Combining Belief Propagation and Successive Cancellation List Decoding of Polar Codes on a GPU Platform

B. Leible, S. Cammerer, M. Stahl, J. Hoydis, S. ten Brink

benedikt.leible@tum.de

Motivation

Polar codes are proven to be capacity achieving under successive cancellation (SC) decoding [1] for infinite block lengths. However, for short lengths:

- Error correction capabilities of polar codes depend on decoding algorithm
- SCL-CRC shows best correction performance
- But: SCL decoding algorithm exhibits low throughput

Polar Codes

A Polar encoder maps the k information bits onto the k most reliable bit positions of the vector \mathbf{u} while the remaining N-k positions are treated as frozen positions.

- Frozen bits u_f are set to an arbitrary value
- Encoder graph can be used to encode information bits u
- Codeword x can be transmitted

Iterative Decoding of Polar Codes

BP decoding of polar codes is a message passing algorithm based on the encoding scheme with decoding complexity $\mathcal{O}(N \cdot \log(N))$. The transmitted codeword \hat{x} and the message \hat{u} can be both estimated simultaneously.

- Iterative decoder, update stage-per-stage
- $\frac{N}{2}$ processing elements (PE) per stage, n stages
- Log-likelihood ratios calculated:

$$egin{aligned} R_{ ext{out},1} &= \mathrm{g}(R_{ ext{in},1}, L_{ ext{in},2} + R_{ ext{in},2}) \ R_{ ext{out},2} &= \mathrm{g}(R_{ ext{in},1}, L_{ ext{in},1}) + R_{ ext{in},2} \ L_{ ext{out},1} &= \mathrm{g}(L_{ ext{in},1}, L_{ ext{in},2} + R_{ ext{in},2}) \ L_{ ext{out},2} &= \mathrm{g}(R_{ ext{in},1}, L_{ ext{in},1}) + L_{ ext{in},2} \end{aligned}$$

Successive Cancellation List Decoding and CRC Aided Decoding

SC decoding:

- Inherently serial algorithm (Complexity: $\mathcal{O}(N \cdot \log(N))$ [1])
- Sequential bit decision aided by previous decisions

SCL decoding:

- Adds a list of size L (Complexity: $\mathcal{O}(L \cdot N \cdot \log(N))$ [2])
- Estimates *L* different possible codewords

The decoding performance can be enhanced by an additional CRC check [2]:

- For SCL: Final estimate is chosen by a reliability metric M_l
- For SCL-CRC: Final estimate is chosen by reliability metric M_l from a CRC-correct subset of the estimated codewords

Combining BP and SCL Decoding

- BP algorithm: High throughput (More suitable for GPU implementation [3])
- SCL-CRC algorithm: Superior BER performance compared to BP [4]
- Idea: If BP-decoder fails SCL-CRC decoder is started
 - Throughput of hybrid decoder depends on SNR
 - BER performance equals SCL performance

Decoding Performance

- Hybrid decoder exhibits same error correction capabilities as SCL-CRC
- Throughput of hybrid decoder depending on channel SNR
- \bullet Maximum achieved decoding throughput 34 Mbit/s (N=4096, L=32 and R=0.5)

Latency

Whenever BP decoding fails and SCL decoding must be performed the total latency L_{hvb} increases.

- Average latency of SCL-CRC is independent of the SNR
- The hybrids latency is strongly dependent on the BPs latency

The maximum latency of the hybrid is lower bounded by the SCL-CRCs latency. For BP decoding the maximum latency depends on the maximum number of iterations.

Improved latency performance compared to e.g. [5] for target SNR region.

Summary and Outlook

- SCL-CRC decoding algorithm:
 - Not optimal for a parallel implementation
 - Small speedup observable for optimized parallel version
 - Advantage: For parallel simulations no data transfer between GPU and CPU necessary
- Hybrid decoder algorithm:
 - Achievable throughput: Up to $30 \frac{\text{MBit}}{s}$
 - No degradation of error correction behaviour of SCL-CRC decoder
 - Decrease in average latency

References

- [1] E. Arıkan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," vol. 55, no. 7, pp. 3051–3073, Jul. 2009.
- [2] I. Tal and A. Vardy, "List decoding of polar codes," vol. 61, no. 5, pp. 2213–2226, May 2015.
- [3] B. K. Reddy L. and N. Chandrachoodan, "A GPU implementation of belief propagation decoder for polar codes," in *Proc. Asilomar Conf. on Signals, Systems, and Computers*, Nov. 2012, pp. 1272–1276.
- [4] K. Niu, K. Chen, J. Lin, and Q. T. Zhang, "Polar codes: Primary concepts and practical decoding algorithms," vol. 52, no. 7, pp. 192–203, Jul. 2014.
- [5] B. Li, H. Shen, and D. Tse, "An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check," *IEEE Comm. Letters*, Dec. 2012.

