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Abstract

While computations of classical single- eld problems dedon one considered body are well-
investigated, since they have been in the focus of reseanah the beginning of the nite el-
ement method, numerical treatments of interface and volcmopled problems with multiple
bodies being involved are still topic of current researcheyl can be found in nearly all chal-
lenging engineering applications, such as crash testsl fioeming, joints for aircraft engines,
brakes and implantation of arti cial joint prostheses. 8lations of all these problems require
adequate coupling strategies for their spatial discrietiza to guarantee highest possible accu-
racy and robustness. For this purpose, mortar methods asegtas the basis for all develop-
ments made in this thesis due to their superior performahe&,sound mathematical foundation
and their numerical stability.

In this thesis, the applicability of mortar nite element theds to contact problems leading to
0D, 1D and 2D contact zones and general 3D volume coupledgmatis explored. In addition,
the incorporation of interface effects such as wear withwaitldout thermo-mechanical interac-
tions is investigated. For all these points of interest) duatar methods based on biorthogonal-
ity conditions are employed, which naturally lead to vergieht solution procedures.

In particular, a novel strategy for computational contaethanics of vertices, edges and sur-
faces being simultaneously involved in a nite deformatiegime is presented. The well-known
contact conditions are separately enforced for the oguypdint contact, line contact and sur-
face contact by employing three different sets of Lagrangkipiiers. The line contact resulting
therein is for the rst time realized with the mortar niteeghent method and a novel technique
for its numerical evaluation is presented. The discretenanks due to the Lagrange multiplier
approach are eliminated from the global system of equatiyreamploying the aforementioned
dual (biorthogonal) shape functions for the line and swflagrange multipliers. In order to
guarantee a consistent formulation and ful Il the fundataérequirement of partition of unity,
a shape function modi cation is introduced for the line anniface Lagrange multipliers. For
the combined algorithm, no transition parameters are reduwand the decision between point
contact, line contact and surface contact is implicitly by the variationally consistent frame-
work. The algorithm is supported by a penalty regularizafior the scenario of non-parallel
edge-to-edge contact. The robustness and applicabilitiyeoproposed algorithms are demon-
strated with several challenging benchmark examples.

Next, a nite element framework based on dual mortar methegeesented for simulating
fretting wear effects in the nite deformation regime. Rneg) wear effects are modeled in an
incremental scheme with the help of Archard's law and thenwoaterial is considered as ad-
ditional contribution to the gap function. Numerical exdegppdemonstrate the robustness and
accuracy of the presented algorithm. In order to extend gpdicability of the fretting wear
algorithm, nite deformation contact problems with friotial effects and nite shape changes
due to wear are investigated. To capture the nite shapegdsma third con guration besides
the well-known reference and spatial con gurations isaduiced, which represents the time-
dependent, worn state. Consistent interconnections leeatiese con gurations are realized by
an Arbitrary-Lagrangian-Eulerian formulation. The newlgveloped partitioned and fully im-
plicit algorithm is based on a Lagrangian step and a shagateMostep. Within the Lagrangian
step, contact constraints as well as the wear equationseaklyvenforced following the well-
established mortar framework. Additional unknowns duehtoeémployed Lagrange multiplier



method for contact constraint enforcement and due to weaagain eliminated by condensa-
tion procedures based on the aforementioned concept dhbgwnality of the employed shape
functions. Several numerical examples in both 2D and 3Daréged to demonstrate the perfor-
mance and accuracy of the proposed numerical algorithmdé&teloped nite wear algorithm
is then for the rst time included in a thermo-structure nratetion framework and validated with
a numerical reference example in 2D. Its applicability to B0e wear problems is also demon-
strated.

Finally, the presented work demonstrates that dual morethads are also extendable be-
yond classical domain decomposition and contact appticatiowards general volume cou-
plings. More precisely, a generic 3D coupling operator Qasebiorthogonal shape functions is
developed, which allows for highly accurate nodal inforimatransfer while requiring low com-
putational effort. This operator is utilized to develop avelcand generally applicable method-
ology for the volumetric coupling of different meshes witla monolithic solution scheme for
multi- eld simulations, which allows for great exibilitywith respect to spatial discretizations.
In addition, this scheme is extended towards contact phenapwhich naturally arise for exam-
ple in thermo-structure interaction problems. At the ehe, ¢oupling operator is incorporated
in a novel grid motion approach for uid-structure interact problems to demonstrate that the
implemented functionality is extremely exible with resgeo further applications. For all inves-
tigations, the performance of the mortar operator is clyefompared to standard collocation
operators.

Altogether, this thesis presents novel and consistennsiias of mortar methods towards
applications in 0D to 3D.



Zusammenfassung

Wahrend Berechnungen von klassischen Einfeldprobleméeimeém betrachteten Korper gut
erforscht sind, sind gekoppelte Interface- und Volumehlgnme mit mehreren Kérpern immer
noch Gegenstand aktueller Untersuchungen. Diese treteanbé&hernd allen anspruchsvollen
Ingenieursanwendungen, wie zum Beispiel Crashtests, tinpimzessen von metallischen Werk-
stoffen, mechanischen Verbindungen in Turbinen, Bremselkinieimplantaten, auf. Die Sim-
ulation von all diesen Problemen erfordert passende Koypgysistrategien fur ihre raumlichen
Diskretisierungen, um grof3tmogliche Genauigkeit und Rdieit zu garantieren. Aus diesem
Grund werden Mortar-Methoden als Basis fir alle Entwickiem in dieser Arbeit gewahlt, da
sie sich durch hervorragende Leistung, einer fundiertethemaatischen Basis und numerische
Stabilitat auszeichnen.

In dieser Arbeit wird die Anwendung der Mortar-Finite-Elenme-Methode auf Kontaktprob-
leme mit OD-, 1D- und 2D-Kontaktzonen und allgemeine 3Devoénprobleme erforscht. Zu-
dem wird das Zusammenspiel mit Interface-Effekten, wieiédbmit und ohne thermischen
Ein uss, untersucht. Fir alle erwahnten Bereiche werdesleliortar-Methoden verwendet,
welche auf Biorthogonalitatsbedingungen basieren unithetier Weise zu sehr ef zienten L6-
sungsverfahren fuhren.

Konkret wird eine neuartige Strategie zur Berechnung vomukan auftretenden Ecken-,
Kanten- und Flachenkontakt unter Bertcksichtigung grd®formationen prasentiert. Dabei
werden die Kontaktbedingungen separat fur den auftreteRdekt-, Linien- und Flachenkontakt
mit Hilfe von drei verschiedenen Sets von Lagrange-Mukgtbren de niert. Der Linienkon-
takt wird zum ersten Mal mit der Mortar-Methode umgesetai eine neuartige numerische
Integrationstechnik wird prasentiert. Die diskreten Ugdoenten, welche durch die Lagrange-
Multiplikator-Anséatze begrindet sind, werden von dem gleh Gleichungssystem unter Ver-
wendung von dualen (biorthogonalen) Ansatzfunktionendin Linien- und Flachenkontakt
eliminiert. Der kombinierte Algorithmus benétigt keingirlParameter fir den Ubergang von
Punkt-, Linien- und Flachenkontakt, da diese Entscheiduonmdjzit von der variationell-konsis-
tenten Formulierung getroffen wird. Der entwickelte Alglomus wird durch eine Regular-
isierung mittels der Strafterm-Methode unterstitzt, um Ball des nicht-parallelen Kante-zu-
Kante-Kontakt zu realisieren. Die Robustheit und Anwemkidid der vorgestellten Methode
werden mit einigen herausfordernden Beispielen dementtri

Des Weiteren wird ein Finite-Elemente-Ansatz basiererdaalen Mortar-Methoden prasen-
tiert, welcher die Simulation von Reibverschleil3 fur gr@sformationen ermdglicht. Der Reib-
verschleild wird hierbei inkrementell mit Hilfe von Arch&d\briebgesetz modelliert und im
Rahmen der Kontaktformulierung als zusatzlichen BeitnagAdbstandsfunktion gewertet. Die
bereitgestellten numerischen Beispiele demonstriereh &ier die Robustheit und Genauig-
keit des entwickelten Algorithmus. Um das Anwendungsspektzu erweitern, wird dieser
Ansatz anschliel3end um reibungsbehaftete Abriebsphamereveitert, welche zu grof3en Ge-
staltanderungen fuhren. Um diese Gestaltanderungen ideubwird neben der bekannten
Referenzkon guration und der rAumlichen Kon guration eiweitere Kon guration eingefthrt,
welche den zeitabhangigen, abgeriebenen Zustand bdsiclieie konsistente Verbindung dieser
Kon gurationen wird durch eine "Arbitrary-Lagrangian-Euian"-Formulierung erreicht. Der
neu entwickelte, partitionierte und zugleich voll impteAlgorithmus basiert auf einem Lagrange-
Schritt und einem Euler-Schritt. Im Lagrange-Schritt wardlie Kontaktbedingungen und die



Abriebgleichung im schwachen Sinne mit Hilfe der Mortari{htede berechnet. Hierbei werden
zusatzliche Unbekannte durch den Lagrange-Multiplik&tosatz und durch die zusatzlichen
Abriebsgrof3en mittels der bereits erwahnten Biorthogtitakigenschaft der Ansatzfunktion
eliminiert. Mehrere 2D-und 3D-Beispiele werden prasetitiem den entwickelten Ansatz zu
validieren. Danach wird der Algorithmus fiir groRe Gestal&rungen durch Abrieb zum er-
sten Mal Gberhaupt um thermische Effekte erweitert. Dievexkielte Methodik wird mit einem
2D-Validierungsbeispiel mit Referenzlésung und einemBdispiel getestet.

Abschlie3end wird in der vorliegenden Arbeit die Erweitegwon dualen Mortar-Methoden
— Uber Kklassische Gebietszerlegungs- und Kontaktanweeduminaus — auf allgemeine Volu-
menkopplungen demonstriert. Zu diesem Zweck wird ein gecleer 3D-Kopplungsoperator,
basierend auf biorthogonalen Ansatzfunktionen, entwickeelcher knotenbasierten Informa-
tionsaustausch mit hochster Genauigkeit bei zugleichrigeoh Berechnungsaufwand erlaubt.
Dieser Operator wird anschlielRend verwendet, um eineerakgnen Lésungsansatz fir monoli-
tische, volumengekoppelte Mehrfeldprobleme auf nichspaden Netzen zu entwickeln. Dieser
ermaoglicht eine bis zum jetzigen Zeitpunkt nicht gekannexibilitat hinsichtlich rAumlicher
Vernetzungsanforderungen. Des Weiteren wird dieser ZngatKontaktphanomene erweitert,
welche beispielsweise bei Thermo-Struktur-Interakfpyoblemen auftreten. Am Ende wird der
Kopplungsoperator in einem neuartigen NetzbewegungsafigaFluid-Struktur-Interaktions-
probleme eingebettet, welches die exible Implementigrimsichtlich folgender Anwendun-
gen beweist.

Zusammenfassend werden in der vorliegenden Arbeit ngeautid konsistente Erweiterun-
gen der Mortar-Methoden hinsichtlich Anwendungen in OD3fisprésentiert.
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Nomenclature

Representation of scalars, tensors and other quantities

Q

OO0O0L 0L

Scalar quantity

Vector

Second-order tensor
Discrete vector

Discrete matrix
Scalar-valued function space
Vector-valued function space

Operators and symbols

qAAAA
\./\L/\_/vv
H

div
Lin
grad
Grad
max

Transpose of a tensor

Inverse of a tensor

Transpose of the inverse of a tensor

First time derivative at a xed reference position
Second time derivative at a xed reference position

Prescribed quantity
Duality (energy) pairing on
Determinant

Trace operator

Logarithm

Natural logarithm

Spatial divergence operator
Linearization operator
Spatial gradient

Material gradient
Maximum function

Dyadic product

Virtual quantity

Kronecker delta

Lie derivative

Identity tensor

Identity matrix2 R

Xi



Nomenclature

Domains and boundaries

qr q» m;q

FSI

Kinematics

€1,€2,€3
X
X

'I'IG|CC

Xil

Reference con guration

Spatial con guration

Material con guration

Boundary in reference con guration

Boundary in spatial con guration

Boundary in material con guration

Dirichlet partition of boundary in reference, spatial andterial con gura-
tion

Neumann partition of boundary in reference, spatial anceratcon gura-
tion

Potential contact partition of boundary in reference, igpand material con-
guration

Active contact zone in reference con guration

Inactive contact zone in reference con guration

Potential contact boundary of surfaces without verticebatlyes in reference
and spatial con guration

Potential contact boundary of edges without vertices iaregfce and spatial
con guration

Potential contact boundary of vertices in reference antiadgan guration
Set of potential contact points resulting from crossingesdg reference and
spatial con guration

Set of potential point contact in reference and spatial gomnation

Partition of boundary with prescribed temperatures inrezfee, spatial and
material con guration

Partition of boundary with prescribed heat uxes in referenspatial and
material con guration

Fluid-structure interface in reference con guration

Basis vectors of Cartesian coordinate system
Position in reference con guration

Position in spatial con guration

Mapping between reference and spatial con guration
Physical displacements

Physical velocity

Physical acceleration

Deformation gradient



Nomenclature

J Jacobian determinant, determinantof
Ja Area transformation factor

Vo V Reference and current volume

Ag; A Reference and current area

N Unit normal in reference con guration
n Unit normal in spatial con guration

E Green-Lagrange strain tensor

Stresses and constitutive laws

t Traction vector in current con guration

Cauchy stress tensor

First Piola-Kirchhoff stress tensor

Second Piola-Kirchhoff stress tensor

Constitutive tensor for linear elasticity

General strain energy function
SVK Strain energy function for Saint-Venant-Kirchhoff mag&trnodel
NH1 Strain energy function for classical Neo-Hookean mateniatiel
NH2 Strain energy function for alternative Neo-Hookean matemodel
E Young's modulus

Poisson's ratio
, Lamé coef cients

OWnT

Governing equations

t Time
T Total simulation time
m Mass
0, Density in reference and material con guration
Bo Body force in reference con guration
fo Prescribed pseudo-traction in reference con guration
o Initial displacement att = 0
(o Initial velocity att = 0
W Work
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FE space discretization and solution scheme

Wiin Kinetic virtual work contribution
Wint Internal virtual work contribution
W ext External virtual work contribution
U Solution space for displacement eld
Vv Weighting space for displacement eld
Ndim Number of spatial dimensions
Ndof Number of degrees of freedom
Nnod Number of nodes
Nele Number of elements
Ny FE shape function of node
fint Internal force vector
foxt External force vector
K mass Global mass matrix
Ko Global initial tangent stiffness matrix
K damp Global damping matrix due to Rayleigh damping model
Fm; Tk Parameter for Rayleigh damping model
n Time step index
t Time step size
d, Discrete displacements at time
Vi Discrete velocities at timg,
an Discrete accelerations at timg
; Parameters of Newmark's method
m Parameters of generalizedmethod
1 Spectral radius
¢ Parameter for One-Stepscheme
r Discrete residual of balance of linear momentum
K Dynamic effective tangential stiffness matrix
din’;ll Displacement increment within Newton-Raphson scheme
d2,, Start estimate for nonlinear solution scheme

Contact mechanics

BM Slave body

B@ Master body

2@ Closest master point to slave pokit)
g Gap vector

Oh Gap function

V. rel Relative tangential velocity

F Coef cient of friction

Pn Normal contact pressure

Xiv



Nomenclature

P RS

Tangential contact traction

Contact traction

Interface dissipation rate density in spatial con guratio
Interface dissipation rate density in material con guoati
Slip function

Complementarity parameter for frictional sliding

Mortar methods for contact

n@
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Lagrange multiplier

Normal part of Lagrange multiplier

Tangential part of Lagrange multiplier

Restriction space for Lagrange multiplier in tangentiaina
Solution space for Lagrange multiplier

Trace space of weighting space of displacement eld
Contact interface mapping

Discrete contact interface mapping

Number of slave nodes

Number of master nodes

Number of slave nodes carrying discrete Lagrange multiplie
Lagrange multiplier shape function of noge

Discrete Lagrange multiplier of slave nope

Discrete weighted gap of slave node

Discrete weighted relative tangential velocity of slavel@ep
Discrete weighted relative tangential slip increment af/elnodg
Slave side mortar matrix

Master side mortar matrix

Coef cient matrix for dual shape functions

Auxiliary coef cient matrices for dual shape functions
Slave element center

Unit normal vector at slave element center

Projected node on auxiliary plane

Nonlinear complementarity function in normal directiom &dave node
Nonlinear complementarity function in tangential directifor slave node¢
Complementarity parameter for contact in normal direction
Complementarity parameter for contact in tangential dioac

Mortar projection operator

Set of all slave nodes

Set of all master nodes

Set of all interior nodes

Set of all active slave nodes

Set of all inactive slave nodes
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S, Set of all active slave nodes in the slip state
St Set of all active slave nodes in the stick state

Mortar methods for contact of vertices, edges and surfaces

Quantity related to surface contact

Quantity related to line contact

Quantity related to point contact of vertices
Quantity related to point contact of crossing edges
Quantity related to general point contact

Force vector for point contact

c Line load vector for line contact

Surface Lagrange multiplier

Line Lagrange multiplier
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_S Point Lagrange multiplier
M Solution space for surface Lagrange multiplier
M, Solution space for line Lagrange multiplier
M - Solution space for point Lagrange multiplier
n Penalty parameter for normal contact of non-parallel edges
Penalty parameter for frictional sliding of non-paralldbes
$ Scalar-valued distance
N & Outward pointing unit normal vector of the adjacent eleneertt node
nj(;lgux Aucxiliary slave normal vector
p Trajectory vector
Ad) Closest distance vector between two edges
4 Closest points between two edges
) Parameter space coordinate on edge element associateki With
” Discrete counterpart of,
i Point Lagrange multiplier shape function for ngde
n$) Nodes of physical vertices
D, Slave side mortar matrix for Lagrange multiplier point Gt
M-, Master side mortar matrix for Lagrange multiplier point tawot
O Discrete gap function for point contact of vertices for npde
(V2: - rel)] Discrete relative tangential velocity for point contactveftices for nodg
f Nodal penalty force vector for contact of non-parallel exige
foen Penalty force vector for contact of non-parallel edges
fgg{ Tangential part of penalty force vector for assumed trialestor contact of
non-parallel edges
b Discrete counterpart of ,
i Line Lagrange multiplier shape function for node
n,(o') Nodes of physical edges except for nodés
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DopDp Slave side mortar matrices for line contact
M, Master side mortar matrix for line contact
Oni Discrete gap function for line contact for nopge
(Vp : re)j Discrete relative tangential velocity for line contact fardej
Discrete counterpart of
Ne Number of nodes associated with a surface element
Ne Number of nodes out afe that carry point or line Lagrange multipliers
& Transformation coef cient for shape function modi cation
Te Discrete transformation matrix for shape function modtioa
n® Nodes of physical surfaces except for nodésandny’
D ;DD -, Slave side mortar matrices for surface contact
M Master side mortar matrix for surface contact
g Discrete gap function for surface contact for npde
(V. re)j Discrete relative tangential velocity for surface confactnodej
fe Global contact force vector containing information of aihtact types
f Global contact force vector of scenarios enforces with aage multipliers
A Diagonal matrix containing area information

Mortar methods for wear modeling

Worn Volume
Wear depth in spatial con guration
Wear depth in material con guration
Wear coef cient in spatial con guration
w Wear coef cient in material con guration
Energy wear coef cient
Position in material con guration
Mapping between reference and material con guration
Mapping between reference and spatial con guration
Mapping between material and spatial con guration. Coreddo Chapter 2-
4, the mathematical de nition df is changed. Nevertheless, it describes for
all problems the physical motion.
Wi Wear shape function of noge
oY Modi ed gap function
W, Discrete weighted wear depth of slave ngde
E First wear matrix
T Second wear matrix
fw Discrete wear residual
) Open non-uniform knot vector associated with jthi dimension
. i-th knot value associated with theth dimension
Ni;jk NURBS basis function
B; B-spline basis function
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T

Control point weight

Control point

Physical deformation gradient

First Piola-Kirchhoff stress tensor for physical deforioat

Second Piola-Kirchhoff stress tensor for physical defdioma

Physical motion

Arti cial deformation gradient for material mapping

First Piola-Kirchhoff stress tensor for material mapping

Second Piola-Kirchhoff stress tensor for material mapping

Material motion

Discrete material displacements

Matrix resulting from linearization of wear residug| with respect to dis-
placementsl

Matrix resulting from linearization of wear residug} with respect to La-
grange multipliers

Thermo-structure interaction

(M)

Xvili

Temperature eld on bodB®

Reference temperature

Damage temperature

Temperature at contact interface

Relative temperature

Stress-temperature modulus

Thermal expansion coef cient

Speci ¢ heat capacity

Friction coef cient at reference temperature

Heat source per unit mass

Heating due to Joule effect

Thermal conductivity

Heat ux in material con guration

Heat ux in normal direction in spatial con guration

Thermal parameter for in uence of frictional dissipatiar tontact
Thermal parameter for in uence of temperature differerarecbntact
Heat transfer parameter

Original heat transfer parameter

Thermal energy

Discrete temperature at relocated npde
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Mortar methods for volume coupled problems

i Meshi
Pii Nodal projection operator from mesh to mesh
Pj’}1 Nodal projection operator based on mortar approach
Pﬁ Nodal projection operator based on collocation approach
D; First mortar matrix for mesh;
D; Transformed rst mortar matrix for mesh;
M Second mortar matrix for transfer from meshto mesh ;
Si Exemplary primary eld
di Exemplary dual eld
Si Exemplary discrete primary eld
di Exemplary discrete dual eld
N; Shape function matrix for primary el
i Shape function matrix for dual eld;
S Exemplary solution space
Te Element transformation matrix
T Global transformation matrix for mesh
T Parameter for shape function transformation
N Modi ed shape function due to basis transformation
ry Discrete residual of partial differential equatioron mesh ;
p;qQ Discrete unknowns for coupled volume problem
; Discrete unknowns for coupled interface problem
I5i,- Interface projection operator from meshto mesh ;

Porous medium — pseudo 2D

ds Structural displacements
Bulk modulus

pF Fluid pressure
vF Fluid velocity

5 Fluid density

F Dynamic viscosity of the uid
k Permeability in spatial con guration
Ko Permeability in material con guration

Fluid-structure interaction

) Quantity at uid-structure interface
pF Fluid pressure
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Fluid velocity

ALE convective velocity

Fluid grid velocity

Fluid grid displacements

Fluid density

Strain rate tensor of Newtonian uid
Dynamic viscosity of the uid

Fluid body force

Fluid surface traction

Structural displacements
Structural density

Structure surface traction

Discrete structural displacements
Discrete uid grid displacements
Discrete uid velocities

Discrete overlay grid displacements

Discrete overlay grid displacements without correctiomtgrface
Operator for projection of structural interface displaesns on overlay grid
Operator for projection of complete overlay grid displaesits on uid grid
Operator for correction step

Interface coupling operator for non-matching uid and stture mesh
Interface correction displacements for uid grid

Correction factor for displacements for interface noded bulk nodg
Distance between interface nodand bulk nodg

Maximum distance for correction step

Hu-Washizu principle
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Abbreviations

ALE
BVP
CPU
CPP

XX

Discrete strains

Discrete stresses

Quantity related to displacements
Quantity related to strains
Quantity related to stresses

Arbitrary-Lagrangian-Eulerian
Boundary value problem
Central processing unit
Closest point projection
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DD
EAS
FE
FEM
FSI

FV
IBVP
IGA
NCP
NTN
NTS
NURBS
PDASS
STS
TSI

Domain decomposition
Enhanced assumed strains
Finite element

Finite element method
Fluid-structure interaction
Finite volume

Initial boundary value problem
Isogeometric analysis
Nonlinear complementarity
Node-to-node
Node-to-segment
Non-uniform rational B-spline
Primal-dual active set strategy
Segment-to-segment
Thermo-structure interaction
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1. Introduction

The presented thesis is concerned with dual mortar mettoydsoh-smooth contact problems

including wear and general volume coupled problems. Thegptdr motivates the use of mortar
methods for the mentioned topics and highlights their ingoore. Then, a state-of-the-art review
for the most fundamental mortar approaches is provided amd these, the objectives of this

thesis are introduced. Finally, an outline of the followttapters is given.

1.1. Motivation

The nite element method as numerical tool for simulationvafious problems arising in en-
gineering applications has been under investigationggime 1960s. Nowadays, it is the domi-
nating spatial discretization technique for the solutibpartial differential equations in various
single- eld problems, such as structural mechanics andrbdynamics and it is not possible
to imagine engineering practice without it. Despite its evgpread acceptance and over ve
decades of intensive research, there are still many unaedweestions and challenging tasks,
which can often be identi ed as complex multi- eld interle@nd volume coupled problems.
This thesis will focus on such unresolved problems in thel ef computational contact me-
chanics. Beside many other scenarios, the highly complelkcapion of material drilling, where
point, line and surface contact simultaneously occur atlitiiéing head with strong heating due
to frictional dissipation could be considered. In additioiierface damage due to wear for pure
surface contact in roller bearings and in automobile brakpsesent well-known engineering
problems. If at all, these scenarios can only hardly be aedlyith experimental procedures
and, even when possible, they cause considerable costiseFapre, analytical solutions for the
mentioned problems are nearly impossible to nd due to thidierent nonlinear characteristic.
Therefore, simulation of these effects is highly desirarid motivates the following investiga-
tions. In order to address numerical modeling of such phemanwith the nite element method,
accurate and robust spatial discretization approachdbdanterface and volume couplings are
required. Classical and frequently employed discretiretifor coupling effects are based on a
strong (point-wise) enforcement of constraints or infotioratransfer, which is mainly due to
their easy implementation. However, they generally lacioloustness and negatively in uence
the solution quality, especially for strongly nonlineaoblems. In contrast, weak constraint en-
forcement strategies naturally tin the nite element ptsbphy and eliminate nearly all draw-
backs of point-wise couplings at the prize of increased adatmnal costs due to the required
numerical integration. The arguably most well-investgischeme from this class is the mortar
method, but the vast amount of work was restricted to interfaroblems without sharp edges
and vertices, i.e. only 2D, smooth surfaces have been cenesidDue to the great results gained
from these investigations, it is very promising to take thertewr method into account in the
context of OD to 2D interfaces in order to address point, #ind surface contact scenarios. This
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would allow for an accurate prediction of acting loads at¢batact regions, regardless of the
actual contact situation and consequently many aspectsgaieering practice would heavily
bene t from this information. Furthermore, applicationmbrtar methods to interface damage
due to wear as an example for complex interface physics isatdsin order to predict and pos-
sibly prevent machine failure. Finally, general volume gled multi- eld problems are usually
simulated on matching meshes, meaning that equal disatietis for all involved elds are em-
ployed. In order to allow highest possible exibility in t@s of spatial discretization, different
meshes should be employed for each eld individually. Trasunally requires proper informa-
tion transfer schemes between these non-matching dizatietis, where the mortar methods
naturally provides best perspectives to work well. All thespects motivate the extension of
already existing mortar methods towards OD and 1D bounslac@mplex interface effects for
2D boundaries and abstract information transfer for 3D |emls.

1.2. Fundamental approaches to mortar methods

From a historical point of view, mortar methods were origfinantroduced in the context of
non-overlapping domain decomposition (DD) approachedidavdor coupling of nonconform-
ing discretizations across subdomain boundaries. A rstkva@n be found for spectral element
discretizations in Maday et al. [160]. Further investigas and extensions towards the nite el-
ement method (FEM) can be found in Ben Belgacem [18], Bermdmal. [25, 26] and Seshaiyer
and Suri [247]. The main characteristic of the mortar mettsothe enforcement of a conti-
nuity condition at the subdomain boundaries in an integralak) sense, which perfectly suits
the nite element approach. This can be realized by the coogon of an appropriate noncon-
forming space of approximation through the introductioraafew intermediary mortar space.
Alternatively, the mortar method can be formulated withphef Lagrange multipliers from a
suitable Lagrange multiplier space, which also results we#l-posed problem, see Ben Bel-
gacem [18]. In Bernardi et al. [26] it was shown, that the rmorhethod for DD applications
guarantees for conservation of the optimal convergenas fabm the FEM, when a proper
mortar space is chosen. Consequently, it was shown thatassphce will also satisfy the well-
known Babuska-Brezzi stability condition. At the beginpiof the century, a new choice for the
Lagrange multiplier space for mortar methods in the com&XD was proposed in Wohlmuth
[288, 289], which is the so-called dual Lagrange multipéipproach. In contrast to its standard
counterpart, it localizes the coupling effect at the subdionmterfaces and thus causes an eas-
ier realization of the domain coupling while still guaragiteg for the optimality of the mortar
method. This means, that the overall discretization egdrounded by the individual errors of
the subdomains, see again WohImuth [289]. Due to their pravathematical optimality, mortar
methods became the state-of-the-art discretization tqabrior general non-matching interface
problems, which will be outlined in detail in the following.

In the past two decades, mortar methods have been sucégasiplied for linear and nonlin-
ear solid mechanics. First DD methods related to mortaragmbres can be found in Dohrmann
et al. [62], Flemisch et al. [83], Krause and Wohlmuth [148]so [216] and Puso and Laursen
[217]. Then, mortar methods have been applied to contaataation problems, since early con-
tact formulations such as the node-to-node (NTN) approatcheonode-to-segment (NTS) ap-
proach suffered poor performance regarding accuracy dmastoess, especially for large de-
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formation applications. For this purpose, the classicaltar@pproach is modi ed in order to
be applicable to inequality constraints characterizingtacot problems. First contributions re-
garding mortar methods for computational contact meclsaare the work in Ben Belgacem
et al. [20], Hild [107] and McDevitt and Laursen [168], buete developments were restricted
to small deformations. Extensions towards nite deforroatproblems can be found in vari-
ous following publications, such as 2D approaches in coatlmn with a penalty regularization
in Fischer and Wriggers [80, 81], Laursen [151] and Yang €f3811] and 3D penalty methods
in Puso and Laursen [218] and Puso et al. [220]. Augmenteddoggan mortar contact formu-
lations are published in Puso and Laursen [219] and CavaherCardona [38]. Mortar contact
formulations with a classical Lagrange multiplier appto@an be found in Hesch and Betsch
[106] and in Tur et al. [273]. First applications of dual Lagge multipliers to mortar based con-
tact mechanics in a small deformation regime can be foundun®en et al. [34], Flemisch and
Wohlmuth [82], Hieber and Wohlmuth [115] and Hueber et al7]1 Successful implementa-
tions of a dual Lagrange multiplier approach for nite defation mortar contact formulations
are performed for 2D problems in Popp et al. [211] and Ggtetlal. [88] and for 3D problems
in Gitterle [87], Hartmann et al. [98], Popp [210], Popp et[all2, 213] and Wohlmuth [290].
Additionally, it should be mentioned, that in the contextsafgemetric analysis (IGA) dual mor-
tar methods have been very recently developed in Brivadis 3] and Seitz et al. [244]. When
considering all the mentioned publications regarding arariethods for computational contact
mechanics, it can be noticed that the classical de nitiomairtar methods from DD methods
changed signi cantly in the past years. Nowadays, from kustiative, slightly unmathematical
perspective, they could be described as segment-to-se¢&ESD) contact formulations with ex-
plicitly employed balance of linear momentum in a senseahgt the contact traction at one of
the two interacting sides is employed to state the problemdation for two bodies. Herein, the
mentioned contact traction at one side could be identi egexsalization of constraint violation
in the context of penalty based mortar methods, or as additicagrange multiplier. However,
all contributions given above are based on the assumptadittid interfaces of the involved bod-
ies are smooth, which means that surface-to-surface dastaxpected. Contact of non-smooth
boundaries, such as vertices and edges are neglected re\athyss mortar publications.

Beyond classical contact problems (i.e. pure structui@blems), the mortar method has suc-
cessfully been applied to complex multiphysics contacbfmms and general interface prob-
lems. Here, thermo-mechanical contact problem formutativith mortar approaches can be
found in Hieber and Wohimuth [116] and Seitz et al. [245]. Tliierein included Robin-type
constraints are enforced with dual Lagrange multipliersidilar strategy was very recently
employed for electrochemistry problems in Fang et al. [@8bider to couple anode/cathode
and electrolyte. Mortar methods for DD of porous media owndae found in Kim et al.
[136] and Vuong [277]. Also an early nite deformation cootgormulation of two porous
bodies based on mortar methods can be found in Vuong [277i{tavlapproaches for DD in
the context of uid dynamics have been developed in Achdoalefl], Ben Belgacem [19]
and Ben Belgacem et al. [21] for standard mortar methods.x&nsion towards dual mortar
methods can be found in Ehrl et al. [65]. Fluid-structurerattion problems with the dual mor-
tar method being used for the interface coupling have beteoduced in Kloppel et al. [138].
Also a general methodology based on mortar methods for scale problems of second-order
elliptic equations has been developed in Arbogast et al.H6jvever, the complex contact in-
terface phenomenon of wear is only very rarely addresselderexisting literature. The only
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known publications concerning mortar methods for wear riingeare Cavalieri and Cardona

[36] and Cavalieri et al. [37], but with several limitatigrssich as the assumption of frictionless
contact and small amounts of wear. In addition, they arecbasea standard Lagrange multiplier
approach within an augmented Lagrangian framework anddiemsion towards dual Lagrange

multipliers is still an open question.

Finally, the mortar method is employed as abstract prajaatperator for nodal information
transfer and applied towards volume coupled multiphysitslifferent meshes in Dureisseix
and Bavestrello [64] and Néron and Dureisseix [181]. Therenly 2D problems are consid-
ered. Moreover, the multiphysics problems are solved wihrétioned solution scheme and the
constructed mortar projection operator is based on a stdmdartar approach. Such a standard
mortar projection operator was also employed in Bussetth 5] for remeshing applications.
However, construction of a real 3D projection operator fodal information transfer has never
been outlined for a dual mortar approach. In addition, a ggmeethodology for the application
of mortar projectors towards monolithic multiphysics lgede ned on different meshes has not
been developed in the existing literature.

Despite the great work done in the mentioned publicatidresetare still various unresolved
questions in the context of mortar methods, especially émtact of non-smooth boundaries,
complex interface effects such as wear modeling and voluoogled problems. These three
aspects mark the points of origin for this thesis.

1.3. Research objective

The methods developed in this thesis are aiming to consigextend the well-established mor-

tar methods in the context of the FEM towards contact of manegh geometries, wear modeling
and general volume coupled problems. For all three aspsheas] agrange multipliers (i.e. dual

mortar methods) are very promising since they have beeressftdly employed in various ap-

plications outlined in the previous section. Thus, the ganesearch objective of this thesis is
speci ed in the following. In addition, detailed speci dahs of requirements are given for each
of the three mentioned topics individually at the beginrifithe corresponding chapters.

1.3.1. General speci cation of requirements

Based upon the explanations stated in the previous sett@most important requirements for
the improvements of mortar methods are listed and illustrat the following.

Mortar formulations for point, line and surface contact General interactions of two arbi-
trarily formed bodies could not only lead to contacting aads, but also contact of edges and
vertices. For these scenarios, the existing mortar metagelsot desirable, since well-known
drawbacks such as large penetrations at vertices and edn#d accur. The mentioned large
penetrations could be avoided by a node-to-segment schewestiwes and edges. However,
contact stress oscillations for edge (line) contact areitalle. Thus, it would be desirable to
create suitable mortar contact formulations which digeatldress the interaction of vertices,
edges and surface in one comprehensive model. Up to now iheo such a model available
in the existing literature on computational contact meatgand mortar methods. In addition,
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dual Lagrange multipliers are the preferred discretizafpproach for the development of a
combined point, line and surface contact formulation sihey naturally allow for an easy and
ef cient elimination of the arising Lagrange multiplier kmowns.

Fretting wear modeling within mortar contact framework The fretting wear phenomenon
is usually modeled as an additional contribution to the gapction, which leads to slightly
overlapping bodies up to an extent which is equivalent tontear depth. For 3D mortar contact,
such an approach for wear modeling is published in Cavadiedi Cardona [36] and Cavalieri
et al. [37]. But, this model does not consider frictionakets and no bene cial dual Lagrange
multipliers are employed. The only frictional contact fariaion based on dual mortar methods
for fretting wear has been published in Gitterle [87], beiagtricted to 2D problems. The ac-
curate and ef ciently calculated results from Gitterle [87otivate to realize a general 3D wear
formulation based on dual mortar methods, which will be @nésd in this thesis.

Finite wear modeling within mortar contact framework The effect of material loss at the
contact interface due to wear resulting into nite shapenges is only rarely addressed in the
existing literature on mortar methods for computationaltaot mechanics. The only known pub-
lications which address this topic are Doca [61] and Get§8l7], but only for 2D models and
explicit time integration of the wear phenomena. In Stupkie [263], it has been demonstrated
that implicit treatment of wear effects is necessary in ptdeobtain stable results, especially
when performing simulations based on a steady-state assumpith large time step sizes.
However, the construction of an implicit nite wear framexkdased on dual mortar methods is
a hitherto unanswered question.

Dual mortar methods for 3D projection operator For a large variety of applications, projec-
tion of nodal information between two different meshes guieed. Despite classical collocation
methods being well-established for this purpose, nodalrmétion transfer methods based on
weak conservation properties are often bene cial to satiskrall conservation demands. Mor-
tar projection operators for nodal information transfeRbfproblems have been developed and
applied in Dureisseix and Bavestrello [64] and Néron andeBseix [181]. In addition, the mor-
tar method as basis of a 3D projection operator has alreastydraployed in Bussetta et al. [35].
But, all mentioned publications are based on the standarthmapproach. Consequently, their
construction becomes very costly. A volume projection aperbased on dual mortar methods
has not been developed in the existing literature, althaugherical ef ciency of dual mor-
tar methods has been demonstrated by several authors fon®Daatact applications, see for
example Gitterle et al. [88], Popp et al. [212] and Wohim2B9]. Consequently, it is very
promising in terms of computational ef ciency to develoghkua projection operator with help
of dual mortar methods.

Volume coupled multiphysics on non-matching meshe€lassical mortar methods are de-
signed in order to allow for exible discretization via inface coupling of subdomains with
non-matching meshes. Transferring this idea towards timegb of coupled multiphysics, it
would be desirable to allow for different bulk discretizats of the involved elds. Such an ap-
proach has been published in Dureisseix and Bavestrelloaitd Néron and Dureisseix [181],
but it is restricted to 2D problems, which are solved withpeatitioned solution scheme. Mono-
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lithic solution schemes are often proven to be of superibustness compared to partitioned
counterparts. This causes the need for having a generabdwtyy, which allows for solving
volume coupled multiphysics on non-matching meshes wighmonolithic approach. In ad-
dition, contact interaction of two bodies with multiphysieffects and non-matching interface
and volume discretizations has never been considered extbeng literature. Aiming for high-
est possible exibility with respect to spatial discretizan, these topics need further exploration.

1.3.2. Proposal for novel mortar approaches

This thesis describes the consistent extension of the moita element method to computa-
tional contact mechanics of complex geometries, wear sitiuis and general volume coupled
problems. The most important ingredients and new sciemuotributions of the presented ap-
proaches are given in the following:

the rst consistent extension of the dual mortar contacifolation to point, line and sur-
face contact scenarios of vertices, edges and surfacegibealved in a nite deformation
regime, see also Farah et al. [71].

development of the rst dual mortar formulation for the aalbttion of fretting wear prob-
lems in 3D, see also Farah et al. [69].

implementation of the rst fully implicit nite wear algothm in a non-steady-state regime
based on dual mortar methods with an Arbitrary-Lagrandiaterian approach and rst
extensions towards thermo-structure interaction probles@e also Farah et al. [74].

successful extension of the dual mortar method to a 3D indtion transfer scheme
with application to monolithic volume coupled multi- eldrpblems, e.g. porous media,
thermo-structure interaction, uid-structure interactiand thermo-structure-contact in-
teraction, see also Farah et al. [70] and La Spina et al. [145]

All methods and models devised as part of this work have begreimented in the in-house
C++ code BACI (cf. Wall et al. [282]) of the Institute for Comgational Mechanics at the Tech-
nical University of Munich. This code integrated open-smulibraries of the Trilinos Project
conducted by Sandia National Laboratories, see Heroux §t@2]. The basic data structures
and existing features like time integration schemes oatitez solution techniques were reused
within this thesis. Other modules have been adapted or wetiemwcompletely from scratch.
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1.4. Outline

This thesis is split into three major parts, nam€lyapters 4, 5 and 6, which extend and adapt
the mortar method to be applicable to contact scenarios weithices, edges and surfaces be-
ing involved, complex wear interface phenomena and infdiondransfer operators for general
volume coupled problems. Parts of this thesis are taken,fo®rived from or also published
in the articles Farah et al. [69, 70, 71, 73, 74], La Spina €tld5] and Seitz et al. [244]. The
remainder of this thesis is structured as follows:

In Chapter 2, the governing equations for nonlinear solid mechaniesoartlined in their
strong formulation. Additionally, the concept of the weakrhulation and spatial discretization
based on the nite element method are given. The chapterrgpteted with explanations on
time integration of the provided equations for nonlinedrdsmechanics and proper linear and
nonlinear solution schemes.

The structural problem is extended towards contact mechamChapter 3, where the basics
on contact kinematics and the constraints for normal coatad frictional sliding are introduced
for classically considered surface-to-surface contaahaigos. Then, the weak form of the con-
tact problem is reviewed based on a Lagrange multiplier@gagr. This problem formulation is
afterwards spatially discretized with the mortar nitemlent method. Here, commonly used La-
grange multiplier interpolations, namely the standardtheddual approach, are introduced and
detailed explanations on the complex numerical integnasicheme are provided. Information
about the time integration of computational contact meudsaand the global solution scheme
complete this chapter.

The main focus ofChapter 4 is the development of a computational approach for nite de
formation contact of vertices, edges and surfaces basedootammethods. First, the chapter
provides a detailed overview of already existing numergadroaches for such complex contact
scenarios with emphasis on nite element methods followyed boncrete de nition of the most
important requirements for the algorithm developed in thissis. For the purpose of dealing
with the aforementioned requirements, the contact kineaind suitable notations for point
contact, line contact and surface contact are introducdaantact constraints for all scenarios
are given. Then, a consistent weak formulation is derivel thiree sets of Lagrange multipliers
and an additional penalty regularization for special siesaThe naturally following spatial
discretization is rstly outlined for the contact interiadisplacement eld and suitable and ro-
bust de nitions for discrete nodal normals are providedldwing the mortar idea, appropriate
discretizations with suitable discrete Lagrange mukipipaces and numerical evaluation pro-
cedures are separately given for point contact, line coatat surface contact scenarios. Finally,
the introduced algorithms are combined to a comprehensimtact framework, which is vali-
dated with help of several numerical examples.

In Chapter 5, the complex interface phenomenon of wear is modeled nvitté mortar nite
element framework. Starting point of this chapter is an wasy about existing numerical ap-
proaches for simulation of wear effects and the consequanting requirements for the wear
algorithms developed in this thesis. Then, the fundamsmalwear effects are reviewed with
special focus on the wear law postulated by Archard and théraaum mechanical consider-
ation of nite wear effects. This is followed by two mortarlated approaches of spatially dis-
cretizating wear effects which are employed in the follagvior algorithms valid for small wear
and nite wear. These algorithms are validated with respeefready existing numerical results
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from the literature and further challenging 3D tests. Hinahe proposed nite wear algorithm
is extended towards the interaction with thermal effectsagmain its accuracy is validated with
results from the literature and its applicability is demoaied by one complex 3D problem.

Chapter 6 successfully extends the mortar method beyond interfeai@gims related to solid
mechanics towards general volume coupled problems. Tdrexdft is considered as an abstract
projection method for nodal information transfer. Again, @ erview of existing methods for
nodal information transfer and of the various elds of applions of such methods are given.
This is followed by a speci cation of requirements for thevdlped numerical methods. Then,
the basics on nodal information transfer methods are peavimhd an abstract derivation of
the mortar method is given including details on the numéegaluation and the degeneration
to collocation methods. Then, a general methodology foritkerporation of projection op-
erators within a monolithic multiphysics problem is givemioh allows for different spatial
discretization of the involved single- elds. The accuramfythe mortar projection operators is
validated with several benchmark examples and the intedlscheme for solving monolithic
multiphysics on different meshes is tested for thermoestme interaction problems and porous
media applications. Finally, the versatility of the propdgrojection operators is demonstrated
by the development of a novel grid motion approach for utdisture interaction problems and
further applications of the implemented numerical meth@daautlined.

Finally, Chapter 7 summarizes the most important achievements gained ithésss, but also
addresses the aspects of the developed approaches whichwipotential for improvements.



2. Governing Equations and Finite
Element Formulation

In this thesis, various single- eld and multi- eld problesare considered, but special focus is set
on nonlinear solid mechanics since it serves as startingf fpai all following derivations con-
cerning mortar methods for contact mechanics. Thus, inctigter, the fundamental concepts
of nonlinear continuum mechanics are recapitulated witpleamsis on the governing equations
for solid dynamics. In addition, the concept of the weak folation and spatial discretization
with the nite element method are explained. Finally, detczation in time is brie y introduced
with help of nite differences and solution techniques fayntinear and linear equations are
outlined.

2.1. Continuum mechanics

The following section introduces classical continuum nagsbs for nonlinear structures based
on the literature Bonet and Wood [31], Holzapfel [113], Ogd#85] and Simo and Hughes
[254]. Structural models with special kinematic assummjsuch as beams and plates are not
considered in this thesis.

2.1.1. Nonlinear kinematics, strain and stress

In this section, the kinematic relationships as well asistaad stress measurements are intro-
duced to describe the deformation of a homogeneous Bogithout material loss. Therefore,
a classical Boltzmann continuum in 3D is considered anddlbwing relations are formu-
lated with respect to a global Cartesian coordinate sy$tne;; esg, see Figure 2.1. Basically,
it can be distinguished between two different con guraipnamely theeference con gura-
tion o R3, which represents the positions of all material potsat the initial timet = 0
and thespatial con guration ;  R2, which is occupied by all spatial points In the context

of structural mechanics, the reference con guration i® &isown as thenaterial con guration
and thus both terms are used in the following. However, falié®with mass loss due to weatr,
it is important to distinguish between material and refee2non guration, see Chapter 5. By
postulating a Lagrangian formulation, the so callegjrangian observefollows the material
particles in their motion and thus it is linked to the referercon guration. Consequently, all
kinematics and general governing equations are statednrstef the material coordinatés .
This methodology is the classical formulation in struckdsanamics since it allows for computa-
tionally advantageous treatment of problems with hist@yeahdent variables, such as plasticity
and visco-elasticity. Thus, only the nonlinear and bijeetieformation map is required to



2. Governing Equations and Finite Element Formulation

Figure 2.1: The considered homogeneous @dyreference con guration o  R® and spatial
con guration R3 with the motion' , which acts as mapping between these
con gurations.

describe the motion of a material point:
8
LS o () (X oxg 2.1
" HOSHERE '

Furthermore, thabsolute displacement vectorof a reference point can be described as
u(X;t)=x(X;t) X: (2.2)

The deformation gradient is introduced as fundamental oreagent for deformation and strain
and is de ned as gradient of the current position with resp@the material position:

_@Xiy _,, @Xiy,
@ X
with | being the second-order identity tensor. Physically, tHerdeation gradient can be in-

terpreted as mapping of an in nitesimal line elemedt dn the reference con guration to the
corresponding line elemenkdn spatial con guration, i.e.

F (2.3)

F dX = dx: (2.4)

This operation is known gsush-forwardoperation. Due to the assumed bijectivity of the defor-
mation map in (2.1) the correspondingull-backoperation can be de ned by employing the
inverse of the deformation gradient:

dX = F ! dx: (2.5)
Thus, the determinaidt of the deformation gradient is guaranteed to be positive

J = defr > 0 (2.6)

10
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For the special case of a completely incompressible bodyéformation gradient's determinant
is equal tol. This determinand is employed to describe the relation of an in nitesimal volel
element in the material con guration and the spatial corrgpion:

av = J dVO: (27)

Here, &/ is the in nitesimal volume element in spatial con gurati@nd d/, represents the
counterpart in material con guration. After introducinggt transformation of line elements and
volume elements, the change of an in nitesimal area elerhastto be de ned. Therefore, the
well-known Nanson's formula is employed:

dA = JF T dAy; (2.8)

with the in nitesimal area elementAl in spatial con guration and the corresponding area ele-
ment in material con guration @ 5. These elements are interpreted as vectors via

dA = dAn:  dAg= dAoN ; (2.9)

with N andn denote unit normal vectors in the material con guration anthe spatial con g-
uration, respectively. As a suitable and very common chimicthe strain measure, the so-called
Green-Lagrange strain tensas employed and de ned as

E = %(FT F 1) (2.10)

It ful lls the natural requirement of zero strain in the uridamed state and is valid in the regime
of moderate stretch and compression. Alternative straiaso@s, such as the Euler-Almansi
strains and the logarithmic strains can be found in the adiniiterature referenced at the be-
ginning of this chapter. However, the Green-Lagrangersérare uniquely utilized throughout
this thesis.

In order to describe the kinematic of a body, the rst and secderivative in time of the
displacement vector, i.e. the velocity vectofX ;t) and the acceleration vecter(X ;t), are
required. They are de ned as

@(X;t)  _ du(X;t),

u(Xx;t)= @t Rl— (2.11)
X
o @(Xt) _du(X ;) dPu(X ;).
w(X :t) = T T (2.12)

Correspondingly, the rate forms of the deformation measnaenely the material velocity gra-
dientL = F-or the material strain rate tendr= %(F_T F+FT FE) arereadily de ned.
Generally, elastic bodies are characterized by an innessttate induced by deformations.
Since strains and stresses are naturally connected by tios wb energy conjugate pairs, they
cannot be chosen arbitrarily and independently in prachicstead, de nitions of different stress
measures depending on the employed problem formulationthendonsidered continuum me-
chanical con guration are possible. Considering the spp@bn guration, the currenboundary

11
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tractiont is de ned as the limit value of the resulting forcef acting on a vanishing surface
area a:

. f
t=lim —: (2.13)
al 0 a
The spatial boundary traction can be related to @aeichy stress tensor with an outward
pointing unit normal vecton in spatial con guration, via
t= (x;t) n: (2.14)

This is known as Cauchy theorem and can be derived from équiih considerations using an
in nitesimal tetrahedral volume element. With the Caucless tensor, thest Piola-Kirchhoff
stress tensoP can be de ned as

P=J F " (2.15)

In contrast to the spatial stress tensqrthe rst Piola-Kirchhoff stress tensd? represents a
mapping from the material con guration to the spatial coargtion. Thesecond Piola-Kirchhoff
stress tensog is a pure material stress tensor and is de ned as the puk-bltbe Cauchy stress:

S=F!'!P=JF 1! F T (2.16)
With this measure, the material boundary traction can beee as
T=S N; (2.17)

with the outward pointing unit norm& in the material con guration.

2.1.2. Constitutive laws

The constitutive relations link the introduced stress analirs measurements and describe the
material response of a body due to deformations. Througihsthesis, only purely homoge-
neous bodies without any internal dissipation effects aresiclered. Thus, the existence of a
so-calledstrain energy function is postulated, which depends only on the current deformatio
state. This is known ayperelastic material behavioA commonly employed formulation of
hyperelastic material is given as

S=— (2.18)

which generally states a nonlinear relationship betweersdtond Piola-Kirchhoff stress ten-
sor and the Green-Lagrange strains. Especially for nitarednt approaches, the fourth-order
material elasticity tensdC is required and can be de ned by
C = @ = @2: (2.19)
@& a
Thus, the choice of the strain energy function determinestmstitutive behavior of the consid-
ered body. In the following, three very common material med@r the strain energy functions

12
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are introduced, which are employed for all investigationthis thesis. First, th8aint-Venant-
Kirchhoff material is considered, which is one of the simplest modteis.an isotropic, hyper-
elastic model and represents the extension of the lineatitotive theory formulated for large
deformations. The corresponding strain energy functiadse

svk = 5(IE)*+ E :E; (2.20)
with  and representing the so-called Lamé parameters. For thesmptas, a correlation

with Young's modulus and Poisson's ratio can be stated via

T @1+ )a 2) T2+ ) (2.21)

The second popular material law is the compressilde-Hookeamodel, with the strain energy
function

NHL = 5(tr(FT F) 3) In(d)+ E(In(J))Z: (2.22)

Based on the classical New-Hookean modelin (2.22), a thiathsenergy function is introduced,
which reads

we= FET F) 3 logd)+ 53 1 g (2.23)

Itis employed for a validation example in the context of enivear modeling. For other constitu-
tive laws, the interested reader is exemplarily referredatzapfel [113] and Simo and Hughes
[254].

2.1.3. Balance equations

In the following subsections, the fundamental balance ggusand conservation laws for me-
chanical systems are given. All balance equations can beulated in an integral (global) man-
ner or in a point-wise (local) form.

2.1.3.1. Conservation of mass

When considering classical elastodynamics without growtkar or other degradation effects,
the mass of the body needs to be conserved. Thus, balancesfarabe written in global form
as

Z Z
‘L_T _ % V= (_+ dvu)dVv=0:; (2.24)

with  being the spatial mass density of the spatial volume eleohérdand diy ) representing
the spatial divergence operator. For obtaining the relaf®24), Reynolds' theorem was used.
The corresponding formulation in material con guratiods

dm _ d? z

E = a OdV() = _OdVO =0: (225)

13
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Here, the material density, of the material volume elementvgl is related with the spatial
density via the determinant of the deformation gradient:

0=1J: (2.26)

Furthermore, in (2.25) the rate of the material density ssiaged to be zero, which implies that
the density does not depend on time. The correspondingflaicalof mass conservation reads

_+ divu =0; (2.27)
0=0: (2.28)

2.1.3.2. Balance of linear momentum

The global form of balance of linear momentum states, theatithe derivative of linear momen-
tum equals all external forces acting on the considered.bidudg can be written as

qZ z z

— udv= Bdv+  fdA; (2.29)

(0| t @t
with the external body forcé acting on a spatial volume element and the external boundary
tractionf' de ned on the spatial boundar@ ;. When applying Reynolds' theorem and local
mass conservation (2.27) to the left-hand side and refatimgl the right-hand side with help of
Gauss divergence theorem, the more convenient form of talaflinear momentum is obtained:

z z
mdvV = (div + D)dv (2.30)
The corresponding form in material con guration reads
z z
mdo=  (DivP + Bp) dVo; (2.31)
0 0

with the material divergence operator Divand the external volume ford® being de ned on
the undeformed unit volume. Finally, the local forms of tladgmce of linear momentum can be
stated in the spatial con guration and the material conafion:

W =dv +0; (2.32)
DivP + By (2.33)

ol

This is also known as Cauchy's rst equation of motion.

2.1.3.3. Balance of angular momentum

The balance of angular momentum is de ned by the requirentéat the time derivative of
the angular momentum with respect to a xed point of origiruaig the sum of all external
moments acting on the considered body. Therefore, the bioba is formulated in the spatial
con guration via

dZ z z

— (x wdv= (x Bav+ (x f)dA: (2.34)
da . t @t

14
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The counterpart in the material con guration is de ned as

dZ y4 4

5 (ox wdh= (X Bo) dVp + . (x o) dAg; (2.35)

with the tractiorfy, being de ned on the bounda® o in material con guration. Without point-
ing out details on the local form of balance of angular momentit leads to the equivalent
requirement, that the Cauchy stress tensand the second-Piola-Kirchhoff stress tensor are
symmetric:

T= ST=S5: (2.36)

This is also known as Cauchy's second law of motion.

2.1.3.4. Balance of energy

Balance of mechanical energy is not in the focus of this thesnce it requires adequate spatial
and temporal discretizations in the context of computaionechanics. However, since only
spatial discretization approaches for interface and velaouplings based on the mortar method
are investigated later on, the balance of mechanical ensrggnerally not guaranteed for the
developed approaches for computational contact mechathawgever, for the sake of complete-
ness, balance of mechanical energy requires that the clvatajal energy equals the introduced
external power:

dZ 1 z z z

— T u udv+ (FTEF Y%dv= B udv+ f udA: (2.37)

d .2 t t @ ¢
Herein, the rst two terms are the rate of kinetic energy amelihternal mechanical power. The
two terms on the right-hand side represent the external pdueto interface and body forces.
For purely mechanical systems, balance of energy is a caeseq of the balance of linear
momentum and thus its local form does not provide any additimformation and is not given
here.

2.1.4. Initial boundary value problem

Resulting form the previous sections, the initial boundaalue problem (IBVP) of nonlinear
solid mechanics is stated in the following. It representetao$ coupled second-order partial
differential equations with given initial conditions andundary conditions. For the entire thesis,
the IBVP is de ned in the material con guration. Howevergtisorresponding de nition in the
spatial con guration is also possible. For de ning suitatloundary conditions@  is divided
into two disjoint subsets as

@o= [l (2.38)
o= (2.39)

Here, , is the Dirichlet boundary which is subjected to a given dispment* and  denotes
the Neumann boundary, where the tractibgsire acting. With these de nitions, the IBVP of
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nite deformation elastodynamics can be stated as follows:

DivP + B = o in o [0T]; (2.40)
u==a on  [O;T]; (2.41)

P N = f{ on [0:T]; (2.42)
u(X;0)= o(X) in o; (2.43)
u(X;0)= Gy(X) in o: (2.44)

Herein, T denotes the considered time interval. Due to the time degenydin the balance of
linear momentum (2.40), proper initial conditions for theglacements and the velocity have to
be de ned in (2.43) and (2.44). Therefortes(X ) and{y(X ) are introduced, which represent
the displacements and velocities at the initial time 0. Equations (2.40)-(2.44) are com-
monly denoted astrongformulation, since they are enforced at each point withenrtraterial
domain .

2.2. Finite element formulation and solution scheme for
nonlinear solid mechanics

In the following, the nite element formulation for spatidiscretization is brie y derived, the
employed time integration scheme is introduced and detailthe solution schemes are pro-
vided.

2.2.1. Weak formulation

In order to derive a suitable nite element representatibtine IBVP de ned in (2.40)-(2.44), it
has to be transformed into a so-called weak or variatiorrah@itation. Therefore, thprinciple
of virtual work (PVW) can be applied. Without pointing out the details on degivation, the
resulting weak formulation reads
z z z z
W = ol u dVo+ S: E dVo 60 u dVo f\o u dAo =0: (245)
| =—{z } =z }|—2 {z }

Win Wint Wext

Herein, the virtual quantities are denoted with. Furthermore, three different virtual work con-
tributions can be identi ed: the kinetic virtual work coittution W,,, the internal virtual work
contribution Wi, and the external virtual work contributio®V,. It can easily be shown that
solutions of the strong problem formulation (IBVP) alsosgtthe weak formulation in (2.45).
But, the weak formulation makes lower demands on the diftesbility requirements to the so-
lution functionsu, because only rst derivatives af with respect toX appear in (2.45) instead
of second derivatives in (2.40). Thus, the solution spa¢esnd weighting spaceg for the
displacement eld can be de ned as

(0]

V= u2[MHQ]3 u=0on , : (2.47)

n Ne)
U= u2[H}Q)]3ju=ton () ; (2.46)
n
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Here,H!() denotes the usual Sobolev space of functions with squaggrimle values and
rst derivatives, respectively. Finally, the weak formtitan of the nonlinear solid mechanics
problems can be stated as follows: Fin@ U such that

W =0 8 u2V: (2.48)

2.2.2. Discretization in space

Throughout this thesis, spatial discretization is exelelyiconsidered in the context of the nite
element method. Thus, basic ideas and notations will bendiae mathematical details on the
derivation of the method are omitted. For more informatibwe, interested reader is referred to
the abundant literature, e.g. Bathe [13], Belytschko diél, Reddy [228] and Zienkiewicz and
Taylor [305]. The basic idea of the nite element method istd a numerical solution to (2.48)
at discrete points, commonly denoted as nodes. These noglesr@nected to form elements,
which approximate the partitioning of the considered damaj, via

['ele
0 & (2.49)

e=1

with the number of all elements,. and an individual elementge). Spatial discretization in the

nite element context is commonly done with low-order Laggaan polynomials, which satisfy
differentiability requirements of the weak formulatiorhds, usually rst order polynomials are
adequate for the weak formulation derived in Section 2 Phkse polynomials are employed to
approximate the sought-after discrete solution, i.e. tepldcement eld for classical structure
mechanics. In detail, they de ne the local interpolationdtionsN( ), also known as shape
functions, which are de ned in a so-called parameter spacgonsequently, each elemeréf)
is mapped to this parameter space.

The interpolation of the displacement eld, the current getry and the reference geometry
can then be written as

(e)

hod

up( st = Nk( ) dk(t); (2.50)
.

XECD= Nk )X (2.51)
o

Xn()= knolde( ) X (2.52)

Here, all spatially discretized quantities are denotedh Wi, and the nodal positions in refer-
ence and spatial con guration are denoted with and x«(t), respectively. The use of equal
shape functions for the interpolation of reference andiapge¢ometry is based on the so-called
isoparametric concept. The de nitions given above allowtfee use of several commonly em-
ployed nite element types. In this thesis, the followingliskenown 2D nite elements are em-
ployed: 3-node triangular (tri3), 6-node triangular (}ri8-node quadrilateral (quad4), 8-node
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quadrilateral (quad8) and 9-node quadrilateral (quada@addition, the following 3D elements
are used: 4-node tetrahedral (tet4), 10-node tetrahe@tal0}, 8-node hexahedral (hex8), 20-
node hexahedral (hex20) and 27-node hexahedral (hex2i7h&@ure structural problem, the
virtual displacements and the displacements are inteigmblasing the same shape functions,
which is commonly referred to as Bubnov-Galerkin approach.

The contributions to the weak formulations are integratethent-wise by performing Gauss
quadrature and then sorted into global vectors and matniths so-called assembly operator:

y4 Nele Z
O A, Odv: (2.53)

0 e=1 0:h

When inserting the interpolation of the discrete quarditio the weak formulation, the spatially
discrete problem formulation arises as

d"(Kmasfl + fin(d)  fex) = O; (2.54)

with the global mass matriK,ss the global vector of nonlinear internal forcés and the
external forced .. The global vectorsd, d and 8 contain all discrete values of virtual dis-
placements, displacements and accelerations. The vecigthl is equivalent to the number of
degrees of freedom in the considered system and mre@gds Ngim Nnog, With the number of
spatial dimensiongag, and the total number of all nodes.q. Due to the demand, that (2.54)
must hold for arbitrary virtual displacementd, it can equivalently be reformulated as

Kmasfl + 1:int(d) fext= 0; (2-55)

which is also known as the semi-discrete equations of motiororder to consider viscous
damping effects, the Rayleigh damping model is usuallyuhiced into the system (2.55), via

Kmasdl + Kdampd-+ fine(d)  fexx=0: (2.56)

Here, the global vectad contains all discrete nodal velocities and the maktixm, represents
the global damping matrix. It is de ned in a purely phenomlegecal manner and reads:

Kdamp= FmKmasst kKo ; (2.57)

with the scalars, andry and the initial tangent stiffness mati.

2.2.3. Discretization in time

Since the focus of this thesis is on mortar methods, whictesgmt spatial discretization schemes,
the temporal discretization methods are only brie y inwodd. For more details on time dis-
cretization in the context of nonlinear solid mechanicg, ititerested reader is exemplary re-
ferred to Belytschko et al. [16]. The spatially discretizggtem in (2.56) is going to be dis-
cretized in time by approximating the time derivatives bgitldifference quotients. Therefore,
the considered time interval of interés2 [O; T] is subdivided into several intervals of equal and
constant time step sizet. In the following, a discrete time step is denoted a&ith n 2 No.
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Despite the computational ef ciency of explicit time intagjon scheme, implicit methods are
exclusively employed throughout this thesis due to thecamditionally stable characteristic.
Thus, the nal system to be solved is fully coupled and cassié$ nys nonlinear discrete alge-
braic equations for thegpy unknown discrete displacements, which are representeteoyri-
known displacement vectat,.; at time steft,.;. Consequently, the implicit methods require
a more challenging implementation and more complex soluithemes compared to explicit
time integrators. This is manifested in the requirement ob@aprehensive and consistent lin-
earization of the nite element formulation, which is a bapart of the following investigations
in the context of mortar methods.

For all following investigations in the presence of nonéinestructures, the generalized-
method is employed, which was rstly introduced by Chung &hdbert [43]. It is a so-called
one-step time integration scheme and allows for expregsi@ginknown velocitiey,; and
accelerations,+; at the end of the considered time interval in terms of presiypgalculated
quantities and the currently unknown displacement state:

Vh+t = —t(dn+1 dn) Vn ta, ; (2.58)

1
8o = —5(0hes  do) Vi an (2.59)

Herein, 2 [0;0:5]and 2 [0;1] are two basic parameters which characterize the method.
By exclusively considering the above stated relations fiervelocity and the acceleration, the
well-known Newmark method results, which can be intergteiebasis for the following deriva-
tion. As its name implies, the generalizednethod introduces intermediate time levgls
andt,.; ,, at which the terms in (2.56) are evaluated by employingglineterpolation rules.

In consequence, the space and time discretized nite elefeemulation for nonlinear solid
mechanics reads

Kmas§n+l m + Kdaman+l f+ fint(dn+l f) 1:exi:n+l ¢ = 0: (2-60)

The set of time integration parameters;, ,, and ¢ can be harmonized by introducing the
spectral radius; , which directly controls the numerical dissipation of tlemgralized- scheme.
Under consideration of the required properties of secadé+aaccuracy and unconditional sta-
bility, the parameters can be optimized for minimal numedraissipation and read

2, 1 1 1 ) 1
=—-=- = = , = (1 + : = = + g 2.61
m 1+1 f 1+1 4( m f) 2 m f ( )

For the special case of =1, no numerical dissipation is introduced into the system.

Finally, it should be noted that the generalizedcheme is not able to conserve the total
energy of the considered system over time. In order to aehltenservation of energy by con-
struction, energy-momentum schemes have been develogahizalez [90], Kuhl and Cris eld
[142], Kuhl and Ramm [143] and Simo and Tarnow [252]. Howetlese types of time integra-
tors are beyond the scope of this thesis and the generalizadthod is exclusively employed
for all dynamic simulations.
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2.2.4. Solution techniques

The derived system of nonlinear equations discretizedanspnd time in (2.60) has to be solved
within each time step to obtain the displacemeaiis; . In this thesis, the Newton-Raphson
scheme is exclusively employed as iterative nonlineartgmiuechnique. It is based on the
de nition of the discrete residual which reads for the discrete nonlinear solution step

r(dhsa) = Kmas@hi mt K damVi+1 T Fint(dha D fexnsr (2.62)

In order to apply a Newton-Raphson scheme, the residual.62(has to be linearized by a
truncated Taylor expansion:

@(dns1) |
@1
| —{z

K(dh+1)

Lin r(din+l) = r(din+1) + din++11 : (263)

Herein, the partial derivative of the residual with respertthe displacements is identi ed
asK(d' ,,), which is the well-known dynamic effective tangential fstifss matrix of siz@ o

Ngot- Then, it is searched for a displacement solutigy, , for which the residuat(d,.;) van-
ishes. This is achieved by requiring that the linearize@ltes vanishes for each nonlinear solu-
tion step:

Linr(d ;)= 0: (2.64)
Consequently, the linear system to be solved reads
K(dhar) dity = r(dpeg): (2.65)
When the system in (2.65) is solved, the displacement swolugiupdated via
dot = dher + Ay (2.66)

and the iteration counter is increased by onejile.i+1. The solving step in (2.65) and the up-
date in (2.66) are repeatedly performed until a certain-deared convergence criterion is met.
This criterion is usually stated &$-norm of the residugj r(din+l )ji- If the start estimate®,

is suf ciently close to the solutiom,.,, the residual norm approaches zero with a quadratic
convergence rate. In other words, the start estimate st@utthosen to be within the problem-
dependent convergence radius in order to achieve optinpaloted (quadratic) convergence for
the Newton-Raphson scheme.

For all following problems in this thesis, the complete fiNewton-Raphson scheme as ex-
plained above is exclusively utilized. For computatioraitact problems, its semi-smooth vari-
ants with contact constraints being included are introdunethe next chapter. For problems
with multiple unknowns, i.e. contact (displacements, laagre multipliers) or general mono-
lithic multiphysics problems such as thermo-structurernattion, the Newton-Raphson scheme
is extended and the partial derivatives of the residual amopmed with respect to all un-
known vectors. However, the computational costs for ongatihe respective system matrices,
le. K(dinﬂ) for structural problems, could be considerably high beeaiugquires a consistent
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2.2. Finite element formulation and solution scheme forinear solid mechanics

linearization of all involved terms within each Newton-Rapn step. Alternative solution pro-
cedures are quasi-Newton methods or modi ed Newton methekiEh are based on a cheaper
approximation of the system matrix, but are not able to aehggiadratic convergence rates.
The solution procedures for the linear system of equatioii®.65) are not in the focus of this
thesis, even though it could be identi ed as most expensaré @f the overall solution process
for large nite element models. For more information comgrg the solution of sparse linear
systems, the interested reader is referred to the booksat€yani et al. [222] and Saad [237].
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3. Fundamentals on Mortar Methods
for Computational Contact
Mechanics

In this chapter, the basics on computational contact mechamploying the mortar method
are given. All following explanations are referred to claally assumed surface-to-surface con-
tact scenarios in 3D and novel extensions towards more geseenarios are introduced in
Chapter 4. The rst two sections provide a brief introduntitm the most important notations
and concepts of contact mechanics including contact kitiesnand the constraint equations for
unilateral contact as well as frictional sliding. Furthetalls on these topics can be found in clas-
sical textbooks on contact mechanics, such as Johnson [R&@chi and Oden [134], Laursen
[151] and Wriggers [293]. Then, the derivation of the vaadaally consistent weak formulation
of the surface-to-surface contact problem employing a &age multiplier approach is brie 'y
explained followed by the introduction of the mortar nitéeeent discreatization. Finally, in-
formation concerning the global solution scheme is praviddl given details on the mortar
method in the context of computational contact mechanigs afready been well investigated
and can be found in Gitterle [87], Gitterle et al. [88], Pogf(], Popp et al. [211, 212] and Puso
and Laursen [218, 219].

3.1. Contact kinematics

In order to describe the kinematics of contact, multipléetlént scenarios could be considered,
such as contact of an elastic body with a rigid foundatioifcestact of a exible structure
or multi-body contact. While the creation of speci ¢ alghimns for these scenarios could be-
come essential for numerical simulations, their kinensaitd the contact constraints are derived
with the classical model of two interacting elastic bodiBsus, the two deformable bodigs?
and B® with one shared contact interface are considered as visgaln Figure 3.1. In the
following, the well-established nomenclature Bf) being theslavebody andB® being the
masterbody is used. The distinction into slave and master body isiacessarily required for
the continuum mechanical contact model, but becomes vegraageous in the context of nite
element discretizations. The open seﬁ% R3 and §i) R3fori = 1;2represent the bodies
in the material con guration and the spatial con guratisespectively. Due to the potential con-
tact interaction of the two bodies, their material bounela@are divided into three disjoint sets
as

h= op O O, (3.1)
My ®= Oy O= O O=., (3.2)
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3. Fundamentals on Mortar Methods for Computational Carizhanics

Ffll) slave

uM(XW )

master

Figure 3.1: Kinematic and basic notation for the contactdpson of two deformable bodies.

where additionally to the Dirichlet and Neumann boundattles boundaries of potential con-
tact () are introduced. Their counterparts in the spatial con ¢joraare denoted as’, ®
and (. One of the characteristics of contact problems is that theeh so-called active part of
the contact boundary( () is a-priori unknown and possibly changing over time. Conse-
quently, the currently inactive part of the contact bougdade ned by ' = On O,

The fundamental quantity for describing contact kinensasahegap vector

gX iD= XOX Wi RAKE (X D)y (33)

It represents the relative position vector between a dpatiat x Y on the slave side and the
corresponding master poirt? . The master point can be identi ed by performing a so-called
closest point projection (CPP), which is mathematicallitten as

2@ = arg min kx® x@k; (3.4)
x@2 @

with k k denoting the_2-norm inR3. A general CPP for all possibly arising contact scenarios
introduces a broad range of dif culties, such as non-unngss and a lot of pathological effects,
see Konyukhov and Schweizerhof [139]. Following the comgepsented in Popp et al. [212],
the outward unit normal to the current slave surfag® is considered as contact nornal

to overcome the mentioned problems. However, this is onlgla\assumption when smooth
surface-to-surface contact scenarios are considereel. datin Chapter 4, a modi ed version of
the CPP based on smoothed interface mappings is employedviol@ a proper normal de ni-
tion for contact of vertices, edges and surfaces. Then, #sten point®@ is calculated via a
projection of the slave point® along the master side outward unit normal and consequently
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3.1. Contact kinematics

this normal with changed sign is de ned to act as slave norietails on the numerical evalu-
ation in the context of spatial nite element discretizatis given in Section 4.4. Together with
the two tangential vectors and from the tangential plane, the nornralforms a set of
orthonormal basis vectors in the slave poifif .

Derived from the gap vectay, the so-calledyap functiong, in the spatial con guration acts
as fundamental measure for proximity and penetration amdrizduced as:

Gh= n g (3.5)

While the gap function obviously characterizes the contatetraction in normal direction, the
primary geometrical quantity for the tangential contateiaction is theelative tangential ve-

locity v . . In contrast to the gap function, it represents a rate measudrich introduces addi-
tional complexity. For the de nition of the relative tangel velocity, a perfect sliding state is
assumed. This leads to the requirement, that the gap vedt®:3) and its time derivative vanish

d
g=0; it g=0: (3.6)
Considering the time derivative of the gap vector in deteslds
d d
“g= — x@ @
" g pm X R (3.7)
=x® 2@ v ,=o0: (3.8)

Here, the relative velocity,e follows from the time derivative of the geometrical poinbaction
and can be written in two different ways. First, the formugatusing so-calledlip advected
basess widely employed in the context of node-to-segment cdntee Chawla and Laursen
[40], Laursen [151], Laursen and Simo [154], Pietrzak andnf&u [207] and Wriggers [293].
However, this formulation is not considered in this conttibn and mathematical details are
omitted. Instead, the relative velocity is expressed imteof material velocities. Therefore, (3.8)
is employed under the assumption of perfect sliding, whieldg

Vel = X_(l) 2‘-(2): (3-9)

In case of strongly curved surfaces, the relative velogtpat completely de ned in the tan-
gential plane. This can be ensured by explicitly performangrojection in the tangential plane,
which yields the relative tangential velocity:

h i
V.g=(l n n) x® 2 (3.10)

Note that in contrast to the formulation in slip advecteddsashe expression in (3.10) does not
ful Il the fundamental requirement of frame indifferencanse it does not include the CPP of
the slave poink @ . However, it is commonly used for mortar nite element distizations and
also employed in this thesis. The lack of consistency isléachy the spatial discretization in
Section 3.4.

In analogy to the gap function and the relative tangenti&aity, the contact traction vec-
tortY on the slave side can be split into its normal and tangergimponents, yielding

t® = pn + t@: (3.11)
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3. Fundamentals on Mortar Methods for Computational Carizhanics

Here, the normal pressure is denoted withand the tangential traction reatls Due to the
balance of linear momentum, the traction vectors on theessale and on the master side are
identical except for the opposite signs:

t® = t@: (3.12)

With the contact traction being introduced, the so-caligdrface dissipation rate densitan
be de ned in spatial con guration via

d= kt KKV ek : (3.13)

Here, it is obvious that the dissipation rate density ocouly if tangential tractions are present.
Thus, it is also known as frictional dissipation rate dengitis related with its counterpal. in
the material con guration via the area transformationdagt = d%:

D= j.d: (3.14)

3.2. Contact constraints

In the following, the constraints for tied contact, normahtact and frictional sliding are given.

3.2.1. Tied contact constraints

Tied contact, also known as mesh tying in the context of mlement discretization does not
classically belong to contact problems, but shares a lobateptual similarities. It is a well-
established domain decomposition technique for nonliselal mechanics problems and is em-
ployed in this thesis to allow for mesh re nement near thetaotinterfaces by simply creating a
ne nite element layer around the body. The condition feedicontact is that no relative move-
ment at the interface between the two domains is alloweds G&in be stated as vector valued
constraint:

g=0: (3.15)

Thus, no distinction between normal and tangential dioestiat the interface is necessary. De-
tails on mortar mesh tying formulations are not given in thesis, but the interested reader is ex-
emplarily referred to Hesch and Betsch [103], Puso [21&oRund Laursen [217] and WohImuth
[288].

3.2.2. Normal contact constraints

The normal contact constraints are necessary to de ne bigatwo considered bodies are not
allowed to overlap. This is mathematically written in formtbe well-known Hertz-Signorini-
Moreau conditions:

G O0; pn O0; paG=0: (3.16)
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3.3. Weak formulation for contact

Here, the introduced gap functigp and the normal contact pressyxgare utilized to describe
the normal contact. The rst condition in (3.16) describleatteither the points are not in con-
tact @, > 0) or the gap function equals zero, while a penetration stite (0) is not allowed.
The second condition implies that no adhesion stressedlaneed in the contact zone. Finally,
the third condition in (3.16) is the well-known complemaitiacondition, which forces the gap
to be zero if stresses occur and the contact pressure to ®& #ee gap is open.

Remark 3.1. In the context of dynamics, the so-called persistency ¢immds employed in order
to construct energy conserving algorithms. It can be wnits

Pngh = 0: (3.17)

Here, the rst time derivativey, of the gap function is utilized to demand that the contacspre
sure is only non-zero when the bodies are in contact and nemmacontact. This is called per-
sistent contact. However, this condition is not employettisthesis since the main focus is set
on mortar methods and not on time integration schemes. Foe metails on this condition in
the context of energy conserving time integrators, theréisted reader is exemplarily referred
to Laursen and Chawla [152] and Laursen and Love [153].

3.2.3. Frictional contact constraints

The tangential contact constraints are de ned by the i@ response to tangential loading. In
this thesis, tangential effects are considered in a pureasespic manner. Thus, for the law of
dry friction, Coulomb's lawis utilized. It is given by

= kt k Fjpj O V.gt+ t =0; 0; =0: (3.18)

Here, the friction coef cientF 0 is assumed to be constant, which is a simpli cation to
load depending coef cients resulting from experimentalagi@ee for example Ben-David and
Fineberg [22] and Persson et al. [204]. However, the allgoritpresented in the following chap-
ters are not restricted to this assumption and could easigxbended towards a state or temper-
ature dependent friction law. In addition,is the so-called slip function and the parametes
a complementarity parameter, which is necessary to desttrdbseparation of the stick and slip
branch. In the case of = 0, no relative movement is allowed and thus it representstibke s
state, see the second statement in (3.18). The last rel&ib8) describes the complementarity
condition, which states that if > 0, the slip function yields zero. This is achieved when the
tangential stress is equivalent to the Coulombs lim#Ejg;.

Coulomb's law is not the only frictional model available iterature. AlternativelyJresca's
friction law could be used, which is independent from the contact preskiawever, Coulomb's
law is exclusively considered in the following.

3.3. Weak formulation for contact

Throughout this thesis, the inequality constraints ag$rmom normal contact in (3.16) and tan-
gential contact in (3.18) are predominantly enforced whnltagrange multiplier method. Thus,
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3. Fundamentals on Mortar Methods for Computational Carizhanics

the following explanations are completely devoted to ttppraach and are based on the in-
vestigations made in Gitterle [87], Gitterle et al. [88],0pd210], Popp et al. [211, 212, 214]
and WohImuth [290]. However, special scenarios resultroghfcontact of vertices, edges and
surfaces are treated with a penalty regularization, whidxplained later on in Chapter 4. It is
worth to mention, that in the existing literature on compiotaal contact mechanics, also various
publications of mortar methods with penalty regularizatimd augmented Lagrangian methods
can be found, see for example Cavalieri and Cardona [38}hErsand Wriggers [81], Laursen
[151], Puso and Laursen [218, 219], Puso et al. [220] and ¥aag [301]. In addition, Nitsche's
method, which was originally published in Nitsche [183]cbmes more and more topic of cur-
rent research and approaches for computational contadtan®s can be found in Chouly and
Hild [41], Mlika et al. [174] and Wriggers and Zavarise [295]
Starting point for deriving a weak formulation is the recalation of the well-known solution

spaced) ) and weighting spaceg (") for the displacement eld:

n 0

U= u®2H) ju®=a®on , ; (3.19)

n [0}

vO =" y®2HY) j uP=00n , : (3.20)

In order to de ne a variationally consistent weak formubattiof the contact constraints and
the contact contributions to the balance of equations, tovealued Lagrange multiplier is
introduced as negative slave side contact traction:

= tW: (3.21)

In complete analogy to the contact traction, it can be deas®g into its normal part and tan-
gential parts, via

= N+ (3.22)

Obviously, the normal part of the Lagrange multipligrcan be identi ed as negative normal
contact pressure p, on the slave side and the tangential partequals the negative slave
side tangential traction t . In the following, the contact constraints are reformulaie a
variationally consistent manner as stated in Christense. ¢42], Hieber [114], Strémberg
[260], Wohlmuth [290] and Wriggers [293]. For this purpodge normal part of the Lagrange
multiplier is utilized to enforce the contact constraimsiormal direction (3.16) and the tangen-
tial Lagrange multiplier vector is used for the frictionalrstraints in (3.18):

"2Ry G n o) O 8 2Ry (3.23)
2T(F n): Vel ) O 8 2T (F p): (3.24)

Herein, the normal part of the Lagrange multiplier is onlipaked to be in the semi-positive
real half spaceR; . In addition, the projection of the Lagrange multiplierdrthe tangential
plane is restricted t@ (F ,), which represents a circle with centeérand radius= , and can
be interpreted as principle of maximum dissipation in thietert of Coulomb'’s law of friction,
see Stromberg [260]. Equivalence of the contact consgrain(3.16) and (3.18) and their coun-
terparts formulated as variational inequalities in (3.23)l (3.24) is shown in WohImuth [290].
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3.4. Mortar nite element discretization

According to investigations in Hiueber [114], the solutipgaseM for the Lagrange multiplier
is de ned as the convex cone
n (0]

M ()= 2M jh ;vi ® h F kv ki él);VZW withv, O ; (3.25)

which accommodates the restrictions in (3.23) and (3.24)3125),M is the dual space of
the trace spac®/ @ of V® restricted to ,i.e.M = H 2( ®) andwW® = H2( 1),
whereM andW® denote single scalar components of the correspondingvealoed spaces
M andw @,

The de nition of the weak formulation for frictional contaproblems can be achieved by ex-
tending the standard weak form for nonlinear solid meclsaini€2.45) to two bodies and adding
the speci c Lagrange multiplier contributions. Thus, theak saddle point type formulation can
be summarized as: Find) 2 U and 2 M ( ) such that

Wkin;int;ext(u(i); U(i)) Wco( ; U(i)) =0 8 U(i) 2 V(i) ; (326)
w u® ) o 8 2M ()
w w® ) o 8 2M () (3.27)

Here, the kinetic contributionW,;, as well as the internal and external virtual WOlK.ex; are
independent from the contact terms. In contrast to the aranrms, the contact virtual work

W, and the corresponding weak constraints in normal and tdiajdivection W _ and W
shall be presented for the sake of clarity:

Weo = ‘ o u®  u®@  HdA; (3.28)
W = ’ é1)( n n)GndA; (3.29)
W = ’ gl>( )V . e dA: (3.30)
Within the contact virtual work, a suitable contact intedamapping : & ! @ isrequired

because the identity of the two involved boundarigsand @ cannot be guaranteed in general.

3.4. Mortar nite element discretization

Mortar methods were originally introduced as domain deawsitmon method for spectral ele-
ments in Maday et al. [160] and were successfully appliednite elements. They became the
state-of-the-art discretization approach for variougpbed problems. In the context of computa-
tional contact mechanics, mortar nite element methodsag@ied for discretizing the contact
interfaces of the two bodies. Thus, spatial discretizatibthe displacement eld and the ge-
ometry at the interfaces are required. For the spatial eligation of the considered frictional
contact problem using nite elements, the nite dimensibsabsetdJ{’ andVv (" representing
approximations of the continuous solution spadés andV ) are introduced. In the following,
the exclusive focus is on the nite element discretizatidrire contact terms. Therefore, the
Lagrange multiplier as well as the displacement interpmtamust be de ned on the potential
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3. Fundamentals on Mortar Methods for Computational Carizhanics

contact boundariesf:i}1 based on the trace space of the underlying problem disatetiz Again,
the subscript{ ), refers to a spatially discretized quantity. First, the ispment interpolation
and the geometry representation read

%l) 9{2)
1) 1 1 2): 2 2
Xﬁ)l o = Né)xf(); Xﬁ)J @ = Nl()xf); (3.32)
ch ch
k=1 =1
9{1) 9{2)
1) 1 1 2): 2 2
uliw =" NPdPr uPje = NPdP: (3.32)
“ k=1 ¢ =1

Here, the total number of slave and master interface nodggsn byn® andn® . Additionally,
the discrete nodal displacements are representel&)banddl(z). Based on the usually employed
nite element parameter space for 2D surfacés = ( ©; ©), the shape function® and
N,(Z) are introduced. Throughout this thesis, well establishest- and second-order element
types in 2D and 3D settings are employed for the bulk discagtn, see Section 2.2.2. Thus, the
discretization of the contact interfaces naturally resfribm the bulk elements. As an example,
a nite element mesh of hex8 elements yields a contact iaterdiscretization that consists of
quad4 elements.

In addition to the displacements, an adequate discreadizatf the vector-valued Lagrange
multiplier is required and will be based on the discrete appnationM ( ) of M ( ). The
choice ofM y( ) is widely discussed in the literature and the Subsectiorl3sAcompletely
devoted to this topic. Thus, only a very general notatioriisrghere:

r)((l)

N (3.33)

j=1
with the total number of all nodes® carrying discrete Lagrange multipliers. Commonly, all
nodes on the slave side carry discrete Lagrange multiptigraes of freedom, i.en® = n®.
However, in the context of second-order nite elements itlddoe bene cial to adapt this choice
tom® < n® which is explained in detail in Popp et al. [213], Puso ef220] and WohImuth
et al. [291]. The shape functions for the Lagrange multiphéerpolation in (3.33) are denoted
with ;. Inserting (3.32) and (3.33) into the contact virtual wark3.28) yields

’X(l) %l) Z
— 1 1
Weon = _ JT w N|£ ) dA d(k)
j=1 k=1 c,h
Y K2 4
2 2).
b TIN® pdA d? (3.34)
j=1 I=1 ch
with the discrete mapping;, : ((:1% ! ((:2% from the slave to the master side, see Dickopf and

Krause [60] and Puso [216] for more information about theriiaice mapping. By consider-
ing (3.34), the well-known mortar matricés and M can be identi ed, which consist of the
following nodal block%

D[j;k] = Djx I3 = jNiﬁl)dA I3 j=1;:m®; k=1;:;n®;  (3.35)

o)
d ch
M;11= M 3= (NP dAl; j=1am®; 1=1;050@ 0 (3.36)

()]
ch
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3.4. Mortar nite element discretization

wherel; 2 R® 3is the identity matrix. Details on the numerical integratfwocedures are given

in Section 3.4.2. In order to guarantee for an easy notagibdisplacement degrees of freedom
in the global displacement vectdrare sorted into three groups: a group where all degrees of
freedom associated to bulk nodes are contae group with all degrees of freedom on the
slave interfaces and a group with all degrees of freedom on the master inteifac Conse-
quently, the global displacement vector can be written as

d= (dN ,dM ,ds) (337)
Based on this split, the discrete contact virtual work casth&d in algebraic form
Weoen= d'[0 M D]T = d'fe(d; ); (3.38)

with the vector of discrete contact forcesWith the discrete contact virtual work being de ned,
the semi-discrete form of balance of linear momentum ingRd&n be extended to contact
problems via

M= Knasfl + Kgamgb+ fine(d)  fexe+ fe(d; )= 0: (3.39)

Here, the global contact force vectigr which depends on the current deformation state dj.e.
and the Lagrange multipliers is added to the classic balance of linear momentum.

Discretization of the weak contact constraint in normaédiion in (3.29) yields a discrete
weighted gap at each slave ngdeviz.

Y4
thj = w On:h dA: (3-40)

ch

Herein, g, is the discrete counterpart of the gap functgnntroduced in (3.5). The discrete
weighted gapg,; represents a volumetric measure, since it results frongiateg a distance
quantity @..n) over the discrete slave contact surfa&é. Nevertheless, itis utilized as node-wise
measure for proximity and is included in the discrete setaafeawise Hertz-Signorini-Moreau
conditions:

& 0 oy 07 njthy =0, j=1;um®: (3.41)

It is shown in great detail in Hiieber [114], that this set afodete conditions is equivalent to the
discretized version of the weak formulation in (3.28) an@@3.

Remark 3.2. The shape function; for the de nition of the discrete weighted gap function
in (3.40) represents the interpolation of the variation of the disereagrange multiplier vec-
tor . For this, it is implicitly assumed that a well-known Bubr®alerkin approach was fol-
lowed which leads to same shape functions for the Lagrandgptier and its variation. By
employing so-called dual shape functions, which will belared in Section 3.4.1.2, it could
be advantageous to follow a Petrov-Galerkin approach angleynthe introduced displacement
shape function§\; for the interpolation of the variation of the discrete Lagge multipliers.
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3. Fundamentals on Mortar Methods for Computational Carizhanics

This is explained in great detail in Popp et al. [214]. Consenqtly, the discrete weighted gap
for a Petrov-Galerkin approach would read
z
& =, NjOundA: (3.42)
ch

In this thesis, the Petrov-Galerkin approach is also emgtbfor mortar contact of non-smooth
geometries in Chapter 4.

Similar to the discrete weighted gap, the relative tangéwmélocity in its discrete fornfw . ()
results from discretizing the weak frictional sliding ctnant (3.30), viz.
2 3

2) )
(o) = (s ) 47 M1 x®P Dj; k x5 (3.43)
=1 k=1

Here,n; is the discrete unit normal at slave ngdeComparing (3.43) with its continuous form
in (3.10), the material velocities of the points are expedsas time derivatives of the mortar
matrices. This guarantees the satisfaction of the fundtahesguirement of frame indifference,
which was originally shown in Puso and Laursen [218] and \a#ex lon applied in Farah et al.
[69, 73, 74], Gitterle et al. [88], Puso and Laursen [219hYand Laursen [298] and Yang et al.
[301]. The discrete form of the variational inequality in38) can equivalently be reformulated
into the following discrete set of equations:

j =k( )k Fjnj  0;
(Yoe)j + () =0; ; 0 i j=0; j=1;:;n®: (3.44)

Finally, the semi discrete problem formulation for fricted contact problems consists of the
discrete balance of linear momentum with contact termsgoapplied in (3.39) together with

the discrete equations for the non-penetration conditiorn(8.41) and the conditions for the
frictional sliding in (3.44).

3.4.1. Discrete Lagrange multiplier spaces

The discrete counterpavt |, of the continuous Lagrange multiplier spade was already intro-
duced in the previous section, but not yet speci ed in dekédwever, the choice of the Lagrange
multiplier space determines the mathematical propertigseoemployed mortar approach and
thus the two predominantly used approaches, nastalydardand so-calledlual Lagrange mul-
tipliers will be introduced. These two Lagrange multipliamilies are also used later on in all
following chapters.

Mathematical details on the choice of the Lagrange mudtiptipaces are not in the focus
of this thesis, but the interested reader is referred to Belgdgem [18], Bernardi et al. [26],
Seshaiyer and Suri [247] and WohImuth [288].

3.4.1.1. Standard Lagrange multiplier interpolation

Standard Lagrange multipliers can be taken from the niteehsional subséV f]l) of the trace
spaceV W of V@ Thus, it usually leads to identical shape functions forshge side displace-
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3.4. Mortar nite element discretization

ment interpolation and the Lagrange multiplier interpiolat
j = Nj(l): (345)

Consequently, the shape functions have equal polynomigédeand the nite dimensional sub-
setsM , andW f}) have equal reproduction order.

3.4.1.2. Dual Lagrange multiplier interpolation

Dual Lagrange multipliers have the bene cial property dbaing a localization of the cou-
pling problems. This means, that the algebraic form of tageskide mortar matri® in (3.35)
becomes a diagonal matrix. Therefore, the complete algebtaicture of the mortar contact
formulation results in a node-to-segment type represemtatvhich allows for computation-
ally ef cient solution procedures, see Section 3.5.3. Ia fbllowing, the basic principles of
dual shape functions and their construction rules are prautlined based on the explana-
tions in Flemisch and Wohlmuth [82], Lamichhane and Wohim{di46], Lamichhane et al.
[147], Popp [210], Scott and Zhang [242], WohImuth [289] &ddhIimuth et al. [291]. A com-

monly used notation for the biorthogonality condition obtlahape functions is
z z

o iNkdA= 3 NydA; ik =1;:;m® (3.46)
ch ch

with ;. being the well-known Kronecker delta. For the condition trared above, itis assumed
that the most common choice of nodes carrying Lagrange phielts equal the slave interface
nodes (i.,em® = n®) holds. To allow for an easier implementation of this coiodif it is

commonly reformulated in a local, element-wise form, i.e.
z z

iNde= i edee; hk=1;:0ne: (3.47)

In this thesis, it is implicitly assumed for the global an@ #lement-wise formulation that the
dual shape functions have the same polynomial order asda@idard counterparts. However, in
the context of higher-order nite elements, it was shownapp [210], Popp et al. [213] and Se-
shaiyer and Suri [247], that a lower polynomial order for Liagrange multiplier interpolation
could be advantageous. Furthermore, the dual shape fasdubll a partition of unity prop-
erty, see Flemisch and WohImuth [82]. Since the biorthottyneondition has to be ful lled in
physical space, and not simply in the nite element paramgpace, dual shape functions can
only be formulated a priori for elements with constant Jéaad For example, for 2-node line
elements in 1D, the standard and dual shape functions aralizied in Figure 3.2 and read

Ni()= 5 ) ()= 50 3) (3.48)

NA )= 50+ ) )= 5+3 ) (349)

Moreover, for 3-node triangle elements in 2D, the standadidual shape functions are given
as

Ni(; )=1 1(; )=3 4( + ) (3.50)
No(; )= o0l; )= 1+4 (3.51)
N3(; )= 3(; )= 1+4: (3.52)
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Figure 3.2: Visualization of dual shape functionsfor rst-order elements in 1D and 2D cases:
standard shape functions are colored blue and dual shapidis are given in red.
The gure is based on Farah et al. [70].

However, for elements with non-constant Jacobians, thé shape functions have to be con-
structed for each element individually. For this purposes assumed that the dual shape func-
tions can be expressed as linear combination of the starsdege functions, which is alge-
braically represented by a multiplication of a vector camtay standard shape functions within
each element with an element coef cient mat@x

()= gNk( ); Ce=[Gk] 2 R" " (3.53)

The construction of this coef cient matrix is then realizbyl inverting a local, element-wise
matrix with mass matrix characteristics and size ne, i.e. the size being de ned by the
number of nodes associated with this element:

Ce= DM, . (3.54)

De = [djk] 2 R" "e; djk = jk eNk( )J( )de; (3.55)
z

Me = [mjk] 2 R" ne; Mjx = eNj( )Nk( )J( )de: (356)

3.4.2. Numerical evaluation

Accurately and ef ciently computing the mortar quantitissone of the main challenges of
mortar contact algorithms. This is due to the fact that eatathg the second mortar matrid,
and thus also the weighted ggpand the relative tangential velociy ¢, requires an integration
over the slave contact surface with an integrand contaiguragtities from both master and slave
side. In the case of non-matching meshes, the integranesepis a non-smooth function which
cannot be evaluated exactly by using standard Gauss ruiesndn-smoothness stems from the
locally supported Lagrange polynomials on master and daleshaving kinks at the respective
element nodes and edges. Thus, the preferred integrationitgie is based on the prevention of
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3.4. Mortar nite element discretization

all possibly occurring discontinuities in the integrandnodrtar matrixM , the weighted gap,

and the relative tangential velociy ¢ by creating smooth integrable segments. Consequently,
it is namedsegment-based integratiamthe following. This method was rstly developed in its
present form in Puso and Laursen [217] and slight adoptindsatensions can for example be
found in Farah et al. [73], Popp et al. [212], Puso and Lauf2&8, 219] and Puso et al. [220].

Figure 3.3: Main steps of the segment-based integratioamsehfor the surface contact algo-
rithm: Construct an auxiliary plane (top left), project\@aand master nodes onto
the auxiliary plane (top right), perform polygon clippingottom left), divide poly-
gon into triangular integration segments and perform nigcakintegration (bottom
right). The gure is taken from Farah et al. [71].

Keeping in mind the idea of integrating just smooth conttitms over the slave side, precise
information concerning the position of the involved distouities of the integrand is required.
This information is obtained by working with pairs of onev&@and master element each. In a
rst step, both slave and master nodes are projected ontasifizay plane. Then, a polygon
clipping algorithm is applied in order to determine the daprof the slave and master element
pair, i.e. the region where the integrands in (3.35) and6(3a8e C!-continuous. The whole
process is illustrated in Figure 3.3 and summarized fornkegration of the mortar matrices in
the algorithm below. Of course, the information which slavel master element pairs have to
be considered must rst be obtained by an ef cient contaeirele algorithm, see e.g. Yang and
Laursen [298, 299].
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Algorithm3.1 Segment-based integration

1. Construct an auxiliary plane for numerical integrati@séd on the slave element center
x4 and the corresponding unit normal vechd? .

2. Project aln® slave element nodeg”, k = 1;:::;n® alongn{’ onto the auxiliary plane
to create auxiliary slave nodeg’.

3. Project alh@ master element node, | = 1;:::;n@ alongn’ onto the auxiliary plane
to create the projected master nod&.

4. Perform polygon clipping in the auxiliary plane to nd tbeerlapping region of projected
slave and master element. Clipping algorithms are illtsttan more detail in Hughes
etal. [119].

5. Perform a decomposition of the clip polygon to de ne e&syntegrate subdomains which
will be used for numerical integration and are thereforéechintegration cells. If no ge-
ometrical subdivision is performed, then the polygon fteghresents the sole integration
cell.

6. De ne suitable integration points on the triangular gregion cells and nd their counter-
parts on the slave and master element by an inverse mapping.

7. Perform numerical integration of the mortar matrice8%3.and (3.36), the weighted
gap (3.40) and the weighted relative tangential velocitg¢3R

The decomposition mentioned in step 5 is carried out to ergaéegration cells with well-
known prede ned integration rules. Almost all contributsin the available literature that em-
ploy segment-based integration use some kind of trianignlad create triangular subdomains.
To the best of the author's knowledge, the only exceptioméswviork in Wilking and Bischoff
[287], where triangular and quadrilateral integrationicale created. However, the most ef-
cient method to create triangular cells is the so-calleddbdeay triangulation (see Lee and
Schachter [156]) as illustrated exemplarily in Figure 3I8te that numerical evaluation proce-
dures for 2D contact problems resulting into 1D contact s@re not explained, since this thesis
focuses on 3D problems. However, also 2D examples are shotie ifollowing and for infor-
mation about segment-based integration schemes for 2[atgmtoblems the interested reader
is referred to Popp et al. [211] and Yang et al. [301].

3.5. Time integration and global solution scheme

3.5.1. Time integration for computational contact mechani CcS

No matter which spatial discretization scheme is emplogedjputational contact mechanics
introduce an increased complexity with regard to time @iszation than standard solid mechan-
ics. This is due to the non-smooth characteristic of conghehomena, which can be identi ed
by discontinuities of the interface velocities in the evehtin impact, see Laursen and Love
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[153]. Standard time integration methods, such as the @ag-Sscheme or the generalized-
scheme, which was introduced in Section 2.2.3, implicidguane that the time derivatives of
the displacement unknowrsare continuous. Consequently, they lack in accuracy foresoe-
chanical conservation laws when applied to computatiooaiacct mechanics. However, in this
thesis, the introduced generalizedscheme is exclusively employed for time integration of the
contact problems since non-smooth time integration sceereebeyond the scope of this work.
Thus, the nal space and time discretized version of thdibial contact problem reads:

Kmas@-n+l m + Kdaman+l f+ fint(dn+l f)+ 1:c(dn+l f; n+1 f) fext;n+l f= 0:
(3.57)

Herein, the contact term arises in complete analogy to tteenal forces, i.e. with linear inter-
polation rules. Additionally, all constraints are enfatcs the timet,., . This time integration
scheme provides a suf cient level in accuracy and robusti@sall tested numerical examples
later on. For a detailed discussion about conservationgptigs for linear and angular momen-
tum as well as for energy conservation, the interested resdeferred to Popp [210]. Conserva-
tion properties of the algorithm for contact of verticesgesland surfaces developed in Chapter 4
in combination with the generalizedscheme are discussed in Section 4.8.3.

3.5.2. Global solution scheme

To consider the additional contact nonlinearities stengnfiom the inequality constraints for
normal direction (3.41) and tangential direction (3.4H% idea of gorimal-dual active set strat-
egy(PDASS) is employed. It is well-known from literature on strained optimization (cf. Qi
and Sun [221]). When applying a PDASS, the set of all slaveea&dis split into an active
setA for nodes with positive Lagrange multiplier values and aactive set for nodes which
are currently not in contact. In addition, frictional cocitaequires the splitting of all active
nodesA into a slip setS. and a stick seSr. These introduced sets allow for a reformula-
tion of the inequality constraints into equality consttaifor the corresponding nodal sets. To
solve the fully discretized system of nonlinear equatiortkiw each time step, the well-known
primal-dual active set strategy is re-interpreted as a -senwoth Newton method, see Chris-
tensen et al. [42] and Hintermdller et al. [109]. For thisgmse, nodahonlinear complementar-
ity functiong(NCP) are introduced, which are non-smooth but equivalexibress the inequality
constraints in (3.41) and (3.44).

First, the normal contact constraints in (3.41) are comsitlesee Figure 3.4. The comple-
mentarity function for the normal direction has been disedsin Hiieber and Wohimuth [115]
and Popp et al. [211] and is de ned as

Coj( j5d)= nj max0; nj Cithj): C> O (3.58)

The distinction between the active getand the inactive sdt is implicitly contained in this
complementarity function through its two different sotutibranches for the non-smooth max-
function. The normal contact constraints are exactly fedwhen

Cnj( j;d)=0: (3.59)
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active
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Figure 3.4: Nodal complementarity functi@), for the normal direction (here with, = 1).
Normal contact constraints are ful lled f&,; = 0. The gure is taken from Farah
etal. [74].

The parametet, does not affect the accuracy of results, but may in uencectirevergence be-
havior of the semi-smooth Newton method depending on the sgaoblem setup. The choice
of ¢, has been suggested to be at the order of Young's modulo$the involved contacting
bodies to obtain optimal convergence, see Hueber and Wahlfhw5]. Numerical investiga-
tions in Popp et al. [211, 212] have shown only a small in uen the convergence behavior
of the semi-smooth Newton method. However, unless otherstated, all numerical examples
in this thesis are realized with = 1.

Second, the frictional sliding constraints in (3.44) aromeulated to again apply a semi-
smooth Newton scheme. There is not only one possibility toeda suitable complementarity
function for this set of constraints, see for example Alad &urnier [3] and Christensen et al.
[42]. In the following, the formulation introduced in Hiabet al. [117] and successfully vali-
dated in Gitterle et al. [88] is employed. It is visualizedHigure 3.5 and reads

Cy(jid)=maxF( nj GCothj)ill 4 + Gt rerjll)
Fmax0; nj Cothj)( ; + G rerj); Cn G > O (3.60)
Herein, the nodal weighted relative slip increment,, directly arises by multiplication of
the relative tangential velocity.  with a time increment t. In analogy to the NCP function
corresponding to the non-penetration constraints (3tG8)solution of Coulomb's friction law
is equivalently expressed as
Cy(j:d)=0: (3.61)

Again, the parameters, as well asc; do not in uence the accuracy of the results, but may
control the convergence behavior. Considering (3.60an be interpreted as a parameter that
balances the different scales of the tangential part of #ggdnge multiplier and the weighted
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3.5. Time integration and global solution scheme

Figure 3.5: Nodal complementarity functi@; for the tangential direction (here wity = 1
andc = 1). Tangential contact constraints are ful lled f@r; = 0. Note that this is
a 1D visualization of the tangential contact constraint s valid for 2D contact
problems only. The gure is taken from Farah et al. [74].

relative tangential slip increment. ., See also Hiieber et al. [117]. Consequently, it depends on
the current deformation and load. Thus, it is suggesteditialig choosec; at the order ot,

and adapt it by the ratio of the tangential part of the Lageamgiltiplier — and the weighted
relative tangential slip incremest ., of the completed previous time step. Eventually, the global
problem formulation to be solved consists of equations93.@.59) and (3.61). Herein, the
nodal setd\, | , S. andSy can be updated after each Newton iteration.

3.5.3. Algebraic form

Finally, an algebraic representation of the linearizedesysto be solved within each semi-
smooth Newton step is provided. It is based on the work ine@é&t[87] and Popp [210]. The
resulting system of equations is of saddle-point type anddon an abstract form as follows:

2 3. . )
K, K Kus 0 i 2 dN 3i+1 2 N 3i
Kun — Kum Kwms MT % E dm z E 'm z
= : 3.62
§ Ksn Rsw Kss DT ds r's ( )
0 Cwm Cs C Ic

The system of equations in (3.62) is of increased systemcsiggared to classical structural
problems, as both displacements and Lagrange multiphens sip as primary unknowns. Again,
the solution vector contains increments of discrete dsteents d and Lagrange multipli-
ers . Furthermore, the displacement unknowns are distingdibb&veen interior nodds)y ,
slave node$ )s and master nodgs)y . The matrix blocks denoted witk contain terms from
linearization of the internal force vectdg:, damping termsKyamp and mass matrix contribu-

tions Kass The upper tilde symbaq(") indicates additional contributions from the linearized
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Lagrange multiplier contact force vectty. The C matrices represent the linearization of the
complementarity functions in (3.58) and (3.60). One of th@inmadvantages of dual mortar
methods is the node-wise decoupling of the slave side covit&ial work resulting in a diagonal
slave mortar matri, see the explanation in Section 3.4.1.2. Thus, it allowsfcomputation-
ally ef cient elimination of the additional Lagrange muitier unknowns as done in Farah et al.
[74], Gitterle et al. [88], Popp et al. [211, 212] and Wohlim{289]. For this purpose, the third
row of (3.62) is utilized to express the Lagrange multipirearement in terms of displacement
increments:

o DKy, G HRG, g rRks At (369)

Here, the inversion of the diagonal slave side mortar mdiiis of negligible cost and all
other operations are computationally cheap vector matukKiptications. By inserting (3.63)
into (3.62), the nal condensed system of equations becomes

2 32 341
Knn Knwm Kns dy
8 Kun +P'Ksy Kum + PTRsy Kus + PTRss £8 dy & =
CD 'Ksy Cu CD "™Rsy Cs CD "Rss ds
h i
In j ftw+Prs j re CD Trg I'T; (3.64)

with the well-known mortar projection operator
P=D !M: (3.65)

The nal system of equations in (3.64) is of constant systez® and the only remaining degrees
of freedom are the displacement unknowns. The discreteabagr multipliers can be easily
obtained by performing a recovery step based on (3.63).

The solution of the linear saddle-point type system in (B&@2he condensed system in (3.64)
with iterative solution techniques is beyond the scope o thesis. Details on algebraic and
geometric multigrid methods for this purpose can be fourBrimf3en et al. [34], Krause [141],
Wiesner [286] and WohIimuth and Krause [292].
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4. Mortar Methods for Contact of
Vertices, Edges and Surfaces

Contact interaction of bodies with vertices, edges andases is the main focus of this chapter.
Under macroscopic considerations, sharp edges and \eniaterally occur and should be mod-
eled as onlyC°-continuous part of the boundary. But, in a zoom in view smalindings can
always be detected, since accurate fabrication of sucrebadin only be achieved in a certain
tolerance range. In addition, small roundings are ofteibdedtely introduced in components.
Therefore, it is essential to de ne vertices and edges fromoaeling point of view, see Fig-
ure 4.1. Here, the decision whether the model consists oid®edi boundaries or sharp edges and
vertices strongly depends on the application and the digsbof interest, which should be ob-
tained from FEM simulations. As can be seen in the mentiomgaal€, an adequate nite element
resolution for a rounded part of the geometry is rather gpbtit the arising contact situations
could still be classi ed as surface-to-surface contactwigeer, when considering the overall me-
chanical properties of a contacting body, the small rougslet vertices and edges play a minor
role. Thus, it would be ef cient to characterize them as momeoth parts of the geometry, i.e.
parts of the surface which are nGt-continuous. When doing so, the well-known and robust
mortar schemes for contact problems are not applicable are/nThis is due to the inherent
drawback of a classical mortar based contact formulatiahléads to large penetrations at non-
smooth geometries. This causes the need for a contact fatiowlwhich inherits all bene cial
properties from the mortar method but is applicable to atBons of non-smooth geometries.
Up to now, this topic is only rarely addressed in the existitegature on computational contact
mechanics, especially for mortar based contact formulatidlevertheless, computational con-
tact mechanics of nonlinear solids and structures withpsbdges and vertices represent a major
complexity in many classical engineering tasks and in agdciences and thus the investigation
of such contact scenarios is of high importance.

In the following, the main focus is set on the developmentwdi@ationally consistent frame-
work for computational contact of non-smooth geometriegdan dual mortar methods. Therein,

Geometry models Finite element models

Figure 4.1: Zoom in view of a vertex: Possible geometry medelft) and corresponding nite
element discretizations at the critical part of the geoyngtght).
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point contact, line contact and surface contact are treaitdthree different sets of Lagrange
multipliers and a suitable de nition of the appropriateaste Lagrange multiplier spaces pre-
vents the nal system to be over-constrained. The preseadtgutithms and numerical examples
are basically taken from the author's publication FaraH.474].

4.1. Fundamental approaches and research objective

4.1.1. Fundamental approaches

In the past years, the main focus of research was based ossil@ption of smooth physical sur-
faces, and thus pure surface-to-surface contact settavgsthieen almost exclusively considered
in the literature. In the context of this thesis, the namisimboth™ is employed for surfaces that
can be considered as being at le@stcontinuous in a strong form of the problem formulation.
Thus, the aim for surface-to-surface contact discretimstwas to calculate the corresponding
smooth contact stress distributions and to exactly reptébe geometries (i.e. the contact sur-
faces) of the involved bodies. For this purpose, non-unmfoational-B-splines (NURBS) have
become of high interest because with these types of shapadns an exact geometry represen-
tation can be reached, see for example De Lorenzis et al.§&3]and Youn [135], Matzen and
Bischoff [163], Matzen et al. [164], Seitz et al. [244], Tawi [268] and Temizer et al. [270].
Nevertheless, classical nite elements based on rst-oed® second-order Lagrangian polyno-
mials are still the most commonly employed discretizatigretand are also considered in this
thesis.

As fundamental technique for discretizing the contact tramgs, mortar methods are well-
established nowadays because they allow for a variatpoaltisistent treatment of contact con-
ditions despite the presence of non-matching surface ragske the explanations in Chapter 3
and Gitterle et al. [88], Popp et al. [211, 212], Puso and sauf219], Puso et al. [220] and Yang
et al. [301]. These methods have already been successkidigaed to resolve complex inter-
face phenomena such as wear in Cavalieri and Cardona [36]aati et al. [69, 74], lubrication
in Yang and Laursen [300] and thermal effects in Hieber anhdlitvoth [116]. Despite the supe-
rior robustness of mortar methods, their applicabilitytisisgly restricted by the requirement of
smooth geometries (i.e. surface-to-surface contactinfan illustrative, slightly unmathemat-
ical perspective, this is due to their weak enforcement efdbntact constraints, which results
in a surface-based weighting of the gap function. Consdtyutarge penetrations at vertices
and sharp edges would occur, and therefore contact of naetbhgeometries such as vertex-
to-vertex, vertex-to-edge, vertex-to-surface, edgeege and edge-to-surface contact cannot be
acceptably resolved with classical mortar methods. Filiéenent based contact discretization
schemes that naturally lead to an adequate satisfactioorepanetration conditions at non-
smooth geometric entities are for example the well-knowdentm-segment methods, see for
example Bathe and Chaudhary [14], Erhart et al. [67], Hadlget al. [96], Laursen and Simo
[154], Papadopoulos and Taylor [195], Simo et al. [253] andggérs et al. [296]. In combi-
nation with a Lagrange multiplier approach for constraintoecement, they lead to an exact
constraint ful llment at each slave node and thus no petietraat the nodes occurs. However,
node-to-segment methods often lack important accuraayiragents as can be demonstrated
with classical patch tests, see Papadopoulos and Taylbt.[19
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In addition to the problem of constraint discretizatiore ttumerical evaluation of a suitable
contact normal direction is a highly complex task for adoiyrgeometries, see Konyukhov and
Schweizerhof [139]. Eventually, a discrete nodal normadl &s required for de ning the non-
penetration constraints based on the gap measurementdmetwe bodies. This constitutes a
classical, well-established approach in computationata mechanics. An alternative non-
penetration condition can be formulated by employing ttiersection volume instead of the
gap function, see Kane et al. [132] and Pandol et al. [194)e3e methods were originally
restricted to geometrically linear tetrahedral elemehts, have later been extended to more
general element types, see Cirak and West [46], Haikal [8dl] Haikal and Hjelmstad [95].
Similar to these procedures, thentact domain metholdas been developed in Hartmann et al.
[99, 100], Oliver et al. [186] and Weyler et al. [285]. The tact domains can be interpreted
as regions connecting the potential contact surfaces ohtlodved bodies and are utilized to
formulate the constraints. These methods are also ablesgoghassical contact patch tests.

When considering contact of vertices, edges and surfdoesa-calledliscontinuous defor-
mation analysishould also be mentioned, which was originally introduage&hi [250]. This
method shares similarities with the nite element methaatsiit is based on solving for dis-
placements and stresses of discrete elements, but thesengseare not connected in a nite ele-
ment sense. Instead, they are disconnected discrete aketinatinteract with each other via con-
tact constraints. Thus, it also contains characteristicBszrete element methods, see Cundall
[50]. This method is well-established in simulating joitht®ck mass behavior, where edge-to-
edge contact scenarios (cf. Yeung et al. [302]) and vedesutface contact scenarios (cf. Jiang
and Yeung [129]) occur permanently.

Besides the nite element approaches, non-smooth contaobsios are usually treated within
rigid multi-body simulations, see Fetecau et al. [79] anew&irt [259], but these approaches,
while being highly ef cient in calculating physically carct contact kinematics, are not able to
determine accurate contact stresses in nite deformatgtings. Therefore, this type of simu-
lation is not considered in this thesis.

It can be seen from the review given above, that despite thiedamnt literature on numerical
approaches for the simulation of surface-to-surface ebmaethods for the contact treatment of
non-smooth geometries (i.e. vertices, edges and surfeaes$)nly rarely be found in the existing
literature. Therefore, the aim of this thesis is to develameed mortar-based nite element
framework for an accurate and robust calculation of theldgments and contact stresses for
contacting vertices, edges and surfaces in a nite defaonatgime. To the best knowledge of
the author, this is not possible with any other mortar-baggatoach from the literature.

4.1.2. Speci cation of requirements

Based upon the explanations stated in the previous setti®@most important requirements for
the development of a general mortar nite element approaith gual Lagrange multipliers in
the context of fully nonlinear contact dynamics of verticedges and surfaces being involved
are listed and illustrated in the following.

Mortar contact formulation for 1D boundaries of 3D bodies Considering general contact

mechanics problems in 3D, it becomes obvious that not onlya$inC-continuous surfaces
could be in contact, but also vertices and edges could béviestoThe contact scenarios result-
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ing from interaction of these entities can be identi ed agypoontact (0D contact zone) and line
contact (1D contact zone). When utilizing the classic nrartatact methods for these scenarios,
well-known drawbacks such as large penetrations at veréind edges occur, which highlight the
need for alternative contact approaches for non-smootimgea@s. The nature of point contact
of a vertex naturally tsthe NTS approach since constratats be directly enforced at the vertex
node and no weighting and integration is necessary. Coeséigiuthe mortar idea degenerates
to the NTS approach for this application. However, line eshbf an exemplary edge-to-surface
scenario needs a suitable strategy of constraint enfortieaver the contact line and accurate
and robust numerical evaluation and solution procedurbs tpplicable in a nite deformation
regime. Applying dual mortar methods to this scenario iy y@omising since excellent results
have been achieved with this methodology for surface-téasea contact interaction in Gitterle
[87] and Popp et al. [212]. However, realization of such a duartar approach for line contact
scenarios is a completely unanswered question.

Exact enforcement of contact constraints at vertices, edgeand surfacesMortar meth-
ods for computational contact mechanics in combinatioih wWie Lagrange multiplier method
guarantee exact contact constraint enforcement in a wese serhich causes the superior ro-
bustness and accuracy of these schemes for surface cddidcagain, this naturally leads to
unphysically large penetration at non-smooth geometriesat vertices and edges, and thus
these methods lack in accuracy for such critical scendnantrast, classical node-to-segment
schemes could guarantee for a strong, node-wise ful lintérihe non-penetration constraints
when de ned with the Lagrange multiplier approach. Thugytlre perfectly suited for point
contact of vertices, but in the context of surface contaey therform very poorly in terms of
accuracy as they fail patch test requirements. This cabsasged for a combined contact algo-
rithm together with a Lagrange multiplier approach. Wheniag to do so, it is of high impor-
tance to carefully de ne the Lagrange multipliers for poilrie and surface contact to prevent
the nal system from being overconstrained. Up to now, thsreo algorithm available in the
existing literature, which takes care of the dimension ef ¢bntacting boundary and enforces
the contact constraints individually over the respectiomédin, i.e. a point (OD), a line (1D) or a
surface (2D).

Variationally consistent transition between point, line and surface contact without any
heuristic transition parameter Numerical modeling of contact scenarios with completefy di
ferent characteristics, such as point contact, line cortad surface contact requires different
contact algorithms for these scenarios. An analogy can lnedfin beam-to-beam contact sim-
ulations, where it is generally distinguished between paird line contact. Very recently, the
point contact model and the line contact model in the condéxieam interaction have been
combined by the introduction of a transition parameter,Meeer et al. [171] and Meier [170].
Whereas this transition parameter is a valid modeling aggréor beam-to-beam contact since it
is based on a simple angle measure between two involved keratvadiows for robust numerical
treatment of the employed penalty regularization, itsodtriction to contact of fully 3D solids
is not desirable. This is due to the increased complexithef3D solid, where it is extremely
intricate to de ne a proper measure for such a transitioraeater. The decision whether the
actual contact situation represents a point contact, bméect or surface contact scenario should
arise from the variational formulation itself. Up to nowgchua formulation is not available in the

44
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existing literature on computational contact mechanics.

Condensation of discrete Lagrange multipliers for all conaict scenariosWhen dealing
with a Lagrange multiplier approach for enforcement of eshtonstraints, additional unknowns
inevitably arise in the system of equations and, dependmthe size of the contact interface,
could drastically affect the ef ciency of the contact algbm. This can be avoided for classical
mortar contact algorithms by the use of dual shape functishéch allow for elimination of
the additional Lagrange multiplier unknowns by an easy eosdtion procedure, see Chapter 3
and Popp et al. [211, 212] and WohIimuth [288]. This makes tfed¢ dagrange multipliers again
the preferred discretization approach for the combinedamtriramework for point contact, line
contact and surface contact.

Fully consistent linearization for the nite deformation r egimeln this thesis, contact in-
teraction is considered in the context of nonlinear niteraent methods with implicit time
integration schemes in a nite deformation regime. Thereféhe developed contact formula-
tion has to be consistently linearized in order to achieeedibsired quadratic convergence rates
within the employed Newton-Raphson scheme. It is well kndwat the consistent linearization
of mortar based contact contributions is very intricatecgimany geometrical operations have
to be consistently included in the linearization processs Was rstly outlined for 2D contact
of only smooth geometries being involved in Yang and Lau{288] and was extended towards
dual mortar contact for 2D problems in Popp et al. [211]. A8bsurface-to-surface contact has
been consistently linearized for dual mortar methods inpRei@l. [212] and Popp [210]. How-
ever, a fully consistent linearization of the line contaxteraction is still an unanswered question.

4.1.3. Proposal for contact of vertices, edges and surfaces

The most important ingredients and new scienti ¢ contribng of the presented non-smooth
contact approach is given in the following:

the rst successful implementation of a dual mortar forntiaia for line contact in a nite
deformation realm, see also Farah et al. [71].

development and implementation of the rst variationalbnsistent framework for com-
bined point contact, line contact and surface contact inite deformation regime, see
also Farah et al. [71].

In other words, this chapter consistently extends the ime#stigated mortar contact approach
towards point contact, line contact and surface contadtiviine numerical model.
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

4.2. Problem statement

Starting point for the derivation of a contact formulatiagiryy valid for various different contact
scenarios is the standard initial boundary value probl@&¥R) for nite deformation elastody-
namics as introduced in Section 2.1.4. For the sake of cdermss, it is restated here for the
two considered bodieB®Y andB®:

DivP © + B = §u® in § [0;T]; (4.1)
u® =g on § [0;TI; (4.2)

PO N®= ) on @ [0T]; (4.3)
u®(x 0;0)= (X O) in §; (4.4)
uO(x 0;0)= 45 (x V) in o (4.5)

As explained for standard surface-to-surface contact ati@e 3.1, these bodies share one po-
tential contact interface, which is de ned by the potentiehtact boundaries in the reference
con guration (). Again, the overall boundary of each body is divided int@thdisjoint sets as

@y= 0 O o, (4.6)
My O= Oy O= O\ 0=, (4.7)

with the Dirichlet boundaries(? and the Neumann boundarie®. Since the special focus of
this chapter is to investigate contact situations invauon-smooth geometries, the potential
contact boundaries{) are further divided into three disjoint subsets, viz.

Q=00 9 9 (4.8)

)\ g>= My 0= S)\ W=, (4.9)

where () are the potential contact boundaries of surfacéié,represent edges and’ are
the sets of all vertices within the contact boundaries, $s® Rigure 4.2. Similar to the other
boundaries, their spatial counterparts are denoted’as é,') and {’. Due to the assumed nite
deformation regime, the geometrical contact entities, elgraurfaces, edges and vertices can
deform signi cantly, meaning that an initial vertex coulé kattened to become part of a new
surface, or a surface could be deformed in a way to create adge. However, in this thesis it
is assumed that the spatial points are assigned to the seitide of its reference boundary and
consequently extreme deformations, such as a completeniaiy of an edge, are not allowed.
In order to de ne suitable contact conditions the possibigiag contact scenarios have to be
speci ed. For this purpose, it is assumed that the contatttyemith the lower geometrical di-
mension acts as slave part and the corresponding contatyt @nequal or higher geometrical
order is de ned to be the master boundary. Concretely, tBectass of possible contact scenar-
ios is characterized by the active contacting area reduciregpoint, see Figure 4.3. Namely,
these scenarios are vertex-to-vertex, vertex-to-edgeex#n-surface and non-parallel edge-to-
edge settings. These contact situations are denoted ascpaitact in the following. The next
class is de ned by the contacting area being a 1D line, whalla arise due to edge-to-surface
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4.2. Problem statement

Figure 4.2: Kinematics and basic notation for the des@ipdf contact of vertices, edges and
surfaces for two elastic bodies. Note, only the grey surfapeesent the potential
contact regions and thus all notations are restricted &ethenes. The gure is taken
from Farah et al. [71].

Figure 4.3: Classi cation of contact scenarios leadingdmpcontact. From left to right: vertex-
to-vertex, vertex-to-edge, vertex-to-surface and namlfe edge-to-edge. Contact
point is highlighted in red. The gure is taken from Farah bfa1].
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

Figure 4.4: Classi cation of contact scenarios leadingie kcontact: edge-to-surface (left) and
parallel edge-to-edge (right). Contact line is highlighte red. The gure is taken
from Farah et al. [71].

Figure 4.5: Classical surface contact scenario with comtiaa highlighted in red. The gure is
taken from Farah et al. [71].
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4.2. Problem statement

and parallel edge-to-edge contact, see Figure 4.4. Theddsig is the classical surface contact
scenario, which is well-investigated in the context of comagpional contact mechanics and is
schematically visualized in Figure 4.5. This classi cati@presents a hierarchy of contact situ-
ations, where the contact boundary on which the contactt@nts are going to be formulated
is the involved slave entity with the lowest dimension. Tinéyaxception to this scheme is the
non-parallel edge-to-edge contact. Here, the geomesiaaé entity is an edge but the contact
scenario reduces to a point contact. Therefore, theseadmagitact points are denoted as
and the set of all slave contact points resulting from cragsidges is . For the non-parallel
edge-to-edge setting the discrete enforcement of the ciocdastraints will be treated in a spe-
cial way later on. However, in order to keep a convenienttimtait is postulated that the set
of edge-to-edge crossing points and the set of all verticesiaited to the set of potential point
contacts @

W= @[ O (4.10)

Furthermore, it is assumed that the potential line conelting is de ned on é,l) and the poten-
tial surface contact scenario is de ned ofY . The corresponding contact force quantity which
acts on the slave contact boundary is now different for pdim¢ and surface contact. The point

fe L te

Ny

| u@ isaadl

Figure 4.6: Contact force quantities for different contanarios: point contact (left), line con-
tact (middle) and surface contact (right). The gure is talkem Farah et al. [71].

contact formulation is subjected to the force vedt¢?, which is a concentrated load on the
contact point. For the line contact setting, a line load @ei) is introduced, and consequently
a surface traction vectdt? is employed for the surface contact. Due to the balance effin

momentum, the corresponding master load vectors are aéebicept for the opposite sign, i.e.

fO= O, 0= @, (O= (@ (4.11)

Similar to the gap function and the relative tangential g#oin Chapter 3, the contact load
vectorsf &, 1 andt on the slave surface can be split into their normal and tatiegjeom-
ponents, yielding

FO=fn+f; 1O=1n+l; tO=tn+t: (4.12)
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

Thus, the contact constraints in normal direction are giveform of the well-known Hertz-
Signorini-Moreau conditions for the point, line and sud@ontact scenarios:

g O on & [0;T]; (4.13)
fo 0; fhgh=0 on O [0;T]; (4.14)
I, O; Il o= on é,l) [0;T]; (4.15)
t, 0; t,0,=0 on O [0;T]: (4.16)

In addition, frictional sliding is formulated under the asgption that Coulomb's law is also valid
for point contact and line contact, see Pandol et al. [L94]e frictional sliding constraints for
point contact read

= kf k Fjfjj 0;
Vogt f =0 0; =0 on @ [0,T]: (4.17)

The corresponding constraints for line contact are given as
p:=kl k Fjl,j 0;
Vit 4 =0; o 0 pp=0 on F()l) [0;T]: (4.18)
Finally, the tangential part of surface contact is de ned by

=kt kK Fjt,j 0;
V.iegt+t t =0; o; =0 on @ [0;T]: (4.19)
In (4.17)-(4.19) the friction coefcienF 0 is assumed to be equal for all contact scenarios
for the sake of simplicity. Againk k denotes thé.2-norm in R® and the parameters are
complementarity parameters that are necessary to deshelseparation of the stick and slip

branch. These parameters will vanish by reformulating #ie sf tangential constraints within
so-called nonlinear complementarity functions, see 8e@ib.

4.3. Weak formulation

For the derivation of a weak variational formulation, théution spacedJ) and weighting
spaced/ ) for the displacement eld are repeated:

) n . . .0

U= u®2H]3jud=abon O ; (4.20)
) n ) ) .0

VO = u®2H()] 3% uP=00n O : (4.21)

Here,H!() denotes the usual Sobolev space of functions with squaegrimitle values and
rst derivatives, respectively. In order to enforce the mat and tangential contact constraints,
three vector-valued Lagrange multipliers are introduddee rst one is the surface Lagrange
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4.3. Weak formulation

multiplier = t., which represents the negative slave side contact traatidims chosen from
the convexcon® ( ) M givenby
n (0]
M ()= 2M jhvig hF kv kig; v2W withv, 0 : (4.22)

Herein,h; i o stands for the scalar or vector-valued duality pairing leetmd ( 172 andH =2

on the surface contact boundar$). Moreover,M is the dual space of the trace spate

of V@ restricted to the surface contact boundafy. The second vector-valued Lagrange mul-
tiplier represents the negative slave side line tractipn | and is utilized to enforce the line
contact constraints. It is chosen from the convex ddng ) M ,de ned by

(0]
MJ Q= 2M pjh ;vi o h F kv ki r(Jl);VZWpWithvn 0 : (4.23)

In complete analogy to (4.22M ,is the dual space of the trace spas,of V@ restricted to
the edge contact boundar)({l). Finally, the constraint enforcement for the point conteas to
be de ned. Since the Lagrange multipliers for the surfacetact and line contact are already
de ned on all points of the potential slave contact boundaxgept the set of all vertices, only
these vertices are free of constraints. Thus, the poinacbir the vertices can be enforced by
the vector-valued Lagrange multiplier, which is chosen from the convex coMe »( -)

M - given by

(0]

n
M o( )= 2M 5jh ;vi o hF ,nkv ki W v2W,withv, 0 : (4.24)

Again, M - is the dual space of the trace spate, of V() restricted to the vertex contact
boundary O with only the point contact scenarios acting on vertices areelé and the
edge-to-edge setting is not affected by this Lagrange pligti Unfortunately, it is mathemat-
ically impossible to de ne the point Lagrange multipliesalon the points of crossing edges,
since the edges are already subjected to the line Lagrankgglieu From an engineering point
of view, the scenario of two Lagrange multipliers acting bae same point can be considered as
being over-constrained. Thus, the enforcement of the éolgelge contact constraints is relaxed
via a penalty regularization. Therein, the contact con#isare explicitly removed by a penal-
ization of any occurring constraint violation. Conseqlerthe normal part of the force vector

reads
8

fo= (G o 0 on @

- g, > 0 [0;T]: (4.25)

The parameter, penalizes the penetration of the two bodies. The tangepaidlof the force
vector is de ned via

=kf k Fjfyj O 0; =0 on @ [0:T]: (4.26)

Herein,L is theLie derivativeof the tangential force and is the frictional penalty parameter,
see Laursen [151]. The scalar parametehas the same interpretation as in (4.17)-(4.19).
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

Finally, the weak saddle point type formulation can be sunized as: Findi® 2 U®, , 2
M2, p2M{ pand 2 M ( ) suchthat

Wkin;int;ext(u(i); U(i)) Wco( 2% p ; U(i))

Wper(u®; uy=0 8 uM2vO, (4.27)
w,u® ) o 8 22M o 5); (4.28)
W u® 5 0 8 2M{ p; (4.29)
w w® )Yy o 8 2M ( ): (4.30)

Here, the kinetic contributionW,;, as well as the internal and external virtual WOl.ex; are
independent from the contact terms and their derivationa-known in nonlinear continuum
mechanics and thus omitted here. The contact virtual Wafk, due to the Lagrange multipliers
is given as

Weo = ( u® u® )
527
1 2
+ o, Au® u@de
Z P
+ o, (U U@ dA; (4.31)
with a suitable contact interface mapping & ! @ which is required due to the generally

non-identical contact boundaries? and . The weak form of the normal and tangential
contact constraints for the point Lagrange multiplier sead

X X
W > = ( 2N ’?;n) On ( ?; ?; )V crel - (4-32)

X2 %1) X2 %1)

The weak constraints for the line Lagrange multiplier akeegias

z Z
W P = (1) ( pn pn) gn dL 1) ( R o] ) \ crel dl— (433)
P p
Finally, the weak constraints due to the surface Lagrangépher read
z Z
W= @ (o ) Gn A @ (G )V el dA (4.34)

The penalty contributionW e, that becomes inevitable to avoid over-constraining dué¢o t
point contact contribution of crossing edges is schemiatigaven by

X
W pen = fOCu®  u@ oy, (4.35)
2 O

where the normal and tangential contributions to the carftace vectorff}) are computed
according to (4.25)-(4.26).
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4.4. Finite element displacement discretization and nodahal computation

4.4. Finite element displacement discretization and
nodal normal computation

For the spatial discretization of the considered frictiamantact problem using nite elements,
the nite dimensional subsetd ﬂ) andV ", which represent approximations of the continuous
solution spacet)V andV ) are employed. In the following, the focus lies on 3D linead an
tri-linear Lagrangian nite elements and thus the contacface discretization may consist of
3-node triangular (tri3) elements and of 4-node quadrié{guad4) elements. Accordingly, the
slave and master geometry and displacement interpolatgogieen as

S 8
1) . 1 1 2) - 2 2
xf])J @ = Nlﬁ)x(k); xﬁ)j @ = Nl()x,(); (4.36)
ch ch
k=1 =1
Y D
1) . 1 1 2) - 2 2
uf])J o = Nlﬁ)d(k); uﬁ)j o = Nl()d,(): (4.37)
¢ k=1 ¢ I=1

Here,n® andn® represent the number of nodes on the discrete slave contdats ; and

on the discrete master contact surfa@é, respectively. The discrete nodal positions and discrete

nodal displacements are given kﬁ/), xl(z), d(kl) anddl(z). Based on the usually employed nite
element parameter space for 2D surfacd®s= ( ©; ©), the shape functiors " andN? are
de ned. These shape functions are naturally derived froerutihderlying bulk shape functions.
The nodal normal vectors are of utmost importance for theédation of a non-smooth con-
tact framework, since they de ne the local direction in wite contact force acts. Thus, con-
tact kinematics are strongly in uenced by the way the noraeaitors are de ned. However, it is
not aimed here at giving a comprehensive solution for albfmms arising from de ning nodal
normals between two arbitrary geometries. The fact thatdly the simple vertex-to-vertex con-
tact scenario can lead to various problems in de ning slét@ormal directions illustrates the
complexity of this topic, see Bao and Zhao [11, 12]. In costireobust numerical approxima-
tions of rather classical closest-point-projections aseussed. Here, the idea is to project a
physical point ont&C!-continuous geometries, see Konyukhov and Schweizerl3&[Bpecif-
ically, three different types of closest-point-projecisoof a point onto &*-continuous surface,
edge and a point are performed. From an algorithmic penspetihese procedures are denoted
as node-to-surface projection, node-to-line projectiod aode-to-node projection and are ex-
plained in Sections 4.4.1, 4.4.2 and 4.4.3. The resultimahoormalsn® on the slave side are
then interpolated by the already introduced displacemege function®Ny via

1y
n®=" N®n®: (4.38)
k=1

This results in aC%-continuous eld of normals, and the procedure can be imtggul as nu-
merical smoothing of the normal eld to guarantee robusttaonhprojection and evaluation
algorithms. However, in rare cases the closest-pointeptmns fail the slave side nodal normals
are calculated via the well-established averaging prasedescribed in Popp et al. [212].
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

4.4.1. Node-to-surface projection

The classical closest-point-projection of a node onto &asaris realized by projecting the slave
nodej along the master side norm@P onto the discretized master surface. This procedure can
be stated as follows:

X
$n@("A)+ T NP (@)x® = x: (4.39)

=1

Here, the sought-after quantities are the scalar-valusdntieb between the slave point and
the master surface, and the projection point coordinatései®D master parameter spate.
The projection in (4.39) is nonlinear in terms of the unknewnand @ and can be solved
with a local Newton-Raphson scheme. Since this procedwenass to project a point onto a
C!-continuous surface, the typical rst-order nite elemegproximation does not to guarantee
solvability of this projection. To overcome well-known jalems arising from this closest-point-
projection, such as degenerated cases of crossing normateuniqueness of the CPP, the
master surface nodal normal et is formulated based on@°-continuous eld of normals,
viz.

5
n@( @y=" N2 @)n?; (4.40)

=1

with the master side displacement shape functkbﬁ%. As mentioned above for the slave side,
this can be interpreted as numerical smoothing procedutteouti changing the actual nite
element geometry representation. The nodal normal venﬁﬁrare based on an averaging pro-
cedure in order to create a unique normal at each master seel€jgure 4.7. This procedure has
been suggested for 2D contact scenarios in Yang et al. [3tdjxas used for 3D applications
in Popp et al. [212]. Thus, itis only brie y explained in thaliowing. The outward pointing unit

Figure 4.7: Nodally averaged normal vectgrat nodej with four adjacent elements. Element
normal vectors are exemplarily visualized for eleméhard €. The gure is taken
from Farah et al. [71].

normal vectors;. 4 of the adjacent master elementsaé master nodg are employed to create
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4.4. Finite element displacement discretization and nodahal computation

the unique master normaj via
P njadj
e i:l n]xe . 4 41
n = .. P n2 o (4.41)
I =1 Nyl
Herein, the number of adjacent elements is denotetfdésFinally, the slave side nodal normal

vectornj(l) at nodg is de ned as

n® = n@("@); (4.42)

4.4.2. Node-to-line projection

The closest distance between a slave node and a master exgapsted with a node-to-line
projection. The unit normal vector at slave ngdeads

W Pnre @42y,
X . N X
nj - j =1 | ( ) | . (4_ 43)

ix® T O N@(2)x@j

with the corresponding master point being de ned by the tinerdinate™®? in 1D parameter
space. Note, that the expression in (4.43) does not guardimé the unit normal is pointing
@

in outward direction of the slave body. Thus, an auxiliagvel normal vecton;’;,, has to be
)

computed to determine the sign of the slave nodal normakefbee,n;;, . is de ned as nodally
averaged normal vector of all adjacent slave elements,iwikia similar procedure as in (4.41)
but performed on the slave side. If the angle betwaﬁéjmx andn; is larger tharB0 , the sign
of n; has to be switched. The idea of a signed normal was alreadyaped in Belytschko et al.
[17]. The master parameter space coordinde can be computed by solving the following

scalar projection equation:

%
) ("(2)) Xj(l) NI(Z) (’YZ))XI(Z) =0; (4.44)

1=1

with "® being the only unknown. Like for the node-to-surface priget this nonlinear equa-
tion can be solved with a local Newton-Raphson scheme. davddr a robust iteration process
and unique solution, a pseu@3d-continuous curve in space is created by construction ofiaino
tangent eld:

3
@C@y=" NI(®) (4.45)
k=1

This eld is again interpolated by the master displacemdratpe functions\lf). The tangent
interpolation in (4.45) requires a unigue tangent de nitiat each master node, and thus the
normal averaging procedure in (4.41) is also employed fetaingents, yielding

P n2d
j

j = e (4.46)

Pn

i id el
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

4.4.3. Node-to-node projection

The unit nodal normal vector resulting from a node-to-noabggetion is given by the difference
vector of the spatial nodal positions scaled to unit lengtir.a slave nodg and a master node
the slave nodal normal reads

(1) (2)
XX
no= g M. (4.47)
ixP o x@j

Like in (4.43), the expression in (4.47) does not guararageréduce an outward unit normal
vector. Thus, the direction of the nodal normal vectphas to be assessed by comparing with

an auxiliary slave normal vectamrj-‘;lgux, see Section 4.4.2.

4.4.4. Closest-point projections with multiple solutions

The projections in Sections 4.4.1, 4.4.2 and 4.4.3 geryeyadld a locally unique solution, since
they are based on nodal averaged normals and tangents oragterrside. However, multiple
local solutions could occur as illustrated for 2D setupsiguFe 4.8. To overcome this problem,

x£3) x,(f)

P
w il

0 v

(1) n
/ Xnt1 fb Inﬁl)
1
"1<o : x(l)

1
ngl) n-+

Figure 4.8: Situations with multiple solutions for the a@sspoint projections. The gure is
taken from Farah et al. [71].

the past trajectory of the considered slave node is usedcidele/hich projection is physically
more reasonable. Therefore, a trajectory veptdor thej -th node is created via

p; = xj(;ln)+l xj(;ln): (4.48)

Here,xj(;ln)+l is the current spatial coordinate anﬂ? is the spatial coordinate of the last con-
verged time step. To decide which nodal normal should be @yedl the angles between the
trajectory vector and the considered normals are calail&terthermore, the angles between
the negative trajectory vector and the nodal normals arepoted. Eventually, the nodal nor-
mal candidate that encloses the smallest angle witr p is utilized as normal vector for
the computation of the contact terms. This procedure is st@ovn in Figure 4.8. In the left
part of Figure 4.8, three different solutions for the clagesint-projection are available. The
normaln® represents the solution with the largest distance fromedlawmaster surface, but it
encloses the smallest angle witland thus it is chosen to be the slave normal. In the right gart o
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4.4. Finite element displacement discretization and nodahal computation

Figure 4.8, the penetration of a slave node is visualizedgwtould occur within the predictor
step of a dynamic contact analysis. Here, the nomfalencloses the smallest angle wittp,
and again it is employed as physically reasonable choideeo$lave normal.

4.4.5. Line-to-line projection

For the evaluation of contact between two crossing edgesriecessary to detect the pair of
points that minimizes the distance between the edges. Bguhpose, a closest-point-projection
between two lines is introduced. In the spatially discetizetup, an edge is represented by 1D
line elements. Since only rst-order interpolations ar@sidered, each line element consists of
two nodes. The closest-point-projection between two lieenents is realized by the following
two conditions

Bél) 2)

D) T NPT NP =0
k=1 =2
951) 9{2)

2 ("(2)) N lEl) ("(1) )X(kl) N |(2) ("(2) )XI(Z) =0: (4_49)
k=1 =2

These conditions enforce the distance vector between tisestl points to be orthogonal to the
corresponding tangents on both slave side and master sieldigure 4.9. Similar procedures
are employed for closest point projections in the contexb@dm-to-beam contact scenarios,
see Meier et al. [171]. In (4.49), the slave tangefit("") and master tangent® ("?) are

X

Figure 4.9: Closest point projection between two arbityasriented line elements for edge-to-
edge contact. Here, the special case of straight edgesiedkprhe gure is taken
from Farah et al. [71].

computed according to (4.45) and (4.46) and thus they depernltle parameter space coordi-
nates”™® and”?. These parameter space coordinates represent the unkmo@ng9), which
are computed by a local Newton-Raphson scheme. The ragsfiatial points are denotedsd8
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and&® . Consequently, the normal can easily be de ned as crosuptad the tangents

1 2
O = (1)("( )) (2)("( )) .

; 4.50
i @) @ 0

and its orientation is once again determined by comparitiy aguitable auxiliary slave normal
vector, see Section 4.4.2.

4.5. Point contact

Firstly, the spatial discretization and numerical evatraof point contact is considered. As
stated in Section 4.3, there are two strategies to enfoe@amt contact scenario depending
on the involved geometrical entities. Real point conta¢hwertices being involved is realized
via the vector-valued Lagrange multiplies, while the point contact that occurs due to crossing
edges is treated by a penalty regularization.

4.5.1. Vertex contact

For the Lagrange multiplier constraint enforcement, tlsedite counterpart to the vectos is
required. It is based on the discrete Lagrange multipli@ceM -, being an approximation
of M ,. The notation for the discrete point Lagrange multipliexde

X2
2h = i (4.51)

In (4.51), the shape functions of the point Lagrange multiplier interpolation reduce tginse
functions being 1 at the nodes of physical slave vertic8sand zero at all other points:
8
_Slaty;

= 4.52
© 0 else: ( )

J
Therefore, no interpolation functions are necessary batvieese points. The use of these La-
grange multipliers at slave vertices can easily be int¢éegras the well-known node-to-segment
formulation for point contact, see for example Bathe andu@hary [14], Erhart et al. [67], Hal-
lquist et al. [96], Laursen and Simo [154], Papadopoulos Bador [195], Simo et al. [253]
and Wriggers et al. [296]. Nevertheless, in the followingnputational details on the numerical
evaluation are brie y given. When inserting the introduceite element discretizations (4.36)
and (4.51) into the contact virtual work corresponding ® ploint contact contribution (4.31),
the point contact matriceB» 2 R% 3% andM, 2 R%’ 3 can be computed by merging
the nodal blocks

Doli;k]= Doy Ia= | NP 3= 15 j=1;:n®; k=1;:nd (4.53)
Mo[;11= Moy I3 = (N® D) 1g; j=1;2nd: 1=1;:;n@ (4.54)
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4.5. Point contact

Herein,l; 2 R® 3is the identity and |, : él,z ! ézﬁ represents a suitable discrete approxima-

tion of the mapping between the contact sides, see e.g. Dickopf and Krauseij@aso [216]
for more details. Discretization of the non-penetrationstaaint in (4.32) yields the discrete gap
functiong,; at each node:
h i

G = Gun= 1 RO xY)  x® j=1;uund: (4.55)
Here 8 (xj(l)) is the discrete point on the master side that results frorpribiection of the slave
node positiorx;, while n; is the discrete nodal normal at nodeThe discrete relative tangential
velocity (v». . re)j at nodg yields

2 3

2)
(Voo = (la 1y ny) 4 MofiilIx? Lax5
=1
2)
=(lz nj 1) M. [j; | 1x? j=1;:nd; (4.56)
1=1

with the time derivativgD) being shifted from the nodal positions to the contact mesito
guarantee the satisfaction of the fundamental requireroeframe indifference, see Gitterle
[87] for a detailed explanation. Finally, the algorithm t@kiate the point contact contributions
for one pair of vertex node and possibly contacting mastmenht reads:

Algorithm4.1 Vertex contact

1. Project the slave nodél) that corresponds to the vertex along its unit normﬁﬂ onto
the master element to obtain the projected position on tretenalement® (xj(l)).

2. Evaluate the contact matrices (4.53) and (4.54), gagifum1.55) and relative tangential
velocity (4.56) at these points.

4.5.2. Contact of non-parallel edges

The penalty regularization of the point contact scenargulteng from edge-to-edge contact
is considered in the following. Since the non-parallel ettgedge scenario results in contact
points that are generally not coincident with nite elemerdes, stability requirements for
the Lagrange multipliers at these points are hardly prabtlet Additionally, a point Lagrange
multiplier would be located in the interior of the supporttbé already de ned edge Lagrange
multipliers. Thus, from an engineering point of view, thegeations could be described as be-
ing over-constrained. Therefore, the exact (point-wiségprement of the contact constraints
on ., isrelaxed via a penalty regularization.

Remark 4.1. Note that the scenario of non-parallel edges being in carnitaihe only inevitable
situation in the overall algorithm, where a penalty regutation is needed. To the best of knowl-
edge of the author, no suitable Lagrange multiplier spaaeloaa priori constructed for such a
scenario and consequently the penalty approach cannot bieled at this point.
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

By inserting the spatial discretization (4.36) into (4.,3be discrete penalty force vector of
crossing edges results in

f =10 @, (4.57)

with the discrete slave force vectB? and the discrete master force vect8t. These can be
computed by merging the nodal vectors

fOK] = foeaNS (D) k=1;:5n®; (4.58)
fO0] = foenN@ (" l=1;::n@: (4.59)

Here, the expression in (4.35) reduces to a point-wise atialu at the parameter space coor-
dinates™ and "?. These points represent the parameter space countermpahis points in
physical spac&™ and&® at which the closest distance between two line elements eanda-
sured, see Section 4.4.5. Generally, these points are nmutident with nite element nodes
and thus they have to be computed via a closest-point-grojebetween two line elements.
In (4.58) and (4.59), the discrete penalty force ve€gercan be split into its normal paffenn
and its tangential paft,e; . The normal force can be obtained by inserting the nite etam
discretization into (4.25):

8

< @. ;
fromn= n( 9 ) A ffg n 0. (4.60)

-0 ifg n>0

Herein,g ., is the discrete gap function betweg? and2® andh® is the unit normal vector

de ned along the connecting line betwefY and4®, but pointing in outward direction of the
slave body, see again Figure 4.9. For de ning the discrettidnal penalty force, the discrete
relative tangential velocity &% has to be de ned as

2 3

2) 1)
Ve =(ls AD  AD) e N2 (MP)x@ X NS (")xs (4.61)
1=1 k=1

Again, the time derivative is shifted to the discrete int¢gtion, which guarantees frame in-
difference, see Gitterle [87]. There, the time derivatitenss from the changing geometrical
projection, which can be directly expressed as change opan@meter space coordinate. The
Lie derivative in (4.26) is de ned as

Lfpen =(la AY  AOYE.. - (4.62)

This expression contains only material time derivativethef penalty force itself and no time
derivatives of base vectors are present. Thus, the Lieater@in (4.62) is frame indifferent. For
the calculation of the Coulomb frictional forces at the etlgge@dge contact points, a trial state-
return map strategy is employed, which is an algorithmietstepping procedure, see Laursen
[151] and Yang et al. [301]. Here, a trial state is computedabguming a perfect stick state
during the time increment t:

ftrial - ftrial Vel (463)

PEN 41 pen
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4.6. Line contact

Again, the lower index is the time step counter. With this trial force at hand, thal tangential
force can be computed with

Per 41 pen .

8 i
% ftrlal if ” .I:trla| JJ FJJ f pen n” 0
(4.64)

fpe” n+1 = § .. . X
> Fijj fpennii ftrlal

lifpen .y di Pem nu

if jf% i Fiifpennl] > 0
Here, the rst case represents the perfect stick situatitmch was assumed for the trial state and
thus the nal tangential force is identical to the trial fercThe second case is the slip state where
the nal force has the absolute value of the Coulomb frictilomit but points in the direction of
the trial force. To sum up, the discrete penalty forces ferribn-parallel edge-to-edge contact
setting are no independent unknowns but can rather be esqur@s terms of the discrete nodal
displacements.

The algorithm for the non-parallel edge-to-edge contastimmarized in the following for a
pair of two line elements:

Algorithm4.2 Contact of non-parallel edges

1. Check ifthe line elements are parallel: If yes, no poimitaot of crossing edges will occur,
otherwise continue.

2. Compute the point&? and&® with their corresponding parameter space coordinatés
and @ Ifthe parameter space coordinates are outside of the damtervals of their line

elements,i.e.’”? < 1or > 1, the two line elements do not represent an edge-to-edge
contact pair and the algorithm is completed.

3. Compute the normal part of penalty force vectgs;, with (4.60) and the tangential
forcefpe; with (4.64).

4. If the penalty regularization is active and the force gect non-zero, compute the slave
and master side force vectdf¥ andf*® via (4.58) and (4.59).

4.6. Line contact

Now, the discretization of the line contact is considereffeAvards, the numerical evaluation
of the arising mortar terms for line contact is explainedefBfiore, two different strategies for
numerical integration are provided.

4.6.1. Spatial discretization of line contact

All possible contact scenarios that result in line contaetteeated with a mortar-based approach
de ned on an edge. Thus, Lagrange multipliers are emplogeddnstraint enforcement at 1D
slave entities . Therefore, a discrete counterpart of the liagrange multiplier must be intro-
duced, which is based on the sublkt,, being an approximation of the continuous sphte,
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

The interpolation of the discrete line Lagrange multigiezads
%’
ph = i i - (465)

j=1

The shape functions; are based on the nite element parameter space for 1D cupvéfe
discrete line Lagrange multipliers are carried by the n(nf,@s which are de ned on physical
slave edges except for the noae! attached to vertices. Basically, there are two differepesy
of Lagrange multiplier interpolation for mortar method&sE so-called standard shape func-
tions can be employed, which are identical to the displacenmeerpolation of a 2-node line
element. Second, shape functions based on a biorthogonahtition can be utilized, which
are also commonly known as dual shape functions, see Chapterdual shape functions in
the context of surface contact. These dual shape functiengesy advantageous, since they al-
low for a computationally ef cient condensation procedofehe discrete Lagrange multipliers.
More details on dual shape functions for contact elemerits 1) parameter space can be found
in Popp et al. [211] and WohImuth [289]. If a line element isinected to a vertex, it would now
carry one discrete line Lagrange multiplier and one digcpatint Lagrange multiplier. Thus,
partition of unity would not be guaranteed anymore. In otdegguarantee partition of unity for
these elements, the line Lagrange multiplier shape funsti@mve to be modi ed in the vicinity
of the vertex node, see Figure 4.10. Here, modi cation ofsh&pe function of the line Lagrange

Figure 4.10: Modi cation of line Lagrange multiplier ingeolation for standard shape functions
due to the presence of a point Lagrange multiplier: unmatisbape function (left)
and modi ed shape function (right). The gure is taken frorargh et al. [71].

multiplier yields a constant interpolation to the point kaigge multiplier. The modi ed shape
functions are denoted by;. This modi cation is also applicable for dual shape funosaas
shown in Figure 4.11. It should be pointed out that such mmations are well-established in
mortar nite element methods in the context of Dirichlet Imokary conditions at slave nodes or
so-called crosspoints, which arise when multiple morthdsumains meet at one point, see Puso
and Laursen [217] and Wohlmuth [289].

By discretizing the contact virtual work related to line tact, the two slave side line contact

matricesD p2 R 3np andDyp 2 R ¥ arise:
z
‘s — — @) . R R () I8 S T () I
Defiik]= Dpx la= , NPdLls; =10 k=1;:5n0 5 (4.66)
z"
Delj;k]= Dpjk 13 = 0 INPdL 15 ; j=1;mn0; k=100 0 (4.67)
R
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4.6. Line contact

Figure 4.11: Modi cation of line Lagrange multiplier intgolation for dual shape functions due
to the presence of a point Lagrange multiplier: unmodi ed@#function (left) and
modi ed shape function (right). The gure is taken from Fhrat al. [71].

Here,Dygcouples the line Lagrange multipliers with the edge disptaents and » couples the
line Lagrange multipliers with the displacements of vemexies. Both matrices can be assem-

bled to the matribD,2 R3Y an®
DP: [Dpp Df?] 1 (468)

which allows for an easier notation later on. In additio tiaster side line contact matik, 2
an® 3@ .
R reads:

Mdi11= My ls= JIN® pydLts; j=1annl; 1=1;050@ 0 (4.69)
ph

These slave and master matrices can readily be interpretethear matrices, since they result
from an integration of a shape function product over the aage multiplier support. Thus,

they have mass matrix characteristics. When inserting thiee element discretization (4.36)
and (4.65) into the normal part of the constraint equatiandife contact (4.33), the discrete

weighted gam, at nodg for line contact emerges:
z

O = o JGundl j =1;:::;n£,1): (4.70)
ph
Additionally, the weighted relative tangential velocity, . ); for line contact follows from

discretizing the weak frictional sliding constraint in33), viz.
2 3

2) e
()i = (13 1 np) 4 M TP D kxS (4.71)
1=1 k=1

Again, frame indifference is achieved by formulati{wy . ;); in terms of time derivatives of the
mortar matrices.

4.6.2. Numerical evaluation of line contact

In contrast to the point contact formulation in Section 45umerical integration procedure
has to be carried out to evaluate the mortar matrices in Y46d (4.69) and the kinematic
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

quantities (4.70) and (4.71). Since the mortar ma¥ix the weighted gag, and the weighted
relative tangential velocityv, . ); all require an integration over the slave side line contact
boundary fj]) with integrands containing quantities from both sides, xaceevaluation cannot
be achieved by standard Gauss quadrature rules simply &epiigd on each slave line element.
This is due to the generally non-matching meshes that résumit arbitrary line contact situ-
ations in the nite deformation regime. To overcome thislgem, a so-called segment-based
integration scheme is employed, which is based on the idpaevEnting all possible disconti-
nuities in the integrands by creating smooth integrablensegs. This idea was rstly outlined
for classical segment-to-segment contact formulatiorfsinmo et al. [253] and in Zavarise and
Wriggers [304] and then applied in the context of mortar folaions in McDevitt and Laursen
[168] and in Puso and Laursen [217]. Here, the basic priacgadopted for the line contact in-
tegration. In order to create line segments that contaiyp Ghtcontinuous integrands in (4.69),
(4.70) and (4.71), the nodes of a considered slave line elearel a master element are pro-
jected onto an auxiliary plane. Then, a line clipping altjori is applied to determine the part
of the line element that is located within the master elenoerthe master element edges. The
whole procedure is visualized in Figure 4.12.

auxiliary plane

auxiliary plane

Y, —— e e e = —

-

integration segment L -

Figure 4.12: Main steps of the segment-based integratioerse for the line contact algorithm:
Create an averaged normal vector at the middle of the slageslement (top left),
project the averaged normal vector into the normal plandefline element and
construct an auxiliary plane (top right), project slave anaster nodes onto the
auxiliary plane (bottom left) and perform line clipping @entify line segments in
which the numerical integration is performed (bottom rjght
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4.6. Line contact

Additionally, the evaluation process is given in the follogyalgorithm:
Algorithm4.3. Segment-based integration for line contact

1.

2.

Create an averaged normal vecnél? based on the nodal normal vectm%) andn(kl,fl :

Project the averaged normal vecnéjr’ into the normal plane of the considered line ele-

ment to create the normal vectaf’. In detail:n” = (1; P P)n{.

Construct an auxiliary plane for numerical integrati@aséd on the slave element cen-
terxgl) and the corresponding normal vecﬂgr).

Project alh® master element nodef; | = 1;::;;n@ alongny’ onto the auxiliary plane
to create the auxiliary master nod;é@.

1)

. Project alln® slave line element nodes”; k = 1;:::;n® alongr’ onto the auxiliary

plane to create the auxiliary slave nodé%. This step is not required for rst-order el-
ements and can be considered as possible demand for extenswards second-order
elements.

. Perform line clipping in the auxiliary plane in order todrthe overlapping line seg-

ment of projected slave and master nodes. Adequate lingeg@lgorithms can be found
in Hughes et al. [119].

. De ne suitable integration points on the created linensegt and nd their counterparts

on the slave and master element by an inverse mapping.

. Perform numerical integration of the mortar matrice6 3. (4.69), the weighted gap (4.70)

and the weighted relative tangential velocity (4.71).

auxiliary plane auxiliary plane auxiliary plane

proj. master integration segment

Figure 4.13: Special case of parallel edge-to-edge coftasegment based integration scheme:

Already constructed auxiliary plane (left), projected teasnd slave edge nodes
onto auxiliary plane (middle) and line-to-line clippingd(nt).

In the presented algorithm, the edge-to-surface conta&ctaso is employed to explain the
segmentation procedure. However, the proposed integratbeme is also valid for parallel
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

edges being in contact. This is visualized in Figure 4.13eHagain an auxiliary plane is built
in complete analogy to Figure 4.12. Then, a master line aknseprojected onto the slave
side auxiliary plane, see middle part of Figure 4.13. Aftemds, a line-to-line clipping algo-
rithm is performed, which shares a lot of similarities wiggment-based integration schemes
for 2D bodies with mortar contact, see Popp et al. [211] andgYet al. [301]. Consequently,
the integration segment end points can be directly idedtas projected slave or master nodes.
For the edge-to-surface segmentation scheme, the integssgment end points could also be
identi ed as crossing of projected element edges. Morermftiion concerning the node projec-
tion and consistent linearization of the geometrical pdoces can be found in the Appendix B.
The robustness and accuracy of the segment-based integsatieme for edge-to-surface and
edge-to-edge contact scenarios is demonstrated at sauenarical examples in Section 4.9.

The algorithm explained above performs robustly and guaesnfor highest accuracy in all
tested numerical examples. However, an alternative segbased integration scheme is given
in the following, which requires less algorithmic steps aadh thus be be implemented more
ef ciently. However, this increase in ef ciency is dearlyohbght by the prize of less robustness
compared to the rst algorithm. For the sake of completentmesalternative procedure is illus-
trated in Figure 4.14 and the corresponding algorithm reads

Algorithm4.4. Alternative segment-based integration for line contact

1. Construct an auxiliary plane for numerical integrati@séd on the master element cen-
teer,z) and the corresponding element normal veog)?r.

2. Project alh® master element nodef’; | = 1;::;;n@ alongn{’ onto the auxiliary plane
to create the auxiliary master node8 .

3. Project aln® slave line element nodes”; k = 1;::;;n® along their nodal normai’
onto the auxiliary plane to create the auxiliary slave nod@s

4. Perform line clipping in the auxiliary plane in order todrthe overlapping line segments
of projected slave and master nodes. Adequate line clipplggrithms can be found
in Hughes et al. [119].

5. De ne suitable integration points on the created linensegt and nd their counterparts
on the slave and master element by an inverse mapping.

6. Perform numerical integration of the mortar matrice63.(4.69), the weighted gap (4.70)
and the weighted relative tangential velocity (4.71).

Here, the integration is performed on line segments beingedeon the master side auxiliary
plane. The calculation of the projection normal is mucherasnd consequently less terms to be
linearized occur. Again, the alternative integration aare performs less robust in the numer-
ical examples but also guarantees an exact integral ei@uoth algorithms are implemented
in the employed in-house code BACI (cf. Wall et al. [282])t lhis recommended to use the rst
algorithm, see Figure 4.12.
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4.7. Surface contact

Figure 4.14: Main steps of the alternative segment-bagdedriation scheme for the line contact
algorithm: Construct an auxiliary plane (left), projecs and master nodes onto
the auxiliary plane (middle) and perform line clipping temify line segments in
which the numerical integration is performed (right). Thyre is taken from Farah
etal. [71].

4.7. Surface contact

Finally, numerical treatment of surface contact is corrgdeln the following, it is focused on
special aspects of surface contact with respect to the mmo#h contact framework. However,
the fundamental basics of mortar surface contact havedltezen introduced in Chapter 3. The
discretization of surface contact is realized by introdg@ mortar nite element approximation
of the surface Lagrange multiplier. It is based on the disck@agrange multiplier subsét .,
which is an approximation d#l . The discretization of the surface Lagrange multipliedsea

n= R (4.72)

with the shape functions; being based on the nite element parameter space for 2D sur-
faces M = ( ©; M), Again, the shape functions; can be chosen as standard shape func-
tions or dual shape functions based on a biorthogonalitgitiom. Dual shape functions for 2D
surfaces can be found in Popp et al. [212] and Wohlmuth [288]for the interpolation of the
discrete line Lagrange multipliers (4.65), the shape fionst ; have to be modi ed in the case
of elements that are at the same time attached to differpastyf discrete Lagrange multipliers,
i.e. line or point Lagrange multipliers. This is necessargtiarantee partition of unity. In con-
trast to the line Lagrange multiplier interpolation, which is based on a 1D parameter space,
this modi cation becomes more complex for the surface sHapetions ;. Thus, a general
procedure based on a transformation of shape functionsnediéor this modi cation. Starting
point for deriving a suitable shape function transform@atiwhich guarantees partition of unity,
is a surface element with, nodes. Out of thise nodes, it is assumed that nodes carry discrete
line Lagrange multipliers or point Lagrange multiplierwg, a transformation coef ciecan

be de ned as

&=(ne ng % (4.73)
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

It becomes obvious that the transformation is only valid vaeleast one node carries no other
discrete Lagrange multiplier than a surface Lagrange plidti i.e. whenng < ne. The nal
transformation is exempli ed for a 4-node surface elemeithwhe rst two nodes carrying
surface Lagrange multipliers:

2
~ 21 0 & g 2 13
4 g0 1 & §§ 22.
~ 00O0O0
A T s
Ts

with the transformed shape functiofisand the element transformation matfix. The transfor-
mation coef cient for the example givenin (4.74) is obvibu&= 0:5, sincen, = 4 andn, = 2.
Applying the transformation procedure to different shapections, i.e. 3-node linear surface
shape functions, is absolutely straightforward. The stapetion modi cation is exemplarily
shown in Figure 4.15. When applying the transformation sehto the line Lagrange multiplier

discrete Lagrange multipliers: shape functions:
AX  AX AoX

Vad

Figure 4.15: Discrete Lagrange multipliers on verticegesdand surfaces with two exemplary
modi cations for standard shape functions. The gure isgakrom Farah et al.
[71].

interpolation |, the constant interpolation of the shape function that hraady intuitively been
given in Figure 4.10 would be formally obtained.

When inserting the nite element discretization for thepdeéeement elds (4.36) and the
surface Lagrange multiplier (4.72) into the surface camtatual work contribution (4.31), the

. . ()] ()] @ ®
three slave side mortar matrices for surface conact 2 R 3" D ,2 R 3%
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4.8. All entity contact — combined formulation

(1) 1) .
andD , 2 R®" 3" can be computed, viz.

z

D [;k]=D wls= NP 15 j=1;::n®: k=1;::n@ ; (4.75)
z "

D fik]l=D pxls= NP g j=1;mn®; k=1;:5n; (4.76)
z "

D 5[i;k]=D »x Is= iINPd 15 j=1;2n® k=10 0 (4.77)

(€8]
h

These matrices represent the coupling of the surface Lggranltipliers to surface, edge and
vertex nodes, respectively. The complete slave side mardarnix reads

D=[D D, D: (4.78)

. @
Furthermore, the master side mortar malix 2 R~ 3n®
z

M[I]=M yls=

IS given as

((N®d 1s: j=1nnn®; 1=1;0n@ 0 (4.79)

()
ih

The discrete counterpart of the gap function for surfaceamins also a mortar-typical weighted
gap, since it is integrated over the bounda?)){, via

z
95  iGndA j =1;mn0: (4.80)
;h
Additionally, the weighted relative tangential velocityr fsurface contact is given as
2, o 3
(o) =(la m ) 4 M[IXY  DKXS: (4.81)
1=1 k=1

The evaluation of these discrete quantities requires aaramx numerical integration proce-

dure. Here, the well-known segment-based integrationrsehfer surface mortar methods is
employed, which was already explained in Section 3.4.2.hesatic visualization can be found

in Figure 3.3. This segmentation scheme was already dex@lapd investigated in the abundant
literature and can be found for example in Farah et al. [78pPet al. [212] and Puso and

Laursen [217].

4.8. All entity contact — combined formulation

When combining all previously presented contact contiiimg, the semi-discrete balance of
linear momentum that results from mortar nite element désization reads

= Kmnasfl + Kdampd-+ fine(d)  fext+ fe(d; )= 0; (4.82)

with the mass matriKmassand the damping matriK 4amp Which is based on the widely used
Rayleigh model for viscous damping. Furthermore, the mdkand external force vectors are
denoted a$;;(d) andfy. The contact contributiofy(d; ) is split into the Lagrange multiplier
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4. Mortar Methods for Contact of Vertices, Edges and Sugace

force vector denoted ds(d; ) and the penalty force vector for contact of crossing edgédg),
which was already de ned in (4.57):

fo(d; )= f (d; )+ f (d): (4.83)

The Lagrange multiplier force vector is de ned via the glbBkve and master side mortar
matricesD 2 R3™" 3% gndm 2 R3M® 3@

D=[D D, D-l; M=[M M, M: (4.84)

Here, the row dimension of the matrices is givemd8 = n@ + n{” + nY = n® With these
matrices, the global contact force vector due to Lagrangéphar based contact reads

f =[O0 M D] ; (4.85)
with the global Lagrange multiplier vector
= L (4.86)

Obviously, all discrete Lagrange multipliers for pointhdiand surface contact are contained.in
The inequality constraints for normal and tangential cordiae generally stated in semi-discrete
form as

g O o O0; 4jg=0; j=1;:;n®; (4.87)
= k( )k F(Cnay) 0
Vir)j + jC )y=0; ; 0; ;=0; j=1;:n@: (4.88)

The semi-discrete problem formulation givenin (4.8288).is particularly elegant, since itis no
longer distinguished between point, line and surface abnker example, in (4.87) and (4.88),
the gapg;, the relative tangential velocitfy . ); , the complementarity parameter and the
Lagrange multiplier ; have different physical interpretations for vertex, edge surface nodes,
respectively. Although it contains point, line and surfaoatact formulations, the semi-discrete
problem formulation remains as simple and compact as fa purface contact, see e.g. Popp
et al. [212] and Chapter 3.

4.8.1. Semi-smooth Newton method

As described in Section 3.5.2, a primal-dual active setesgsais employed in order to consider
the additional nonlinearities stemming from the contaetjunality constraints. Thus, the split of
the set of all slave node&s into an active sef\, inactive sefl as well as a stick s&; and a
slip setS, is performed regardless of the fact whether the actual lagranultiplier belongs

to the point, line or surface contact. Also the introducedlmear complementarity functions
in (3.59) and (3.61) are reused without any modi cation foe tifferent contact scenarios. Con-
sequently, all arising nonlinearities can be solved withiie Newton-Raphson scheme. Again,
the introduced parametecsandc, in (3.59) and (3.61) only in uence the convergence behavior
and do not affect the result when the algorithm is convergieding in mind that the tangential
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4.8. All entity contact — combined formulation

parametec, balances the different scales of the tangential part of tigrdnge multiplier and
the relative tangential slip increment, it becomes obvjdliat the different units of the point,
line and surface Lagrange multipliers in uence the choite.oConsequently, it depends on the
current load, deformation and contact status. Howeveraflonumerical examples a constant
value forc, for all slave nodes is employed over the entire simulatioitBout recognizing any
deterioration of convergence.

Note, the node-wise decoupled enforcement of the contawti@nts in (4.87) and (4.88)
is only valid for a diagonal slave side contact mafdix This cannot be achieved for the com-
bined contact formulation presented in this contributidne the off-diagonal block® , D -
andDg. But, the main diagonal block® , D,,andD-, can be created in diagonal form by
employing dual shape functions and thus most of the nodedem@upled. However, a rigorous
variational form would require a coupled NCP function camitag all coupled slave nodes or
suitable lumping techniques, see Blum et al. [29]. Nevéedw node-wise NCP functions are
utilized throughout this thesis without any negative innee on the numerical examples.

4.8.2. Algebraic representation

In this section, an algebraic representation of the lizearsystem to be solved within each semi-
smooth Newton step is provided for the developed all entiytact formulation. The general
resulting system of equations is of saddle-point type amcbeaformulated in complete analogy
to the one for surface contact from (3.62). For the sake oitg)d is brie y repeated:

2 3. . )
Kan K Kus 0 i 2 dy 3i+1 2 N 3i
Kun  Rum RKws MT § E dwm z § M'm z
= : 4.89
g Ksn Rsw Kss DT ds r's ( )
0 Cw Cs C le

Again, the system of equations in (4.89) is of increasecesystize compared to classical struc-
tural problems, as both displacements and Lagrange malsghow up as primary unknowns.
Thus, the solution vector contains increments of discrsigl@icements d and Lagrange multi-
pliers . The discrete global vector of Lagrange multipliers istsplio point, line and surface
Lagrange multipliers as stated in (4.86). Like for surfameurface contact from Section 3.5.3,
the displacement unknowns are distinguished between mdkes( )n , slave nodeg )s and
master node$ )y . The matrix blocks denoted witk contain terms from linearization of the
internal force vectof;,,, damping terms y.mp and mass matrix contributio6mass The upper
tilde symbol(") indicates additional contributions from the linearizech@ky force vectolf

and the linearized Lagrange multiplier contact force vetctoThe matrix blocks denoted with
represent the linearization of the complementarity fuoriin (3.58) and (3.60). Following the
explanations in Section 3.5.3, elimination of additionalgkange multiplier unknowns can be
achieved by utilizing the third row of (4.89). This yields adrange multiplier expression in
terms of displacement increments:

"= D' T(Khy oyt Rsy dyt+Rss dgtory): (4.90)

In classical dual mortar methods, inverting the diagonarm® is of negligible computational
cost. In this thesis, not all slave nodes completely de@dplke to the three different sets of
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Lagrange multipliers. Therefore, the complete slave sidgan matrix reads in block structure:

2 3

D D, D,
D=30 D, Dps: (4.91)

0 0 D

Here, it is obvious thab is an upper triangular matrix and its inversion is not asdfias for

classic dual mortar methods. Nevertheless, its invergads

2 32 1 1 1 13
D O O I D ppp D ppp DF?D?? D ?D??

D!=%0 D, 049 | DD, £ (4.92)
0 0 D, O 0 |

Herein, only the main diagonal blocks , D,andD», have to be inverted. By employing dual
shape functions, these main diagonal blocks are again gbda shape and thus inverting the
globalD matrix is still computationally ef cient. By expressingefdiscrete Lagrange multiplier

unknowns in terms of displacement unknowns as stated i@)4t® nal condensed system of

equations arises:

2 3i2 3i+1
Knn Knwm Kns dy
2 KMN + PTKSN KMM + PTKSM KMS + PTKSS g 2 dM g =
CD "Ksy Cw CD ™Rsy Cs CD "Kss ds
h

: T, o T
th ] ™m+tPrs j ro CD 'rg (4.93)
Again, the mortar projection operator can be identi ed sixgeneral form
P=D M: (4.94)

The nal system of equations in (4.93) is of constant systex® and the only remaining degrees
of freedom are the displacement unknowns. All informatibtihe point, line and surface contact
are included in the modi ed system matrix and no saddle-psiructure occurs anymore. The
discrete Lagrange multipliers can be easily obtained bymgl& post-processing step based
on (4.90).

4.8.3. Conservation laws

The fundamental conservation laws have been already untexmtifor mechanical systems in
Section 2.1.3 and are now analyzed in the context of the geapball entity contact formulation.
Therefore, all following explanations are referred to teensdiscrete setting, meaning that the
problem is discrete in space but continuous in time.

4.8.3.1. Balance of linear momentum

First, as elaborated e.g. in Puso and Laursen [218] thersxgant for linear momentum con-
servation can be expressed as balance of all forces actitigeosiave and master side. In the
context of the newly developed all entity contact formuatthis requirement reads:

fO (@ =D" +f® (M7 +{@): (4.95)
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4.8. All entity contact — combined formulation

As explained in the previous sections, the slave and maskerfaces can be split into penalty
force vectord" and Lagrange multiplier force vectof¥). The overall balance of linear mo-
mentum at the contact interface can be investigated by essmering the balance of penalty
forces and then the balance of forces due to the Lagrangepfers. Thus, the balance of
penalty forces reads

%l) %2)

fO @ =7 NS (D) foenN (@)= 0: (4.96)

k=1 =1
Since the displacement shape functions ful Il the fundatatrequirement of partition of unity,
ie.” 19 N® =1 and” 1 N® = 1, the balance of linear momentum can be written as

1(fpen fpen = O (4.97)

Here, it can be clearly seen that conservation of linear nmbome isalwaysguaranteed for the
penalty forces resulting from contact of crossing edges.

Conservation of linear momentum for the Lagrange multrdtiece vectors can be stated as

0 1
1) %1) 9{2)

X
@ f@=" @ pfkl; = M[I] A=0; (4.98)
j:l k=1 =1
which is identical to the investigations in Popp [210] and®and Laursen [218]. In contrast to
these publications, the mortar matrid@sndM are created in a different way and contain now
information from point contact, line contact and surfacetact. In addition, the global Lagrange
multiplier vector contains now information from all three contact scenaridse expression
in (4.98) can be reformulated for considering each Lagrangkiplier individually:
1) %2)
Dlj: k] M[j;1]= 0 8j=1;::;mb: (4.99)
k=1 =1
This means, that the sum of all contributions from slave andter side matrices associated with
one Lagrange multiplier has to vanish. For the line con&hs, this reads in detail:
%1) Z %2)
@
o N gL o
k=1 ph 1=1 ph
where it is not distinguished between the entried¥gandD ». When employing the aforemen-
tioned partition of unity property for the displacementgh&unctions, the conservation of linear
momentum nally reads

N® ;dL =0; (4.100)

z z
gty

which isalwaysful lled when the integration of the slave and master sidertaomatrix is per-
formed over the same discrete domain. This was alreadydstateuso and Laursen [218] and
also holds for the line contact algorithm. It is also valid tbe surface contact as elaborated
in Popp [210]. For the point contact of vertices, the sameaeimg holds without performing a
numerical integration but rather a simple term evaluatir.the sake of brevity, these investi-
gations are not outlined here in detail since they are in detaanalogy to the explanations for
the line contact.

dL=0; (4.101)
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4.8.3.2. Balance of angular momentum

Enforcing an exact conservation of angular momentum iserathallenging in the context of
computational contact mechanics. The basic requiremenbftservation of angular momentum
IS given as

3 s
mP m@ =" XD f XY fg=0; (4.102)
k=1 =1
which means that the sum of slave and master interface mamesttould vanish. In (4.102), the
vectorsf‘(:;lll andfgl) represent the nodal forces at slave nk@snd master node respectively. As
discussed in Popp [210], Puso and Laursen [218], Yang eB@l]] expression (4.102) is zero

when at least one of the two following requirements is fuddt
the discrete form of the displacement jump vector (gap vegteanishes,

the force vectors and the discrete displacement jump veacgocollinear.

Since the discrete nodal force vectbﬁtﬁ% andfgl) can be splitinto contributions from the penalty
regularization of the contact interaction of crossing edgyed Lagrange multiplier contributions,
the above mentioned requirements for conservation of angubmentum are investigated sep-
arately for these two types of force vectors. First, the figriarce vectors are considered. The
discrete form of the displacement jump vector (gap vectalls for the contact of non-parallel
edges:

1) 9{2)
g n= NPCOO)x NS ("P)x? ; (4.103)
1=1 k=1

which points per de nition in the normal directiofif”, see Section 4.4.5. The resulting forces
due to the non-penetration condition point in the same toecas can be seen in (4.60). Thus,
all normal force vectors and the discrete gap vector arenealt and thus conservation of angular
momentum igguaranteedor contact without frictional effects. Note, that the athequirement
of a vanishing gap vector can never be achieved due to thdtpeegularization, i.e., ! 1
For frictional contact, the force vectors and the gap maybeotollinear and thus conservation
of angular momentum is not always ful lled. This is due to tiage form of the frictional contact
problem.

When considering the nodal forces resulting from Lagrangéipiiers, the conservation of
angular momentum in (4.102) can be rewritten as

2 3
(1) 1) 2)

% b
m® md= 4 x"  (D[;Kk] ;) x? (M[j;1] ;)5 = 0: (4.104)
i=1 k=1 =1

Thus, for contact force vectors resulting from Lagrangetipligrs, the requirement of collinear
force and displacement jJump vectors can be reformulatedivetrequirement of collinearity be-
tween the Lagrange multiplier vectors and the displacenuemp vector, see Puso and Laursen
[218] and Yang et al. [301]. For the presented mortar corfiteniulation from Chapter 3 and the
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current chapter, this is neither guaranteed for contadtowit friction nor for frictional contact,
see again Popp [210] and Yang et al. [301]. A possible remedgdntact without frictional ef-
fects would be a reformulation of the contact approach witlam a-priori split of the Lagrange
multipliers into a normal and a tangential part from (3.28%tead, the normal direction should
be included in the integrals for the mortar matri@sndM in order to account for the vary-
ing normal direction over the integration domain. But, witkiing so, the diagonal form of the
subblocks irD cannot be achieved anymore with dual shape functions, ancotmputationally
ef cient solution procedure in Section 4.8.2 cannot be perfed anymore. Furthermore, varia-
tion of the mortar integrals when deriving the discrete aohvirtual work contribution would
lead to conservation of angular momentum, see Hesch andiBEt66]. These variations are
commonly neglected, since they require second derivab¥élse mortar matrice® andM,
and thus the computational complexity would strongly iases see Popp et al. [214], Puso and
Laursen [218] and Puso and Laursen [219]. However, the naatexxample in Section 4.9.4
demonstrates that the violation of angular momentum ceasien is very small and from an
engineering point of view negligible in practice.

For investigating the collinearity condition, the corresding displacement jump vector has
to be stated for the Lagrange multiplier ngde

X X
gny = D[l X" M [j; k Ix : (4.105)

1=1 k=1
It is again a quantity with different interpretations degieny on the actual Lagrange multiplier.
For contact of vertices, this quantity becomes a distanaesare, but for surface contact it rep-
resents a volumetric measure. However, vanishing of the jegotor cannot be guaranteed since
only the normal part of it is forced to zero. Thus, the apphesdor Lagrange multiplier contact
slightly violate both required conditions, which was attganvestigated by several authors for
surface contact, see for example Popp [210] and Yang et @L][3 herefore, conservation of
angular momentum may not be guaranteed for the all entityacoformulation.

4.8.4. Post-processing

Since the discrete Lagrange multiplier unknowns containgtle global vector in (4.86) are
utilized to enforce different contact scenarios, they &lave different physical interpretations.
Concretely, the point Lagrange multipliers represent discrete point forces, the line Lagrange
multipliers ,represent line loads, i.e. a force divided by a distance tifyaand the surface
Lagrange multipliers represent classical interface tractions, i.e. a forceddwtiby an area
quantity. In order to evaluate and assess the accuracy giwational results, a uniform inter-
face traction quantity is very helpful for post-processimgus, the discrete nodal forces (in a
nite element sense) acting on the slave side are considesedrhey result from multiplying
the global vector of Lagrange multiplierswith the transpose of the slave side mortar magrix
and adding the penalty force contributions from the cortéctossing edges:

fO =pT +O; (4.106)

This vector contains discrete forces acting on slave nddesder to compute discrete tractions
for post-processing, the global slave side force vetfféris scaled by the diagonal matrix

75



4. Mortar Methods for Contact of Vertices, Edges and Sugace

B(2)

Figure 4.16: Special case for all entity contact formulati2 blocks are in surface-to-surface
contact (gray area), but slight de ections could cause éne@edge-to-surface con-
tact scenario, where the active edge could be,(ﬂn(positive forced=4, F,) or ,()2)

(negative force§ 1, F»).

that contains support area information of the slave nodesnl be computed by assembling the

nodal blocks
z

Al k]= Ak lz= Nj(l)d I3 ik =1;:0n®; (4.107)

(€))
ch
with . being the well-known Kronecker delta. The effective slade snterface tractions con-
taining the effect of point, line and surface contact thdlofoas

t® = A d: (4.108)

Remark 4.2. The area matrixA is basically a slave side mortar matr@ with surface La-
grange multipliers being de ned on all slave nodes inclgledge nodes and vertex nodes. By
employing dual shape functiori3, automatically becomes a diagonal matrix and thus identical
toA.

Remark 4.3. The scaling presented {@.108)is also applicable for the master side. The master
side tractions can be computed by employing the discretéamiasce vectonf‘(f) and performing
the scaling with an area matrix that is integrated over thesteasurface.

4.8.5. Restrictions and special cases

As stated in the problem description for contact of vertieelges and surfaces in Section 4.2, the
geometrical entity with lower or equal dimension is imgliciassumed to be on the slave side.
With this assumption, a large variety of problems can be@ahtly treated as can be seen at the
numerical examples in Section 4.9. However, there are s@eeia contact scenarios, where
this assumption is not realizable. Such a scenario is shovAmure 4.16. Here, 2 blockd®)
andB® are in surface-to-surface contact but slight de ectionsseal by the forceB, andF,
could lead an edge-to-surface contact scenario. For peddrce vectors, the edge oél) be-
comes active and the initial slave-master assumption id.va contrast, when the forces are

negative, the edge or}(f) characterizes the line contact and the slave-master demis not
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4.8. All entity contact — combined formulation

valid anymore, since the slave contact entity (surface) isigher dimension than the master
contact entity (edge). By simply changing the de nition bétedge on éz) to él) and keeping
the other de nitions, the problem would be over-constrdisgce too many Lagrange multipli-
ers act on the same region. A dynamically changing assighofiéime complete slave and master
de nition helps avoid these scenarios. The algorithms sgagy for the dynamic change of slave
and master side are strongly related to self contact appesasee Yang and Laursen [298, 299].
Without pointing out the details, the basic ingredient diésel in the mentioned publications is
the ef cient contact search, which was adopted in Popp [2b@] reused for the all entity contact
algorithm proposed in this thesis. However, when the erldoads lead to a contact scenario
where surface and line contact occur and no strict disbnatan be made, then the proposed
algorithm is at its limit and no dynamic change in master dadesde nition could help. This
could occur in the considered nite deformation regime détieely soft bodies.

A simple but ef cient workaround is to employ a penalty regugation for master edges and
vertices. For the vertex contact, the penalty regulawzais realized in complete analogy to the
contact of non-parallel edges in Section 4.5.2. For the andrased line contact in Section 4.6,
the penalization is done as described for classic surfantacbformulations with the mortar
methods, see for example Fischer and Wriggers [81], LaUseh], Puso and Laursen [218,
219], Puso et al. [220] and Yang et al. [301]. However, fomaiimerical examples presented in
Section 4.9, this workaround was not employed. But, it hankbeplemented by the author.
A more sophisticated solution for this problem could be dmyed based on a so-called two-
pass formulation, which is usually employed for improvihg performance of classical node-
to-segment formulations, see Park et al. [196] and TayldrRapadopoulos [266]. But, these
two-pass formulations usually suffer from locking or owenstraint behavior. Therefore, the
following investigations concerning the outlined issuesthe basis for potential future work.

4.8.6. Numerical ef ciency

The presented all entity contact formulation requires sv@valuation and integration proce-
dures for all possibly arising contact scenarios. Theggfthre point contact evaluations (cf. 4.5)
as well as the segment-based numerical integration schiem#ée line contact (cf. 4.6.2) and
the surface contact (cf. 3.4.2) have to be performed in dalevaluate the mortar matrices, the
gap functions and the relative tangential velocities. Hespecially the segment-based integra-
tion schemes signi cantly contribute to the high compuwaél effort of the proposed mortar
based methods. Thus, the entire implementation is desifgmatie use on computer systems
with many central processing units (CPUs) and is based oaltbady existing multicore frame-
work in the in-house code BACI (cf. Wall et al. [282]). Hergihe nite element meshes, global
vectors and global matrices are distributed into seveddpendent processes that are assigned
to corresponding processors. The parallel decompositioctionality is based on the third-party
library Zoltan, see Boman et al. [30] and Devine et al. [50}. fhe calculation of contact interac-
tions, a simple load balancing technique was employed ipP2§0], that allows for a dynamic
redistribution of the CPU ownership during a simulatione&gging on the actual contact zone.
The algorithms developed in this thesis are designed inrdadé into this framework and to
inherit these parallel computing features.
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Despite ability of parallel computing, the costly numerie@aluation procedures themselves,
namely the segment-based integration schemes, can beizgdintherefore, the so-called ele-
ment-based integration scheme can be employed, whichsaftmvgigni cant time savings at the
costs of accuracy. Such an integration scheme was employdcher and Wriggers [80, 81].
A detailed comparison of both integration schemes can bedfauFarah et al. [73] and is also
provided in the Appendix A. The basic algorithm is given ie fbllowing:

Algorithm4.5. General element-based integration scheme

1. De ne suitable integration points on the slave elememnapeeter space.

2. Try to project each integration point from the slave eletrte the master elements to
get the corresponding integration point position in mastement parameter space. The
projection is performed along the normal eld of the slavdesilf the projection algorithm
does not converge for any involved master element or if thegnation points lie outside
all master element parameter spaces, then this integgadiohis sorted out.

3. Perform numerical integration on the entire slave elénoérthe mortar matrices, the
weighted gap and the weighted relative tangential velocity

Here, it does not matter whether the surface contact evatuat the line contact evaluation
is considered. The only difference is the de nition of a abie integration point number. Obvi-
ously, a 1D integration rule has to be chosen for the lineawrgnd a 2D rule, depending on the
element shape, has to be chosen for the surface contacaBwallAs can be seen at the provided
algorithm, no subdivision of the integration domain hasegbkrformed. In addition, the overall
number of integration points could be signi cantly decre@sompared to the segment-based
integration scheme. Altogether, the element-based iategrtechnique drastically saves com-
putation time, see Appendix A. The loss in accuracy is algestigated in Appendix A, but it is
summarized that from an engineering point of view the eld@rbased integration scheme per-
forms acceptably accurate. Details concerning the cargiBhearization for the element-based
integration technique can be found in Farah [72].

4.9. Numerical examples

In this section, the theoretically introduced contact athons and all entity contact formula-
tion is validated with several numerical examples. Fifst, donsistency of the developed shape
function modi cations for surface-to-surface scenaribfi@d contact is proved, see Section 4.7.
Afterwards, the all entity contact formulation is testedhwa patch test setting, which is usu-
ally employed for surface contact problems. Then, the lm&act formulation is tested with an
edge-to-surface and an edge-to-edge contact scenarie, itlex also compared to classic sur-
face mortar methods and the node-to-segment scheme. Rextphtact of non-parallel edges
is analyzed with special focus on the robustness of the gegpalgorithm and conservation
of linear and angular momentum. Afterwards, the contacisiteon between point contact, line
contact and surface contact is demonstrated with a bendatg pxample. Next, an example
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from implicit dynamics, a falling coin, is considered to @stigate linear and angular momen-
tum conservation for the developed all entity contact fdatian. Finally, frictional line contact
is analyzed with two contacting plates in order to demotstitae robustness of the developed
line contact scheme in a frictional setting.

4.9.1. Consistency — patch tests

In order to demonstrate and validate the consistency of noalanethods or element formu-
lations, patch tests are the most common choice, see et [1@6] and Taylor et al. [267].
In the context of mortar methods for computational contaetinanics, these tests are utilized
to demonstrate the ability of the methods to represent ataonhstress state across the active
contact interface. First, this is investigated for a tiedate contact setting in 4.9.1.1 in order to
validate the consistency of the shape function modi catioBection 4.7. Second, a frictionless
contact setting is analyzed with the combined point, ling sunface contact algorithm in Sec-
tion 4.9.1.2 to demonstrate the consistency of the comhinathct framework of point, line and
surface contact. Finally, a line contact scenario is carsid where the active contact interface
reduces to a curve and the algorithm is tested with regarégmesent a constant stress state
across this curve.

4.9.1.1. Mortar mesh tying with boundary modi cation

The rst patch test investigated in this thesis is a 3D cubaeillich consists of six differently
discretized subdomains connected by the mortar mesh tghnense, see left part of Figure 4.17.
It is well-known that the employed mortar method with itsigéionally consistent interpolation
of the interface traction via discrete Lagrange multigieaturally guarantees for a satisfaction
of classical patch tests. Nevertheless, this example ideciggng, because it inevitably leads
to crossing mesh tying interfaces, which require specedtiment of the Lagrange multipliers
at so-called crosspoints and crosslines in order to actaepeoperly stated problem. There-
fore, the discrete Lagrange multipliers at the nodes atthd¢b crosspoints and crosslines are
removed and the shape functions of neighbored Lagrangepten$ are modi ed according
to Section 4.7. Since the matrices arising for mortar mesigtgchemes are strongly related
to the matrices from mortar based computational contactharacs, this example can be in-
terpreted as validation for the shape function modi catibnorder to test the shape function
modi cation for all commonly employed rst-order and seaborder nite elements, 4-node
and 10-node tetrahedral elements and 8-node, 20-node amad&/hexehadral elements are em-
ployed, see again the left part of Figure 4.17. The cuboigdgedsions in x-, y- and z-direction
are3 3 8and the employed material model is of Saint-Venant-Kir¢htype with Young's
modulusE = 22500 and Poisson's ratio = 0:0. It is completely xed at its lower surface
and subjected to a loga= 1000 in positive z-direction at its upper surface. The resulting
placement state and the Cauchy stresses are visualizeglireE.17. Here, the consistent shape
function modi cation at crosspoints and crosslines alldarsan exact representation of the con-
stant stress state within the cuboid and consequently difisar distribution of the displacement
eld. This demonstrates the consistency of the employegsHianction modi cation regardless
of which element type is employed.
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Figure 4.17: 3D patch test for mortar meshtying with bougidaodi cation of Lagrange mul-
tiplier shape functions: Finite element mesh (left), disgiment solution (middle)
and Cauchy stress (right).
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Figure 4.18: Result for patch test with combined non-smaathtact formulation: displace-
ment (left) and Cauchy stresses (right). The gure is takemfFarah et al. [71].

4.9.1.2. Mortar surface-to-surface contact

The next example is a simple patch test for a surface contaaiasio, which is investigated to
show the ability of the proposed method to represent a conhstigess state across non-matching
discretizations at the contact interface. It is well-knalat mortar contact formulations are able
to successfully pass this test setup, whereas classicattoesegment formulations would falil,
see El-Abbasi and Bathe [66] and Taylor and Papadopould®.[Bowever, the method that
has been introduced in this contribution modi es the moc@mtact formulation at vertices and
edges of the contact boundary, and thus the patch test has¢wibited to demonstrate that these
modi cation have no negative in uence on the solution a@y as compared with pure surface
contact. The test setup consists of a large block with dimesd0 10 4 and a small block
with dimension® 5 4. The larger block is completely supported at its lower stefand its
upper surface acts as master contact side. The smallerli@sain top of the larger one and acts
as slave body. The employed nite element meshes are shofsigime 4.18. The nodes attached
to vertices carry point Lagrange multipliers, the nodesages carry line Lagrange multipliers
and all other slave nodes are subject to surface Lagrangipheurk. The upper surface of the
slave body and the non-contact part of the upper surfaceedbtier body are loaded with the
constant pressupe=  1:0in Z-direction. The employed material model for both bodsdsased
on a compressible Neo-Hookean material law with Young's uhaglE = 1000 and Poisson's
ratio = 0:0. In addition, frictionless contact is assumed for the satiah. The resulting
displacements and Cauchy stresses are shown in Figurdt4ag.be seen that the contact patch
test requirements are perfectly ful lled, i.e. the test &sped to machine precision. In addition,
the resulting Lagrange multiplier values are visualizedhe left part of Figure 4.19. Here,
only the four Lagrange multiplier vectors of the inner suganodes have noteworthy non-zero
values. This is due to the surface Lagrange multipliersdalbiie to represent the constant stress
state within the contact interface and thus are able to cetelylful Il the contact constraints.
Consequently, the point and the line Lagrange multipliersdt signi cantly contribute to the
contact virtual work. Instead, their contact status candscidbed as limit case where the gap
values are zero but no noteworthy non-zero Lagrange mieltiphlues occur. Numerically, this
could lead to problems due to an arbitrarily changing cdnssatus of the vertex nodes and
the edge nodes for this example, while the constraint ressi well as the structural residual
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Figure 4.19: Result for patch test with combined non-smamathtact formulation: Lagrange
multiplier vectors (left) and scaled interface tractionglft). The gure is taken
from Farah et al. [71].

converge perfectly. Therefore, convergence behavior@Ltigrange multiplier increment and
the gap function are tracked and changes in the active séjraveed as convergence criterion
when both quantities simultaneously approach zero.

However, the Lagrange multiplier solution in the left parFgyure 4.19 cannot be interpreted
as interface traction since the shape function modi catior{4.74) has been applied to the
surface Lagrange multiplier shape functions. Taking imtwoaint the post-processing procedure
explained in Section 4.8.4, a representative solutiorh@rcontact traction can be derived, which
is visualized in the right part of Figure 4.19. There, theantpd constant stress state at each slave
node can be observed.

4.9.1.3. Mortar Edge-to-Surface contact

The next example is introduced to demonstrate the abilitthefproposed contact algorithm
to represent a constant stress state for edge-contactiaitsiai.e. it can be interpreted as an
edge-to-surface contact patch test. The example con$iatagid plate that is completely xed
and an elastic cube. The edge length of the cudeds2 and its material model is of Neo-
Hookean type with Young's modulud = 22:5 1 and Poisson's ratio = 0:0. It is rotated
by 45 twice around two different axes, such that its contact edgels the diagonal of the xed
plate. The cube acts as slave body and the plate as mastemrbsggctively. During the entire
simulation, inertia effects and damping are neglected. ifilial distance between the bodies
isd=2:29 10 ? and the cube is pressed against the plate with a total poescdisplacement
at its upper surfaces af,,x = 0:2. This displacement boundary condition is applied withih
guasi-static load steps. This setup is calculated withetdréerent contact algorithms. First, the
proposed algorithm with its combination of point, line amndface Lagrange multipliers. Second,
with a classical mortar contact algorithm, and nally withckssical node-to-segment formu-
lation. The resulting displacement solutions are shownguife 4.20. Here, the left part shows
the solution for the proposed contact algorithm, which sgstully enforces the non-penetration
conditions and leads to a physically correct displacemité sThe right part shows a solution
computed with a classical node-to-segment algorithm, wblso shows a reasonable displace-
ment state. The classical mortar formulation in the middiEigure 4.20 obviously produces a
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Figure 4.20: Displacement solution for the patch test fogeedontact: combined formula-
tion (left), classical mortar contact (middle) and claakicode-to-segment algo-
rithm (right). The gure is taken from Farah et al. [71].
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Figure 4.21: Contact tractions for the patch test for edgeamt: combined formulation (left),
classical mortar contact (middle) and classical nodestpygent algorithm (right).
The gure is taken from Farah et al. [71].

large penetration and the contact is only detected very Tdiis is due to the surface weighted
gap function which inherently arises for the classical moformulation, see Popp et al. [212].
In Figure 4.21, the interface tractions are visualizedni-this, it can be further deduced that
the proposed algorithm with its line Lagrange multiplieesfpctly passes the patch test by pro-
ducing a constant stress state, which is to be expectedistest setup. In order to compare the
results, the visualized stress state is based on a postgsiog procedure that considers element
dimensions of the setup. The only discrete Lagrange midtiplith a non-zero value is the line
Lagrange multiplier at the middle node of the contactingeedihe vertex Lagrange multipliers
again exhibit the limit case, where the gap functions are bat no noteworthy non-zero value
for the point Lagrange multiplier arises. Consequentlg, ¢htire set of contact constraints are
consistently enforced with only one discrete line Lagrangétiplier. In contrast, the classical
mortar algorithm produces smaller stresses, since thegbeedoenetration is far from the phys-
ically meaningful state of being zero. Finally, the nodesegment algorithm, while yielding
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Figure 4.22: Parallel edge-to-edge contact: initial sgtfieft) and deformed state with contact
tractions (right). The gure is taken from Farah et al. [71].

plausible results from a qualitative point of view, is noteatb produce a constant stress state,
which is, of course, a well-known de ciency of this type ofrtact discretization.

4.9.1.4. Mortar parallel edge-to-edge contact

The next example is a parallel edge-to-edge contact suati two elastic cubes. Here, the
robustness of the proposed numerical evaluation of thechm¢act algorithm shall be demon-
strated. The material model for both cubes is identical éoelastic cube from the edge-contact
example in Section 4.9.1.3. Both cubes are rotated®yaround their individual X-axis such
that their edges are perfectly parallel, see Figure 4.22. dubes have identical dimensions
of1 1 1, and tri-linear hexahedral elements are employed for tagaliscretization. The
nite element meshes are non-matching at the contactingdg visualized in Figure 4.22. The
upper block is de ned as slave side and the lower body reptesbe master side. The lower
cube is supported at its lower surfaces and the upper culjiscted to a prescribed motion at
its upper surfaces. Their initial distanceds= 0:083and the total prescribed displacement in
negative Z-direction islhax = 0:166 which is enforced withib0 quasi-static load steps. The re-
sulting contact tractions and the deformed meshes are algawn in Figure 4.22. The proposed
contact algorithm yields perfectly identical contact trags at all slave nodes. This is due to the
highly accurate segment-based integration scheme egpl@nSection 4.6.2. Furthermore, the
introduced de nition for the nodal normal eld leads to a fest edge-to-edge contact scenario,
which can again be interpreted as a special kind of (edgaii®) contact patch test. It should be
pointed out, however, that the solution of this exampleesents an academic limit case and is
therefore rather sensitive with respect to nodal normahdens and other numerical evaluation
procedures.
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Figure 4.23: Non-parallel edge-to-edge contact: inigdiling (left) and deformed state with nor-
mal contact force at=5 (right). The gure is taken from Farah et al. [71].

4.9.2. Non-parallel edge-to-edge contact

In the following, a scenario of non-parallel edges beingrintibnal contact is investigated.
Again, two cubes with identical dimensionsbf 1 1 are considered with the same material
properties as in the previous examples, i.e. the materialeiis of Neo-Hookean type with
Young's modulus€ = 22:5 10° and Poisson's ratio = 0:0. Both cubes are discretized equally
with tri-linear hexahedral elements as shown in Figure 412 upper cube is rotated &b
around its X-axis and the lower cube is rotated4®y around the Y-axis. The initial distance
between the two bodies i = 0:01 The lower block is completely xed at its two lower
surfaces and acts as master body for the contact descrif@rsequently, the upper block is
de ned as slave body. The two top surfaces of the upper bloeksabjected to a prescribed
displacementslg,. = [dy; dy; d,], which is split into two different motions. First, in the ten
interval0 <t 5, the displacements in X- and Y-direction are xed, idg.= d, = 0, and the
displacements in Z-direction are de ned dy=  0:012t. Afterwards, in the time intervdl <

t 25 the displacements in Z-direction are xed@t=  0:06 and the displacements in X
and Y direction are de ned ad, = dy = 0:015¢ 5). The time step size is chosenas=0:1.
The resulting point contact of the non-parallel edge-tgeesicenario is realized with a penalty
regularization as explained in Section 4.5.2. The requpesthlty parameters are de ned to be at
the order of the Young's modulus, i.e,.= =22:5 10° and the Coulomb friction coef cient
is chosen af = 0:9.

The resulting slave side normal contact foro&&% and the deformation state are visualized
fort = 5 in Figure 4.23. The contact point is exactly in the middle ofezlge (line) element,
and according to (4.58) the contact force due to the penmaizaf the penetration is equally
distributed between the adjacent nodes. The tangentighcoforces are shown in Figure 4.24.
As expected, they point in the opposite direction of the ¢stigl movement and are consistently
split between the two involved nodes of an edge (line) elémirthe middle part of Figure 4.24
it can be seen that the contact point is located near thendtvied node, and thus its part of
the overall tangential force is much larger than for the ptheolved node. The nal state of
the simulation is shown in the right part of Figure 4.24. Héhe contact point has moved from
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Figure 4.24: Deformed state and tangential contact fomesdn-parallel edge-to-edge contact:
initial setting (left), solution at step 100 (middle) andwmn at step 250 (right).
The gure is taken from Farah et al. [71].

the initial slave line element to its left neighbor, and camgently the outer left node now gets
a share of the contact force. This transition from one lirem&nt to another only works in
a robust manner whe@!-continuous nodal tangent elds are used. These elds asethan
unique tangent de nitions at each node, see (4.45) and )4.46

Finally, the conservation of linear and angular momentumvusstigated. According to the
explanations in Section 4.8.3, conservation of linear arghar momentum can be formulated
as conservation requirement of interface forces and mareting on the slave and master
side, respectively. Thus, the resulting plots for the altsedhterface forces and moments in this
numerical example are given in Figure 4.25. It can be seantlik slave and master sides behave

slave —— master —&— sum —%— slave —— master —&— sum ——
15000 3000
ey
10000 / N\'“'\N 2000 el
g 5000 2 1000 i
s g
g Oméxx KKK NN K Q 0
5] 8
£  -5000 \E&ﬁ & -1000
£
-10000 ‘Seag -2000
-
-15000 -3000
0 50 100 150 200 250 0 50 100 150 200 250
time step time step

Figure 4.25: Absolute values of interface forces (left) ammments (right) for frictional contact
of non-parallel edges. Master quantities are de ned to lgatiee for visualization.
The gure is taken from Farah et al. [71].

identically, which leads to an excellent balance of foraed mmoments at the contact interface.
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Figure 4.26: Relative errors of interface forces (left) andments (right) for contact of non-
parallel edges. Comparison of contact with friction (reddl @ontact without fric-
tion (blue). The gure is taken from Farah et al. [71].

The interface moments only take non-zero values after the $step 50, since then the tangential
movement begins. The kink arising in all curves at ca. tinap 4185 occurs due to the transition
of the contact point from one line element to another. A dietiaview on the conservation of
forces and moments is provided in Figure 4.26. In the leftquie, the relative error of the sum
of interface forces from slave and master side with respettid slave side force is plotted for
contact with friction and frictionless contact. It can besethat the interface forces and thus
the linear momentum iexactlyconserved for both scenarios, i.e. an accuracy up to machine
precision is reached, which was expected from the invasiggin Section 4.8.3. The right
plot in Figure 4.26 shows the same error calculation for tiierface moments. As explained
in Section 4.8.3, conservation of moments and consequémlyangular momentum is only
guaranteed for contact without frictional effects. For si@ulation without friction, again, an
accuracy up to machine precision can be achieved. Howdneergtative error for contact with
friction seems to be signi cant at the beginning of the siatidn. Yet, as can be seen in the right
part of Figure 4.25, the absolute value of the moments fosldnee and master side is practically
zero at the beginning of the simulation. Thus, the largetikeaerror that can be observed in
Figure 4.26 until time step 50 is not relevant in practice.s@sn as the absolute value of the
interface moment increases after time step 50, the relatioe decreases towards cirg®%,
which is acceptable from an engineering point of view. ltidtddoe noted that with an increasing
penalty parameter, and for ner meshes, the accuracy in conservation of interfamoments,
I.e. angular momentum, can be further improved.

4.9.3. Transition between contact scenarios — bending plat e

The next example is utilized to demonstrate the consistansition between point, line and
surface contact. To this end, an elastic plate is pressedsigarigid foundation. The problem
setup is visualized in Figure 4.27. The plate is meshed with 70 3 tri-linear hexahedral el-

ements (hex8) with EAS element technology (cf. Simo andifsb]). The employed material

model is of Neo-Hookean type with Young's modulas= 6:25 10’ and Poisson's ratio = 0:0.
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Figure 4.27: Setup for the bending plate example. The garaken from Farah et al. [71].

The initial distance between the bodies at their closesttpisd = 0:1. The nodes at the edge A,
which points in thickness direction of the plate, are onlgwaéd to move in Z-direction and the
nodes at edge B are subjected to a prescribed total motidy,ef 0:72in negative Z-direction,
which is enforced withir85steps. All frictional and inertia effects are neglectechimitthis sim-
ulation. Obviously, the rst contact occurs at the vertexdaat the lower end of edge A. The
very rst steps involving contact are shown in detail in Figut.28, where the contact tractions
are computed according to (4.108). Speci cally, it can bsaskied that point contact becomes
active at the vertex node in step 5. Until step 7, point cdrdbihe vertex node yields the highest
stress concentrations during the entire simulation. Ip 8t¢he active contact set increases with
the adjacent edge nodes becoming active. Consequentlgptitiact tractions decrease due to
the larger overall contact zone. Solution step 9 is not Vized, but the vertex node and the two
edge nodes remain active. In load step 10, the vertex nodereinactive and the correspond-
ing point Lagrange multiplier takes on a zero value. Newwdss, the contact tractions still keep
their maximum at the vertex node due to the two active edgesadd their modi ed shape
functions, see shape function visualization in Figure 4Tle absolute value of the tractions
further decreases since the stresses are continuoudslgdshidbm the vertex node to the edge
nodes. While only being of qualitative nature, this res@vertheless nicely demonstrates the
ability of the proposed algorithm to robustly change betwgeint contact formulation and line
contact formulation without any heuristic transition pasger.

Until solution step 20, the number of active edge nodes asgs and the two active edge sec-
tors separate from the vertex node, see Figure 4.29. Thetepr21, the rst active surface nodes
occur, and the active surface area completely connects/ithadtive edge sectors in step 25, see
again Figure 4.29. Interestingly, however, the two edgeesambnnected to the vertex node on
edge A are still in contact and the highest contact tractssiisoccur at this region. During the
following steps, the region of active surface nodes comtisly moves towards edge B and the
maximum surface stress values increase. Moreover, the@uhbhctive edge nodes reduces and
the contact tractions at the edge nodes as well as at thexvertie further decrease. This further
underlines the robust and consistent transition betweart,pime and surface contact.
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contact traction

e active nodes

Figure 4.28: Contact tractions and active contact set ®b#nding plate example at the tip of

-~

the plate. The gure is taken from Farah et al. [71].
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Figure 4.29: Contact tractions for the bending plate examphe gure is taken from Farah
et al. [71].
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4.9.4. Conservation properties — falling coin

The next example demonstrates the conservation propefties Lagrange multiplier contact al-
gorithms developed in this thesis, which were previoustgdssed in Section 4.8.3. In addition,
the convergence of the contact algorithms within the senmoath Newton scheme is investi-
gated. The example consists of an elastic coin ( at cylin@ed an elastic foundation, see Fig-
ures 4.30 and 4.31. The employed material model for bothdsadiof Saint-Venant-Kirchhoff

0.21 N T )

Figure 4.30: Initial setting for the falling coin exampléhd gure is taken from Farah et al. [71].

type. The material properties of the coin are de ned with ¥g's modulus beinde =1 10,
Poisson’s ratio being = 0:0 and the density being, = 0:3. The properties of the foundation
are the same except for Young's modulus, which is de neB as4 10°. The dimensions of the
bodies can be seen in Figure 4.30. During the entire sinauathe coin is subjected to a constant
body forceb =  700in negative Z-direction. The edges of the lower surface efftundation
are completely xed during the simulation. The employedtenelement discretization can also
be seen in the Figures 4.30 and 4.31. All in &#248tri-linear hexahedral elements (hex8) with

Figure 4.31: 3D view on the initial setting of the falling noexample. The gure is taken
from Farah et al. [71].

EAS element technology (cf. Simo and Rifai [255]) are empbhyFor the simulation, inertia
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effects are considered and implicit time integration ise@arnth a generalized- scheme intro-
duced in Section 2.2.3. The time integration parameterasehas; = 0:95, which introduces
slight numerical dissipation. The overall simulation timd = 0:055and the time step is de-
nedtobe t=5 10 “ The contact scenario is de ned with the coin being the stady and
the foundation being the master body, respectively. Comtahout any frictional effects is as-
sumed, and line and surface Lagrange multipliers are iotred at the edges and the surfaces of
the coin. A Petrov-Galerkin scheme is utilized for the Lagy@a multiplier interpolation, which
changes the de nition of the weighted gaps according toA3.gee also Popp et al. [214].
The resulting deformation of the coin and the foundationissi@lized for characteristic time

steps in Figure 4.32. Herein, the deformation correspantbrthe rst impact is shown in the
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Figure 4.32: Falling coin example: characteristic stagesleformation. The gure is taken
from Farah et al. [71].

top left part. This impact is resolved entirely by the linegtange multipliers. It introduces
a rotation of the coin, which then leads to the next contdctaion being dominated by the
surface Lagrange multipliers, see top right part of FiguB24The bottom left part of Figure 4.32
illustrates nicely the elastic wave traveling through tharfdation after the rstimpact. The nal
deformation at the end of the simulation is shown in the ottight part of Figure 4.32.
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Figure 4.33: Falling coin example: active edge and surfames (left) and sum of edge and
surface nodes (right). The gure is taken from Farah et d].[7

The mentioned activation and deactivation of the line- amfbse-based Lagrange multipli-
ers is additionally shown in Figure 4.33. Therein, activgeedodes correspond to discrete line
Lagrange multipliers. It can be seen that at most pointsne tcontact interaction is actually
dominated by the line Lagrange multipliers, while only véew situations, such as the one il-
lustrated in the top right and bottom left corners of Figurg24 are characterized by surface
contact. Thus, it can be stated that the overall robustrieg® simulation is strongly affected
by the newly developed segment-based integration schemeécontact presented in Sec-
tion 4.6.2.

Again, investigations concerning conservation propsiie based on the explanations in Sec-
tion 4.8.3. Thus, conservation of linear momentum is addewhen the sum of contact forces
that act on slave and master side vanishes. In analogy, matis& of angular momentum is
achieved, when the sum of interface moments due to contareidahat act on slave and master
side vanishes. For this investigation, the interface foared moments of slave and master sides
are visualized in Figure 4.34. It can be seen that the alesohities of force and moment of
slave and master side behave identically at rst sight amdespond to the impact situations
characterized by the number of active nodes in Figure 4.88:eier, an in-depth investigation
of the conservation properties requires a closer look atdlagive error of the sums with respect
to the slave quantity. The corresponding results are glatt&igure 4.35. As described in Sec-
tion 4.8.3, conservation of linear momentungigranteedor the developed contact algorithms,
since slave and master forces balance perfectly. This oaatsen is achieved up to machine pre-
cision. Conservation of angular momentum is not guaranteede the interface moments do not
balance. However, the obtained error is very small (n@8625% and thus can be considered
negligible from an engineering point of view. Note that camnation of energy can not be guar-
anteed with the presented algorithm, since adequate titegration schemes that resolve the
discontinuities of the interface velocities in the evenanfimpact are required for this purpose,
see Laursen and Chawla [152] and Laursen and Love [153] €limas integration schemes are
not employed and not in the focus of this thesis.

Finally, the convergence rate of the contact algorithmbiwithe semi-smooth Newton scheme
is investigated in the following. Therefore, a characterisme step with line and surface La-
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Figure 4.34: Falling coin example: absolute values of fas forces (left) and moments (right)
for investigation of conservation of linear momentum angdar momentum. Mas-
ter quantities are de ned to be negative for better visadion. The gure is taken
from Farah et al. [71].
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Figure 4.35: Relative errors for balance of interface fer@eft) and moments (right) for the
falling coin example. The gure is taken from Farah et al.][71

grange multipliers being active is considered. The coremeg behavior is shown in Table 4.1.
There, thelL2-norm of the displacement residual, the displacement imerg, the constraint
residual and the Lagrange multiplier increment are giverttie required Newton steps. In ad-
dition, the number of active nodes is provided and the nealirsolution steps with changing
active set are highlighted. At the beginning of the nonliredution procedure; changes in the
active set are carried out. Within these steps, the coresideasrms only slowly decrease, which
is expected for semi-smooth Newton methods, see Popp [Aft@) the correct active set is
found, all norms converge approximately quadratic to zestch is the expected convergence
rate for Newton methods when being close enough to the solugee Section 2.2.4. However,
the Lagrange multiplier increment norm approaches lategeto, which is also expected ac-
cording to the classic textbook about constrained optitianeBertsekas [27]. For the sake of
completeness, it should be noted, that the nal numbeB&#ctive nodes consists @4 edge
nodes an®4 surface nodes
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step| displ. residual | displ. incr. constr. residual LM incr. active nodes
1 | 228670&+01 | 24903@ 01| 1:78942+05 | 2286002+ 05 | 207 ()
2 | 1:74212+01 | 25795k 02| 1:77194+ 05 | 3:2150®+05 | 130()
3 | 89243%+00 | 1:7693@ 02| 1:1120&8+05 | 247264+05 | 96 ()
4 | 29258%®+00 | 7:2937k 03| 311699+ 04 | 1:3040&+05 | 89 ()
5 | 34427@ 01| 1:7293@ 03| 2:6068®+03 | 3:5913%2+04 | 88 ()
6 | 3:8124% 03] 1:4231k 04| 3:.0087& 01 | 229216E+03 | 88
7 | 5:0949k 08| 3:4604@ 07| 45739k 06 | 1:3819&+00 | 88
8 | 851222 11 |554522 12| 28101 11 | 1:6854&% 05|88
9 | 822572 11| 65043k 15| 2:0712® 11 | 433384 09| 88

( ) = change in active set

Table 4.1.: Convergence behavior of the all entity contégbréghm in terms of the displace-
ment residual norm, the displacement increment norm, thetcaint norm and the
Lagrange multiplier increment norm for a characteristiodistep. In addition, the
change in active set and the number of active nodes are given.

Figure 4.36: Initial setting for the frictional plate on fdaexample. The gure is taken
from Farah et al. [71].

The convergence results demonstrate that the all entittacbformulation developed in this
thesis is perfectly incorporated into the semi-smooth Mewhethods from Section 3.5.2. Al-
though the Lagrange multipliers for line and surface cadrntave different physical interpreta-
tion and are of different units, an excellent performancthefnonlinear solution scheme could
be achieved. One basic aspect of this result is the consigtearization of the line contact
algorithm (cf. Appendix B) with all geometrical operationsing considered.

4.9.5. Frictional contact — plate on plate

Finally, it is demonstrated that the developed contact tdaton allows for capturing complex
frictional effects in the nite deformation realm. For thmirpose, two elastic plates are con-
sidered, see Figures 4.36 and 4.37. The material model torfates is of Neo-Hookean type
with Poisson's ratio of = 0:3. Young's modulus for the lower plate is chosenfass 5 10°
and Young's modulus for the upper plateis= 7 1. A quasi-static simulation is performed
and thus inertia effects are not considered. The dimengibtise plates and their orientation
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Figure 4.37: 3D view on the initial setting for the frictidnate on plate example. The gure is
taken from Farah et al. [71].

can be extracted from Figures 4.36 and 4.37. During theeesiimulation, the lower plate is
completely xed at its left face side A and the upper plateubjscted to a prescribed displace-
mentdgne = [dy; dy; d;] at its right face side B. In the time intenv@l t < 6 the displacement
componentd, is linearly decreased frofito 0:75 and all other displacement components
of dgoc remain zero. Afterwards, in the time inten@@l t < 18, the displacement componeit

is linearly decreased fro@dto 0:6, the componend, is kept constant and, = 0. Thus, the
overall simulation time iST = 18:0. The time step size is de ned ast = 0:05, and con-
sequently360time steps have to be computed. Spatial discretizationalszesl with tri-linear
hexahedral elements (hex8) with EAS element technologySiofio and Rifai [255]) as can be
seen in Figures 4.36 and 4.37. All in all20elements are employed. With regard to contact
interaction, the upper plate is de ned as slave body andawel plate acts as master body. Fric-
tional effects are described by a coef cient of frictien= 0:4. The complementarity parameter
for the normal contact is de ned tQ, = 2 and the parameter for frictional slidinggs= 3000.
Both parameters are constant for the entire simulation. Duke tilted upper (slave) plate,
the resulting contact interaction is of edge-to-surfagetywhich is governed by the newly de-
veloped line contact algorithm. In addition, two verticdslee slave body are also in contact
with the master plate, which represent an additional padntact scenario also enforced with
Lagrange multipliers. Shortly after the considered siriiatatime, the contact scenario would
change to surface contact.

The resulting normal contact stresses at time 6:0 are visualized in Figure 4.38. It can
be seen that the stress level is comparably low in the middiieeocontact line and drastically
increases towards the two vertices. These effects neaettieas in at-on- at contact interac-
tions are well-known as contact singularities and haveadliyédbeen investigated in several pub-
lications, see for example the work in Ciavarella et al. [42dmninou [47] and Hojjati Talemi
[111]. The developed all entity contact algorithm allows rfobustly representing the expected
stress state. Also the relatively sharp transitions batvike low stress level in the middle of
the contact line and the contact singularities at the vestis accurately captured by the algo-
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Figure 4.38: Frictional plate on plate example: deformatand normal contact stresses at
timet = 6. The gure is taken from Farah et al. [71].
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Figure 4.39: Frictional plate on plate example: top viewhwiangential contact stresses at
timet = 18. The gure is taken from Farah et al. [71].

rithm. The tangential traction due to frictional effectsla end of the simulation, i.¢.= 18:0,
are shown in Figure 4.39. Therein, a top view on the two pleteasbe seen. As expected, the
corresponding frictional stresses show the same pro lehasnbrmal contact stresses in Fig-
ure 4.38. Finally, thé.?-norms of the resulting normal force vector and tangentiedeé vector
are plotted for the entire simulation in Figure 4.40. Botlcés linearly increase in the time in-
terval0 t < 6, which corresponds to the lowering of the upper plate thinailng prescribed
displacement componedi. Subsequently, frictional sliding is initiated by the givdisplace-
ment componerdy, which leads to nearly constant forces in the time intevalt < 18. Slight
oscillations occur due to the non-smooth geometry appration inherent to rst-order (hex8)
elements.

All in all, the results of this example clearly demonstradtattthe novel all entity contact
algorithm is also able to robustly calculate frictional tat scenarios.
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Figure 4.40: Frictional plate on plate example-norm of normal force vector (red) and tan-
gential force vector (blue) for the entire simulation. Thgre is taken from Farah
etal. [71].
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Contact mechanics including wear is one of the main causesifisequent failure of machines
and component damage and thus highly important for indstgplications. It is a process of
material removal associated with frictional effects, whraight result in nite shape changes.
Wear is a very complex phenomenon, which relates a georaks@tting including external
conditions with tribological material behavior in the cact zone. Therefore correct predictions
of wear effects are quite dif cult to make, see Meng and Ludddi73]. The main wear types
from the classi cations in Popov [209] and Rabinowicz [228¢ abrasive, adhesive corrosive
and fretting wear. Nevertheless, there are many more wpastfpr different materials and load
cases. The formulation predominantly employed for wearwations is the linear phenomeno-
logical law by Archard [7], which is based on rst studiesrindHolm [112]. It relates the worn
volume to the normal contact force, a characteristic sfjdemgth and a problem-speci ¢ wear
parameter. There are also other wear laws available intérature, such as the nonlinear wear
model from Ho and Peterson [110], Pavelescu and Musat [188Rdee [230, 231]. However,
Archards's law is also employed in this thesis as generakweacription without discussing
microscopical effects of special wear types. Thus, the ywgeanomenon is only considered as
macroscopical effect exemplarily driven by Archard's wéaw, while the developed formula-
tions could obviously also incorporate with other macrgscovear laws.

Main focus of this chapter lies on the developed numerigdrthms to treat fretting wear
effects and wear resulting into nite shape changes. Thetéie presented algorithm for sim-
ulating fretting wear problems is basically taken from tlhar's publication Farah et al. [69]
and the explanations for the nite wear algorithm and theegponding examples are strongly
based on the author's publication Farah et al. [74]. Addgity, an extension of the developed
nite wear algorithm towards the interaction of wear pherera with thermal effects is given
based on term paper Préll [215], which was supervised byutieoa

The following chapter starts with a state-of-the-art ov@wof already existing wear algo-
rithms for considering fretting wear and nite wear phenaraeAfterwards, the fundamental
information regarding the wear phenomena for nite wear &metting wear considerations are
given. Then, two developed nite element approach for spatiscretization of wear depth are
introduced, which are applied to fretting wear and nite weanulations. Finally, the frame-
work for nite wear simulations is extended towards therstoicture-contact-wear interaction.
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5.1. Fundamental approaches to computational wear
modeling and research objective

5.1.1. Fundamental approaches

In general, there are two different classes of wear treatimetomputational contact mechan-
ics: either only the consideration of very small amounts eawor nite wear resulting in
signi cant shape changes. The rst class is usually tredigdnodi cations of the gap func-
tion, which results in slightly overlapping bodies, see desSibar and Chiumenti [54], Gitterle
[87], Rodriguez-Tembleque et al. [235], Serre et al. [28&mberg [260] and Strémberg [262].
When the wear depth exceeds a certain amount of materiaMdssh is usually equivalent to
one or more element rows, the modi cation of the gap functeads to a decrease of robustness
and solution accuracy. Thus, the geometry of the bodiescandequently the mesh, must be
adapted properly. In this regard, procedures ensuring equede mesh relocation are considered
to be in the class of nite wear algorithms. Standard rem@giprocedures are employed in var-
ious contributions to prevent bulk elements from degermarasee Hegadekatte et al. [101], Mc-
Coll et al. [167], Molinari et al. [175], Oqvist [187], Paualiet al. [197], Podra and Andersson
[208] and Sfantos and Aliabadi [249]. An alternative appgtot guarantee proper mesh quality
is the Arbitrary-Lagrangian-Eulerian (ALE) formulatiowhere the mesh movement is consid-
ered as pseudo-elasticity problem, see Stupkiewicz [283p so-called wear-box models are
available, which restrict the zone where the mesh movenadetstplace and rearrange nodes
consistently to guarantee a good mesh quality, see Doca [61]

Most of the solution procedures for wear evolution are baseah explicit forward-Euler time
integration scheme. Concretely, the standard contactgaols evaluated and only afterwards
wear is calculated as a post-processing quantity for theitas step or even for a certain num-
ber of time steps. This incremental procedure is widely eygyd for the nite element method
in Lengiewicz and Stupkiewicz [157], McColl et al. [167], @st [187] and Podra and Anders-
son [208] and for the boundary element method in Kim et al7]1Bee et al. [155], Rodriguez-
Tembleque et al. [233, 234, 235], Serre et al. [246] and §faand Aliabadi [248, 249]. Wear
algorithms based on implicit time integration schemes aesl@gminantly available for small
amounts of wear and usually introduce additional unknowtwsthe linearized system of equa-
tions, see Ben Dhia and Torkhani [23], Jourdan and SamidH dr3d Stromberg [260]. To the
knowledge of the author, the algorithm shown in StupkieW&&3] is the only contribution in
the context of nite element analysis that treats wear iigi in a nite deformation and nite
wear regime. Yet, itis limited to quasi-steady-state cotgaenarios.

Restrictions to periodic cycling and prescribed relativevement of the involved bodies are
often made in order to simplify the wear algorithm, see Aogdi8], Argatov and Tato [9],
Lengiewicz and Stupkiewicz [158] and Paczelt et al. [198}é&xiprocal sliding and Paczelt and
Mroz [191, 192] and Stupkiewicz [263] for general stead3testsimulations. This assumption
may be valid for classical tribological test con guratiohike pin-on-cylinder tests, but it is
certainly not applicable to general scenarios.

The underlying contact frameworks for the wear algorithmssteng in the literature are
mostly based on node-to-segment contact formulationsiosesxample Lengiewicz and Stup-
kiewicz [157] and Stromberg et al. [261]. Nowadays, the mwomtethod is undoubtedly the most
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preferred choice for robust nite element discretizatiomsomputational contact mechanics. As
already introduced in Chapter 3, nite deformation mortigoaithms with and without frictional
effects can exemplarily be found in Popp et al. [212], Pusblaaursen [219], Puso et al. [220]
and Yang et al. [301]. Still, the only wear algorithm basedaanortar nite element discretiza-
tion that can be found in the literature is given in Cavaléard Cardona [36], where only small
wear effects without shape changes are considered.

Computational approaches for wear modeling in combinatiith thermo-structure interac-
tion effects can only very rarely be found in existing liten. In Ireman et al. [125] wear effects
within a thermo-structure simulation are considered foramal properties corresponding to alu-
minium and steel in a small deformation, small temperathenge regime in combination with
a node-to-node contact algorithm. In addition, the weatldéps been taken into account as
additional contribution to the gap function. Therein, theawcoef cient and the coef cient of
friction were de ned to be independent from the temperaguhe Molinari et al. [175] it was
suggested to de ne the wear coef cient to be dependent orcthieent temperature in order
to capture oxidation effects of the surfaces and other céigyneffects, which arise in a high
temperature regime. The numerical model therein is baseth@mexperimental observations
in Lancaster [150], where a pin is pressed onto a rotating fdisdifferent angular velocities.
In the recent publication Pearson et al. [200], it was expenitally observed that an increasing
temperature leads to the formation of a glaze-layer frommid@articles. Consequently, the wear
coef cient and the coef cient of friction decrease for higémperatures. However, to the best
knowledge of the author, no general approach for thermgas&ire-contact-wear interaction in a
nite deformation, nite wear regime is available in theéitature.

5.1.2. Speci cation of requirements

Based on the previous explanations on already existing algarithms, the most important re-
quirements for the development of accurate and ef cienttarapproaches for wear modeling
are listed in the following.

3D fretting wear modeling with frictional mortar method When dealing with fretting wear
problems, the underlying contact framework crucially iences the accuracy of displacement
and stress results and consequently the overall wear dioulds mentioned above, almost all
existing wear algorithms are based on node-to-segmenbagipes or even node-to-node contact
discretizations. Nowadays, the mortar method is argudig#yntost robust and accurate spatial
discretization technique for computational contact peaid and is thus predestinated as basis
for the wear algorithms. Implementation of a fretting wep@ach within a mortar based con-
tact framework in a nite deformation regime was rstly caed out for 2D problems in Gitterle
[87]. In Cavalieri and Cardona [36], modi cation of the gamttion for small amounts of wear
has been realized with the mortar method in a 3D regime, hhowt considering friction. How-
ever, no fretting wear algorithm based on a nite deformatmortar framework with frictional
effects being included can be found in the existing literatu

Computationally ef cient algorithm for fretting wear prob lems Simulation of fretting

wear processes requires an ef cient solution procedureesusually a large number of load-
ing cycles has to be performed in order to investigate thifsets. Consequently, the amount of

101



5. Mortar Methods for Wear Modeling

volume loss due to frictional wear effects is usually coasgd as additional contribution to the
gap function, which represents a valid modeling approacbnithe wear depth per element size
is reasonably small. When employing the mortar method inlsoation with a Lagrange mul-
tiplier approach for constraint enforcement, which is wiatedly the most accurate choice, not
only the overall system size but also the effort in solving slistem of equations increase. Thus,
the already introduced dual shape functions based on bgotiality conditions to standard
shape functions are the preferred discretization apprwachder to achieve a computationally
ef cient wear modeling approach.

Finite element formulation for the computation of nite wear Finite deformation con-
tact problems with frictional effects and nite shape chasglue to wear in a non steady-state
regime are considered in this chapter. While nite wear@Hfdave already been considered in a
steady-state regime (cf. Stupkiewicz [263]), no genenahfdation, which allows for arbitrarily
changing loading conditions was developed in the contexth@fmortar nite element method
so far.

Implicit time integration for nite wear effects The concept of nite wear computation has
to be considered not only in the dimension of wear depth pdy Bae, but rather in the ratio of
wear depth per element size. Thus, the ner the mesh resaltitie earlier should wear effects
be considered in a nite manner. Consequently, also smaltl lsteps could lead to nite wear
effects with respect to the element size and a proper terhpsalution would require a very
small time step size. This inevitably leads to the requineinoé a fully implicit treatment of the
nite wear effects. Up to the knowledge of the author, theyoimhplicit nite wear approach
was developed in Stupkiewicz [263], but it is restrictedtiasly-state loading conditions. Thus,
a general implicit algorithm, which allows for the compiunatof nite wear effects is a com-
pletely unanswered question.

Condensation of discrete wear unknown®epending on the size of the contact interface,
the spatial discretization of Archard's law for the nite aealgorithm could lead to an increase
in the size of the global linear system of equations. This loaravoided by the use of dual
shape functions, which satisfy the biorthogonality caodit see Section 3.4.1.2, since they al-
low for a computationally ef cient elimination of the ad@inhal discrete unknowns due to the
wear discretization by a static condensation procedures;Tthe idea of dual shape functions is
consequently adopted from the Lagrange multiplier disza&on in Popp et al. [211, 212] and
applied to frictional wear problems.

Extension to thermo-elastic contact problems with nite stape changes due to weasince
wear phenomena are strongly coupled to frictional disgpatheir interaction with frictional
heat generation and general thermal effects plays a signi cole in industrial applications.
Also for computational contact problems with thermal effée¢he mortar method has proven
to perform excellently, see Hieber and Wohimuth [116] anitzS al. [245]. But up to now,
neither numerical investigations concerning the inteoacdf thermal effects in wearing contact
for small wear and small deformation nor their extensionaxs nite deformations and nite
shape changes can be found in the existing literature indhtekt of the nite element method.
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5.1.3. Proposal for mortar based wear approaches

The mostimportant ingredients and new scienti ¢ contribns of the presented wear approaches
are given in the following:

extension of the nite deformation dual mortar contact fotation towards 3D fretting
wear simulations, see also Farah et al. [69].

implementation of the rst fully implicit nite wear algothm in a non-steady-state, nite
deformation regime based on dual mortar methods with antraryiLagrangian-Eulerian
approach, see also Farah et al. [74].

extension of the developed nite wear algorithm towardsrthe-structure-contact-wear
interaction problems.

In summary, the methods proposed in this chapter bring begeixisting ideas of computational
wear modeling and dual mortar nite element methods andrektaem towards a comprehen-
sive and more general framework for ef cient treatment ofwwproblems than possible to date.

5.2. Fundamentals on wear phenomena

The main focus of this chapter is on the development of wemrdahms based on mortar meth-
ods. For this purpose, any phenomenological wear law caailehiployed. Thus, the wear phe-
nomena are considered in a macroscopic and very generallftowever, the basic types of wear
phenomena and their physical background are brie y oudimethe next subsection. Then, the
commonly employed wear law of Archard is introduced, whictsas basis for the developed
wear algorithms regardless of which wear type is consideseel Subsection 5.2.2. Finally, the
continuum mechanical description of wear problems withstderably large material loss is
given in Subsection 5.2.3.

5.2.1. Frictional wear phenomena

Wear phenomena can be generally described as volume logs flugtional dissipation at the
contact interface. Thus, according to Popov [209], frictend wear always appear together.
However, depending on the application, one could also medal without friction and friction
without wear. In the following of this thesis, the most gerl@ssumption of wear with frictional
effects is modeled. Despite this very general wear desenpit can be distinguished between
many types of wear, see Popov [209] and Rabinowicz [223].nbst relevant wear phenomena
arefretting wearandabrasive wear

5.2.1.1. Fretting wear

Information concerning fretting wear and fretting fatigcen be found in the vast amount of
literature existing on this topic, where the interestedlezas exemplarily referred to Aldham
et al. [5], Hills [108], Hurricks [124] and Waterhouse [284ih this subsection, only a brief
description of these phenomena is given.
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-

Figure 5.1: Fretting wear: micro crack initiation (left)dafracture of micro cracks which leads
to material removal (right).

>

<

Figure 5.2: Forms of abrasive wear: three body abrasive \{le&i) and two body abrasive
wear (right).

Fretting wear is a destructive process of interface degi@davhich occurs between clamped
contacts when subjected to repeated loading cycles andeni@lative motion. In each of these
cycles, no noticeable change in the surfaces appear, leutaaftertain number of cycles micro
cracks could occur due to the occurring large shearingsssedepending on the employed
material, the coating and the loading condition, theseascacks could erode and lead to slight
material removal, see Figure 5.1. Itis also possible thairttroduced cracks propagate and lead
to bulk brittle fracture, which is then denoted as frettiagjgue. Distinction between fretting
wear, fretting fatigue and other fatigue classi cations @so be made based on the length and
orientation of the cracks relative to the contact surfaas the presence of plasticity near the
interface. A detailed classi cation of these related efeis not required in order to construct
a nite element algorithm for macroscopic wear modeling @therefore beyond the scope of
this thesis.

5.2.1.2. Abrasive wear

Abrasive wear is characterized as material loss when twimdis/ely hard bodies are in contact
or when three body contact occurs with hard particles bewmglved, see Godet [89]. This is
schematically visualized in Figure 5.2. During the procafsgbrasive wear, the harder material
penetrates and cuts the softer body. In the left part of Eigu2, three body contact is shown
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for a zoom in view. The particle is harder than the two conitacties and thus leads to material
loss at them. Two body wear is shown in the right part of Fighuz There, the interaction
with the worn debris particles is negligible and the two lesdihemselves cause the abrasive
behavior. However, for the numerical algorithms develojpetiis thesis, only two body contact
is explicitly modeled. The effect of three body contact cbbé included in the wear parameter
later on (cf. Section 5.2.2), but the debris particles thelues are not modeled as additional
bodies.

5.2.1.3. Further wear phenomena

In addition to the aforementioned fretting wear and abeasrear, there are many more types
available in the existing literature. For exampdelhesive weanccurs when two bodies with
comparable hardness are in contact. According to Popo\,[&@9r interaction can be described
as welding together of surfaces with micro-roughnessvald by tearing processes of particles.
Characteristic for this type of wear is the plastic defoiorabf metals at the contact interface
when reaching a certain stress level. Furthermooerosive weaiis caused by chemical modi-
cations of the surface which leads to erosion at the inteflayer. Without frictional sliding,
the corrosive processes form a Im on the contact surfacég;won the other hand slows down
the corrosion. However, when the loading conditions catsgdnal sliding, the corrosive layer
will be worn away and the interface erosion continues.

5.2.2. Archard's wear law

For the following derivation of the wear algorithms, the wksav from Archard [7] is employed
as a phenomenological approach to relate kinematic qiemntitith the worn volume. The es-
sential aspects of the proposed approach are however ntedito this speci ¢ type of law, but
can also be applied with other (macroscopic) wear laws. &b wear law is a general for-
mulation, which is valid for various physical types of wdaut also ignores some fundamental
effects such as thermal relationships and the interactitmworn material within the contact
zone. However, when considering only relatively smalliskigvelocities it is a suitable basis for
further algorithmic developments, see Rabinowicz [223Jcdrding to Archard's law, the worn
volumeV,, is globally expressed as
PS

Vw = K o (5.1)
with the normal forceP, the sliding lengthS, the hardness of the softer materhland the
dimensionless wear coef ciet . Employing Archard's law within a nite element formulatio
later on requires a local expression for the loss of matd¥il this purpose, the amount of worn
volumeV,, is expressed as wear depthper area. Thus, the global form of Archard's law is
reformulated as rate of the wear depth in spatial con gorati

W= ka an JJ A reljj ; (52)

where the local wear coef cient in spatial con guratiég is not a dimensionless parameter, but
has the dimension of an inverse pressure. It can be equiladxpressed in terms of the spatial
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frictional dissipation rate density. which has been already introduced in Section 3.1. Based on
the considerations in Ramalho and Miranda [224], the ratbe&patial wear depth reads:

w = k—FWoL: K d: (5.3)

Here, the original wear coef cierkt,, and the Coulomb friction coef cienE are combined to
the so-called energy wear coef cielit Experiments in Ramalho and Miranda [224] suggest that
assuming a constant energy wear coef cient leads to begselts than assuming a constant wear
coef cient, thus indicating the strong coupling of wearesfts and frictional sliding conditions.

In the following, a relation between spatial and materiabis derived based on the consid-
erations in Lengiewicz and Stupkiewicz [157]. The transfation of the frictional dissipation
rate densityd to the material con guration (i.e. tB.) was already outlined in Section 3.1 and is
shortly reviewed as

D= jad; (5.4)

with dA and dA\ being the areas of an in nitesimal surface segment in spatid material de-
scription, respectively. The relation between the spatedr rate and its material counterp@tt
can be established by expressing wear as a volume loss pefFarethis purpose, it is assumed
that the loss of material is de ned in the spatial and matené normal direction, respectively.
Thus, mass conservation yields
dv _ 1dm dp 1 dm_

wdt = TR and Wdt= A, odAg (5.5)
Here, as introduced in Chapter@/ represents an in nitesimal volume element in the spatial
con guration, whereasl\, is the corresponding counterpart in the material con goratAd-
ditionally, is the spatial density and, is the density in the material con guration. Enforcing
mass conservation yields

jaw=J W; (5.6)

whereld is the determinant of the deformation gradient. Assumingrestant friction coef cient
and having equations (5.4) and (5.6) at hand, it is obvioasttie wear coef cients in spatial
and material con guration are related by

Ky = J Ky (5.7)

To the author's knowledge, there are no unambiguous andwsive experimental data, which
would justify the choice of a constant wear coef cient in m¥@al or spatial con guration as
being more physically meaningful. Therefore, both appneadave been implemented and will
be evaluated in the numerical examples later on. Howevercouald think of non-constant wear
coef cients in both con gurations, which depend on the @nt normal load or other quanti-
ties. For this purpose, it should be mentioned that the wofRaarson and Shipway [199] has
indicated that the wear coef cient is independent of th@ simplitude and thus independent
from displacement quantities. Employing a backward Eutbeme for local time discretization
of (5.2) results in the incremental formulation

W = KwjPnj JjV el t = KujPrl JjU ;reil; (5.8)
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with u . being the relative tangential slip increment within oneysketime step. Assuming
that both involved bodies may undergo a process of mateygd &t the interface, two wear
quantitiesv® andw® have to be de ned for the slave and for the master surfacpeatively.
Correspondingly, two generally different wear coef ciskf? andk{® are introduced. As the
kinematic quantitiep, andu .. are equivalent for slave and master side in the continudus se
ting, only the wear coef cients cause differences for slaiged and master-sided wear. Thus,
the relation between wear on the slave side and wear on thiensade can be directly formu-
lated as ratio of the wear coef cients:

K@
wd = Gy w®: (5.9)
"\

Considering the absolute wear depth without taking intmantthe different signed wear quan-
tities due to opposed interface normals for slave and magtey the cumulative wear depth can
be expressed as

w = (kG + k) jpni i U ; el (5.10)

5.2.3. Continuum mechanics for nite wear

When taking into account nite wear, the mechanical con gtion to which kinematic quan-
tities are referred constantly changes, which introducesmgr additional complexity in con-
tinuum modeling as compared with nite deformation contpobblems without removal of
material due to wear, see Chapter 3. Therefore, an additcmmeguration of each involved
body is introduced: the time-dependent undeformed mai@vian) con guration () RS,
which represents the unloaded worn state. This concept luifé ¢on guration, which repre-
sents the undeformed worn state was sucessfully employezhigiewicz and Stupkiewicz [157]
and Stupkiewicz [263] and thus it is the basis for the follegwconsiderations. The material con-
guration is occupied by all material point§™ at a certain timé. The Dirichlet, Neumann and
contact boundaries of the material con guration regfl,, () and (). It is assumed that
reference, spatial and material con gurations are coiacidor the initial timet = 0. The inter-
connections between these con gurations are visualizedrie exemplary body in Figure 5.3.
By introducing the material con guration{), the reference con gurationg) can be interpreted
as observer domain for the material motignviz.

8

Sl a®r (XX 5.1

(X;t)= X:
Here, the bijective mappingconnects a material poit with its observer pointin the reference
con guration X . An additional bijective mapping is introduced to describe the connection
between observer poink and spatial pointg, as
8
ool ) (X! oxg

X 0o x. (5.12)
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Y

material configuration /\spatial configuration

reference configuration

Figure 5.3: Three continuum mechanical con gurations ameirtinterconnections: reference
con guration, material (worn) con guration and spatialrcguration. Figure taken
from Farah et al. [74].

Accordingly, the mapping of the physical motionoriginally de ned in (2.1) changes and is
now expressed with and as
8

S ORI S ORI OF 5.1
: (X)) = x:

The mapping in its general form is denoted asbitrary-Lagrangian-Eulerian(ALE) for-
mulation, since the observer is neither xed at a materiahpoor xed at a spatial point. By
degeneration of the material mappingo an identity mapping, the ALE approach reduces to
a pureLagrangianrepresentation. On the contrary, when the spatial mappingpresents the
identity mapping, the approach changes tdeaerianrepresentation. This concept of an ALE
formulation is widely used, e.g. for uid-structure intetaon problems Kloppel et al. [138]
and Mayr et al. [166] and nite strain plasticity models Armeand Love [10]. More detailed
explanations of ALE problems can for example be found in Belyko et al. [16] and Huerta
and Casadei [118].

5.3. Finite element approaches for wear discretization

In the following, it is distinguished between two fundansdiyt different nite element ap-
proaches for discretizing the volume loss, i.e. the weathdejgain, wear phenomena are con-
sidered as a description for material loss driven by Arcedeiv regardless of the underlying
physical effects. First, the so-call@tternal state variable approacis introduced based on the
investigations in Farah et al. [69] and Gitterle et al. [88kxpresses the wear depth in a weak
sense and in terms of the already existing quantities. Timugdditional unknowns enter the
discrete system of equations. The alternative method of disaretization is based on the work
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in Farah et al. [74] and is namedimary variable approachHere, wear is completely discretized
on the contact interface and enters the system of equatsoaddational set of unknowns.

5.3.1. Internal state variable approach

The internal state variable approach was developed in theexbof 2D dual mortar methods
in Gitterle [87] and was extended towards 3D applicatiorisarah et al. [69]. Thus, the follow-
ing explanations are strongly based on the work in Farah 2. The internal state variable
approach is based on expressing the wear depth in termeabiglemployed quantities, namely
the normal contact pressupg and the displacements” . Therefore, the basis for the nite el-
ement discretization of wear with the internal state vdeapproach is the expression of the
cumulative wear in (5.10), which reads

w = (kG + k) jpni i U ; el (5.14)

Here, the wear incrementw represents the total wear depth per time step of the twowedol
slave and master surfaces. Now, the cumulative wear caeaftds introduced and reads

kw = kP + k@: (5.15)

Keeping in mind the well-established slave-master prilecqd mortar contact discretizations
introduced in Chapter 3, all following relations are stavecthe slave side. Thus, the weighted
wear increment-w® is de ned on the slave side and is evaluated as integral ezfme of (5.14)
over the slave side, via
z

w =k, (1) Prjju ;reld] dA: (5.16)
Herein, the normal contact pressuyxecan be identi ed as normal part of the contact Lagrange
multiplier . Thus, the discretized form of the weighted wear incremeﬁﬁl) for slave nodg-

reads
z

W = ke " ndiUell dA; (5.17)

@
ch
with A,- representing a test function for the wear equation. Its jghysterpretation and de ni-
tion will be discussed in Section 5.4.2.1. Similar to thectige weighted gap function in (3.40),
the discrete weighted wear increment represents a distisggace quantity, which is integrated
over the discrete slave surface. Therefore, the discreightesl wear could be interpreted as
volume loss per slave node.

In addition, it is important to point out that the employeigh shcrement in (5.17) is not related
with the weighted relative tangential velocity in (3.43)t bather a point-wise evaluated quantity.
The weighted relative tangential velocity is created by ayveng introduced by the variation of
Lagrange multipliers, which is represented by the shapetiom ; within the time derivative
of the mortar matrice® andM in (3.43). Employing the frame indifferent relative tangeh
velocity from (5.17) is only appropriate when assuming astant normal pressure over the
local support of a node and would allow to exclude the norraal @f the Lagrange multiplier,
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5. Mortar Methods for Wear Modeling

from the integral in (5.17). However, this simpli cation winl decrease the accuracy of the
traction interpolation, which directly affects the qualdf the computational results. Therefore,
the non-weighted slip increment is employed for the weidhtear and slight discrepancies
will be accepted. Further information concerning the ca@tthe slip increment can be found
in Gitterle [87].

5.3.2. Primary variable approach

The second possibility of discretizing the wear depth issibvealled primary variable approach,
which was rstly presented in Cavalieri and Cardona [36] osmall amount of wear and has
been extended to nite wear simulations in Farah et al. [Hgre, Archard's wear law is rewrit-
ten by employing the method of weighted residuals

4
o WO WO K iU eii) 6A = O; (5.18)

with the wear weighting functionsv (). In contrast to the internal state variable approach, the
wear depth on slave and master side is explicitly discrétza

" 9&5)

1) 1 1 2): 2 2
wliw = NOW wlie =" NP W (5.19)
¢ k=1 ¢ =1

wherew(kl) andwl(z) represent discrete nodal wear variables on the slave andakter surface,
respectively. As for the displacement interpolation, dead shape functions based on Lagrange
ponnomiaIleﬁl) and Nl(z) are employed for wear representation. Moreover, the nusnber
nodes carrying discrete wear unknowns are de ned to be gquhé total numbers of slave and
master nodes, i.al) = n® andn{® = n®@ In addition to the discrete wear depth unknowns,
discrete weighting functions are introduced as

%’
1) 1 1 2). 2) (2
wij o = kW wi?] Q = oW (5.20)

ch k=1 ' 1=1

with the nodes carrying discrete wear weightings being eh@cording to the wear interpo-
lation: n{Y = n® andn® = n@. The shape functions{) are de ned in full analogy to the
Lagrange multiplier interpolation, which allows for employing either standard or dual shape
functions, see Section 3.4.1. With the discrete wear unkisamd the weighting functions being
de ned, the calculation of the wear depti’) can be stated based on the weak enforcement of
Archard's wear law in (5.18). Therefore, the normal contaessureg, in (5.18) is identi ed as
normal part of the contact Lagrange multipligrand the discretized wear depth and the discrete
wear weightings are employed, which leads to the resultiagrete wear residuum in global
form:

()= EOw®  TO =0 (5.21)
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5.3. Finite element approaches for wear discretization

Here, the vectow() contains all discrete wear unknowns. The new mortar matiite are
created by assembling the nodal values
z
1) _ 1) 6 @ ) S LA )
EY =, wN&dA; j=1;:n®; k=1;25n®; (5.22)
Z ch
E@ = o ( @ NP ) dA j=1;m50@5 1=1;:n@ (5.23)

jl Wi
ch

It is obvious thatE™ can be interpreted as standard slave-sided mortar niatvisth reduced
dimension. Thus, employing dual shape functions for therdte wear weighting and standard
shape functions for the wear interpolation yields a Petalerkin type formulation and con-
sequently a diagonal matrig® in (5.22). A detailed motivation for such a Petrov-Galerkin
approach can be found in Popp et al. [214] in the context ohtirepenetration constraint for
contact. The bene cial effects " becoming a diagonal matrix can be employed for an ef -
cient calculation of the discrete wear unknowns in (5.2[g, v

w® = E®: 17O - (5.24)

Here, the mortar matri€® is inverted to obtain a solution for the discrete wear unkmsw
The matrixE® in (5.23) arises by integrating the two shape functioifs andN® de ned on
the master side over the slave surface. This is realized plyiag the already introduced dis-
crete mapping ,, twice. Integrating this matrix over the master surface ww@rbuably be easier,
because no discrete projection would be required, but tp #emestablished slave-master prin-
ciple, and thus in some sense the consistency of the mot&gration scheme, all integration
procedures are performed on the slave side. But, it is nobgteed that the matr&® in (5.23)

is strictly diagonal, because the biorthogonality comditof the dual shape functionéz) is en-

forced over the discrete master surfaéﬁ, but the integral expression in (5.23) is evaluated

over the discrete slave surfacng. A strictly diagonal matrixe® could be created by enforcing
the biorthogonality condition between the projected nrasitde shape functions over the slave
surface ((:1,2 or performing the integral evaluation over the masterasugf However, from an
engineering point of view, the resulting error in the prabl®rmulation is negligible. The ma-
tricesT " arise from integrating products of weighting and Lagranggtimlier shape functions

with the norm of the non-weighted slip increment over theslkside, i.e.

z

ij(l) =k o \(,3)1 Wiiu . reii dA ; j=1;:0n®; k=1;:;n®;  (5.25)
Zc;h

ijz) = k® o ( \(,a 0 Biiu. reii dA j=1:::n@; =120 (5.26)

ch
These matrices complete the discrete wear equation.

Remark 5.1. The de nition that the wear weighting functions,; act as dual shape functions
and the interpolation of the discrete wear unknowns is gsliby standard shape functions is
somehow arbitrary. It is also possible to create a PetroveBan type formulation by de ning
the shape functions vice versa. This was also implemenitested and no negative in uence
on the solution quality, the stability or robustness of the@gesed algorithms was noticed.
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5. Mortar Methods for Wear Modeling

5.4. Formulation for fretting wear

Basically, it is distinguished between wear effects rasglinto a relatively small amount of
wear (i.e. wear depth) and wear effects which lead to nitephchanges of the considered
bodies. In this section, the wear effects of small extentareidered. Here, the most important
phenomenon is the fretting wear as introduced in Sectiord A.2First, the problem setting for
fretting wear modeling is stated. Afterwards, the intestate variable approach of nite element
discretization is applied to this problem. Then, the aian of the primary variable approach
to modeling fretting wear is discussed. Finally, numerieamples are shown to demonstrate
the solution quality of the proposed algorithm.

5.4.1. Problem setting for fretting wear

For modeling fretting wear phenomena, no nite shape changke geometry of the involved
bodies due to material loss is expected. But, the nite deftion regime is stillassumed. Thus,
the problem formulation for frictional contact is basigadtill valid and brie y repeated. First,
the IBVP of elastodynamics reads

DivP 0 + B = Pu® n o[0Tl (5.27)
u® = p® on O [0;T]; (5.28)

PO NO = ¢ on © [0;T]; (5.29)
u®(x;0)= ad(X) in §; (5.30)
uD(x:0)= A9 (x) in {): (5.31)

In addition, the frictional contact constraints remain lgreged and are stated as rstly intro-
duced in (3.18):

= ktk Fjpyj O V.egt+ t =0; 0; =0: (5.32)

All these equations are identical to the standard contasitlpm in Chapter 3. The only dif-
ference affects the Hertz-Signorini-Moreau conditiong3rl6). Here, the gap functiog, is
replaced by a modi ed gap functiag}’, yielding

g 0; pn 0; pngy=0: (5.33)

Herewith, the wear effects are modeled as additional dmutian to the gap function. Such
an approach was rstly introduced in Stromberg et al. [264l @mployed in Gitterle [87],
Salles et al. [240] and Stromberg [260]. This approach tesalslightly overlapping bodies,
where the overlap represents the material loss due to weasi@ering the spatial nite element
discretization, it becomes obvious that this approach Ig walid for a very small amount of
wear. The author recommends that the wear depth correspptalihe worn material should
not exceed a characteristic element length at the contiictace in order to guarantee a proper
solution quality.
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5.4. Formulation for fretting wear

5.4.2. Fretting wear algorithm

The numerical algorithm for calculating frictional contagdth fretting wear is based on the mor-
tar contact framework stated in Chapter 3. As explainederptievious section, only the Hertz-
Signorini-Moereau conditions are modi ed, see (5.33). ¢iey the basic modeling assumption
for this approach is to directly modify the gap function acting to wear effects at the interface.
This modi cation is realized by considering the wear depghadditional contribution to the gap
function along the outward normal vector of the contactriate. This modi cation could be
numerically treated with the internal state variable apploand the primary variable approach
explained in Section 5.3. But, the internal state variaplgr@ach is the preferred nite element
approach for simulating fretting wear problems due to itgliek avoidance of additional un-
knowns. This becomes very bene cial when simulating a langenber of cycles, which are
usually required for simulating fretting wear problems.wéwer, in general the primary vari-
able approach could also be used for fretting wear problemsita computational ef ciency
could be drastically increased by employing dual shapetioms as explained in Section 5.3.2.
But, its complete mortar matrices have to be globally assednbvhich is more costly than the
evaluation of the internal state variable approach.

5.4.2.1. Internal state variable approach

The presented algorithm aims to be valid for wear phenonteataésult in a very small amount
of worn volume, thus no macroscopic change of the involvedid®odue to wear is expected.
Therefore, only the gap function within the Hertz-SigneiMoreau conditions is modi ed by
the wear effects. For this purpose, the modi ed giipreads

On = Ot W (5.34)

with the wear depth being de ned according to Archard's lanSeection 5.2.2. In (5.34), mod-
i cation of the gap function is realized by enforcing the wekepth as additional contribution
to the gap function along the normal vector of the contaerfate. Consequently, the modi ed
Hertz-Signorini-Moreau conditions read

oghtw O0; pn O; ph(ghtw)=0: (5.35)

It becomes obvious that these reformulated inequalitiesvahe two bodies to penetrate to an
extent being equivalent to the wear depth. All other equataf the IBVP as well as the frictional

sliding constraints remain unchanged. Consequently,ahational contact constraints in (3.23)
are adapted to

n 2R (O +W( n 0w 0O 8 ,2R§; (5.36)
where the Lagrange multiplier is again chosen fil@im( ). Thus, the weak formulation of this

constraint results in
z z

o n nGdA+  ( n nwdA O (5.37)

where the rst term yields the weighted gap, and the secomd tan be interpreted as weighted
wear, respectively. Since the weighted gap was alreadydatred in its discrete form in (3.40),
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5. Mortar Methods for Wear Modeling

the following details are only outlined for the weighted wdacan be written in its discrete
form for slave nod¢ as

z

W= Ky oy nliUsel dA; (5.38)
ch

where it becomes obvious that the shape funcﬁq)rin (5.17) can directly be identi ed with
the Lagrange multiplier shape function. Thus, the discrete weighted wear and consequently
the entire frictional contact problem for fretting wear dagds only on the already existing dis-
crete Lagrange multipliers and the discrete displacensmso additional unknowns enter the
system of equations. By assuming only very small matergsd tburing the overall time interval,
the wear state is nearly constant within one discrete tireje. Stherefore, this approach is real-
ized explicitly, meaning that wear is post-processed a&feh time step for the considered slave
nodej , via

wi(th) = wi(th 1)+ W (tn); (5.39)
with the accumulated weighted weaf(t, ). Accordingly, the discretized normal constraint reads
i +w 0, o 0 (G t+w)=0 j=1;:5n®; (5.40)

These inequality constraints can then be reformulatedniatdinear complementarity functions
as explained in Section 3.5. Here, the discrete weightedfgagtion has to be replaced by
the modi ed gap, but the basic approach remains unchangedislialize the wear depth in
inward normal direction, the accumulated weighted wgahas to be post-processed, because
it represents an integral quantity rather than a real paysmeasure. Therefore, the weighting
of the wear is removed by dividing the weighted wear infoliorabf a node by the associated
area. By de nition, this information is stored within thest mortar matrixD from (3.35). When
employing the introduced dual shape functions explain&kiction 3.4.1.2, this matrix becomes
diagonal and the area information of the nodes is storedarctiiresponding diagonal entry.
Thus, the physical wear depth can be easily computed via

W

W= j=1;u5n®; (5.41)
Dji

Finally, the algorithm for one time step of the presente@rnml state variable approach for
simulating fretting wear included within the frictional mar framework is shown:
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5.4. Formulation for fretting wear

Algorithm5.1 Internal state variable approach for fretting wear

1. Solve the frictional mortar contact problem without ddesing a change of the actual
wear state.

2. Post-process the wear increment for this time step asibdeddn (5.17) and update the
accumulated wear per node in (5.39).

3. Substitute the nodal weighted ggpby the modi ed gapg; including the updated accu-
mulated wear

& (ther) = &y (thes) + W (t)  j =1;:5n®: (5.42)

By computing the modi ed gap, the time step is completed.

5.4.2.2. Primary variable approach

The primary variable approach for spatial nite elementcdégization was introduced in Sec-
tion 5.3.2 and is not the preferred approach for simulatiatiihg wear problems. This is due to
the necessity of constructing the mortar matriEesdT , which is computationally more costly
than the simple gap update for the internal state varialpeoagh in the previous section. Thus,
its application to fretting wear problems is just brie y dined in the following for the sake of
completeness. Starting point for the derivation of thisoathm is the modeling approach of
modifying the gap function, explained in Section 5.4.1. émirast to the internal state variable
approach for fretting in Section 5.4.2.1, the spatial nodsitpns at the contact interface are
directly modi ed for the primary variable approach, via

x = xO  pOWd  gn O (5.43)

Here, the modi ed spatial coordinat&sautomatically yield a modi cation of the gap function.
Note, this modi cation would only be applied for the calctitan of the gap function and thus the
involved bodies would also slightly overlap. When perfanmspatial discretization of the wear
depth as described in Section 5.3.2, the discrete wear wrisican be explicitly calculated via

w) = g0 1TO (5.44)

Again, this procedure is not recommended for fretting w@&autations since the internal state
variable approach can be realized in a more ef cient manheus, a concluding algorithm is
not provided for the primary variable approach.

5.4.3. Numerical examples

In the following, two 2D examples and one 3D example are pitesk The rst one is an oscil-
lating beam which allows for comparison with results frora literature. The second example is
a typical bridge type fretting test. The last example is atHan contact scenario in 3D, which
is discretized with NURBS elements.
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i

Figure 5.4: Problem setting for 2D oscillating beam. Lengibasures are given in [cm]. The
Figure is taken from Farah et al. [69].
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Figure 5.5: Results for 2D oscillating beam after 3000 dakewl cycles: normal contact stresses
(left) and wear depth (right) compared with reference sotustromberg [260]. Fig-
ure is based on Farah et al. [69].

5.4.3.1. Validation — oscillating beam

The rst example is a 2D oscillating beam rstly presentedStrémberg [260] for a node-to-
segment approach in combination with an augmented Lagnaragleod to enforce the contact
constraints. This example has already been employed inioatdn with a mortar contact al-
gorithm in Gitterle [87]. The problem setting is visualizadFig. 5.4. The beam is xed in
horizontal direction at its left boundary and the lower edf¢he beam is in contact with a
rigid foundation. It is loaded by a constant presspre 5OM—n,’\“ and by a sinusoidal excita-
tion g = 50M¥sin(2 t ). The friction coef cient is chosen a8 = 0:2 and the wear coef cient
isky = 1:0 10 '*Pa !. The material model is of Saint-Venant-Kirchhoff type wRbisson's
ratio = 0:3 and Young's modulu€ = 210GPa. For this simulation, 3000 cycles are calcu-
lated, where each cycle is divided into 80 pseudo-time mergs and the problem is discretized
by 12 30 rst-order quadrilateral Lagrangian elements. Fig. 5.6\8h the results compared to
the reference solution from the original publication Sthiarg [260]. Due to the horizontal load,
a back and forth sliding motion of the beam is initiated, whiesults in a stick-slip transition
at the right side of the contact interface. The potentig sbgion is the zone from the transi-
tion point at 0.03m until the end of the beam. The left sidea@® in stick state for the entire
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Figure 5.6: Problem setting for the bridge type fretting tegh nite element mesh and zoom
for the contact interface discretization, taken from Faetal. [69].

simulation time. This leads to a wear distribution that @ages from the transition point to the
end of the beam. The calculated wear depth shows an excalige¢ment with the reference
solution. In addition, also the stress distributions matei and slight differences occur due to
the fundamentally different contact formulations.

5.4.3.2. Application — bridge type at contact

The next example is a bridge type at contact test where glpidwo bridge-shaped fretting
pads are pushed against a specimen. It is strongly inspydddgati Talemi [111]. The -
nite element setting with the employed symmetry conditisrghown in Fig. 5.6. The fretting
pad is loaded with a constant tractién = 150n§‘—m and the specimen is loaded with a sinu-
soidal traction with a magnitude &, = 150-X.. The dimensions of the fretting pad are given
asl; = 15mm,h; = 5mm,s = 2mm, d = 2:1mm and the contact zone 8nm wide. The
specimen is de ned by, = 35mm andh, = 7:15mm. The fretting pad as well as the spec-
imen are spatially discretized by nite elements based awosd-order Lagrangian polynomi-
als (quad9). The structured meshes with re nement at théacbzone are created via several
non-conforming patches, which are coupled via the mortastmging method. Further details
on domain decomposition procedures with mortar methodsedound in Hesch and Betsch
[103], Puso [216], Puso and Laursen [217] and WohImuth [288k material model for both
bodies is of Saint-Venant-Kirchhoff type with Poisson'tida = 0:33 The Young's modulus
for the pad isE = 210GPa and the specimen stiffness is de nedby= 72:1GPa. Frictional
contact is prescribed by a friction coef cient &f = 0:5 and fretting wear effects are modeled
with a wear coef cient ofk, = 1:0 10 Géa. The whole model is restricted to a plane strain
setting. Overall10.000load cycles are simulated wittO pseudo time steps per cycle. This set-
ting generates a partial sliding scenario, where the lettgfahe contact zone remains in stick
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Figure 5.7: Results for the bridge type fretting test: ndrowatact stress (left) and wear dis-
placements (right), taken from Farah et al. [69].

state and the right part reaches the Coulomb limit and slipsrefore, wear effects occur pre-
dominantly within the right part of the contact zone as shawhig. 5.7. In the left sub gure,
the normal contact stress is plotted over the contact mterfThe stress peak at the outer right
side decreases and moves into the contact zone due todrettiar effects. The corresponding
wear depth in inward normal direction is plotted in the righb gure. There, the highest value
occurs at the outer right contact singularity, which cquoesls with the stress visualization in
the left part of the gure.

5.4.3.3. 3D NURBS — Hertzian contact with wear

This last example represents a 3D Hertzian contact settuhigh is discretized with non-
uniform-rational-B-splines (NURBS) functions. It is erogéd to demonstrate the applicabil-
ity of the proposed fretting wear algorithm towards 3D pevblsettings and its exibility with
respect to the spatial discretization. Therefore, a vaef britroduction to some basics of isoge-
ometric analysis is given in the following. For a comprehemsverview, the interested reader
is referred to Piegl and Tiller [206] and Rogers [236] for NBRfunctions. NURBS have been
the industrial standard for computer aided design (CADjesys and became a major topic of
recent research due to the work of Hughes et al. [122], whd tfsam as shape functions in
the nite element framework. In the context of computatibeantact mechanics, NURBS shape
functions or isogeometric analysis in general became fandoe to their smooth geometrical
representation which results from higher-inter elementioaity. In detail, Lagrangian polyno-
mials are limited toC? inter-element continuity, while NURBS-based nite eleniof poly-
nomial orderp lead toCP 1! inter-element continuity. For this example, second-oldeRBS
functions are employed for spatial discretization in 3Dn€&quently, 2D surfaces are consid-
ered as contact interfaces. Starting point is a tensor jptdghgpline function space with an open
non-uniform knot vector
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of knot values ; 2 R with ; i+1 associated with the-th parametric dimension of the
considered patch. To guarantee an open knot vector, thamdtlast entries in the knot vector
are repeategy + 1 times, wherep; is the polynomial order of the B-spline basis function in
thej -th direction. A general 3D volum¥ is then de ned by NURBS basis functiom$ and
control point coordinateX, via

XX X
V(i )= Niji (35 )X : (5.46)
i=1 j=1 k=1
As the derivation is restricted to open knot vectors in eaatametric direction, the surface
representation is de ned by the control points and knote@ecbn the considered surface of the
parametric domain. Consequently, a 2D manifdlceads

X
S(; )= Nij (5 )X ¢ (5.47)
i=1j=1
The employed NURBS basis functions of each control pointarestructed from B-splines by
introducing a weighting function, i.e.

.. hijx Bi( )Bj( )Bk( ) .
Ni;j;k(1’ ) Pn P PI ,
i=1  j=1 k=1 hi;j;k Bi( )Bj( )Bk( )
whereB, are the B-spline basis functions in each parametric doeaindh;; is the weight
associated with the control poifitj; k ). By de ning all weights of a patch equally, the NURBS
functions reduce to standard B-splines. Thus, they shame $ondamental properties with B-
splines, i.e. inner-element connectivity, non-negatiaihd partition of unity. In addition, they
have the additional capability to exactly represent mamjacgeometries such as circles. Ap-
plying the introduced concept of isogeometric analysisgdoparamtric nite element methods,
also the interpolation of discrete displacements is redlizith NURBS basis functions

(5.48)

0= Nk( ) de(t); (5.49)
k=1

whereng, = n- m | is the number of control points.

Remark 5.2. NURBS functions are in general rational function and thuscgxntegral evalua-
tion is not achievable with standard Gauss quadrature rulé®vever, it was shown in Hughes
et al. [123] that they still lead to accurate results and tefre standard Gauss rules are em-
ployed within this work.

The considered example consists of a half sphere with radiu$ :0 and a rigid foundation,
which is modeled with one NURBS-based element of oqgler 2. The half sphere itself is
also meshed with second-order NURBS-based elements amséstoaf approximately 3500
control points as visualized in Fig. 5.8. The half sphereemat model is chosen to be of Saint-
Venant-Kirchhoff type with the Young's modulds = 200:000and the Poisson's ratio = 0:3.
The sphere is de ned to be the slave body and the rigid fouodaépresents the master body.
The wear coef cient isk, = 1:0 10 & and the friction coef cient isF = 0:2. Within the
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Figure 5.8: Geometry and mesh for the 3D Hertzian contadt wiar with visualized control
points, taken from Farah et al. [69].

time interval0 < t < 1, the half sphere is pressed into the block up to a displacemagnitude
of u, = 0:06. After that,u, remains xed and the horizontal movement= 0:02 sin(2 (t 1))

is enforced within the time interval t < 1401 which leads to 1400 cycles. This setup initially
generates a partial sliding contact state, which meanghbgtrescribed horizontal movement
Is not large enough to trigger gross sliding. Thus, the cearftéhe contact zone remains in the
stick state, whereas the outer parts of the contact zoné thacCoulomb limit and come into
sliding. The resulting normal contact stress distributgwvisualized in Fig. 5.9. Here, the circu-
lar stress eld becomes oval due to the unidirectional stjdnd the contact area decreases due
to the loss of material. The corresponding wear pro le isvshdn Fig. 5.10. The sticking center
of the contact zone preserves an unworn area that is surdung worn material. Summing
up, this example demonstrates that the developed frettesy @igorithm with an internal state
variable approach is applicable to 3D examples and to isngaw spatial discretizations, i.e.
NURBS. Additionally, even the rather simple problem sefsimilar to a Hertzian contact leads
to complex wear and stress distributions, which can be seriity resolved with the introduced
algorithm.
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Figure 5.9: Normal contact stress for the 3D Hertzian camatt wear. Results after 500, 1000
and 1400 oscillations from left to right, taken from Faralale{69].

Figure 5.10: Wear depth for the 3D Hertzian contact with wieasults after 500, 1000 and 1400
oscillations from left to right, taken from Farah et al. [69]
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5.5. Formulation for nite wear — ALE formulation

In this section, wear effects that result into nite shapamfjes are considered. The following
derivations and investigations are based on the authdokgation Farah et al. [74]. Modeling of
nite wear phenomena is realized by an Arbitrary-Lagramgiulerian approach, which allows
for considering a changing material con guration beingjsated to material loss. The derived
numerical approach is based on a partitioned algorithm andists of a Lagrangian step and a
shape evolution step.

Similar to the numeric modeling of fretting wear effects thtroduced internal state variable
approach and the primary variable approach are applicaldedier to simulate nite wear phe-
nomena. In contrast to fretting wear modeling, the primaagiable approach is the preferred
discretization type because it strongly simpli es the @ligpartitioned algorithm. However, the
application of the internal state variable approach is bfgoy outlined.

5.5.1. Problem setting for nite wear modeling

Considering wear phenomena, which result into nite shap@nges requires a fundamentally
different problem description. In detail, the pure Lagrangformulation which was employed
for de ning elastodynamics including contact mechanic€hapters 2, 3 and 4 is changed into
an Arbitrary-Lagrangian-Eulerian problem formulatiomus, it allows for a convenient descrip-
tion of a time dependent spatial and material con guration.
By introducing an Arbitrary-Lagrangian-Eulerian approaihe problem formulation of nite

deformation elastostatics in equations (2.40)-(2.42)o neferred to the material con gura-
tion (). Consequently, the physical deformation gradient

@
@
is now employed as fundamental nonlinear deformation nredsu physical motion. The rst
and second Piola-Kirchhoff stress tensérandP are now referred to the material con guration,
and thus should be denoted%s andP: . The physical displacement vector, which de nes the
motion due to elastic deformation with respect to the makeon guration reads

u = x®  xO: (5.51)

F.O = (5.50)

Finally, the problem formulation of nite deformation elastatics based on the physical dis-
placement vector referred to the material con guratioridse

DivP.M + 60 = 0 in O [0, T]; (5.52)
u®=n® on S])u [0;T]; (5.53)
PON M = ) on {) [0;T]: (5.54)

Here,N () denotes the outward unit normal vector in the material comagion.
In addition, the problem formulation describing the matkmapping is based on the mate-
rial displacement vector

u® = x®  x O (5.55)
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which describes the change of the material con guration @umaterial loss associated with
wear. As the material mapping only represents a motion witysigal interpretation at the
boundary of the material con guration, the bulk problem atjon for the material mapping
can be chosen arbitrarily. In order to obtain the highessibbs solution quality and to guar-
antee a bijective mapping, the bulk problem is considerepsasido-elasticity problem in the
nite deformation regime. Thus, the arti cial deformatiggradient for the material mapping
Is introduced as

FO= = _. (5.56)

This leads to the pseudo-stress tensdraandP . The resulting problem formulation for the
material motion reads

DivP(i) =0 in 8) [O,T], (557)
u® = N Owo on {. [0;T]; (5.58)
L0 = on Un O [OT]: (5.59)

Here,W.() describes the wear rate in the material con guration, whschpplied in the current
negative unit normal directioN ) of the material con guration. This rate problem is later on
solved within an incremental step strategy, i.e. withinghape evolution step of the partitioned
algorithm introduced in Section 5.5.4. Wear acts on the daon g;)c which is the counterpart
in material con guration to the contact boundary’ at the current time. The de nition of the
wear rate was already introduced in Section 5.2.2. The pmldescription in (5.57), (5.58)
and (5.59) represents a purely Dirichlet constrained sysid&e constraint in (5.59) enforces the

equality of the non-worn boundary in reference and spatialguration.

5.5.2. Implicit partitioned algorithm for nite wear

The algorithm employed in this thesis is based on the pamiity between a so-callelda-
grangian step and ashape evolutiorstep, see Figure 5.11. Here, the discrete displacements
and material displacements of the problem are denoteddfitandd™®, with equal interpola-
tion functions from the nite dimensional subspadd:ﬁ) being used for both elds. Within the
Lagrangian step, the nonlinear frictional mortar contaiobfem is solved with respect to a xed
material con guration ( xedd™ ™). Wear is only considered as an additional contributiomeo t
gap function in this step, which will be explained in detailSection 5.5.3. After convergence
of the Lagrangian step is obtained, the calculated wealtsgée. wear deptiw()) are imposed
as Dirichlet boundary conditions for the shape evoluti@pstvhere now the real geometrical
change of the contact surface is considered, see Sectigh &énsidering wear as additional
displacements of the mesh (and not the material) to the wastic displacements and addi-
tionally considering the fact that the wear displacemergsoaly enforced at nodes associated
with the contact boundary leads to a degeneration of theceged surface-near elements after a
certain amount of wear. To prevent this, also the bulk messt imeiproperly adapted. Therefore,
the shape evolution step is chosen to be treated as ALE pnokke Section 5.5.1. Similarly to
the evaluation of the contact terms, wear is calculated espiatial contact boundary. However,
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Lagrangian steps

dn > dn+1 ------------- > dn+2
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Wn‘: Wh+1 < > Whn+2
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dm m m

n n+1 n+2

shape evolution steps

Figure 5.11: Implicit coupling algorithm based on iteragdetween Lagrangian and shape evo-
lution steps. Transfer variables are the increment of therdie wear depthw and
the material displacemend§'. The gure is taken from Farah et al. [74].

the shape evolution step can then be performed either inptéascon guration or in the ma-
terial con guration and the corresponding con gurationugdated with help of the advection
map, which will be introduced in Section 5.5.4.

After having completed the shape evolution step, both aladiwell as material con guration
have been changed by wear. To guarantee convergence oftpkedg@roblem within the con-
sidered time step, iterating between Lagrangian and shageti®n step is possible. However,
from all numerical experience gathered so far this only bezonecessary for extremely large
amounts of wear within one time step.

The general algorithm is summarized in the following:

Algorithm5.2 Implicit partitioned scheme

1. Solve the nonlinear frictional contact problem for xedatarial displacements. Wear ef-
fects within the Lagrangian step are considered as additioontribution to the spatial
gap function, which leads to slightly overlapping bodie Section 5.5.3.

2. Solve the nonlinear shape evolution step as a pseudicglaproblem (ALE problem)
for a xed amount of wear, see Section 5.5.4. Then update tenal and spatial con g-
urations according to the calculated wear by employing theeetion map procedure.

3. Repeat the two steps of the partitioned algorithm untiveogence of the structural resid-
ual and the residual of the pseudo-elasticity problem iotes.

The details of this implicit algorithm are given in the foNling sections.

Remark 5.3. A partitioned coupling scheme is preferred over a mondlittmupling scheme here
because the wear process itself is in general very slow coedpa the fully resolved contact
scenario. Therefore, the coupling between the Lagrangizhthe shape evolution step is not
too strong and convergence of the partitioned algorithm easily be achieved even without any
convergence accelerator, such as the well-known Aitkeelator in Irons and Tuck [127].
However, for strongly coupled problems such as steady-statir processes with extremely large
time steps, monolithic solution schemes are arguably oéisoprobustness compared to the
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partitioned ones. Yet, it seems that by considering the waaterial as an additional gap within
the Lagrangian step, the Lagrangian step itself alreadyudes certain information about the
wear effects implicitly. Therefore, even for steady-statar processes with large time steps, the
presented partitioned wear algorithm converges for allrer@s tested so far, and monolithic
schemes with their increased algorithmic complexity doseeim to be necessary.

5.5.3. Lagrangian step

In this section, the treatment of wear phenomena within gxgrangian step is explained. Basi-
cally, the implicit partitioned algorithm described in theevious section also works when wear
phenomena are not considered within the Lagrangian stegn, Ehstandard contact problem as
described in Chapter 3 is solved without any modi cationwéwer, the wear depth occurring
during one load step is taken into account in order to acatdehe partitioned algorithm. Thus,
in complete analogy to fretting wear modeling in SectionB.4vear effects are considered as
additional contribution to the gap function, which leadatmodi cation of the Hertz-Signorini-
Moreau conditions:

g 0; pn O; pngy=0: (5.60)

Again, gV represents the modi ed gap function. The modi ed constisiim (5.60) together
with the boundary value problem (5.52), (5.53) and (5.54d{esthe problem formulation for the
Lagrangian step.

Remark 5.4. Note that the wear deptiv(), which is utilized to modify the gap function ac-
cording to(5.34) or (5.43) is generally not the absolute wear depth per time incremieut
the increment of the solution procedure with respect to #s¢ Lagrangian step of the parti-
tioned algorithm. By introducing the notatidr)® for the current iteration step of the partitioned
algorithm, the wear depth reads

w® = wip e 1. (5.61)

For the rst iteration p = 1, the initial wear guess is set to zero, iw{):® = 0. However, for
the sake of brevity, the iteration counter is skipped forgh#itioned algorithm in the following
and relation(5.61)is implicitly used.

In the following, the implicit treatment of the gap modi ¢an for the Lagrangian step is ex-
plained in detail for the primary variable approach and frietroduced for the internal state
variable approach. However, the primary variable appraatie preferred spatial discretization
approach because the wear depth, which is a transfer vaiialthe implicit partitioned algo-
rithm, is directly represented by an additional variableisTis very bene cial in order to iterate
between the Lagrangian step and the shape evolution stepniidrnal state variable approach
is only applicable for an explicit partitioned algorithmthout iterating between the steps.

5.5.3.1. Primary variable approach

Starting point for the primary variable approach is the sz residual for the slave and master
side wear:

() = EDw® 7O = (5.62)
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For the application of iterative nonlinear solvers basead dtewton-Raphson scheme, the wear
residual (5.21) has to be linearized. Thus, in completeagyaio the explanation for standard
structural problems in Section 2.2.4, a truncated Tayloesexpansion is carried out
_ L @ @' @,
Linry(d; "w)=ry(d; w)+ = d*"?t+ =2 gy ="
Here, the index denotes the previously calculated Newton step. This esulthe linearized
wear residual

w'*l = 0: (5.63)

rW(di; i;Wi) — Si di+l + Fi i+1 + Ei Wi+l: (564)

Details on the directional derivatives for the linearizedawresidual are omitted here, since
they are strongly related to the linearizations well-kndansurface mortar contact, see Popp
[210] and Popp et al. [212]. The semi-discrete problem fdation in (3.39) remains unchanged,
despite the occurring wear phenomena, but the complenmgrftanctions in (3.58) and (3.60)
change due to the modi ed gap. Thus, the linearized systeegahtions to be solved within
each Newton-Raphson step, which is explained in Sectio,313ust be extended due to wear
considerations. Concretely, linearizations of the comm@tarity functions with respect to wear
and the linearized wear equation itself are introducedhénfollowing, for the sake of brevity,
the algebraic representation of the nite wear problem falation is given for slave-sided wear.
However, an extension towards both-sided wear is stragh#rd and the described solution
procedures are also applicable to both-sided wear. Thusxamplary matrix representation
of the system of equations, when only slave-sided wear phena are considered, looks as
follows:

2 3;2 341 2 3,
Knn'  Kum Kis 0 0 dy N
Kww Rum  Kus MT 0 dwm v
Ksn Ksu Kss DT 0 ds = rs 4 : (5.65)
0 Cw Cs C Cw lc
0 Sum Sg F E w M

Here, the solution vector contains increments of discretplacements d, Lagrange multi-
pliers and wear quantities w. The displacements are split into inner nodgg , master
nodey )y and slave nodes)s, whereas the Lagrange multipliers and wear quantitiesrase o
de ned on the slave side anyway. The stiffness blog€karise from linearization of the internal
force vector, and the tilde symbols indicate additiona#inzations due to the contact force vec-
tor. The rst three rows of the system can be identi ed as éineed algebraic form of the force
equilibrium and row four represents the linearized contactstraints. In addition to the stan-
dard frictional contact problem, the last row arises dudeadditional wear consideration. As
wear is taken into account as an additional gap within théz-®ignorini-Moreau conditions,
coupling terms only arise in the row associated with theactrtonstraints and a direct coupling
into the force equilibrium is not to be expected.

While this system of equations could be solved directlys toes not seem advisable, since
it not only contains displacement degrees of freedom, ad hhgrange multipliers as well
as unknowns due to wear. Therefore, it is of increased and ef/@arying size. Moreover,
the introduced Lagrange multipliers cause a saddle paiattstre of the linearized system of
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equations, which may cause dif culties for the performamte&eommon iterative solvers and
preconditioners. To get rid of these problems, the condamsprocedure explained in Gitterle
et al. [88], Popp et al. [211] and Popp et al. [212] and alreahployed in a similar form in

Chapters 3 and 4 is used. Here, dual shape functions for tpehge multiplier interpolation

are employed to generate a diagonal structure of the mor#ix1D, which then allows for a

computationally cheap condensation of the Lagrange ntieltgovia

i+1 — pi T( riS KiSN di|\|+l KiSM d:\;l KiSS dis+l): (5.66)

This results in the system

2 3, .
Knn Ky Kns 0 '% g, "

EKMN PKsn Kum  PeRsu Kus PoRss O %E dmz _
P Ksn Cv P Rgm Cs P Kss Cy ds
PwKsn Sv  PuwRsm Ss PuwKss E w

(v § tm Pars j fe Prs j ry, Pursl':  (5.67)
Here, the projection operatosare de ned as
Py=M'D" T, P =CD"T;  P,=FD"T (5.68)

This condensation concept can now be extended to the weaownis by using dual shape
functions also for the discrete weighting of the wear reaidwhich then yields a diagon&
matrix. Consequently, an additional condensation stepbeaperformed, which expresses the
wear unknowns in terms of discrete displacements:

wtt = BV Y(H + Prs+ PLKSy dyt (S PLRsw) dit
(Ss PiLRss) dgt): (5.69)

The resulting condensed system of equations is not explgiiten here for the sake of brevity.
However, as the main result, it is only solved for displacenaegrees of freedom and all contact
and wear information is included in the modi ed system matfihis matrix is of constant size
and no saddle point structure occurs anymore. Discreteanagr multiplier and wear variables
can be obtained by simple post-processing steps basedaf) &nd (5.69).

5.5.3.2. Internal state variable approach

The introduced internal state variable approach is alsticghype to nite wear problems. This
has already been demonstrated for 2D problem settings ter@i{87]. However, the primary
variable approach is the preferred wear discretizatioersehsince the internal state variable is
not directly controllable in the partitioned algorithm 5This is due to the inherent feature of
the internal state variable approach of no additional unkrsentering the system of equations
for the Lagrangian step. Thus, the methodology for the iatlestate variable approach is only
brie y outlined. When considering wear as internal statgatale in an implicit solution scheme
and as additional contribution to the gap function as exgldin 5.2, only the linearizations of
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the nonlinear complementarity functions are directly etéfel. The other parts of the system of
equations remain unchanged (cf. (3.62)). After the Lageangtep is completed, wear must be
enforced as Dirichlet condition for the shape evolutiopsta contrast to the primary variable
approach, the internal state wear quantity representdacswweighted wear depth, i.e. a worn
volume. Consequently, is has to be expressed in distanceumgeby dividing it by the support
area of the attached node. This has already been realiz&dih) ( Such a computation is the
natural result of a weak enforcement of Dirichlet boundamydition, i.e. wear depth.

The internal state variable approach has been implememgdarefully validated by the
author. When no iteration between Lagrangian and shapetewolstep is required, no change
in solution quality and robustness for both wear discréttreschemes are noticeable. However,
as already mentioned, the primary variable approach ealidys for a completely implicit
partitioned iteration scheme and is thus the preferredretization technique for nite wear
simulations.

5.5.4. Shape evolution step

The shape evolution step is performed to calculate shapggelsaof the material con guration
due to the loss of material at the interface, which is exgeasterms of material displacements.
Thus, the connection between observer poiteind material pointX™ changes. In the semi-
discrete setting, this procedure guarantees that bulkezlevattached to the contact interface are
prevented from degeneration and it also assures a propér quedity for all volume elements
by distributing the material displacements over the eromain with an ALE approach. The
con guration in which the shape evolution step is perforrsad be chosen arbitrarily. However,
all following explanations are referred to a shape evolusitep in the material con guration as
explained in Section 5.5.1.

By performing spatial discretization of (5.57)-(5.59) ed®n the same nite dimensional sub-
spacedJ;,, andV, as used for the nite deformation frictional contact prablend considering
the material motion as nonlinear pseudo-elasticity probline linearized system to be solved
within each step of a Newton-Raphson scheme reads

R d™kT = ¢ (d™K): (5.70)

Here, the linearized pseudo stiffness matrix is denotet &itAfter convergence is obtained,
the material motion vectai™ has to be mapped to the spatial con guration to adapt it pitgpe
Based on (5.13), if the material con guration is known anel thapping is accordingly de ned,
the spatial mapping associated with the spatial con guration can be adaptedeytyp. This is
possible because the reference con guratignwhich represents the observer domain, is xed
for the entire simulation. The mappirigis solved after the converged Lagrangian step, but
the material con guration is only updated within the shapeletion step, thus resulting in the
additional mesh displacemerdg for the nodg . The new material coordinates are then given
as

X" = X+ d™ (5.71)

In the following, the superscrigt)™ denotes quantities updated due to the shape evolution step.
The spatial con guration must be modi ed to assure that tenputed mesh displacements
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Figure 5.12: Schematically visualized procedure for theeation map between material and
spatial con guration: setup after Lagrangean step (blacl) after shape evolution
step (red), taken from Farah et al. [74].

are stress-free. This is done by the so-caliddection mapwhich represents a mapping from
material to spatial con guration via the correlation inX8). Within a nite element framework,
the advection map is realized by exploiting fundamentapprties of the isoparametric concept,
see Figure 5.12. First, the element into which a consideoek s relocated due to the shape
evolution step is detected. Then, the parameter spaceinated; of the updated node within
the non-updated element is calculated by solving

Rn m

r(5) = No(7)Xp X =0 (5.72)

b=1
Here,Xjm is the material coordinate of the considered npdater a displacement update as
computed in the shape evolution step (5.71). This nonliegaation is solved by a local Newton-
Raphson scheme for each node. With the parameter spacaraierdt hand, the new spatial
coordinates can be calculated as

X" = Np(5) Xo: (5.73)
b=1

Thus, the discrete advection map can simply be interpretag@oper parameter space mapping.

Remark 5.5. Note that the separation of physical motion and mesh motatarally leads to
convective terms for the total time derivatives. In casenefuelocities, they represent the dif-
ference between material and mesh velocities. Howeves,agommonly assumed that inertia
effects does not have in uence on the solution of typicalrpeablems. Thus, only quasi-static
problems are considered and no total time derivatives agelired.

For the considered hyper-elastic material models, the podeion mapping described above
is suf cient to complete the shape evolution step. Howel@ar,more complex material mod-
els that require history variables, such as elasto-plaséterials, also the stored history data
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Figure 5.13: 2D pin-on- at problem: Reference con guratiavith dimensions (left) and ma-
terial con guration with material displacements after epdo time steps (right),
taken from Farah et al. [74].

has to be mapped accordingly, see Orlando andcR&88], Perc et al. [202], Rashid [227]
and Rodriguez-Ferran et al. [232].

5.5.5. Numerical examples

In this section, the developed algorithm is validated wihrfnumerical examples. The rst
example is a 2D pin-on- at setup, which is analyzed based steady-state assumption and the
solution is compared to results from literature. The seao@mple is an oscillating beam on a
half circle, which is simulated with very high wear coef cits on both sides, therefore resulting
in nite shape changes of both bodies. The last numericalysisibased on two cylinders where
two-sided wear in 3D is investigated.

5.5.5.1. Validation — pin on disc

The rst example is adapted from Stupkiewicz [263] to cong#re presented implicit wear
algorithm with a monolithic steady-state wear algorithitedsly-state assumptions are valid for
periodically repeated contact and frictional sliding gevbs with many cycles, such as pin-on-
disc, reciprocating pin-on- at, and pin-on-cylinder tological tests. Usually, these problems are
based on splitting the time scale into a fast time of the m&formation problem and a slow
time for the shape evolution due to wear, see Lengiewicz ampk&wicz [157, 158] and Stup-
kiewicz [263]. However, within the developed wear framekya state-independent xed slip
increment is de ned per integration point to simulate a dyestate sliding process. Concretely,
the 2D pin-on- at example consists of a hyper-elastic pihiah is pressed into an in netely long
rigid plane, see Figure 5.13. The pin is moved laterally wittonstant velocity of = 100073".
Consequently, the absolute value of the integration pdimtrscrement is givenag .o = v t.
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Figure 5.14: Worn shape of the pin after 5 pseudo time stejbs wi= 200s compared to results
from Stupkiewicz [263], taken from Farah et al. [74].

The simulation is performed within 5 pseudo-time steps with= 200s. Frictionless sliding is
assumed, which leads to a formulation of Archard's law imtgf the normal contact pressure,
see equation (5.2). The wear coef cient is assumed constdmé material con guration and de-
ned ask, = 10 “MPa 1. The pinisloaded at its top edge with a normal fofce 20% acting

in negativey-direction. The neo-Hookean material model from (2.23)ngkmyed for the pin.
Therein, the Young's modulus is chosentas 20MPa and the Poisson's ratio is= 0:3. This
2D simulation is based on a plane-strain assumption andnethic locking effects are avoided
by the F-bar formulation for the employed 4-node quadnitdtelements, see de Souza Neto et al.
[55]. The resulting material (i.e. worn) con guration issualized in Figure 5.13. Here, the ma-
terial displacements, which connect reference and mataraguration, are illustrated. It can
be clearly seen that not only nodes attached to the contacidaoy are relocated but also inner
nodes are properly adapted by the developed ALE approadh gliarantees a very good mesh
quality in the worn con guration. In addition, the evolutiof the contact boundary is shown
in Figure 5.14. Here, the results are compared with the sitioul from Stupkiewicz [263]. The
mortar based method matches the results from literatusewell, which demonstrates that the
wear algorithm can also be applied for such steady-state susalations.

5.5.5.2. Mesh quality — beam on half-sphere

Within the following example, the mesh quality of the maakdon guration for extremely large
material loss is analyzed. The example consists of a 2Dlascd beam and a half circle in a
non-steady-state regime. Here, both bodies undergo weiatharefore a shape evolution pro-
cedure is required, which results in a change of the mateoialguration. Both hyper-elastic
bodies are modeled based on the classical Neo-Hookean f@eiah model given in in (2.22).
The chosen material parameters are dimensionless andcialeior both bodies, i.eE = 100
and = 0:3. The initial setup for the simulation is shown in Figure 5.Here, the half cir-
cle is xed at its lower edge and the beam is Dirichlet-cohé at its upper edge. Concretely,
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Figure 5.15: Setting for the 2D oscillating beam exampléwmesh, taken from Farah et al. [74].

Figure 5.16: Reference con guration (wire frame) and matezon guration (colored surface)
at the end of the simulation with material displacementsertafrom Farah et al.
[74].

in the time interval0  t 1 the beam is pressed onto the circle vertically with a disglac
ment ofd, = 0:4. Then, in the time interval t 51, the beam is moving horizontally
with d;, = sin( i—o(t 1)). The simulation is performed with a time step size af= 0:1. For the
contact setting, the beam is chosen to be the master surifiaceha circle represents the slave
surface. The wear coef cients for both sides are equal angedeto be k(P = k@ =7 10 4
and the friction coef cient i = 0:1. Spatial discretization is based on 3-node triangles with
rst-order Lagrange interpolation (tri3) and the simutatiis performed using a plane-strain
assumption. The resulting worn bodies as compared to tefErance con gurations are visu-
alized in Figure 5.16. Here, both bodies signi cantly chadgheir material con guration due
to material loss within the shape evolution steps. Nevé#ise not only element degeneration is
prevented but also good mesh quality is guaranteed owinigetaléveloped ALE-based shape
evolution step. This is shown in Figure 5.17. Here, the mggiotted in the reference con gura-
tion and material con guration. For the analysis of the mgshlity, the aspect Frobenius norm
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mesh quality

Figure 5.17: Mesh quality given in aspect Frobenius norneference con guration (top) and
material con guration (bottom) at the end of the simulatitaken from Farah et al.
[74].
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Figure 5.18: Problem setting and mesh for pseudo-3D cyinuess-t example, taken
from Farah et al. [74].

is employed, see Pébay and Baker [201]. This norm is de ned as

B I(2)+IZE+I§_ (5.74)

a 4N 3 '
wherel; are the edge lengths adis the area of the triangle. The factgiu§ normalizes the
term such that a unit equilateral triangle has a valugofl . The acceptable range of this norm
is1:0 g 1:3. The shape evolution step with proper adaption of the bukkhmesults in a very
good mesh quality measured in the aspect Frobenius norm.tBgehree most critical elements
in the bulk retain a mesh quality of approximaté&l9, which demonstrates the applicability of
the shape evolution algorithm.

5.5.5.3. Comparison with fretting wear — 3D cylinder press- t

The next example is a rotating cylinder press- t, which oglglds little material loss and is
therefore ideally suited for comparisons with the intersiate variable algorithm within the
fretting wear algorithm from Section 5.4.2.1. This examiplbased on the assumption that no
displacements in thickness direction will occur. The peoblsetting is shown in Figure 5.18.
Here, two cylinders with the same thicknesszof 1 are given. The inner cylinder acts as
slave body and is de ned by its inner radits = 4:022and its outer radius} = 5:022 The
outer cylinder acts as master body with radii= 5:0 andr2 = 6:0. The resulting overlap
att = 0 causes an initially active state for the entire contactasgfand an initial stress state.
The employed material model for both bodies is the class$Wsd-Hookean model from the
last example with Young's modulus = 100:0 and Poisson's ratio = 0:0. The simulation
is carried out in the time intervdél t 5 with 100 pseudo-time steps of sizé¢ = 0:05.
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The outer cylinder's outer surface is completely suppodedng the simulation and the inner
cylinder's inner surface is subjected to an angular acagtar of =0:2within0 t 1. The
resulting angular velocity then remains constant for tis¢ oéthe simulation. Frictional effects
at the contact interface are considered by Coulomb's law wifriction coef cient ofF = 0:1.
Spatial nite element discretization is done by 8-node Hedral elements with an element size
ratio of% between slave and master body for thickness, radial androferential direction.

The results of the presented nite wear algorithm for purglgve-sided wear with a wear
coef cient of k} = 0:005are shown in Figure 5.19. Here, the normal contact tractoasepre-
sented by red arrows and mesh displacements are visualizéé Bolid coloring, each for steps
0, 33, 66 and 99. It can be clearly seen that the normal costtesises decrease gradually because
of a simultaneously increasing amount of wear, which leadadreasing mesh displacements.
The results obtained with the nite wear algorithm for twolesd wear with wear coef cients
of ki = 0:0025andk2 = 0:0025are shown in Figure 5.20. Again, the simulation leads to the
expected results of gradually decreasing normal conteessts. Due to the two wear coef -
cients being identical, mesh-displacements are equaltyilolited for slave and master body and
their magnitude is exactly half the magnitude that had bdeseved for the one-sided wear
simulation. Now, the novel nite wear algorithm is comparedhe internal state variable algo-
rithm given in Section 5.4.2.1. The calculated wear depitlotted for an exemplarily chosen
node in Figure 5.28. For pure slave-sided wear, the newlgldped nite wear algorithm nicely
matches the internal state variable approach. This demabestthat the presented nite wear
algorithm is implicitly also capable to reproduce frettingar effects. Again the two-sided wear
case withkl, = k2 = 0:0025leads to identical results for slave and master side. M@e@s
expected, adding slave and master wear depths yields gxaettame amount of wear as for the
one-sided wear simulation witt}, = 0:005 Finally, the normal contact stresses are visualized
over time in Figure 5.28. The decrease of the normal stressely matches for all simulations
and corresponds to the calculated wear amount. The ogmilabver time for all simulations
result from the relatively coarse rst-order nite elemediscretization. The interface stresses
could be smoothed with higher-order elements as demoedtratarah et al. [73], where a very
similar example has been investigated.
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Result after O pseudo-time steps Result after 33 pseudo-time steps

Result after 66 pseudo-time steps  Result after 100 pseudo-time steps

Figure 5.19: Visualized mesh displacements (color) andedsing normal tractions (vectors)
for press-t example with slave-sided wear. Wear coef diés chosen to 0.005,
taken from Farah et al. [74].

136



5.5. Formulation for nite wear — ALE formulation

Result after 0 pseudo-time steps Result after 33 pseudo-time steps

Result after 66 pseudo-time steps  Result after 100 pseudo-time steps

Figure 5.20: Visualized mesh displacements (color) andedsing normal tractions (vectors)
for press-t example with two-sided wear. Wear coef ciemrfslave and master
side is chosen to 0.0025, taken from Farah et al. [74].

137



5. Mortar Methods for Wear Modeling

—a— ——

—— —B— V. —-—
0.014 S 1.1
gl 1 l=A
0.012 X{. .
A
0.01 ;
%- 0.8 \f\
g 0008 \
g 0.006 06 v\%\ A
2 . AW
0.004 05 \f\f\yf\/\
0.002 VAA
A
o
0051152253 4 45 5 0 05 1 15 5

Figure 5.21: Resulting wear depth (left) and normal contsitess (right) for one-sided
wear (red) and two-sided wear (blue) with the primary vdaapproach and the
reference solution with internal state variable approagkédn), taken from Farah
etal. [74].

5.5.5.4. Finite deformation nite wear — oscillating cylin ders

The last example is introduced to demonstrate the applitgabf the presented algorithm to
fully 3D settings in a nite wear and nite deformation regan The example consists of two
half-cylinders as shown in Figure 5.22. Both half-cylinelaave identical dimensions and ma-
terial parameters. Concretely, the length is giveh as5 and the radius is set g = 2. The
cylinders are oriented in such a way that their main axesaraing the angle = 60 . The
employed material is the Neo-Hookean model with Young's oloslE = 100 and Poisson's
ratio = 0:3. The cylinders are equally discretized with rst-order hbedral elements as
shown in Figure 5.22. To increase the accuracy of the costanttlation, ne outer mesh layers
are tied to the bulk meshes with well-known mortar mesh tyahgprithms. For a detailed de-
scription of mortar mesh tying algorithms the interesteats is referred to Puso and Laursen
[218, 219]. The radius of the bulk mesh sections is chosen=ad :8. The simulation is carried
out within 420 time steps with a time step size df = 0:1. The movement of the cylinders is
purely Dirichlet controlled. The lower body is xed at itsu@r surface for the entire simula-
tion. The upper body is subjected to a prescribed motiorsaipper surface. Speci cally, the
upper half-cylinder is pressed into the lower half-cylindgthin 10 time steps with a vertical
displacement magnitude df = 0:8. Thereafter, the vertical displacement is kept constadt an
the sliding process starts. The sliding motion is descried,, = sin(i—o(t 1)) for the time
intervall <t 41 When the sliding is nished, the upper body is lifted to itstial location
within the time intervadl < t 42. The contact scenario is de ned by the lower cylinder
being the master body and the upper cylinder being the sladg, wespectively. The friction
coefcient is F = 0:1 and the wear coefcients arkl, = 2:1e 3 andk? = 7e 4. The
complementarity parameters are chosen,as 1 andc, = 1000 for the entire simulation. The
resulting convergence behavior of the proposed impliciamadgorithm is exemplarily shown
for one characteristic time step in Table 5.1. Here, it casd®n thatl8 nonlinear solution steps
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Figure 5.22: Problem setting and mesh for the cylinder westy taken from Farah et al. [74].

Table 5.1.: Convergence behavior in terms of the total tedidorm for the proposed implicit
wear algorithm for a characteristic time step.

step| Lagrangian step shape evolution step
1 | 235% 01()

2 | 1:408 01()

3 | 258%4 03()

4 | 354 04

5 | 245% 07

6 | 3526 09

7 | 6581 13

8 9:154 03
9 2:086e 06
10 1.527% 11
11 | 1:218& 03

12 | 3:640 07

13 | 8886 12

14 3:87%4 06
15 3173 11
16 | 1.79%¢ 07

17 | 2146 12

18 9:25le 10

( ) = change in active and/or slip set
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cycle 1 cycle 2 cycle 3 cycle 4

Figure 5.23: Material displacements at contact interfacariaster body with wear coef cient
of k2 =7e 4. The gure is based on Farah et al. [74].

in total have to be computed to meet a prede ned convergernitegion of 1:0e 9 for the total
residual norm of the Lagrangian step and for the total redidarm of the shape evolution step.

The resulting material displacements due to wear effeesshown for the master body in
Figure 5.23 and for the slave body in Figure 5.24. Due to th@rweef cient ratio of% between
master surface and slave surface, the resulting ratio aémaatlisplacements at the interface,
which corresponds to the wear depth, s The amount of material loss is visualized in the
left part of Figure 5.25. There, the reference con gurat®nepresented by the wire frame and
the colored solid represents the material con gurationth# position where the largest wear
depth occurs, three elements of the ne outer layer and nfwar bne large bulk element are
worn away. However, the shape evolution step still guaemnter a very good mesh quality
in the material con guration, as can be seen in the right pafigure 5.25. It is pointed out
again that the material displacements correspond to theapyiquantity of interest, i.e. the wear
depth, at the contact interface. Inside the bulk of the daritae material displacements have no
physical interpretation, but are merely a consequenceeoéhployed ALE algorithm to assure
mesh quality. The mortar mesh tying interface does not affez mesh shape evolution step
and material displacements are consistently transfem@aigh this interface. The correspond-
ing normal contact stresses are visualized for the inigggiration state (t=1), the rst (t=11),
second (t=21), third (t=31) and fourth cycle (t=41) in Fig.26. It can be easily seen that the
contact stresses drastically decrease due to the loss efial@s expected.
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cycle 1 cycle 2 cycle 3 cycle 4

Figure 5.24: Material displacements at contact interfawesfave body with wear coef cient
ofkl =2:1e 3.The gure is based on Farah et al. [74].

Figure 5.25: Material displacements for slave body: Thedwame on the left side represents the
reference con guration and the solid represents the nateoin guration. On the
right side, the pure material con guration with materiagpliacements are shown.
The gure is based on Farah et al. [74].
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initial stress state cycle 1 cycle 2

cycle 3 cycle 4

Figure 5.26: Normal contact stresses after 0, 1, 2, 3 and 4 wedes. The gure is based
on Farah et al. [74].
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5.6. Thermo-structure-contact-wear interaction with
nite shape changes

Since wear phenomena are physically strongly connectatttmhal dissipation, their interac-
tion with thermal effects is very likely. This motivates tHevelopment of a thermo-structure-
contact-wear interaction framework with nite shape chesg

The following investigations are based on the term papelt R15], which has been super-
vised by the author. In order to derive an algorithm that Ie &b treat thermal wear effects, the
standard frictional contact problem in Chapter 3 has to bergled towards thermo-mechanical
interactions. Therefore, a general approach for thermatsire interaction problems without
contact was derived and described in great detail in Danoldk and Danowski et al. [52].
This approach has been extended towards contact intarggtenomena in Gitterle [87], Hle-
ber and Wohimuth [116] and Seitz et al. [245]. Since the tleestnucture interaction framework
including thermal contact effects is only employed in a klaox manner in the following, its
governing equations are only brie y reviewed. In additiadhe solution procedure is shortly
sketched and two examples are presented at the end.

5.6.1. Problem setting

The temperature elds® and @ for two bodiesB! andB? are introduced. In order to de-
rive a problem statement for the temperatures in the comtiextite wear problems, thermal
boundaries in material (worn) con guration are introduced

@®W= 01 91 9 (5.75)
m W= m v Qe By Q= (5.76)

where fr? denotes the domain boundary with prescribed temperatutre 5#51 is the boundary

with given heat uxes. Again, their counterparts in spatiah guration are denoted with®
and g). Usually, thermo-mechanical problems are formulated wa8pect to a reference tem-
perature o, where the bodies are stress free. Here, the reference igtugeeis also assumed
to be equal to the material temperature in the material coragon. Therefore, no additional
notation is introduced for the material temperature. Cqueatly, the relative temperature can
be de ned as

O="0O (5.77)

The constitutive relations introduced in Section 2.1.2rapgli ed in order to describe thermo-
elastic material behavior. Thus, the formulation for thinS&enant-Kirchhoff material model
introduced in Danowski [51] is employed, which is de ned Igtstrain energy function

TSVK = %(trE)2+ ()E:E+mo() tE oCy In— ; (5.78)

0

Herein, the rst two terms are equivalent to the classicah&genant-Kirchhoff material model
in (2.20) except for the dependency of the Lamé parametetiseotemperature. The third term
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represents the coupling between the thermal and strucelte where the stress-temperature
modulusmg( ) is obtained by

mo( )= (B ()+2 () (5.79)

The thermal expansion coef cient is denoted by The last term in (5.78) is the thermal poten-
tial with the speci ¢ heat capacit§€, . This change in the de nition of the strain energy function
directly in uences the balance of linear momentum. Howeadlrremaining de nitions for the
boundary value problem remain unchanged and read

DivP W + 6 = 0 in O [0T]; (5.80)
u(l) — O(I) on ETI]),U [O’T], (581)
PO NO =0 on ) [0;T]: (5.82)

Additionally to the structural equations, the contact ¢oists for the structural part are still
de ned by the non-penetration conditions

G O0; pn 0; pagn=0 (5.83)
and the conditions for frictional sliding according to Comib's law
= ktk Fjpyj 0O V.egt+ t =0; 0; =0: (5.84)

Herein, it is assumed that the consideration of thermattsffdirectly in uences the coef cient
of friction, via

F=Fole o (5.85)

(a0

This assumption is based on the explanations in Laursen.[tb(.85), the coef cient of fric-
tion at reference temperature is denoted Waghthe damage temperature is represented with
and the temperature of the contact interfages de ned to be the maximum temperature of the
contact surfaces, = max_ @; @). Under consideration of this law, the coef cient of frictio
monotonically decreases from the initial friction coektitFy to zero at the damage tempera-
ture .

Without any further details on the derivation, the probleamfulation for the thermal eld
results from the rst and second law of thermodynamics aredise

el Oy O+ pvQ®  Vr® =g in O [0T]; (5.86)
M = N on & [0T]; (5.87)

QM N O =g on Oy [0:TI; (5.88)

Wt=0)= in @ (5.89)

Herein,H describes heating due to the Joule effect and is given fazdhsidered Saint-Venant-
Kirchhoff material model:

H= mg()trE-: (5.90)
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Additionally, r is the source term energy density per unit mass@rakenotes the heat ux in
the material con guration, which is de ned as

Q= Jk(F" F) 'Grad: (5.91)

Here,J is the already introduced determinant of the deformatiaaignt,F is the deformation
gradient itself, Gradis the material gradient of the temperature &nd the thermal conductiv-
ity. Furthermore, the prescribed boundary temperaturenetéd with™ and the prescribed heat
ux reads ¢.

The thermal contact effects are de ned by the heat uxes dhdmdies in inward normal
direction of each considered body. Based on the local eriigynce at the contact interface, the
heat uxes for the slave and master body read

Cl(;l) = @ (2)) ot Vi), (5.92)

@= (P @) @ ot Ve (5.93)
Here, the rst term of each de nition is the heat ux due to themperature difference and
the second term is the generated heat due to dissipatiactefiehus, the second term of each

equation is directly related to the dissipation rate dgrdt ned in (3.13). The parameters
and . can be written as

O @ S
T D, © T O, @ (5.94)
where the heat transfer parameté? depends on the normal pressure, via
8
() = <0 forp,=0 (5.95)

Opn forpn< 0’

Despite the fact that the wear coef cient shows a dependemctemperatures as suggested
in Molinari et al. [175] and Pearson et al. [200], a constaygfcient is assumed for the fol-
lowing investigations. However, the presented methodisgection are easily extendable to
incorporate further dependencies on temperature andigadinditions.

Remark 5.6. It is important to note that the additional mesh movemeri@employed Arbitrary-
Lagrangian-Eulerian approach leads to convective termhetime derivatives of the tempera-
tures. These convective effects are not implemented imtpéoged algorithm. However, since
the loss of material due to wear is a very slow process andemprently the additional mesh
motion is of small magnitude within one time step, the neégieconvective terms should be a
valid assumption.

5.6.2. Solution method

The consideration of wear effects and nite shape changesagain realized in a partitioned
scheme as introduced in Section 5.5.2. Here, a Lagranganssperformed followed by a shape
evolution step. In contrast to Section 5.5.2, no wear effapt considered during the Lagrangian
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step, which means that no modi cation of the gap functionasfgrmed. Thus, the Lagrangian
step consists of a pure thermo-elastic problem which isesbha a fully monolithic manner.
Herein, the structural eld is considered as quasi-statabfem and thus inertia effects are ne-
glected. For the thermal eld, dynamic effects are congdeand time integration is done by the
well-known One-Step-scheme. The contact interaction is discretized with thetanonethod
and the thermal heat uxes are identi ed as additional Lage multipliers. However, further
details on the spatial and temporal discretization of thgotex thermal-mechanical problem are
beyond the scope of this thesis and the interested readsersed to Danowski [51], Danowski
et al. [52], Gitterle [87], Hueber and WohIimuth [116] andt3ait al. [245] for detailed infor-
mation on this topic. Therefore, the Lagrangian step canoimsidered in a black-box manner.
After a completely converged Lagrangian step, the weaement for the considered time step
is post-processed according to Section 5.3.1 and afteswailized in the shape evolution step.
The shape evolution procedure for the structural probleenfar the material con guration, is
identical to the explanations in Section 5.5.4. In addititve temperatures have to be adapted
according to the mesh movement. For this purpose, the tistemperature’, at a considered
relocated nodg is consistently interpolated, via

Rn
ih= No(5) bn; (5.96)
b=1

where the parameter space coordingtef the updated node within the non-updated element is
calculated as described in (5.72).

The complete algorithm for the thermo-structure-contaedyr interaction with nite shape
changes follows to:

Algorithm5.3. Explicit partitioned scheme

1. Solve the nonlinear thermo-mechanical contact problestuding friction for xed ma-
terial displacements according to Seitz et al. [245] as &agian step. Herein, no effects
due to the actual wear increment are considered

2. Post-Process the wear increment for the completed Lggnarstep according to Sec-
tion 5.3.1.

3. Solve the nonlinear shape evolution step as a pseudicgiaproblem (ALE problem)
for the calculated amount of wear. Then update the matanthtize spatial con guration
as well as the temperatures with regard to the calculated byeamploying the advection
map procedure.

5.6.3. Numerical examples

In the following, two numerical examples are investigatedverify the developed thermo-
structure-contact-wear interaction algorithm and to destrate its applicability to nite de-
formations and nite shape changes.
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Figure 5.27: Geometry with nite element mesh and boundargditions for the oscillating
punch example. The right part visualizes the given displergs for one cycle.

5.6.3.1. Validation — oscillating punch

The rst example is taken from Ireman et al. [125] and is emyplibto compare the accuracy
of the developed thermo-structure-contact-wear intevadtamework with already existing al-
gorithms. The example consists of two thermo-elastic Imdiamely a punch and a founda-
tion. The dimensions of the punch a&28mm 4mm and the dimensions of the foundation
are40mm  20mm. In contrast to the original setting, a 3D simulation isfpened. Thus,
both bodies have a thickness df = 0:5mm. The punch is loaded with a prescribed trac-
tionp = 200n,’\\'—m in vertical direction, see Figure 5.27. Additionally, a izontal oscillation(

is prescribed at the top of the punch, see again Figure 5&thE numerical tests, 100 cycles
are carried out. The bottom of the foundation is completajyp®rted in vertical direction and
the midpoint is also xed in horizontal direction. In order &chieve a problem setting, which
corresponds to the plane strain assumption in Ireman et26b][ symmetry conditions are en-
forced at the front and back of the bodies. The spatial digextgon is visualized in 5.27 with one
element layer in thickness direction. The nite element mesployed in Ireman et al. [125]
was initially matching at the contact interface and the naeshted in this thesis is non-matching
in order to demonstrate the applicability of the mortar rdtto non-matching discretizations.
The contact formulation is manipulated by an additionaiahgapg;(x) = 0:0005?, wherex

is the coordinate along the contact surface with its oriditha midpoint of the contact sur-
face. This initial gap is included in the non-penetratiomstoaints in the same way as the
wear depth was included in (5.33). Consequently, the twadsoslightly overlap. The mate-
rial properties are chosen corresponding to steel. Thusngs modulus i€ = 21OOOOmN—mz,
Poisson’'s ratio is = 0:3, the initial density is g = 7800%, the thermal expansion coef cient
is =12 10 6%, the speci ¢ heat capacity i€, = 460kgiK and the thermal conduction

isk = 46X For the contact interaction, the friction coef cient is ded asF = 0:3 and no
damage effects are assumed. Additionally, the thermaltheagfer parameters are assumed to
be equal for the two bodies and set tfy = 10 3%. Finally, the wear coef cient is de ned
ask, = 10 5%. The time integration factor for the One-Stegcheme for thermal effects is
chosen as; = 0:5 and the structural problem is considered to be quasi-stdbceover, a time
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Figure 5.28: Results for oscillating punch compared to heret al. [125] after 100 cycles: tem-
perature difference with respect to reference temperéusemulations with wear
effects and without wear effects (left) and wear depth wihennhal effects are in-
cluded (right).

step size of t = 3:125 10 “*s is chosen. The punch is de ned to be the slave body and the
foundation is the master body, respectively.

In order to judge the accuracy of the results, the basic réiffees in the employed nite
element frameworks must be pointed out. The algorithm usdéeman et al. [125] is based on
the assumption of small displacements, small deviatiom® fthe reference temperature and a
small wear depth. The contact discretization was realinea mode-to-node manner and thus
the employed nite element mesh must initially match at theeiface. Again, the algorithm
developed in this thesis is created in order to be valid in iée Wleformation and nite wear
regime and the contact interaction is based on the mortaradeConsequently, it should also
be able to perform in a small deformation regime with smatiested wear depths.

The results compared to Ireman et al. [125] are visualizetienFigure 5.28. In the left part
of this gure, the differences of the interface temperattwenpared to the reference temperature
are plotted for simulations with included and excluded wefégcts. When wear is not consid-
ered, the temperatures in the middle part of the contaaffatte match qualitatively well. At the
outer parts of the contact zone relatively high discrepzsoccur. This could originate from the
additional initial gapg;(x) that becomes large at the outer parts of the contact zoneefbhe,
the node-to-node contact assumption in Ireman et al. [2&}ongly violated for the outer con-
tact regions and the solution quality drastically decrea$be presented mortar-based approach
is constructed in order to deal with non-matching meshestlnsl the solution quality is not
drastically in uenced by the mesh-to-mesh constellatdfhen wear is included, the overall
temperature distribution of the contact interface matcreeg well with the result from litera-
ture. The additional loss of material, which reaches itk@¢ahe center of the contact interface,
balances the initial gap overlap and by an ongoing simuiatie matching node assumption
in Ireman et al. [125] becomes more and more valid. In thet gt of Figure 5.28, the wear
depth is plotted over the contact interface for includedrtta effects. The maximum wear depth
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Figure 5.29: Geometry with nite element mesh and boundanyditions for block on rotating
disc example.

at the center of the contact interface is excellently cagutuoy the algorithm developed in this
thesis. Also the wear depth distribution nicely matchegésealt from literature.

In summary, the presented algorithm yields excellent gmistand the results from Ireman
et al. [125] can be reproduced.

5.6.3.2. Finite shape changes — block on rotating disc

The nal wear example is introduced in order to demonstragedpplicability of the proposed
thermo-structure-contact-wear interaction algorithnmite deformations and nite shape chan-
ges. The example consists of a block which is pressed onttaéing hollow cylinder. The
geometry and the employed nite element mesh is shown inreidgu29. In addition to the
information in 5.29, the thickness of the blocksim and the thickness of the disc is de ned
as6mm. For both bodies, rst-order hex8 elements are employée material properties for
both bodies are chosen according to steel. Thus, the maiarameters are equal to the previous
example. The damage temperature for the friction coeftisrchosen asy = 700K and the
initial friction coef cient is Fo = 0:3. The reference temperature is de ned g@s= 293K.
Again, the time integration factor for the One-Stegeheme for the thermal eld is chosen
to = 0:5and the structural problem is assumed to be quasi-statectiifie step size is de ned
as t =0:01s and the overall simulation timeTs= 3:5s. In the time intervals<t  0:1s, the
block is completely xed at its top surface and the hollowinglers inner surface is subjected to
an angular acceleratidh= 4 :O%’. Afterwards, in the time intervdl:1s<t  3:5s the block is
continuously pressed into the cylinder with a prescribegldicement amplitude 6f= 1:75mm
and the angular velocity of the cylinder is kept constank Tiortar contact is characterized by
the block being the slave side and the cylinder is de ned toaganaster side, respectively. In
addition, only the block is assumed to lose material due tarwe

The resulting temperatures are given in Figure 5.30. Haeetegmperatures are shown for a
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without wear with wear
t =1.5s
t = 2.5s
t = 3.5s

Figure 5.30: Temperature distribution for block on rotgtidisc example: results without
wear (left) and when wear is included (right).
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Figure 5.31: Material displacements for the block: The vilieane on the left-hand side repre-
sents the reference con guration and the solid represaetsiaterial con guration
at the end of the simulation. On the right-hand side, the material con guration
is shown with highlighting the material displacement cam$o

simulation without any included wear phenomena and wittsmered wear effects. It can nicely
be seen that the temperatures are much lower for the simuolaith wear compared to the sim-
ulation with wear effects being ignored. This is due to thessnl@ss and corresponding nite
shape change which naturally leads to decreased interfilssas compared to the simulation
without wear. Of course, this effect results from the puiigychlet-controlled setting with pre-
scribed displacements at the top of the block. In contrasetiing with a force being applied at
the top of the block would not lead to decreased contactdoratd such an extent. However, this
decrease in interface stresses causes a reduced digsigiatiee contact interface and, accord-
ing to (5.92) and (5.93), lower heat uxes occur. During thrgie simulation, no oscillations
in the temperatures for the problem with wear being inclualeinoticed. This shows that the
developed explicit algorithm performs in a robust and sabbnner for the chosen time step
size.

Finally, the resulting shape change due to the materialdb8®e contact interface is shown in
Figure 5.31. It can be seen that the material loss at the ciointarface of the block corresponds
to nearly three element layers. But again, the proposeditign including the developed shape
evolution procedure, guarantees for an excellent meslitgdalspite the huge material loss.
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6. Mortar Methods for Volume
Coupled Problems

As already explained in this thesis, mortar methods wergirally introduced in the context
of Domain Decomposition (DD) applications and have usub#gn incorporated in a varia-
tional problem formulation. However, according to Dureigsand Bavestrello [64], the mortar
method can also be considered as an abstract transfer stthegreaforces conservation of nodal
information in a weak sense. Thus, it perfectly suits théerglement idea and guarantees for
high accuracy. While this approach yields excellent rasuitis extremely costly when stan-
dard shape functions are employed. Up to now, no extensigartts dual mortar methods in
a complete 3D realm was ever made, which marks the rst pdimrigin for this chapter. In
addition, projection operators for nodal information star allow for multiphysics simulations
on non-matching meshes, as rstly demonstrated for 2D oislin Dureisseix and Bavestrello
[64] in the context of partitioned solution algorithms. Hewer, this has never been extended
towards 3D multiphysics problems within monolithic sotutischemes and contact problems,
which represent the further novel developments in this &hap

This chapter focuses on details concerning the construofia 3D projection operator based
on dual mortar methods and its application to general musgs problems. Here, the pre-
sented information and methodologies are basically takam the author's publication Farah
et al. [70]. In addition, the multiphysics approach for noatching meshes is extended towards
contact interaction problems, where interface mortar ajoes and volume mortar operators are
simultaneously employed within a single monolithic franoekv Details on the extensions to-
wards contact problems are basically taken from the Mastéresis Jelich [128], which was
supervised by the author.

The following chapter starts with a state-of-the-art ov@mof already existing approaches
for nodal information transfer and their various applicas. Then, the fundamentals on volume
projection of nodal information are explained. Here, thetargprojection operator is derived in
its general form and details on its numerical evaluatiomal dhape functions for volume prob-
lems and conservation properties are provided. Afterwatds performance of the projection
operator is validated with two numerical examples. Thea,tojection operator is employed
on non-matching volume meshes in order to create a genethbdwogy for multiphysics sim-
ulations. This approach is validated at several numericalilgations of coupled multiphysics
problems. Finally, further applications of the projectmperator are demonstrated.
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6.1. Fundamental approaches and research objective

6.1.1. Fundamental approaches and applications

In the following, the fundamental approaches on nodal mitron transfer methods for volume
coupled problems are reviewed. In addition, their strorrghated counterparts in the eld of
computational contact mechanics are mentioned. Althoogkect mechanics and general inter-
face mechanics are based on constraint enforcement tegmsgyich as penalty regularization
and Lagrange multiplier approaches, their type of constidiscretization is crucial for the per-
formance of these methods. Therein, interface projectpmrators for nodal information trans-
fer implicitly arise, which share a lot of conceptual simiti@s with abstract volume operators.
Thus, the following explanations provide a state-of-thiesaerview of general methodologies
for nodal information transfer. Moreover, their varioudds of application which are beyond
the scope of computational contact mechanics are reviewed.

The easiest way of transferring nodal information isoale-to-nodéNTN) approach, where
each coupling pair consists of two nodes. It is also comma&niywn asmatching griddis-
cretization. Here, it is assumed that the nodes initiallyamand thus the coupling constraints
or the information transfer can be enforced individually éach node pair. This approach was
implicitly employed in many multiphysics problems, suchfasporoelastic media simulations
in Vuong et al. [278], thermo-structure interaction in Deus&i et al. [52] and uid-structure
interaction problems with moving grid approach in Ramm arall\[225] and Wall [280]. In
the context of computational contact mechanics, such aroapp has been employed in Fran-
cavilla and Zienkiewicz [84], Hughes et al. [120] and Irenetral. [125]. In a regime of in-
nitesimal deformation this approach is valid since no sigant relative movements between
the domains are allowed. However, for classical structapglications in a nite deformation
regime together with a pure Lagrangian description the Npplra@ach obviously fails. To over-
come this problem, an Arbitrary-Lagrangian-Eulerian (Alapproach was developed in Benson
[24] and Haber [93], which split physical material point noot and mesh motion to enforce a
matching grid setting at the contact interface. Such anagmbr was also applied for nite wear
simulations in Chapter 5 and the interested reader is afsored to the explanations therein.
However, this approach is still restricted to nearly equdiscretized contact interfaces and thus
it is not the approach of choice for contact simulations. g@meral domain decomposition ap-
plications with non-matching meshes the NTN approach isaasly not an adequate choice.

In order to treat the problem of non-matching discretizadithat naturally restricts the NTN
approach, a scheme based on coupling pairs consisting afeaaral an element was developed,
which is denoted asode-to-segmeriNTS) scheme. A NTS scheme for nodal information trans-
fer enforces the coupling point-wise (strong) at each nticdeas employed for example in Bus-
setta et al. [35], Ortiz and Quigley [190], Ramm et al. [226{&aksono and Pér[239]. The
more general form of the NTS approach is denotedd®cation schemewhere the coupling
pair consists of a general collocation point and an elemiérgn, the nodal information is inter-
polated at these collocation points and after the projeagsa@completed, the nodal values from
the target mesh can be recovered. In the literature on irgbom transfer methods, these ap-
proaches are often termed collocation schemes althoughftirenation transfer is enforced at
the nodes, see Dureisseix and Bavestrello [64]. Since iaigter focuses on information transfer
schemes, the namingpllocation methods maintained in the following of this thesis. In addi-
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tion, it should be noted that among various other declamafithe NTS type of discretization is
also usually callegélement transfer methad some publications, see for example Bussetta et al.
[35]. In the context of computational contact mechanicshswde-wise enforcement is indeed
commonly termed NTS discretization and has been propodddliquist [97] and Hughes et al.
[120]. It has successfully been extended to more generahcboases in Bathe and Chaudhary
[14], Hallquist et al. [96], Papadopoulos and Taylor [198no et al. [253] and Wriggers et al.
[296].

Since the collocation approach enforces the nodal infaonatansfer in a point-wise (strong)
sense, it cannot guarantee for weak conservation propentie does not naturally tin the -
nite element philosophy. To be consistent in a nite elenrsise, weak conservation methods
have been developed, see for example Orlando and B&8] and Orlando [189]. These types
of nodal information transfer schemes are denotesegment-to-segme(8TS) methods in the
following. Due to their characteristic of weak informatioanservation, they naturally require
for numerical integration procedures, which cause in@@a®mputational costs compared to
the previously introduced methods. For computational acintnethods, rst investigations re-
garding the weak enforcement of contact constraints caolnedfin Papadopoulos and Taylor
[195] and Simo et al. [253]. Thaortar methodtan be identi ed as special type of STS methods.
As already introduced in this thesis, it is based on a separaf a so-called slave (target) and
master (source) mesh and the nodal information transfersedon weak conservation assump-
tions over the slave side, see Bernardi et al. [25, 26]. Theanmethod has been employed for
the creation of general volume coupling operators in Dgmisand Bavestrello [64] and Néron
and Dureisseix [181]. Therein, the computation of the marperators is based on the construc-
tion of a so-called "super mesh", from which each elememiakided in only one element of the
source and target mesh. This basically describes the attegrcells/segments for the segment-
based integration procedure from Section 3.4.2. This vasethployed in Farrell and Maddison
[76] and Farrell et al. [77] for the construction of projectioperators, which are strongly related
to mortar operators. Mortar methods for computational acimnechanics have been already in-
troduced in Chapter 3 and the interested reader is refeoréltetexplanations therein and the
literature Gitterle [87], Gitterle et al. [88], Popp [21@opp et al. [211, 212], Puso and Laursen
[218] and Yang et al. [301]. For the sake of completenesg)aukl be noticed that operators
for nodal information transfer based on weak conservatiopgrties have also been developed
based on nite volume (FV) schemes, see Alauzet and Mehrgeb@4] and Rashid [227].

Finally, besides the already mentioned eld of computagiorontact mechanics, the various
types of applications for nodal information transfer sckesrare brie y given. One of the most
obvious type of application is the remeshing operation,cwhmight becomes necessary for
structural mechanics where extremely large deformati@esio Remeshing procedures can be
found in Bussetta et al. [35], Fernandes and Martins [78]Renit et al. [203]. Other application
types are global/local schemes in Gould and Hara [91], Mbié] and Voleti et al. [276], the
Arlequin method for structural problems in Dhia [58] and Blaind Rateau [59], the Chimera
scheme for uid problemsin Meakin [169], Renaud et al. [2Zeger and Benek [258] and Wall
et al. [281] and geometrical multigrid methods in Adams [24l &8iotteau et al. [28]. Nodal in-
formation transfer schemes have also been applied for thelaiion of volume coupled mul-
tiphysics problems on different meshes for the individualts, see Dureisseix and Bavestrello
[64] and Néron and Dureisseix [181]. Yet, in these publmadionly 2D multiphysics problems
solved within a partitioned scheme are considered. Howéveas been proven, that monolithic
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solution schemes lead to superior robustness for couplédtipimygsics problems, see for exam-
ple Danowski et al. [52], Gee et al. [85] and Verdugo and W&/H]. Hence, it seems promising
to develop methodologies to allow for monolithic multipfggssolvers on non-matching meshes.

6.1.2. Speci cation of requirements

Based on the previous explanations on already existinglicmug@pproaches, the most important
requirements for the development of accurate and ef cieattar approaches for nodal infor-
mation transfer and their application to multiphysics peats are listed in the following.

Computational ef ciency due to dual shape functionsCompared to collocation methods,
mortar approaches require a much higher evaluation eft@rtalits characteristic weak enforce-
ment of the information transfer and the consequentlyragisieed for numerical integration. In
addition, a standard mortar approach leads naturally tdlyadaupled system for information
transfer, meaning that one node of the target mesh is usidijgcted to information of all nodes
from the source mesh. In the algebraic form, this can be i@elrty a dense projection operator
which inevitably causes high numerical effort for matrixatmx and matrix-vector multiplica-
tions. Also the creation of the mortar projection operatself is very costly since it requires
the inversion of a non-diagonal, sparse matrix that is obglgroblem size. The use of dual
shape functions based on biorthogonality conditions waiddi cantly increase the computa-
tional ef ciency of a mortar based projection operator,cgirthey localize the coupling effect
and lead to a NTS like, decoupled algebraic structure ofrtf@mation transfer. Furthermore,
the mentioned inversion of a global matrix becomes veryieht because it can be created in a
way that it becomes of diagonal form. Up to now, the use of dhalpe functions for coupling
operators in a completely 3D setting for rst- and secondesrelements cannot be found in
existing literature.

Application to general monolithic multiphysics problemsIn the existing literature, multi-
physics problems are predominantly discretized in a NTN megrmeaning that nodes of the
discretized single- elds match. In contrast, volume cadpiultiphysics with different meshes
for the involved physical elds are often highly desiralbheterms of solution accuracy and com-
putational costs. A rst approach for multiphysics coupglion different meshes was outlined
in Dureisseix and Bavestrello [64], but with restrictiomspartitioned coupling schemes in a
2D setting. A comprehensive methodology for multiphysicsutations on non-matching and
non-conforming meshes at the boundaries cannot be foure iextisting literature so far.

Extension of the general coupling approach for monolithic nultiphysics problems to-
wards contact mechanics/Nhile the simulation of volume coupled problems on non-risitg
meshes is a rarely focused topic, the extension of such apipes towards contact mechanics
problems, like thermo-structure-contact interactiom c®mpletely unanswered question. When
considering a body with non-matching volume meshes in th&t general case, usually its inter-
face discretizations are also non-matching. Thus, a fudbepling of the interface quantities,
e.g. possibly employed Lagrange multipliers, is requirethis case. Furthermore, the compu-
tational contact interaction with a second body in a nitéatenation regime generally leads to
non-matching interface meshes between these two bode€sgpter 3. Consequently, a very
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complex interface and volume coupling scheme arises fdn saenarios, which is presented
throughout this thesis.

Extendable implementation regarding general volume coumd problemsDespite the men-
tioned application to volume coupled multiphysics prolderme consideration of overlapping
volumes with different meshes is also required for many odpplications, such as remeshing
schemes and so-called zooming procedures. The implen@nedthe presented algorithms can
be realized in very general manner to allow for employingilsinties for a bunch of numerical
application such as a Hu-Washizu approach for rst-ordeateedral elements (cf. Lamichhane
et al. [149]), a novel and computationally ef cient algdwih for uid-structure interaction prob-
lems and many more methods.

6.1.3. Proposal for a mortar approach for general volume cou pled
problems

The most important ingredients and new scienti ¢ contribng of the presented volume cou-
pling approaches are given in the following:

implementation of a mortar projection operator for nodé&tmation transfer for 3D prob-
lems based on dual shape functions for rst- and secondraldenents, see also Farah
et al. [70].

application of the mortar based projection operator tooteimonolithic multiphysics
problems, see also Farah et al. [70].

extension of the coupling methodology for multiphysicsigemns on non-matching meshes
towards computation contact mechanics.

Summing up, this chapter combines the gained knowledgeadfshape functions with volume
coupled projection operators and provides a general ang@ransive methodology for volume
coupled problems on different meshes.

6.2. Fundamentals on volume projection of nodal
information

When dealing with incompatible meshes, the adde ned on mesh ; is going to be trans-
ferred to mesh , resulting in the elds,. The elds are represented by global vectors storing
nodal valuess; and nite element shape functions associated with the spording mesHN;
fori = 1;2. The total number of nodes for the meshgsand , is n; andn,, respectively. A
connection between discrete nodal values on both meshe®islgy

S = Po sy (6.1)

whereP5; is the projection operator to map from meshto .

157



6. Mortar Methods for Volume Coupled Problems

Figure 6.1: Representative mesh-to-mesh situations falalnmformation transfer, adopted
from [64]. From left to right: matching grids, nested mesttkssimilar meshes. Fig-
ure taken from Farah et al. [70].

Throughout this thesis, various meshes will be comparedderao analyze the diverse de-
mands on the information transfer methodology. For thigppse, a nomenclature for differ-
ent mesh-to-mesh constellations is introduced and is shoviAigure 6.1. This classi cation
is adopted from Dureisseix and Bavestrello [64] and was aisployed in Farah et al. [70]. It
consists of

Matching grids: This case represents the most simple getivhere each node of the
source mesh can be mapped onto a corresponding node ofdbéeraash.

Nested meshes: Here, the ner mesh is able to exactly represtutions based on the
coarser mesh.

General case of dissimilar meshes: This is the most dif cake with arbitrary dissimilar
mesh sizes.

Within this thesis, two different approaches to de ne thisjpction operator are considered,
namely thecollocation approacland themortar approachTheir basic work principle is demon-
strated with a 1D example consisting of two rst-order elensethat are supposed to represent
a Gaussian distribution, see Figure 6.2. In the left subegtine boundary between the elements
is atx = 0:0, meaning that the middle node coincides with the locatiothef peak of the
Gaussian distribution. The right sub gure represents arggtwhere the middle node is located
atx = 3.0, which corresponds to a value being nearly zero. It can belyngeen that the
collocation method ful lls information transfer point-a& at the nodes, whereas the mortar ap-
proach enforces the integral of the difference between tescpbed reference curve and the
nite element approximation to be equal to zero, which tsryavell to the philosophy of the
nite element method. A detailed introduction of the two niened approaches to carry out the
information transfer is given in the following subsectiomroughout this thesis, it is assumed
without speci cally addressing this topic that intersectielements of the two meshes are found
by an underlying search algorithm, see for example Masdiag) £162].
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Figure 6.2: Two-element example of eld transfer of a Gaasdilistribution with the colloca-
tion approach and the mortar approach: placement of thelenidutle, i.e. element
boundary ax = 0:0 (left) and atx =  3:0 (right). Figure taken from Farah et al.
[70].

6.2.1. Derivation of the mortar method

The mortar method, originally developed in Bernardi et 25,[26] and Maday et al. [160], is
based on the conservation of work between two different dulids, i.e. the mortar method has
a sound variational basis. In the context of computationatact mechanics, this is employed
via the duality of the Lagrange multipliers and the dispiaeat eld, see Chapters 3 and 4.
However, in the following, a more general approach is derlvased on an abstract dual edg,
which is de ned by its interpolation

d2 = 2d2: (62)

It is employed for the transfer of the eld, de ned on mesh ; onto mesh , to gets,. The
eld d; is dual to the target elds, and the shape functions, of the dual eldd, are de ned
on nodes associated with meshand can be chosen to be the same as for thesgléHowever,
dual shape functions which were already introduced in 8e@&i4.1.2 will be extended towards
3D problems in Section 6.2.3 to increase numerical ef ciemtien used for the interpolation
of d,. The energy pairing between eld, ands, reads
z z
mZ;Szi , = szzd 2 = d-zr -2|—N2d 2S5 = d-zrDz Sy, (63)
2 2
with the rst mortar matrixD, having characteristics of a mass matrix. Speci cally, gysnmet-
ric and positive de nite and therefore invertible. Hereihe integral is de ned over the target
mesh ,. For the energy pairing of eld;, the same dual eld as fos, is employed, which
results in the expression
Z Z
I'dz;Sli , = dzsld 2 = d—zr 1Z—Nld 25 = d—er 21 $1- (64)
2 2
The arising second mortar mati,; is obtained by integrating a product of two shape func-
tions de ned on different meshes. Again, integration isfpened over ,. By considering the
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interface mortar matrices resulting from the contact fdatian in (3.35) and (3.36), it becomes
obvious that these matrices are strongly related to theanoratrices for volume information
transfer. Enforcing equality of the energy pairings yields

d;D, s = d;M o sy (6.5)
which holds for any discrete dual eld,. Thus, the mortar operaté¥;; reads
S = D2 lM 21$ = Prznls]_: (66)

In addition, creation of the opposing projec®f, can be realized by de ning a dual eld;
de ned on nodes associated with and formulating the energy pairings ovey. The resulting
projectorP?}, is consequently de ned as

s1= DM s = PLsy: (6.7)

Evaluation of the arising mortar matrices causes the atguplite high complexity of this ap-
proach. A detailed explanation on this topic is given in #ec6.2.4. For this purpose, the
mortar matrices are reformulated as nodal blocks with gmldpeci ¢ dimensions. Concretely,
the nodal blocks of the rst mortar matric&s fori = 1;2read
z
Di[a; B = Dyap Indot = 1aN1pd 1lngos @a=1;:5n55 b=17:ny; (6.8)
Z 1
D2[p; d = Dapg Indof = 2pN2q d 2lngor P=1;2502 g=1;550 (6.9)
2
with the identity matridqor de ning the size of the nodal block based on the number of elegyr
of freedom per node. Correspondingly, the nodal blocks fierdecond mortar matricéd
fori;j =1;2; 16 ) are formulated as
z
Miz[a; 1] = Miza lngor = 1aN2y d 1 lhao, @=1;:5ng; =150y, (6.10)
Z 1
M21[p; dl = Ma1pg Indof = 2pN1gd 2 lndos P=1;25N2; g=155Ng: (6.11)
2
It has been shown in Dureisseix and Bavestrello [64] thatib&ar projector satis es the patch
test and yields the same results as the collocation apprioaagtested meshes. Furthermore,
the mortar operator reduces to the identity operator forchiag meshes, which con rms the
consistency of this method.

6.2.2. Degeneration to collocation method

The simplest possible projection operator can be createctbylocation approach, see Ortiz and
Quigley [190] and Saksono and RefR38]. Here, the interpolation of the eld; on mesh ;

is employed to calculate the nodal values of the second megshe. to gets,. This is done in

a point-wise (node-wise) sense which can be interpretedaxtamapproach with shape func-
tions of the dual eld becoming so-called Dirac impulses at the nodes. These Rirmtions
are de ned to be in nity at the corresponding nodes and zdrallaother points. With these
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Dirac functions, the integral (weak) conservation of thergg pairings reduces to a point-wise
conservation. Therefore, the collocation approach isidensd as degenerated mortar method.
However, in practice, the physical positidf3., of a noden,, of mesh , is going to be ex-
pressed in parameter space coordinates of a corresponuitegelement;.,, of mesh ; as

n;m

X 2 Nyi(M)Xyi = 0 (6.12)

i=1

Here, the sought-after parameter space position withimetee, ., is ™ and Ne, IS the number
of nodes attached to elemest, . The shape functioN,; is associated with the mesh and the
indexi corresponds to the local node numbering of elenegpt Solving this nodal parameter
space projection can be achieved by employing a local New&whson scheme for each node
of mesh ,. Due to the isoparametric concept underlying the nite ed@tmethod, the obtained
parameter space coordinate is used as interpolation oftlde The resulting projection operator
reads

PSiGi1T= PSiji Tnaot = Nua("j) Tnaoti =130z, 1= 1500y (6.13)

The size of the identity matrik,qf 2 R"™°" "9 js determined by the number of degrees of
freedom ndof of each node. Construction of the opposingeptimn operatoPs,, which allows
for information transfer from mesh, to 4, is rather straightforward and basically requires the
evaluation of the parameter space coordinates for nodegsh m within element associated
to mesh ».

The computational costs for the collocation approach arte dow and mainly caused by
having to solve a local Newton-Raphson scheme for the pdesrapace mapping. While ap-
pealingly simple, this method can still be termed as beings=tent, since it is able to represent
the identity operator for a matching grid case. Furthermtris easy-to-implement approach
satis es the patch test Zienkiewicz and Taylor [306], bessait allows for exact projection when
the solution can be represented on both meshes, see Se@idri6

6.2.3. Dual shape functions

For all considered coupled multiphysics problems whichgwiag to be involved in the nodal
information transfer within this thesis, the same soluspaceS for the primary quantities of
interest is employed. However, it is important to point dudttthere exist problems where this
restriction is not valid due to stability reasons, like faaeple in uid simulations. The solution
space corresponds to an arbitrary continuous séhd reads

S=1fs2 HY) js(X;t)=%(X;t)on@ 40: (6.14)

Herein,H!() denotes again the well-known Sobolev space of functions setiare integrable
values and rst derivatives. Moreover, is the continuous volume on which the problem is de-
ned and@ q is its Dirichlet boundary with prescribed valu&X ;t). For discretization in space
into the considered non-matching meshgdor i = 1;2, standard isoparametric, Langrangian
nite elements are employed. This de nes the usual nite @nsional subsetS,., fori = 1;2,

that are approximations &.
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As it is aimed at solving monolithic systems of equationscoupled multiphysics problems,
a globally assembled projection operator is required. & pioint, it becomes obvious that in-
verting the rst mortar matriceB; fori = 1;2in Equations (6.6) and (6.7) constitutes the major
drawback of the standard mortar approach. For the mortgqgiron operators, any single nodal
value on one mesh globally affects the entire other mesh medrersa. However, there is a pos-
sibility to localize the in uence domain (support) onto whia certain nodal value is mapped.
Algebraically, this localized form is characterized by thertar matrice®; fori = 1; 2 becom-
ing diagonal. This can be achieved by employing the alreattpduced dual shape functions
which are based on a biorthogonal relationship with thedstesh shape functions for the in-
terpolation of the dual eldg; fori = 1;2, see Section 3.4.1.2. Within mortar methods for
computational contact problems and wear modeling theskstha@e functions have been suc-
cessfully employed in Chapters 3, 4 and 5. However, in tHeviohg, these dual shape functions
will be extended towards 3D problems.

6.2.3.1. Extension to 3D problems

For 4-node tetrahedral elements in 3D, dual shape functians been used in Lamichhane
[148], Lamichhane et al. [149] and Tkachuk and Bischoff [RHbwever, up to the best knowl-
edge of the author, dual shape functions for all other tygedDolLagrangian nite elements
have not yet been analyzed in recent publications. In obetable to vary not only the mesh
ratio, but also the element types and their polynomial omdigal shape functions for commonly
used rst- and second-order nite elements need to be camsil in the following. The basic
construction methodologies as described in Section 24k still valid but will be shortly re-
viewed here. Thus, the biorthogonality condition for duahe functions can be realized as
linear combination of standard shape functions. Agairsg, tlain be written as multiplication of
a vector containing standard shape functions within eaetmeht with an element coef cient
matrix Ce:

()= GeNk(); Ce=[Ck]2 R™ M (6.15)

The coef cient matrix itself reads

Ce= DM, , (6.16)

De = [djk] 2 R"e ne; djk = jk eNk( )J( )de, (617)
Z

Me = [mjk]2 R"e ne; Mjx = eNj( )Nk( )J( )de: (618)

All these steps are based on the assumption that the numbede$ carrying discrete unknowns
from the abstract dual eldd; are equal to the nodes of the elds fori = 1; 2. The only differ-
ence compared to the construction rules for 2D elementistegration of a volume element
instead of a surface element. For the sake of clearnessputiieskdape function of one node is
shown for a regular hex8 element in Figure 6.3. Here, a dwgdesfunction and a standard shape
function are visualized for the red marked node at the botefhwith help of 4 characteristic
slides (a-d) through the element. It can be nicely seen Heagteen shape function is of zero
value at all nodes except its own (red) node, where a posmalge occurs (not visualized in
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ab ¢ d

Figure 6.3: Standard (green) and dual (red) shape functibtise red node for an undistorted
4-node hexahedral element. Visualization is realized éitdssa-d.

Figure 6.3). When going from slide a to d, the value at the redencontinuously decreases
till it is zero. This corresponds to the general knowledgstahdard shape functions. The dual
shape function behaves completely different. It is discmmus at the element boundaries and
have higher values at the nodes. In addition, it changesgheo$its values, which is also well-
known for 2D dual shape functions, see Popp et al. [213]. i@p&eatment of second-order
shape functions in 3D is discussed in the following subsacti

6.2.3.2. Basis transformation for second-order elements

The creation of dual shape functions relies on the fact tiatritegrals of standard shape func-
tions in (6.17) and (6.18) lead to non-zero values. Wherk&scondition is readily ful lled
for rst- and second-order elements for the integral in 8,Inon-zero values for the integral
in (6.17) are only assured for rst-order interpolation.i¥becomes obvious for a second-order,
i.e. 10-node, tetrahedral element that is slightly distes shown in Figure 6.4. Here, the three
edge nodes are relocated in such a way that the integral eht@e function associated with the
top corner node vanishes. To overcome this problem, a sibgdis transformation is employed
for the standard shape functions as previously introducedurface elements in the context of
mortar contact algorithms, see Popp et al. [213]. The bdsia is to shift shape function values
from edge to corner nodes to guarantee not only non-zergraitealues in (6.17), but integral
positivity. This is possible because the shape functioss@ated with the edge nodes are strictly
positive for 10-node tetrahedral (tet10) elements. Theireddhape functions due to the basis
transformation are denoted willh. The corresponding dual shape functions are then builicbase
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undeformed st ate

deformed state

Figure 6.4: Critical scenario for a second-order (10-ndd#phedral element: the undeformed
domain represents the reference tetrahedron. In the detbstate, the marked edge
nodes are moved downwards. The deformed state leads to aaasofor the stan-
dard shape function of the top node. Figure taken from Farah f0].

on the transformed shape functions, viz.

z z
L Nixde = . Nix de; Lk =1;:5ne; 1212 (6.19)

There are a lot of possible basis transformations availadiech can all suf ciently shift shape
function values in a way that the integral positivity comafitis ful lled. In the following, one
simple basis transformation is exemplarily shown for aQeglement. This simple basis trans-
formation will be employed for all numerical examples widcend-order interpolation in this
chapter. Based on a node numbering, where rst all corneesate listed and afterwards all
edge nodes, the basis transformation for a tet10 elemeatd rea

hN-l N—Z N3 N—4 NS N—G N7 N—B N—9 N—lOi -
NT2 0 0 00 0 0 0 0 0 0°
N2 0 1 0 O 0 0 0 0 0 0
N3 0O 0 1 O 0 0 0 0 0 0
N4 0O 0 0 1 0 0 0 0 0 0
NS ¢« ¢ 0 012, 0 0 0 0 0
N6 0 4 ¢ 0 0 12, 0 0 0 0
N7 ¢g 0 40 0 0 12, 0 0 0
Nk g 00 4 O 0 0 12, O© 0
NE 0 40 4 O 0 0 0 124, 0
N® 0 0 4 4 O 0 0 0 0 12,
| z }
(6.20)
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6.2. Fundamentals on volume projection of nodal infornratio

This transformation matrix is symmetric, since it shiftgedode contributions equally to the ad-
jacent corner nodes. Furthermore, partition of unity isieess, which simpli es the construction

of the corresponding dual shape functions. The transfoomatarameter 4 has to be chosen
large enough to guarantee integral positivity of the edgierghape functions, but is obviously
limited by 4 < 1. Based on these considerations and the numerical experitmctransforma-
tion parameter is de ned as; = % By modifying the standard shape functions, the interpola-
tion of the continuous elds; fori = 1; 2 can be alternatively expressed with basis transformed

nodal quantities
si=N;s=N,s: (621)

A consistent node-wise assembly of the element transfaomatatrix T in (6.20) yields the
global transformation matricéls; for quantities on meshes fori = 1; 2, viz.

s =T;5: (6.22)

The global transformation matrices are sparse and haveathe dimensions as the correspond-
ing D matrices. Applying the basis transformation for the dyadairing in (6.3) yields

h:ii;sii i:eri‘S:diTDiTilSi: (623)
Here, the mortar matriceB; are square and diagonal due to the biorthogonality comditio
in (6.19) for the modi ed shape functions. Now, the nal martprojection operators for the
non-modi ed quantities can be simply formulated by muliplg the transformation matrix and
the basis-transformed projection operator:

1

= T2D, Ma1s. = T2 Poys; = PIsy; (6.24)
1

1= T1D, M S = T PLys, = Plsy: (6.25)

With this modi cation at hand, the mortar approach for infa@ation transfer can be robustly
employed for general second-order nite elements withoaslof computational ef ciency.

6.2.4. Integration schemes

No matter whether interface or volume coupled problemsansidered, one of the major issues
with regard to mortar methods is the design of adequate noaténtegration schemes. Thus,
strong similarities to the already introduced and devealdpeegration schemes from Chapter 3
and Chapter 4 can be identi ed. The reason for the complexarigal integration is that the
arising integrals contain a product of shape functions dd on different meshes, as can be
seen in (6.4). The locally supported shape functions olslohave kinks at element nodes,
edges and surfaces. Thus, non-matching meshes geneeallyd@ numerical integration over
discontinuities. The way these discontinuities are tikatecially in uences the ef ciency and
the accuracy of the integral evaluation. As already mesetildn the previous chapters, basically,
two different types of integration procedures exist, whigh be termed segment-based integra-
tion and element-based integration in the following. A dethexplanation of these integration
schemes in the context of volume problems is given in the sighxections.
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Figure 6.5: Main steps for 3D segment-based element caypghitial state (left), polyhedron
creation (middle) and tessellation (right). Figure takemf Farah et al. [70].

6.2.4.1. Segment-based integration

Having in mind the arising discontinuities within the intabjin (6.4), the most intuitive way
to perform numerical integration is to decompose the irgtggn domain into parts containing
only smooth shape function contributions from both meskes, for example Dureisseix and
Bavestrello [64], Popp et al. [211] and Puso and Laursen][ZI@ maintain the introduced
nomenclature for the evaluation processes of mortar tenons $ection 4.8.6, this procedure will
be called segment-based integration here. For 2D "volumefled problems, the segmentation
procedure is identical to an integral evaluation of 3D ifstee coupled problems as introduced in
Section 3.4.2. Therefore, the interested reader is reféoréhe mentioned section for a detailed
algorithm of the 2D segment-based integration.

For the 3D case, the segmentation procedure becomes mocat&t but the underlying al-
gorithmic concepts are nearly the same as for the 2D cadeabhsf creating clip polygons, a
polyhedron is created as overlapping volume of two elemdriis polyhedron is then tessel-
lated to create tetrahedra, see Figure 6.5. Afterwardsenuaal integration is performed on these
tetrahedral integration cells that contain only smoothtgbuations from both element shape
functions. However, there are alternative, arguably mémeat approaches to integrate the
polyhedron itself without further subdivision based on nemin tting algorithms or the direct
divergence theorem, see Sudhakar and Wall [264] and Sudbakh [265]. Yet, general inte-
gration procedures for arbitrary polyhedra are not the rtagit of this thesis and therefore a 3D
tessellation scheme is employed for segment-based ittmgfreere. For second-order elements,
this segmentation procedure becomes even more intrica&éadiihe possibly strongly curved
element surfaces and edges. Usually, this problem is tédktea subdivision of the second-
order elements into rst-order integration domains, itee tomain of a 27-node hexahedral is
approximated by eight 8-node hexahedrals on which numentsgration is performed. How-
ever, a segment-based integration for second-order etermeenot employed in the following.
Thus, only rst-order elements can be treated with segnib@sied integration scheme and con-
sequently, second-order elements are exclusively evaluaith the element-based integration,
which is speci ed in the following section.

6.2.4.2. Element-based integration

Beside the intuitive and most accurate segment-based atieg, the element-based integration
scheme can be predominantly found in the literature for andyised interface (i.e. surface)
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6.2. Fundamentals on volume projection of nodal infornratio

coupling Fischer and Wriggers [80, 81] and was introduce®i® problems in the context of
information transfer due to remeshing procedures in Btssgtal. [35]. It has been already
introduced in Section 4.8.6 as ef cient but less accuraterahtive to the segment-based inte-
gration. This procedure is very attractive from an impletagan point of view, because the
high complexity and the excessive computational costs aflggoen clipping in 2D or poly-
hedron tessellation in 3D vanish in favor of an integratimeroentire element domains. Yet,
this also means that the discontinuities arising at elemedes, edges and surfaces are quite
simply ignored. The inevitably increased integration esrare tackled by an increased num-
bers of integration points per element domain. Consequeéhik integration scheme strongly
depends on the mesh size ratio and thus needs a certainenqeedf the user to guarantee suf-
ciently accurate results. However, as stated in Farah .g78l, for moderate mesh size ratios
and if only weak discontinuities arise within the considedgemain, the element-based integra-
tion scheme is an attractive alternative to the segmergebiadegration. The general algorithm
to construct the mortar operat®; can be directly adapted from Algorithm 4.5, which was
introduced for mortar contact problems. However, the gamaethodology is the same. In con-
trast to the segment-based approach, the domain on whicanaatintegration of the opposing
mortar operatoP?), is performed does not generally coincide wih, . Therefore, the creation
of P2} requires a suitable integration point de nition for eaclkeraknte; in  ; in Step 1 of
Algorithm 4.5.

Note, that the element-based integration procedure caly éesextended to second-order
elements and requires no fundamental change in Algoritlrtoddo so. Therefore, it will be the
algorithm of choice for 3D second-order elements in thisithe

6.2.5. Boundary problems

Due to the geometrical approximation inherent to any diszagon, incompatibilities on the
geometry boundary® could arise. Thus, for curved boundaries the discrete septations
de ned by the two volumes of the two involved meshes do notamanymore. This situation
may become problematic in terms of accuracy for the collonatpproach as well as for the
mortar method, because nodes and integration points of @sé are possibly located outside
the respective other mesh. In the following, several enbdustrategies for evaluating projection
operators in such cases, i.e. for elements and nodes attfae are introduced and discussed.

6.2.5.1. Collocation method for curved boundaries

When creating the collocation project8f,;, some nodes of mesh, might lie outside the
mesh ;. Ignoring these critical nodes would lead to catastropagults for the information
transfer, because these critical nodes would not be abletéoany information from mesh;.

A possibility to allow information transfer onto these nedgto perform a geometrical mapping
of the node position via a closest-point-projection (cfnifokhov and Schweizerhof [139]) onto
the boundary of mesh,, see Bussetta et al. [35]. The parameter space mappind.) (6.then
performed with respect to the projected coordinates lacatethe boundary of mesh;. How-
ever, this procedure requires implementation of a clogestt-projection in 3D, which must
then be locally solved with an additional Newton-Raphsdresce.
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Figure 6.6: Three possible approaches to perform numentajration of the entries of mortar
projectorP?} at curved boundaries: integration over enclosed voluniig,(&ement-
wise integration over , with closest-point-projection of integration points onto
mesh ;(middle) and element-wise integration oves with possible integration
point evaluation outside mesh (right). Figure taken from Farah et al. [70].

In order to avoid this additional effort, a second posdipiid evaluate the collocation method
on curved boundaries is considered. Here, the closest ptehmesh ; to a considered critical
node is employed for the parameter space mapping in (6.1h2) sbught-after parameter space
coordinate will then lie slightly outside the element paeden space boundaries. Nonetheless,
this parameter space coordinate can be employed in (6.X2)¢alate the projection operator.
This can be interpreted as an arti cial increase of nodapsh@nction support for boundary
elements. In addition to being appealingly simple, it alsesinot require any additional geo-
metrical projection of the nodes onto the boundary of meshnd the extent in shape function
support for boundary elements is physically motivated,abse in a continuous setting both
meshes represent the same volume. Therefore, this apgeoactployed in the following.

6.2.5.2. Mortar method for curved boundaries

For the mortar approach, regardless of which integratiatguture is chosen, there are three
possible methods to treat such situations, see Figure &&. r§t and most commonly used
approach is to integrate over the enclosed volume, seekletitls in Figure 6.6 and the expla-
nations in Dureisseix and Bavestrello [64]. However, wiils tapproach, the elements attached
to the boundaries are not completely integrated and théhtmigonality condition in (3.47) does
no longer hold for this reduced integration domain. Thidybem also arises for mortar contact
formulations in case of so-called dropping edge scenamadscauld be handled by enforcing
the biorthogonality condition for the reduced integratitmmain only, see Cichosz and Bischoff
[45] and Popp et al. [214]. Yet, ful lling the biorthogonaticondition for reduced integration do-
mains in 3D would become very intricate and thus two less dexmggpproaches are introduced,
see the middle and right sketches in Figure 6.6. Both appesaare based on an integration
over the entire mesh, for the projection operatoP3; or over the entire mesh; for P7,,
respectively. Thus, an actual evaluation of integratiomfsode ned outside the other mesh is
performed and no modi cations concerning the biorthogapabndition have to be introduced.
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6.2. Fundamentals on volume projection of nodal infornratio

The rst approach for integration point evaluation (midgkeetch) is based on a closest-point-
projection of all integration points onto the boundary o gitached element. Here, no extension
of shape functions support is required, but local NewtopH®an schemes have to be performed
for every integration point. Beside this additional efffat every integration point, an inconsis-
tency in the integral evaluation is introduced here, besdlus physical integration point coordi-
nates do not match anymore.

For the second approach (right sketch), shape functiorseai¢arest element to a considered
integration point are evaluated at this point, which meé#yag the support of the shape func-
tions is slightly extended. However, the support of the shlamctions is not extended when
the considered element is employed as integration domathéoopposing projector. Thus, this
approach introduces slight inconsistencies in the eleraeaiuation. However, this approach
makes lower demands on the computational complexity coaaktarthe previous procedure and
performs extremely well in the numerical examples, seei@eét.2.7.2. Therefore, it is exclu-
sively used within this thesis.

6.2.6. Conservation properties of the projections

In the following, some fundamental conservation propeffie the projection operators are ana-
lyzed. First, the standard patch test is reviewed. Secoadkwonservation of nodal information
during mesh transfer is investigated with respect to theleyeg integration domain.

6.2.6.1. Patch test

The scenario where a continuous efdcan be exactly represented by the two considered
meshes ; and , is considered, i.e.

S = N;S5; = NySy: (6.26)

Then, the patch test is considered to be ful lled if the pobjen operator introduces no errors,
see Zienkiewicz and Taylor [306].

Since the collocation method is based on a node-wise infitmmaacking as stated in (6.13),
the patch test is automatically ful lled when considerifgetassumed exact representation of
eld s by both meshes.

For the mortar method, this reads
z z

Pos1 = D,'M a8, = D,? oNid 251 = D,*t oNod 5s, = D,'Dys; = 550 (6.27)
2 2
Thus, the mortar method also passes the patch test. Natéhithéact is completely independent
from the chosen integration procedure, see Section 6.2.4.

6.2.6.2. Weak conservation of nodal information

Weak conservation of nodal information is ful lled if thetggral value of a continuous scalar

eld can be identically reproduced on the two consideredimess ; and 5, via
z z z

sd = N]_Sld 1= stgd 2. (628)

1 2
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Following Equations (6.3) and (6.4), the mortar approacitse

VA Z
d-zr -2|-N2d 2Sy = d-zr -ZI—N]_d 25;. (629)

2 2

This equation is valid for any discrete vectty. Therefore, the equation reduces to
Z z
INod 28, = IN1d ps:: (6.30)
2 2
The shape functions , of the dual eld d, ful ll the partition of unity requirement, which
guarantees an unchanged integral value. Therefore, wesena@tion of nodal information is
automatically ful lled in the mortar formulation for integtion over the target mesh, i.e.
z Z
leld 2 = NQSQd 2. (631)
2 2
Note, however, that for curved boundaries and thus difterelumes the weak integral conser-
vation is not completely ful lled for both domains in genéraeaning that
z z
N]_Sld 16 stQd 2. (632)
1 2
The collocation method can be interpreted as a degeneratitine mortar method. Here,
the shape functions of the dual eld become Dirac functions= », being in nity at the
corresponding nodes and zero at all other points, whictsleadn integral value of 1. Therefore,
the integral de nition in (6.30) reduces to

l2S, = N218y; (6.33)

wherel, is the identity matrix andN,; is the collocation matrix. Since the Dirac functions do
not ful Il the partition of unity requirement, weak consetvon of nodal information is never
guaranteed for the collocation approach.

6.2.7. Numerical examples

In the following, the conservation properties of the depeld mortar projection operator based
on dual shape functions and the collocation projection afperare tested with two examples.
First, a classical structural patch test is employed in otdevalidate the abstract patch test
requirement for projection operators as explained in $adi2.6.1. Second, the ability of weak
conservation of nodal information is validated based onimliestigations in Section 6.2.6.2.
Therefore, thermal energy is mapped from a source onto attangsh of a cylindrical body.
Thus, also the boundary problems discussed in Section &&.&onsidered.

6.2.7.1. Conistency — Patch Test

As a rst example, a purely structural patch test is congdeiThe idea of this rst validation
setup is to calculate a displacement solution on a rst masimsfer the displacement eld to
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Figure 6.7: 3D structural patch test for combinations ob8enhexahedral, 20-node hexahedral,
27-node hexahedral, 4-node tetrahedral and 10-node ¢efr@irelements. Left sub-
gure: computed displacement solution on left mesh andquigd displacement eld
on right mesh. Right sub gure: post-processed stress fbateoth meshes. Figure
taken from Farah et al. [70].

a target mesh representing the same geometry and nallyaiethe resulting stress states on
both meshes.

The geometrical setting is a cuboid of dimensidns 4 16 that is supported at its lower
surface such that it is xed in all directions. A constantgsere load op = 10; 000is applied
at the upper surface of the brick, thus leading to a uniaxstletched deformation state. The
material is modeled with a Saint-Venant-Kirchhoff law witbung's moduluse = 210; 000
and Poisson's ratio = 0:0. For both meshes, arbitrary combinations of rst-order aglas
second-order nite element patches are employed, namelgd® hexahedral, 20-node hexa-
hedral, 27-node hexahedral, 4-node tetrahedral and 18tetihhedral elements. The different
patches are connected by mortar mesh tying interfaces. it luselated to the structural patch
test in Section 4.9.1.1. The rst mesh is horizontally detbby several mesh tying interfaces,
and the second mesh is vertically divided. This rather aoédsetup is chosen as challeng-
ing as possible, i.e. requiring projections between abbived element types. The projectors for
the volumetric mapping are created by the element-basedration scheme and the interface
mortar mesh tying is evaluated by a segment-based integratheme.

The resulting linear displacement eld and the correspogdaionstant stress state on the rst
mesh are accurate up to machine precision. This is a chastictéeature of the interface mortar
mesh tying method, see Puso [216] and the example in SecBdh 4. The volumetric mapping
of the displacement eld onto the second mesh is done by eyimiche collocation and mor-
tar projectors. Both projection methods are able to exdrlysfer the displacement eld, thus
leading to the same constant stress state, see Figure @s#eghlt demonstrates that if a solu-
tion can be exactly represented on both meshes, the colocagproach as well as the mortar
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Figure 6.8: Employed ne meshes for the source mesh (left) thie target mesh (right) for a
rotation angle of = 30 . Figure taken from Farah et al. [70].

approach do not introduce errors due to the mapping. Thustaded in the previous sections,
both methods successfully pass the patch test for volumgiogu

6.2.7.2. Weak conservation — Thermal energy

In the following example, conservation properties of thej@ction methods are discussed with
the help of another pure mesh transfer problem. The quawtityap can be interpreted as tem-
perature eld and the conservation property tested willlmethermal energy
z
E= Cyd; (6.34)

with a constant heat capaci€ . The problem setting includes a cylindrical body, disaedi
with two different meshes, see Figure 6.8. On the source naegiven temperature eld(r) =

20 (1 €**), that depends on the radial coordinatef the cylinder will be approximated.
Note that the magnitude Ofis deliberately chosen to have its highest value at the benynof
the cylinder in order to make the setup more challenging anélidate the boundary problems
described in Section 6.2.5.2. The temperature eld is pteye onto the target mesh, where the
thermal energy is re-evaluated. Thus, the error of the takemergy on the target mesh with
respect to the thermal energy on the source mesh is used assaméor the global projection
error. The target mesh is simply obtained by rotating the@®mesh by an angle around the
cylinder axis. In Figure 6.9, the results of the mapping agcted exemplarily for = 15 . The
collocation method was used for the evaluation of the ptmamperator. Another simulation
with the mortar approach gives nearly indistinguishabdeits. The relative energy error over the
rotation angle is depicted for rst-order elements (8-nbégahedra) in Figure 6.10. Therein, the
mortar and the collocation approach for a coarse mesh2égiements (left) and a ner mesh
with 760elements (right) are compared. In case of a zero rotatioleahbgth variants of course
yield a perfect result, since the matching case is repratiuskso, it becomes clear that the
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Figure 6.9: Temperature eld on source mesh (left) and thgetamesh (right) for a rotation an-
gleof =15 . The collocation method was used for the evaluation of thgeption
operator. Another simulation with the mortar approach givearly indistinguishable
results. Figure taken from Farah et al. [70].

coarser the mesh the higher the error, which is due to themaiching boundary discretizations.
Still, the obtained error is small in general. Comparingtine approaches, one can conclude
that for all rotation angles other than zero, the mortar @ggh gives far better results than the
collocation method. In addition, the accuracy of the magpsnnvestigated with a coarse mesh
employing second-order elements (27-node hexahedra)hésrsin Figure 6.11, the overall
relative error of the thermal energy decreases even fuatheompared with rst-order elements.
However, the mortar method still yields far better resuitatthe collocation approach.

Finally, the relative local errors of the thermal energy pamed to the given temperature
eld are investigated. The results for the collocation neetland the mortar method are shown in
Figures 6.12 and 6.13, respectively. It can be seen thabtlezation method yields an increased
error on the target mesh. In contrast, the mortar methoderwees the relative error and thus the
discrete thermal energy. These results con rm the anabfstse global energy already presented
in Figure 6.10 and demonstrate that the mortar projectiaraipr performs excellently when
weak conservation properties are required.
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Figure 6.10: Relative error of the thermal energy compaceteference meshes with 8-node
hexahedral elements. Results for coarse mesh (left) andmash (right). Visual-
ization for mortar and collocation approach. Figure takemfFarah et al. [70].
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Figure 6.11: Relative error of the thermal energy compavedference mesh with 27-node hex-
ahedral elements. Results for mortar and collocation ambr@n a coarse mesh.
Figure taken from Farah et al. [70].
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Figure 6.12: Relative. 2-error of thermal energy compared to analytical solutioale@ated on
each element for collocation method. Source mesh on theitédt target mesh on
the right side. Results are shown fo= 15 . Figure taken from Farah et al. [70].

Figure 6.13: Relative. 2-error of thermal energy compared to analytical solutioale@ated on
each element for mortar method. Source mesh on the left tsidpgst mesh on the
right side. Results are shown for= 15 . Figure taken from Farah et al. [70].
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6.3. Volumetric coupling approaches for multiphysics
on non-matching meshes

Coupled multiphysics simulations are of high importancedanous engineering and biomechan-
ical applications, such as thermo-structure interactiam@vski et al. [52] and porous media
mechanics Vuong et al. [278]. Possibly, the demands théit jglagsical eld makes on the nite
element mesh completely differ from each other dependintpertboundary conditions and the
underlying partial differential equations. However, thaality of the nite element mesh and
the employed shape functions strongly in uence the acgueaa robustness of the solution.
Therefore, the commonly used approach of matching-gridréiizations for volume coupled
multiphysics represents a rather severe restrictionesime mesh size is determined by the eld
with the highest resolution requirements, thus possildylileg to unnecessary computational
costs. This creates a high demand for solution algorithrasahow for different mesh resolu-
tions for the considered sub-problems contained in a niwsjzs problem. In the nite element
context, this means that a method for transferring nodalesli.e. motion variables such as
displacements and load variables such as forces or stréste®en the discretizations needs to
be applied.

In order to allow for such a exibility in spatial discretiian, the general methodology of cou-
pling monolithic multiphysics on different meshes is imtuzed. Then, the proper enforcement
of classical Dirichlet and Neumann boundary condition istf@ different meshes is explained.
Afterwards, the formulation is extended towards contaatimeics on different meshes and as-
pects of implementation are outlined. Finally, the forntigia is validated with help of several
numerical examples.

6.3.1. General methodology

For the sake of simplicity, only two physical elds are caesied in the following. However, an
extension to three or more elds is possible and rathergitéorward. For the abstract spatially
discretized problem setting, two discrete sets of primargnewnsp, on ; andg, on »
are considered, which represent the solutions of two gavgnpartial differential equations
and , both de ned on the same continuous volume. The auxiliaynterparts of the primary
unknowns arg, on , andq,; on 1, respectively. These quantities are not explicitly sojved
but they are eliminated via the mesh transfer strategy.rAfpatial discretization, equation

is going to be solved on meshy and on ,, respectively. Based on these patrtial differential
equations, the discrete residuals

ry(py;q,)=0 and r(p2;dz) = 0 (6.35)

are de ned. The arising system of nonlinear discrete algiel@quations is going to be solved in a
fully monolithic manner. As iterative nonlinear solutiechnique, a standard Newton-Raphson
method is employed. This requires a linearization of thé&lteds with respect to the primary
unknowns, which is obtained in complete analogy to Secti@Zrom a truncated Taylor series
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expansion:

@, (PG ' 1, @u(P1 )

Lin ry(py;ay) = ry(py;ay) + gyt =0;  (6.36)

@ - en
Lin r2(p|2’ q|2) = rz(plz’ q|2) + M ! p|+l + @2(p2’ q2) q|2+l =0 (637)
@ @;

Here, the upper indek denotes the previously calculated Newton step iamdl the current
one. In order to eliminate the auxiliary quantitiep,™ and ¢, from the resulting system of
equations, the nodal transfer operators

i+1

Pyt = Py ph

i+1 _—

and qit = Py, gyt (6.38)
are employed. Both (6.36) and (6.37) have t_o be solved wehioh Newton step. At the end of
each Newton step, the incremental solutions'™ and g, are used to perform the updates

pi’t = pi+  pt Aot =d+ gyt (6.39)

and the auxiliary quantities are recovered from the prinmgaynowns employing (6.38). Finally,
the iteration counter is increased by one, i.é. i + 1 and the procedure is repeated until a
user-de ned convergence criterion is met.

For the sake of clarity, the algebraic form of one Newton sted is given in the following.
Based on the truncated Taylor series in (6.36) and (6.3&)fdtowing matrix blocks can be
identi ed:

_ @ (py;ay) ', _ @ (py;ay) '

Kip, = T 1 Kig = g (6.40)
Kap, = @2%; d2) : K g, = @2%ZQ2) (6.41)

Here, the blocks in (6.40) are related to the partial difiéied equation and the blocksin (6.41)
are related to the partial differential equatiojrespectively. Now, the global system of algebraic
equations can be stated as

2 3; 2 -
Kl;pl Kl?Ql | 3I+l >
0 0 z;p qu § E r2 § |
E Moy 0 2 2 0 ; (6.42)
0 D]_ M 12 0
with the set of discrete unknowiis pi™; oi™; pb?; o5?). The rsttwo rows in the ma-

trix in (6.42) represent the linearized and discretizedipladifferential equations. The last two
rows in (6.42) represent the discrete nodal informationdfers for the mortar projection ap-
proach. Reformulation of the nodal information transfer flee collocation approach could
easily be realized, but is omitted here for the sake of bye@bnsidering the last two rows
naturally leads to the nodal transfer of the incrementaltsmis in (6.38). Thus, the auxiliary
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unknowns p,! and q;! can be eliminated from the system of equations and the reduce

system reads:
#" #+1 T #
Kip,  Kig,Pr2 P = . (6.43)
K2;p2P21 K2;q2 q2 r.2

Here, it can be seen, that applying the nodal informatiomstier to the solution increments is
identical to multiplying the off-diagonal blocks of the tdsng linear system of equations with
the projection operators.

6.3.2. Boundary conditions

Enforcing boundary conditions for volume coupled probleras be intuitively realized by ap-
plying them onto the primary unknowms on ; andg, on . Under consideration of fun-
damental stability requirements for the projection ogmsain nite dimensional spaces, this
choice is the easiest way to guarantee proper informatamster. This becomes obvious for the
mortar operatoP?;, which originates from (6.6). Here, stability of the infaation transfer is
ensured when the rows of the system

h i

D2 Ma Z =0 (6.44)

are linearly independent, see Brezzi and Fortin [32]. Thiguaranteed by employing the shape
functionsN, and their dual counterpart, as explained in Section 6.2.3. As discussed for in-
terface mortar mesh tying methods in Puso and Laursen [2pflying Dirichlet boundary
conditions on the target mesh leads to a column eliminatiegheD , matrix in (6.44). Thus, lin-
early independent rows are not guaranteed anymore anddfex{ion becomes unstable. Since
the primary eldsp, on ; andqg, on , represent the sets of unknowns that are going to be
projected, Dirichlet boundary condition are only allowedt de ned on these elds, but not on
the auxiliary eldg, on ; andp, on .

In analogy to node-to-segment interface approaches iniHasd Betsch [104] and Zavarise
and De Lorenzis [303], the collocation methods can be ingted as a degenerated mortar
method that uses Dirac delta distributions for the inteapoh of the dual quantitied;, fori =
1; 2. This leads to a degenerated formulation vidthfor i = 1; 2 reducing to identity matricels
andMj fori;j =1;2andi 6 j reducing to collocation matricds; , see (6.13). The resulting
system reads

h i 52#_ |
o Nz & =0 (6.45)

This system of equations has the same stability requiresresnthe mortar system in (6.44).
Thus, enforcing Dirichlet boundary conditions is againyailowed for the primary unknowrns
on iandg,on ».

Neumann boundary conditions are in general not probleptaiidfor the sake of consistency
it is recommended to enforce them on the same mesh as thélBifioundary conditions.
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6.3.3. Contact mechanics for multiphysics on non-matching
meshes

The following considerations concerning computationaitaot mechanics for non-matching
volume and interface meshes are based on the Master's Tledgb [128], which was super-
vised by the author. Here, itis assumed that a solid phaseat/ed in the coupled multiphysics
problem, which is the case for porous media simulations hardro-structure interaction prob-
lems. The extension of the presented methodology for mitmoultiphysics strongly depends
on the employed approach for contact constraint enforcearahthe characteristics of the in-
terface meshes. Using a penalty approach for contact eamsénforcement would avoid addi-
tional unknowns due to the contact phenomena and no fundahwrange in the methodology
explained in Section 6.3.1 has to be made. The special casmeahatching volume meshes but
matching interface meshes represents also a strong sicapibn in the resulting systems. Thus,
the most challenging cases of an employed Lagrange meiltigtiproach for constraint enforce-
ment and non-conforming (and consequently non-matchimg)yface meshes are discussed in
the following.

Starting point for deriving a consistent formulation fongoutational contact of multiphysics
problems for non-matching volume and interface meshesg@inathe de nition of discrete
residuals of two involved partial differential equations

r(p;a) =0 and  ry(py0,) = 0; (6.46)

with identical nomenclature as given in Section 6.3.1. Addgally to the discrete unknowns,

g;, p, andq,, two sets of primary unknowns; and , and two sets of auxiliary unknowns

and ; are introduced. All these newly introduced unknowns aréuskeely de ned at the slave
contact interfaces. Here, the quantitigsare considered as discrete Lagrange multiplier un-
knowns due to the well-known contact constraint enforcerfarthe involved solid. For details
on constraint enforcement for computational contact meicsahe interested reader is referred
to Chapter 3 and Chapter 4. The interface unknownare problem speci c interface quanti-
ties, which are required to de ne additional interface efe such as the thermal heat ux as
described in Hieber and Wohlmuth [116]. With the new intsfanknowns being introduced,
the discrete residuals read:

ri(p;dy;; 15 1)=0 and r,(P2; 0y 25 2) = O: (6.47)

Herein, the residuals for the interface equations are @yr@zcluded. Following the same pro-
cedure as for the general volume coupling methodology ini@eé.3.1, a Newton-Raphson
scheme is applied as nonlinear solution technique. Thanestlinearized residuals can be ob-
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tained from a truncated Taylor series expansion, via

Linry(pyd 4 1) = n(Puds 3 )

+ @, (P1;91; 15 1) i+l @, (p1; 0y 15 1) i+1

@1 pl @ll ql
N @1(p1;gpli vy @1(|01;£|ipl;l IV SRS
(6.48)
Lin ry(phi 0 5 5) = ra(Ph; b 5 b)
+ @2(p2ié2; 2, 2) ! pur + @2(p2i§; 2, 2) ! e
+ @2(p2;g®2; 2 2) ! i2+1 + @2(p2;C2D2;2 2, 2) ! i2+l - 0
(6.49)

By employing the volume projection operators for nodal infation transfer, the volume aux-
iliary quantities p,™* and g™ can be eliminated from the resulting system of equations as
described in (6.38). The auxiliary quantities de ned at toatact interface are also eliminated,

via
;Y =Py 1" and =P B (6.50)

with the interface projection operatd?s; andP,. These operators are created in analogy to the
volume operators, but are de ned exclusively at the po&montact interface. Thus, they are
strongly related to operators which are employed for ctassnesh tying and domain decompo-
sition applications, see (3.65). In this thesis, only mdr&sed interface operators are employed,
but it is generally also possible to use collocation opesaté/hen considering non-matching
volume meshes but matching interface meshes, the intepiagection operators become the
identity matrix, which can be considered as special casadndje simpli cation.

After a Newton iteration is completed, the auxiliary unkmsaare recovered and the incre-
mental solutions are employed to update all unknowns. Adais is repeated until a user-
de ned convergence criterion is met. The nal form of the @ltgaic system of equations is
omitted here for the sake of brevity, but its creation is eattraightforward. The projection op-
erators for the volume and interface information transfersamply applied to the off-diagonal
blocks. For details concerning the arising algebraic systé equations for thermo-structure
interaction problems, the interested reader is referrédgd/laster's Thesis Jelich [128].

6.3.4. Numerical examples

In the following, the methodology for simulating non-matap multiphysics problems in a

monolithic manner is validated with several examples.tFrghermo-structure interaction prob-
lem is considered and the accuracy of the mortar and coitwcatethod is compared. Then,
contact interaction phenomena in the context of thermacgire interactions are investigated.
Finally, a porous media problem is considered, which semgesxample for comparing the two
introduced integration techniques for the mortar basepkption operator.
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Figure 6.14: Problem setting for the thermo-structureratgon example. The left mesh repre-
sents the structural discretization and the right meshesgmts the thermal coun-
terpart. Figure is taken from Farah et al. [70].

6.3.4.1. Multiphysics problem — thermo-structure interac tion

As rst real volume coupled mutiphysics problem, thermaisture interaction is employed for
the following example. Therein, changes in temperature @éfarmable solid induce thermal
stresses, and, in return, strain rates can cause heatirgplimg effects. The governing equa-
tions for the thermo-structure interaction problem candendl in Section 5.6, where they are
employed for thermal wear coupling. Note, that now all th&rgquantities are referred to the
reference con guration and not to the material con guratamymore, since no mass loss due to
wear is considered. For a more comprehensive overview aadetederivations, the interested
reader is referred to Danowski et al. [52].

In the following, spatial discretization of the structuliakear momentum equation is realized
on a different mesh than the temperature equation. The mesitthe problem setting in general
are shown in Figure 6.14. The material parameters are YeungdulusE = 2:1 10° and
Poisson's ratio = 0:3, resulting in the Lamé constants= 121;153and = 80;769 The
reference density iy = 7:85 10 ©. The thermal parameters are chose@as= 700; 637, k =
500 o =0and =7 10 “ For the structural part, the displacements of the uppdacair
of the body are prescribed with a sinusoidal function in time u = 0:25sin( t ). Here, the
time interval for the overall simulation is= [0; 10], which leads to ve oscillation cycles. On
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Figure 6.15: Left: total temperature evolution over timeaaked point A for mortar and col-
location approach. Right: Relative error with regard tochatg grid solution for
mortar and collocation approach. Figure is taken from Fatath. [70].
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Figure 6.16: Relative error with regard to matching gridusion for mortar and collocation
approach using second-order elements (20-node hexabedhcl10-node tetrahe-
drals). Figure is based on Farah et al. [70].

the corresponding surface of the thermal mesh, a lineachgasing temperature 0f= 0:8t is
prescribed. First-order hexahedral elements are emplioyede structural mesh and rst-order
tetrahedrals are used for the thermal mesh. The volume noaigling is realized by a segment-
based integration procedure. The resulting temperatwetove at point A is shown in the left
plot of Figure 6.15. Here, the mortar projection method ¢ednearly the same results as the
collocation approach. The right plot of Figure 6.15 vispedi the relative error with regard to the
matching grid scenario calculated with a hexahedral mesth Biethods yield errors that are
negligible from an engineering point of view. Still, the nearmethod yields better results than
the collocation approach.

Furthermore, the same setting with second-order elemersalyzed, i.e. 20-node hexahe-
drals for the structural discretization and 10-node tetdahls for the thermal discretization are
employed. In order to allow for a robust computation of ddede functions for second-order
elements, the shape function transformation from Secti@rB& is utilized. The absolute tem-
perature distribution over time is virtually indistingbable from the setting with rst-order ele-
ments. The relative error with regard to the matching gridtsan is given in Figure 6.16. Here,
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Figure 6.17: Heat conduction example: Problem setup witngry information (a), nite el-
ement discretization for the structural eld (b) and nitéeenent discretization for
the thermal eld (c). The employed element type for both desizations is 27-node
second-order hexahedral element. Figure is taken frorohJER8].

it can be seen that the relative errors of the collocatiorhowand the mortar method are more
than halved compared to the rst-order elements. Howevegmcompared with each other, the
mortar method still yields slightly better results than ttwdlocation method. Having in mind
that the construction of the employed projection operatassto be performed only once at the
beginning of a simulation and the computation time for tloatdbutes only insigni cantly to
the overall simulation time, the use of mortar operatorsnse® be advantageous.

6.3.4.2. Contact mechanics on non-matching meshes — TSI

In the following two examples, the extension of the monadithultiphysics framework on non-

matching meshes towards contact mechanics is validatdgtindntext of thermo-structure in-
teraction problems. These examples are basically taken the Master Thesis Jelich [128],
which was supervised by the author. Details on the thermaisire interaction problem includ-

ing contact mechanics are already introduced in the coofextar phenomena in Section 5.6.
Further information on mortar based thermo-structuregacninteraction frameworks can be
found in Hieber and Wohlmuth [116] and Seitz et al. [245].

6.3.4.2.1. Heat conduction  The rst example including contact effects is a classicathe
conduction problem, which has already been investigatatiencontext of matching volume
meshes in Gitterle [87]. Here, two identically shaped cubitls edge length of = 4 are con-
sidered, see left part of Figure 6.17. The lower cube's botsurface is subjected to a xed
temperature of; = 100 and at the upper cube's top surface a xed temperatur& of O is
prescribed. For the structural problem, the bottom suréddke lower cube is completely xed

183



6. Mortar Methods for Volume Coupled Problems

for the entire simulation and the upper cube's top surfacilgected to a total displacement
in z direction ofw =  0:2, which is enforced within 20 load steps. Both cubes are desitr

by a Saint-Venant-Kirchhoff material model with Young's dwdusE = 400, Poisson's ratio

of =0:0, coef cient of thermal expansion of = 0:0and a thermal conductivity & = 52.
Furthermore, the pressure dependent heat uxes at theatontarface are de ned via the inter-
face parameters® = @ =100. For the contact scenario, the lower cube is de ned to be the
slave part and the upper block is the master part.

Two different spatial discretizations are employed forttiermal eld and the structural eld,
see middle part and right part of Figure 6.17. This leads tomatching volume and interface
discretizations for the cubes themselves as well as for dhéact interface. Consequently, the
information transfer for the volumes and the interfaceb®zs non-trivial since the projection
operators differs from the identity operator. For the vodunmterface and contact projections,
mortar operators based on dual shape functions are empdoygkthe resulting discrete problem
is solved in a fully monolithic manner. The accuracy and csieacy of these operators are
validated by comparing the numerical solution with a 1D dyestate solution. As investigated
in Oancea and Laursen [184] and Wriggers and Miehe [294]tehmperature at the slave and
master contact interfaces equals
At ) % o 2@+ )% p

(1)= C
1+2 ’ 1+2 ’ 2k -’

(6.51)

with p, representing the normal contact pressure in the interfaddtee parameters, andk
are assumed to be equal for both cubes. Here, it can be seg¢hdhamperature distribution is
directly in uenced by the contact force and thus a strongrtiemechanical coupling is present.

The resulting temperature distribution on both volume migzations is visualized in Fig-
ure 6.18. At the beginning, the two cubes are separated aidtémperature is constant and
equal to the prescribed boundary temperatures. When thesdark in contact, their tempera-
ture is not constant anymore, but is linearly distributed-tlirection with a jump at the contact
interface. This jump in temperature decreases during thelation since the contact pressure
and the heat ux increase.

Finally, the temperature solution is given as function & tlontact pressure and is compared
with the analytical solution from (6.51). The result is \aéimed in Figure 6.19. It can be seen,
that the numerical solutions for both contact sides match well the analytical solution. This
demonstrates the accuracy and consistency of the presmatealithic methodology for inter-
face and volume coupled multiphysics problems.

6.3.4.2.2. Halftorus The next example demonstrates the applicability of the gsed cou-
pling methodology towards nite deformation contact irgetion for thermo-structure problems.
For this purpose, an elastic half hollow torus and a rigidegpke considered. Geometry infor-
mation of both bodies can be taken from Figure 6.20. The balfttop surfaces are subjected to
a prescribed motion, which rstly moves the torus in z-dtren until the maximun2 = 12is
reached. Then, the z-displacement is kept constant and amemnt along the y-axis is initiated
with a maximum y-displacement gf= 10. The overall simulation is performed within 50 time
steps, where the rst 26 steps are subjected to the z-movieamehthe remaining 24 steps are
employed to enforce the y-movement. For the temperatuck 2#ro uxes are prescribed at the
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Figure 6.18: Heat conduction example: Temperature eldaized for four different time steps.
Left parts of the cubes show the projected temperature osttheture eld and the
right parts are colored with the temperature on the therreld. Figure is taken
from Jelich [128].
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Figure 6.19: Analytical and numerical solution of the temapere at the slave and master contact
interface as a function of the normal contact force. Figsitaken from Jelich [128].
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Figure 6.20: Half torus example: problem setup and geonudtihe half torus and the plate.
Figure is based on Jelich [128].

two bodies. The material model for the two bodies is desdriine Young's modulu€ = 400,
Poisson's ratio = 0:0, the coef cient of thermal expansion =1 10 °, the thermal conduc-
tivity k = 20 and the heat capacityy = 1. The contact interaction is described with the torus
being the slave body and the plate being the master bodycetegly. The parameters for the
contact heat uxes arel =100and @ =1 and the coef cient of friction is= = 0:1.

The nite element discretization of the two bodies with difént thermal and structural meshes
and with a matching grid are visualized in Figure 6.21. Hére,matching grid discretization
is denoted as g, the structural mesh is named; and the thermal mesh reads. For the
non-matching case, the structural mesh is chosen in ord#istoetize the plate only with one
element, since this is suf cient to represent the rigidresactly. All other structure element are
employed to resolve the torus relatively ne, because heige deformations are expected. In
contrast, the thermal mesh is de ned in a way to resolve tageplith many elements, since here
temperature gradients are expected. Please note, thexapptely 7500 hex8 elements for the
matching grid case should be considered as 7500 elementsefdihermal eld and additional
7500 elements for the structure eld resulting in ca. 150@0reents for the overall simulation.
When considering the non-matching case, an overall elemember of ca. 7900 elements is
employed.

The results for the simulation are exemplary shown for tme $teps 26 and 50 in Figure 6.22.
Here, the two gures on the left show the deformation of theigsowith colored displacement
magnitude on the structural mesh, whereas the right ones gtedeformation with colored
temperature distribution on the thermal mesh. It can be #Hesrthe deformation is correctly
mapped from the structural mesh onto the thermal mesh. Iitiaaldthe contact interaction
works properly and thermal heating due to frictional slglicauses temperature gradients at
the interface for both bodies. Here, it becomes obvious vileyrton-matching discretization
approach for coupled multiphysics is advantageous forekénple: the structural behavior of
the rigid plate can be exactly captured by one nite elembat,the heat ux due to frictional
contact requires a ne thermal nite element resolution.
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Figure 6.21: Half torus example: matching grid discret@atwith approximately 7500 hex8
elements (left) and non-matching discretization with cieal mesh consisting
of ca. 3500 hex8 elements and thermal mesh consisting of420 hex8 ele-
ments (right). Figure is taken from Jelich [128].

Figure 6.22: Half torus example: Numerical results for tispment magnitude and temperature
at time steps 26 and 50. Figure is taken from Jelich [128].
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Figure 6.23: Half torus example: temperature distribuf@mrorus and plate. matching grid so-
lution (a) and non-matching grid solution for thermal detczation (b). Figure is
taken from Jelich [128].

The deformation and the temperatures are compared with dtehing grid solution in Fig-
ure 6.23. Here, both solutions are in good agreement.

6.3.4.3. Convergence analysis — porous media ow

This example is used to study convergence rates of the tlisatren error, similar to the inves-
tigations presented in Vuong et al. [279]. Therein, a meagbystvas performed for matching
discretizations. Investigations concerning non-matgmreshes for this example have already
been published in Vuong [277], but the following tests egtéme example towards a compari-
son of the segment-based and element-based integratiemsckee 6.2.4.

The considered example represents a poroelasticity probidich can be de ned as a mul-
tiphysics system that consists of a structural phase bedhgmetrically coupled with a uid
phase. For a comprehensive introduction and the undertpiegry, see Coussy [49]. The main
characteristic quantity of a porous medium is its poro8ity 1, which de nes the volume
ratio of the uid phase with respect to the total volume, i.e= 1 in case of a pure uid phase
and = 0 for a pure solid. In the following, quasi-static conditicersd linear behavior of the
porosity with respect to deformation and pore pressuressemaed. The problem is modeled in a
2D regime with different 'volume' meshes for discretizingetporosity and for discretizing uid
velocity and pressure, respectively. However, the probtseif is actually a 1D model, but the
equations are solved on a 2D domain in order to be able to centipa presented approaches.

In order to analyze this porous media example, the most itapbequations describing the
problem are given in the following and prescribed condgiare directly included. All quantities
related to the involved uid are denoted with the superdqfid and all structural quantities are
denoted with( )S, respectively. The porous ow is determined by Darcy's law:

dp”(x)
dx

The pressure gradienpt(x)=dx and the body forceb(x) induce a ow velocityvF(x) which
depends on the spatial coordinateAlso, the uid is assumed to have a constant densjtyand

fhx)+ Fk *vF(x)=0: (6.52)
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dynamic viscosity F. The spatial permeabilitig(x) is calculated from the material permeabil-
ity Ko and the displacement eldS(x), via

k)= JKo= 1 ddS(x)=dx Ko; (6.53)
with J(x) = 1 dd(x)S=dx ' denoting the Jacobian determinant of the deformation. The
continuity equation reads

d (x)v°(x)
——————=0: .54
I 0 (6.54)
The uid pressure is related to the porosity by
o= () o T Q@ 1); (6.55)

with the initial porosity o and the bulk modulus. Inside the problem domain=[ 5; 5] the
displacementiS(x) is prescribed as

d°(x)=0:5 1+cos X (6.56)

Note, that even though the solid phase is xed, the porositstiil allowed to vary due to pore
pressure. On the entire domain the following body force fdiag:

cos(Q2 x) _
(1+0:1 sin(0:2 x ))*’

b(x)=1+0:1 sin(02x) 004 cos £x +0:01 2 (6.57)
The chosen material parameters are the initial porosity 0:5, the bulk modulus = 1, the
dynamic viscosity of the uid F = 0:01 and the material permeabilit¢, = 0:01 All units
are neglected in this example, since the parameters arerctaobitrarily in order to obtain a
simple analytical solution. Inserting the prescribed @ispments (6.56), body forces (6.57) and
the given material parameters into the strong form (6.5625), it can be shown (cf. Vuong et al.
[279]) that the analytical solutions for the porosity, thegsure and the uid velocity are

(x)=0:5 0:2sin(02 x); (6.58)
pT(x)=0:5 0:2sin(02x) (2+0:2 sin(0:2 x)) *; (6.59)
vi(x)=(0:5 0:2sin(02 x)) % (6.60)

Two meshes with a ratio of 1:1.5 between ne and coarse digatéon are exemplary depicted
in Figure 6.24. First-order elements are used for all pnymalds. For the uid a stabilized,
mixed formulation is applied and the coupled system of a@quoatis solved in a fully mono-
lithic manner, see Vuong et al. [278] for more details. Theptlicement eld is given on the
same mesh as the porosity. First, the mortar integratiori®pned with the segment-based
scheme. The convergence behavior of the uid velocity isyare in the following. In the left
part of Figure 6.25 the results are depicted for a xed mesio i@ 1:1.5 of the two meshes.
A matching grid solution is used as reference (taken fromnguet al. [279]) and the mortar
approach (segment-based) is compared to the collocatitmochdf the uid mesh is chosen to
be the coarser mesh, both variants converge similarly tonttehing grid case. However, when
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Figure 6.24: Problem setting for poroelasticity exampl@oeshes with element size ratio of
1:1.5. Figure is taken from Farah et al. [70].
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Figure 6.25: Convergence study. Error norm of the velodibyted over the mesh size of the uid
eld. Comparison of mortar and collocation method. Left give: The mesh ratio
is xed to 1:1.5. Results for uid eld being discretized orhé coarser and ner
mesh, respectively. Right sub gure: Study for differentsheatios. The uid eld
is solved on a ner mesh than the porosity. Figure is takemffarah et al. [70].

solving the porosity on the coarser mesh the convergenegidttes for both variants. From
this, one can conclude that the porosity solution stronfigces the quality of the velocity eld.
The porosity error on the coarser mesh seems to deteribet®hvergence of the uid velocity.
On the other hand, if the uid mesh is coarser than the poyasiesh, the porosity solution is
more accurate and does not affect the velocity convergence.

In the right part of Figure 6.25 the mesh ratio is varied, while uid eld is solved on a
ner mesh than the porosity. Again, both projection operatariants behave similarly, i.e. they
approach the reference solution for mesh ratios clogeltogeneral, the mortar approach shows
smaller absolute error values than the collocation approathis example. In the case of a mesh
ratio of 1 : 4, both approaches lead to the same result. This is due to¢hthtt a nested mesh
is obtained here. Thus, the projection matrices are the semti¢here is no difference between
the two methods, see Section 6.2.1.
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Figure 6.26: Comparison of segment-based integration kemdemt-based integration. The mesh
ratio is xed at 1:1.5. Left sub gure: Error norm of the velibg plotted over the
mesh size of the uid eld for segment-based integration aement-based in-
tegration. Right sub gure: Relative error norm of the vetgpdor element-based
integration referred to segment-based integration. Eigaitaken from Farah et al.
[70].

In the following, the in uence of the employed integraticgchnique for the mortar projec-
tion operator on the convergence behavior of the solutianalyzed. In the left part of Fig-
ure 6.26 the absolute error norm of the velocity is shown fote@l mesh ratio of 1:1.5 with
a ner uid mesh. For the element-based integration techeigd Gauss points and 64 Gauss
points per element are used to compute the mortar projeopenator. For the segment-based
integration approach, 7 Gauss points per integration celeaployed. It can be seen that the
convergence order is not signi cantly affected by the imgipn technique and the employed
integration points. In the right part of Figure 6.26, thetie errors of the solutions computed
with the element-based integration with 4, 25 and 64 Gausggpoompared to the segment-
based integration are visualized. The relative error tiyetecreases with an increased number
of employed Gauss points. In case of coarse meshes, theattegerrors are relatively small
compared to the errors of the nite element approximation.r8ning the mesh, the relative
errors increase until they stagnate at a constant leveusecthe errors due to the numerical
integration of the projection operator do not vanish by meshement but become more and
more dominant. These effects are in good agreement wittstiigagions for mortar integration
techniques for contact mechanics in Farah et al. [73] andojpedix A.

Based on this result it could generally be summarized toeprife element-based integra-
tion over the segment-based scheme, since the integratiors @re acceptably small and the
evaluation costs are drastically reduced.
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6.4. Further applications

In addition to the use of volume projection operators foranolithic simulation of coupled
multiphysics problems on different meshes, a large vanépossible applications for such in-
formation transfer methods exists. This nal section destmates the exibility of the developed
methods by means of two completely different applicatiémst, a novel grid motion approach
for uid-structure interaction problems is developed watlvantageous characteristics in terms
of computational robustness and ef ciency. This approahpredominantly been implemented
by the author and can be found in La Spina et al. [145]. Secarithear tetrahedral element
based on the so-called Hu-Washizu principle is implemeammabrding to the investigations
in Lamichhane et al. [149] and Shu [251]. As will be shown san approach shares numerical
similarities with the presented mortar projection opemsto

6.4.1. A novel grid motion approach for uid-structure inte raction

Fluid-structure interaction (FSI) is a classical problemengineering science. Still, numerical
simulations involving an incompressible uid ow and an stadynamic structure are very chal-
lenging. Such settings require special techniques to ensbustness and stability of the chosen
numerical method and the desired precision especiallyeaE8i interface. In general, one can
distinguish between two approachesed grid approaches use a stationary background mesh
for the uid problem. The structural problem is most oftersdlietized independently and em-
bedded into the uid mesh. The geometrical position of thé iR&rface and the corresponding
coupling conditions can be tracked precisely, for instargieg the XFEM method (cf. Gersten-
berger and Wall [86]), or ful lled in a smeared sense, as donenmersed methods, see Liu
et al. [159] and Peskin [205]. In contrastpving gridapproaches resolve the FSI interface, see
for example Ramm and Wall [225] and Wall [280]. Then, an adddl strategy is needed in
order to adapt the uid mesh to the deformation of the streeetand the interface. The most pop-
ular strategies are Arbitrary-Lagrangian-Eulerian folations (ALE), where the uid nodes are
relocated without the necessity of costly remeshing andtaming the original connectivity in-
formation. Such a moving grid approach is employed in thie¥ahg and improved with a novel
overlay grid approach. Therefore, discrete projectiorrajoes for nodal information transfer as
introduced in this chapter are employed.

In the following, the problem statement for FSI is given inexybrief manner. Then, the
novel grid motion approach is introduced and nally a benehnkrexample is analyzed.

6.4.1.1. Problem statement for uid-Structure interactio n

In this section the basic description of a FSI problem is prieviewed. As the already in-
troduced ALE approach is employed, the FSI problem consisthree elds: two physical
elds, i.e. structural and uid eld and, in order to accoufdr deformation of the uid mesh, a
non-physical mesh eld. In the following the governing etjaas for each eld, as well as the
coupling conditions between the elds and the partitioneldison algorithm are presented.

6.4.1.1.1. Fluid eld An instationary, incompressible ow for a Newtonian uid ande-
formable uid domain F is considered. Hence, the convective formulation of the At of
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the Navier-Stokes equations reads

F
F@+F

ot Fr o vi 2F "wH+r pf= Fbf; (6.61)

c

r vF=0; (6.62)
where the uid velocityvF and the uid pressurg® are the unknown quantities. In the mo-

mentum equation (6.61p" denotes a prescribed body foré¢y") = 2 r vF+(r vF)T the

strain rate tensor of the Newtonian uid and its dynamic viscosity. The ALE convective ve-
locity is denoted witle™ = vF v, and can be interpreted as the relative velocity of the uid
with respect to the grid velocity®. Equation (6.62) states the conservation of mass given that
the uid density F is constant. Suitable initial and boundary conditions neede chosen in
order to complete the problem formulation, but are skippew lior the sake of brevity. In this
thesis, an implicit time integration method is utilized ianebination with stabilized nite el-
ements to discretize the uid problem (6.61)-(6.62). Stiabtion terms are applied to account
for instabilities arising from equal-order discretizatiof uid and pressure elds as well as
for convection-dominated problems. For details on theeretement discretization of the uid
eld and stabilization methods the interested reader isrrefl i.e. to Donéa and Huerta [63]
and Hughes et al. [121].

6.4.1.1.2. Structure eld The structure eld is described by the balance of linear mome
tum for non-linear elastodynamics. It has already beemdhiced in Chapter 2 and is directly
employed in the following without any change in the formidat However, for the sake of
readability and to achieve a clear distinction in the notatall structure related quantities are
denoted with the superscrip)® in the following.

6.4.1.1.3. Fluid Grid In order to allow nite deformations of the uid domain, an ALap-
proach is applied for the uid domain. Hence, the grid domafhis introduced which is equiva-
lent to the uid domain F in the continuous setting as well as in the spatially disoeetsetting.
Here, the grid displacement$® de ne the grid motion. Generally, they are obtained by sudyvi
a type of equilibrium equation. However, the novel appradactalculate the grid displacements
in an ef cient and robust manner is explained in detail intget6.4.1.2.

6.4.1.1.4. FSI coupling conditions At the uid-structure interface gg, different kine-
matic and dynamic constraints have to be ful lled. Equilitn of forces requires the surface
tractionst™ andtS of uid and structure to be equal, yielding

t5S= t7 on g (O;T): (6.63)
In addition, the grid velocity© has to match the uid velocity at the interface:
vi=v® on g (O;T): (6.64)

Usually, both a mass ow across:s; and a relative tangential movement of uid and structure
at rg are prohibited, i.e.

S
%:VF on ey (0:T): (6.65)
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In combination with equation (6.64), this condition is egléent to

usS=u®

on s (0;T); (6.66)
at least in the continuous setting. Hence, structural dedtion and uid movement (represented
by the ALE-based uid domain deformatian®) must match at gg,.

6.4.1.1.5. Global solution algorithm The balance of linear momentum of the structure
eld 6.4.1.1.2, the Navier-Stokes equations for the uidlde6.4.1.1.1, the uid grid motion
6.4.1.1.3 and the FSI coupling conditions 6.4.1.1.4 ctutstia system of nonlinear algebraic
equations which has to be solved within each time step, viiéhdiscretized displacements
and velocities being denoted withandv, respectively. For this purpose, a monolithic solver
(cf. Mayr [165] and Mayr et al. [166]) or a partitioned sol\ef. Kuttler and Wall [144]) can
be employed. In this thesis, only a partitioned solutioretgm based on a Dirichlet-Neumann
coupling scheme with Aitken relaxation (cf. Irons and Tu&RT]) is utilized. Here, the uid
eld becomes the Dirichlet partition with prescribed irfeeze velocities (6.65) and the structure
eld becomes the Neumann patrtition loaded with surfacetiwas (6.63). The solver coupling
for each time step reads:

Algorithm6.1 Dirichlet-Neumann scheme
1. Start with predicted structural interface displaceradnt
2. Solve uid grid motiond® with interface displacements as Dirichlet condition (§.66
3. Solve uid eld with interface velocities/™ as Dirichlet condition (6.65).
4. Solve structure equations with uid interface tractiaMeumann condition (6.63).
5

. Check for convergence: continue with next time step ibatgm is converged, otherwise
return to step 2.

Here, the developed grid motion approach only affects swlustep 2 and all other parts
of the partitioned solution scheme remain unchanged. Fooie metailed explanation on the
partitioned solution scheme the interested reader isrezfdo Kuttler and Wall [144].

6.4.1.2. Grid motion approach

By applying a dynamic mesh methodology the grid motion hasetdateratively calculated for
each solving step to update the entire uid mesh points. Uitkde assumption that the grids
for the uid eld and the mesh motion are equivalent it is obus that this procedure becomes
very expensive for large scale applications. In additibve, demands, that the physical uid
eld and the grid motion equations pose on the nite elemergsim completely differ from
each other. The uid eld requires a very ne resolution aktlrSI interface whereas the grid
motion equations usually need a coarse resolution to prelements near the FSI interface from
degeneration. These two aspects lead to the basic ideapfdpesed grid moving strategy, that
is to completely separate the uid grid from the mesh on whioh deformation is calculated.
For this purpose, a new mesh is introduced, which is calleds®t grid ©, which is employed
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to calculate the grid displacemeni3. The overlay grid is in general non-matching with the uid
grid and at the interface non-matching with the structureim&herefore, step 2 of the solution
algorithm 6.1 within one time step has to be modi ed as fokow

Algorithm6.2 Grid motion approach
2.1 Project the structural interface displacemeritsn the overlay grid.

2.2 Solve equilibrium equations on the overlay grid withjpoted interface displacements as
Dirichlet condition to obtain overlay grid motiaaf.

2.3 Project the overlay grid displacements onto the uidigo obtaind” . In general, these
displacements do not ful Il the FSI conditions (6.66) ande®).

2.4 Perform a correction step to enforce equality of uiddgdisplacements and structural
displacements at the interface (6.66) as well as equalistrattural velocities and uid
velocities (6.65). The nal uid grid displacement® are obtained.

This procedure only affects the physically irrelevant mesiftion. The structural solver as
well as the uid solver are not in uenced. Therefore, no chann physical results will arise as
shown in Section 6.4.1.3. Note that step 2.2 of this strategynceptually equivalent to step
2 in the classic algorithm 6.1. However, here the solverscast in general much less as the
overlay grid can be chosen much coarser than the uid mesé.ofher steps 2.1, 2.3 and 2.4
are simple projection and correction steps in order to eef@onsistency at the interface and
do not involve inversion of a system of equations, i.e. araatationally cheap. Further details
concerning these projections and the correction step aes gn the following.

6.4.1.2.1. Projection of structure interface displacemen ts The structural interface
displacementd® have to be projected onto the interface part of the overlajtgrct as Dirichlet
condition for the overlay grid

do = Pg dS on ESI (O, T) (667)

Here, the projection operator for the structural displaeetsis denoted witRs. Since the over-
lay grid motion can be considered as an unphysical auxitl@fgrmation to reach a valid uid
grid motion, the projection operator of the strucural ifdee displacements does not have to
ful Il any conservation properties. Therefore, it is recoranded to employ the collocation ap-
proach to calculate the projection operator, see Sect®2.6WVith this projection the interface
nodes of the overlay grid are strongly (point-wise) coneédb the interpolation of the struc-
tural displacements at the interface. In other words, ttexface nodes of the overlay grid are not
allowed to change their position relatively to the struetnode positions. Therefore, the evalua-
tion of the projection operator has to be performed only @tdbe beginning of the simulation,
which makes the computational costs negligible compardide@verall simulation time.

6.4.1.2.2. Equilibrium equation for grid motion The projected structural interface dis-
placements act as Dirichlet boundary condition for the gniation problem, i.ed® is xed.
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Here, the overlay grid equilibrium is treated as a quassteltatic pseudo-structure follow-
ing Wall [280]. Hence, the mesh displacemedts are obtained by solving the equilibrium
equation of motion as stated in Chapter 2 with the materiedmpaters can be considered as
pseudo material.

Remark 6.1. Since the grid motion has no physical interpretation thelgguilibrium could be
stated using other models, for example springs in Bating, [tssion springs in Farhat et al.
[75], geometrically nonlinear pseudo-structure equasamd many more. The proposed grid
motion algorithm is basically not affected by the choicehef ¢quilibrium equation.

6.4.1.2.3. Projection of overlay grid motion After the equilibrium equations are solved,
the overlay grid displacements have to be projected ontouildegrid. This is realized by a
volume projection operatd?g, via

a° = Pg d°: (6.68)

Again, the uid grid motion has no physical interpretationdathus the projetion operat®g
does not have to ful Il any conservation properties. Theref the collocation approach is uti-
lized again to construct a proper projection operator based strong (point-wise) coupling
of uid grid points with the interpolation of the overlay gti For this volumetric projection,
the point-wise coupling guarantees valid uid grid elengebécause their node positions are di-
rectly associated with parameter space coordinates ofegvgnd elements. Thus, if the (coarse)
overlay grid is prevented from degeneration, then the ( @ grid is also prevented from de-
generation. This property causes the high robustness girésented mesh motion algorithm.

6.4.1.2.4. Correction step at FSI interface It is obvious that the uid grid deformation
does not match the structural deformation at the interfa=est is based on the coarse overlay
grid solution. Therefore, a simple correction step has tafy@ied which guarantees the satis-
faction of displacement and velocity equivalence in (6.&3) (6.66). Therefore, the uid grid
nodes at the interface are relocated in a way such that trestlgxnatch the structure interface
nodes: s

d®> o = d% (6.69)
The resulting interface correction displacements are w@ehwith dG;C. After that, the uid
nodes which are near the interface are adapted properly.igkisualized in Figure 6.27. The
adaption of the uid grid near the interface is somehow adbnit It is suggested to spread the
correction displacements with a linear distribution frdme hearest interface nodeo the con-

sidered volume nodg via

|..
d?;,-= rsij 0% = 1 L d°

G L ol : (6-70)
Here, | is the distance between the interface noded the volume nodg in the reference
con guration andL is the maximum distance from the FSI interface in which vadumdes are
relocated in the reference con guration. By measuring tis¢éaticed andL in physical space,
the choice of the maximum distantedepends on the uid grid resolution and the expected
range of interface correction displacements. However,rbgleying quadrilateral elements in
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structure interface

Figure 6.27: Correction step at FSI interface: before abiva (left), after correction (right).
Figure is taken from La Spina et al. [145].

2D and hexahedral elements in 3D for the overlay grid, theadees can be measured in param-
eter space coordinates of the corresponding overlay geicheht. Here, it is assumed that the
correction of node positions is only performed for the uiddynodes located within an over-
lay grid element which is attached to the FSI interface. @gaosntly, the maximum relocation
distance can be de ned to = 2, since the parameter space dimensions for quadrilatemdls a
hexahedral elements are de ned[tol; 1]in each parameter space direction.

Regardless of whether the distances are measured in theghsisace or in the parameter
space it has to be performed only once at the beginning ofithelation. Thus, the scaling
factor g is xed for each node for the overall simulation and can beedoin a sparse
correction matriXP.. All in all, the correction step reduces to a simple matrigtee product

dS =P, d%: (6.71)
Finally, the uid grid displacements read
d®=d%+ dC (6.72)

Remark 6.2. The grid motion algorithm presented in this thesis is alsplaable for non-
matching uid and structure grids at the FSI interface, see éxample Cebral and Lohner
[39], Kloppel et al. [138] and Maman and Farhat [161]. The gnalgorithmic modi cation
would be made i6.69) Here, the uid and structure nodes at the interface woultllmoforced
to exactly match, but to be equal in a projected sense

> Pa°= do;

CT

(6.73)

The interface coupling operaté could be de ned as mortar operator Kloppel et al. [138] to
ful Il the FSI coupling in a weak sense. However, no furtherdincation has to be done in the
developed grid motion approach to allow for a non-conforg#isl interface.
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Figure 6.28: Problem setting for ow-induced vibration ofexible structure. Figure is based
on La Spina et al. [145].

6.4.1.3. Numerical example — ow induced vibration of a thin exible structure

The validation example is the ow-induced vibration of arthexible structure originally pre-
sented in Ramm and Wall [225]. The same problem dimensiomérasluced in Ramm and Wall
[225] are used, see Figure 6.28. The solid consists of a bigick of dimensiond 1and a
thin exible structure of dimensiond 0:06. The material model for the exible structure is of
Saint-Venant-Kirchhoff type with Poisson's ratio= 0:35and Young's modulug =2:5 1CP.
The structural density is sett§ = 0:1.

For the uid eld, an inow of jvFj = 51:3 is applied on the left side of the domain. The
top and the bottom of the domain are de ned as perfect slimbaties. In addition, around the
structure a no-slip condition is applied. The uid viscgsi$ setto - = 1:82 10 4 and its
densityto F = 1:18 10 3. This leads to a Reynolds number of ciiea = 333. The uid
domain is split into 3 parts as shown in Figure 6.28: the leét the right part are not connected
to the exible structure and thus treated with a pure Eulefiarmulation and the middle part
is de ned as Arbitrary-Lagrangian-Eulerian (ALE) domalin.Figure 6.28, the overlay grid for
the ALE domain is visualized. The stiffness for elementshia tlark grey region is 100 time
higher than for the other elements of the overlay grid. Farrtiore, the uid mesh resolution is
exemplarily shown at the tip of the exible structure, segue 6.28. All in all, nearly 70.000
rst-order uid elements are employed for the simulatiorhd exible structure is discretized
with 60 second-order plane stress quadrilaterals (quddi@) overall simulation time is de ned
to T = 10 with a time step size of t = 5 10 3. By considering the mesh resolution it
is obvious that the computational time for solving for theday grid displacements becomes
negligible compared to the uid evaluation.

The resulting tip displacements of the structure due to tive vortices of the uid are shown
in Figure 6.29. Here, the mesh motion algorithm with oveday is employed to calculate the
numerical solution. The resulting oscillation frequensyell as the amplitude nicely match the
results proposed in Ramm and Wall [225]. Also a mesh re nemugnio ca. 400.000 uid ele-
ments has been performed by employing an equal overlay grgthras given in Figure 6.28. All
simulations with overlay grid mesh nished the calculatemd produced identical tip displace-
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Figure 6.29: Structural tip displacement over time for mestiion algorithm with overlay grid.
Figure is based on La Spina et al. [145].

ments as shown in Figure 6.29, which con rms the assumptan the overlay grid approach

does not in uence the physical solution. Thus, a completetiependent meshing strategy for
the overlay grid and the uid grid can be employed. This maaksuge advantage compared to
classical moving grid FSI approaches.

The overlay grid motion and the uid pressure are exemplatigualized for the largest struc-
ture tip displacement in Figure 6.30. The projected oveglay deformation is visualized on the
uid grid in Figure 6.31. In the left part of Figure 6.31 theidigrid displacements are shown in
a grey shading to visualize the dependency on the overldylgcan be seen, that the uid grid
directly follows the overlay grid deformation. The deforineid grid elements are given in the
right part of Figure 6.31. Here, even for strongly deformedd elements the mesh quality is
still acceptable.

The problem has also been solved with a classical movingrgidapproach without overlay
grid in order to compare both algorithms. The results for ¢lessical approach seem to be
not as robust as for the overlay grid approach. Some runs tiwélclassical approach failed
due to degenerating elements in case of large mesh defomsatdowever, also some runs
completed successfully with indistinguishable resultsipared to Figure 6.29. Nevertheless,
even if it cannot be demonstrated that the robustness ofrtipoped overlay grid approach is in
all cases better than the classical approach, it is at les¢ aame level. But, the computational
costs are always lower since far less degrees of freedomtbdesolved for the overlay grid.
Maybe the most bene cial property of the proposed mesh magigorithm with overlay grid
is the exibility in mesh creation. When a suitable and rabagerlay grid is found, the uid
mesh can be gradually re ned without loss of robustnesssTthe developed approach allows
for unproblematic mesh re nement studies and convergenedysis by keeping the costs for
the mesh movement constantly at a low level.
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Figure 6.30: Overlay grid deformation and uid pressurelfogest structure tip de ection. Fig-
ure is based on La Spina et al. [145].

Figure 6.31: Projected overlay grid deformation state o mnesh for largest structure tip de-
ection. Figure is based on La Spina et al. [145].
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6.4.2. Algorithmic exibility — the Hu-Washizu principle

Finally it is demonstrated, that the developed mortar fraor& for volume couplings easily al-
lows for extensions towards problems, which cannot be igehas classical volume couplings,
but which share numerical similarities. As an example far tlmmerical exibility of the pro-
posed methods, the Hu-Washizu approach is employed baskd term paper Shu [251], which
was supervised by the author. The Hu-Washizu approachaiogaio Washizu [283] is a mixed
three- eld formulation for structural elasticity problemand was rstly introduced in de Veubeke
[56]. It is usually employed to obtain locking-free methodsar the incompressible regime in
linear and nonlinear elasticity problems for quadrilaterad hexahedral nite elements, see for
example Simo and Rifai [255] and Kasper and Taylor [133]. Eesv, its application to tetrae-
hdral elements is very challenging and thus, these elenuentsly perform very poor near the
incompressible regime. Within the Hu-Washizu approachdikerete unknowns are displace-
mentsd, stresses and straine and usually a saddle-point formulation arises. In Lamictegha
et al. [149], this approach was utilized in order to condttacking free tetrahedral elements.
Without pointing out the mathematical details of the methbéd arising block system of equa-
tions is given as

2 3i2 3i+1 2 3
Kuu Kue Kus ry

g Keu Kee DT g g e g = g reg : (6.74)
Ksu D 0 S rs

Here, dual shape functions were employed to form a biorthabgystem with respect to stresses
and strains, which results in a diagonal maixand thus allows for computationally ef cient
condensation procedures similar to the explanations irpt@éh& and Chapter 4. The matiix

is basically the same as for the construction of the mortaethgrojection operator in (6.8).
Therefore, the nal system of equations to be solved costaimy displacement unknowns and
the major number of unknowns, i.e. the stress and strainawks per node, vanish. For the
sake of brevity, the condensed system is not given here lbubedound in Shu [251]. This
approach was successfully implemented in the employedusé code BACI (cf. Wall et al.
[282]) based on the developed volume coupling frameworkranderical methods such as the
evaluation of dual shape functions (see Section 6.2.3.19 veaised. Its performance compared
to standard rst-order tetrahedral elements is demoredratith the benchmark example called
Cooks membrane, also known as Cooks cantilever. This exaimplidely used in the literature
to examine volumetric locking behavior of nite elementswis rstly introduced in Cook [48]
as 2D example and has been adapted to 3D settings by sevératsaisee for example Maller
and Starke [180] and Nguyen-Thoi et al. [182]. It consista afamped cantilever with a Neu-
mann load at the top of the body, which results in a bendingidatad deformation state. Details
on the commonly employed material parameters and loadseéouind in the mentioned liter-
ature. The most important point is that a Poisson's ratio 6f 0:4999is employed for the
following comparison, which is very close to the incompieleslimit of = 0:5. The resulting
stress state and the deformation are illustrated in FigLB2. @ he stress solution for standard
rst-order tetrahedral elements (tet4) shows strong atdtrarily occurring oscillations, which
demonstrate that this element type is absolutely not séitieduch scenarios. In contrast, the
tetrahedral element based on the Hu-Washizu approachhietperforms very well and shows
a reasonable stress state. Consequently, the standasdeietdnt is stiffer than the tet4-hw ele-
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tetd tet4d-hw

Figure 6.32: Cooks cantilever: Comparison of stress stadedaformation for standard tet4 ele-
ments and tet4 Hu-Washizu elements (tet4-hw).

ment and leads to smaller deformations. Additionally t@ tomparison, also the convergence
behavior and the performance compared with other elemgestirave been investigated, but
these details are beyond the scope of this thesis. All indion and further investigations con-
cerning the performance of this method can be found in Shij][25

The realization of the Hu-Washizu approach for rst-ordetrahedral elements demonstrates
that the use of the implemented methods is not only restritdeclassical volume coupling
methods, but also allows for various related approaches.
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In this thesis, mortar nite element methods have been itfated in the context of three dif-
ferent elds:

contact scenarios involving vertices, edges and surfaeesChapter 4,
modeling of fretting wear and nite wear effects, see Chapte
general volume coupled problems, see Chapter 6.

On the basis of these topics, it has been demonstrated giatbathodologies from classical 2D
mortar methods can be transferred towards problems of Idiwension (point and line contact),

complex interface phenomena of equal dimension (wear nmagednd 3D problems (volume

couplings). The following sections provide a detailed suanyof achievements accomplished
in the mentioned topics and give an outlook on possible éutesearch.

7.1. Mortar methods for computational contact of
vertices, edges and surfaces

In the rst part, mortar methods have been investigated & dbntext of computational con-
tact mechanics of vertices, edges and surfaces being simewaltisly involved. These contact
scenarios were rarely addressed in the existing literainreomputational contact mechanics.
The presented thesis contributes the rst extensive saewbrk on this topic in the context
of mortar nite element methods. Thus, the main focus of fhast of the thesis was a consis-
tent extension of the frictional contact formulation forfsice contact based on dual Lagrange
multipliers towards scenarios of point, line and surfacetact in a nite deformation regime.
Concerning this goal, three major contributions have beesgnted. Firstly, a variationally
consistent problem formulation has been derived by the Ligga®e different Lagrange multipli-
ers, which de ne the point, line and surface contact, respely. The point Lagrange multiplier
has been de ned on the boundary of all vertices, the line &age multiplier has been de ned
on the boundary of all edges and the surface Lagrange meithms been used on all surfaces.
Herewith, all contact scenarios except the contact of remadfel edges are well de ned. This
special case has been treated with a penalty regularizatithis thesis. Such a problem state-
ment for combined complex contact scenarios has been steti@id thesis for the rst time.
Secondly, a robust dual mortar approach for nite deforwratine contact within implicit
time integration schemes has been developed. While theatigtwccurring contact of 1D
boundaries for 2D problems has been well investigated bgrakauthors, it was never devel-
oped for line contact of 3D bodies before this thesis. Theleyga dual Lagrange multipliers
for line contact have the same bene cial properties as tHossurface contact formulations
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and those for classical domain decomposition (DD) appboat In addition, a novel numerical
integration scheme has been developed in order to achighiestipossible accuracy and robust-
ness of the line contact scenario. Mortar formulations ofes@ contact scenarios have already
been developed and can be found in the vast amount of pubhsatoncerning this topic. Point
contact resulting from interacting vertices was realizéith & classical and well-known node-to-
segment (NTS) approach since for the employed rst-ordegraagian discretizations a vertex
is directly represented by a single node. Thus, robustapdicretization and numerical inte-
gration of line contact was the missing piece for the alltgrd@ontact formulation and has been
successfully developed and implemented in this thesis.

Thirdly, the point, line and surface contact formulatiores/én been successfully combined
to an all entity contact approach without requiring a heigrigsansition parameter between the
contact formulations. This has been achieved by a consistedi cation of the Lagrange mul-
tiplier shape functions. While the modi cation of the shdpactions was already developed for
so-called crosspoints in mesh tying applications, it waedusr contact interaction problems
for the rst time. The consistency of the proposed shapetionanodi cation has been demon-
strated with several numerical examples. Furthermoreshiage function modi cation and the
use of dual Lagrange multipliers for line and surface carttage been combined in a way, that
still allows for very ef cient solution procedures by tharaination of additional point, line and
surface Lagrange multiplier unknowns. With this novel nogkblogy, an undesirable increase in
global system size is avoided.

All'in all, it has been demonstrated that classic dual mapgroaches for surface-to-surface
contact formulations, which are well-investigated in tixéseng literature, can be suf ciently
extended towards complex scenarios of point, line and seidantact in a fully nonlinear realm.
Although a substantial progress towards a general contactuiation with respect to the in-
volved geometrical entities has been made, there is sbithrfor improvements for mortar based
contact formulations. Thus, in the following, an outlookcerning the all entity contact formu-
lation as well as classical surface contact approacheses gi

The rst obvious improvement of the presented all entity teah formulation is its extension
towards second-order Lagrangian nite elements. This ey realized for surface contact
in Popp [210] and Puso et al. [220], but it was not yet done fortar line contact. When doing
S0, one important aspect is the adaption of the robust neaiéntegration scheme towards line
contact of second-order elements. Following the idea obRasal. [220], a robust and accu-
rate numerical integration could be achieved by subdigdire line and surface elements into
rst-order integration elements. This is visualized in &ig 7.1. Then, the proposed segment-
based integration scheme could be applied for each pain@fnd surface integration element.
In addition, the choice of the Lagrange multiplier integgadn for line contact should be in-
vestigated when second-order elements are employed.drcdimtext, it would be interesting
whether rst-order Lagrange multiplier shape functiong ar suitable choice in combination
with second-order displacement shape functions. Similastigations for surface contact can
be found in Popp et al. [213] and Puso et al. [220].

A more intricate point of improvement would be the avoidaotthe developed penalty regu-
larization for contact of non-parallel edges by the intrcittan of a Lagrange multiplier approach.
Up to the best knowledge of the author, it would be very hamibtso from a mathematical point
of view, since the problem would then tend to be over-coimsty which could be described as
an interface/ contact locking phenomenon. In additionyésériction that the lower dimensional
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7.2. Mortar methods for wear modeling

Figure 7.1: Suggested subdivision of a second-order leraeht and an exemplary second-order
surface element (quad9) into integration elements for égenent-based integration
scheme. Integration algorithm 4.3 can then be applied fdn pair of line and surface
integration elements.

entity is a priori de ned as slave side could cause probleamgjiscussed in Section 4.8.5. As a
basis for following investigations, two-pass algorithress promising to get rid of these prob-
lems, but usually they also suffer from interface lockingg $ark et al. [196] and Taylor and
Papadopoulos [266].

When setting special emphasis on accurate and robust tamia@ction of non-smooth ge-
ometries, one should also think of smooth surface contamtiddays, a lot of publications focus
on smooth mortar discretizations in the context of isogaameanalysis (IGA) and also ap-
proaches with dual Lagrange multipliers have been puldisteey recently, see Brivadis et al.
[33] and Seitz et al. [244]. Thus, it would be very interegtio combine the smooth and exact
geometry representation of IGA with the developed all gntiintact formulation. The shape
function modi cation has already been discussed in the edndf crosspoints in DD applica-
tions with IGA in Brivadis et al. [33], which makes it very prasing that the all entity contact
formulation is extendable to IGA.

7.2. Mortar methods for wear modeling

In the second part of this thesis, the complex interface ahgchwe coupled phenomenon of wear
has been investigated in the context of mortar surface conft@e main focus was set on the
development of suitable numerical algorithms for the daliton of fretting wear effects and
nite wear effects. Both types have never been investigatede context of dual mortar contact
methods for 3D bodies.

Thus, four major achievements regarding wear modeling haen presented. Firstly, two
different spatial discretization approaches for the wesptld based on mortar methods have
been investigated, namely the internal state variableoggbrand the primary variable approach.
Each of these two approaches exhibits bene cial propewids regard to certain aspects, such
as numerical ef ciency and implementation effort. Both eggches were already available in the
existing literature, but have never been implemented inlipation with dual shape functions
for contact of 3D bodies. This was rstly realized in this g® In addition, the application of
these discretization approaches on fretting wear and wear simulations was outlined.
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Secondly, a numerical algorithm for simulating frettingavdias been developed based on
earlier work in Gitterle [87], which was restricted to 2D plems. The developed algorithm ma-
nipulates the gap measure between the two involved bodigsebgxtent of the calculated wear
depth. Such a procedure is well-established for modelieitifig wear problems. However, this
thesis presented the rst 3D implementation based on duatanmethods including frictional
effects.

Thirdly, a novel implicit nite wear algorithm has been déoped without any restrictive
simpli cations or model assumptions like frictionless tact or steady-state motions. Herein,
huge material loss and the accompanying shape change hemereated with an Arbitrary-
Lagrangian-Eulerian (ALE) approach, which guaranteeshighest element quality. Compu-
tational ef ciency has been achieved by eliminating adudtiél unknowns due to the Lagrange
multiplier approach for constraint enforcement and wedmnomwns with the help of dual shape
functions.

Finally, the developed nite wear algorithm has been exezhtbwards thermal effects. Ma-
terial loss is explicitly calculated after a thermo-sturetcontact interaction step is solved. This
represents the rst realization of a 3D thermo-structuoetact-wear interaction algorithm in a
nite deformation regime.

Based on the wear algorithms presented in this thesis,dughktensions towards complex
volume and interface effects should be considered. In aaetlow for numerical modeling
of real world applications, it would be desirable to extehd tnite wear algorithm towards
plasticity effects, which usually require storage of glastformation at the discrete spatial inte-
gration points, see Seitz et al. [243]. Therefore, the pseddALE approach has to be modi ed
in order to allow for a consistent mapping of integrationmajuantities. Approaches for such
mappings can be found in Bussetta et al. [35] and Ortiz and)l®u[{190]. A rst numerical
model combining plastic effects and wear can be found in éth

In order to guarantee unconditional stability, the devetbfhermo-structure-contact-wear in-
teraction algorithm should be improved to solve wear effestd shape change implicitly and
fully coupled. In addition, dependencies of the tempegrstuon the wear coef cient could be
developed. The created framework provides a suitable l@astkis purpose. Also the contact
interaction with debris represents an interesting aspefittore work. Here, one could think
of manipulating the wear coef cient in order to take debngoi account. Alternatively, debris
could be resolved as particles within the contact zone, lvhiould signi cantly increase the
numerical complexity but likewise improve the modeling@aecy.

In addition, material loss at vertices and edges based oprehwously developed all entity
contact formulation is a very interesting and challengisget of future research. Here, a sim-
ple node relocation with an ALE approach is not desirablevarg since a worn vertex could
instantly become a very small new surface bounded by nevelgted vertices as visualized in
Figure 7.2 for 2D problems. Here, a nite element algorithrhieh captures the effect of the
newly created surface is desirable.

Finally, extensions towards anisotropic effects are déetd; see Mr6z and Stupkiewicz [179]
and Zmitrowicz [307, 308]. In this context, a rst numerideamework based on the boundary
element method can be found in Rodriguez-Tembleque et38].[Also the interaction of wear
with other interface effects like adhesion in Sauer [241] Arbricated contact in Temizer and
Stupkiewicz [269] and Yang and Laursen [300] could be arrasting eld of future research.
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>
« : » > >
Figure 7.2: Wear at vertex: Contact without wear of a rigidrfdation with a body discretized
with four tri3 elements (left), node relocation due to wedhwdeveloped ALE algo-

rithm (middle), desired and physically reasonable niteraknt approach for wear
at sharp geometries (right).

7.3. Mortar methods for volume coupled problems

In the last part of this thesis, mortar methods have beersiigated as basis for volume pro-
jections of nodal information. There, special focus wasosethe use of dual mortar methods
to reach an acceptable numerical effort to make these methmolicable to various elds of
applications.

Therefore, three major contributions have been presenteils thesis. Firstly, a mortar based
projection operator has been derived for general 3D probléis evaluation has been realized
with two numerical integration schemes, namely the seg+baséd integration and the element-
based integration, which are well-established in mortamfdations for interface problems.
While the element-based integration technique was alremayloyed in Bussetta et al. [35]
for 3D problems, the most accurate segment-based integrasis been employed in this thesis
for the rst time. Furthermore, dual shape functions foriadsy rst-order and second-order
Lagrangian nite elements have been employed. For thisgaepthe idea of a basis transforma-
tion from Popp et al. [213] has been extended towards 3D skooer elements to guarantee a
robust evaluation of dual shape functions for arbitrary imdistortions.

Secondly, a novel and general methodology for the monolgbiution process of volume
coupled multiphysics on different meshes has been proposextier to allow for the highest
possible exibility in terms of spatial discretization. €hein, also proper enforcement of bound-
ary conditions and the potential contact interaction fdumme coupled multiphysics have been
investigated. To the author's best knowledge, the only ipabbns addressing a similar topic
are Dureisseix and Bavestrello [64] and Néron and Dureig48il], but these investigations are
restricted to partitioned solution schemes in 2D withouttaot interactions.

Thirdly, the proposed dual mortar methods and numericadratgns for volume coupled
problems have been extended successfully to other voluaidgms. The result of these efforts
is a novel grid motion approach for uid-structure intenact problems with ALE formulation
which is characterized by an increased computational eficy. In addition, the exible im-
plementation of mortar tools also allows for the use in agtions, which cannot be identi ed
as mortar methods anymore, but share a lot of numerical aiitiéls. This has been demon-
strated by the implementation of the Hu-Washizu principlefonlinear elasticity based on dual
shape functions from Lamichhane et al. [149] to obtain caiepanally ef cient and locking
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free tetrahedral nite elements near the incompressilohétliHerewith, it has been shown that
the developed tools and projection operators can be easyporated in various problem for-
mulations to achieve increased robustness, solution acg@and computational ef ciency.
Future research can be split into improvements of the dpeelgrojection operators and
methodologies and into possible applications of them. tfeoto increase the accuracy of the
information transfer schemes, the boundary problems dgszlin Section 6.2.5 should be inves-
tigated in more detail. The outlined possibility of perfong numerical integration exclusively
for the enclosed domain of both meshes seems reasonabieoblat drastically increase com-
putational complexity and cost. In addition, when applythgse projection operators for the
coupling of multiphysics problems, two projections fromto , and vice versa are required,
see Section 6.3.1. In order to guarantee the highest pessibkistency of the methods, the two
projections should ful Il the following conditions for thimitial setting of the meshes:

$1= Pipsy; S = P21 S (7.1)

This can be equivalently expressed in terms of mesh posKiom the reference con gura-
tion instead of generic elds;. The requirements in (7.1) are generally not achievedgesine
boundary problems from Section 6.2.5 and the numericagrateon schemes introduce errors.
An analogy to this problem can be found in the context of atatsnortar methods for DD
applications, where the target mesh (slave side) is sjightidi ed in order to guarantee for bal-
ance of angular momentum, which is called mesh initialaatsee Popp [210] and Puso [216].
Such a procedure is also applicable to the volume coupldulgnts, but with strongly increased
complexity since projection operators themselves are ritigo@ on the initial mesh positions
and, compared to DD schemes, two conditions have to be édl ih (7.1).

The developed dual mortar projection operators and nuaderiethods allow for even more
reasonable applications. A good example in this regard eafobnd in Hesch et al. [105],
where it has been suggested to employ dual mortar methotissf@rojection between a x grid
uid and an immersed structure for uid-structure interiact problems. Up to now, only rather
inef cient standard mortar methods are employed for thigoppge and the use of the developed
dual mortar projection operators seems very promising.
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A. Comparison of Segment-Based and
Element-Based Integration

While aspects for numerical ef ciency of contact algorithimave been brie y discussed in Sec-
tion 4.8.6, detailed information of the two introduced gri&ion schemes have not been pro-
vided. Since these integration schemes represent the mustcbonsuming algorithmic steps
and, at the same time, the most critical steps regarding ncah@ccuracy for a contact eval-
uation, they should be carefully chosen. Thus, a fair comparproviding the most important
aspects of these integration schemes is provided. Thevioigpcomparison of segment-based in-
tegration (cf. Algorithm 3.1) and element-based integra{cf. Algorithm 4.5) is taken from the
author's publication Farah et al. [73]. It is strongly refst to surface-to-surface contact scenar-
ios, but the basic argumentation can directly be translewdine contact scenarios introduced
in Section 4.6. For volume coupled problems, both integratnethods are brie y compared for
a porous media example in Section 6.3.4.3.

A.1l. Theoretical comparison

In this section, the segment-based integration and theegiebased integration are compared
with regards to their most important properties. Hence,atteantages and the drawbacks of
each scheme are clearly demonstrated and discussed. Remimaball following statements
refer to 3D surface-to-surface contact problems.

A.1.1. Choice of integration rule

The rst issue to be highlighted is the choice of a suitablegnation rule. In principle, there
are two different approaches to perform a discrete numeantsgration. First, the position and
the weighting of each integration point could be calculdtgcach integration domain individ-
ually by using a moment- tting related approach, which canfund in Mousavi and Sukumar
[177], Mousavi et al. [178] and Xiao [297], or by employing tineds based on the divergence
theorem explained in Sommariva and Vianello [256, 257] amdh@kar et al. [265]. The second
possibility is to use simple prede ned integration rules; éxample Gauss-Legendre quadra-
ture or Gauss-Lobatto quadrature. Due to the fact that wsnge algorithm for calculating the
integration points for every integration domain indivitlyaequires a signi cantly higher im-
plementational and computational effort than using preee rules, only prede ned quadrature
rules are considered in the following.

For the segment-based integration scheme the domainingstribm the polygon clipping
procedure in Algorithm 3.1 is in general an arbitrary conpekygon. Thus, adopting common
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Figure A.1: Triangulation methods: center-based triaagoh (left), Delaunay triangulation
(right). Figure is taken from Farah et al. [73].

quadrature rules rst requires some preparation step, iichvtine polygon is divided into sim-
ply shaped domains. The preferred methods for that areguilation approaches, especially the
Delaunay triangulation in Lee and Schachter [156] or cebésed triangulation (both shown in
Figure A.1). As can be seen, using Delaunay triangulatieates the smallest possible number
of triangular integration cells, i.& 2 triangular cells for a convex polygon with vertices.
Here, it should be noted that the Delaunay triangulatioroisanunique procedure. Therefore,
small errors could occur if different-shaped integrati@liscare created within one time step.
However, in all tested simulations no negative effect canddietected by employing the Delau-
nay triangulation. Therefore, it is the best triangulat@@proach for the segment-based integra-
tion scheme. However, it would also be possible to subdithéepolygon into quadrilateral and
triangular integration cells by adopting the so-called@guping algorithm in Meisters [172].
This was employed in Wilking and Bischoff [287] with posgieffects on the ef ciency of the
mortar integration. However, this may lead to critical sam@ps with strongly distorted quadrilat-
erals whose Jacobians become rational. Thus, they canimdelgeated with the desired accuracy
by a polynomial based integration rule (e.g. any kind of Gampsadrature). All in all, the pre-
ferred procedure is to subdivide the polygon into trianguakdls having a constant Jacobian by
Delaunay triangulation and to then employ standard Gaegghdre quadrature for these tri-
angles. However, note that the highest polynomial degraecdin be computed exactly by the
integration rule should be chosen somewhat higher thanrtaupt of shape functions on slave
and master side would indicate. This is due to the nonlibeafithe projections between auxil-
iary plane and actual contact surfaces. Based the expeseganed from the tested numerical
examples, it is suggested to use 7 Gauss points per triarigtégration cell, which are able to
exactly calculate a polynomial degree of 5.

The choice of integration rule for the element-based imiggn method is simply based on
the shape of the slave element, because the slave elemantgiar space equals the integration
domain parameter space. However, for the element-basedngctine choice of the number of
integration points is an extremely crucial issue. In manilished articles, the authors aim at
overcoming the negative in uence due to the non-smoothoét®e integrand with a very high
number of integration points, see Fischer and Wriggers 880, To analyze the results of us-
ing polynomial based Gauss quadrature rules for integrarttisveak discontinuities occurring
within the contact boundary, a simple academic test caseoidded, see Figure A.2. As can
be seen, the set of functioRg(x) are piece-wise linear functionsn2 [ 1;1] having a kink
atk with F1(k) = 1 and the boundary valués( 1) = F;(1) = 0. Varying the kink position
from 1to1and performing the numerical integration with 2, 3, 4 and bi§3al_egendre points
gives the error plot also shown in Figure A.2. It is obviouattthe maximum integration error
indeed decreases with an increasing integration point earievertheless, the integration error
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Figure A.2: Test case to analyze possible integration lae to weak discontinuities. Figure
is taken from Farah et al. [73].

strongly depends on the kink position. Therefore, usinghaneiasing integration point number
does not necessarily reduce the occurring error for any pasition. In other words, for certain
kink positions Gauss rules with few integration points progl smaller errors than much higher
Gauss point numbers. Having a closer look at the well-knowanss point positions, one no-
tices that the kink locations with the largest integratiomes actually are the integration point
positions. This interesting result can be also transfetiwede 3D contact problems, i.e. 2D inte-
gration domains. In addition, when having a ne mesh for thestar surface and a coarse mesh
for the slave surface, the danger of kinks occurring in thegration domain of a slave element
signi cantly increases. Thus, all in all, the element-ldhsgegration method is very sensitive to
the employed integration point number and also to the meshratio between slave and mas-
ter surface. Therefore, de ning a suitable integrationnpoiumber is very problem-dependent
and requires a certain amount of experience, which is a veigial drawback compared to the
segment-based method.

A.1.2. Geometry approximation and discrete projection

In this subsection all aspects concerning geometry apmation and the resulting impact on
the discrete projections between slave and master surdaeatiscussed. In a rst step, any ap-
proximation of the interface geometry, which is involve@pplying either of the two integration
methods, will be reviewed and discussed in more detail. Ttiengeneral problems of the dis-
crete projection operations are considered and towardsrt@f this subsection the sensitivity
of the two integration methods with regard to these prapectiroblems is evaluated.

As described in Algorithm 3.1, a main step of performing tegreent-based method is the
construction of an auxiliary plane onto which the actuatsland master elements are projected
to de ne the integration domain. In the general case of waspaface facets (e.g. quadrilaterals)
this introduces a slight approximation of the actual slawgase. As a result of this approxima-
tion, all projections of slave nodes, master nodes and riatieg points are performed along the
same auxiliary plane normab.

Compared to the segment-based method, the element-batiebidees not require an auxil-
iary plane because there is no information from the mastenshich has to be processed on the
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slave side. Thus, the slave element parameter space betognesegration domain parameter
space right away and no geometric approximation is doneddiitian, the discrete projections
are computed along a continuous (and thus more consistemt)ah eld de ned on the slave
surface.

The projections from slave to master surface and vice vamsaisually carried out by lo-
cal Newton-Raphson iteration, which in general is very sitand guarantees local quadratic
convergence. Nevertheless, there may be certain probksuking in a divergent iterative solu-
tion process. The occurrence of such problems will be dsslign the following. In general, a
Newton-Raphson scheme is given as

X=X [gradf(x))] f(x); (A1)

wheref (x') represents a real- and vector-valued functions the vector-valued coordinate and
the upper index denotes the iteration number. The iteration outlined irLjAs repeated until
the simple convergence criterigii(x'*1)jj < tol is met. Considering the projection operation
from a slave element to a master element, the vector-valuedionf, and thus the residual for
the Newton-Raphson iteration, is given as

X
(2 @i8)=" M@ OpP sn X =0 n2)
i

whereN; represents the shape function at each node of the mastegrgl@mndenotes the pro-
jection distance in direction of the employed normal veatcandx'! is the location of the inte-

int
gration point onto the slave side in physical space. The owkss are the coordinate®); @ of
the projected point in the parameter space of the mastereleamd the projection distange

These three quantities de ne the solution vedass

2 »3
s=§ @4: (A.3)
$
A differentiation off with respect to the solution vectslyields
hp = [
2). | Q). _
gradf) = ; Spx?; T 2EXxP; . (A.4)

This matrix is also known as Jacobian of the projection. \Wigse expressions at hand, possible
problems that may occur due to degenerate cases of diseméetmon are illustrated. As an
example, a distorted but planar quadrilateral element dagept on is given with its parameter
space, see Figure A.3. The rst critical projection can kyase identi ed around the singular
point S, where no unique parameter space coordinates can be foualliaing gra@f) at S
yields a Jacobian with a zero-valued determinant. ThusJalcebian in (A.4) becomes singu-
lar and its inversion is impossible. The second criticalecascurs when a point is projected
into the inverted areh of the element parameter space, where the coordinate sisteverted
with regard to the coordinate However, a projection is still possible in that case, Nevgo
method converges and mapping the projected point to spatatinates yields the correct re-
sult. Finally, the most critical case is considered, whiltaused by a non-intersection of the
projection normah. with the generally warped element plane. Here, no soluteonke found
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Figure A.3: Distorted, planar quadrilateral element tojgebon with the singular poirs and
the inverted spack. Figure is taken from Farah [72].

in (A.1) and therefore Newton's method does not convergehSuprojection arises when the
element to project on is almost parallel to the projectiormmad or if it is warped.

In general, all the problems mentioned above could arisédtn integration methods. Con-
sidering the segment-based integration scheme with itdiayxplane approximation, only the
projection of the integration points onto the slave and eragirface is a nonlinear operation, and
therefore possibly problematic. However, for the elemeaged integration method, problems
occur much more frequently than for the segment-basedratieg. This is due to the fact that
no geometric approximations (such as auxiliary planesjrdreduced, and thus the actual sur-
face normal is used as projection normal. However, thisaserhormal may change drastically
in certain regions due to high curvatures of the contactsed and relatively coarse meshes. In
contrast, the normal vector is assumed to be constant for#ace and master element pair in
the segment-based approach.

In summary: If the local Newton-Raphson scheme divergeseddy an error, the projected
point is either located on the singularity point, which ivays outside a convex polygon, or
the projection vector does not intersect the element plemboth cases, the integration point
is irrelevant for the integration and its contribution ig t&®zero. Therefore, despite the more
frequent divergence of the local Newton-Raphson schemel@nent-based integration, this
situation can be dealt with relatively easily and discretggztion does not represent a critical
drawback for this scheme.

A.1.3. Boundary problems

In the following subsection, possible problems at the bampdf the contact interface are dis-
cussed, which only arise for the element-based integratbeme.

There exist two characteristic problem settings assatiatth the boundary of the contact inter-
face, see Figure A.4. Both problem settings share the facttlley introduce strong discontinu-
ities (i.e. jumps) in the integrand of mortar matkikin addition to the usual weak discontinuities
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Figure A.4: Two characteristic problem settings of the edatrbased integration associated with
the boundary of the contact interface. Dropping edge sdndteft) and small con-
tact search parameter (right). Figure is taken from Faral €13].

(i.e. kinks). This signi cantly increases the requirensenh the integration rule in terms of ac-
curacy, and thus causes large integration errors in general

The two characteristic problem settings shown in Figureakeinow analyzed in more detail.
For the sake of simplicity, both scenarios are illustrata®D mortar contact, but all following
considerations can be directly transferred to the 3D cdse.r§t problematic setup is a dropping
edge problem, see the left sub gure of Figure A.4. Here, pexigrt de nes the partition of the
slave element which has a zero contribution to the integratithe position where the outermost
master node is projected onto the slave element, the integrand jumps frero to a non-zero
value. Thus, a strong discontinuity in the expression to bmerically integrated occurs. A
possible remedy in order to avoid excessive integratioargrfor the element-based scheme
will be proposed at the end of this subsection. Obviousl sigment-based approach does not
encounter the described problem, since no contact segrarentietected in the non-overlapping
partitiont.

Another contact scenario which produces a strong discoityirs shown in the right sub gure
of Figure A.4. The sketch illustrates two boundary meshesgocated pretty near to each
other and potentially coming into contact. The dashed Iiepsesent the bounding boxes which
are typically used for search algorithms. The speci ¢ skaigorithms employed here are not
presented in detail, but the reader is exemplarily refetoedang and Laursen [299] instead.
Only if the bounding boxes of a slave element and a correspgmdaster element overlap, then
the numerical integration of the mortar matrices will berieal out for these elements. Thus the
numerical integration will not be carried out for the mastEmment containing the nodés 1
andl. The projection of the integration points from slave elehterthe master is represented by
arrows. Here, the red arrow represents a projection ontm#ster element that is not considered
by the search algorithm. Due to this, the integration pasbaiated with the red arrow has a zero
contribution to the mortar integrals. This again leads ttrang discontinuity in the integrand.
In contrast to the dropping edge situation, however, thobl@m can be avoided by an increased
search radius. Thus, it does not pose a critical limitatomthe accuracy of the element-based
integration and will not be considered further.

Nevertheless, the dropping edge situation described atowains to be taken care of. In-
tuitively, eliminating the impact of strong discontinei§ in an integral expression could be
achieved by a signi cantly increased number of integrapomts. But as will be shown by the
numerical results in Section A.2, this would require so miatggration points that the element-
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Figure A.5: Subdividing a second-order contact elementtf@ segment-based integration
scheme. Exemplarily, a 9-node quadrilateral element isiap four 4-node quadri-
lateral subelements, to which the segment-based algodtitan then be applied
nearly unchanged. Figure is taken from Popp [210].

based integration scheme becomes very inef cient. Thudgffarent solution is needed. The
developed approach to handle such boundary problems wiripeedboundary-segmentation
in the following. Herein, the segment-based integratidreste will be employed for problematic
slave elements having strong discontinuities in the irtedrand for non-critical slave elements
within the contact zone the element-based integrationasl.uEhe critical slave elements will
be identi ed by detecting integration points whose praj@etmisses all of the master elements
associated with this slave element. With this combinatibsegment-based and element-based
integration, boundary problems can be avoided. Theretbee preferred integration strategy
consists of employing the element-based integration wieegossible and only if the problem-
atic boundary scenarios occur, the integration algoriththb& changed to the segment-based
scheme.

A.1.4. Second-order interpolation

The next aspect to be highlighted is mortar integration fghér-order nite element interpola-
tion. Speci cally, second-order Lagrangian elements aresedered here. For the segment-based
integration method, the authors in Puso et al. [220] havgestgd a simple, but ef cient mod-

i cation as shown in Figure A.5. This approach can be intetpd as a direct extension to the
segment-based integration scheme.

The modi cation generates linearly interpolated subeleta@nd establishes geometric map-
pings from parent element space so subsegment space andevsze Thus, it is possible to
evaluate higher-order shape function products in the rated)of the mortar matrices and the
weighted gap without any algorithmic changes. This apgraady affects the integration do-
main itself, which is less accurate in terms of geometry. Garad to the segment-based inte-
gration scheme, the element-based method requires no sedircation step for second-order
interpolation. Numerical integration is still simply ced out in the slave element parameter
space without any geometric approximation. However, thgaich of weak and strong disconti-
nuities for quadratically interpolated elements is lardpan for linearly interpolated elements.
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Figure A.6: Moving slave surface in time step ; (blue) andt, (red). With segment-based
integration (left) and element-based integration (rightyure is taken from Farah
etal. [73].

Therefore, there exist greater demands on the employegratien formulas. Some examples
concerning element-based integration with second-oléerents are shown in Section A.2.

A.1.5. Frictional contact

As compared with frictionless mortar contact formulatiothe frictional version requires not
only the discrete weighted gag,; but also the discrete relative tangential velog\y ); of
each slave nodeas fundamental kinematic measure. As can be seen from (8%3Je nition
of (v.re)); contains time derivatives of the mortar matrié@sandM . Introducing a local algo-
rithmic time stepping procedure of backward Euler typeraeti,, (see e.g. Gitterle et al. [88]
and Yang et al. [301]) yields

D[j;k1(tn) D k](tnh 1) .
T ;

M 1(tn)  M[;TI(tn 1) | (A.5)
. : .

Dfj; k]

M[j; 1]

Hence, the time derivatives in (3.43) are approximated figrdince quotients of the mortar ma-
trix entries evaluated at the current time stgpnd the last time stey ;. For the segment-based
integration method these differences are in general ndil@noatic because the mortar entries
for both time steps are calculated with a high accuracy. hirest, the element-based integration
scheme is in general not able to compute the mortar integrelsa comparable accuracy (unless
an excessive number of integration points is used). Thusotht time steps there occur errors
in the mortar expressions which could accumulate. Besideeffect, some entries in the mortar
matrices might not even be detected by the element-basegratiton method. To illustrate this
effect, both mortar integration schemes are shown at difteime steps, see Figure A.6. Here,
the black dashed lines represent four master elements aogsty their position during the con-
sidered time interval. Additionally, the slave elementésngd by blue lines for time stef, 1
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and by red lines for time stefy. For standard Gauss rules, the integration points areddcat
within the element and not on the element edges. Therefloees eXxist element regions where
the element-based integration is not able to detect catitoifis from master elements, see the
gray colored area in Figure A.6. The resulting loss of aanufar frictionless contact is not se-
vere, because the evaluated terms within the element dggrtilamortar matrices. In contrast,
for frictional contact the non-detected contributiongléaa signi cantly increased relative error
for the relative tangential velocitf¥ . ); , which directly affects the decision, whether a node is
in stick or slip state.

All'in all, for frictional mortar contact the element-basatkgration is more sensitive than for
the frictionless mortar contact. The segment-based iategr is the best available integration
scheme for this problems with regard to accuracy and enthwedsghest possible robustness for
a frictional mortar contact algorithm.

A.1.6. Conservation of linear and angular momentum

Finally, the ability to conserve linear and angular moments analyzed and compared for the

two integration methods. All investigations are done indkeni-discrete setting, i.e. after spa-

tial discretization but before time discretization, sesoabection 4.8.3. First, as elaborated e.g.
in Puso and Laursen [218] the requirement for linear mommardonservation can be expressed
as

(1) 0 %1) %2) !
fO @ =" @ D[k] M[;1] jA = 0; (A.6)
j=1 k=1 I=1
which can be simpli ed to
1) 2)
D[j; k] M[;11=0 8 =1;:;m®: (A7)
k=1 =1

Several authors, see e.g. Puso and Laursen [218], have siiaviiis requirement is exactly sat-
is ed for the segment-based integration when integratioilmortar matrice® andM with the
same integration procedure. If the mortar integrals weetuated independently of each other,
conservation of linear momentum would not be guarantee@mneal. Using the element-based
integration scheme inevitably generates additional natigon errors for the mortar matrik
and the weighted gag . However, these errors interestingly cancel out when efmg the sum
expressions in (A.7) due to the partition of unity propertyi@ master side shape functions:

& Z 2 Z 4 4
Ny j dA N, j dA = j dA j dA =0: (A8)
k=1 1=1

Therefore, the element-based integration method alscecees linear momentum exactly. The
in uence of the generated integration errors could thenefie interpreted as a changed arrange-
ment of the master side forces to the associated nodes. leovgaamming them up yields the
same total force acting on slave and master side.
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Enforcing an exact conservation of angular momentum iserathallenging in the context
of mortar methods for unilateral contact. The basic regquéet for conservation of angular
momentum is given as

@(D 2 1) L %3 . 3
0o=m® m@=" 4" xP OFk] ;) ~ x? (M[I] 5 (A9)
j=1 k=1 I=1

This condition is ful lled when either the jump vecta; becomes zero for each active slave
nodej, i.e.

0 ¥
g = DLk — M[IX?=0; (A.10)
k=1 =1

or alternatively when the discrete nodal Lagrange muéiplector ; andg; are always collinear.
As investigated in Yang and Laursen [299], both conditioribugually be slightly violated for
the segment-based integration. Employing the elemergebimtegration method one can obvi-
ously not expect any improvement with regard to angular nrdora conservation, but rather a
deterioration. However, as the examples in Section A.2fitate, almost identical results can be
obtained for both integration methods concerning the amasien of angular momentum.

A.2. Numerical examples

In this section the theoretically discussed propertieshefdegment-based and element-based
integration schemes are veri ed on the basis of four nunaéxamples. The rst example

Is a classical contact patch test which is conducted to agkesaccuracy of both integration
methods and the effect of the newly proposed boundary-seiginen procedure. The second
example analyzes the effect of numerical integration onctbrevergence properties for both
rst-order and second-order nite element interpolatio$irdly, a two tori impact example is
considered to evaluate the integration methods with retgaed ciency and conservation laws.
Finally, an ironing example illustrates the applicabilifijooth integration methods to frictional
contact problems.

A.2.1. Consistency — patch test

The rst example is supposed to demonstrate the accurat¢yeahtroduced integration schemes
and their in uence on the consistency of the mortar methdtk Problem setting consists a
lower block and a smaller upper block being in contact. Thibasically the same example as
introduced in Section 4.9.1.2 in the context of a combinadact algorithm for vertices, edges
and surfaces being in contact.

The lower block is supported at the bottom surface and thempipck’s top surface as well
as the free part of the top surface of the lower block are ldadi¢h a constant pressupe=

0:5 in vertical direction. Both blocks are de ned with equal @l parameters based on a
neo-Hookean material model with Young's modulis= 100 and Poisson's ratio = 0:0.
The discretization consists of linearly interpolated hHeedral elements. In the following, both
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Figure A.7: Computed Lagrange multiplier values at the achinterface along a diagonal axis
for overlapping master elements with element-based iategr and segment-based
integration. Figure is taken from Farah et al. [73].

possibilities of choosing slave and master surface aredestd compared. Independent from this
choice, the mortar method should be able to exactly transmnitant contact pressure across the
interface, which characterizes the physically correatitbmh.

The rst simulations are carried out with a mortar settingamthe lower surface of the upper
block is the slave surface and the upper surface of the loleeklis the master surface. Thus,
all slave elements are covered with master elements caosilygweak discontinuities in the
integrand of the second mortar matrix and the weighted ghae.ré&sulting Lagrange multiplier
(i.e. contact pressure) values are exemplarily plottedgadbdiagonal line of the mortar surface,
see Figure A.7. Here, the results are given for the segmasgebintegration method employ-
ing 3 Gauss points per triangular integration cell and ferélement-based integration scheme
employing 9, 64, 100 and 400 Gauss points per slave elemkataialytical solution is repre-
sented by a constant contact pressure @b. The segment-based method passes this patch test.
However, the element-based integration method fails thehpast and yields slight deviations
of the discrete Lagrange multiplier values. However, ev@mly 9 Gauss points are employed,
the errors introduced by the element-based integratioansetare very small as compared with
typical engineering accuracies.

Now, the slave and master sides are switched, which resudits overlapping slave side. This
yields not only weak discontinuities for the integratiorstdve elements located within the con-
tact zone, but also strong discontinuities in the integsasfcbverlapping slave elements. Again,
the computed Lagrange multiplier values are plotted alodggonal line of the mortar inter-
face for both segment-based and element-based integragtimods, see Figure A.8. It can be
seen that the Lagrange multiplier values are again exagpiyoduced (to machine precision) for
the segment-based integration scheme. The element-basgdation method, however, yields
unacceptably large errors for all investigated numbersitaigration points, even for 400 Gauss
points per slave element. The reason for this failure arstiioag discontinuities (jumps) which
occur in the mortar integrands for this setup. In additibwe, tesults demonstrate how dif cult
it may be to predict the number of required Gauss points. Byipd) 64 Gauss points per slave
element creates larger errors than 9 Gauss points in thesdteesthe fact that to some points of
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Figure A.8: Computed Lagrange multiplier values at the aohinterface along a diagonal axis
for overlapping slave elements with element-based integrasegment-based inte-
gration and boundary segmentation. Figure is taken froratFar al. [73].

the 64-point rule are located very close to the occurringngtrdiscontinuities. As discussed in
Figure A.2 for the 2D case this proximity leads to a signi tarcrease of the overall error level.
To handle this problem, the proposed boundary-segmentastiested, which employs element-
based integration for slave elements located fully withen¢ontact interface and segment-based
integration scheme for overlapping elements at the boyrafahe contact interface. The result-
ing Lagrange multipliers are much better approximated foaithe element-based integration
method, which demonstrates why boundary-segmentationasuaal choice in order to prevent
excessive integration errors. However, the boundary-seggtion does obviously not reach an
accuracy to machine precision, but the error levels are eoafybe to those of element-based
integration for fully projecting slave elements, cf. Figuk.7.

A.2.2. Accuracy — bending beam

This numerical example is considered to investigate theegence order of the discretization
error measured in the energy norm. The problem setting isssicdal domain decomposition
setup with non-matching meshes, see Figure A.9. All proldlata has been re-used from earlier
investigations in Popp et al. [213] to which it is referred farther details. The example is
based on a small deformation assumption and a linear-elastierial behavior. Therefore, an
analytical solution of this problem is well-known from Gsost al. [92] and is going to be used
as reference result. The small deformation assumptiortsdsua linearized strain tensor=
%(r u+(r u)").Inaddition, the linear-elastic material behavior is lihse Hookes law

= C : , whereC represents the fourth-order constitutive tensor with traponents

E E
Ci = @+ ) 2 )( i k)t m( ik it k)

(A.11)

Within Equation (A.11), Young's modulus is representedebyand denotes Poisson's ratio.
In the following, the material parameter are givenEass 1000 and = 0:3. The considered
bending structure is a cuboid with dimensidps |, |, supported such that all rigid body
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Figure A.9: Example with bending structure in initial comgation (left) and deformed con g-
uration (right). Figure is taken from Farah et al. [73].

modes are removed, in detail with

I I I
ux(0; 0; 0) = uy(0; 0; 0) = u,(0; 0; 0) = ux(O; EV;O) = u,(0; Ey;O) = uz(EX;O; 0) 0O (A.12)
The load case is de ned as pure bending aroundztlagis with the applied distributed loads
fy= Zp% atx = '5 Here, the load parameter is de ned@s 100. The analytical solution
of this problem is well known Timoshenko and Goodier [271d given as
2
Ux = ——Xy; Uy= L( X2 y%+ z?); u,= Lyz: (A.13)
Ely Ely
The simulations are performed for a geometrical settingof 4,1, = 2 andl, = 1. The
following investigations heavily build upon the discretibn erroru  up measured in the
energy norm, which is de ned as

N

jjU Uhjj energy: ( h) . C ( h)d ; (A-14)

with the linearized strain tensorand the linear-elastic constitutive ten€or The mortar inter-
face is de ned having a curved shape, with the ratio of theattaristic element sizes between
the discretization of slave and master surface being xeﬁ%&t: % Both sub-domains are
discretized with hexahedral Lagrangian nite elementsafpomial degre@ =1 orp=2,i.e.
typical rst- and second-order elements. This yields aneetpd convergence order Of(hP).
The interpolation of the Lagrange multipliers is done byldiape functions of the same order
as the displacement interpolation, see Popp et al. [213{ftner details.

To numerically analyze convergence rates of the discitetiz&rror, the characteristic mesh
size h is uniformly re ned and the results are illustrated in Figuk.10. The expected con-
vergence order dD(hP) is perfectly represented by the segment-based integrstioemes for
both linearly and quadratically interpolated elementsstasvn by the black dashed lines. For
linear elements, element-based integration gives neadysame errors as the segment-based
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Figure A.10: Convergence of error in the energy norm witliarm mesh re nement for hexahe-
dral meshes employing hex8 and hex27 elements with elebssgd and segment-
based integration. Plot is taken from Farah et al. [73].

method. However, for quadratic elements, the elementebsd@eme fails to deliver an optimal
convergence behavior for all employed numbers of Gausg$gadiie mesh size, below which
the element-based method signi cantly differs from thersegt-based solution depends on the
number of used Gauss points. Employing more and more iritegrpoints reduces the unde-
sirable effect of sub-optimal convergence rates, and thelteeslowly approach those of the
segment-based version. It is very likely that this behawould also occur for linearly inter-
polated elements, however only for very small characieredement sizes, which arguably are
irrelevant from a purely practical engineering point ofwie

A.2.3. Efciency — two tori impact

The impact of two tori, rstly introduced in the context of itact search algorithms in Yang
and Laursen [299], is considered to compare the two integratethods concerning computa-
tional ef ciency and conservation of linear and angular nemitum in a large scale example. The
problem setting taken up here is described in Popp et al] @idislightly differs from the orig-
inal example. The thin-walled tori have the same size withirgonradius of 24, a major radius
of 76 and a wall thickness of 4.5. The tori distance is 140 aHhbrizontal direction and 140
in the vertical direction. In addition, one torus is rotalyd45 degrees around the vertical axis.
The contact interaction is described by an initial velogity [30:0 230 0.0]" of the unrotated
torus. The employed material is a neo-Hookean model ®with 5500, = 0:3 and a density
of o = 0:1 for both bodies. The discretization is equal for both tod aesults in a total num-
ber of 23.340 linearly interpolated hexahedral elements.time integration, a generalized-
scheme is employed as introduced in Section 2.2.3 and J.belcalculation of contact interac-
tion is based on 200 time steps, and the numerical solutipari®rmed in parallel on 16 cores.
Some characteristic stages of deformation during the itmqpacess are shown in Figure A.11.
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time step 1 time step 40 time step 80

time step 120 time step 160 time step 199

Figure A.11: Deformation of the two tori during frictionlesmpact. The time steps 1, 40, 80,
120, 160 and 199 are visualized. Figure is taken from Farah Bt3].

First, the ef ciency of the introduced integration methaslsnvestigated. For this purpose, the
average time required for integration for one Newton stefpiwieach time step are plotted in the
left sub gure of Figure A.12. In addition, the accuracy okthtegration schemes is validated
by the right sub gure of Figure A.12, which visualizes thevigions of the relativé >-norm of
the displacements with respect to a reference solutiondb@ssegment-based integration with
12 Gauss points per integration cell. Using 37 or 64 Gausstppier integration cell does not
signi cantly change the displacement norm compared to 1@sSaoints. The relative error of
theL2-norm, is given as

Jidsegid] i dnjj .
= 0 _ A.15
displ ” dseglﬂ] ( )

whered, represents the current numerical solution dgg,the reference solution. For this ex-
ample, the segment-based integration is tested with 3 araigg3oints per integration cell, and
the element-based integration method employs 4 to 64 Ganistsper slave element. For the
segment-based integration, 3 Gauss points per integredibins the smallest sensible number
of integration points. Thus, it can be seen that comparetdségment-based integration, the
element-based integration method has the ability to sgamtly reduce the number of integra-
tion points. In addition, it is obvious that the requiredeigutation time scales linearly with the
employed number of integration points, which is why all @gwn A.12 have a similar shape.
The characteristic shape of the curves depends strongheaarctive set. Thus, ups and downs of
the curves occur due to time steps with a correspondingly tidow number of nodes being in
contact. From time step 190 onwards, the curves are zeusdalue to the face that the two tori
are not in contact any more. Interestingly, tifedisplacement errors are only small and decrease
further with more and more integration points. Even 4 Gaa#astp per element are suf cient for
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Figure A.12: Results for the frictionless tori impact wille@ent-based and segment-based inte-
gration: averaged required integration time per Newtop @&dt) and relative error
of computed displacement eld (right). Plots are taken fribamah et al. [73].
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Figure A.13: Investigation concerning the conservatiavsléor the large scale two tori impact
with element-based and segment-based integration. Plioear momentum (left)
and Plot of angular momentum (right). Plots are taken fronalrat al. [73].

the L 2-displacement error being negligible. However, with 4 Gapsints per element, on§6

of integration time of the segment-based integration egpp7 integration points per integra-
tion cell are required. All in all, it becomes obvious tha¢ #lement-based integration scheme
allows for dramatic reductions of the computational costspiractical applications, while still
maintaining a suf cient level of accuracy.

The next aspect to be investigated is the conservation eatiand angular momentum. As
described theoretically in Section A.1.6, the conservatiblinear momentum is guaranteed for
both integration methods, but the conservation of angulanentum may be slightly violated.
Figure A.13 illustrates the numerical results with regascconservation properties. The left
sub gure con rms the exact ful Iment of linear momentum,hereas the right sub gure shows
the relative error of the angular momentum. Again, elent@sted integration produces equally
accurate results as segment-based integration. The elrased scheme with 9 Gauss points
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Figure A.14: Setup of the frictional ironing problem. Figus taken from Gitterle [87].

per slave element exhibits the same error level as the sagmead integration scheme. Other
Gauss rules for the element-based integration have alsotested and gave equal results with
regard to conservation properties.

A.2.4. Frictional sliding — ironing

The last example is a frictional extension to the ironindgtem investigated in Popp et al. [212].
The geometric setup is shown in Figure A.14. The upper boayhsllow half cylinder with a
neo-Hookean material model with Young's modukis= 1000 and Poisson's ratio = 0:3. The
other body is a block being xed at the lower surface and hasntfaterial parametdt = 1
and = 0:3. Frictional contact is modeled by Coulomb's law with thecfion coef cientF =

0:2. At the beginning of the simulation, the cylinder is press#d the block by a prescribed
vertical displacement o = 1:4 within 20 steps. After this intrusion, the vertical dispatent

is held constant and the cylinder slides along the block wignescribed displacememt= 4:0
within 130 additional steps. The problem is discretizedhv@tnode hexahedral elements as
shown in Figure A.14. The top surface of the block is choseslage side and the bottom
surface of the cylinder as master side, thus yielding onlgkMaut no strong discontinuities in
the mortar integrands. Typical stages of deformation ducontact and associated patterns of
tangential forces due to friction can be seen in Figure A.15.

To validate the accuracy of the element-based integratiersegment-based integration scheme
is considered as reference solution. Despite the facthlesggégment-based integration produces
only marginal integration errors, some non-physical effde.g. slightly oscillating tractions)
occur during the simulation. This could be avoided by welbWwn surface smoothing proce-
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time step 10 time step 20

time step 30 time step 60

Figure A.15: Deformation and tangential nodal slave forfoeghe frictional ironing problem.
Figure is taken from Farah et al. [73].
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Figure A.16: Relative errors of the element-based intégmefor theL2-norm of the displace-
ments and for the averaged incremental slip. Plots are takenFarah et al. [73].

dures, see e.g. Tur et al. [274]. However, for an increasunglbrer of integration points, the
element-based solutions should still converge to the segbeesed result. This is validated in
Figure A.16. The rst quantity to be analyzed is the relatveor of the displacement eld mea-
sured in theL 2-norm compared to the segment-based reference solut®thedeft sub gure in
Figure A.16. During the rst part of the simulation, the aydier is pressed into the foundation
and starts to slide. After roughly 30 steps all slave nodedrathe slip phase and no sticking
effects occur anymore. From step 30 until the end of the &atiom, the relative displacement
errors of the element-based integration schemes slightiylate around the zero-reference. The
error magnitude decreases for an increasing number ofratteg points. The damping effect of
the oscillation during the simulation is due to the presaimovement of the cylinder. Thus, the
Dirichlet boundary condition dominates the displacemesitl for progressing time steps. The
peaks of the displacement error are due to the master eleedgas sliding over parallel slave
element edges. For 25 and more Gauss points, this effedhesdue to the integration points
being located near enough to the element edges.

The second investigation is concerning the slip incremehich represents the most crucial
guantity for frictional mortar contact. Here, the slip iaorent of all slip nodes is summed up
and divided by the number of slip nodes, thus yielding anayed slip increment. This quantity
is plotted over step index in the right sub gure of Figure B.HRAgain, the relative error in the
slip increment decreases with an increasing numbers ofGaaiats, but in contrast to tHe?-
displacement error its magnitude is now considerable.

All in all, with an adequate number of integration points ttalculation of frictional mortar
contact problems with the element-based integration sehemossible, but the error in the slip
increment could cause problems with respect to the ratmsitsee search for the current stick
and slip regions.

A.3. Concluding remarks

The two most commonly employed integration methods for ararbntact problems, segment-
based and element-based integration, have been compdtedagh other and their respective
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advantages and drawbacks have been highlighted for dédssidace contact scenarios. Further-

more, a so-called boundary-segmentation method has bepogad as an ideal compromise for

an ef cient and accurate integration scheme, because ibotas the advantages of both schemes
without taking over their de ciencies.

Several numerical examples have demonstrated accepgablésrfor both integration schemes
but with a signi cantly reduced computation time for therakent-based integration. For quadratic
interpolation as well as for frictional problems with vegrsitive stick/slip transitions, the qual-
ity of the solution is much better for the segment-basedynatigon, which could not be reached
by the element-based integration, even for very high numbemtegration points. Therefore,
it is suggested to employ the segment-based integration asairate basis for further mortar-
speci ¢ method development and the boundary-segmentatheme together with a thorough
error estimation of all relevant quantities (e.g. disptaeats, stick/slip behavior) for large-scale
applications with rst-order elements.
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B. Details on Consistent Linearization
for Line Contact

As the proposed mortar methods for contact of vertices,®dgd surfaces in Chapter 4 and the
mortar based computation of wear in Chapter 5 aim to be valttle regime of nite deforma-
tions and to be solved in a fully implicit manner, they reg@uionsistent directional derivatives of
all arising terms. However, the linearizations for wear elody are strongly based on the inves-
tigations that have been made in Popp [210] for mortar sarantact formulations. Therefore,
the directional derivatives of these terms can be evaluatadstraightforward manner and are
omitted here. In addition, linearization of vertex contactdentical to well-investigated NTS
formulations and thus also skipped. For contact of nonjghredges, the only intricate to lin-
earize quantity is the parameter space coordi?fateorresponding to the contact pointin (4.49).
However, it can be calculated analogously to all other mtaes by linearizing a local Newton-
Raphson scheme at its solution point. Related operatian®attined for the line contact in
Section B.4.2 and a detailed explanation for non-paratlgleecontact is not given here. Thus,
this chapter focuses on the linearization details for thetandine contact evaluation from Chap-
ter 4. A detailed overview for consistent directional datives for a 2D mortar contact approach
with penalty regularization can be found in Yang et al. [3@dfjereas linearizations for surface-
to-surface mortar contact in 3D are outlined in great detatopp [210] and Popp et al. [212].
Again, details for the surface-to-surface contact parttaegoint contact part of the developed
algorithm are not given in the following and the interestedder is referred to the mentioned
literature for more information.

For all following details on consistent linearization, ttheectional derivative of an arbitrary
quantity with respect to the discrete displacementsabbreviated with

( ):a} d: (B.1)

This notation has been employed in Popp [210] and allowsdoy gompact writing of complex
linearizations.

The general evaluation process for the mortar based lineacbalgorithm was outlined in
Secion 4.6. Here, a segment-based integration procedwenvployed in order to evaluate the
discrete integrals with the highest achievable accurdeysTnumerical integration is performed
separately for each integration segment to integrate ankyosh contributions from slave and
master side. The following subsections provide the mosbimant directional derivatives nec-
essary for the linearization of this segment-based integrgrocedure.
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B.1. General linearizations

Starting point for the following explanations is the coresation of the individual contribution
of one mortar integration segment to the mortar matriceslamaveighted gap:

Rint

D pik = Wint,g j ( @ ( ~g)) N |£1) ( o ( ~g)) Jseg ; (B-Z)
o-1
Rint ) @/ @

M pil = Wint,g j ( ( ~g)) N| ( ( ~g))Jseg ; (B-S)
g=1
A &) &) @

G = Wingg (7 (=) Gnn( ' (=); (~g)) Jseg: (B.4)

g1

Here, the contributions to the submatride@s,and D are condensed to the general contribu-
tion Dy . The integration point weight is denoted with,.4, the Jacobian of the integration
segment read3dsegand the number of integration points per integration segmsegiven asp.

In all numerical examples, a standard Gauss quadraturenmithe5 integration points is em-
ployed. The positions of these integration points on theswared integration segment are de-
noted with~,;. The linearization of the weighted relative tangentiabedly is not considered in
the following, since it basically consists of contributsinom the mortar matrices, see (4.71).

The linearization of th® ,matrix contribution with respect to the discrete nodal Bispments
reads:

Rint

Dok = Wing (P (=g))NP (D () Iseq
g=1
Xint
+ Wint:g j( (1)(~g)) NIEl)( (l)(~g))Jseg
g=1
Xint
+ 7 Wing j( QEING (D () Jseg: (B.5)
g=1

In addition, the linearization of thigl ;matrix contribution is given as:

Xint
M pil = Wint;g j ( @ ( ~g)) N I(Z)( @) ( ~g))‘Jseg

g=1
Xint

+ 7 Wingg (D) NP @ () Iseq
g=1
Xint

+ 7 Wingg 1 PDINP (D) Joeg: (B.6)
g=1
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B.2. Linearization of integration segment Jacobian deiteant

Finally, the linearization of the weighted nodal gap reads:

Rint
G = Wintg — j ( (l)(~g))gn;h( (1)(~g); (2)(~g))‘]seg
g=1
Rint
+ Wintg i ( (l)(~g)) Onh ( (1)(~g); (2)(~g))Jseg
g=1
Rint
+ Wingg (P Gun( P(~); P(~)) Jseg: (B.7)
g=1

The linearization of the standard displacement shapeifursteads
NOCO(=) = NP O() () (B.8)

with lei) being the derivative of the shape function with respect éopgharameter space coordi-
nate . In general, the linearization of dual shape functions sead

(DN = 5 (=) D(g+ ja d: (B.9)

It can be seen, that the dual shape functions are generdtlynag&tion dependent since they
are constructed in the spatial con guration, see Sectidril®. However, since only rst-order
elements are considered for the line contact, a line eleiseid ned as a linear 1D element
with 2 nodes that leads to a constant element Jacobian dagertnThus, the directional deriva-
tive of the dual shape functions with respect to discretpldcements vanishes, i.ej.4 = 0.
For details on linearization procedures for dual shapetions the interested reader is referred
to Popp [210]. Evaluation of the linearizations in (B.5)&Band (B.7) requires knowledge of
the following elementary directional derivatives:

the integration segment Jacobian determidagt

the integration segment verticgsseq

the integration segment Gauss points? ( ~)

the normal and tangential vectors from the nodes and thd&iayxplane

the discretized version of the gap functigy,

All these linearizations are provided in the following sebsons. Therein, it is implicitly as-
sumed that the line element is a rst-order 2-node elementhviesults from a bulk discretiza-
tion of tet4 and hex8 elements.

B.2. Linearization of integration segment Jacobian
determinant

The Jacobian determinant of an integration cell reads

1. ..
Jseg= é]]xz;seg X1;sed) - (B.10)
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B. Details on Consistent Linearization for Line Contact

with the integration segment verticessegandx,.seq Its linearization is given as

- (Xz;seg Xl;seQDT
2jjx2;seg Xl;segjj

( X2;seg Xl;seg) : (B.ll)

seg

Herein, the linearization of the integration segment eegiis employed, which is explained in
the following subsection.

B.3. Linearization of integration segment vertices

The computation of the integration segment vertices and directional derivative depends on
the line clipping situation. The integration segment \e&si can be classi ed as projected slave
node, projected master node or as intersection of projeté®d and master element edges. This
is very similar to the computation of cell vertices for theakation of mortar surface contact,
see Popp [210]. When the integration point is based on agiegjeslave or master node, its
computation reads:

@

. . L
Xi; seg= X x® X o

Y R (B.12)

This is a simple projection along the auxiliary plane norn{al onto the auxiliary plane. Herein,

xE,l) denotes the midpoint of the slave line element. The linafiom of this type integration
segment vertices reads

W

M= X0 X0 @ T e x0T

-
1)

x( X (1)

oy ﬁgl) : (B.13)

This expression contains the linearization of the auxil@ane normal (see Section B.4) and of
the midpoint of the slave line element, which is de ned as

1 1 1 1
Xt DX =5 X S Xy (B.14)

1
X = 2% T 5 2 2

When the integration segment vertex results from an intémeof projected slave and master
nodes, the construction rule reads

1

) ) A
], seg — 1
0 ) (0 )

D (B.15)

e

The points with the lower indek)s de ne starting points of the projected element edges and the
points with lower indeX ), represent end points of the projected element edges. Thedriza-
tions are identical to (B.13) since they result from slavd araster node projections onto the
auxiliary plane. The linearization of (B.15) is not giverré@dut can be computed in a straight-
forward manner.
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B.4. Linearization of normal and tangent vectors

B.4. Linearization of normal and tangent vectors

B.4.1. Auxiliary plane normal:

The auxiliary plane normal for the evaluation of the line tamh results from a projection of the
averaged edge normagl) into the normal plane of the edge element:

1 1 1 1) .
= 1§ P nf: (B.16)
The consistent linearization of this term reads:
1) _ 1 1 1 1 1 1 1 1) .
We P PP 0 PP W

Herein, the tangent of the line elemerﬁ) does not need to be normalized in order to de ne the
normal plane. Thus, it can easily be calculated for a 2 nadedlement as difference of the line
elements nodes:

1) _ 1 n _ . 1) .
0= Xeh XO = Xh X : (B.18)

Here, it does not matter in which direction the tangent veptnts. The calculation of the
averaged edge normagl) is de ned as average of the node normals:
W, 1o 1

1 1 n, 1 @ .
nt = SM * 5N = 5 ng + > NGy - (B.19)

The factor% directly results from evaluating the displacement shapetfans of the line element
nodes at the midpoint of the edge. In (B.19), the linearwabf the node normals n,(l) is

required.

B.4.2. Nodal normal for node-to-surface CPP:;

The nodal normals can possibly be de ned by several clgsestt-projections (cf. Section 4.4),
which are analyzed in the following. First, a CPP with resgea surface is considered. Ac-
cording to (4.42), the slave nodal normal vector is de neti@gative master side normal vector
resulting from a CPP:

2)
y AD. X o A
nd = n@"7)= NP (7 )n@
=1

5
- NIEZ)(/\(Z)) A(2)n|(2) NI(Z)(A(Z)) n,(Z) : (B.20)
I=1

. : . 2) .
Herein, the master side normal is expressed as nodal nommand'\( : is the parameter space
coordinate of the master side which corresponds the closastier point to the considered slave
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B. Details on Consistent Linearization for Line Contact

node. The required linearization of the master side pamnspiace coordinate results from the
expression of the CPP procedure:
Béz) 9{2)
s NPCIN® T NP X = 0 (8.21)
=1 I=1
It is solved with a local Newton-Raphson scheme and comgiditeearization of the solution
yields
NG % 2
=Ly $ NOCY) nP(®) T NPC@) K@+
$ =1 =1

with Lepp 2 R® 3 being de ned as

; (B.22)

X” @ A, (2 X 2 2 X 2) A2\ (2
L= $ N2+ 7 NP9 T NETT)nP(P) 1 (B.23)
=1 1=1 =1
The only unknown linearization herein is the directionativiive of the master side nodal
normals n,(z), which can be derived in complete analogy to the explanationthe slave side
normal eld in Popp [210]:

0 1
PN N O (1 SO L0 L1
| ki®Pk  ka@k kn@ ks

(B.24)

weren® denotes the non-normalized nodal normal vector. As stat8ection 4.4.1, the master

side nodal normal vectcﬁfz) results from averaging the element normal vectors at hotleus,
the linearization reads

O adj 1 adjO X 1
X n@ X n® n@T @y
ﬁl(z) — @ . I(ze)lA — @ (Zlie ( l;ei (Z)I,e) HN : (B.ZS)
i=1 JJN;;6l) i=1 knigk kn/g k®
The linearization of the element normal vectors can be cdetpas
! !
@ _ _ i Rei
Mg = ( XC ) x();)= Ni; (1) X Ni; ()X«
| k=1 | k=1
Re ' Re '
+ Ni ()X« N (1) X (B.26)
k=1 k=1

with the numbemng of all nodes associated to the considered adjacent elementaddition,
the parameter space coordinateorresponds to the position of master nbde

B.4.3. Nodal normal for node-to-line CPP:

If the slave side nodal normal is calculated with a nodefte-tlosest-point-projection, is is
written as normalized difference of the slave node and theadt master point (cf. Section 4.4.2):
1) Pho e 2
I L T

[

i NP e

(B.27)
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B.5. Linearization of integration points

The Linearization of this normalized vector can be done ial@gy to (B.24). Then, the only
intricate term is the linearization of the parameter spagdinate 2 of the closest master
point on the considered line element. It reads

2)
N = Lt @) (") Xj(l) X NI(Z)("(Z))XI(Z)

=1
2) !

X
+ @) W N®@ (") x@ (B.28)

=1
with L being de ned as

% X
L= 20 " = NP @) NG (@) (B-29)
=1 =1

Herein, the tangent is de ned as tangent eld with averagedat tangents similar to the nodal
normal eld. Details for its linearization are omitted here

The linearization of a nodal normal resulting from a nodextale CPP is not given here since
it can be computed in a straightforward manner.

B.5. Linearization of integration points

The slave and master side integration points result fronoggtion from the integration segment
onto the slave and master element. The projection reads

Do .
NOC DX $m x=0: (B.30)
k=1
Again, this is a nonlinear equation which is solved with a MewRaphson scheme to obtain

the sought after parameter space coordinatéé~;) and the distancé . The linearization is
de ned similar to the investigations in Popp et al. [211] &@anhg et al. [301] and reads

A2 # . w0 0, 0
$ =lgp $ M Ny ( (I)(~g)) X'+ Xg (B.31)
k=1

with the matrixLg, 2 R® 3 being de ned as

A .
Lp=  NOOx mo (B.32)
k=1

Note, the parameter spac€ of the target element is assumed to consist of two components
which corresponds to a 2D surface element. When projectinigtagration point onto a line
element, it would be suf cient to search for a scalar valuathmeter space coordinate. However,
writing it in vector formulation is still correct, since ank element parameter space can also be
expressed as boundary of the attached surface elementgiarapace.
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B. Details on Consistent Linearization for Line Contact

B.6. Linearization of gap function

The linearization of the discrete gap function at each Gpost reads

Gn= Ny xB 8P
1) %2) %2)
1 1 1 2 2
- NIE)( m("g))”k Né)( (1)(~g))x(k) NIE)( (2)(~g))k|()
k=1 k=1 =1
(B.33)
In detail, this formulation can be expressed as
0 1
X" @, @ 1 @, @
gn= X &Y @ NI(O(5)  One+ NI P() ne A
0 = 1
X" O, @ 1),,(1) (O] 1)
ng@ N’ ( () Ox+ NO(D(~) x A
0t 1
X @, 2),,2) @, @
+n@ NI O(~) Ox7+NT(O(~) x7 A (B.34)

Herein, the global Gauss point coordinaxgé are de ned via the parameter space coordinate of
the corresponding element. The Gauss point norpadsults from shape function interpolation
at the corresponding nite element parameter space coatelin
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