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Successive Cancellation List Decoding and CRC Aided De- il Latency
. . . . coding . . :
Polar codes are proven to be capacity achieving under successive cancellation Whenever BP decoding fails and SCL decoding must be performed the total
(SC) decoding [1] for infinite block lengths. However, for short lengths: SC cending latency Ly increases.
@ Error correction capabilities o.f polar codes depend on decoding algorithm o Inherently serial algorithm (Complexity: O(N - log(NV)) [1]) @ Average latency of SCL-CRC is independent of the SNR
® SCL-CRC shows best correction performance @ Sequential bit decision aided by previous decisions @ The hybrids latency is strongly dependent on the BPs latency
@ But: SCL decoding algorithm exhibits low throughput SCL decoding: | | | | | |
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@ Adds a list of size L (Complexity: O(L - N -log(N)) [2])
@ Estimates L different possible codewords
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The decoding performance can be enhanced by an additional CRC check [2]:
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@ For SCL: Final estimate is chosen by a reliability metric M, E,/No [dB]

@ For SCL-CRC: Final estimate is chosen by reliability metric M, from a Tl mresdmum leweney of dhe Ty il bouded by dhe SOL CRCs
CRC-correct subset of the estimated codewords

T 35 33 a4 ot a6 57 e v ) latency. For BP decoding the maximum latency depends on the maximum

-
maa
______
_____
-
-
==

o/ 4] Combining BP and SCL Decoding number of iterations.
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Polar Codes @ BP algorithm: High g —~—— e e |
throughput (More suitable for ki 2 o Lnye
A Polar encoder maps the k information bits onto the k most reliable bit GPU implementation [3]) o 5 107 | | | | | | | | | !
positions of the vector u while the remaining N — k positions are treated as @ SCL-CRC algorithm: Superior - 0 0.5 1 15 2 2.5 3 35 4 45 5
frozen pOSitionS. BER performance Compared to Free Buffers Ey/ Ny [dB]
@ Frozen bits ur are set to an arbitrary value BP [4] _ o Improved latency performance compared to e.g. [5] for target SNR region.
@ Encoder graph can be used to encode information bits u @ Idea: If BP-decoder fails Decoder

Finished?

SCL-CRC decoder is started

e Throughput of hybrid decoder
U X0 depends on SNR

Summary and Outlook

@ Codeword x can be transmitted
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i ? &, i e BER performance equals SCL @ SCL-CRC decoding algorithm:
@ performance e Not optimal for a parallel implementation
u D X2 X @ Small speedup observable for optimized parallel version
U3 T X3 / o Advantage: For parallel simulations no data transfer between GPU and CPU
Jlll Decoding Performance necessary

- - Hybrid decoder algorithm:
Iterative Decoding of Polar Codes ° . i
S @ Hybrid decoder exhibits same error correction capabilities as SCL-CRC o Achievable throughput: Up to 30

@ No degradation of error correction behaviour of SCL-CRC decoder

BP decoding of polar codes is a message passing algorithm based on the @ Throughput of hybrid decoder depending on channel SNR o Decrease in average latency
encoding scheme with decoding complexity O(N - log(/N)). The transmitted @ Maximum achieved decoding throughput 34 Mbit/s (N=4096, L=32 and )
codeword X and the message i1 can be both estimated simultaneously. R=0.5) References
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