fact not only if the
number of particles N is �nite, but also if it grows slowly enough. For example,
choose N = ρ

√
log log n for some constant ρ > 0 and the initial con�guration z(N) =

(0, 1, . . . , N − 1) such that zN = N − 1. Then for large n

C2(N(n), κ, z(N(n))) < C1(N(n), κ, z(N(n)))

≤ 2N3(n)J

κ2
exp

(
2N2(n) log

(
1− κ
κ

))
=

2Jρ3

κ2
(log n)2ρ(log(1−κ)−log κ)(log log n)3/2.

Consequently, the constants C3 = 2C1C2 and C4 = 2C1N
2JN+1 grow slower than

polynomial and both Equations (5.16) and (5.21) still hold. By the same argument
Equation (5.25) and thus also Theorem 3.23 hold. For L < ∞ we can choose both
N,L ∈ O(

√
log log n) and get the same results.

5.3 The stationary limit law

Proof of Lemma 3.25. Part (i): The joint random walk of N independent particles
in the same realization of the environment ω is recurrent by Corollary 1.4 in Gantert
et al. (2014). The Markov chain (S(n))n∈N lives on a sub-graph of ZN and is therefore
recurrent as well.

Part (ii): Since (S(n))n∈N is recurrent and irreducible, every state is visited even-
tually. In particular for any M ≤ L we visit a state y ∈ ZN such that |y1 − yN | ≥M
in �nite time and return in�nitely often.

Proof of Theorem 3.26. We de�ne the in�nitely deep well (Golosov (1984)) or in�nite
valley (Gantert et al. (2010)) as the random process (V̄ (x))x∈Z, which has the law of
the environment (V (x))x∈Z conditioned to stay non-negative for x > 0 and conditioned
to stay strictly positive for x < 0. This process is de�ned by a limit procedure. It
can be found together with a proof of existence in Golosov (1984) or Bertoin (1993).
Denote by (Y(n))n∈N the Markov chain on the environment ω̄, which corresponds to
the potential (V̄ (x))x∈Z, where the relation between the environment and the potential
is de�ned as in Equation (5.1).

The Markov chain on the original environment ω is null-recurrent, which is also
true for N independent particles on the same copy of the environment, see Gantert
et al. (2014). However, the Markov chain in the in�nite well is positive recurrent, i.e.∑

x∈Z
e−V̄ (x) <∞,

which is due to Golosov (1984). Denote by p̄, c̄ and π̄ the transition probabilities,
conductances and invariant measure corresponding to the environment ω̄. We have
the same result for our N -particle Markov chain∑

(x,y)∈L×L
c̄(x,y) ≤

∑
(x,y)∈ZN×ZN

π̄(x)p̄(x,y)

≤ (1− κ)

(
1− κ
κ

)N ∑
x∈ZN

N∏
i=1

e−V̄ (xi)

= (1− κ)

(
1− κ
κ

)N (∑
x∈Z

e−V̄ (x)

)N
<∞.
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This implies that the N -particle process (Y(n))n∈N is positive recurrent in the in-
�nitely deep well potential (V̄ (x))x∈Z for both pure exclusion and spider dynamics.
The process is also irreducible and aperiodic and consequently the law of (Y(n))n∈N
converges for �xed ω̄ to some limit law ϕ(ω̄). Denote by (θy)y∈Z the shift operator,
i.e. for any ω ∈ Ω and x ∈ Z we have θyωx = ωx+y. It was shown by Golosov (1984),
Lemma 4, that the �nite dimensional distributions of the environment seen from the
bottom of the deepest valley θbnω converge to those of the in�nitely deep well poten-
tial ω̄. In the proof of his theorem, part (ii), he combines these facts and thus shows
convergence of �nite dimensional distributions of (S(k + n)− b(k;ω))n∈N to those of
(Y(n))n∈N as k →∞ under the annealed measure.
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