
Control and implementation of
compliant actuators for

exoskeletons

handed in
FORSCHUNGSPRAXIS

cand. ing. Daniel Bargmann

born on the 07.11.1989
living in:

Moerikestrasse 1
83022 Rosenheim

Tel.: 0152 - 21966158

Chair of
AUTOMATIC CONTROL ENGINEERING

HUMAN ROBOT INTERACTION GROUP
Technical University of Munich

Prof. Dongheui Lee, Ph.D.

Supervisor: Matteo Saveriano
Start: 02.11.2016
Delivery: 16.02.2017

1

2

CONTENTS 3

Contents

1 Problem Description 5

1.1 Mechanical Hardware . 5

1.1.1 Series Elastic Actuators . 5

1.1.2 Orthosis . 6

1.2 Electronics . 7

1.3 Task . 9

2 Control Hardware Selection 11

2.1 Evaluation of different Hardware approaches 11

2.1.1 Microcontrollers . 11

2.1.2 RoNex . 13

2.2 Conclusion . 14

3 Control Software Selection 17

3.1 Realtime on Linux . 17

3.1.1 Soft vs Hard Realtime . 18

3.1.2 Realtime Kernels . 18

3.2 ROS and Realtime . 19

3.2.1 OROCOS . 19

3.2.2 ROS Control . 20

3.3 Conclusion . 20

4 Control 21

5 Implementation 25

5.1 SPI Interface . 25

5.2 Implementation with RoNex . 25

5.3 Motorboard bug . 27

5.4 Mechanical Problems . 29

6 Evaluation & Performance 31

7 Conclusion & Outlook 35

4 CONTENTS

Bibliography 39

5

Chapter 1

Problem Description

1.1 Mechanical Hardware

1.1.1 Series Elastic Actuators

Series-Elastic Actuators (SEAs) are actuators that incorporate a elastic element in
series of the transmission, usually a spring (see Figure 1.1) inbetween motor and
load. This results in a reduced bandwith for stable position control and a harder
control problem in the position domain.

On the other hand the spring turns the force control problem into a position control
problem, which makes it easier to achieve a stable force controlled system.

Electric motors in combination with traditional actuators have to depend on gear
reduction to achieve sufficient acceleration for heavy loads. But gears introduce all
kind of new problems, e.g.increase in weight and easy breakdown due to external
impacts as those get amplified by the gear system.[PW]

One particular interesting feature of SEAs is its inherent compliance, which makes
it a well suited approach for Exoskeletons. Here the human arm provides high
damping so unstable behaviour doesnt occur that much. Most applications in in-
dustrial Exoskeletons also require to control the forces and typically position is not
as important, as this is established by the human himself.

Figure 1.1: Concept of SEAs (from [PW])

6 CHAPTER 1. PROBLEM DESCRIPTION

Figure 1.2: Orthosis Prototype version 1

1.1.2 Orthosis

The mechanical framework (Orthosis) is given by a SEA, a mechanical spring that
is effectively in series with a DC Motor.

Our power orthosis consists of a joint, two springs in parallel, a spindle and nut, as
well as two DC Motors.

The force of the motors is transmitted via a beltdrive which operates a spindle and
nut. This spindle in turn transmits force via a belt to the orthosis joint where
is passes two springs in parallel. Those springs effectively act as a series elastic
element, which you can see in Figure 2.5.

The advantage compared to traditional springs in series is that the springs dont
change their position when the orthosis is operated which makes it easier to measure
the spring deflection with a displacement sensor. In order for the orthosis to be more

Figure 1.3: Schematic View of Orthosis

lightweight it is only able to support the user in the upward/lifting direction, so there
is no need for an additional belt to operate the orthosis in the downward direction.

Another speciality in our prototype is the use of two different DC motors.

1.2. ELECTRONICS 7

The Maxon DCX 16 L is a traditional brushed DC motor with a nominal power of
19W which is intended to overcome the orthosis inherent inertia in a non-support or
transparent mode. Therefor the nominal torque of 11.7 mNm of this motor is very
tightly matched to the mechanical construction of the orthosis. It can be achieve a
fast nominal speed of 10800 RPM which is needed to achieve a smooth operation
where the user does not feel obstructed.

The Maxon EC-i 40 is a brushless DC (BLDC) motor with nominal power of 100W.
This motor is intended to handle heavy lifting operations with its nominal torque
of 3260 mNm albeit with a greatly reduced operating speed (nominal speed 3990
RPM).

In order to combine both motors both operate a belt drive which drives the spindle.
In order to dynamically switch from transparent mode to support mode, the BLDC
motor is connected to the belt drive via a electromagnetic clutch. If the orthosis
should be operated in support mode the BLDC motor is clutched on and provides
sufficient power. In the transparent mode on the other hand, the BLDC motor is
not clutched on, so the smaller DC motor is able to react fast enough to the users
movements.

1.2 Electronics

Certain electronics modules already existed and was developed and used in several
previous projects at Fraunhofer IPA, especially the MYO Robotics Project1

Angular Sensor

Figure 1.4: Analog angular sensor RMB20

We used the RMB20 Angular sensor which provides an analog output of 0 to 5V for
full 360◦ rotations. (Figure 1.4)

8 CHAPTER 1. PROBLEM DESCRIPTION

Figure 1.5: Left: basic principle of the displacement sensor. Right: PCB Board
with displacement sensor

Displacement Sensor

This sensor is basically a incremental hall-sensor that works by sensing changes on a
magnet strip. In our case one pole pair on the magnetic stripe corresponds to 2.4mm
on the strip. Traveling along one pole pair results in 40 pulses of the sensor.(See
Figure 1.5)
Therefore the maximum resolution is 2.4mm

40counts
= 0.06 µm

count
. In our case the encoder is

configured in 4x mode, which results in a resultion of 15 µm
count

.

Motorboard

Figure 1.6: MYO Robotics Motorboard

This motorboard was originally designed for the MYO Robotics Project1. It features
a driver for a BLDC motor and encoder counter for a incremental rotary encoder
and one for the displacement sensor. Other sensordata are drawn current,

1www.myorobotics.eu

1.3. TASK 9

It can recieve data based on a certain protocol via a CAN Bus interface as well as
via a SPI interface.
The motorboard an recieve a reference value via SPI which can be interpreted as
either a PWM value or a velocity reference. It already has a simple PID controller
implemented on its microcontroller, which regulates the velocity based on a given
reference value.
It is designed for a power supply of 24V, which is converted to 5V via a buck con-
verter and further to 3V to supply the internal microcontroller and communication
ICs.

1.3 Task

The first part of the task is to establish a communication from a Linux PC to the
orthosis and establish force control on it.
Therefore adequate hardware has to be found to connect the motorboard to a PC
or even hardware to replace the motorboard.
In order to provide an interface to this framework for project partners and other
projects, the implementation should feature a bridge to Robot Operating System
(ROS).
After that the control should be optimized, its performance should be measured and
the existing MATLAB model should be verified.

10 CHAPTER 1. PROBLEM DESCRIPTION

11

Chapter 2

Control Hardware Selection

2.1 Evaluation of different Hardware approaches

2.1.1 Microcontrollers

One way establish a control framework is by using embedded systems either as
proxies for higher level controllers on other platforms (e.g. a PC) or containing the
control algorithms themself.

We have evalued a few approches that feature embedded microcontrollers.

Synapticon SOMANET Modules

Figure 2.1: Synapticon SOMANET Module

12 CHAPTER 2. CONTROL HARDWARE SELECTION

Synapticons SOMANET Modules combine motordriver boards for BLDC motors
with a computational core and communication modules like EtherCAT and SPI.
The compotational core features a highly parallel XMOS microprocessor which can
spawn 16 deterministic independent real-time hardware threads while still beeing
comparably low power (500 mW under load).[Syn14]
Another advantage are the communication moudles, like the ready-made EtherCAT
slave module, modules for analog and digital general purpose input/output (GPIO)
pins.
Unfortunatly it uses the programming language XC, a special derivative of C spe-
cially designed for XMOS microprocessors.
This makes it harder to write productive code for those microcontrollers as it requires
learning the pecularities of XC as well as developing on embedded processors.
Also when using the SOMANET it is not possible (or even sensible) to use the
already existing motorboard from the MYO Robotics project as the SOMANET
core only works in conjunction with its BLDC interface.
This would require a complete rewrite of the code developed on the MYO Robotics
motorboard, which is only sparsely documented.

Arduino YUN

Figure 2.2: Arduino Yun

The YUN is an Arduino that incorporates a ATmega32u4 microcontroller and a
System-on-a-Chip (SoC), the Atheros AR9331 on one PCB.
The Atheros processor runs the Linux distribution named Linino OS which makes
implementing higher level controllers easier.

2.1. EVALUATION OF DIFFERENT HARDWARE APPROACHES 13

Unfortunatly the YUN only has one Serial Peripheral Interface (SPI) interface at
the ICSP header, which either limits the amount of SPI devices that can be attached
or the speed of the connection.
Connecting both displacement and rotational encoders is very tricky, as the AT-
mega32u4 features two highspeed timers one for 64 MHz and one operating at 96
MHz. Each encoder needs two seperate timers to determine the revolution direction.
So while it is technically possible to use the YUN to process encoders, the processing
time can actually be severly limited if higher speeds are reached. One solution would
be to use an external counter that is connected to the Arduino via Inter-Integrated
Circuit (I2C) or SPI.

2.1.2 RoNex

Figure 2.3: RoNex modules. Left: Base module — Middle: SPI module — Right:
Both combined

The Robot Nervous System (RoNex) is a modular electronics hardware which was
developed by ShadowRobot1 to control their robotic hand.
It consists of several modules:

Bridge module connects other modules to a PC via EtherCAT, a protocol for
real-time ethernet mainly established by Beckhoff2. Its driver has a hardcoded
communication frequency of 1 kHz. It can be powered via Power over Ethernet and
provides a power source for connected submodules.(see Figure 2.3)

SPI module connects to 4 SPI devices as Host and also features 6 digital in-
put/output pins as well as 6 analog pins. It can be directly stacked on top of the
RoNex base module and is powered by it.

It already supports ROS control out-of-the-box and is a well-tested system. The
RoNex modules also provide a stable, real-time capable solution to connect to a
motorboard and several sensors.

1http://www.shadowrobot.com
2www.ethercat.org

14 CHAPTER 2. CONTROL HARDWARE SELECTION

One downside is the low connection speed for SPI devices of only 32 bytes per
connection and EtherCAT package, which is sufficient for our purposes.

2.2 Conclusion

For the final implementation we concluded that a complete rewrite of the motor-
board (which would be required when using a microcontroller solution) would be
too timeconsuming and prone to errors.
Instead using the RoNex board with its already well-tested hardware and relative
ease of use is the best solution of all the proposed approaches.
This makes it also possible to use the PID velocity controller and the displacement
sensor decoder on the motorboard.

Figure 2.4: Final Implementation of the electronics

Ultimately we established the connection via RoNex while using a relay board for
controlling the clutch (Figure 2.4)
The final schematic for the implementation can be seen in figure 2.5.

2.2. CONCLUSION 15

Figure 2.5: Final Implementation of the electronics - Schematic

16 CHAPTER 2. CONTROL HARDWARE SELECTION

17

Chapter 3

Control Software Selection

3.1 Realtime on Linux

The standard Linux kernel usually experiences a jitter of ∼ 1− 10ms for a periodic
task but for individual cycles jitter can be as high as several seconds.
When using Linux for motorcontrol it is therefore required to minimize the jitter so
the calculated motorcontrol output matches the provided sensordata.
The main causes for high jitter are usually these [Hua14]:

Dynamic memory allocation and cache misses are one of the major impacts
on high response latency. Whenever a cache miss happens the calculation is delayed
by the time of a slow cache lookup.

Figure 3.1: Preemptable Scheduler: Low priority Task 1 is paused as soon as high
priority Task 2 gets scheduled and the next preempt point is reached

Non-preemptable Scheduler If a low priority task gets executed an an high pri-
ority task gets scheduled, the low priority tasks blocks its execution until it finishes.

18 CHAPTER 3. CONTROL SOFTWARE SELECTION

It is very important for the Scheduler to be able to preempt low priority tasks and
schedule high priority tasks. (see Figure 3.1)

Those problems can usually be addressed by using a realtime Linux kernel, which
will be covered in section 3.1.2. This chapter is based on [RG16], [Hua14],[GMGT14]

3.1.1 Soft vs Hard Realtime

The main difference between Hard and Soft real-time is the way it handles deadline
misses.

Soft real-time requires that the deadline is kept most of the time but doesnt
count missing the deadline as failure. This is mainly used in Quality-of-Service (QoS)
applications such as playing music or streaming videos. Here a missed deadline is
not critical and the processed data (e.g. audio) is not useless or harmful when
processing takes longer.

Hard real-time requires that the deadline is met 100% as missing it or using out-
dated information leads to malfunctioning of the system. This is usually important
in safety-critical applications such as satelites or controllers with very tight stability
margins.

The requirements for the power-orthosis lie somewhere in between hard and soft
real-time. It is not critical to meet every single deadline especially if the velocity
control is later on implemented on the motorboard.
On the other hand it is very important to decrease jitter for the control loop as much
as possible as the frequency of the velocity reference usually has a high impact on
control performance. Increasing the control frequency means in turn also increasing
the impact of jitter on the performance.

3.1.2 Realtime Kernels

Various patches and kernel try to make the Linux kernel itself more real-time able.
The two mainly used real-time kernels are XenoMai and PreemptRT which will be
described in the following section.

XenoMai

Instead of improving the Linux kernel per se, Xenomai tries to inject a Real-time
Operating-System (RTOS) in parallel to the traditional Linux kernel. This RTOS
contains a seperate scheduler and has prefered access to system ressources.
Interrupt Requests (IRQs) get piped through Adeos, which handles IRQs and passes
them to the RTOS kernel.(Figure 3.2)

1Adapted from https://xenomai.org/2014/06/life-with-adeos/

3.2. ROS AND REALTIME 19

Figure 3.2: Adeos Pipeline1

PreemptRT

While XenoMai tries to circumvent the original Linux schedulier, PreemptRT ap-
proaches the problem differently. It patches the original kernel and modifies its
scheduler to make the OS as preemptible as possible.

This means usually that interrupts need to be modified, e.g. by makeing them
schedulable and/or disabling them

3.2 ROS and Realtime

ROS is a set of software libraries and tools for building robot application. It provides
a defined and modular framework for organizing robot control programs even across
several physical computers

It uses a protocol based on TCP/IP to communicate between ROS nodes which
makes it inherently non-real-time.

To circumvent this limitation and still use ROS with real-time control several ex-
tensions can be used.

3.2.1 OROCOS

Open Robot Control Software (OROCOS) Toolchain establishes a real-time friendly
and modular framework designed to create control system on Linux. It can be very
tightly integrated with ROS and is often used in instances where controller design
and performance is crucial for a robot. It can also handle different scheduler policies
like earliest deadline fist or TDMA.

20 CHAPTER 3. CONTROL SOFTWARE SELECTION

3.2.2 ROS Control

ROS Control is the native solution for controllers that have to fulfill real-time con-
traints in ROS. It was originally developed for PR22 Robots and was completely
rewritten to be usable Controllers in ROS Control are usually very monolitic, as
they consist of single plugins that get loaded by a controller manager which in turn
runs them. Usually it provides only one policy for scheduling, first-in first-out.

3.3 Conclusion

The best solution when not considering the hardware setup would be to use XenoMai
and OROCOS. XenoMai provides the best real-time performance and OROCOS is
modular, features different scheduler policies, has many modules for dataprocess-
ing already implemented and can be deployed to microcontrollers and is naturally
supports XenoMai.
Unfortunatly it is quite a big amount of work to establish this framework for RoNex.
The EtherCAT protocol is not specified in detail and although the source code is
freely available, it would still be very time consuming to completely rewrite the
already existing code for OROCOS.
Therefore we decided to use ROS Control. Unfortunatly the driver provided by
ShadowRobot for now only supports PreemptRT and would require an adaptation
to use XenoMai. Therefore we also use PreemptRT as real-time kernel.

2http://www.willowgarage.com/pages/pr2/overview

21

Chapter 4

Control

One of the major tasks is to implement a structure to control the Orthosis. This
is basically a problem that revolves about controlling a SEA, but comes with a few
additional problems.

The problem of controlling a SEA has been covered in a few different ways.

Originally [PW] proposed a PID-like control scheme based only on force-error and
feedforward terms.

In [PW] and [Wye06], stability of PID-controllers has been shown for the actuators
alone, but not in combination with an active or passive environment with deliberate
impedance.

A popular approach to handle unknown environments is to utilize passivity based
controller design, as a passive system is stable and a combination of passive systems
again is passive.

To achieve this, [VEVDKB07] and [Wye06] used a cascaded control with an in-
ner velocity loop to ensure passivity, where passivity can be ensured by correctly
choosing controller parameters.

A major problem however remains that the classical approach based on PID-Controllers
slows down the response of the system. The integral part of the controller basically
acts as a low-pass filter [PW].

In order to counter this problem, [CCF14] evaluated integral sliding mode Control
and an Adaptive Force Controller approaches and compared it to traditional PID
control.

They concluded that basically adaptive and sliding mode control can achieve sta-
bility in sense of boundedness while at the same time achieving superiour tracking
performance to PID/PD control.

In [JB16], a very similar mechanism to ours has been discussed. A motor drives a
torsional spring via a pulley. This torsional spring is connected to the exoskeleton
frame. So the interaction force can be calculated by comparing the the measurements
of motor position and exoskeleton joint position. They tried to control the structure
by using a combination of PD controller, Disturbance Observer (DOB) and a Zero
Phase Error Tracking (ZPET) feedforward element. Our implementation is similar,

22 CHAPTER 4. CONTROL

as we also transform the force control problem to a position problem by linking the
force on the spring to its displacement.
Their results show that a PD controller can achieve quite good performance while
at the same time a DOB doesn’t provide much improvement. A ZPET Feedforward
element on the other hand improves the performance quite dramatically. It isnt
shown on the other hand if the performance improvement is limited solely on the
ZPET element or if it is the effect of a Feedforward element in general.
All in all we conclude that a cascaded PD-Controller should be sufficient for our
purposes as first prototype. In contrast to [VEVDKB07], which also utilized a
cascaded controller, we refrain from using an integral part.
It is also apparent that the spring already introduces a integral factor into the
system.
The spring is defined by

Fsupport = Fspring = kz (4.1)

where k is the spring constant and z is the displacement. With sZ = sX = V we
can conclude that

Fsupport =
1

s
kV (4.2)

This is obviously a very simplified model and does not describe all of the system
in the given orthosis, but it shows that the plant already includes an integrating
factor.
Therefore we conclude that it is not necessary to include an integrating factor into
the controller.
This is because we think it is unnecessary to exactly track a certain force, as it
should act as support and is guided by a human. Therefore an exact tracking is not
important, but fast response is.
On the other hand, due to the fact that the provided model of the orthosis doesnt
match real-world data very well, it is unfortunately apparent that the model isnt
sufficient for controlling the orthosis.
Another problem is that due to mechanical problems, where we had to remove the
small motor and fixate the clutch, the system properties changed quite a bit.
Because more advanced methods of control, such as proposed above require very
detailed modelling beforehand, this could not be achieved due to time constraints.
The first tested architecture can be seen in figure 4.1.
It features a PD-Controller for a inner motor velocity control loop, a simple P -
Controller for the outer control loop that controls the displacement and a feed-
forward element for the velocity loop, which mainly counters stiction.

23

Figure 4.1: First tested control architecture

24 CHAPTER 4. CONTROL

25

Chapter 5

Implementation

First, there arose quite a few problems with the mechanics and electronics.

5.1 SPI Interface

One major problem was the implementation of the SPI protocol. As it was really
insufficiently documented, the first tries of getting the motorboard to work did not
work.

We didnt get any sensordata from the motorboard and we couldnt get the motor to
spin with SPI interface, although with the Controller Area Network (CAN)-Interface
it was certainly possible. Usage of the CAN-Interface wasnt recommended though,
as it is implemented with a very slow control frequency of 5 ms (at least) and was
originally only intended for debugging purposes.

As the SPI-Interface hasnt been used before, we evaluated the protocol with an
oscilloscope in found out that the protocol had a small error, where the order of two
values was interchanged.

After considering that we could spin-up the motor and get sensible sensordata.

To make it usable in the long run, we programmed a C++ library for Arduino, a
FTDI FT4222H controller device and the Kvasar CAN Interface, which we use to
communicate via CAN, respectively, in order to make it easier for others to work
with the motorboard.

5.2 Implementation with RoNex

The implementation with RoNex required existential rework of the driver.

To access the RoNex device’s analog, SPI and digital ports, originally it is intended
to use ROS directly.

Because ROS is not real-time compatible, this is not a sufficient solution in our case,
as we require real-time able communication.

26 CHAPTER 5. IMPLEMENTATION

Therefore, the real-time able part of the driver has to be harnessed, which in essence
is based on ROS-control.
The driver basically has a seperate loop that takes care of the EtherCAT communi-
cation. Here, data from and to the RoNex gets packed and unpacked from EtherCAT
packages. (see figure 5.1)
In order to provide input and output in a real-time compatible fashion, a controller
manager - part of the ROS-Control framework - takes care of spawning and calling
the individual controllers.
The driver takes data from the EtherCAT package and places it into the interfaces
for the controllers and also places data back into a buffer that gets send back to
RoNex in an EtherCAT loop.
It then calls the controller manager which in turn calls the controllers which calculate
the next control output.
Unfortunatly, the SPI module was not intended to transfer the analog and digital
data to the controller directly, but only pass it by via a ROS topic which was
initialized in the main driver.
In order to access this data in a real-time safe environment, we needed to introduce
a new interface for the controllers, which had to inherit from an already existing
class named CustomHW.
This proved to be very time consuming in the end, as no extensive documentation
was available for the driver.

Figure 5.1: ROS RoNex connection1

5.3. MOTORBOARD BUG 27

5.3 Motorboard bug

One of the main issues that happend was the complete outage of the motoboard. In
order to evaluate this, we tested a few issues.

The bug generally occures when changing the velocity reference - and therefore the
given voltage - too rapidly.

Figure 5.2: Motorboard bug total

As one can see in figure 5.2 at a certain point (ca. 10s) all sensor values provided
by the motorboard (velocity and spring displacement) are reset to -1, which is the
error code returned by the controller in case there was no SPI-message from the
motorboard.

Other sensorvalues like the angular sensor - an analog sensor which provides its
values via the RoneX analog port - provides accurate and sensible data.

This total loss of all sensor data is the first kind of bug. The second kind is observed
later on at about 21s.

Here sensor data is not completely lost. In this case the displacement sensor still
yields sensible data and the calculated PWM value still varies but it does not result
in the appropriate velocity, as one can see from the velocity sensordata.

In both cases the motor stalls but in the rst case it doesnt move at all whereas in
the latter it still executes (very) small movements (as can be seen better in figure
5.3).

1From Shadow Robots Github page : https://github.com/shadow-robot/rosethercat/

28 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Motorboard bug

Afterwards another scenario is tested, where the big motor is decoupled from the
main part of the orthosis in order to evaluate the bug further.

The motor was operated at 37.5/100 PWM and then the given PWM was sud- denly
changed to -37.5/100.

Afterwards the motor accelerated for a very brief period and then stopped completely
while the motorboard provided no sensor values at all. After a few seconds the motor
accelerated again, kept a certain velocity and returned sensible sensor data.

Meanwhile the input voltage accross the motorboard was measured. As seen in
figure 5.5 a peak in voltage of over 25V up to 28V occurs for a very short time
(approximately 10 us, see figure 5.4).

Apparently the supply voltage experiences a sudden increase of about 3V when the
bug happens. This is probably caused by a security shutdown of the step-down
converter when it hits 25V, which is the absolute maximum rating of the converter.
This removes the load caused by ICs on the 5V and 3.3V lines.

In turn this leads to a sharper increase of voltage to about 28V (peak) for 10 us.
This overshoot then gets regulated by the voltage supply (EA-PS3065-10B), but its
reaction is too slow (it regulates from 90-10 % load in less then 3 ms)

Apparently the malfunction of the step-down converter leads to a further increase
in voltage, which increases the chances of permanently damaging the step-down
converter.

5.4. MECHANICAL PROBLEMS 29

Figure 5.4: Motorboard bug

5.4 Mechanical Problems

There occured several other problems. One major set of problems was related to
the mechanical design of the clutch.
In one of the first tests, the clutch exhibited a loud noise, which we thought was
dangerous.
After a bit of research, this bug was found to be the result of non-centrical alignment
of the two sides of the clutch. This resulted in a periodical increase in friction
between the two clutch plates even when the clutch was decoupled.
Because the problem was mainly the result of insufficient mounting of the motor
and clutch (they moved when they were actuated), to deal with this, a hull for the
clutch was designed to provide additional support for the motor.
Another problem which also arose was similar to the last one. In a test run the
small motor overheated as it also wasnt mounted sufficiently and moved.
This caused additional stress on the motor and resulted in an overheating of the
motor.
As a result we decided redesign the mounting of the small motor as well as using
a more powerful BLDC motor. Changing the motor was mainly due to the fact
that we can use the same motorboard for both motors in doing so and also because
friction is much higher than anticipated in the first calculations, so a more powerful
motor is mandatory.

30 CHAPTER 5. IMPLEMENTATION

Figure 5.5: Motorboard bug

31

Chapter 6

Evaluation & Performance

First an few already by another student developed controllers were tested

A cascaded double PI controller (same structure as 4.1) with values of P = 10
and I = 3000 for the outer loop and P = 30 and I = 3 for the inner loop was tested.
This controller proofed to be unstable.

A cascaded double PD controller (same structure as 4.1) with values P = 20
and D = 5 for the outer loop and P = 10 and D = 3 for the inner loop was tested.
This controller proofed not to be stable.

After those two tests we concluded that the previous developed model of the orthosis
was not sufficient. We additionally concluded that before further evaluating the
model, we would wait for the next iteration of the orthosis to be build, which will
also feature a spring to counter the difficult to control non-linearity introduced by
the one-sided transmission of force through the belt.
Because of this we postphoned correcting the model until the next iteration of the
orthosis is available.
To still provide a proof of concept of the the orthosis and to set it at motion, we
designed a motor controller with traditional loop shaping.
We took the traditional widespread model of electrical motors

d

dt

[
θ̇
i

]
=

[
− b
J

K
J

−K
L

−R
L

] [
θ̇
i

]
+

[
0
1
L

]
V (6.1)

whereby θ is the position of the motor, i is the current, K is the back EMF constant,
J is rotor inertia, b is the friction constant and R and L are electric resistance and
inductance respectively
We used this with the output θ̇ to calculate the transfer model and based on that
we calculated the values for the PD-Controller with MatLAB via loop-shaping.
Therefore we inspected the sensitivity function S and its complementary counterpart
T and designed the controller so that the roll-off frequency for T and S is at 10
kHz.(see figure 6.1) This resulted in the values of P = 10 and D = 0.01.

32 CHAPTER 6. EVALUATION & PERFORMANCE

Figure 6.1: Bode plots of sensitivity function S and its complementary counterpart
T

For the Feedforward element, we let the motor run from maximum to minimum duty
cycle and measured the velocity that occured without any load. These measurements
we matched to a model of V = avref + bsign(vref) with linear regression. The result
you can see in figure 6.2. We used this as our feedforward element, which resulted
in a = 27 and b = 126.

Figure 6.2: Measurements of several iterations of motor velocity to given PWM duty
cycle and fitted regression model (red)

For the outer loop we used trial-and-error methods, which resulted in a stable mode
for P = 10.
In a final test we evaluated the controllers stability in a test run, which you can see
in part in figure 6.3. (ommitted part of the data in the plot to avoid clutter)

33

Figure 6.3: Part of the final testrun of the orthosis

34 CHAPTER 6. EVALUATION & PERFORMANCE

35

Chapter 7

Conclusion & Outlook

The final test rig can be seen in figure 7.1 and 7.2.
We established a framework to control the orthosis and provided feedback for the
mechanical design and improved on it. The test rig is functional and sufficiently
performant.
Furthermore we evaluated a few state-of-the-art approaches to the problem of SEA
based systems, where quite a few were used in conjunction with exoskeletons.
On this basis we suggested a few approaches for future implementation. The next
step is to iterate on the mechanical design and incorporate the small motor into the
control framework.
Based on the reiterated prototype the model should be revisited and errors in the
model can be corrected based on that.

Figure 7.1: Orthosis test rig complete

36 CHAPTER 7. CONCLUSION & OUTLOOK

Figure 7.2: Orthosis side view

37

Acronyms and Notations

SEA Series-Elastic Actuator

BLDC brushless DC

GPIO general purpose input/output

SoC System-on-a-Chip

QoS Quality-of-Service

RTOS Real-time Operating-System

IRQ Interrupt Request

ROS Robot Operating System

OROCOS Open Robot Control Software

SPI Serial Peripheral Interface

RoNex Robot Nervous System

I2C Inter-Integrated Circuit

ZPET Zero Phase Error Tracking

DOB Disturbance Observer

CAN Controller Area Network

38 CHAPTER 7. CONCLUSION & OUTLOOK

BIBLIOGRAPHY 39

Bibliography

[CCF14] Andrea Calanca, Luca Capisani, and Paolo Fiorini. Robust force
control of series elastic actuators. Actuators, 3(3):182–204, jul
2014. URL: https://doi.org/10.3390%2Fact3030182, doi:10.

3390/act3030182.

[GMGT14] Carlos Garre, Domenico Mundo, Marco Gubitosa, and Alessandro
Toso. Performance comparison of real-time and general-purpose op-
erating systems in parallel physical simulation with high compu-
tational cost. In SAE Technical Paper Series. SAE International,
apr 2014. URL: http://dx.doi.org/10.4271/2014-01-0200, doi:
10.4271/2014-01-0200.

[Hua14] Jim Huang. Rtmux: A thin multiplexer to provide hard realtime
application for linux. Embedded Linux Conference Europe, 2014.

[JB16] Yeongtae Jung and Joonbum Bae. An asymmetric cable-driven mech-
anism for force control of exoskeleton systems. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
Institute of Electrical and Electronics Engineers (IEEE), oct 2016.
URL: https://doi.org/10.1109%2Firos.2016.7759066, doi:10.

1109/iros.2016.7759066.

[PW] G.A. Pratt and M.M. Williamson. Series elastic actuators. In
Proceedings 1995 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. Human Robot Interaction and Coop-
erative Robots. Institute of Electrical and Electronics Engineers
(IEEE). URL: http://dx.doi.org/10.1109/IROS.1995.525827,
doi:10.1109/iros.1995.525827.

[RG16] K. Sripath Roy and K. Gowthami. Implementation of xenomai
framework in GNU/linux environment to run applications in a real
time environment. Indian Journal of Science and Technology, 9(17),
may 2016. URL: http://dx.doi.org/10.17485/ijst/2016/v9i17/
93109, doi:10.17485/ijst/2016/v9i17/93109.

https://doi.org/10.3390%2Fact3030182
http://dx.doi.org/10.3390/act3030182
http://dx.doi.org/10.3390/act3030182
http://dx.doi.org/10.4271/2014-01-0200
http://dx.doi.org/10.4271/2014-01-0200
http://dx.doi.org/10.4271/2014-01-0200
https://doi.org/10.1109%2Firos.2016.7759066
http://dx.doi.org/10.1109/iros.2016.7759066
http://dx.doi.org/10.1109/iros.2016.7759066
http://dx.doi.org/10.1109/IROS.1995.525827
http://dx.doi.org/10.1109/iros.1995.525827
http://dx.doi.org/10.17485/ijst/2016/v9i17/93109
http://dx.doi.org/10.17485/ijst/2016/v9i17/93109
http://dx.doi.org/10.17485/ijst/2016/v9i17/93109

40 BIBLIOGRAPHY

[Syn14] Synapticon GmbH. SOMANET Core C21 DX Datasheet, 2014. Rev.
A.5.

[VEVDKB07] Heike Vallery, Ralf Ekkelenkamp, Herman Van Der Kooij, and Martin
Buss. Passive and accurate torque control of series elastic actuators.
In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ In-
ternational Conference on, pages 3534–3538. IEEE, 2007.

[Wye06] Gordon Wyeth. Control issues for velocity sourced series elastic actu-
ators. In Proceedings of the Australasian Conference on Robotics and
Automation 2006. Australian Robotics and Automation Association
Inc, 2006.

LICENSE 41

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

http://creativecommons.org/licenses/by/3.0/de/

	Problem Description
	Mechanical Hardware
	Series Elastic Actuators
	Orthosis

	Electronics
	Task

	Control Hardware Selection
	Evaluation of different Hardware approaches
	Microcontrollers
	RoNex

	Conclusion

	Control Software Selection
	Realtime on Linux
	Soft vs Hard Realtime
	Realtime Kernels

	ROS and Realtime
	OROCOS
	ROS Control

	Conclusion

	Control
	Implementation
	SPI Interface
	Implementation with RoNex
	Motorboard bug
	Mechanical Problems

	Evaluation & Performance
	Conclusion & Outlook
	Bibliography

