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Frequency response functions (FRFs) often serve as a basis for predicting sound and vibration
levels at a receiver position, with a known excitation at a source position. Within the dynamic
substructuring framework it is possible to build the FRFs of a complex assembly from the known
FRFs of its subcomponents. However, in the case of subcomponents with revolving parts the task
is further complicated due to gyroscopic effects. These components are changing their dynamic
behavior depending on the operating speed. A correct approach would require measuring the FRFs
of the rotating machinery at each operating speed, which is a difficult and tedious task. Thus,
the unmeasured gyroscopic effects are often neglected (but not always negligible) in practice.
We propose a dynamic substructuring based approach, for analytically coupling the gyroscopic
reaction moments to an FRF matrix, measured on the idling subcomponent. Gyroscopic terms
only influence subcomponent motions that are tilting the rotation axis. The proposed method will
thus be interpreted and derived as a coupling in the subspace of this tilting motion. An analytical
testcase is used to exemplify and validate the proposed method. We show how the tilting angles
can be determined from an overdetermined set of measured sensor motions, based on a kinematic
assumption. The validity of this kinematic assumption certainly influences the solution, which
will also be shown on the example.
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Nomenclature:
u, f measured displacements / forces q,m generalized displacements / forces
Y,Z admittance / impedance matrix B signed Boolean matrix
λ Lagrange multiplier vector R reduction mode matrix
T transformation matrix Θ rotational inertia tensor
Ω angular velocity of rotor Y0 idling component admittance
Yop operational component admittance Ygy gyroscopic admittance
T (?) measured in frame of reference T (?)i pertaining to set of dofs i
(?)u/f pertaining to displacements/forces (?)A quantity pertaining to substructure A
(?)A|B uncoupled block notation of A and B (?)AB coupled quantity of A and B
FBS frequency based substructuring OSI operational system identification
FRF frequency response function IDM interface displacement mode
TPA transfer path analysis

1. Introduction

Modal testing of rotating structures aims at extracting the modal properties of a rotating structure from
a set of measurements. See e.g. [1] for a comprehensive review on the topic. However, the measured
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Figure 1: The substructuring problem and its application for TPA [5].

FRFs of the structure will change depending on the operating speed of the rotating components, due to
gyroscopic effects. Even a change of rotation direction (forward or backward) will alter the measured
FRFs. An approach solely based on testing is thus very time consuming. To make matters worse,
it is non-trivial to get a clean FRF measurement on a machine while it is in operation. All sorts
of operational excitations, coming from the internals of the machine, are masking the actual sensor
response to e.g. a shaker input. Some techniques are available for performing these measurements,
like e.g. the operating system identification (OSI) method [2], but the involved signal processing
and averaging further complicates the FRF determination. The idea in this paper is to use frequency
based substructuring (FBS) [3, 4], for analytically coupling the gyroscopic effects to a set of FRF
measurements performed on the idling structure. To the authors best knowledge, no one has published
this approach yet. This technique might prove particularly valuable in component based transfer path
analysis, where a correct FRF of the source component is vital for the determination of blocked forces
[5].

2. Frequency Based Substructuring

In FBS the admittance of an assembled system YAB is derived from the separate admittances of two
subsystems YA and YB (see figure 1). The admittances of both subsystems YA and YB are known
and their degrees of freedom (dofs) are grouped into some internal dofs ((?)A1 and (?)B3 ) and some
common dofs on the interface ((?)A2 and (?)B2 ). Displacements are denoted by u, external forces in
the respective dofs are denoted by f . The admittance of the uncoupled substructures can be written in
block diagonal form YA|B. The following equations are the starting point for coupling YA and YB,
but also aim at clarifying the notation in verbose and compact form:

YA|B (f + BTλ) =


YA

11 YA
12 0 0

YA
21 YA

22 0 0
0 0 YB

22 YA
23

0 0 YB
32 YA

33





fA1
fA2
fB2
fB3

+


0
λ

−λ
0


 =


uA1
uA2
uB2
uB3

 = u, (1)

Bu = 0, where B =
[
0 I −I 0

]
. (2)

The internal interface forces, necessary for coupling the two substructures, are denoted by λ. The
matrix B is commonly called a ’signed Boolean matrix’. When coupled, the two substrucutures have
to fulfill compatibility on the interface (uA2 = uB2 ) which is expressed in eq. (2). Inserting eq. (1) in
eq. (2) and solving for λ we find:

λ = −
(
BYA|BBT

)︸ ︷︷ ︸
Fint

−1 BYA|Bf︸ ︷︷ ︸
∆u2

, (3)

where ∆u2 is the interface gap which would result between both structures if they where uncoupled
(due to external forces f ). The term Fint is the ’interface flexibility’ whose inverse relates the interface
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Figure 2: Example of windturbine for coupling of gyroscopic effects.

gap ∆u2 to the reaction forces λ needed for ’closing the gap’. Reinserting eq. (3) in eq. (1) yields the
admittance matrix of the assembled system YAB:(

YA|B −YA|BBT
(
BYA|BBT

)−1
BYA|B

)
︸ ︷︷ ︸

=YAB

f = u (4)

Remark 1: Note that the assembled matrix YAB in eq. (4) still has the same size as the
unassembled block matrix YA|B. When writing down eq. (4) in the verbose form indicated in
eq. (1), we would notice that the second and third block row of YAB are equal (since com-
patibility: uA2 = uB2 ) and that the second and third block column in YAB are equal (external
interface forces fA2 and fB2 create the same response). It is thus common practice to remove
these redundant rows and columns from the final matrix YAB, thereby treating the interface
dofs as the common quantities they are: uA2 = uB2 =: uAB2 and fA2 + fB2 =: fAB2 .

3. Coupling Gyroscopic Effects

The FBS approach shown above has been successfully used to couple the admittances of two separate
structures. This approach can equivalently be used for coupling non-measured gyroscopic effects to
a set of measured FRFs. To make things more tangible we will start considering the example of a
windturbine like structure, shown in figure 2a.
The windturbine is mounted on a flexible support, allowing it to rotate around the longitudinal axis
(spring stiffness cγ , angle γ) and to tilt forward (spring stiffness cβ , angle β). The vector of uncon-
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strained coordinates is q =
[
γ β

]T . The system consists of two bodies, the tower (mass mt, inertia
tensor TΘt) and the rotor (mass mr, inertia tensor TΘr) with their centers of mass being at height ht
and hr respectively. The lower left subscript T (?) indicates that the quantity is described in frame of
reference T which is fixed to the tower. The rotor can rotate at varying operational speeds Ω. For
simplicity, the distance of the rotor center of mass to the vertical axis is assumed to be zero. Hence,
we have an equilibrium position for q0 =

[
0 0

]T , where the springs are undeformed. For studying
the vibrations around this equilibrium position, the linearized equations of motion can be written as:(

−ω2M + iωG + K
)︸ ︷︷ ︸

=:Zop(ω)

q = m, in this example:

M =

[
Θt,zz + Θr,zz 0

0 Θt,yy + Θr,yy +mth
2
t +mrh

2
r

]
,

G =

[
0 −ΩΘr,xx

ΩΘr,xx 0

]
, K =

[
cγ 0
0 cβ − (mtht +mrhr)g

]
.

(5)

External moments in the respective dofs are denoted by m. Matrices M,G,K denote the mass, gy-
roscopic and stiffness matrix respectively. They are often combined in the dynamic stiffness Zop(ω),
where the subscript (?)op indicates that the matrix is dependent on the operating conditions, i.e. the
speed of the rotor Ω. The excitation frequency is denoted by ω.1 The admittance matrix which could
be measured on the idling system is Y0, where the subscript (?)0 denotes the idling component.
However, we are interested in obtaining the admittance matrix of the operating system Yop:

Y0 =
(
−ω2M + K

)−1
, Ygy = (iωG)−1 , Yop =

(
−ω2M + iωG + K

)−1
. (6)

The unmeasured gyroscopic effect can be seen as an additional substructure admittance Ygy which
can be coupled to the idle component Y0 in a post processing step via dynamic substructuring. When
using the same ideas as in FBS eq. (4) (in this case only interface dofs, B = [I − I]) we obtain:

Yop = Y0 −Y0 (Ygy + Y0)−1 Y0. (7)

Remark 2: One can show that the FBS result in eq. (7) is equivalent to directly assembling
the operational dynamic stiffness Zop = Y−1

0 + Y−1
gy and inverting it. We need to show that:(

Y−1
0 + Y−1

gy

)︸ ︷︷ ︸
Zop

−1 = Y0 −Y0 (Ygy + Y0)−1︸ ︷︷ ︸
=(YgyY

−1
0 +I)

−1

Y0

=
(
I−

(
YgyY

−1
0 + I

)−1
)

Y0

=
(
YgyY

−1
0 + I

)−1 (
YgyY

−1
0 + I− I

)
Y0

=
(
YgyY

−1
0 + I

)−1
Ygy =

(
Y−1

0 + Y−1
gy

)−1
�

A proof that was already used in [6]. Note that a similar result for the coupling of gyroscopic
terms was found in [1, appendix C], though not derived from FBS but from pure linear algebra.

1For simplicity the dependence of dynamic stiffness Z and admittance Y on ω will be omitted in the rest of the text.
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Remark 3: Note that above it was implicitly assumed that the rotor’s inertia tensor TΘr is
independent of the actual rotation angle Ωt (i.e. Θr,zz = Θr,yy = const.) and that frame of
reference T is a principal axes system for the inertia tensor.
This is often referred to as an ’isotropic rotating component’ [1]. The gyroscopic matrix G of
the above example is representative for these cases, as can be seen from the Euler equations
for the rotor:

TΘr T ω̇op + TωT × TΘr Tωop = m,

where Tωop is the angular velocity of the rotor measured in coordinate system T , TωT is the
angular velocity of coordinate system T and TΘr is the inertia of the rotor. If we assume only
small rotations and a constant rotor operating speed (in the example above γ � 1, β � 1,Ω =
const.) this means Tωop ≈ [Ω β̇ γ̇]T and TωT ≈ [0 β̇ γ̇]T . Inserting in the Euler equations
for the rotor yields:  0

Θr,yyβ̈
Θr,zzγ̈

+

(Θr,zz −Θr,yy)β̇γ̇
ΩΘr,xxγ̇

−ΩΘr,xxβ̇

 =

 0
mβ

mγ

 .
With the degrees of freedom q =

[
γ β

]T and linearizing for only small pertubations (i.e.
assuming small β̇ and γ̇ and neglecting terms of higher order), we get the same gyroscopic
matrix G as in eq. (5).

4. Projecting Gyroscopic Effects on Measured FRFs

Consider the situation depicted in figure 2b. The windturbine is equipped with a rigid fixture on which
some sensors (indexed with k) are mounted and some force inputs (indexed with h) can be applied.
Usually the set of measurements is performed on the idling component and the single measurement
channels, grouped in the vector u, do not directly correspond to the tilting angles of the rotor axis q.
Likewise, the applied forces, grouped in the vector f , do not directly correspond to the tilting moments
of the rotor axis m. Consider the kinematic assumption of rigidity for the windturbine being valid.
Then the linearized response in e.g. the z-channel of sensor k due to a small γ and β is:

ukz =
(
ekz
)T ([

0 β γ
]T × rk

)
=
(
ekz
)T  rkz −rky

0 rkx
−rkx 0

[β
γ

]
. (8)

The resulting moments mh in the axis tilting directions, due to one force input fh are:

mh =

[
mh
β

mh
γ

]
=

[
rhz 0 −rhx
−rhy rhx 0

]
ehfh, (9)

where r denotes the position vectors of sensors / forces and e denotes their unit direction vectors (see
figure 2b). Similarly to eq. (8) and eq. (9), one finds general expressions between all sensor channels
/ force inputs (u and f ) and the tilting angles / tilting moments (q and m).2 Thus we can find the

2Methodically all these derivations are equivalent to projecting measurements on interface displacement modes (IDMs)
first described in [2] and extended in [7] which we refer to, for a thorough explanation.
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measured FRF matrix Yuf from the FRF matrix in the subspace of the tilting angles Yqm:

u = Ruq, m = RT
f f , Yuf = RuYqmRT

f , (10)

q =
(
RT
uRu

)−1
RT
u︸ ︷︷ ︸

=:Tu

u, f = Rf

(
RT
f Rf

)−1︸ ︷︷ ︸
=:TT

f

m, (11)

where Ru and Rf contain the kinematic assumption for relating the tilting angles and tilting moments
to the set of measured channels. The matrices Tu and TT

f are basically the pseudo inverses of Ru and
Rf (i.e. TuRu = TfRf = I).
Tu transforms measured signals u to the tilting angles q in a least squares sense. TT

f determines a
minimal set of forces f for producing a specific tilting moment m, also in a least squares sense. The
subscript (?)uf refers to a FRF matrix being measured between force inputs and sensor channels. The
subscript (?)qm denotes a FRF matrix being measured in the subspace of the tilting angles (between
tilting moments and the tilting angles).
Our goal is to predict the FRF matrix of the operating system Yuf,op from the measured FRF matrix
of the idling component Yuf,0 and the known gyroscopic admittance Yqm,gy (rotational intertia and
operating speed of the rotor must thus be known). The FBS approach thus needs to ensure compatibil-
ity between the tilting angles of the idling component (inferred from the measured sensor channels u
via eq. (11)) and the tilting angles of the subsequently coupled ’gyroscopic substructure’. This com-
patibility is stated in eq. (13). The gyroscopic reaction moments needed for ensuring compatibility
are denoted as λ. They have to be transformed to an equivalent set of measured forces for applying
them to the measured idling component (via TT

f , which is stated in eq. (12)). The formulation of the
coupling can be put as follows:

Y0|gy
(
f̃ + BT

f λ
)

=

[
Yuf,0 0

0 Yqm,gy

]([
f
0

]
+

[
TT
f λ

−λ

])
=

[
u
q

]
= ũ, (12)

Buũ = 0, where Bu =
[
Tu −I

]
, and Bf =

[
Tf −I

]
. (13)

Inserting eq. (12) in eq. (13) results in:

Yuf,op = Yuf,0 −Yuf,0T
T
f

(
Yqm,gy + TuYuf,0T

T
f

)−1
TuYuf,0. (14)

Note that the above result corresponds to the upper left block of the FBS result when using the block
matrix notation indicated in eq. (12). This is perfectly fine considering the argument of remark 1.
Knowing that there are no other external moments on the ’gyroscopic substructure’, apart from the
compatibility moments λ (see the ’zero’ entry in the external forces f̃ in eq. (12)), one concludes that
the result corresponds to the FRF matrix one would measure in operation.3

Remark 4: The above result is equal to just expanding the matrix of the operational system
from eq. (7), which is restated here:

Yqm,op = Yqm,0 −Yqm,0 (Yqm,gy + Yqm,0)−1 Yqm,0

The expansion of a matrix to the sensor channels and force inputs can be done via:

Yuf,op = RuYqm,opR
T
f Yuf,0 = RuYqm,0R

T
f

Starting from eq. (14) with the definitions of the transformation matrices in eq. (11) it is easy

3This can also be seen as a weak coupling of the gyroscopic effects to the rest of the tower dynamics, which might
even be non-rigid in directions not tilting the rotation axis (see e.g. [8] for further discussion).
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to show:

Yuf,op = Yuf,0 −Yuf,0T
T
f

(
Ygy + TuYuf,0T

T
f︸ ︷︷ ︸

=Yqm,0

)−1
TuYuf,0

= Yuf,0 −Yuf,0T
T
f︸ ︷︷ ︸

=RuYqm,0

(
Ygy + Yqm,0

)−1
TuYuf,0︸ ︷︷ ︸
=Yqm,0RT

f

= Ru

(
Yqm,0 −Yqm,0 (Yqm,gy + Yqm,0)−1 Yqm,0

)︸ ︷︷ ︸
Yqm,op

RT
f �

5. Analysis of kinematic assumptions

In the previous paragraph we have shown, that the suggested FBS approach yields the excact solution,
provided the kinematic assumption (relating the axis tilting motion to the sensor motion) is valid. We
will now show the importance of this assumption for the quality of the results. Consider the situation
in figure 2c, with a spring cϕ between the tower and the rotor. Assume we still want to use FRF
measurements between the sensors and impacts on the tower as shown in figure 2b. The kinematic
assumption of a rigid connection between the sensors and the rotor axis will be deteriorated as cϕ is
reduced. In fact we have three coordinates now q = [γ β ϕ]T , where ϕ describes the absolute angle
of the rotor as it tilts over. For a very stiff cϕ, the coordinates β and ϕ will be almost identical, which
approves our kinematic assumption. However, for a reduced cϕ the kinematic assumption will further
deteriorate. The result for an arbitrary choice of parameters4 is shown in figure 3. It can be seen
that the response of the idle system shows only one resonance peak, since in the case shown, with an
excitation in the y-direction, one is only exciting a rotation around the z-axis (i.e. the coordinate γ).
The rotations of the two free coordinates (β and ϕ) are decoupled from this motion. The gyroscopic
reaction moments introduce the coupling with these coordinates and their resonances start to show up
in this FRF as we introduce a rotor velocity Ω 6= 0. Due to the significant difference between idle and
operational FRF, it can be argued that a consideration of the gyroscopic effects in this case is essential
for an accurate estimate of the FRF at different operating speeds. The results for differing stiffnesses
cϕ (cf. figure 3a and figure 3b) also show that an accurate consideration of the structure kinematics is
vital for good results.

6. Conclusion

We have shown how gyroscopic effects of rotating components in a substructure can significantly
alter its dynamic behavior. The proposed method can be used as a comparatively easy way for con-
sidering these gyroscopic effects in a dynamic model, without the need for performing a new set of
measurements for each operating speed of the rotor. It is also well suited for providing the uncertain
engineer with a first estimate for the importance of gyroscopic effects in a specific design. Though
not shown in this paper, the kinematic assumptions, for inferring the the rotor tilting angles from a
set of measurement channels, doesn’t have to be rigidity. If e.g. a finite element model of the com-
ponent is available, one might determine the modal participation of important modes from a set of
measurements and get the tilting angles from those modal participations (reduction matrices Ru and
Rf would change). Note, that in component based TPA [5] it is important to consider these effects,
when determining the blocked forces, since otherwise they are not transferable to a different design.

4All parameter appearing in the system matrices of eq. (5) are set to 1 apart from: cγ = cβ = 10;hr = 2,Ω = 10.
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Figure 3: FRF between impact point h in y-direction and sensor k in y-direction (cf. figure 2b). Comparison of
idle FRF Yuf,0, reference solution Yuf,op, and dynamic substructuring result Y DS

uf,op, obtained with the violated
kinematic assumption.

The method could prove particularly valuable for components that are relatively compact, e.g. elec-
tric motors or small compressors in stiff housings (when compared with their usually soft support,
for decoupling them from the rest of the structure, e.g. a car). Also the general idea of this paper,
namely to use concepts from dynamic substructuring for coupling a non-measurable physical effect
to a measured substructure, may also be transferable to other problems.
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