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Abstract—A combination of low cost constrained massive
multiple-input-multiple-output (MIMO) and conventional arrays
for constructing receiver signal points is investigated. The con-
strained radio frequency (RF) front ends are limited to on/off
switching of antenna elements. A few full RF frontends are
shown to compensate for the signal errors of the constrained RF
frontends for various scenarios. An algorithm for such a hybrid
RF (HRF) system is developed that optimizes the performance
with respect to the mean square error of the constructed receiver
signals for a Rayleigh fading channel model.

I. INTRODUCTION

Massive MIMO promises to deliver high spectral efficiency
with low energy consumption [1], [2]. The theory for massive
MIMO is studied in [3], [4] and implementation issues such
as hardware costs and dimension are assessed in [5]. An
uplink system with 1 bit analog-to-digital converters (ADC)s
at the receiver approaches capacity when using QPSK [6],
[7], [8], [9]. Several approaches simplify the implementation
of massive MIMO while preserving some of the gains. For
example, a simple idea is to use only one antenna at the base
station (BS) at a certain time instant to transmit [10] so that the
transmitter (Tx) needs only one RF-chain. As another example,
hybrid beamforming reduces the total number of RF-chains to
decrease the cost and power consumption of the BS [11].

We propose a design where a large number of low cost,
constrained RF-chains (CRF)s cooperate with a small number
of full RF-chains (FRF)s. In the simplest case, the CRFs use
on/off switching, thereby requiring minimum functionality like
a single bit DAC, a power amplifier (PA) with relaxed linearity
constraints, to achieve high power-added efficiencies (PAE),
less stringent filter requirements, etc.. One interesting use case
is to add booster arrays with a large number of CRFs to
existing macro sites - the FRFs - to form a HRF massive
MIMO array. This is depicted in Figure 1. An HRF system
can compensate for the non idealities of the CRFs, as long
as the number of FRFs is larger than that of the served data
streams. Compared to hybrid analogue digital beamforming
one can avoid an analogue network and retain full precoding
flexibility.

Here we investigate systems with one-bit DACs. We develop
an algorithm to optimize an HRF system and show simulation
results for mean squared error (MSE) and power consumption.
We focus on the best combining strategy of CRF and FRF
frontends to generate single QAM time samples under the
assumption of Rayleigh fading channels.

Fig. 1: Use cases for the CRFs.

Notation: We use boldface lowercase and uppercase letters
to denote column vectors and matrices, respectively. For a
matrix A, we denote its transpose and the Hermitian transpose
as AT and AH , respectively. The i-th column of a matrix A
is denoted as ai and the i-th entry of a vector a as ai.

II. OPTIMIZED HRF SIGNAL GENERATION

A. System Model

Consider a one-cell downlink with K single antenna users
and one base station (BS) equipped with M antennas with
M � K. The discrete-time complex received signal is

y =Hx+ n (1)

where H ∈ CK×M is the channel matrix from the BS to the
K users. The entry hij ofH is the channel coefficient between
the j-th antenna of the BS and the i-th user equipment (UE).
We consider Rayleigh fading where the channel coefficients
hij are independent CN (0, 1) random variables. x ∈ CM×1 is
the transmit signal. The entries of n ∈ CK×1 are independent
circularly symmetric Gaussian random variables. For the HRF
scheme we define the sub-matrices H1 and H2, where H1

contains the first M1 columns of H representing the channel
coefficients of the CRFs and H2 containing the last M2

columns of H representing the FRFs. The transmit signal x
is constrained as follows[

x1, . . . , xM1

]
∈
{
0,

1√
M1

}
(2)[

xM1+1, . . . , xM
]
∈ C. (3)
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Fig. 2: Subspace spanned by 2 FRF antennas in a scenario
with 3 UEs.

The constraint in (2) is needed to fulfill the power constraint
when all CRF antennas transmit. In this case the power
constraint is 1.

The concept of over the air signal generation aims at
generating the desired signal (QAM symbols or time samples
of an OFDM symbol) at the receiver by transmitting signals
from antenna elements such that, when multiplied by the
channel response, they result in the desired signal at the
receiver [12]. For multiple receivers, the desired signals need
to be generated simultaneously at all the receivers. The signal
samples from all the UEs at any particular time instant can
be represented by a signal (vector) of dimension n. Switching
on any one of the transmitter antenna elements results in a
signal point in this n-dimensional space which corresponds
to the channel response at that time instant. A knapsack-like
algorithm can be used to find an antenna combination to get
close to the desired signal vector [12].

B. Algorithm

Adding FRF-chains to reduce the error after applying the
knapsack-like algorithm leads to a transmit power saving
and/or a reduction in the MSE. Our approach is as follows.
Instead of sequentially using the knapsack-like algorithm
and then reducing the remaining error with the FRFs [12]
we optimize both in one step. When we assume no power
constraints for the FRFs we can view the points from where
we can perfectly achieve the desired point as the subspace
spanned by the columns H2. An example with real numbers
is depicted in Figure 2. Here the assumptions are as follows.
We have 3 UEs and therefore 3 dimensions. There are only 2
FRFs, therefore only the red subspace can be achieved by these
antennas. The subspace is created by taking the span of the
basis for the channel matrix H2 and shifting it by the desired

signal vector of the UEs. h1i is the received vector created
by activating one CRF antenna. The closest distance is found
by projecting the point onto the subspace. The knapsack-like
algorithm can be extended to use this information. Instead of
choosing the antenna combination to minimize the distance to
a desired point we minimize the distance to a subspace.
Formally the algorithm can be described as follows:
We want to find the minimum distance d between a point z
in CK and a subspace in CK with basis A ∈ CK×M2 :

d = min
α
||z −Aα|| (4)

A can be calculated from H2 with standard methods, e.g.,
LU decomposition. The minimum distance is calculated using
the singular value decomposition (SVD) [13]

A = UΣV

where U ∈ CK×K and V ∈ CM2×M2 are unitary and Σ ∈
CK×M2 contains M2 nonnegative values σ1, . . . , σM2

on the
diagonal. The objective of (4) can be rewritten as

||z −Aα|| =||z −UΣV α|| (5)
=||w −Σo|| (6)

with w = U∗z and o = V α. Writing out the expression in
vector form we have

w −Σo =



w1 − σ1o1
...

wM2
− σM2

oM2

wM2+1

...
wK


. (7)

To minimize the distance, the entries of o are chosen such that
the first M2 entries of (7) are zero. Therefore the minimum
distance is

d =
√
|wM2+1|2 + · · ·+ |wK |2 (8)

=
√
|uH

M2+1z|2 + · · ·+ |uH
Kz|2 (9)

where ui is the i-th column of U . In our case z = h1i−err,
where h1i is the i-th column of H1 and err is the remaining
error vector. The subtraction of the remaining error vector is
equivalent to shifting the origin of the subspace created by
the columns of H2 to the remaining error vector. In pseudo
code the knapsack-like algorithm with the subspace distance
metric is shown in Algorithm 1. The algorithm is initiated by
multiplying H with

√
P , the power constraint, and initializing

the error with the desired receive vector u, as all antennas are
turned off at the beginning. In the next step the algorithm
calculates the index of the column with minimal Euclidean
distance to the subspace. If the updated error is larger than
the new error, the algorithm stops. Otherwise the error vector
is updated, the antenna corresponding to the column of H
is activated and the column of H is set to ”not a number”
(NaN) in order to be ineligible in the following iterations.
The algorithm has a complexity of O(M2 log(M) +M2K).



Algorithm 1 KS with subspace distance metric

1: H1 =H1/
√
M1

2: err = u
3: for i = 1 :M1 do
4: for j = 1 :M1 do
5: zj = h1j − err
6: end
7: j∗= argmin

√
|uH

M2+1zj |2 + · · ·+ |uH
Kzj |2

8: if ||err|| < ||err − h1j∗ || then stop;
9: err = err − h1j∗

10: x(j∗) = 1√
M

11: h1j∗ = NaN

12: end

TABLE I: General system settings for the simulations.

# BS 1
# BS antennas (M ) 20-100
BS sum power constraint (P ) 1 (CRF), ∞ (FRF) and 1 for CRF+FRF
Noise power 0
# UE (K) 10
# UE antennas 1
Input alphabet 256 QAM
Quantization scheme 1 bit amplitude, 0 bit phase
Channel model Rayleigh

III. SIMULATION RESULTS

We compare our schemes under the Rayleigh fading channel
model for various scenarios. We use Monte Carlo simulations
to compare the schemes in terms of MSE and transmit power.

Consider the combination of many CRF-chains and some
FRF-chains. For the first part we do not impose any power
constraints on the FRF-chains, hence we can perfectly create
the desired symbol at the receiver as long as the number
of FRFs is larger than the number of UEs. Here we will
only consider the more interesting case where the number
of FRFs is smaller than the number of UEs. The underlying
motivation is that FRFs are more costly compared to CRFs and
their number should be therefore as small as possible. At the
same time a high spectral efficiency requires a high number
of spatially multiplexed UEs. The simulation parameters are
given in Table I.

Figure 3 shows the MSE averaged over all UEs and many
channel realizations for a Rayleigh fading scenario with 10
UEs. KS is the algorithm introduced in [12], where only low
cost RFs are used to create the desired symbol points. Note
that we do not use any phase modulation in this scenario.
The red curves denoted with seq correspond to the case
where we first use the KS algorithm and then minimize the
remaining error with the FRFs by utilizing the least squares
solution. The number of antennas on the x-axis corresponds
to the total number of antennas, therefore seq with 4 FRFs
has 16 CRF antennas when the total number is 20. Finally,
the yellow curves show the performance of the extended
knapsack algorithm, which is denoted as opt.
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Fig. 3: KS algorithm, sequential algorithm (seq) and optimized
algorithm (opt) for a Rayleigh fading channel with 10 UEs and
no power constraints for the FRFs.

Increasing the number of FRFs in the seq case brings
only minor gains. In comparison, the opt case improves
significantly with the number of FRFs. For 256 QAM an
MSE larger than 24 dB is needed to achieve a low error
probability. With 6 FRFs, 80 total antennas are needed, which
is a 12 dB gain compared to the KS only case. Figure 4
shows the total transmission power for the CRFs and FRFs
combined. The power of the FRFs is unconstrained in this
case and might become large as the signal vectors of two
FRFs might partially cancel each other. The sum transmit
power for the optimized scheme is therefore considerably
larger than the transmit power for the sequential scheme.
Moreover, the transmit power does not decrease when the
number of CRFs increases. We conclude that the performance
increase comes at the cost of higher power consumption.

Next, we compare the three schemes when a total power
constraint of 0 dBW is applied for the antenna array. For
the optimized scheme we calculate the projection onto the
subspace and normalize it with the maximum transmit power.
Then we calculate the MSE. This scenario is depicted in
Figure 5. With only 2 FRFs the gains are minor and it
would probably be beneficial to introduce scheduling instead
of serving all 10 UEs at the same time and on the same
frequency. For 8 FRFs we observe a larger performance gain
when we compare the sequential and the optimized schemes.
Compared to KS we gain about 4 dB and reduce the total
transmit power by 12 dBW. The power is depicted in Figure
6. Now we see that for both combining schemes the power
decreases when a larger number of CRFs is available.

IV. CONCLUSION

We have proposed an optimized algorithm for massive
MIMO antenna arrays. Hybrid analogue digital beamforming -
the conventional alternative - might become either complex or
face performance limitations. An HRF solution that combines
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Fig. 4: KS algorithm, sequential algorithm (seq) and optimized
algorithm (opt) for a Rayleigh fading channel with 10 UEs and
no power constraints for the FRFs.
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Fig. 5: KS algorithm, sequential algorithm (seq) and optimized
algorithm (opt) for a Rayleigh fading channel with 10 UEs and
power constraints for the FRFs.

a large number of low-cost low-size CRF-chains with a lim-
ited number of FRF-chains maintains full multi-user MIMO
scheduling flexibility as well as massive MIMO benefits like
improved energy efficiency. We proposed a KS-like algorithm
that achieves near optimal results with respect to the MSE.
The system can achieve MSE values supporting the highest
modulation schemes used in LTE. The combined scheme can
improve the MSE even when the number of FRF-chains is
smaller than the number of UEs. This is an interesting use
case for booster antennas added to current macro sites, having
only four to eight FRF-chains. Future work will focus on
channel estimation, further reductions in processing overhead,
optimum combining schemes and system level aspects.
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