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Abstract— A typical formation shape control problem in-
volves point agents sensing relative positions, i.e. oritations
and distances, of their neighbors and then moving so that
these relative positions achieve some prespecified valu&ich a
procedure, requiring as it does sensing of orientations, ilicitly
presupposes that all agents have a shared understanding die
common orientations. On the other hand, there may be biases
in sensors, variations in the earth’s magnetic field interfeing
with compass-based sensing, or drift in inertial sensors, ith
the result that orientations are inconsistently measured 0
measured with error. In this paper, we investigate the formaion
control problem with mismatched coordinates in the three-
dimensional space, considering the consequences of thigar
First, the situation of a two agent formation is first consideed.
We show that the agents converge to a fixed, but distorted
formation exponentially fast. In contrast to the matched cae,
the formation is not asymptotically stationary, but rather
instead translates with a certain constant velocity deperidg on
the mismatches. The formation distortion between the actua

in [7], [8]. Another major distinction rests with problems
where there are both a prescribed shape and a prescribed
orientation, and problems seeking simply to achieve a pre-
scribed shape. A linear consensus-based algorithm can be
used to solve a formation shape control problem with both
a prescribed shape and a prescribed orientation [9], [10]
while the gradient-based approach (which involves noaline
control) can be used for shape control without an orientatio
objective [11], [12]. In this paper, the consensus-based ap
proach is considered and we are interested in studying the
consequence of postulating the existence of errors inivelat
state measurements. In particular, distance errors hae be
considered in the context of formation shape control withou
an orientation in [13], [14]. It was shown in [13] that if the
agents have different understandings of either the desired
distance between them, or of the actual distance between

one and the desired one is obtained, as well as the steadythem, the resulting steady state formation will be of fixed

state velocity of the formation for small mismatch orientaions.
The case of agents with double integrator dynamics is then

considered and similar phenomena are observed. Based on the

results, an estimation algorithm is given to obtain the mismatch

rotation matrix, which allows a compensation algorithm to be
proposed such that the desired formation is achieved with ze

steady-state velocity for the formation as a whole. The casef

n-agent formations is finally considered, first with a star grgph

and then with a general graph. Simulations are provided to
validate the theoretical results.

I. INTRODUCTION

shape but distorted relative to the desired shape (the amoun
of distortion depending on the mismatch). Further, instefad
being stationary, the resulting formation shape will cagee

to a circular closed orbit in two-dimensional plane. The
radius may be large, but the angular velocity is proportiona
to the mismatch. The extension to the case of a three-
dimensional tetrahedron formation shape control problem
was considered in [14] and it was shown that the motion
behavior is typically a helix and attributable to mismatah i
desired or measured distances for a pair of agents.

Formation shape control problems are considered an im- We focus on a different mismatched quantity in this paper.

portant issue in the study of multi-agent systems and shaHeis evident that it will often be unrealistic to claim _thdt a
control has broad applications [1], [2]. There are difféaren@gents have common error-free knowledge of the orientsition

variations for the formation shape control problem. For exf-)f north, or of.the vertical Qire_ctior_L Biasgs can exist in
ample, problems with or without a leader were considered fStruments; drift can occur in inertial navigation sysgem

[3], [4]; problems with undirected or directed communioati

spatial variation can occur in the earth’s magnetic field;

topology were studied in [5], [6] and problems with velocityhorizon sensors may have_ difficulty sensi_ng th_e horizon, and
consensus and moving final formation were investigate3f On- We extend our previous work on this topic from a two-

dimensional case [15] to a three dimensional case. A brief
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problem was considered in [17] with an orientation mismatch
of local reference frames of the agents for the formation
shape control problem. A combination algorithm aimed at
both orientation alignment control and formation control
was proposed. However, it is required that the orientation
angles of all the local reference frames with respect to a
global frame are available and can be exchanged among the
neighbors. This somehow violates the spirit of distributed
algorithms.

In this paper, we first consider the coordinate frame
mismatch problem (in a three-dimensional ambient space)
for the two agent case and then study the case with double



Agent 1

integrator agents. In particular, we show that the agents Agent 2
converge to a fixed, but (relative to the desired one) distbrt p
formation exponentially fast for both cases. The shapererro
between the actual final formation and the desired formation
is properly defined and obtained. It is shown that the shape
error magnitude is roughly proportional to the square of the
angular mismatch in the coordinate axis orientations of the
two agents. An estimation algorithm for the mismatched
orientation is also proposed. Based on the design of the
estimator, which is incorporated in a more complicated
control, a mismatch compensation algorithm is proposed
such that the desired formation is achieved and in steady
state, it is stationary. We finally include discussions o@ th Fig. 1. Coordinates of agentsand 2.
corresponding study of the-agent case, including the issue
of compensation. - heref i in alobal i
Notation: ||z|| denote the 2-norm of a vectarc R<. Let |1n Flgure 1. -l; erefore, a line vector in global coordinates
f and g be two functions defined on some subset of the! ~— [x’Qy’Z] can bel described in agedts coordinate
real numbers. One writef(z) = O(g(x)) asz — 0 if and ~ 2aSiS as’v = R(n,¢)'v, where R(n, ¢) is the rotation
only if there exist positive real numbeng ands such that Matrix [19], B(n, ¢) = I +singn]x + (1 —cos @) ([n}« )%,

0 —ns3 no
< .
|F(@)] = Mlg(x)| for |z <o and[n]x = | ns 0  —ny| denotes the cross product
II. PROBLEM FORMULATION —ng N1 0

atrix of n.

Then, in each agent's own coordinate basis, the actual
kinematics of each agent with mismatched orientations are
given by

To illustrate the key concepts, we start from the matchedl
formation shape control for two agents in a three-dimeradion
space,

A;=(Ay—A)) - D, (1a) A, =Ay— A, -D (2a)

Ay = (A — Ay) +D, (1b) 2As = R(n, ¢)(A1 — Az) + D, (2b)

whereA; = [z1,y1, z1|T € R® andAy = |20, 2, 22]T € R? _ _ . -
el }Josi[tféngloill\genﬂs ant 2V1 [:szylz azr21]d V, — whereA; — A, is expressed in global coordinatéd,; and

2 M . .
A, represent the velocities of agentsand 2, and D — A, are the velocity vectors of agentsand 2 expressed in

[ds,dy,d.]" € R? is a given desired relative position and®ach agent's own coordinate basis.
known for each agent. The objective is to drive agdndsd I1l. FORMATIONS IN THREE-DIMENSIONAL SPACE
2 to form a stationary formation such that, = A; + D.

" L . . Itis not hard to show that (2) can be written as
Note that the position of the centroid is unspecified, while @

the orientation and shape of the formation are specified. It A=A, - A, -D, (3a)
is straightforward from (1) to show that(nt_)oo.(Ag(t) —
Ai(t)) = D, limsoo A1 (t) = 0, andlimy o0 Aa(t) = 0 Ay =A, — Ay 4+ R(n, —¢)D, (3b)

exponentially fast. Therefore, agents converge to theekdsi

formation and the velocities converge to zero exponegtiall W& next present the following result on the case of three-
fast. dimensional ambient space.

The above algorithm assumes thas — A, for agentl Theorem 1:_ Consider the mismatf:hed formation shape
andA, — A, for agent2 are identical (up to the sign). This control algorithm (2). Suppose # 0 is constant (the case
means that a global coordinate system is shared for the tfh ¢ = 0 is just a classical formation control problem). It
agents. However, this assumption is unlikely to be satisfig@!lows that _
in real systems. As already indicated, we will focus on the [Intra-formation motion]
orientation (as opposed to range) error. () The agents converge to a fixed formation exponentially

Without any loss of generality, we suppose that the global ~ fast. In particularlim; .. (As(t) — Ay (t)) = 3(I +
coordinates coincide with the coordinate basis of agent R(n,—¢))D.

1. We next derive the equation of motion of agentn  (I) The relative velocities of the agents converge to zero
global coordinates. We also assume that the rotation from exponentially fast, i.elim¢ oo (Va(t) — Vi(t)) = 0.
the coordinate frame of agent to that of agentl is (Il) If D # 0, the final formation is distorted from the

represented by an Euler axisand an angles [18], where desired one. The formation distortion between the actual
n final one and the desired one @(|¢|), as¢ — 0.
n = [ny| € R? is a unit vector. An illustration is given If D = 0, then rendezvous is still achieved, i.e.,

ns limt_mo(Ag(t) — A1 (t)) =0.



[Whole-formation motion] [Intra-formation motion]

(IV) If D # 0, the absolute velocities of both agents con-(I) The agents converge to a fixed formation exponentially
verge to the same nonzero constant exponentially fast. fast. In particularlim; o (A2(t) — A1(t)) = (I +

In particular,lim; . | V1()|| = limy—e [Va()| = R(n, —¢))D.

O(|9|), as¢ — 0. If D = 0, the absolute velocities of (ll) The relative velocities and accelerations of the

both agents converge to zero exponentially fast. agents converge to zero exponentially fast, i.e.,
(V) If D # 0, the agent positionsA;(t) and As(t) limy 00 (Va(t) — Vi(t)) = 0 and limg oo (Ax(t) —

are neither convergent nor bounded. B = 0, A,(t)) =0.

limy 0 Aq(£) = limy_ o0 Ag(t) = 2101420 where (ll) If D # 0, the final formation is distorted from the

A1(0) and A5(0) are the initial states of agentsand desired one. The formation distortion between the actual

2. final one and the desired one @(|¢|), as¢ — 0.
Proof: The proof of this Theorem (which is not especially If D = 0, then rendezvous is still achieved, i.e.,
difficult) is omitted due to space limitations. The reader is  lim; o (A2(t) — Ay(t)) = 0.
referred to [16] for more details. [Whole-formation motion]

Remark 1. The time-varying mismatches are not dealtV) If D # 0, the absolute velocities of both agents con-

with in any detail in this manuscript due to space limitation verge to the same nonzero constant exponentially fast.

The general conclusion is that the difference between the In particular,lim; o |[Vi(t)|| = limy o0 [|[Va(t)]| =
actual final formation and the desired one will converge  O(|¢|), as¢ — 0. If D = 0, the absolute velocities of
to a bounded internal ultimately as long as time-varying  both agents converge to zero exponentially fast.

mismatches are bounded. (V) If D # 0, the agent positionsA;(t) and A(t)

Remark 2: For practical applications, a leader is often are neither convergent nor bounded. I = 0,
designated to determine the translation and orientatidheof limg oo A (t) = limy_s o0 Aa(t) = M, where
entire formation. For the case of leader-following forroati A,(0) and A5(0) are the initial states of agentsand

control with mismatched coordinates, it turns out that the 9.
formation will become asymptotically stationary and theProof:

velocity error caused by angle measurement mismatch will (1) DefineQ = A, — Ay + L (I + R(n, —¢))D. It follows
be suppressed while the final formation is distorted from thigom (5) that

desired one. . Q=-2Q-Q. (6)

It then follows thatlim; . (Az(t) — A;(t)) = D exponen-

_ _ tially, whereD = 1 (I + R(n, —¢))D. This verifies (I).
Formation control problems have also been studied for (II) Sincelimy_,~ (As(t) — A1 (t) — D) = 0 exponentially
agents consisting of double integ_rator dynamics [20],_ [th]ast, it follows from (6) thatimtﬁoo(Ag(t)—Al(t)) — 0and
since the dynamics of many motion systems are typlcaIIMmt_}OO(Ag(t) _ Al(t)) — 0 exponentially fast. Therefore,
described by a second-order differential equation. Wel shg{)) is proven.

show that similar results to those for single integrator dy- ()i The proof of this part is the same as the proof of the

namics apply in this case. o corresponding part of Theorem 1.
With double integrator dynamics in each agent's own (jy) |t follows from (5) that

coordinate basis, the dynamics of each agent are given by

IV. SECOND-ORDERDYNAMICS

- L Ai=-A;+D-D+A;-A;-D, (7)
Aj=A,—A;-D-"A 4
! 2 ! b (4a) it then follows from the input-to-state stability property
.. . i A —_D-D=1% —b) — =
%A, — R(n, ¢)(As — As) + D — %A, (4b) [22]) thatlim; ,oc Ay (t) = D—D = 5(R(n, —¢) —I)D =

' . sin %(— cos%[n]X + sin%([n]X)Q)D. andlimy .o A (t) =
where A; — Ay, 'A; and?A, are the velocity vectors of 0. Therefore, we also havém,_, ., Ay(t) = 2(R(n, —¢) —
agentsl and 2 expressed in each agent's own coordinatg¢)D and lim; ,., A(t) = 0. This further implies when

basis, andA; and?A, are the acceleration vectors of agentd = 0 that limy_, o0 ||A1(t)|| = limsy 00 ||A2(t)|\ = 0(|9),
1 and2 expressed in each agent's own coordinate basis. as¢ — 0. Therefore, for the case dd # 0, the absolute

It is not hard to show that (4) can be written as velocities of both agents converge to the same nonzero con-
Al=Ay,— A, -D-A,, (5a) stant _gxponentially fast. For the caselof= 0, the abs_olute
velocities of both agents converge to zero exponentiafly, fa
Ay— A — Ay + R(n,—¢)D — Ao, (5b) (V) For the case oD # 0, the conclusions are obvious

due to (IV). If D = 0, the problem reduces to a standard
We next present the following result on the case of secondverage consensus problem [9].

order dynamics. [ |
Theorem 2: Consider the mismatched formation shape Remark 3: Another interesting problem is to consider the

control algorithm (4). Supposa # 0 and ¢ # 0 are case of relative velocity feedback with mismatched coor-

constants. It follows that dinates. In such a case, we conjecture that the absolute
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(@) The dotted lines denote the trajectories of the
positions of the agents. The circles and the solid black
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(b) The convergence of absolute velocities of the
agents.

(b) The solid black line and the dotted black line denote Fig. 3. Three agent case wilD # 0.
respectively, the actual formation shape and desired
formation shape at t = 80 s.

whereU € R? denotes a compensation input. We next spec-
ify how to design the estimation d®(n, ¢) and use the es-
timated information to compensate the original mismatched
Igorithm such that the desired formation is achieved.

Fig. 2. Three agent case wilD # 0.

velocities of agents are not convergent and the accelemtio®

of the agents converge to a common constant. A Estimation of R(n, ¢) using the TRIAD algorithm
We next describe simulations which illustrate the validity hi b ) h f
of Theorem 2. We consider the caseldf£ 0. In particular, In this subsection, we use the measurement for agent

D = [0,-5,0]", ¢ = —0.2r, andn; = [1,0,0]" and initial (relative position information expressed in the coordnat

i ia 2 2

states of all the agents are chosen randomly. Figures 2 aﬂ@s& of agen12,_ €., A,Q_ n _Al) a”‘?' the measure_ment
3 show the positions and velocities of the agents during trf8r adg_entl érelgtlv;:' posmc_)n w;formaltlon ?xprt?ssed in the
time interval[0, 50]. The relative velocities converge to zero,C00"dinate basis of ageit i.e., “A, —"A,) for the TRIAD

indicating that the agents converge to a fixed formatiorf90rithm [23], [24] such thatR(n, ¢) is reconstructed.

However, due to the existence of mismatched sensors, tp;ge TRIAD algorithm is a classical deterministic algorithm
estimate an attitude, in which the attitude is directly

agents keep moving with non-zero constant absolute velo X
ities and the final formation is distorted from the desire&alcqlated based on two pairs of nonparallel vectors. We nex
one. specify the TRIAD algorithm.

Suppose that we have two nonparallel unit vecigrand
V. ESTIMATION AND COMPENSATION ALGORITHMS FOR 1}, (measurements of physical quantities obtained by agent
TWO AGENT CASE 1 at two distinct time instants) and two other unit vectors
In this section, we first consider the estimationifn, ¢). W1 and W> (measurements of the same physical quantities
We shall show later how the use of an estimateRoh, ¢) obtained by agert at the same two distinct time instants).
can eliminate the problem caused by the orientation mi&learly, the unknown rotation matri&(n, ) defines the

match. Without loss of generality, we let agenbe respon- differences between them, whei¢, = R(n,¢)V1 and
sible for the estimation of2(n, ¢). The following compen- W2 = R(n, ¢)V>. SinceV; andV; are linearly independent,
sation control algorithm is proposed we obviously have the following relation:

A; = Ay, — A, - D, (8a) (W1 x Wa) = R(n, ¢)(Vi x Va).

“A> = R(n,¢)(A1 — A2) + D + U, (8D)  Motivated by the above fact, we can construct two triads of



unit vectors:
Vi x Vs

Ry =V, Ry = ——— R3 =Ry XR
1 1, 2 ||V1 < VQH’ 3 1 2,
W1 X W2
1 15 2 Wy x Wal|’ 3 1 X D2,
We thus know that
Ms = R(n, ¢) Mk,
where
Ms = [Sl Sa SS]a Mg = [Rl Ry RS]- (a) The convergence of the positions of the agents. The
) ) . circles and the crosses denote respectively, the initial

and the right members of the equations denote matrices and final positions of agents.
labeled by their columns.

Lemma 1 (TRIAD algorithm): [23], [24] The matrices - : TNl
Ms and My are both orthogonal with determinaihtand > . ‘ ‘ ‘ ‘
the solution forR(n, ¢) is ° : P ¢ °

_ —1_ T -
R(n,¢) = MsMpy" = MsMpg. B ol e

B. Compensation algorithm ° : P ¢ 1°

Next, we show how to use the estimate Bfn,¢) to R
compensate the original mismatched algorithm such that the > ‘ ‘ ‘
desired formation is achieved. Specifically, the following ’ ’ oy ’ b

compensation control algorithm is proposed
(b) The convergence of absolute velocities of the
Ut = {O,Dt € A[O, T ©) agents.
-D+RD, t>T
Fig. 4. Convergence of compensation algorithm (8) with cengation
where R will be specified later. input (9).
We next show that»(¢) — A (¢) converges to the desired
formation using compensation input (9).
Theorem 3: ChooseV; = A20=A10)  ang 1y, = Remark 4: We remark that the determination &f(n, ¢)

A5(0)—A41(0 . . . . . .
R(n,¢)(A2(0)—A1(0)) 14:2(0)= A1 (0] is achieved with just two pairs of measurements. Obviously,

Also choose aI' > 0 such that

(”i(“(g;(fz(o Al(ﬂ) AT )) £ 0. Then, choose if there is measurement noise, as opposed to bias or a system-
v 2 A A 1 and W ! R(1,6) (As(T)— A, (T) atic error of the type we are estimating, one would expect
2 2 =

?1 h [R(n,$)(As(T)—A( T)é do better with more measurements, or even continuous
Con5|dert e algorlt m (8) with compensat|0n input (9) a ﬁ;ﬁ

T easurements. While the details are not developed in this
thle estﬂma'c_:_)rrf% RMSg der|\{ed acco;dmg to :c:e TRI;A‘D paper, we note that extensions of the TRIAD algorithm to
agorimm. Then (1, 9), limy—o0 (A2(t) — A1 (1)) = address such situations have been developed, see e.g., SVD

D, andlim; o0 Vi(t) = lime00 Va(t) = 0. thod [25], FOAM method, [26], QUEST method [24
Proof: It is not hard to show from (8) and (9 (¢) — Ax(t) g:eler(-)q rEwet]Hod [27] 2;]% s% orE I Q method [24],
is bounded during € [0, 7], and ’ '

Al—Ay=—2(A, — Ay + D)+D—RT(n,¢)RD, vt > T.
VI. THE n-AGENT CASE
Therefore, according to Lemma 1, we know that

AL — A, = (A, — Ay + D)Vt > T. In_this secti_on, we aim to show how the analysis of the
previous section for two agents will carry over to >
It then follows haflim;_,~. (A2(t)— A1(t)) = D. ltis there- 2 agents. For clarity of presentation, we first consider a
fore trivial to show thatim, .., V1 (t) = lim;_,. V2(t) = special and simpler case of connected graphs, i.e., a star
0. B graph. Note that a star graph is a graph with minimum
We next describe simulations which validate the effeceonnectivity. Therefore, the case can be easily extended
tiveness of Theorem 3. We considEr = [0,5,0]". The towards a general graph by expressing the desired and actual
initial positions of the two agents are chosen randomlyriro vectors corresponding to the edge filling in the network as a
Figure 4, we can see that the absolute velocities of the agetihear combination of those quantities for the star graph. W
converge to zero and the desired formation shape is achievedn therefore derive a general conclusion that holds for any
connected graph of agents.



A. n-agent case with a star graph A,=(A1—-A,)— R(n,,—¢,)Di,. (12¢)

We consider that there areagents],2,...,n in a three- . .
. ) . . We next establish the following result.
dimensional space and agenis connected to agerit with ] . . .
an undirected edg®} = 2,3 n. The classical formation Theorem 4: Consider the mismatched formation control
control algorithm for each %ge;n is given by: algorithm (11). Suppose thak, ¢s, ..., én # 0. It follows
' that
A, = (A — A1)+D12+ (A3 —A;) + Dis+ ... [Intra-formation motion]
+ (A, — A1) + Dy, (10a) (1) The agents converge to a fixed formation exponentially
fast.
Ay = (A1 — Ay) — Dy, (10b) (I) The relative velocity of each agent pair converges to
zero exponentially fast, i.elim; .. (V;(t) — V;(t)) =
0, foralli,j € {1,2,...,n}.
(I 1f D # 0, the final formation is distorted from
the desired one and the final formation distortion
An — (Al _ An) _ D1n7 (10C) is O(maxj:273 777 n |¢j|), as ¢2,¢3, ceey d)n — 0. If
D = 0, limy o (A;(t) — Aj(t)) = 0, for all 4,5 €
where A; = [z1,11]" € R?, Ay = [z2,90]" € R?, ..., {1,2,...,n}.
— T 2 — T 2 —
A, = [In,y%] € gR , Dig = [dy,12,dy,12]" €R ’TD13 S [Whole-formation motion]
[dmylg,dyylg] c R, ... and Dln = [dz,lnydy,ln] c R .
are given constants and known for each agent. (IV) If D # 0, the absolute velocity of each ager_1t converges
The objective is to ensure asymptotically @ss oo that to t_he same nonzero constant exponentially fast. In
Ai(t) — Az(t) = D12, Ay(t) — As(t) = Dy, ..., and particular, lim—, o0 [Vi(t)| = O(max;j—3,.n[¢5]),
Dy, asoo, ¢3,..., 0, — 0, foralli e {1,2,...,n}.
Dis (V) If D # 0, the agent positionsA;(¢), Az(t) and
Ai(t)— A,(t) =Dy,. We defineD = | . |. As(t) are neither convergent nor bounded.If =
: 0, hmt_mo A1 (t) = s = hmt_mo An (t) =
Due to the exist ¢ mismatch len g A0 +A4:0) - where A1 (0), A2(0), ..., A,(0) are
ue o the existence ot miSmalched compasses, and €x- ,q jnjtia| states of agents 2,...,n.
pressing measured multi-agent distances using the C(mederoof'

basis associated with agent the actual formation control
algorithm becomes:

Aj=(As—A))+Dip+ (A3 — A)) +Dyz +...

() The intra-formation motion is determined by the fol-
lowing equation:

=—P
(A — Ay + Dy, (11a) Q=-re
. Al — AQ D12
Ay = R(ny, ¢2)(A1 — Az) — Dia, (11b) Al — Az D3
where Q = . - P'w o,
A1 — An Dln
2 1 I
An = R(nn, gf)n)(Al — An) — Dlna (11C) P _ ' . |, and W _
where ¢2, ¢3, ..., ¢, € (—m,w] denote the mismatch be-
o I 1 21
tween the axes of agert and agenti, Vi = 2,3,...,n, [+ R(ny, o) I
R(nj,¢;) = I +sing¢;j[n;]x + (1 — cos ¢;)([n;]x)?, where S _
—N53  MNj2 . It is not
nj]x = | nj3 0 —n; 1| denotes the cross product I ... T+ R(n,, —o¢,)
—nj2 N1 0 hard to show thatP is positive definite for anyn
matrix of n;, for Vj = 2,3,... n. e A
It is not hard to show that (11) can be written as —%I #I —%I
. and P71 = , _ .~ |. Therefore,
A =(A2—A;)+ D2+ (A3 —A;) + Dy + ... : - B :
-ty iy ... n=lg
+ (An — Al) + Dy, (12a) n n n

Ay = (A1 — Ay) — R(ng, —¢2) Dy, (12b) )
(I1) 1t follows from (1) that lim;_, =0.



(1) For the case oD # 0, we know that the actual final by using effectively the same algorithm as proposed in the

formation is determined by two agent case. Through measurements between communi-
AL (t) — As(t) Dy, cating ageqt pairslll andA4;, j :.2,3, ...,n, the necessary
Ar(t) — As(t) D, compensation matrices are st(a|ghtforwardly determimetl a
im _ —Plw| the necessary compensation introduced.
t—o00 . .
AL () _ At Dlln C. The n-agent case with a general graph
D Notation: an undirected gragh consists of a paifV, £),
12 o . .
D whereV = {1,2, ...,n} is a finite, non.empty set of nodes
. . . . 13
However, the desired formation is determined py. |. @and& <V xVis a set of unordered pairs of nodes. An edge
: {j,i} € &€ denotes that nodesj can obtain each other’s
Dy, information mutually. The neighbors of nodeare denoted
The final formation distortion is defined and given by by N; := {j : {j,i} € &}. The adjacency matrixd =
Dy Dy [a;;] € R gssociated with the grapf is defined sugh
D3 D3 thata;; = 1 if {j,i} € £ anda;; = 0 otherwise. It is
D= |[P'W | |- | . obvious thata;; = aj;, for all 7,5 € V for the undirected
: : graph.
Din Din The classical formation control algorithm for each agent
Ring,—¢o) — T ... N glg is given by..
_|p1 v A=Y (Aj—A+Dy), i€V, (13)
0 s R —60) — 1] |y JEN;
tn WhereAi = [wi,yi]T € RQ, Vi €V, Dij = [dm,ij,dy,ij]T €
<h j:g,lgfff,nml”DH’ R2, Vi,j € V are given constants defining the specified

relative positions and known for each agenf;, i € V

where we have used the fact th@(n;,—¢;) — I = denotes the neighbor set of agent

—9gin & $itnl. — sin $i(ns1.)2). Vi — . i

2dslm' 5 (cos th[njt] XTh Smf 5é([nﬂix()) ) Vi =23,....n, Due to the existence of mismatched compasses, and ex-
andiy is a constant. ThereforeD = .(ma.x?'ﬂﬁ vvvv n |3]). pressing measured multi-agent distances using the catedin
as os, ¢3, ..., ¢, — 0. In addition, it is trivial to prove the

basis associated with ageinfwithout loss of generality), the

case ofD = 0. actual formation control algorithm becomes:

(IV) For the case oD # 0, it follows from (11) that

Al (t) — As(t) '"A1=) (A~ A +Dyy), (14a)
o Ay (t) — As(t) o
i Aq(t) = -1 -1 . T : Ay = Z (R(n2, ¢2)(A; — Az) + Do), (14b)
AL(t) — An(D) IEN:
D12 .
D3 nA _ )
. .76-/\/71
Dy where ¢o, ¢3,...,0, € (—m,«] denote the angular mis-
Do match between the coordinate axes of agerdnd agent
D13 i, Vi = 2,3,...,71, R(Ilj,(bj) = I—|—sin¢j[nj]x + (1 —
=[-1 -1 ... -I|P'W-P) : 0 “njs njo
D cos¢;)([n;]x)? where[n;]x = | njz 0 —njs
In —n 2 n j,1 O
= [-2R(m2,—¢2)+ 21 ... —1R(n,,—¢,)+ LI]D. denotes the cross product matrixiof, for Vg - 2,3,...,n.
Therefore, the absolute velocities obey It is not hard to show that (14) can be written as
e A = = limese At = A= (A, - A +Dy)), (15a)
O(Inanzgyg_’____’n |¢J|), as (bg, gf)g, ey d)n — 0. In addition, FENT
it is trivial to prove the claim for the case @ = 0. L L B _
Based on (IV), (V) is obvious. [ | Az = g\; (Aj = Az + R(na, —$2)Dy;), (15b)
J 2

B. Estimation and compensation algorithms in the n-agent
case with star graph

Obviously it is of interest to be able to eliminate unwanted ~ An = Y (A; — Ay, + R(ny, —¢,)Dyj). (15¢)
motions in then-agent case, and this can be in fact be done JEN



We next establish the following result for the casex@fgents [N2R(ng, —¢2) 0 e 0

with a general connected graph. _ 0 N3R(ns, —¢3)

Theorem 5: Consider the mismatched formation control _ _ +

algorithm (14). Suppose thatk, ¢s, ..., ¢, # 0 with all ¢ : K 0

constant for all time. It follows that L 0 e 0 NnR(nn,—¢n)

[Intra-formation motion] ai2 Q13
() The agents converge to a fixed formation exponentially ¢12 413 - .. ® I
fast. : B
(I The relative vglocny of _eat:h agent pair converges to=a12 a1z ...
Se:‘gregl?qn-egtgny fash Lelims oo (V3(8) =V(0)) = 0 aszR(n2, —¢2) asaR(n2, —2)
' bJ : ass R(ns, — 0 assR(ns, —

(I 1f D # 0, the final formation is distorted from 2R _3 %) i (_ »~93) ,
the desired one and the final formation distortion is : E :
O(maxj:273 777 n |¢j|), as (bg, ¢3, ey d)n — 0. If D = _anZR(nna _(bn) Gn3R(l'ln, _(bn) cee ON
0, lim; oo (A4 (t) — A;(t)) =0, for all 4,5 € V. and a;; denotes(i, j)th entry of the adjacency matrixl.

[Whole-formation motion] Based on the transformation and Lemma 1 given in (

(V)

V)

If D # 0, the absolute velocity of each agent convergel#8)), it is not hard to show that-P is a Hurwitz stable
to the same nonzero constant exponentially fast. Ifatrix when the underlying graph is connected. Therefore,

particular, lim o, [|Vi(t)|| = O(maxj—os, . . |¢;]), Hmimeo Q(t) =0. . .

as¢s, ds, ..., ¢n — 0, foralli e V. (1) 1t follows from (1) that lim; o (A1 (t) — A;(t)) =0,

If D +# 0, the agent positiom;(t), Vi € V is neither forallj=2,3,....n

convergent nor bounded. B = 0, lim; ., A;(t) = (1) For the case oD # 0, we know that the actual final
= limy,o Ay(t) = M where Aq(t) — Aa(t)

A1(0),A5(0),...,A,(0) are the initial states of agents ¢, —iion is determined byim,_, A(t) — As(t)
1,2,....n > :

Proof: Using the relations thalA; — A, = (A, — Ay) + AL (1) _ A, (t)
(A1 — Ay) andDy; = Dyj — Duyg, Vj, k € V, (15) can be  p~11yD. However, the desired formation is determined by
written as D. The final formation distortion is defined and given by
A, = Z (A; — A, +Dy;), §D := ||P~'WD — DJ|. It then follows that
. JEM §D = |P7'aD|| < e ||D]|
Ay = N2(A1 — Az) — NaR(ng, —$2)D12
+ Z (Aj — A1 + R(n2, —$2)Dy1j), Saxy2An—1)x2x m:?Xn{ (N + Zaﬂk
JEN> é
sin 22| w2V ID
_ sin % x 2} D]
A, = N,(A; — A,) — N,R(n,, —$,)D1, < dany2(n - 1DID|_max |5,
* ZN: (Aj = Av+ R(on, =6n)D1y), where Q and Q; are given in (22) and (23), respec-
JENn o ) tively, Q1 = —N,, sin ¢2" (cos 5 22[n,,]x —sin ¢" (nn]x)?),
Wher:eN]i denoters] the .cardlfnallty of set, i € V. bl = HP || is a positive constant and We have used
Therefore, the intra-formation motion  can ethe facts thati(n,, — ;) — T — —2sin % (cos % [n ]
written in the compact form as:Q = —PQ, b5 .
— A, Dy, sin % ([ny;]x)?), j € {2,3,...,n} for the lfII‘St mequallty,
A, —Ajg D3 HAH2 = \/EHAHOO = \/Emaxlﬁiﬁm Zj:l |aij| for a
where Q = : — P'W| |, matrix R™*, |sinal <1 and|cosa| < 1, Va € R for the
: second inequality. ThereforéD = O(max;—23, . |0;]),
A=Ay Din as os, ¢s, ..., ¢, — 0. In addition, it is trivial to prove the
N2 0 cee 0 a2 a1z ... case ofD = 0.
: a2 a3 ... (IV) For the case oD # 0, it follows from (15) that
p=|Y M eI+ | ®
: .0 : A(t) = Z (Aj — Ay +Dyj) =[-a12 —ai3 ... —au
0 ... 0 N, a1z 13 .. JEN:
0 a3 a24 e Al(t) - A2 (t)
asz2 0 a34 e Al(t) - Ag(t)
I-— . X X I, W = X . + [alg aiz ... aln] D.

ap2 ap3 ... 0 Al(t) - An (t)



N3(R(ng, —¢2) —I)  ax3(I— R(ng, —¢2)) aga(I— R(ng, —¢2))
azo(I — R(nz, —¢3)) N3(R(n3, —¢3) —I) azs(I— R(nz, —¢3))

Q- _ , ' 1 ' (22)
anQ(I - (nna (bn)) an3(I - R(nna _(bn)) s N ( (nna (bn) - I)
— N, sin £2 5 (cos & 22[ny], — sin 22 2([n2]x)?)  agssin %(cos %[ng]X — sin %([ng]X )?)
N sin ﬁ(cos, ‘1’23 [n3]x — sin o3 5 ([ns]x)?)  —Njsin 2 (cos £[ns]x — sin 2 ([n3)x)?) ... . 23)
1= . . .
an2 sin 2 (cos 220y, ]« — sin 2 ([n,]x)?)  @ngsin 2 (cos 2 [n,]x —sin 24(n,]x)?) ... Qi
Therefore,limtﬁoo Al (t) = [—a12 —ai3 ... —aln]
_ _ . - --Agent 1
x PP{(W — P)D = [-I ... —I|P7'QD. This shows T etz
that & - - Agent 3
. M < .
Jim [As ()] < 2D _max |, .
wherec, is a positive constant.
Therefore, the absolute velocities obey
meoe [ALO] = - = lime [AL0)] =
O(Inanzgyg_’____’n |¢)J|), as ¢2, gf)g, ey gf)n — 0. In addition,
it is trivial to prove the claim for the case @ = 0.
Based Or_‘ (IV), (V) is obvious. . . .. (@) The dotted lines denote the trajectories of the
Remark 5: Theorem 5 shows that the formation distortion positions of the agents. The circles and the solid black
and steady velocity of the formation are only related to the lines denote respectively, the positions of the agents and
maximum of all the mismatch angles, and this fact holds for the formation shape att=33s,t=66s,andt=80s.
arbitrarily finite network size. ) T Agentd
We next describe simulations which illustrate the validity el

of Theorem 5. We consider the case three agents with a star
graph. In particularD;> = [0, —8,0]T, Da3 = [20,0,0]7,

(]52 = 0.17 and (]53 = 027, ny = n3 = [1,0,0]T and
initial states of all the agents are chosen randomly. FijGre
and 6 show the positions and velocities of the agents during
the time interval0, 100]. The relative velocities converge to
zero, indicating that the agents converge to a fixed formatio
However, due to the existence of mismatched coordinate

-0 -25

frame, the agents keep moving with non-zero constant abso- y X
lute velocities and the final formation is distorted from the (b) The solid black line and the dotted black line denote
desired one. respectively, the actual formation shape and desired

formation shape at t = 80 s.
D. Estimation and compensation algorithms in the n-agent

case Fig. 5. Three agent case wil # 0.
Compensation is slightly more complicated for a general
graph. The TRIAD algorithm again gives the rotation matrix
linking the coordinate bases of two neighbor agents. Bguch a mismatch is a consequence of the fact that it is
using a tree contained in the undirected grghha uniqgue not physically realistic to claim that all agents have a
path can be found from nodeto nodej, and the rotation common coordinate axis orientations when obtaining nedati
matrix linking the coordinate bases dfand j is given by position measurement. We examined the consequences of
the product of the rotation matrices associated with eadhe mismatched orientations on a standard formation shape
edge along the path. In this way, the necessary compensatmimtrol algorithm. The two agent case was first studied and
matrices are straightforwardly determined and the necgssave showed that the agents converge to a fixed, but distorted
compensation introduced. formation exponentially fast. Unlike the matched case, the
formation is not asymptotically stationary. The shape rerro
between the actual final formation and the desired formation
This paper studied the formation shape control problemas established for small mismatched orientation. We then
with mismatched orientations in three-dimensional spaceroposed estimation and compensation algorithms such that

VII. CONCLUDING REMARKS



(b) The convergence of absolute velocities of the

agents.

Fig. 6. Three agent case wilD # 0.
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the desired formation shape is achieved using the TRIARO]
algorithm. Furthermore, the extensions to tix@gent case
and second-order dynamics were investigated. Simulatiops;
are provided to validate the theoretical resufisture works
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and compensation, discussing the case of relative velocigy,
feedback for second-order dynamics, studying the sitnatid23]

of a rotating body frame, and solving the leader-followin
formation control problem with mismatched measurement

(1]

(2]

(3]

(4]

(5]

(6]

(7]

REFERENCES

D. V. Dimarogonas and K. J. Kyriakopoulos, “On the rendmzs
problem for multiple nonholonomic agentdEEE Transactions on
Automatic Control, vol. 52, no. 5, pp. 916-922, 2007.

D. Sieber, F. Deroo, and S. Hirche, “Formation-based reggh
for multi-robot cooperative manipulation based on optinsahtrol
design,” in [EEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Tokyo, Japan, 2013, pp. 5227-5233.

W. Ren, “Multi-vehicle consensus with a time-varyinderence state,”
Systems & Control Letters, vol. 56, no. 7, pp. 474-483, 2007.

G. Shiand Y. Hong, “Global target aggregation and stgieament of
nonlinear multi-agent systems with switching topolodiggjtomatica,
vol. 45, no. 5, pp. 1165-1175, 2009.

Y. Hatano and M. Mesbahi, “Agreement over random netsgrkeEE
Transations on Automatic Control, vol. 50, no. 11, pp. 1867-1872,
2005.

L. Moreau, “Stability of multi-agent systems with tindependent
communication links,” |EEE Transactions on Automatic Control,
vol. 50, no. 2, pp. 169-182, 2005.

Z. Lin, M. Broucke, and B. Francis, “Local control strgtes for
groups of mobile autonomous agent§ZEE Transactions on Auto-
matic Control, vol. 49, no. 4, pp. 622—-629, 2004.

24]
[25]
[26]

[27]

(28]

B. Jiang, M. Deghat, and B. D. O. Anderson, “Translatiomeloc-
ity consensus using distance-only measurementsProteedings of
2013th |IEEE Conference on Decision and Control, Florence, Italy,
2013, pp. 2746-2751.

R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensusd a
cooperation in networked multi-agent systemBrbceedings of the
IEEE, vol. 95, no. 1, pp. 215-233, 2007.

W. Ren, R. W. Beard, and E. M. Atkins, “Information conses in
multivehicle cooperative control: collective group beioavthrough
local interaction,”|EEE Control Systems Magazine, vol. 27, no. 2, pp.
71-82, 2007.

L. Krick, M. E. Broucke, and B. A. Francis, “Stabilizati of infinitesi-
mally rigid formations of multi-robot networks/hternational Journal
of Control, vol. 82, no. 3, pp. 49-95, 2009.

M. Cao, A. S. Morse, C. Yu, B. D. O. Anderson, and S. Dasaup
“Maintaining a directed, triangular formation of mobiletamomous
agents,”Communications in Information and Systems, vol. 11, no. 1,
pp. 1-16, 2011.

M. A. Belabbas, S. Mou, A. S. Morse, and B. D. O. Anderson,
“Robustness issues with undirected formations,”Froceedings of
the 2012th IEEE Conference on Decision and Control, Maui, Hawaii,
USA, 2012, pp. 1445-1450.

Z. Sun, S. Mou, B. D. O. Anderson, and A. S. Morse, “Nonusib
ness of gradient control for 3-d undirected formations vdistance
mismatch,” inProceedings of 2013th Australian Control Conference,
Perth, Australia, 2013, pp. 369-374.

Z. Meng, B. D. O. Anderson, and S. Hirche, “Formation ttohwith
mismatched compasseg\utomatica, vol. 69, pp. 232-241, 2016.
——, “Analysis of undirected formation shape controthvdirectional
mismatch,” in54th IEEE Conference on Decision and Control, Osaka,
Japan, 2015, pp. 6773-6778.

K.-K. Oh and H.-S. Ahn, “Formation control and netwodcélization
via orientation alignment,1EEE Transactions on Automatic Control,
vol. 59, no. 2, pp. 540-545, 2014.

M. D. Shuster, “A survey of attitude representationiBtie Journal of
the Astronautical Sciences, vol. 41, no. 4, pp. 439-517, 1993.

N. Chaturvedi, A. Sanyal, and N. McClamroch, “Rigidedyoattitude
controls,” |EEE Control Systems Magazine, vol. 31, no. 3, pp. 30-51,
2011.

J. A. Fax and R. M. Murray, “Information flow and coopévatcontrol
of vehicle formations,”|EEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1465-1476, 2004.

Y. Cao, D. Stuart, W. Ren, and Z. Meng, “Distributed @ntnent
control for multiple autonomous vehicles with double-gror dy-
namics: Algorithms and experimentdEEE Transactions on Control
Systems Technology, vol. 19, no. 4, pp. 929-938, 2011.

H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.

H. D. Black, “A passive system for determining the aiti¢ of a
satellite,” AIAA Journal, vol. 2, pp. 1350-1351, 1964.

M. D. Shuster and S. D. Oh, “Three-axis attitude deteation from
vector observations,Journal of Guidance, Control, and Dynamics,
vol. 4, no. 1, pp. 70-77, 1981.

F. L. Markley, “Attitude determination using vector sdrvations
and the singular value decompositiodgurnal of the Astronautical
Sciences, vol. 36, no. 3, pp. 245-258, 1988.

——, “Attitude determination using vector observasorA fast opti-
mal matrix algorithm,”Journal of the Astronautical Sciences, vol. 41,
no. 2, pp. 261-280, 1993.

D. Mortari, “Euler-q algorithm for attitude determitian from vector
observations,”Journal of Guidance, Control, and Dynamics, vol. 21,
no. 2, pp. 328-334, 1998.

K. Peng and Y. Yang, “Leader-following consensus peoblwith a
varying-velocity leader and time-varying delayBhysica A, vol. 388,
no. 2-3, pp. 193-208, 2009.



