
Technische Universität München
Fakultät für Informatik

Informatik 5 – Lehrstuhl für Wissenschaftliches Rechnen (Prof. Bungartz)

Scalable scientific computing applications for
GPU-accelerated heterogeneous systems

Christoph Karl Riesinger

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Jörg Ott
Prüfer der Dissertation: 1. Prof. Dr. rer. nat. Hans-Joachim Bungartz

2. Prof. Dr. Sci. Takayuki Aoki
Tokyo Institute of Technology, Japan

Die Dissertation wurde am 16.05.2017 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Informatik am 12.07.2017 angenommen.

Abstract

In the last decade, graphics processing units (GPUs) became a major factor to increase
performance in the area of high performance computing. This is reflected by numerous
examples of the fastest supercomputers in the world which are accelerated by GPUs.
GPUs are one representative of many-core chips, the major technology development to
boost hardware performance in previous years. Many-core chips were one factor besides
others such as progress in modeling, algorithmics, and data structures to allow scientific
computing advance to its current state-of-the-art.

To exploit the whole computational power of GPUs, numerous challenges have to be
tackled in the area of parallel programming: Latest developments in handling the core
characteristics of GPUs such as two additional levels of parallelism, the memory sys-
tem, and offloading shift the focus on the usage of multiple GPUs in parallel and/or
combining them with the performance of CPUs (heterogeneous computing). As a con-
sequence, hybrid parallel programming (e.g. MPI, OpenMP) concepts are required and
load balancing as well as communication hiding become even more relevant to achieve
good scalability.

In this work, we present approaches to benefit from GPUs for three different appli-
cations, each covering different algorithmic characteristics: First, a pipelined approach
is used to determine the eigenvalues of a symmetric matrix not only enabling very high
FLOPS rates but also allowing for the handling of even large systems on one single GPU.
Second, the solution of random ordinary differential equations (RODEs) offers multiple
levels of parallelism which is predestined for systems with multiple GPUs leading to
the first implementation of an RODE solver to deal with problems of reasonable size.
Finally, it is shown that a pioneering hybrid implementation of the lattice Boltzmann
method making use of all available compute resources in the system where the CPU can
process regions of arbitrary volume can attain good scalability.

iii

Acknowledgements

Even if there is only one author name written on the front page of this thesis, there are
numerous other persons who contributed to this document in one way or the other. So
I am taking the chance to express my acknowledgements and thanks to these people.

First of all, I would like to mention my PhD supervisors Prof. Hans-Joachim Bungartz
and Prof. Takayuki Aoki. They offered me the opportunity to start and successfully work
on my PhD in very comfortable, pleasant, productive and competent environments,
especially during my research stay abroad in Tokyo where the first actual results could
be achieved.

Before achieving actual results, much groundwork has to be finished, not always done
by myself. Here, I want to thank Tobias Neckel and Florian Rupp for their preliminary
studies in the field of random ordinary differential equations forming the theoretical
basis of part III of this document. Special acknowledgements go to Tobias who did not
just contribute in a technical way as the advisor of my thesis but also became a close
friend. The same gratefulness belongs to Martin Schreiber and Arash Bakhtiari for their
practical effort in the area of the lattice Boltzmann method continued by me in part IV.
Martin, I am not sure if you reduced or actually extended the time to finish my PhD,
anyways, you definitely made this time much more valuable.

In addition, I would like to thank these people who gave me access to the computing
resources essential for my research work. Robert Speck paved the way to utilize the
infrastructure in Jülich, Frank Jenko enabled the access to the Max Planck resources
in Garching, Maria Grazia Giuffreda arranged the usage of several clusters in Lugano,
and, again, Prof. Takayuki Aoki is mentioned for his support in Tokyo. If there was any
onside technical problem, Roland Wittmann was the guy you can count on.

Furthermore, I have to thank Alfredo Parra Hinojosa, again, Tobias Neckel, Philipp
Neumann, and Benjamin Uekermann who significantly enhanced the quality and the
language of this thesis by proofreading and reviewing. Alfredo also has to be mentioned
for his pragmatic and effective approach to execute the duties of a coordinator of the
Computational Science and Engineering (CSE) program and, hence, was the perfect
colleague a CSE secretary can rely on. In the same way, I thank my former CSE and
office colleague Marion Weinzierl.

Besides colleagues and people who supported me in a technical way (and sometimes
became very good friends), there is also my family I always could count on. I want to
deeply thank my girl-friend Barbara and my parents Elisabeth and Karl for doing the
“cover my back” stuff and for always giving me the feeling, no the certainty that nothing
can really go wrong.

Hence, every time a “we”, “our”, or “us” is mentioned on the following pages, all these
just listed people are also meant in one way or the other.

v

Contents

I. Introduction 1

1. Opening 3

1.1. Motivation . 3

1.2. Contribution . 5

1.3. Outline . 6

2. Architecture of GPUs 9

2.1. Hardware structure of GPUs . 10

2.2. Programming & execution model . 15

2.3. Scheduling & GPU indicators . 17

2.4. Heterogeneous computing & GPU-equipped HPC clusters 18

3. Relevance of GPUs in scientific computing 21

3.1. Acceleration of scientific computing software 22

3.2. Lighthouse projects . 23

II. Pipelined approach to determine eigenvalues of symmetric matrices 27

4. The SBTH algorithm 31

4.1. Block decomposition of a banded matrix 31

4.2. Serial reduction . 32

4.3. Parallel reduction . 34

5. Implementation of the SBTH algorithm 39

5.1. Determination of Householder transformations 40

5.2. Transformation of block pairs . 41

5.3. Pipelining . 44

5.4. Matrix storage format . 47

6. Results 49

6.1. Profiling . 50

6.2. Scalability of the pipelined approach . 53

6.3. Comparison with ELPA . 58

vii

Contents

III. Multiple levels of parallelism to solve random ordinary differential
equations 63

7. Random ordinary differential equations 69
7.1. Random & stochastic ordinary differential equations 69

7.2. The Kanai-Tajimi earthquake model . 70

7.3. Numerical schemes for RODEs . 72

7.3.1. Averaged schemes . 72

7.3.2. K-RODE-Taylor schemes . 74

7.3.3. Remarks on numerical schemes . 77

8. Building block 1:
Pseudo random number generation 79
8.1. The Ziggurat method . 80

8.1.1. Definition of the Ziggurat . 81

8.1.2. Algorithmic description of the Ziggurat method 82

8.1.3. Setup of the Ziggurat . 84

8.1.4. Memory/runtime trade-off for the Ziggurat method 86

8.2. Rational polynomials . 87

8.3. The Wallace method . 89

8.4. Results . 91

8.4.1. Evaluation of particular pseudo random number generators 93

8.4.2. Performance comparison of pseudo random number generators . . 97

9. Building block 2:
Ornstein-Uhlenbeck process 101
9.1. From the Ornstein-Uhlenbeck process to prefix sum 101

9.2. Parallel prefix sum . 103

9.3. Results . 106

10.Building block 3:
Averaging 109
10.1. Single & double averaging . 109

10.2. Tridiagonal averaging . 110

10.3. Results . 112

11.Building block 4:
Coarse timestepping for the right-hand side 115
11.1. Averaged schemes . 115

11.2. K-RODE-Taylor schemes . 116

12.Results of the full random ordinary differential equations solver 119
12.1. Configurations of choice for the building blocks 120

12.2. Profiling of single path-wise solutions . 122

viii

Contents

12.3. Scalability of the multi-path solution . 124
12.4. Statistical evaluation of the multi-path solution 127

IV. Scalability on heterogeneous systems of the lattice Boltzmann method133

13.The lattice Boltzmann method and its serial implementation 137
13.1. Discretization schemes . 137
13.2. Collision & propagation . 139
13.3. Memory layout pattern . 140

14.Parallelization of the lattice Boltzmann method 143
14.1. Domain decomposition . 144
14.2. Computation of the GPU- & CPU-part of a subdomain 146

14.2.1. Lattice Boltzmann method kernels for the GPU 146
14.2.2. Lattice Boltzmann method kernels for the CPU 147

14.3. Communication scheme . 149

15.Performance modeling of the lattice Boltzmann method on heterogeneous
systems 155

16.Results 159
16.1. Characteristics of kernels . 160

16.1.1. Results of the GPU kernels . 161
16.1.2. Results of the CPU kernels . 162

16.2. Benchmark results for heterogeneous systems 163
16.2.1. Single subdomain results . 163
16.2.2. Preparations for multiple subdomains results 165
16.2.3. Weak scaling results of multiple subdomains 167
16.2.4. Strong scaling results of multiple subdomains 169

16.3. Validation of the performance model . 174

V. Conclusion 179

ix

Part I.

Introduction

1

1. Opening

This thesis is opened with an introductory part before coming to the actual applications
in later parts. The first chapter of the introductory part provides the motivation, our
contribution, and an outline to get started. Section 1.1 serves the motivation where
current challenges of scientific computing in the context of high performance computing
(HPC) are presented. It is dealing with the question “why” the work given in this
document is relevant. The approaches developed to master such challenges are sketched
in section 1.2. There, it is distinguished between techniques already well-established
in the community and insights published for the very first time in this thesis. Finally,
section 1.3 describes the structure of the rest of this document. It shows the recurring
themes through this work but also lists aspects that are not within the scope of this
dissertation.

1.1. Motivation

Simulation, i.e. the virtual imitation of a real-world process or system, has been estab-
lished as third pillar besides theory and experiment to gain understanding and knowl-
edge [194]. Scientific computing is the multidisciplinary field which applies simulation
to specific applications, especially in science and engineering. Application engineers are
looking for answers to ambitious questions in engineering and insight into phenomena
of yet unfeasible quality, so simulations become more and more complex: The usage
of multiple physics in one simulation (e.g. to tackle fluid-structure interaction problems
where fluid and structure dynamics have to be considered), the treatment of multiple
scales (e.g. when investigating membranes which requires the coupling of phenomenon
on an atomic and a mesoscopic scale), the analysis of multi-dimensional problems (e.g. in
finance), or the increase of resolution or numerical accuracy of the simulation are only a
few examples of this growing complexity. Advances in modeling such as surrogate mod-
els or model order reduction, in numerics such as sophisticated discretization schemes
and preconditioning, and in algorithmics such as procedures having a reduced compu-
tational complexity make it possible to tackle this increased complexity, as well as a
higher investment of computational resources for the overall simulation. Accordingly,
also other steps of the simulation pipeline such as meshing for pre-processing and vi-
sualization or qualitative statements for post-processing become more computationally
expensive. Latest trends such as the consideration of stochastic processes, or—more
generally—uncertainty quantification [222], and big data analysis further increase the
need for computational performance.

For more than a decade, an increase of computational performance has mainly been

3

1. Opening

achieved by hardware parallelization: Vector units integrated in processor cores, nu-
merous arithmetic logic units (ALUs) per core, multiple cores per chip, more nodes per
compute cluster, and so on. Hence, writing parallel software being aware of hardware
parallelism plays a vital role in scientific computing and parallelization is one of the ma-
jor techniques in HPC. As a result, scalability became one of the most important metrics
to measure the quality of parallel software: In the same way as the number of process-
ing elements is increased, the performance should also increase. This can either be a
reduction of compute time and/or an expansion of problem size. Right now in the pre-
exaFLOPS era, it seems very likely that the first machines which will be able to compute
1018 floating-point operations per second (FLOPS) will be equipped with accelerators.
Upcoming supercomputers such as Aurora1, Sierra2, and Summit3 strongly suggest this
course. Accelerators such as graphics processing units (GPUs), Intel Xeon Phi4, or more
exotic examples such as the PEZY accelerator5 or Google’s Tensor Processing Unit aug-
ment existing systems using classical central processing units (CPUs) with additional
computing devices. Such computing devices offer in general disproportionately high
computational performance with drawbacks in programmability and applicability. Sys-
tems augmented in such a way are called heterogeneous systems because they host at
least two different types of computing devices, i.e. CPUs and accelerators.

Heterogeneous systems make it easier to hit the sweet spot between computational
performance, acquisition price, space, and energy consumption.

On the one hand, having a look on the current Top5006 list shows that three of the
top ten supercomputers are already heterogeneous systems. Thus, accelerators are no
new technology but already well-established. On the other hand, efficient usage of ac-
celerators poses different challenges for the developer: In general, accelerators introduce
extra levels of hardware parallelism. Mapping existing and new algorithms and methods
to heterogeneous systems and exploiting all available resources is non-trivial, especially
when running complex and sophisticated simulations. Another challenge is to achieve
scalability on large heterogeneous systems. This is hard due to the offloading char-
acter of accelerators. Non-uniform memory access, different cycles per byte ratios of
the devices, and continuous utilization of the processing elements are further obstacles
which have to be conquered. Concerning the software and programming side, new im-
plementations may become necessary because the different levels of parallelism require
to address different memory architectures (shared or distributed memory) suggesting
different approaches of threading and tasking.

1https://www.alcf.anl.gov/articles/introducing-aurora
2https://asc.llnl.gov/coral-info
3https://www.olcf.ornl.gov/summit/
4Recently, with the Knights Corner generation, the Intel Xeon Phi became an independent device

running its own operation system. Hence, it does not rely on any CPU anymore making it not just
an accelerator but also a stand-alone device.

5https://www.pezy.co.jp/en/index.html
6https://www.top500.org/list/2016/11/

4

https://www.alcf.anl.gov/articles/introducing-aurora
https://asc.llnl.gov/coral-info
https://www.olcf.ornl.gov/summit/
https://www.pezy.co.jp/en/index.html
https://www.top500.org/list/2016/11/

1.2. Contribution

1.2. Contribution

Combining well-known aspects of accelerators from many years of experience and new,
non-trivial approaches to the challenge for their efficient usage is the one of the major
contributions of this thesis. We study GPUs as accelerators and how to utilize them in
the best way. Therefore, we cover numerous aspects from simple single-GPU scenarios
up to massively parallel scenarios using large heterogeneous systems. To this end, we
work on three different applications: (1) The reduction of symmetric banded matrices
to tridigonal form is an important task in numerical linear algebra when eigenvalues
have to be determined, a fundamental core operation in scientific computing, (2) the
solution of random ordinary differential equations (RODEs) is one example of models
which incorporate stochastic processes to improve the model in terms of quality and
accuracy, and (3) simulating fluid flow, and often applied real-world application, by
using the lattice Boltzmann method (LBM).

When it comes to single-GPU issues, we deal with compute- and memory bandwidth-
intense kernels, which, on the one hand, fit very well on GPUs. Yet on the other hand,
due to the architecture of GPUs, memory latencies become a problem. Therefore, we
show how to get the maximum performance from kernels that are latency-bound. Going
one step further, when utilizing several GPUs in parallel, we illustrate how to use hybrid
programming to tame more than two levels of parallelism and how to efficiently map al-
gorithms to these levels. By hybrid programming, we mean the application of more than
one programming paradigm (e.g. by MPI + OpenMP, MPI + CUDA, or a combination of
them). Finally, to eventually fully exploit large heterogeneous systems, we demonstrate
how to handle different types of computing devices (CPUs and GPUs) simultaneously.
This includes tailored implementations of kernels for different kinds of computing devices
as well as considering the different properties of the various communication interfaces
in a large heterogeneous system. Techniques such as communication hiding are applied
to continuously utilize all available compute resources. This is indispensable to achieve
scalability on large heterogeneous systems.

From the application point of view, we first take the established symmetric banded ma-
trix, reduction to tridiagonal form via Householder transformations (SBTH) algorithm
and implement it on single-GPU setups. We demonstrate why the pipelined approach of
the SBTH algorithm harmonizes with the architecture of modern GPUs, making them
a single chip supercomputer. Since the SBTH algorithm is one possible step in the
determination of eigenvalues, various scientific computing applications relying on such
an operation, benefit from this improvement. Afterwards, we introduce a procedure to
solve RODEs on GPU clusters. We subdivide the corresponding solution process in four
building blocks: Pseudorandom number generation, Ornstein-Uhlenbeck (OU) process,
averaging, and coarse timestepping. The first three building blocks are not limited to
handle RODEs but are also generally applicable in other domains relying on random
input, the OU process, or averaging. Finally, we implement the LBM on large-scale
heterogeneous systems equipped with GPUs. The sheer computational performance and
memory size of such systems stemming from two types of computing devices enable sim-

5

1. Opening

ulations of size and resolution which were not feasible before. A performance model is
given to introduce a possibility to estimate performance values such as runtime, giga
(109) lattice updates per second (GLUPS) rate, speed-up, and parallel efficiency and to
detect bottlenecks on different setups of (also future) heterogeneous systems in advance.

Besides applying well-tried techniques and commonly used best practices for existing
algorithms, we present several completely new approaches, methods, and tools in this
thesis: Our RODE implementation and the subdivision in four building blocks is the first
HPC implementation of a solver for RODEs. Solvers for RODEs are very expensive in
terms of computational performance and our implementation allows simulating scenarios
of reasonable size for the first time. As a quasi by-product, we offer an implementation of
a pseudorandom number generator (PRNG) for normally distributed random numbers
achieving—to our knowledge—best performance ever measured on GPUs. Another quasi
by-product of the RODE HPC implementation is the first successful parallelization of
the OU process by mapping it to prefix sums and taking parallelization schemes for this
operation. The implementation of the LBM is the first implementation of this method
fully exploiting all available compute resources of a heterogeneous system. Prior hybrid
implementations already took the CPU into account but just for communication purposes
or to treat single boundary layers of subdomains, thus wasting much of the computational
performance of the CPUs. For our implementation, we present a performance model
extending existing performance models by considering the CPU as a full computing
device, different performance properties of intra and inter-node communication, and the
fact that it does significantly matter which dimension is used for parallelization.

1.3. Outline

There are two golden threads running through this thesis. First, differential equations are
the central object for modeling: Part II is dealing with the computation of eigenvalues,
a totally deterministic operation. Eigenvalues are of frequent interest when it comes to
the interpretation of phenomena modeled by differential equations. Part III is dealing
with the solution of RODEs. RODEs are a special type of ordinary differential equations
(ODEs) which are augmented with a stochastic process. Part IV is dealing with the LBM.
The LBM uses an alternative discretization of the partial differential equations (PDEs)
which model fluid dynamics. Second, a huge variety of GPU programming aspects is
covered: Part II is dealing with features being relevant in the context of single-GPU
programming and the usage of libraries. Part III is dealing with problems arising from
the usage of multiple GPUs in parallel. Finally, part IV is dealing with challenges arising
from reasonably handling large heterogeneous systems.

Before stepping in the three scientific computing applications, part I gives in chapter
2 a presentation of the properties of modern GPUs. It is not a tutorial how to program
GPUs but a survey on this type of hardware and a discussion on how GPUs fit in the
HPC landscape. This discussion covers similarities and differences between CPUs and
GPUs as well as a proper specification of the GPUs and GPU-accelerated supercomputers
which are used in this thesis. Part I is concluded by a selection of examples in chapter

6

1.3. Outline

3 where GPUs play a major role. On the one hand, this includes some cases of well-
established and often-used software in scientific computing accelerated by GPUs. On
the other hand, this covers some selected lighthouse projects where the usage of GPUs
significantly promoted the simulation’s discipline. It shows that there is actually an
impact of GPU-accelerated scientific computing in the real world.

Part II starts with a presentation of the SBTH algorithm in chapter 4. A block
decomposition scheme for the symmetric banded matrix is given, followed by a serial
reduction procedure to tridiagonal form via Householder transformations and completed
by a parallel version of the reduction procedure in a pipelined manner. Afterwards,
chapter 5 shows the implementation of the SBTH algorithm for GPUs. The algorithm is
subdivided in operations which can be mapped to the basic linear algebra sub-routines
(BLAS). The main innovation of part II is the mapping of the pipeline character of the
parallel SBTH algorithm, introducing another level of parallelsim, to concurrent kernel
execution of GPUs. CUDA and OpenCL are used as programming platforms and some
operations are delegated to cuBLAS [179], MAGMA [5], and clBLAS [2]. Benchmark
results of our implementation of the SBTH algorithm are given in chapter 6, underlining
that achieving pipelining, and thus performance, strongly depends on the used library
and the capabilities of the GPU.

We suggest four building blocks to give a generally applicable approach to solve
RODEs. Before going through them step by step, part III is introduced by a math-
ematical presentation of RODEs in chapter 7. This chapter contains a correspondence
between RODEs and well-known stochastic ordinary differential equations (SODEs) and
several schemes to numerically solve RODEs. Chapter 8 introduces the first building
block: pseudorandom number generation. Some PRNGs are revised for their suitabil-
ity on GPUs, two of them for the very first time achieving superior performance. The
chapter only deals with normally distributed random numbers which are required for the
second building block, the OU process. The OU process is a stochastic process whose
novel first time parallelization is demonstrated in chapter 9. Depending on the actual
numerical solver, different kinds of averaged values have to be calculated consuming
continuous sequences of the OU process. Thus, averaging is the third building block
discussed in chapter 10. Besides single and double averages, tridiagonal averages are
examined. Finally, the averaged values are plugged in the actual numerical solvers to
get a numerical solution of the RODE. This final step is explained in chapter 11. While
at the end of chapters 8 to 10 benchmark results of the particular building blocks are
given, chapter 12 provides measurements for the whole RODE solution pipeline. On the
one hand, these results are the contribution of the single building blocks to the overal
runtime, on the other hand, it is the scaling behavior they show when multiple paths
are evaluated in parallel in a Monte Carlo-like manner.

The LBM is implemented in part IV. Eventually, we come up with a code for hetero-
geneous systems. Foundations of the LBM are given in chapter 13. Instead of explicitly
dealing with physical values such as velocity, pressure, or density, the LBM deals with
density distributions leading to a special discretization scheme. To exploit all available
computing devices in a heterogeneous system, the LBM collision and propagation steps

7

1. Opening

have to be implemented adequately, a decent work distribution has to be performed,
and a communication hiding by computation strategy is required. Chapter 14 shows
how to do this in a parallel way. To estimate the efficiency of our LBM implementation,
a performance model is setup in chapter 15. It helps to identify bottlenecks and to
predict performance on future heterogeneous systems. Characteristics of the particular
kernels, benchmark results of single and multi subdomain scenarios, and a validation of
the performance model are given in the last chapter 16 of the LBM part.

The closing part V summarizes this thesis, outlines the major contributions, and
novelties and lists some remarkable numbers such as problem size and parallel efficiency
in the context of our work.

At the end of every application part, a specific problem is computed to demonstrate the
real-world relevance: For part II, a matrix whose eigenvalues characterize the minimal
energy states of a quantum system is processed. The maximum ground motion excitation
of an earthquake is determined by the methodology introduced in part III. Finally, a
highly resolved lid-driven cavity scenario is executed for part IV running on the largest
heterogeneous systems available achieving good scalability.

8

2. Architecture of GPUs

This chapter gives a survey on GPUs and provides a classification of GPUs in the HPC
context. It is neither a compendium to fully cover all facets of GPUs, nor is it a compre-
hensive tutorial how to write (efficient) code for this kind of architectures. Instead, we
first give a rough explanation of the hardware of GPUs in section 2.1 and compare them
to the components of CPUs. The two-level parallelism in hardware and the memory
hierarchy are the central corner stones of this section. In addition, it lists characteris-
tic numbers of the particular GPUs utilized for this thesis in the subsequent chapters.
Afterwards, section 2.2 explains the programming model of and the execution model
on GPUs. On the one hand, the programming model enables the application engineer
to map parallelism to the two-level parallelism of the hardware, on the other hand, it
offers a way to express parallelism in a strictly scalar way. Section 2.3 sketches how the
GPU handles millions of software threads and efficiently schedules them on thousands
of hardware cores. Furthermore, this section discusses typical bottlenecks of GPUs and
provides approaches to overcome them. Both, hardware and software aspects, are il-
lustrated with the ecosystems of the two major GPU manufacturers: NVIDIA, using
CUDA, and AMD, using OpenCL. The basic principles of the ecosystems, CUDA and
OpenCL, are very similar, just the naming varies. Once the naming is introduced in
this chapter for both ecosystems, we rely on NVIDIA nomenclature because NVIDIA
technology was mainly, but not exclusively, used for this work. This has no impact on
the general applicability of the ideas and solutions presented in this thesis: They work
with the products of both companies without any limitations or major differences in
performance. Finally, this chapter is completed with a discussion on supercomputers
augmented by GPUs in section 2.4. Part of this discussion is the common setup of
such clusters in general and the particular clusters used for this thesis in detail. The
common setup exemplifies the challenges in the context of efficient communication in
heterogeneous systems.

We refer to external literature to get a deeper insight in the field of GPUs besides this
survey: The best document to get started with NVIDIA GPUs and their programming
with CUDA is the CUDA C Programming Guide [180]. It provides a complete discussion
on all aspects of NVIDIA GPUs and the CUDA programming model as well as best
practices for performance optimization. To extend this view, we suggest the books of
Cook [61] and Wilt [248]. NVIDIA itself recommends the book of Kirk et al. [121] for
further studies. The reference for AMD GPUs and OpenCL is given in [7]. For an
introduction to heterogeneous computing using OpenCL, we recommend the book by
Gaster [83].

9

2. Architecture of GPUs

Core Core Core Core LD/ST LD/ST

Core Core Core Core LD/ST LD/ST

Core Core Core Core LD/ST LD/ST

Core Core Core Core LD/ST LD/ST

Core Core Core Core LD/ST LD/ST

Core Core Core Core LD/ST LD/ST

Core Core Core Core LD/ST LD/ST

Core Core Core Core LD/ST LD/ST

Register file (32,768 x 32bit = 1MByte)

Instruction cache

Dispatch unit Dispatch unit

L1 cache/shared memory (64 KByte)

Warp scheduler Warp scheduler

SFU

SFU

SFU

SFU

(a) SM

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Core Core Core DP unit Core Core Core DP unit LD/ST SFU Core Core Core DP unit Core Core Core DP unit LD/ST SFU

Register file (65,536 x 32bit = 2MByte)

Dispatch unit Dispatch unit Dispatch unit Dispatch unit Dispatch unit Dispatch unit Dispatch unit Dispatch unit

Warp scheduler Warp scheduler Warp scheduler Warp scheduler

L1 data cache/shared memory (64 KByte)

Instruction cache

(b) SMX

Figure 2.1.: While figure 2.1(a) shows the block diagram of a multiprocessor of NVIDIA’s
Fermi architecture (SM), figure 2.1(b) shows the block diagram of a multi-
processor of NVIDIA’s Kepler architecture (SMX). CUDA cores are colored
in blue, memory elements are colored in green, and scheduling elements are
colored in red and orange. The color coding and the labeling also hold for
figures 2.2 and 2.3.

2.1. Hardware structure of GPUs

In this section, we illustrate the hardware internals of today’s generally programmable
GPUs and do a comparison to the components of CPUs. We focus on the general purpose
parts of GPUs and neglect internals dedicated to visualization.

From the beginning, GPUs were designed to provide a high level of parallelism. That is
the major difference between CPUs and GPUs. Today’s GPUs can consist of thousands
of hardware processing elements. The NVIDIA Tesla P40 consists of 3840, the AMD
FirePro S9300 x2 of 4096 processing elements. Such devices are called many-core chips.
In comparison to a CPU core, the processing elements are less sophisticated, but the high
degree of parallelism leads to high computational performance with relatively low en-
ergy consumption. The hardware parallelism on GPUs is organized in two levels: On the
lower level, we have the actual processing elements (NVIDIA: CUDA core, AMD: stream
processor), comparable to ALUs. On the higher level, these processing elements are
grouped in multiprocessors (NVIDIA: streaming multiprocessor, AMD: compute units).

10

2.1. Hardware structure of GPUs

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Register file (16,384 x 32-bit)

Warp scheduler

Instruction buffer

Dispatch unit Dispatch unit

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Register file (16,384 x 32-bit)

Warp scheduler

Instruction buffer

Dispatch unit Dispatch unit

Instruction cache

L1 cache (12 KByte)

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Register file (16,384 x 32bit = 512KByte)

Warp scheduler

Instruction buffer

Dispatch unit Dispatch unit

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Core Core Core Core LD/ST SFU

Register file (16,384 x 32bit = 512KByte)

Warp scheduler

Instruction buffer

Dispatch unit Dispatch unit

L1 cache (12 KByte)

Shared memory (64 KByte)

(a) SMM

Instruction cache

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

Register file (32,768 x 32bit = 1MByte)

Warp scheduler

Instruction buffer

Dispatch unit Dispatch unit

L1 data cache (12 KByte)

Shared memory (64 KByte)

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

DP unit Core Core DP unit LD/ST SFU

Register file (32,768 x 32bit = 1MByte)

Warp scheduler

Instruction buffer

Dispatch unit Dispatch unit

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

(b) SMP

Figure 2.2.: While figure 2.2(a) shows the block diagram of a multiprocessor of NVIDIA’s
Maxwell architecture (SMM), figure 2.2(b) shows the block diagram of a mul-
tiprocessor of NVIDIA’s Pascal architecture (SMP). CUDA cores are colored
in blue, memory elements are colored in green, and scheduling elements are
colored in red and orange.

Depending on the actual GPU architecture, such multiprocessors consist of 32 to 192
processing elements and GPU chips contain between 1 and 64 multiprocessors. The ac-
tual processing elements are able to perform the basic arithmetic operations (addition,
multiplication, fused multiply/add (FMA)) for integers and floating-point numbers as
well as logic operations (and, or, xor, shift). While AMD GPUs include the functionality
for all other arithmetical operations (division, transcendental functions, trigonometric
functions, etc.) in the particular stream processors, NVIDIA GPUs have a special func-
tion unit (SFU) for their execution. Every multiprocessor contains, besides the actual
processing units, different kinds of memory, as well as control logic such as load/store
units and schedulers. GPU schedulers (NVIDIA: warp scheduler, AMD: scheduler) are
able to do prefetching but not to perform out-of-order execution or branch prediction.
The processing elements do not have their own dedicated program counters. Instead,
every scheduler has its own program counter and executes threads in a single instruction

11

2. Architecture of GPUs

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

LD/ST

LD/ST

LD/ST

LD/ST

Vector registers (256 x 64 x 32bit = 512KByte) Vector registers (256 x 64 x 32bit = 512KByte)

Local
data

share
(64 KByte)

Scalar
unit

Scalar
registers
(8 KByte)

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

S
ha

de
r

pr
oc

es
so

r

Vector registers (256 x 64 x 32bit = 512KByte) Vector registers (256 x 64 x 32bit = 512KByte)

L1 data cache (16 KByte) LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/STScheduler

Figure 2.3.: Block diagram of an AMD’s CGN compute unit. Each 16 stream proces-
sors are grouped in one SIMD-VU. Processing elements are colored in blue,
memory elements are colored in green, and scheduling elements are colored
in red. Four compute units share 16 KByte read-only L1 data cache and 32
KByte L1 instruction cache (not depicted in this figure).

multiple data (SIMD) (according to Flynn’s taxonomy) like manner, explained in more
detail in section 2.3.

Figures 2.1 and 2.2 show block diagrams of streaming multiprocessors of four consec-
utive generations of NVIDIA GPU architectures. Fermi (cf. figure 2.1(a)) is the second,
Kepler (cf. figure 2.1(b)) the third, Maxwell (cf. figure 2.2(a)) the fourth, and Pascal
(cf. figure 2.2(b)) the fifth generation of generally programmable NVIDIA GPUs. On the

GPU architecture Fermi Kepler Maxwell Pascal

model M2050 M2090 K20x K40m GTX 750 Ti P100

chip GF110 GK110 GK110B GM107 GP100

compute capability 2.0 3.5 5.0 6.0

#PEs
SP 14× 32 16× 32 14× 192 15× 192 5× 128 56× 64
DP -1 14× 64 15× 64 5× 4 56× 32

SMem (KByte) 16–48 2 64

L1 cache (KByte) 16–48 2 12

BCR (MHz) 1150 1300 732 745 1280 1328

PP SP 1.0304 1.3312 3.935 4.291 1.6384 9.519
(TFLOPS) DP 0.5152 0.6656 1.312 1.430 0.0512 4.760

PMBW (GByte/s) 148.4 177.6 249.6 288.384 96.128 719.872

FLOP
byte ratio

SP 6.943 7.504 15.765 14.879 17.043 13.223
DP 3.472 3.752 5.255 4.960 0.533 6.612

Table 2.1.: Properties of all NVIDIA GPUs utilized in this work. PE stands for pro-
cessing element, SP for single precision (float), DP for double precision
(double), SMem for shared memory, BCR for base block rate, PP for peak
performance, and PMBW for peak memory bandwidth.

two older generations, resources (CUDA cores and load/store units) are not exclusively
bound to warp schedulers. In theory, this approach offers more flexibility to the warp

1The SM microarchitecture of Fermi does not have dedicated double precision units.
2In the SM and SMX microarchitecture of Fermi and Kepler, there is one common memory of 64KByte

for shared memory and L1 cache which has to be shared amongst them. It can devided in ratios of
2:1 (48KByte shared memory, 16KByte L1 chache), 1:1, and 1:2.

12

2.1. Hardware structure of GPUs

schedulers but they also become more complex. On Kepler, there is another major draw-
back: Not all resources can be occupied at all time by the schedulers. Hence, on the two
latest architectures, every warp scheduler has its exclusive resources. In general, Maxwell
and Pascal are very similar architectures: Basically, a Pascal streaming multiprocessor
is a halved Maxwell streaming multiprocessor but the amount of memory per streaming
multiprocessor (registers, L1 cache, shared memory) stays the same per multiprocessor.
Kepler, Maxwell, and Pascal have 192, 128, and 64 single precision (float) and 64, 4,
and 32 double precision (double) CUDA cores per streaming multiprocessor, respec-
tively. Fermi has 32 single precision CUDA cores per streaming multiprocessor, but no
double precision CUDA cores. Instead, two single precision CUDA cores are combined
to perform double precision operations. Table 2.1 lists properties and characteristics of
six different NVIDIA GPUs used throughout this thesis.

GPU architecture GCN 1st Gen.

model FirePro W8000 Radeon HD 8670

chip Tahiti PRO GL Oland

#PEs
SP 28× (4× 16) 6× (4× 16)
DP -3

local data share (KByte) 64

L1 cache (KByte) 16

base block rate (MHz) 900 1150

PP (TFLOPS)
SP 3.2256 0.768
DP 0.8064 0.048

PMBW (GByte/s) 176 72

FLOP
byte ratio

SP 18.327 10.667
DP 4.582 0.667

Table 2.2.: Properties of all AMD GPUs utilized in this work. PE stands for processing
element, SP for single precision (float), DP for double precision (double),
PP for peak performance, and PMBW for peak memory bandwidth.

For AMD GPUs, the basic compute unit design looks slightly different. The last four
generations of AMD GPUs base on the graphics core next (GCN) architecture depicted
by figure 2.3. Stream units are grouped in four 16-lane wide SIMD vector units (SIMD-
VUs) resulting in 64 stream units per compute unit. There is also a scalar stream unit
coupled with own scalar registers, but only one such scalar unit is integrated per compute
unit. Vector registers are SIMD-VU exclusive. Depending on the GCN generation, the
single precision to double precision performance ratio varies from 2:1 to 16:1. There
are no dedicated double precision units in AMD GPUs using the GCN technology, but
double precision arithmetics is integrated in the SIMD-VUs. Table 2.2 lists properties
and characteristics of two different AMD GPUs used in part II.

3Depending on the GPU architecture, the single precision to double precision performance ratio varies
from 2:1 to 16:1.

13

2. Architecture of GPUs

There are various types of GPU memory. GPU memories can be divided in off-chip
and on-chip memory or in physical and logical memory. While on-chip memory is located
on the same die as the processing elements, off-chip memory is located external. Physical
memory actually exists in hardware but logical memory only specifies a certain behavior.
This results in a classical memory hierarchy: On the one hand, big but slow (in terms of
bandwidth and latency) off-chip memory and on the other hand, small but fast on-chip
memory. Global memory is physical off-chip memory. Its size is up to 32GByte and
its role is comparable to classical main memory of CPUs. It offers very high memory
bandwidth (up to ∼ 720GByte/s) if coalesced memory access is used. Coalesced memory
access corresponds to a page load where all data of the page is immediately used. Shared
memory (NVIDIA) or local data share (AMD), respectively, is physical on-chip memory
and can be seen as some sort of explicit cache. The programmer can decide which
data is stored at a specific position of shared memory. It is low-latency memory but
its latency is one order of magnitude higher than the clock latency. Another type of
GPU memory are registers, physically located on the GPU chip itself. In comparison to
CPU registers, there is an enormous amount of registers per multiprocessor (cf. figures
2.1 to 2.3). While NVIDIA GPUs only have scalar 32bit registers, AMD GPUs also
have vector registers as mentioned above. As for CPUs, there is also cache memory
for GPUs, structured in multiple levels and physically located on-chip. L1 cache is
multiprocessor-exclusive. It is functionally divided into instruction and data cache. L2
cache is shared by all multiprocessors of a GPU chip. Finally, there are three types of
memory just having a logical representation. Hence, they do not refer to NVIDIA or
AMD hardware but to CUDA or OpenCL. Local memory (CUDA) is actually cached
global memory. It stores data if there is a lack of registers and it cannot be managed
explicitly by the programmer. Further information on register spilling can be found in
[162]. Data declared to be saved in private memory (OpenCL) is physically stored in
registers or, depending on the register consumption, in a similar way to local memory.
Constant memory stores constants and values passed to kernels. Physically, such values
are kept in a dedicated cache. Table 2.3 lists the various types of GPU memory and
their classification.

on-chip off-chip hybrid

physical
shared memory

global memory -
registers

logical constant memory -
local memory

private memory

Table 2.3.: Classification of various types of GPU memory.

The compute capability is a version number to identify features supported by NVIDIA
GPU hardware. For the NVIDIA GPUs used throughout this thesis, the compute capa-
bility is given in table 2.1 (row “compute capability”). Properties of the GPU hardware
such as number of registers and shared memory size per multiprocessor can be derived

14

2.2. Programming & execution model

from the compute capability, too4. In addition, it specifies abilities of the programming
model (discussed in the following section 2.2) and features such as concurrent kernel exe-
cution and unified memory. Regarding abilities of the programming model, the compute
capability is similar to the OpenCL version number.

When speaking of GPUs, we have to distinguish between the actual GPU chip and
the surrounding hardware which supports the GPU. The GPU chip is a piece of silicon
containing the multiprocessors, additional scheduling logic, on-chip memories, and other
components. Supporting hardware is e.g. global memory or memory controllers. Both,
the GPU chip and the supporting hardware are packed on a dedicated device which is
connected to the host system via a—in general relatively slow—bus such as the PCI-
express bus or proprietary technology such as NVlink5. This layout is not limited to
GPUs but holds for most other accelerators, too. It has a direct effect on the layout of
heterogeneous systems and, thus, heterogeneous clusters (cf. section 2.4).

2.2. Programming & execution model

There are special programming models which enable the programmer to write soft-
ware executable on parallel hardware discussed in the previous section 2.1. NVIDIA
and AMD use the same programming model for their GPUs. CUDA, a proprietary
technology, implements this programming model for NVIDIA GPUs. AMD GPUs are
programmed via OpenCL, an open standard for heterogeneous computing maintained by
the Khronos group6. OpenCL implementations are also available for NVIDIA GPUs and
other parallel computing devices such as multi-core CPUs or field programmable gate
arrays (FPGAs). Both, CUDA and OpenCL, extend existing programming languages
such as C/C++ or Fortran by additional syntax (just CUDA), modifiers, and libraries.
Hence, neither CUDA nor OpenCL are stand-alone programming languages. This sec-
tion presents CUDA’s and OpenCL’s programming model and the common execution
model for GPUs.

To execute code on the GPU, it has to be written as a kernel. Kernels are C functions
executed in parallel on the GPU by a special invocation. In parallel means, that multiple
threads (CUDA: thread, OpenCL: work item) are launched on the device. However,
the kernels themselves are written in a scalar way. Vector data types are supported,
but vector operations are not available to the programmer. Similar to the hardware,
the programming model likewise provides two levels of parallelism: On the lower level,
threads are grouped into blocks (CUDA: thread block, OpenCL: work group). On the
higher level, these blocks are grouped in a grid in CUDA or a ND range in OpenCL,
respectively. The number of threads per block and the number of blocks per grid have

4All properties derivable from the compute capability are given in appendix G of the
CUDA C programming guide [180]: https://docs.nvidia.com/cuda/cuda-c-programming-guide/

#compute-capabilities
5https://www.nvidia.com/object/nvlink.html

https://blogs.nvidia.com/blog/2014/11/14/what-is-nvlink/

https://devblogs.nvidia.com/parallelforall/inside-pascal/
6https://www.khronos.org/

15

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#compute-capabilities
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#compute-capabilities
https://www.nvidia.com/object/nvlink.html
https://blogs.nvidia.com/blog/2014/11/14/what-is-nvlink/
https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://www.khronos.org/

2. Architecture of GPUs

to be set by the programmer and is in general much higher than the actual number
of processing elements. During runtime, a thread can determine its thread and block
number as well as the block and grid size via runtime variables (CUDA) or functions
(OpenCL) listed in table 2.4.

CUDA OpenCL

number of. . .
. . . local thread number threadIdx get local id()

. . . local block blockIdx get group id()

. . . global thread -7 get global id()

size of. . .
. . . block in threads blockDim get local size()

. . . grid in blocks gridDim get num groups()

. . . grid in threads -7 get global size()

Table 2.4.: Runtime variables (CUDA) and functions (OpenCL) to determine thread
number and parallel setup.

The execution model of GPUs is called single instruction multiple threads (SIMT):
Multiple threads are simultaneously executing the same instruction. Such bunches of
threads are called warps in CUDA and wave fronts in OpenCL. If processing elements
and multiprocessors specify hardware entities and blocks and grid specify entities related
to programming, then a warp is located in between as an execution entity. From a hard-
ware point of view, one scheduler issues one instruction on a set of multiple processing
elements. From a programming point of view, multiple warps originate from one thread
block because a thread block can contain much more threads than the warp size. On
NVIDIA hardware, a warp or wave front, respectively, consists of 32 threads. On AMD
hardware, a wave front consists of 64 threads. SIMT is very similar to SIMD: All threads
of a warp concurrently execute the same instruction, maybe on different data. However,
there are differences: While SIMD operations are optional and explicitly issued, SIMT
is the default way of execution on the GPU. It’s not possible to alter the warp size or to
deactivate the SIMT execution model. One possible idea to overcome the limitations of
SIMT, making GPUs more flexible, is to interpret GPUs as devices with multiple vector
units. In such an approach, the vector size is equal to the warp size and every warp,
even of the same thread block, executes different code. The major drawback of this
approach is its resource consumption which is the accumulated resource consumption of
all the separate code executed by different warps. In addition, the kernels become very
complex because they have to contain all the code for the different warps. Another idea
to overcome the limitations of SIMT is concurrent kernel execution: Distinct kernels
are started simultaneously to run in parallel on the GPU. If the parallel setup of every
kernel is chosen small, we get a similar behavior to the first approach. Unfortunately,
depending on the compute capability, only a few dozen kernels can be simultaneously
executed, thus leading to a very low utilization of the GPU. However, we use concurrent

7CUDA does not support global thread numbers. Instead, the global thread number can be calculated
by blockIdx · blockDim + threadIdx and the grid size in threads by gridDim · blockDim

16

2.3. Scheduling & GPU indicators

kernel execution to realize the pipelined approach in part II. Due to the SIMT execu-
tion model, warp divergence may occur: Conditional statements can force the particular
threads of a warp to execute different instructions. Nevertheless, different instructions
cannot be executed in parallel within a warp because there is only one program counter
per scheduler, thus, serialization occurs.

A thread block and, thus, the warps originating from it, resides on one multiprocessor
and is not distributed across several of them. Vice versa, there can be various thread
blocks handled by the same multiprocessor. When a kernel is invoked, threads are gen-
erated according to the specification of thread blocks and grid given by the programmer.
We call this specification parallel setup or grid configuration.

The execution model and the two-level parallelism determine the visibility of the GPU
memories and the lifetime of data stored in them. Global memory is accessible by all
threads and it stores data for the whole runtime. Shared memory can only be accessed
by the threads of the same thread block. It stores data for the execution time of a single
kernel. The same holds for registers. They are only visible to the same thread, hence,
one thread cannot access the data stored in a register of another thread.

The major difference between CUDA and OpenCL is the compiling policy for ker-
nels. For CUDA kernels, compiling is done during host code compile time. In contrast,
OpenCL includes kernels as plain text in the host executable. OpenCL kernels are au-
tomatically compiled right before runtime on the target system. The CUDA approach
requires a dedicated compiler (called NVCC) for device code and syntax extensions dur-
ing compile time while for the OpenCL approach, the host code compiler is sufficient.
Thus, the CUDA compiler either has to know the target architecture where the kernels
will be executed or it chooses a lowest common denominator to guarantee compatibility
of the executable with the target GPU. However, for OpenCL, the GPU driver has to
be capable to compile the device code during runtime.

2.3. Scheduling & GPU indicators

The major feature which makes GPUs so powerful is not just their extensive hardware
parallelism and, thus, their high theoretical peak performance, but the way how warps
are scheduled on multiprocessors. There are many factors which can limit performance
such as insufficient memory bandwidth, long memory latencies, and low throughput
operations executed by limited hardware resources or suffering from long execution la-
tencies. If a warp has to wait for data or if there is any other reason which prevents the
warp from immediate execution, it stalls. In such a scenario, a switch happens meaning
the stalled warp is replaced by an active warp, being a warp which can immediately start
its execution. GPUs can do such a switch with no cost because the execution context
(program counters, registers, etc.) for each warp is maintained by the executing multi-
processor during the entire lifetime of the warp. This enables the GPU to hide latencies
and waiting times by warps which can perform operations in a very cheap way. Thus,
a high number of active warps is desired because it favors quick switches. A necessary
condition to achieve this goal is the existence of a huge number of threads. Hence, a

17

2. Architecture of GPUs

massive oversubscription of the processing elements with threads is recommended.

The ratio of actually active warps to the number of warps which can be active at
maximum is called occupancy. It is a very important indicator in the context of GPUs.
The number of actually active warps depends on the resource consumption (registers and
shared memory) of warps, and thus relies on the kernel code. The maximum number of
active warps depends on the hardware and is specified by the compute capability. The
compute capability gives a limit of the maximum number of active warps per multipro-
cessor and a limit of the maximum number of active blocks (blocks having active warps)
per multiprocessor. The higher the occupancy, the more warps are active. Hence, a
high occupancy is advantageous for the scheduler to hide latencies. Thus, increasing the
occupancy is one of the major goals to utilize GPUs efficiently, even if high occupancy
does not guarantee high performance [235].

Problems are called memory-bound if performance is limited by the bandwidth of
global memory. In rare cases, the memory bandwidth of shared memory/L1 cache or
L2 cache can also limit performance. Thus, minimizing the number of global memory
accesses increases performance for memory-bound problems. This can be achieved by
spatial and temporal locality of data which increases cache efficiency. Furthermore,
spatial locality allows coalesced memory access. Data should be loaded to shared memory
if it is required multiple times. Finally, vectorized memory access can improve bandwidth
utilization while decreasing the number of executed instructions [144]. Latencies to
access global memory can also limit performance. Such problems are called latency-
bound. There are two approaches to tackle latency-bound problems, described in [40].
First, high occupancy can hide latencies. It can be achieved by optimizing on-chip
memory consumption and the parallel setup. Second, an increase of instruction level
parallelism can hide latencies. It enables a warp to execute an independent operation
while waiting for the data of the halted operation. Latency-bound problems may occur if
a kernel does not perform many arithmetical instructions so the memory latency is much
longer than the execution of all instructions. If performance is limited by the speed of
the processing elements, problems are called compute-bound. According to tables 2.1 and
2.2, the FLOPS per byte ratio of GPUs is relatively high in comparison to the ratio of
CPUs. Thus, compute-bound problems fit very well on GPUs. In addition, the compute
performance of every new GPU generation grows faster than the memory performance.

2.4. Heterogeneous computing & GPU-equipped HPC clusters

Heterogeneous systems are systems which are equipped with at least two different kinds
of computing devices. For almost all cases, heterogeneous systems contain one or more
CPUs and one or more accelerators of the same type. The accelerators are used in an
offloading way, meaning the program control stays with the host which triggers compu-
tations on the accelerator. Every device of a heterogeneous system has its own physical
memory space which can—but has not to—be shared with other computing devices.
There are basically two approaches to exploit an heterogeneous system: First, in a more
“homgeneous” way, the same type of computation is carried to the host and the device.

18

2.4. Heterogeneous computing & GPU-equipped HPC clusters

One example for this procedure is presented in part IV where the same LBM opera-
tions are executed on the CPU and the GPU. Second, in a more “heterogeneous” way,
different categories of work are processed on the computing device fitting best to the
task. In section 3.1, the molecular dynamics (MD) software Gromacs is mentioned which
assigns different sub-tasks of a MD simulation to the computing device which delivers
best performance for the specific sub-task. Mittal et al. provide a survey of heteroge-
neous computing techniques incorporating GPUs in [164]. There are exceptions to this
approach such as Knights Corner, the recent generation of Intel’s Xeon Phi.

Heterogeneous clusters are clusters whose nodes are heterogeneous systems or a mix-
ture of CPU-only and heterogeneous nodes. Thus, heterogeneous clusters can be seen as
classical supercomputers whose nodes are equipped with (multi-core) CPUs augmented
with accelerators such as GPUs. In such a case, the heterogeneous cluster is called GPU
cluster.

system JuDGE Hydra TSUBAME2.5 Piz Daint

devices
CPU X5650 E5-2680v2 X5670 E5-2690v3

#cores/CPU 6 10 6 12
GPU M2050 Tesla K20x Tesla P100

cluster

#CPUs/node 2
1

#GPUs/node 2 3
#nodes 206 3388 1442 53209

interconnect QDR IB FDR IB QDR IB Aries ASIC
location JSC MPCDF GSIC CSCS

software

C++ compiler GCC 5.0.27
GCC 4.8.010 GCC 4.3.410

ICPC 17.0.0
ICPC 16.011 ICPC 15.0.211

CUDA compiler NVCC 6.5 NVCC 6.510/7.511 NVCC 8

MPI ParaStation
IBM 1.4.010

Open 1.8.2
Cray

Intel 5.1.311 MPICH 7.5.0

Table 2.5.: Properties of all GPU clusters used to benchmark performance in parts III
and IV. All CPUs are Intel Xeon CPUs.

To avoid confusion, we disambiguate some terms which are not consistently used in
literature: A cluster or supercomputer consists of multiple nodes which are connected
by some kind of network such as Ethernet or InfiniBand. Every node contains at least
one CPU which is one physical die, also called package. CPUs can bundle multiple cores,
i.e. processing elements with own program counter, which are programmed in a MIMD
manner as shared memory system. In this thesis, no CPU hyperthreads are used.

8Only 338 of the total 4000 nodes of Hydra are equipped with GPUs. We limit our benchmarks to
these nodes.

9Besides the 5320 nodes equipped with GPUs, Piz Daint has 2862 CPU-only homogeneous nodes. We
limit our benchmarks to the GPU-equipped nodes.

10Configuration for measurements in part III.
11Configuration for measurements in part IV.

19

2. Architecture of GPUs

CPU

CPU
memory

CPU

CPU
memory

GPU

GPU
memory

GPU

GPU
memory

GPU

GPU
memory

CPU

CPU
memory

CPU

CPU
memory

GPU

GPU
memory

GPU

GPU
memory

GPU

GPU
memory

CPU

CPU
memory

CPU

CPU
memory

GPU

GPU
memory

GPU

GPU
memory

GPU

GPU
memory

CPU

CPU
memory

CPU

CPU
memory

GPU

GPU
memory

GPU

GPU
memory

GPU

GPU
memory

CPU

CPU
memory

CPU

CPU
memory

GPU

GPU
memory

GPU

GPU
memory

GPU

GPU
memory

...

InfiniBand

PCIe PCIe PCIe PCIe PCIe

QPI QPI QPI QPI QPI

node node node node node

Figure 2.4.: Schematical view of the architecture of TSUBAME2.5. Components related
to CPUs and GPUs are colored in blue and green, respectively. Commu-
nication between a node’s CPUs and GPUs occurs via the PCIexpress bus
and between two CPUs via the QuickPath interconnect (QPI). Inter-node
communication is achieved via an InfiniBand network.

Heterogeneous systems require hybrid programming. For this work, inter-process com-
munication is achieved via the message passing interface (MPI). Thus, MPI is used for
the distributed memory parallelization. Multiple MPI processes (also called ranks) can
reside on one single node. The shared memory parallelization is done via OpenMP. To
program the GPUs, we use CUDA for the NVIDIA GPUs and OpenCL for the AMD
GPUs. We do not use any technology for virtual memory space unification such as
NVIDIA’s unified (virtual) memory. Data transfers between different MPI processes as
well as between host and device are triggered explicitly, i.e. technologies such as CUDA-
aware MPI12 are not used. The same holds for triggering executions on the particular
computing devices, thus technologies such as OpenACC are not used. Due to all these
options, hybrid programming is a mixture of established parallel programming models,
libraries, and interfaces.

Table 2.5 lists the four GPU clusters used in parts III and IV. While Piz Daint has
one CPU per node, JuDGE, Hydra, and TSUBAME2.5 have two CPUs per node each.
Also the number of GPUs varies between the GPU clusters: Piz Daint has one GPU per
node, JuDGE and Hydra have two GPUs per node, and TSUBAME2.5 has three GPUs
per node. A schematical view of TSUBAME2.5 including CPUs, GPUs, and nodes is
depicted by figure 2.4. Thus, the four GPU clusters cover a broad range from mid-
size to large-scale heterogeneous clusters, equipped with CPUs and GPUs from different
generations, and a varying number of CPUs and GPUs per node.

The methods and algorithms and their GPU implementations used in the application
parts II to IV cover the whole range of memory-, latency-, and compute-bound problems.
They run and are profiled and benchmarked on a broad variety of legacy and state-of-
the art GPUs (NVIDIA GPUs are listed in table 2.1, AMD GPUs are listed in table
2.2). Our RODE and LBM solvers are hybrid implementations capable to run on GPU
clusters such as the ones listed in table 2.5.

12https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/

20

https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/

3. Relevance of GPUs in scientific
computing

For about a decade, GPUs have been playing an important role in HPC, among others
visible via developments: On the one hand, many GPU-optimized libraries and frame-
works for various common tasks in scientific computing have arisen during this period.
In addition, many popular and state-of-the-art codes and projects of scientific comput-
ing applications have been ported partially or completely to the GPU to reduce time
to solution. Section 3.1 lists some examples covering software such as building block
libraries, toolboxes, and whole codes for scientific computing applications. Due to the
sheer amount of successful GPU implementations and portations, section 3.1 can only
provide a limited selection. On the other hand, there are lighthouse projects which
revealed completely new insights in various fields of science and engineering via simula-
tions accelerated by GPUs. Some selected lighthouse projects are presented in section
3.2. Altogether, this chapter sketches a picture of the current GPU landscape from a
scientific computing application point of view, driven by recent advances.

Due to the properties of GPU hardware, some applications, algorithms, and data struc-
tures fit very well to GPUs while others do not. By fitting we mean that they can utilize
a considerably amount of the GPU resources. Concerning the structures and patterns,
such algorithms and data structures are regular, non-adaptive, non-dynamic, paralleliz-
able, and have local communication in most of the cases. Examples are numerical linear
algebra operations (see part II) and stencil computations, e.g. [158]. There are successful
attempts to efficiently implement irregular algorithms such as graph [98, 139, 161, 28] or
adaptive algorithms [236, 11] and complex data structures such as non-uniform [214, 233],
hierarchical [257, 131], or sparse grids [166, 167, 80] on the GPU. Furthermore, there are
dedicated frameworks dealing with such tasks such as [218, 11] and various fields besides
scientific computing such as database systems try to benefit from GPUs [46]. However,
they are rather the exception than the norm. The effort for such implementations is big
while the potential gain is uncertain. Concerning the categorization of potential bot-
tlenecks, compute-intensive applications fit better on the GPU than memory-intensive
ones due to their bad FLOPS per byte ratio. Nonetheless, the memory bandwidth of a
GPU is higher than on any host system, hence also memory-intensive applications can
benefit from GPUs.

21

3. Relevance of GPUs in scientific computing

3.1. Acceleration of scientific computing software

Scientific computing highly relies on numerical linear algebra for basic operations. Thus,
libraries for numerical linear algebra are one of the most frequently used software cat-
egories in scientific computing. Therefore, and because numerical linear algebra op-
erations especially benefits from GPUs, there are various numerical linear algebra im-
plementations for GPUs. BLAS implementations exist both as CUDA (cuBLAS [179])
and OpenCL (BLIS [234], clBLAS [2], and hcBLAS [3]) codes. Furthermore, there are
also LAPACK [9] implementations for GPUs. MAGMA [5] exists in a CUDA and an
OpenCL implementation. It is not limited to GPUs but some operations are also carried
out heterogeneously incorporating the GPU and the CPU using a task model. Having
a look on numerical solvers for GPUs, there are geometric multigrid implementations
such as [125] as well as algebraic multigrid solvers such as AmgX [170]. The Vienna
computing library (ViennaCL) [206] offers a broad variety of iterative solvers besides a
BLAS implementation, preconditioners, and functions for singular value decomposition
(SVD) and fast Fourier transformation (FFT).

Various MATLAB1 toolboxes are accelerated by CUDA [255], e.g. leading to a speed-
up of 52.92× for matrix/matrix multiplication, 26.74× for FFT, and 2.67× for quick
sort [238]. In addition, it is possible to include self-written CUDA kernels in MATLAB
code via one-line interface. Going one step further, DUNE and PETSc are two popular
representatives of libraries explicitly solving PDEs. As part of the EXA-DUNE project,
DUNE was extended by GPU-accelerated components targeting efficient finite element
assembly and linear solvers [25]. More specifically, DUNE’s GPU implementation of the
sparse approximate inverse (SPAI) [91] solver outperforms the CPU implementation by
a factor up to 9.5×. PETSc [163] uses the CUSP [65] and Thrust [30] packages from
NVIDIA to accelerate its Krylov methods, nonlinear solvers, and integrators.

Computational fluid dynamics (CFD) is a scientific computing application widely used
in industry and academia with usage e.g. in the automotive and aerospace sector. Two
broadly applied CFD software packages are OpenFOAM [242], a free toolbox, and AN-
SYS Fluent. For OpenFOAM, there are various GPU-accelerated libraries and solvers
such as PARALUTION [146], RapidCFD2, or Symscape’s GPU Linear Solver Library
[221]. RapidCFD is an OpenFOAM fork running entirely on the GPU. In industry, the
compute jobs per day throughput is one of the most important metrics because it can
directly and realistically measure the development productivity. The usage of GPUs in
ANSYS Fluent [215] has increased the jobs per day throughput of a truck benchmark, a
steady-state pressure-based coupled solver problem, from 16 to 25. A complex Formula
1 car model benchmark, also a steady-state pressure-based coupled solver problem, has
been accelerated by a factor of 2.1× when using GPUs. In addition, not only the jobs
per day throughput and the time to solution has been improved but also the energy
consumption which opens a second opportunity to reduce costs.

Similar to CFD, also molecular dynamics (MD) software benefits from GPUs. Gro-

1https://de.mathworks.com/discovery/matlab-gpu.html
2https://sim-flow.com/rapid-cfd-gpu/

22

https://de.mathworks.com/discovery/matlab-gpu.html
https://sim-flow.com/rapid-cfd-gpu/

3.2. Lighthouse projects

macs is specialized to simulate biomolecular systems such as proteins and lipids. Non-
bonded force calculations are carried out on the GPU while the CPU simultaneously
performs bonded forces and lattice summation [186]. Hence, Gromacs follows an hetero-
geneous approach where more than 60% of CPU’s and GPU’s peak performance have
been achieved. A GPU-optimization of LAMMPS [49, 48] has accelerated the execution
of short-range potentials by factors from 3.7× to 11.2× on a GPU cluster. The speed-
ups stem from comparisons with a parallel implementation for multi-core CPU clusters.
The authors clearly indicate that the speed-ups highly depend on the cut-off radius σ
and the number of simulated molecules. NAMD, a MD software used by 2002’s Gordon
Bell award winners [191], is specialized on biomolecular and organic systems. Using
GPUs, it achieves single-chip speed-ups of 1.7× to 6.4× in comparison to a vectorized
and parallelized CPU code [223] and also shows good scaling behavior on GPU clusters
[97]. Additional examples for GPU-accelerated computational molecular science can be
found in [101].

QUDA [59, 16] is a library for performing calculations in lattice quantum chromo-
dynamics (QCD), the theory of strong interactions, a fundamental force describing the
interactions between quarks and gluons, on GPUs written in CUDA. It serves as backend
for various QCD simulation codes such as BQCD [169], Chroma [75, 249], and MILC
[79]. The Helmholtz Center for Heavy Ion Research (GSI)3 uses CL2QCD [17, 18, 190]
to carry out QCD simulations written in OpenCL. They run the code on the local L-CSC
cluster [203], the number-one system of the Green5004 list when it was installed in 2014.
The L-CSC cluster is equipped with 640 AMD GPUs and is currently, according to the
Top500 list, the fastest AMD GPU cluster.

In recent years, GPUs became extremely popular in the field of machine learning,
especially for deep learning with neural networks. GPUs can massively accelerate (more
than one order of magnitude) various tasks in this context such as training and classifi-
cation because GPUs are efficiently performing matrix multiplications and convolutions.
Almost all popular deep learning libraries such as Caffe [115], TensorFlow [4] or Torch
[60] exploit GPUs. There, GPUs are not just optional but one of the driving forces for
the current success of deep learning [208, 90]. This success has an impact on various
fields, e.g. computer vision where GPU-accelerated approaches even outperform human
recognition [57]. Thus, GPUs not just increase the level of performance, hence enlarging
the quantity in terms of number of items and runtime, but also the level of quality.

3.2. Lighthouse projects

Besides the general impact of GPUs in scientific computing sketched in the previous
section, there are also numerous lighthouse projects where GPUs enabled simulations
and computations permitting completely new insights in the corresponding field. In the
following, five selected lighthouse projects are presented.

3https://www.gsi.de/
4https://www.top500.org/green500/lists/2014/11/

23

https://www.gsi.de/
https://www.top500.org/green500/lists/2014/11/

3. Relevance of GPUs in scientific computing

Shimokawabe et al. [219] came up with a simulation of the solidification process of
metal alloys. The mechanical properties of metal materials largely depend on their inter-
nal microstructures. These microstructures develop during the solidification of the metal
material, thus, predicting these patterns enables the production of tailored materials.
The phase-field model can be used to describe the dentritic growth which occurs during
the transition from liquid to solid state. Shimokawabe et al. use the phase-field model
for a simulation on the TSUBAME2.0 cluster, the direct predecessor of TSUBAME2.5
which we used for our work. They were able to handle dentritic structures of such size
and complexity that they can be reasonably used in material design for the first time.
To run such a large simulation, a high scalability of the code had to be assured. For
the largest weak scaling scenario, a parallel efficiency of 94% and 1.02 PFLOPS has be
achieved using 4000 GPUs and 16,000 CPU cores. This work was honored with a Gordon
Bell award in 2011. The domain decomposition scheme which we are using in part IV
is inspired by the scheme in Shimokawabe’s work even if we are using a different model
(LBM).

There are various examples of cosmological simulations which were significantly ad-
vanced by the usage of GPUs. An active galactic nucleus (AGN) is the shining compact
region at the center of an active galaxy. AGNs can produce jets of plasma which are
thousands of light years long. Sufficiently investigating such streams from earth is not
feasible: Their shear size and distance make it impossible to view individual electromag-
netic particles. However, the radiative signatures of the plasma streams are observable
from earth. By simulating the Kelvin-Helmholtz instability (KHI), a property of turbu-
lent plasma, it was possible to correlate the radiative signature with individual particles.
To obtain such a correlation, the KHI simulation has to satisfy an adequate degree of
resolution. Bussmann et al. [52] were the first to come up with such an adequate degree
of resolution, revealing structures like mushrooms or whirlpools in the turbulence. Simu-
lations were carried out on Titan5, the largest GPU cluster currently available6 The size
of the simulation was 46× larger than any other kinetic KHI simulation previously per-
formed. A parallel efficiency of 96% has been achieved on 18,432 GPUs (weak scaling),
resulting in a sustained performance of 7.18 double precision plus 1.45 single precision
PFLOPS. This work was a finalist for the Gordon Bell award in 2013. The cosmological
simulation code Bonsai was used to simulate 6 × 109 years of evolution of our Milky
Way galaxy [29] during which the bar structure and spiral arms were fully formed. To
this end, 51 × 109 particles were used, three orders of magnitude more particles than
in previous simulations. The resulting simulation data can be directly compared with
observations. Simulations have been carried out on Piz Daint, the second largest GPU
cluster currently available6 and whose upgraded version is also used in our work, using
5200 GPUs and Titan using 18,600 GPUs. The largest run on Piz Daint achieved 95%
of parallel efficiency and 86% on Titan, respectively (both weak scaling), resulting in a
sustained performance of 24.77 PFLOPS. This work was a finalist for the Gordon Bell
award in 2014.

5https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
6https://www.top500.org/list/2016/11/

24

https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.top500.org/list/2016/11/

3.2. Lighthouse projects

Microfluidics is a multidisciplinary field with practical applications to the design of
systems in which low volumes of fluids are processed. One application is the development
of lab-on-a-chip technology, e.g. to separate blood and cancer cells. Rossinelli et al. [204]
were able to achieve 65.5% of the theoretical 39.4 PFLOPS of Titan by using 18,688
GPUs with their microfluidic simulation code. With this code, they simulated flow
involving up to 1.43 × 109 deformable red blood cells, each consisting of 500 elements,
in a volume of 132mm3 at sub-µm resolution. Such volumes allow covering the entire
functional compartments of microfluidics devices, confirming experimental findings. By
optimizing for GPUs, the authors were able to process 1.8×109 cells per second, a three
orders of magnitude improvement in comparison to the previous state-of-the-art blood
flow simulation [193]. This work was a finalist for the Gordon Bell award in 2015. With
such advances, it is possible to accelerate the design cycle for microfluidic systems for
medical diagnosis and drug design by an order of magnitude.

Besides the classical application of scientific computing in science and engineering,
GPUs recently gained major relevance in deep learning. An example which also earned
much attention in popular media7 is the software AlphaGo [220]. Go is an abstract
strategy board game considered to be the most challenging of classic games for artificial
intelligence. AlphaGo was first able to defeat the human european Go champion Fan Hui
by 5:0 in 2015 and afterwards Lee Sedol, a 9 dan rank player who was considered the best
Go player worldwide between 2007 and 2011, by 4:1 in 2016. These results count as one
of the major break throughs for artificial intelligence in recent years because mastering
Go is associated with intuition and experience. Two types of neural networks are used
by AlphaGo: Policy networks provide guidance regarding which action to choose and
value networks provide an estimate of the value of the current state of the game. All
these networks, two policy networks and one value network, were computed in parallel
on up to 280 GPUs during the matches to meet the time constraints. Hence, the success
of AlphaGo bases on two pillars: On the one hand, the smart combination of different
kinds of neural networks with other algorithms such as Monte Carlo tree search enabled
the software to beat the best Go players in the world. On the other hand, the usage
of GPUs during the training, reinforcement, and gaming phase made this possible in a
reasonable time.

7http://www.bbc.com/news/technology-35785875

https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/475611/

25

http://www.bbc.com/news/technology-35785875
https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/475611/

Part II.

Pipelined approach to determine
eigenvalues of symmetric matrices

27

Determining the eigenvalues of a system is one of the most applied tools of linear
algebra, eminently in scientific computing. The problem is defined as finding λ ∈ K
(eigenvalues) and x ∈ Kn (corresponding eigenvectors) for a given A ∈ Kn×n such that

Ax = λx, x 6= 0. (II.1)

Depending on the problem, one specific (e.g. the smallest/largest), several (the m < n
smallest/largest, all unique, etc.), or all eigenvalues are of interest. Eigenvalue problems
occur in many scientific computing applications: Computational mechanics [26], compu-
tational fluid dynamics (CFD) [104], or quantum chemistry [35] are just some examples.
In this work, we limit ourselves to the symmetric real-valued eigenvalue problem, i.e. A
is symmetric and K = R, determining all its eigenvalues.

Step 1:
Bandreduction

Step 2:
Tridiagonalization

Backtrans-
formation

Backtrans-
formation

Figure II.1.: Two step approach to transform a symmetric matrix to a tridiagonal sym-
metric matrix. Step one transforms the matrix into a banded matrix; step
two further transforms it into a tridiagonal matrix. The second row shows
the according backtransformations. This figure is taken from [12].

One approach to numerically solve eigenvalue problems in parallel splits the actual
task into two sub-tasks: First, the symmetric matrix is transformed into a banded sym-
metric matrix. Second, the banded symmetric matrix is further transformed into a
tridiagonal symmetric matrix. These two sub-tasks are illustrated by figure II.1 plus
the corresponding backtransformation steps which are necessary to calculate the correct
associated eigenvectors. The two sub-tasks approach allows a higher degree of paralleliza-
tion per sub-task than the classical one task approach. This idea was first presented in
[33], improved and extended in [32] and readressed by [13] for the eigenvalue solvers for
petaflop applications (ELPA) project [149]. Additional details and an extended timeline
is provided in [22]. In this part, we focus on the second transformation step, corre-
sponding to the SBTRD routine from LAPACK [9]. LAPACK’s reference implementation
uses for SBTRD an algorithm by Kaufman [119, 120], but we deal with the symmetric
banded matrix, reduction to tridiagonal form via Householder transformations (SBTH)
algorithm introduced by Lang [128]. It offers interesting properties such an extra level of
parallelism well fitting on GPUs. Since we are only dealing with symmetric matrices, we
omit this attribute when mentioning matrices. Hence, a symmetric banded matrix is just
called banded matrix. The symmetry of the matrices allows a reduction of operations

29

and memory consumption because only the lower (or upper, respectively) triangle has
to be processed and stored. We only investigate the transformation step from a banded
matrix to a tridiagonal matrix and neglect the first transformation step from a square
matrix to a banded matrix as well as the determination of the eigenvalues from the tridi-
agonal matrix and the backtransformation. Several algorithms for the determination of
eigenvalues of a tridiagonal symmetric matrix can be found in [64, 189].

From a modeling point of view, eigenvalues are of interest when it comes to the
interpretation of phenomena described by differential equation. From a GPU point of
view, this part deals with single-GPU aspects such as concurrent kernel execution and
memory-bound kernels as well as the usage of numerical linear algebra libraries. Both,
CUDA and OpenCL libraries are employed. The choice of the linear algebra library has a
significant impact on the performance, not just because of the performance of particular
operations but also because of individual overhead introduced additionally to the actual
kernel execution. All operations of the SBTH algorithm can either be mapped to BLAS
level 1 or level 2 routines. Usually, this makes GPUs not the first choice for the SBTH
algorithm because level 3 routines fit better on GPUs. However, GPUs perform well in
this case due to the extra level of parallelism of the SBTH algorithm. We do not discuss
how to execute the second transformation step on multiple GPUs or on heterogeneous
systems because one single GPU already provides good performance for this task. Thus,
no communication between host and device and several GPUs, respectively, is required.
Such projects are presented in [96, 254], but they deal with the entire eigenvalue problem.

Lang published the SBTH algorithm in 1993, almost two and a half decades before
the writing of this thesis. It was first implemented for the Intel iPSC/860 supercom-
puter8. Although GPUs have quite a different architecture compared to the iPSC/860
and the age of the SBTH algorithm, it fits very well on GPUs. That is a phenomenon
observable quite often: Decades-old algorithms, maybe originally designed for vector ar-
chitectures, experience a revival in the context of GPUs, especially with the background
of its SIMT execution model. Hence, not just GPUs benefit from such long-introduced
parallel algorithms but SIMD architectures in general.

Part II is structured as follows: In chapter 4, the SBTH algorithm is given. This
includes a block decomposition scheme for the banded matrix, the serial reduction to
tridiagonal form, and the parallelization of this reduction leading to a two-level par-
allelization well-fitting on GPUs. While chapter 4 focuses on the mathematical and
algorithmical aspects of the SBTH algorithm, chapter 5 deals with the actual implemen-
tation. To do so, basic operations are identified which can be mapped to BLAS routines
to benefit from corresponding GPU implementations, so the actual computational work
is delegated to CUDA and OpenCL libraries and the amount of self-written code is low.
In addition, the pipelined structure of the SBTH algorithm can be exploited to increase
the degree of parallelism, which is the major contribution of this part, including the
challenges arising from practical limitations of GPUs. Finally, our SBTH GPU imple-
mentation is benchmarked on various GPUs and a comparison with the performance of
the ELPA implementation is drawn. The results are presented in chapter 6.

8https://www.phy.ornl.gov/csep/CSEP/IP/IP.html

30

https://www.phy.ornl.gov/csep/CSEP/IP/IP.html

4. The SBTH algorithm

In this chapter, we present the SBTH algorithm introduced by Lang [128]. The SBTH
algorithm transforms a banded matrix into a tridiagonal matrix. It is based on the
work of Murata et al. [168] and can perform this operation in parallel. The successive
application of Householder transformations makes it numerically stable. Alternative
approaches using Givens rotations can be found in [212, 213]. The SBTH algorithm
avoids fill-in and therefore keeps the banded structure of the matrix. Originally, it was
designed for distributed memory systems. In this work, we adapt it for the shared
memory architecture of GPUs, thus neglecting all aspects of communication between
processing elements. This works well because banded matrices are sparse and, thus,
consume little memory. Hence, even large systems can be handled by one single GPU.
Our adaptation is not limited to GPUs but their shared memory architecture makes
GPUs a single chip supercomputer for this application. Furthermore, some additional
aspects of [128] such as the parallelization of the basic operations are neglected in this
work. The naming scheme for the identifiers is unaltered taken from [128].

Before the actual SBTH algorithm can be illustrated, a block decomposition scheme
for the system matrix A is introduced in section 4.1. It enables the independent exe-
cution of different operations on different parts of A. Using the blocking scheme, the
iterative SBTH algorithm is explained in section 4.2. The application of Householder
transformations successively eliminates single columns of A. Finally, the iterative SBTH
algorithm is parallelized in section 4.3 exploiting SBTH’s property that different oper-
ations can be independently applied on different parts of A. This leads to a pipelined
parallel algorithm well-fitting on GPUs due to its two-level parallelism.

4.1. Block decomposition of a banded matrix

Let A = (ai,j) (1 ≤ i, j ≤ n) be a banded matrix with bandwidth d (2 ≤ d ≤ n − 1).
Hence, d specifies the number of subdiagonals, or expressed in a more formal way, ai,j =
0 for |i − j| > d. The SBTH algorithm successively alters A in n − 2 orthonormal
transformations to tridiagonal form. During the ν-th iteration, the ν-th column (or row,
respectively) of A is eliminated, i.e. the elements aν+2,ν , . . . , aν+d,ν are made zero. Thus,
after the ν-th iteration, the first ν columns (or rows, respectively) of A have tridiagonal
form, resulting in a leading ν × ν sub-matrix T (ν).

The current state of A at the beginning of the ν-th iteration is denoted by A(ν) (with
A(1) = A) and a partitioning illustrated in figure 4.1 is applied. There are b − 1 blocks

A
(ν)
β,β ∈ Rd×d (1 ≤ β < b) along the (non-tridiagonal) diagonal of A(ν) and one final block

A
(ν)
b,b ∈ Rr×r. The relationship between n, d, ν, b, and r is given by n− ν = (b− 1) ·d+ r

31

4. The SBTH algorithm

T(ν)

A
(ν)
1,0

A
(ν)
1,0

T

A
(ν)
1,1 A

(ν)
2,1

T

A
(ν)
2,1 A

(ν)
2,2 A

(ν)
3,2

T

A
(ν)
3,2 A

(ν)
3,3 A

(ν)
4,3

T

A
(ν)
4,3 A

(ν)
4,4

A
(ν)
b,b

A
(ν)
b,b−1

T

A
(ν)
b,b−1

Figure 4.1.: Partitioning of A(ν) with b = 5. The leading tridiagonal ν × ν sub-matrix

is denoted by T (ν). Diagonal blocks are denoted by A
(ν)
β,β and hatched with

dots, subdiagonal blocks by A
(ν)
β+1,β and diagonally hatched. The column (or

row, respectively) to be eliminated in the ν-th step is denoted by A
(ν)
1,0 and

hatched with crosses.

(1 ≤ r ≤ d), where r is simply the size of the final diagonal block. Below (or right,

respectively) the diagonal blocks, there are b − 2 subdiagonal blocks A
(ν)
β+1,β ∈ Rd×d

(1 ≤ β < b − 1) and one final block A
(ν)
b,b−1 ∈ Rr×d. A(ν)

1,0 ∈ Rd denotes the column (or
row, respectively) to be eliminated in the ν-th iteration.

4.2. Serial reduction

We go through the SBTH algorithm step by step. Blocks marked with ∼ refer to
transformed blocks altered in the current iteration ν. Q denotes an orthonormal trans-
formation in matrix form, i.e. QTQ = I, more specifically a Householder transformation.

The n− 2 orthonormal transformations mentioned in section 4.1 can be expressed via

A(ν+1) = Q(ν)T ·A(ν) ·Q(ν), 1 ≤ ν ≤ n− 2 (4.1)

32

4.2. Serial reduction

with Q(ν) ∈ Rn×n orthonormal. Considering the block decomposition scheme from
section 4.1, equation (4.1) translates to

Ã
(ν)
1,0 = Q

(ν)
1

T
·A(ν)

1,0

Ã
(ν)
β,β = Q

(ν)
β

T
·A(ν)

β,β ·Q
(ν)
β , 1 ≤ β ≤ b

Ã
(ν)
β+1,β = Q

(ν)
β+1

T
·A(ν)

β+1,β ·Q
(ν)
β , 1 ≤ β < b.

At the beginning of the algorithm (ν = 1), the subdiagonal blocks A
(ν)
β+1,β for 1 ≤ β <

b− 1 are upper triangular and the final subdiagonal block A
(ν)
β,β−1 is upper trapezoidal,

i.e. ai,j = 0 for i − j > 0. Later, for ν > 1, all subdiagonal blocks are full without any

special pattern or structure. The diagonal blocks A
(ν)
β,β with 1 ≤ β ≤ b are symmetric

for all 1 ≤ ν ≤ n− 2.

Algorithm 1 The serial SBTH algorithm

1: procedure SBTH serial(in/out: A, in: n, in: d)
2: for ν ∈ {1, . . . , n− 2} do
3: Adopt the block decomposition for iteration ν

according to figure 4.1
4: b← dn−νd e
5: r ← n− ν − (b− 1) · d
6: Determine Householder transformation Q

(ν)
1 such

that Ã
(ν)
1,0 = Q

(ν)
1

T
·A(ν)

1,0 has the form (∗, 0, . . . , 0)T

7: A
(ν)
1,0 ← Ã

(ν)
1,0 . Eliminate ν-th column

8: for β ∈ {1, . . . , b} do
9: Ã

(ν)
β,β ← Q

(ν)
β

T
·A(ν)

β,β ·Q
(ν)
β

10: A
(ν)
β,β ← Ã

(ν)
β,β . Update β-th diagonal block

11: if β < b then . There are b diagonal but only b− 1 subdiagonal blocks

12: Determine Householder transformation Q
(ν)
β+1

such that the first column of

Ã
(ν)
β+1,β = Q

(ν)
β+1

T
·
(
A

(ν)
β+1,β ·Q

(ν)
β

)

has the form (∗, 0, . . . , 0)T

13: A
(ν)
β+1,β ← Ã

(ν)
β+1,β . Update (β + 1)-th subdiagonal block

Algorithm 1 depicts the serial SBTH algorithm as pseudocode. After adopting the
block decomposition for A(ν) (lines 3–5), the ν-th column is eliminated. A Householder

transformation, expressed by Q
(ν)
1 ∈ Rd×d, is determined to set all but the first compo-

nents to zero when applied to A
(ν)
1,0 , i.e. Ã

(ν)
1,0 = Q

(ν)
1

T
· A(ν)

1,0 has the form (∗, 0, . . . , 0)T

(lines 6–7). To keep A(ν) consistent, Q
(ν)
1 has also to be applied to the remainder of

A(ν), not just A
(ν)
1,0 . Hence, Q

(ν)
1 is successively applied to all diagonal blocks A

(ν)
β,β and

33

4. The SBTH algorithm

subdiagonal blocks A
(ν)
β+1,β (line 8) in an interleaved way: For a given β, first, the di-

agonal block is updated (line 10) before the subdiagonal block is updated (line 13).
Considering the block decomposition for A(ν+1) for the next iteration, the update of the
subdiagonal block has to be modified: Since the block decomposition is shifted by one
row to the bottom and one column to the right for every new iteration, components

at positions (2, 1), . . . , (d, 1) of each subdiagonal block A
(ν)
β+1,β would get lost because

they are not considered by any block of the (ν + 1)-th iteration. Thus, one has to make

sure that the first column of A
(ν)
β+1,β is also eliminated after applying Q

(ν)
β , i.e. has form

(∗, 0, . . . , 0)T avoiding fill-in and keeping the banded structure. To perform this elimina-

tion, the Householder transformation Q
(ν)
β has to be modified, resulting in a new update

Q
(ν)
β+1 (line 12) which is used for the next pair of diagonal and subdiagonal block. The

whole procedure is repeated for all columns of A (outer loop in line 2). Determining the
correct Householder transformations is presented in sections 5.1 and 5.2.

4.3. Parallel reduction

In the following, a block pair of diagonal block A
(ν)
β,β and the associated subdiagonal

block A
(ν)
β+1,β is denoted by B

(ν)
β =

(
A

(ν)
β,β

A
(ν)
β+1,β

)
(β ≥ 0).

For now, the SBTH algorithm first determines a transformation to eliminate the ν-
th column and then successively applies this transformation to all block pairs of A(ν)

before the (ν + 1)-th elimination is issued. The transformation has to be successively
adapted to avoid fill-in. To parallelize the SBTH algorithm, the determination and

application of the next transformations Q
(ν+1)
β is already started while the previous

transformations Q
(ν)
β+1 are still determined and applied. By following this idea, the more

transformations are applied simultaneously, the higher the degree of parallelism becomes.
This parallelization approach only works correctly if the sequence of transformations is

kept, so Q
(ν+1)
β cannot be handled before Q

(ν)
β and Q

(ν)
β+1 before Q

(ν)
β , respectively.

The modified, parallel version of the SBTH algorithm is given by algorithm 2. By
splitting each iteration into two distinct steps (line 2), it is possible to maintain the
parallel SBTH algorithm synchronized. The iteration number ν can be derived from the
step number via ν = b step

2 c + 1 (line 3) but ν will be altered during the current step.
During each step, basically the same operations as for the serial SBTH algorithm are
applied, but there is a slight modification distinguishing even and odd steps: For even

steps (line 4), the initial transformation Q
(ν)
1 is determined (line 5) and the adapted

transformation Q
(ν)
β is applied to all B

(ν)
β with even β (line 8). For odd steps (line

15), only the adapted transformation Q
(ν)
β is applied to all diagonal and subdiagonal

blocks with odd index β (line 16). The iteration index ν has to be adapted after every

transformation of a block pair B
(ν)
β (lines 7, 14, and 21) because the transformation of the

(β+2)-th block pair stems from the previous iteration. Lines 9–13 and 17–20 are copied

34

4.3. Parallel reduction

Algorithm 2 The parallel SBTH algorithm

1: procedure SBTH parallel(in/out: A, in: n, in: d)
2: for step ∈ {0, . . . , 2 · (n− 2)− 1} do
3: ν ← b step

2 c+ 1, b← dn−νd e, r ← n− ν − (b− 1) · d
4: if step % 2 == 0 then . For even steps

5: Determine Householder transformation Q
(ν)
1 such

that Ã
(ν)
1,0 = Q

(ν)
1

T
·A(ν)

1,0 has the form (∗, 0, . . . , 0)T

6: A
(ν)
1,0 ← Ã

(ν)
1,0 . Eliminate ν-th column, only necessary for even steps

7: ν ← ν − 1 . Last block in pipeline stems from previous iteration
8: for β ∈ {2, 4, 6, . . . ,min(step, b)} do . Only even blocks are updated

9: Ã
(ν)
β,β ← Q

(ν)
β

T
·A(ν)

β,β ·Q
(ν)
β

10: A
(ν)
β,β ← Ã

(ν)
β,β . Update β-th diagonal block

11: if β < b then

12: Determine Householder transformation Q
(ν)
β+1

such that the first column of

Ã
(ν)
β+1,β = Q

(ν)
β+1

T
·
(
A

(ν)
β+1,β ·Q

(ν)
β

)

has the form (∗, 0, . . . , 0)T

13: A
(ν)
β+1,β ← Ã

(ν)
β+1,β . Update (β + 1)-th subdiagonal block

14: ν ← ν − 1 . Next block in pipeline stems from previous iteration

15: else . For odd steps
16: for β ∈ {1, 3, 5, . . . ,min(step, b)} do . Only odd blocks are updated

17: Ã
(ν)
β,β ← Q

(ν)
β

T
·A(ν)

β,β ·Q
(ν)
β

18: A
(ν)
β,β ← Ã

(ν)
β,β . Update β-th diagonal block

19: if β < b then
20: see lines 13 and 14
21: ν ← ν − 1 . Next block in pipeline stems from previous iteration

from lines 9–13 of algorithm 1. They perform the actual transformation and adaptation

of Q
(ν)
β . Since for every step only every second B

(ν)
β is processed, these processes do not

interfere with each other. Hence, the loops in lines 8 and 16 are parallelizable.

Figures 4.2 to 4.4 illustrate the block decomposition and the block pairs processed
during steps 0 to 5, 25, and finally 41 to 43 before the parallel SBTH algorithm termi-
nates. Beginning from subfigure 4.3(a), it becomes visible that the block decomposition
is not as consistent as in figure 4.1 for the serial SBTH algorithm because during one
step it is possible that multiple transformations from consecutive iterations are applied.
The SBTH algorithm requires 2 · b − 1 steps before it reaches its maximum degree of

parallelism because it takes 2 · b − 1 steps until Q
(1)
β migrates through the block pairs

B
(ν)
β (cf. subfigure 4.3(d)). Furthermore, the degree of parallelism becomes smaller and

smaller towards the end of the parallel SBTH algorithm because ν − 1 columns are al-

35

4. The SBTH algorithm

A
(1)
1,0

24

1

×

23

2

× ×

22

3

× ×

21

4

× × ×

20

5

× × × ×

19

6

× × × × ×

18

7

× × × × × ×

17

8

× × × × × ×

16

9

× × × × × ×

15

10

× × × × × ×

14

11

× × × × × ×

13

12

× × × × × ×12

13

× × × × × ×

11

14

× × × × × ×

10

15

× × × × × ×

9

16

× × × × × ×

8

17

× × × × × ×

7

18

× × × × × ×

6

19

× × × × × ×

5

20

× × × × × ×

4

21

× × × × × ×

3

22

× × × × × ×

2

23

× × × × × ×

1

24

× × × × × ×

(a) step = 0

A
(1)
1,1

A
(1)
2,1

24

1

×

23

2

× 1

22

3

1 1

21

4

1 1 1

20

5

1 1 1 1

19

6

1 1 1 1 1

18

7

1 1 1 1 1 ×

17

8

1 1 1 1 × ×

16

9

1 1 1 1 × × ×

15

10

1 1 1 1 × × × ×

14

11

1 1 1 1 × × × × ×

13

12

× × × × × ×12

13

× × × × × ×

11

14

× × × × × ×

10

15

× × × × × ×

9

16

× × × × × ×

8

17

× × × × × ×

7

18

× × × × × ×

6

19

× × × × × ×

5

20

× × × × × ×

4

21

× × × × × ×

3

22

× × × × × ×

2

23

× × × × × ×

1

24

× × × × × ×

(b) step = 1

Figure 4.2.: Block decomposition and block pairs processed by the SBTH algorithm for
n = 24, d = 5, and steps 0 and 1. ×marks values 6= 0,©marks elements reg-
ularly eliminated during the ν-th iteration, and �marks elements eliminated
during the processing of a subdiagonal block to avoid fill-in. Solid framed
blocks are processed in the current step, dashed framed blocks are elimi-
nated during the ν-th iteration, and dotted framed blocks are not touched
in this step to avoid race conditions. The digits in currently processed blocks
indicate the iteration ν to which to local block decomposition belongs. Due
to symmetry, only the lower triangle is considered.

ready eliminated and these columns are not processed anymore (cf. subfigures 4.4(a) to
4.4(d)), i.e. the size of the banded remainder shrinks. Thus, only n− ν columns are still
processed leading to a decreasing number of block pairs b. This pattern of first gener-
ating more and more work, adding new tasks while old tasks are processed, and finally
running out of work makes it a pipelined algorithm. All elements currently residing in
the pipeline can be processed in parallel. The workload per item in the pipeline, i.e. the
workload to process a block pair, is equal for every item so no load balancing mechanism
is required. Pipeline items can easily be evenly distributed among processing elements.
Furthermore, the actual workload can be predicted accurately for every n, d, and ν.

Hence, there are two levels of parallelism in the parallel SBTH algorithm: On the one
hand side, there is the pipeline whose elements can be executed in parallel. On the other
hand side, there are the diagonal and subdiagonal block transformations themselves
which can also be parallelized. The next chapter deals with the implementation details
of the pipeline as well as the parallelization of the transformations.

36

4.3. Parallel reduction

A
(2)
1,0

A
(1)
2,2

A
(1)
3,2

24

1

×

23

2

× ×

22

3

× ×

21

4

× ×

20

5

× × ×

19

6

× × × ×

18

7

× × × × 1

17

8

× × × × 1 1

16

9

× × × × 1 1 1

15

10

× × × × 1 1 1 1

14

11

× × × × 1 1 1 1 1

13

12

1 1 1 1 1 ×12

13

1 1 1 1 × ×

11

14

1 1 1 1 × × ×

10

15

1 1 1 1 × × × ×

9

16

1 1 1 1 × × × × ×

8

17

× × × × × ×

7

18

× × × × × ×

6

19

× × × × × ×

5

20

× × × × × ×

4

21

× × × × × ×

3

22

× × × × × ×

2

23

× × × × × ×

1

24

× × × × × ×

(a) step = 2

A
(2)
1,1

A
(2)
2,1

A
(1)
3,3

A
(1)
4,3

24

1

×

23

2

× ×

22

3

× 2

21

4

2 2

20

5

2 2 2

19

6

2 2 2 2

18

7

2 2 2 2 2

17

8

2 2 2 2 2 ×

16

9

2 2 2 2 × ×

15

10

2 2 2 2 × × ×

14

11

2 2 2 2 × × × ×

13

12

2 2 2 2 × × × × 112

13

× × × × 1 1

11

14

× × × × 1 1 1

10

15

× × × × 1 1 1 1

9

16

× × × × 1 1 1 1 1

8

17

1 1 1 1 1 ×

7

18

1 1 1 1 × ×

6

19

1 1 1 1 × × ×

5

20

1 1 1 1 × × × ×

4

21

1 1 1 1 × × × × ×

3

22

× × × × × ×

2

23

× × × × × ×

1

24

× × × × × ×

(b) step = 3

A
(3)
1,0

A
(2)
2,2

A
(2)
3,2

A
(1)
4,4

A
(1)
5,4

24

1

×

23

2

× ×

22

3

× ×

21

4

× ×

20

5

× ×

19

6

× × ×

18

7

× × × ×

17

8

× × × × 2

16

9

× × × × 2 2

15

10

× × × × 2 2 2

14

11

× × × × 2 2 2 2

13

12

× × × × 2 2 2 2 212

13

2 2 2 2 2 ×

11

14

2 2 2 2 × ×

10

15

2 2 2 2 × × ×

9

16

2 2 2 2 × × × ×

8

17

2 2 2 2 × × × × 1

7

18

× × × × 1 1

6

19

× × × × 1 1 1

5

20

× × × × 1 1 1 1

4

21

× × × × 1 1 1 1 1

3

22

1 1 1 1 1 ×

2

23

1 1 1 1 × ×

1

24

1 1 1 1 × × ×

(c) step = 4

A
(3)
1,1

A
(3)
2,1

A
(2)
3,3

A
(2)
4,3

A
(1)
5,5

24

1

×

23

2

× ×

22

3

× ×

21

4

× 3

20

5

3 3

19

6

3 3 3

18

7

3 3 3 3

17

8

3 3 3 3 3

16

9

3 3 3 3 3 ×

15

10

3 3 3 3 × ×

14

11

3 3 3 3 × × ×

13

12

3 3 3 3 × × × ×12

13

3 3 3 3 × × × × 2

11

14

× × × × 2 2

10

15

× × × × 2 2 2

9

16

× × × × 2 2 2 2

8

17

× × × × 2 2 2 2 2

7

18

2 2 2 2 2 ×

6

19

2 2 2 2 × ×

5

20

2 2 2 2 × × ×

4

21

2 2 2 2 × × × ×

3

22

2 2 2 2 × × × × 1

2

23

× × × × 1 1

1

24

× × × × 1 1 1

(d) step = 5

Figure 4.3.: Block decomposition and B
(ν)
β processed by the parallel SBTH algorithm

for n = 24, d = 5, and steps 2 to 5. Marks (×, ©, and �) and frames
convention correspond to marks and frames convention of figure 4.2. Solid
framed blocks currently reside in the pipeline and, thus, are processed in
parallel.

37

4. The SBTH algorithm

A
(13)
1,1

A
(13)
2,1

A
(12)
3,324

1

×

23

2

× ×

22

3

× ×

21

4

× ×

20

5

× ×

19

6

× ×

18

7

× ×

17

8

× ×

16

9

× ×

15

10

× ×

14

11

× ×

13

12

× ×12

13

× ×

11

14

× 13

10

15

13 13

9

16

13 13 13

8

17

13 13 13 13

7

18

13 13 13 13 13

6

19

13 13 13 13 13 ×

5

20

13 13 13 13 × ×

4

21

13 13 13 13 × × ×

3

22

13 13 13 13 × × × ×

2

23

13 13 13 13 × × × × 12

1

24

× × × × 12 12

(a) step = 25

A
(21)
1,1

24

1

×

23

2

× ×

22

3

× ×

21

4

× ×

20

5

× ×

19

6

× ×

18

7

× ×

17

8

× ×

16

9

× ×

15

10

× ×

14

11

× ×

13

12

× ×12

13

× ×

11

14

× ×

10

15

× ×

9

16

× ×

8

17

× ×

7

18

× ×

6

19

× ×

5

20

× ×

4

21

× ×

3

22

× 21

2

23

21 21

1

24

21 21 21

(b) step = 41

A
(22)
1,024

1

×

23

2

× ×

22

3

× ×

21

4

× ×

20

5

× ×

19

6

× ×

18

7

× ×

17

8

× ×

16

9

× ×

15

10

× ×

14

11

× ×

13

12

× ×12

13

× ×

11

14

× ×

10

15

× ×

9

16

× ×

8

17

× ×

7

18

× ×

6

19

× ×

5

20

× ×

4

21

× ×

3

22

× ×

2

23

× ×

1

24

× ×

(c) step = 42

A
(22)
1,124

1

×

23

2

× ×

22

3

× ×

21

4

× ×

20

5

× ×

19

6

× ×

18

7

× ×

17

8

× ×

16

9

× ×

15

10

× ×

14

11

× ×

13

12

× ×12

13

× ×

11

14

× ×

10

15

× ×

9

16

× ×

8

17

× ×

7

18

× ×

6

19

× ×

5

20

× ×

4

21

× ×

3

22

× ×

2

23

× 22

1

24

22 22

(d) step = 43

Figure 4.4.: Block decomposition and B
(ν)
β processed by the parallel SBTH algorithm

for n = 24, d = 5, and steps 25 and 41 to 43. Marks (×, ©, and �) and
frames convention correspond to marks and frames convention of figure 4.2.
Solid framed blocks currently reside in the pipeline and, thus, are processed
in parallel.

38

5. Implementation of the SBTH algorithm

For now, we discussed the algorithmical aspects of the SBTH algorithm. In this chapter,
we investigate further implementation aspects of the SBTH algorithm, mainly the de-
termination and application of Householder transformations on parts of the matrix and
the mapping of linear algebra operations to BLAS routines.

The implementation presented in this chapter triggers operations from the host side
which are then executed on the device. Hence, the program control stays on the CPU
while the linear algebra operators are performed on the GPU to benefit from its compu-
tational and memory performance. From a technical point of view, it would be possible
to completely shift the program control from the host side to device, resulting in a re-
duced overhead of function calls and kernel invocations. The major drawback of this
idea would be a significant loss in flexibility concerning program control and extensibil-
ity. Thus, we do not further pursue this approach. Since all operations are performed
on the GPU, there is no necessity to copy data, e.g. particular block pairs, between host
and device during runtime. This reduces overhead and complexity.

The actual linear algebra operations required by the SBTH algorithm are not imple-
mented by ourselves but left to libraries implementing the BLAS routines. On the one
hand, this enables us to simply switch between different BLAS implementations for the
GPU and compare their performance and suitability for the pipelined approach. On the
other hand, we benefit from the quality and experience invested in these BLAS imple-
mentations. A drawback of this policy is the absence of some optimization techniques
such as kernel fusion, i.e. merging multiple kernels into one single kernel. Moreover,
successful caching is made more difficult. The SBTH algorithm only relies on BLAS
level 1 and level 2 routines. Both are memory-bound, the computational load is low. We
abbreviate the BLAS routines according to the BLAS quick reference guide [1] and cor-
respondingly use the parameter signatures in the code listings 5.1 and 5.2 in this chapter.
In particular, five different BLAS level 1 routines are required by the SBTH algorithm:
(1) vector sum (AXPY), (2) vector copy (COPY), (3) dot product (DOT), (4) euclidean norm
(NRM2), and (5) vector scaling (SCAL). From the set of BLAS level 2 routines, four are
actually applied: (1) general matrix/vector product (GEMV), (2) general rank-1 update
(GER), (3) symmetric rank-2 update (SYR2), and (4) symmetric matrix/vector product
(SYMV). An explanation of rank-k updates is given at the end of section 5.2.

Householder transformations are required twice in the SBTH algorithm: First, they
are needed for the elimination of the ν-th column of A. We explain in section 5.1 how
to find and apply such a transformation. Second, the transformations from section 5.1
are used to update the block pairs leading to a new transformation to avoid fill-in in
the subdiagonal blocks. Section 5.2 shows how the block pairs are updated and the new
transformation is determined. Since pipelining is the most relevant feature of the SBTH

39

5. Implementation of the SBTH algorithm

algorithm for us, we discuss the usage of CUDA streams and OpenCL command queues
in section 5.3 to achieve parallelism within the pipeline. Finally, we present in section 5.4
a simple but very effective storage scheme for matrix A exploiting its banded structure.

5.1. Determination of Householder transformations

In section 4.2, we are using Householder transformations to eliminate the ν-th column
but we do not yet explain how to calculate a correct Householder transformation. Their
determination is now demonstrated in this section.

Algorithm 3 Determination of a Householder vector v whose corresponding orthonor-
mal transformation eliminates all but the first components of a vector x. || · ||2 denotes
the euclidean norm and sgn(x) the sign function.

1: procedure find householder(in/out: x ∈ Rd, out: v ∈ Rd, out: τ ∈ R)
2: ρ← sgn(x1) · ||x||2 . x1 is the first component of x
3: v ← 1

x1+ρ · x
4: v1 = 1 . The first component of the Householder vector is always 1
5: τ ← x1+ρ

ρ . Tangent of the rotation angle

6: x← (−ρ, 0, . . . , 0)T . Elimination of x

Instead of storing the whole Householder matrix Q describing the Householder trans-
formation, we use Householder vectors v equivalent to Q. Using Householder vectors
instead of Householder matrices offers two advantages: First, storing the Householder
transformations is much more efficient, since only O(d) memory is needed instead of
O(d2). Second, the application of the transformations can be done with O(d2) rather
than O(d3) instructions per d × d block. v is the vector orthonormal to the reflection
hyperplane of the Householder transformation. The relationship between Householder
matrix and Householder vector is given by Q = I − τvvT (τ ∈ R) with τ expressing the
tangent of the rotation angle of Q. We show how to determine a Householder vector v
whose corresponding orthonormal transformation eliminates all but the first components
of a vector x = (x1, . . . , xn)T , i.e. QTx = (∗, 0, . . . , 0)T . This algorithm is taken from
[129] and depicted by algorithm 3. It eliminates x and returns v and τ . Furthermore, we
provide a simplified code snippet implementing the algorithm in listing 5.1. The code
directly works on A and eliminates its ν-th column, corresponding to lines 6 and 7 of
algorithms 1 and 2. The listing illustrates the mapping of the linear algebra operations
of algorithm 3 to BLAS routines, more specifically, only BLAS level 1 routines have to
be carried out. The most expensive operation of them on the GPU is by far NRM2.

1 void apply_householder(A, d, nu , v)

2 {

3 // 1 / (A(nu+2,nu+1)+sgn(A(nu+2,nu+1))*||A(nu+2:nu+d+1,nu)||)

4 norm = NRM2(d, A[nu+1][nu], 1);

5 sigma = sgn(A[nu+1][nu]) * norm;

6 norm = 1. / (A[nu+1][nu] + sigma);

40

5.2. Transformation of block pairs

7 // First component of Householder vector is always 1

8 v[0] = 1.;

9 // Copy remaining components of Householder vector from A

10 COPY(d - 1, A[nu+2][nu], 1, v[1], 1);

11 // Scale all but the first components of Householder vector

12 SCAL(d - 1, norm , v[1], 1);

13 // Scale Householder vector to length sqrt (2)

14 norm = NRM2(d, v, 1);

15 norm = M_SQRT2 / norm;

16 SCAL(d, norm , v, 1);

17 // Eliminate nu -th column by setting it to (-sigma , 0, ..., 0)

18 A[nu+1][nu] = -sigma;

19 COPY(d - 1, ZERO , 0, A[nu+2][nu], 1);

20 }

Listing 5.1: Simplified code to determine the Householder vector v and eliminate the
ν-th column of A by using BLAS level 1 operations. Variable declaration
and memory allocation are neglected. This code works directly on matrix
A, stored linearly in memory. The [][] notation is used to make the code
more readable. Indexing is 1-based for comments and 0-based in code. ZERO
and ONE are the scalar constants 0 and 1, M SQRT2 corresponds to

√
2.

Although it is possible, not all operations are delegated to BLAS routines. Lines 5,
6, 15, and 18 only perform scalar instructions. In regards to performance, it does not
make sense to call an external library, but on the GPU, such a direct manipulation of
data is not possible from the host. The BLAS routine COPY can be used to emulate
a broadcast operation: By setting the increment argument of the source vector to 0,
the first component of the source vector is broadcasted to all components of the target
vector. Such an operation has to be performed when setting multiple components of a
vector to a specific value as in line 19. Not all BLAS implementations allow this misuse
of the COPY routine but explicitly exclude an increment argument 0.

5.2. Transformation of block pairs

The transformation of a block pair as described in algorithm 1, lines 8–13, and algorithm
2, lines 8–13 or 16–21, respectively, consists in applying of the Householder transforma-
tion to the diagonal and subdiagonal block and the update of this transformation, so
that it additionally eliminates the first column of the subdiagonal block. Similarly to
the previous section, Householder transformations are performed using vectors instead
of matrices.

Algorithm 4 lists the necessary steps for a block pair update. It updates the β-
th of b block pairs of A during the ν-th iteration using vm and returns an adapted
transformation vs for the (b+ 1)-th block pair during the same iteration. Variables with
subscript m refer to changes of the diagonal block, while variables with subscript s refer

to alternations of the subdiagonal block. Lines 2–4 update the diagonal block A
(ν)
β,β .

Since the desired transformation vm is already passed to algorithm 4, it does not have

41

5. Implementation of the SBTH algorithm

Algorithm 4 Transformation of a block pair and update of the transformation to avoid
fill-in. vm is the Householder vector to transform the diagonal block and is determined
by algorithm 3. vs is the Householder vector determined during the transformation of
the subdiagonal block and will be used in the next block pair transformation β + 1.
Variables with subscript m refer to changes of the diagonal block, while variables with
subscript s refer to alternations of the subdiagonal block.

1: procedure process block(in/out: A, in: ν, in: β, in: b, in: vm, out: vs)

2: xm ← A
(ν)
β,β · vm

3: wm ← xm − 1
2(vTmxm) · vm

4: A
(ν)
β,β ← A

(ν)
β,β − vmw

T
m − wmvTm . Symmetric rank-2 update

5: if β < b then . Transformation of subdiagonal block

6: xs ← A
(ν)
β+1,β · vm

7: hs ← A
(ν)
β+1,β(1 : d, 1)− vm1 · xs . First column of A

(ν)
β+1,β ·Qβ

8: Determine Householder vector vs with length ||vs||2 =
√

2 such
that (I − vsvTs) · hs = (∗, 0, . . . , 0)T

9: zTs ← vTs ·A
(ν)
β+1,β

10: ws ← zs − (vTs xs) · vm
11: A

(ν)
β+1,β ← A

(ν)
β+1,β − xsv

T
m − vswTs . General rank-2 update

to be identified separately. If there is a subdiagonal block (line 5), it is updated by the
original transformation vm (line 6). The first column of the updated subdiagonal block
has to be eliminated to avoid fill-in during the next iterations which is assured by lines 7
and 8. Finally, the subdiagonal block is updated, eventually eliminating its first column
and considering the original transformation (line 11). This update vs is performed via a
rank-2 update and the necessary temporary vectors zs and ws are computed in lines 9
and 10.

1 void process_block(A, n, d, b, nu , beta , v_m , v_s)

2 {

3 // Column/row index of upper left element of diagonal block

4 idx = nu + beta * d + 1;

5

6 // x_m = A_beta ,beta * v_m

7 SYMV(LO , d, ONE , A[idx][idx], n, v_m , 1, ZERO , x_m , 1);

8 // w_m = x_m - 0.5 * (v^T * x_m) * v_m

9 dot = DOT(d, v_m , 1, x_m , 1);

10 dot *= -0.5;

11 COPY(d, x_m , 1, w_m , 1);

12 AXPY(d, dot , v_m , 1, w_m , 1);

13 // A_beta ,beta = A_beta ,beta - v_m * w_m^T - w_m * v_m^T

14 SYR2(LO , d, MINUS , v_m , 1, w_m , 1, A[idx][idx], n);

15

16 if (beta < b - 1)

42

5.2. Transformation of block pairs

17 {

18 // x_s = A_beta+1,beta * v_m

19 GEMV(R, d, d, ONE , A[idx+d][idx], n, v_m , 1, ZERO , x_s , 1)

20 // h_s = A_beta+1,beta (1:d,1) - v_m (0) * x_s

21 COPY(d, A[idx+d][idx], 1, h_s , 1);

22 norm = -v_m [0];

23 AXPY(d, norm , x_s , 1, h_s , 1)

24 // 1 / (h_s (0) + sgn(h_s (0)) * || h_s ||)

25 norm = NRM2(d, h_s , 1);

26 norm = 1.0 / (h_s [0] + sgn(h_s [0]) * norm);

27 // First component of Householder vector is always 1

28 v_s[0] = 1.;

29 // Copy remaining components v_s (2:d) from h_s (2:d)

30 COPY(d - 1, h_s[1], 1, v_s[1], 1);

31 // Scale components v_s (2:m) of Householder vector

32 SCAL(d - 1, norm , v_s[1], 1);

33 // Scale v_s to length sqrt (2)

34 norm = NRM2(d, v_s , 1);

35 norm = M_SQRT2 / norm;

36 SCAL(d, norm , v_s , 1);

37 // z_s^T = v_s^T * A_beta+1,beta

38 GEMV(T, d, d, ONE , A[idx+d][idx], n, v_s , 1, ZERO , z_s , 1)

39 // w_s = z_s - (v_s^T * x_s) * v_m

40 dot = -DOT(d, v_s , 1, x_s , 1);

41 COPY(d, z_s , 1, w_s , 1);

42 AXPY(d, dot , v_m , 1, w_s , 1);

43 // A_beta+1,beta = A_beta+1,beta - x_s*v_m^T - v_s*w_s^T

44 GER(d, d, MINUS , x_s , 1, v_m , 1, A[idx+d][idx], n);

45 GER(d, d, MINUS , v_s , 1, w_s , 1, A[idx+d][idx], n);

46 }

47 }

Listing 5.2: Simplified code to determine the Householder vector v and eliminate ν-th
column by using BLAS level 1 operations. Variable declaration and memory
allocation are neglected. This code works directly on matrix A, stored
linearly in memory. The [][] notation is used to make the code more
readable. Indexing is 1-based for comments and 0-based in code. MINUS,
ZERO, and ONE are the scalar constants -1, 0, and 1, respectively, M SQRT2

corresponds to
√

2. When calling GEMV, R and T indicates that the matrix
should be interpreted in a regular or transposed way, respectively.

The mapping of the linear algebra operations of algorithm 4 to BLAS routines is shown
by listing 5.2. Again, scalar instructions (lines 10, 22, 26, 28, and 35) are not mapped
to BLAS routines because they are executed faster if directly issued instead of calling a
library function. On the GPU, one cannot avoid to even express the scalar instructions
with calls to the BLAS implementation or to use self-implemented kernels. Now, also
BLAS level 2 routines are utilized besides BLAS level 1 routines. A rank-k update is
a matrix sum adding a matrix of rank k to an arbitrary matrix. The rank-k matrix is

43

5. Implementation of the SBTH algorithm

specified by k outer vector/vector products. Rank-1 and rank-2 updates are BLAS level
2 routines and exist for general and symmetric matrices. In line 4 of algorithm 4, there
is a symmetric rank-2 update, defined as

A := α · xyT + α · yxT +A, A ∈ Rn×n, x, y ∈ Rn, α ∈ R,

and implemented by the BLAS routine SYR2 applied in line 14 of listing 5.2. Further-
more, there is a general rank-2 update in line 11 of algorithm 4. Since not all BLAS
implementations used by us offer an implementation of a general rank-2 update, two
successive general rank-1 updates defined as

A := α · xyT +A, A ∈ Rn×n, x, y ∈ Rn, α ∈ R,

are applied instead in lines 44 and 45 of listing 5.2.

5.3. Pipelining

We trigger dedicated library calls for every block pair update. Thus, to execute the items
in the pipeline of a specific step in parallel, multiple kernels have to run concurrently to
achieve this level of parallelism. Such a feature is supported by modern GPUs and is
called concurrent kernel execution. Depending on the usage of CUDA or OpenCL (the
same holds for the usage of libraries written in CUDA or OpenCL), either streams or
command queues have to be applied to perform concurrent kernel execution. Both are
controlled by the host.

A stream is a sequence of commands that are executed in issue-order. Such com-
mands can be kernel executions or memory operations such as host to device or vice
versa copy operations. Whereas the commands within a stream are executed one after
another, multiple streams can be executed in parallel, so multiple kernels can be exe-
cuted in parallel. The most common usage of streams is the hiding of communication
by computation: While data is exchanged between host and device, computations can
be performed on the GPU by running two streams, one for the communication and one
for the computation. For our purposes, we use streams to run multiple kernels offered
by BLAS implementations for the GPU in parallel.

Command queues are the equivalent of CUDA steams in OpenCL, but offer some
additional features. For example, the commands within a command queue can also be
executed out-of-order which is not advantageous for our purposes here. Furthermore, a
command can also be assigned to multiple command queues in OpenCL, which is not
possible with streams in CUDA. We assign every item of the pipeline (multiple calls
to BLAS routines) to a separate stream or command queue, respectively to achieve
concurrent kernel execution.

Streams and command queues can be synchronized via events. The maximum number
of commands concurrently executed on the GPU is specified by the compute capability.
Values vary between 4 and 128 concurrently running streams where 16 and 32 are the
most frequent values. We use the number of concurrently executed kernels as one of the

44

5.3. Pipelining

most important benchmark criterion in the proceeding chapter 6 because it reflects the
capability of the pipelined approach to be parallelized.

Several properties of the GPU hardware have to be considered to achieve concurrent
kernel execution in practice. First, the execution of a kernel resides on at least one
multiprocessor. It is not possible that two distinct kernel dispatches are concurrently
executed on the same multiprocessor but one executed kernel can reside on multiple
multiprocessors which are then “blocked” for other kernel executions. Thus, the maxi-
mum speed-up is limited, besides other factors explained in chapter 6, by the number of
multiprocessors of the GPU. The parallel setup being used when a kernel is issued can
be used to guarantee that every kernel execution only occupies one multiprocessor by
limiting the number of thread blocks to one. Hence, the parallelism within one kernel
is only steered by the number of threads per block. In most cases, the programmer
does not have the possibility to control the number of launched blocks per kernel when
using libraries for the GPU because this feature is hidden behind the call to the library
function.

Second, the order of issuing commands is crucial for NVIDIA GPUs. Basically, this
can be done in two different ways: Issuing depth first means that first all commands
assigned to one stream are issued before the commands assigned to another stream. This
would be the straightforward strategy resulting from algorithm 4, the transformation of

B
(ν)
β and update of the transformation to avoid fill-in: All BLAS routines required to

process a block pair are assigned to one stream before the BLAS routines required
by an independent block pair are assigned to the next stream. Issuing breadth first
is the orthogonal strategy: Commands are assigned to streams in an alternating way.
Once a command is assigned to a specific stream, the next issued command is assigned
to another stream. On NVIDIA GPUs there are dedicated engines controlling either
memory operations or computations. These engines can be seen one level above the
warp schedulers. We focus on the compute engines. Typically, there are only one or two
compute engines per GPU, depending on the compute capability. Each engine manages
a queue to dispatch CUDA commands. This leads to four possible states of a command:

– Issued:
The command is called from the host by the programmer.

– Dispatched:
The command is assigned to GPU resources by the engine from the engine queue.

– Executed:
The command is run on the GPU managed by the warp scheduler(s).

– Completed:
The execution of the command is finished.

According to [195], a CUDA command is dispatched from a specific engine queue if the
following three conditions are satisfied:

45

5. Implementation of the SBTH algorithm

Kernel B
in

Stream 2

Kernel A
in

Stream 2

Kernel B
in

Stream 1

Kernel A
in

Stream 1

Is
su

e
 O

rd
e
r

Compute Engine Queue

Kernel B
in

Stream 2

Kernel A
in

Stream 2

Kernel B
in

Stream 1

Kernel A
in

Stream 1

Ti
m

e

Execution

Streams

(a) Issue depth first

Kernel B
in

Stream 2

Kernel B
in

Stream 1

Kernel A
in

Stream 2

Kernel A
in

Stream 1

Is
su

e
 O

rd
e
r

Compute Engine Queue

Kernel B
in

Stream 2

Kernel A
in

Stream 2

Kernel B
in

Stream 1

Kernel A
in

Stream 1

Ti
m

e

Execution

Streams

(b) Issue breadth first

Figure 5.1.: Different strategies in the order of issuing four commands and assigning
them to two streams. The left boxes show the issue and thus dispatch order
(condition (c)) of the compute engine queue. The right boxes show the
(parallel) execution of kernels using two streams. Subfigure 5.1(a) illustrates
issuing depth first. The execution of “kernel B in stream 1” has to wait until
“kernel A in stream 1” is completed due to condition (b). Thus, “kernel A
in stream 2” also has to wait until “kernel A in stream 1” is completed
due to condition (c). This does not hold in subfigure 5.1(b). “Kernel A in
stream 2” can be executed immediately because there is no other command
assigned to stream 2 (condition (b)) yet and “Kernel A in stream 1” is
already dispatched (condition (c)). The layout of this figure is taken from
[195].

(a) Resources are available:
An operation originating from a kernel launch requires at least one empty multi-
processor to be executed.

(b) Preceding calls in the same stream have been completed:
Only one operation per stream is executed per time.

(c) Preceding calls in the same queue have been dispatched:
The order of issued operations is kept.

The combination of conditions (b) and (c) indicates that issuing breadth first is su-
perior to issuing depth first. Using issuing depth first has to wait until the previous
command issued to a certain stream has completed before the next command assigned
to the certain stream can be dispatched and, thus, executed due to condition (b). Com-
mands issued to other streams are blocked as depicted by subfigure 5.1(a). Using issuing
breadth first always satisfies conditions (b) and (c) as long as hardware resources are
available and a stream is not executing a command dispatched long ago in the past. This
leads to the maximum possible degree of parallelism for concurrent kernel execution as
shown by subfigure 5.1(b).

46

5.4. Matrix storage format

5.4. Matrix storage format

The system matrix A can be stored very efficiently if its banded and symmetric properties
are exploited properly. In this section we present an optimal storage format forA in terms
of memory consumption. Furthermore, the proposed storage format enables coalesced
memory access on GPUs. During runtime, matrix A is stored continuously as a two-
dimensional array on the device for the whole runtime. Updates of A are directly applied
to it, so no copy of A is ever made. Since it is distinguished between even and odd steps,
no race conditions occur even if there is only one instance of A. The following expression
illustrates the transformation steps of A in (5.1) and (5.2) and the final storage layout
in memory by (5.3).




a1,1 a2,1 a3,1 · · ·
a2,1 a2,2 a3,2 · · ·
a3,1 a3,2 a3,3 · · ·
a4,1 a4,2 a4,3 · · ·

...
...

...
. . .



∈ Rn×n




a1,1 0 0 · · ·
a2,1 a2,2 0 · · ·
a3,1 a3,2 a3,3 · · ·
a4,1 a4,2 a4,3 · · ·

...
...

...
. . .



∈ Rn×n (5.1)




a1,1 a2,2 a3,3 · · ·
a2,1 a3,2 a4,3 · · ·
a3,1 a4,2 a5,3 · · ·
a4,1 a5,2 a6,3 · · ·

...
...

...
. . .

a2·d,1 a2·d+1,2 a2·d+2,3 · · ·



∈ R2·d×n (5.2)

⇓
[a1,1, a2,1, . . . , a2·d,1, a2,2, a3,2, . . . , a2·d+1,2, a3,3, a4,3, . . . , a2·d+2,3, . . .] (5.3)

Only the lower triangular part of A is stored as depicted in equation (5.1) due to
the symmetry of A. A is a banded matrix, thus, for every column, the right remainder
of the matrix could be shifted “one element to the top” as sketched by equation (5.2)
leading to a Rd+1×n matrix. The diagonal elements of A are stored at the first index
in each column. This measurement reduces the memory consumption from O(n2) to
O(d · n), which saves a factor of n of memory enabling the GPU to store even huge
matrices. The updates of the subdiagonal blocks converts them to full blocks instead of
upper triangular blocks. Hence, some additional memory has to be spent with using a
R2·d×n matrix instead of a Rd+1×n matrix. A depiction of this compression scheme is
shown in figure 4.7 in [12] omitted by us for the sake of compactness. BLAS routines
still work with the compressed version of A by adapting the argument that specifies
the size of the leading dimension (generally denoted by lda) by −1 corresponding to
the offset saved per column. As depicted by (5.3), A is stored in column-major order
because most BLAS implementations expect a column-major order storage scheme. To
enable coalesced memory access, we work on the lower triangle of A instead of the
upper, i.e. eliminating columns instead of rows as continuously described in the previous

47

5. Implementation of the SBTH algorithm

sections. Analogously, row-major order could be applied considering right instead of
lower subdiagonal blocks. This would even work with BLAS implementations expecting
column-major order by adapting the element offsets and the size of the leading dimension
of A, but with significantly worse performance due to a lack of coalesced memory access.

During the tridiagonalization process, the Householder vectors vm
(ν)
β and vs

(ν)
β (1 ≤

ν ≤ n− 2, 1 ≤ β < b− 1) have to be computed. Since we do not perform any backtrans-
formation steps, we do not store all these Householder vectors but just those required
for the current and next elimination iteration.

48

6. Results

After introducing the SBTH algorithm and its opportunities for parallelization in chapter
4 and discussing its implementation details in chapter 5, we conclude this part with a
detailed measurement of our implementation and a corresponding discussion. We use
two Toeplitz matrices of different size to carry out our experiments in sections 6.1 and
6.2. Toeplitz matrices are diagonal-constant matrices, thus, all entries of a particular
diagonal are the same. According to our experience, the values of the elements of the
banded matrix have no influence on runtime. Hence, for a given n and d, it does not
make any difference in runtime if a random, Toeplitz, or any other matrix is processed.
There are special methods to treat Toeplitz matrices efficiently [24, 54], but we neglect
such treatment in this work and interpret the matrices as arbitrary symmetric banded
matrices. The smaller matrices use n = 1000, thus A ∈ R1000×1000, the large ones are
5000× 5000 matrices. The bandwidth d is varied from 16 to 256 by factors of 2. Three

manufacturer NVIDIA AMD

GPU K20x P100 750 Ti W8000 HD 8670

host GCC - - 6.2.1 - 6.2.0
compiler ICC 15.0.2 16.0.3 - 16.0.4 -

device
NVCC 7.5 8.0

-
compiler

BLAS
cuBLAS 7.5 8.0
MAGMA 2.2.0
clBLAS - 2.10.0

Table 6.1.: Software setup being used to compile and run our SBTH implementation for
profiling and benchmarking in this chapter. Numbers in table cells are version
numbers of the utilized software. clBLAS does not require a device compiler
during compile time and it is not benchmarked on the GPUs carrying out
the tests for cuBLAS and MAGMA.

different BLAS implementations for GPUs are used: (a) cuBLAS [179] is a CUDA
implementation provided by NVIDIA for their GPUs and is shipped with the CUDA
toolkit. (b) MAGMA [5] is available in a CUDA and a OpenCL implementation. It is
developed at the University of Tennessee. More background on MAGMA was already
given in section 3.1. In this work, we only utilize the CUDA version of MAGMA.
MAGMA also supports (partial) execution of some routines on the CPU but we do
not exploit this feature in the following. (c) clBLAS [2] is the BLAS part of clMath,
an OpenCL library originally developed by AMD and since 2013, provided as open

49

6. Results

source. Our version of the parallel SBTH algorithm using clBLAS also runs on CPUs
and other computing devices supporting OpenCL but we do not consider this capability
for benchmarking. Benchmarks are carried out on five different GPUs representing four
distinct GPU architectures: The CUDA versions are benchmarked on the Tesla K20x,
the GTX 750 Ti, and the Tesla P100, the clBLAS version is run on the FirePro W8000,
the Radeon HD 8670, and the GTX 750 Ti. Hardware properties for NVIDIA GPUs are
given in table 2.1, table 2.2 lists the characteristics of the corresponding AMD GPUs.
All benchmarks use double precision for values. We only provide experimental runtime
results. For results reflecting the numerical properties of the SBTH algorithm, we refer
to [14]. The software setup (used compilers, version numbers of the BLAS libraries, etc.)
is summarized in table 6.1. MAGMA and clBLAS are available as open source. They
are compiled with the same compilers used for our SBTH implementation. For all runs
delegating work to clBLAS, OpenCL 1.2 is used.

The remainder of this chapter is structured as follows: First, we measure the contri-
bution of each particular BLAS routine to total runtime in section 6.1. Afterwards, we
measure the total runtimes of our SBTH versions in section 6.2. Five different GPUs are
utilized and matrix size n, bandwidth d, and especially the pipeline length are varied
as described above. These total runtimes are used to determine the achieved speed-up
when using the pipelined approach. Finally, we do a runtime comparison of our GPU
implementations with the distributed memory parallelized ELPA library in section 6.3.
Results for the ELPA library are taken from [12].

6.1. Profiling

In this section, we analyze the shares each particular BLAS routine has in total runtime.
We neglect the fact that some routines are called more ofter than others (e.g., GER

and GEMV are called approximately twice as often as SYR2 and SYMV) but only consider
accumulated runtimes of the particular BLAS routines. Table 6.2 lists the exact numbers
how often a particular kernel assigned to a BLAS routine is called by our implementation
of the parallel SBTH algorithm. The values in table 6.2 are determined by the NVIDIA
command line profiler nvprof [182] using the cuBLAS version on the Tesla K20x. These
numbers do not have to be the same on other GPUs using other BLAS implementations
because depending on library and optimization for a particular GPU, one call to a BLAS
routine can trigger multiple kernel calls. Only kernel execution times are considered in
this section. Overhead such as kernel invocations and management on the host (loops
over ν and β, carrying out breadth first issuing, calculating indices of block pairs, etc.)
are neglected. Furthermore, times for pre- and post-processing such as read-in of the
matrix or copy operations between host and device are not taken into account. Instead
of providing absolute runtimes, normalized values are given, which means the sum of
kernel execution times is normalized to 1. This makes it possible to compare different
matrix sizes easily, even when the actual runtimes differ much as shown in section 6.2.
All experiments in this section use a pipeline length of 1. This does not limit the general
validity of the results because the absolute runtimes of the BLAS routines are not affected

50

6.1. Profiling

16 32 64 128 256
d

0.0

0.2

0.4

0.6

0.8

1.0

sh
ar

e

Tesla K20x (Kepler)

16 32 64 128 256
d

0.0

0.2

0.4

0.6

0.8

1.0
GTX 750 Ti (Maxwell)

16 32 64 128 256
d

0.0

0.2

0.4

0.6

0.8

1.0
Tesla P100 (Pascal)

(a) n = 1000

16 32 64 128 256
d

0.0

0.2

0.4

0.6

0.8

1.0

sh
ar

e

Tesla K20x (Kepler)

16 32 64 128 256
d

0.0

0.2

0.4

0.6

0.8

1.0
GTX 750 Ti (Maxwell)

16 32 64 128 256
d

0.0

0.2

0.4

0.6

0.8

1.0
Tesla P100 (Pascal)

SCAL
SYMV

NRM2
SYR2

DOT
GER

COPY
GEMV

AXPY

(b) n = 5000

Figure 6.1.: Shares in runtime of BLAS routines in the SBTH algorithm depending on
bandwidth d using cuBLAS on three different NVIDIA GPUs for matrix
sizes n = 1000 (cf. subfigure 6.1(a)) and n = 5000 (cf. subfigure 6.1(b)).
The overall runtime is normalized to one, thus the height of the bars gives
the percentage of the BLAS routines in runtime. BLAS level 1 routines are
colored in green and blue, level 2 routines are colored in yellow and red.

by the pipeline length. We focus on the cuBLAS implementation running on the Tesla
K20x, the GTX 750 Ti, and the Tesla P100. Shares are similar when using MAGMA
and clBLAS, so we do not consider them separately in this section. Figure 6.1 shows the
shares of all nine BLAS routines required by the SBTH algorithm. Shares are stacked
on top of each other with BLAS level 2 routines on the bottom colored in yellow and
red and BLAS level 1 routines on the top colored in green and blue.

The most striking result from all benchmarks is the dominance in runtime of the BLAS
level 1 routine NRM2. Between 41.6% (n = 5000, d = 128 on the Tesla K20x) and 68.6%
(n = 5000, d = 16 on the GTX 750 Ti) of total runtime is spent in this routine. This
dominance still holds if the runtime of one single NRM2 execution is compared to the
runtime of other BLAS routines executed a single time. Actually, a dominance of the
BLAS level 2 routines is expected because at least one of the operands is a matrix, and

51

6. Results

n 1000 5000

d 16 32 64 128 256 16 32 64 128 256

AXPY 100,974 69,268 34,500 17,044 8892 253,234 202,496 202,143 151,096 101,852

COPY 236,735 163,278 82,158 41,430 21,024 592,114 473,616 473,466 355,083 240,974

DOT 67,524 46,506 23,330 11,694 5864 168,956 135,225 135,148 101,210 68,557

NRM2 136,468 95,040 48,672 25,392 13,728 339,164 271,524 272,314 205,489 141,108

SCAL 169,168 116,756 58,820 29,732 15,158 422,758 338,258 338,387 253,838 172,404

GEMV 66,900 45,524 22,340 10,700 4868 168,656 134,741 134,164 99,767 66,602

GER 66,900 45,524 22,340 10,700 4868 168,726 134,692 134,118 99,738 66,586

SYR2 34,075 23,744 12,160 6344 3430 84,534 67,806 68,025 51,341 35,261

SYMV 34,075 23,744 12,160 6344 3430 84,680 67,806 68,052 51,341 35,256

Table 6.2.: Number of calls to particular cuBLAS kernels assigned to BLAS routines of
our corresponding implementation of the parallel SBTH algorithm on the
Tesla K20x for different matrix sizes n and bandwidths d.

so O(d2) data is processed per routine call instead of O(d) for level 1 routines. However,
for such small bandwidths, the times of the operations to compute the Euclidean norm,
namely reduction and square root, dominate the time to treat all d2 elements of a
diagonal or subdiagonal block, respectively. This is a phenomenon only observable on
the GPU but not on the CPU. As expected, the larger the bandwidth gets, the larger
the share of the BLAS level 2 routines becomes. For example, on the GTX 750 Ti using
the large n = 5000 matrix, the share grows by a factor of 3.37× from 11.1% (d = 16) to
37.3% (d = 256).

In most cases, the second largest share of the BLAS routines has the COPY routine.
There are some exceptions such as for n = 5000 and d = 256 where the share of GEMV

is the second largest on the GTX 750 Ti. The share of the COPY routine varies between
6.3% (n = 5000, d = 256 on the GTX 750 Ti) and 15.3% (n = 1000, d = 16 on the Tesla
K20x) and includes the runtimes of the cudaMemset() function being used by cuBLAS
to implement copy operations with increment argument 0. In contrast to “compute”
operations such as all other utilized BLAS routines, copy operations such as the COPY

routine cannot be overlapped with itself by concurrent kernel execution. Here, by copy
operations, we do not mean copy operations between host and device but copy operations
on the device performed by kernels. This just slightly limits the maximum theoretical
speed-up of the pipelined approach because copy operations can still be overlapped with
other compute operations.

GEMV is the most dominant BLAS level 2 routine. Its share of the total runtime
is between 3.5% (n = 1000 and n = 5000, d = 16 on the GTX 750 Ti) and 11.7%
(n = 5000, d = 16 on the GTX 750 Ti) and its share of the accumulated runtime of all
BLAS level 2 routines is between 24.8% (n = 1000, d = 256 on the Tesla K20x) and
33.8% (n = 5000, d = 128 on the Tesla K20x).

Finally, it can be observed that all ratios of the particular BLAS routines are quite

52

6.2. Scalability of the pipelined approach

similar for same d but different n and GPU. This leads to the conclusion that all oper-
ations, independently of whether it is a BLAS level 1, level 2, or copy routine, perform
similarly on the three different generations of NVIDIA GPUs applied in this section and
no GPU architecture is significantly better suited for one or the other BLAS routine.

6.2. Scalability of the pipelined approach

We measure the absolute runtimes of our implementations of the parallel SBTH algo-
rithm to determine the speed-ups achieved by the pipelined approach in this section.
These total runtimes include the actual execution times of the kernels plus all overheads
such as kernel invocation times and all management on the host but no times for pre-
processing such as loading/initializing the matrices in GPU memory and post-processing
such as validating the results. The utilized GPUs, BLAS implementations for the GPU,
and applied parameters such as matrix size n, bandwidth d, and pipeline length are
given in the introduction of this chapter.

Since we are interested in the influence of the pipeline length on the runtime of the
parallel SBTH algorithm, we put the pipeline length on the abscissas and the runtime on
the ordinates of figures 6.2 to 6.3. Correspondingly, speed-up is assigned to the ordinates
of figures 6.4 to 6.5 when investigating the speed-up behavior. The maximum pipeline
length considered is 12. According to our experience, longer pipelines only have a minor
or even degrading effect on runtime as can already be observed in figures 6.4 to 6.5 for
long pipeline lengths. Results stemming from CUDA and OpenCL libraries are plotted
in dedicated subfigures throughout this section to provide visual clarity. CUDA results
are presented in the top subfigures, OpenCL results in the bottom subfigures. There is a
dedicated subplot per GPU in every line. cuBLAS results are colored in green, MAGMA
results in red, and clBLAS results in blue. Different bandwidths are drawn as separate
lines distinguished by distinct markers. Due to a bug in the OpenCL implementation
of NVIDIA for their GPUs, there are only results for d = 16 and 32 of the clBLAS
version on the GTX 750 Ti. For d = 64, 128, and 256, this version simply crashes in
multiple BLAS routines with a general error. While figures 6.2 and 6.3 show the absolute
runtimes for n = 1000 and 5000, figures 6.4 and 6.5 depict the corresponding speed-ups
for the two different-sized matrices. Matrix size and bandwidth are kept constant for an
individual line, thus, the benchmarks are strong scaling tests.

Before discussing the speed-up behavior, we emphasize important observations re-
garding the actual runtimes. The performance of the cuBLAS version is superior to
the performance of the MAGMA version for all variations of parameters. For BLAS
level 1 and level 2 routines, MAGMA simply delegates work to cuBLAS by calling the
corresponding cuBLAS functions. MAGMA offers a dedicated implementation only for
BLAS level 3 routines. Hence, it is impossible for the MAGMA version to perform better
than the cuBLAS version. Instead, additional overhead is introduced, e.g. by delegating
function calls or mapping the way MAGMA deals with streams to the way cuBLAS deals
with them. This mapping leads to a worse scaling behavior of our version using MAGMA
in comparison to the one using cuBLAS. Both versions using the CUDA libraries clearly

53

6. Results

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

1

2

3

4

5

6

se
co

nd
s

Tesla K20x (Kepler)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

1

2

3

4

5

6
GTX 750 Ti (Maxwell)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

1

2

3

4

5

6
Tesla P100 (Pascal)

(a) CUDA libraries

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

2

4

6

8

10

12

14

se
co

nd
s

FirePro W8000 (Tahiti)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

2

4

6

8

10

12

14 Radeon HD 8670 (Oland)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

2

4

6

8

10

12

14 GTX 750 Ti (Maxwell)

d = 16 d = 32 d = 64 d = 128 d = 256

(b) OpenCL library

Figure 6.2.: Runtimes in seconds of the parallel SBTH algorithm on five different GPUs
in dependence of pipeline length. Matrix size is n = 1000 and matrix band-
width d varies from 16 to 256, indicated by different lines. Figure 6.2(a)
shows the runtimes of cuBLAS (green) and MAGMA (red) on three differ-
ent NVIDIA GPUs. Figure 6.2(b) shows the runtimes of clBLAS (blue) on
two different AMD GPUs and one NVIDIA GPU.

outperform the version relying on clBLAS. This difference does not originate from an
inequality in performance of the various GPUs as can be seen when drawing a direct
performance comparison on the GTX 750 Ti. A performance penalty between 1.96×
(n = 5000, d = 16) and 2.17× (n = 1000, d = 32) can be measured when comparing the
cuBLAS and clBLAS versions for a pipeline length of 1 on the Maxwell GPU. There are
two major reason for this performance gap: First, in contrast to cuBLAS, the clBLAS
version is much less or not at all optimized for particular GPU architectures, especially
for BLAS level 1 and level 2 routines. Second, a considerable amount of runtime is spent
with kernel invocations and management on the host. The number of kernel calls is quite
large, as given in table 6.2 for different n and d. In addition, such a kernel invocation
is relatively expensive in comparison to the actual work the BLAS kernel is performing.
For our SBTH algorithm implementation, we observed that the overhead to invoke an

54

6.2. Scalability of the pipelined approach

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

20

40

60

80

100

120

140

se
co

nd
s

Tesla K20x (Kepler)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

20

40

60

80

100

120

140

GTX 750 Ti (Maxwell)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

20

40

60

80

100

120

140

Tesla P100 (Pascal)

(a) CUDA libraries

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

50

100

150

200

250

300

se
co

nd
s

FirePro W8000 (Tahiti)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

50

100

150

200

250

300
Radeon HD 8670 (Oland)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0

50

100

150

200

250

300
GTX 750 Ti (Maxwell)

d = 16 d = 32 d = 64 d = 128 d = 256

(b) OpenCL library

Figure 6.3.: Runtimes in seconds of the parallel SBTH algorithm on five different GPUs
in dependence of pipeline length. Matrix size is n = 5000 and matrix band-
width d varies from 16 to 256, indicated by different lines. Figure 6.3(a)
shows the runtimes of cuBLAS (green) and MAGMA (red) on three differ-
ent NVIDIA GPUs. Figure 6.3(b) shows the runtimes of clBLAS (blue) on
two different AMD GPUs and one NVIDIA GPU.

OpelCL kernel from clBLAS is much bigger than the overhead to invoke a CUDA kernel
from cuBLAS. Thus, the difference in performance between the clBLAS and cuBLAS
version is significant.

According to [128] and [12], the SBTH algorithm requires O(n2d) operations in total.
Thus, the expected runtimes tend to grow quadratically in n. This assumption is testified
empirically when comparing the runtimes for n = 1000 and n = 5000.

A surprising discovery is the influence of the matrix bandwidth d on the runtime. The
wider the band gets, the shorter the runtime. Since broader bands should lead to higher
computational costs to process a block pair, we would expect the opposite behavior.
However, a larger d leads to a reduction in the number of block pairs to process per
iteration and, thus, of total block pairs to process. Moreover, since only BLAS level 1
and 2 routines are applied and the bandwidth stays relatively small, the influence of d

55

6. Results

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
ee

d-
up

Tesla K20x (Kepler)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

1.0

1.5

2.0

2.5

3.0

3.5

4.0 GTX 750 Ti (Maxwell)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Tesla P100 (Pascal)

(a) CUDA libraries

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0.8

0.9

1.0

1.1

1.2

1.3

sp
ee

d-
up

FirePro W8000 (Tahiti)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0.8

0.9

1.0

1.1

1.2

1.3

Radeon HD 8670 (Oland)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0.8

0.9

1.0

1.1

1.2

1.3

GTX 750 Ti (Maxwell)

d = 16 d = 32 d = 64 d = 128 d = 256

(b) OpenCL library

Figure 6.4.: Speed-ups of the parallel SBTH algorithm on five different GPUs in depen-
dence of pipeline length for n = 1000. Color coding, line captions, and
markers are equal to figure 6.2.

on the computational costs per BLAS routine is small.

There is not much difference in runtimes when comparing different GPUs using the
same parameters n, d, and pipeline length with each other. They vary between 1.5%
(n = 5000, d = 256, pipeline length 4) and 48.5% (n = 5000, d = 16, pipeline length 5)
for cuBLAS, between 0.2% (n = 1000, d = 256, pipeline length 4) and 19.1% (n = 5000,
d = 16, pipeline length 5) for MAGMA, and between 1.3% (n = 1000, d = 32, pipeline
length 1) and 73.6% (n = 5000, d = 16, pipeline length 2) for clBLAS. The only exception
is the Tesla P100 showing significantly better performance than the Tesla K20x and the
GTX 750 Ti. This does not reflect the ratio of theoretical performance parameters of
the GPUs given in tables 2.1 and 2.2. On the one hand, overhead times other than the
actual runtimes of the kernels have a considerable share of the total runtime. On the
other hand, examining the runtime of a single kernel execution, the number of required
calculations and amount of transferred data is quite low. Therefore, high-performance
GPUs such as the Tesla K20x or the FirePro W8000 do not show clearly improved
runtimes than low performance GPUs such as the GTX 750 Ti and the Radeon HD

56

6.2. Scalability of the pipelined approach

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
ee

d-
up

Tesla K20x (Kepler)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

1.0

1.5

2.0

2.5

3.0

3.5

4.0 GTX 750 Ti (Maxwell)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Tesla P100 (Pascal)

(a) CUDA libraries

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0.8

0.9

1.0

1.1

1.2

1.3

sp
ee

d-
up

FirePro W8000 (Tahiti)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0.8

0.9

1.0

1.1

1.2

1.3

Radeon HD 8670 (Oland)

1 2 3 4 5 6 7 8 9 10 11 12
pipeline length

0.8

0.9

1.0

1.1

1.2

1.3

GTX 750 Ti (Maxwell)

d = 16 d = 32 d = 64 d = 128 d = 256

(b) OpenCL library

Figure 6.5.: Speed-ups of the parallel SBTH algorithm on five different GPUs in depen-
dence of pipeline length for n = 5000. Color coding, line captions, and
markers are equal to figure 6.3.

8670.

The speed-up behavior is best for cuBLAS. While there is still a considerable speed-up
when using MAGMA, no significant speed-up can be observed when using clBLAS. This
holds for all three GPUs being used to benchmark the clBLAS version. Hence, the usage
of OpenCL command queues leads to no or only negligible concurrent kernel execution.
Furthermore, the usage of multiple command queues can even decrease performance due
to additional overhead, as illustrated by both AMD GPUs for n = 1000. In general,
the speed-up for the cuBLAS and MAGMA version is higher the smaller the matrix
bandwidth with maximum speed-up of 3.70× for cuBLAS (Tesla K20x, n = 1000, d = 32,
pipeline length 12) and 2.41× for MAGMA (GTX 750 Ti, n = 5000, d = 16, pipeline
length 12). The smaller the bandwidth, the more block pairs are potentially available
for parallel execution. Eventually, the pipelined approach leads to a clear acceleration
of the SBTH algorithm on the GPU but this improvement is smaller than the number
of GPU multiprocessors or block pairs b, being indicators for the maximum theoretical
speed-up. There are multiple reasons for this disparity: First, the number of block pairs

57

6. Results

that could be processed in parallel becomes smaller the larger ν becomes, so the degree
of potential parallelism becomes smaller near the end of the transformation, as discussed
in section 4.3. Second, not all BLAS kernels reside on one single multiprocessor, which
is required for a high degree of concurrent kernel execution as claimed in section 5.3.
Third, there is a considerably large portion of work that cannot be parallelized such as
the kernel invocations and the management on the host. According to Amdahl’s law
[8], this limits the maximum speed-up. Finally, there are BLAS routines impossible to
be simultaneously executed by concurrent kernel execution such as the COPY routine as
indicated in section 6.1.

6.3. Comparison with ELPA

Until now, we have compared our SBTH implementation using different BLAS imple-
mentations for GPUs and varied parameters such as n, d, and pipeline length. In this
section, we compare our implementation with the banded to tridiagonal matrix reduc-
tion method of ELPA [149] also using the SBTH algorithm. ELPA is a distributed
memory parallelized library for the CPU supporting the whole two sub-tasks tridiag-
onalization and backtransformation depicted in figure II.1. Recently [150], kernels for
GPUs were introduced in ELPA but they concentrate on compute-intensive parts such
as transformation from full matrix to banded matrix and backtransformation.

Table 6.3 lists the runtimes of our parallel SBTH implementation in the upper part and
the runtimes of ELPA taken from figure 4.13 in [12] in the lower part. Analogously to the
results in the section 6.2, runtimes of our implementation contain all overhead times but
no times for pre- and post-processing. A common pipeline length of 8 is used for all runs
of our implementation. The ELPA experiments were conducted on the Power6 cluster
of the Max Planck Computing & Data Facility1 (MPCDF) (formerly Rechenzentrum
Garching (RZG)), the same supercomputing center where the Hydra cluster (cf. table
2.5) is located. Each node of the cluster is equipped with 16 IBM Power6 CPUs, each
CPU consisting of two cores. One MPI process is started per core. In the end of 2012,
the cluster was shut down but the results are still suited for a comparison. The test
matrix has size n = 79,872 and bandwidth d = 576. ELPA can do the transformation
in a 1-step or a 2-step tridiagonalization (not to be mistaken with the two sub-tasks
“to banded matrix” and “to tridiagonal matrix”): The 1-step tridiagonalization directly
transforms the input matrix from bandwidth 576 to bandwidth 1. Our GPU implemen-
tation follows this approach. The 2-step tridiagonalization first transforms the matrix
to an intermediate bandwidth before eventually bringing it to tridiagonal shape. ELPA
results use an intermediate bandwidth of 64. Due to a higher degree of parallelism,
the 2-step tridiagonalization performs much better on the GPU, especially for high core
numbers, but not on the GPU. Hence, we compare the tridiagonalization on the GPU
with the 2-step tridiagonalization on the CPU.

The clBLAS version on the FirePro W8000 shows comparable runtimes to ELPA on
32 cores, thus, a whole node of the Power6 cluster. Since our clBLAS version does not

1https://www.mpcdf.mpg.de/

58

https://www.mpcdf.mpg.de/

6.3. Comparison with ELPA

library GPU runtime in seconds

cuBLAS
Tesla K20x 96.5
GTX 750 Ti 104.3
Tesla P100 41.1

MAGMA
Tesla K20x 166.8
GTX 750 Ti 162.3
Tesla P100 77.1

clBLAS
Radeon HD 8670 400.0
FirePro W8000 262.5

number of steps number of CPU cores runtime in seconds

1

32 1431.0
64 683.8
128 382.1
256 345.7

2

32 261.5
64 139.4
128 86.1
256 72.1

Table 6.3.: Runtimes for a n = 79,872, d = 576 problem. The top part of this table
gives the runtimes of our GPU implementations using cuBLAS, MAGMA,
and clBLAS. Five different GPUs are utilized. The pipeline length is 8. The
bottom part gives the runtimes of the corresponding module of ELPA running
on a Power6 cluster using 32, 64, 128, and 256 cores.

achieve any significant speed-up when applying command queues, the runtimes would
still be close if a pipeline length of 1 would be used. Increasing the number of utilized
CPU cores, the runtime of the MAGMA version on the Tesla K20x and the GTX 750
Ti does not differ very much to ELPA on 64 cores. Hence, this combination of BLAS
implementation and GPU is competitive against two nodes of the Power6 cluster. As
shown in the previous section 6.2, the cuBLAS version performs best enabling the Tesla
K20x to have just 12.1% worse performance than ELPA on 128 cores. Finally, the Tesla
P100 running the cuBLAS version can even outperform ELPA on 256 cores taking only
57% of its runtime.

The results show that our SBTH implementation is coequal to the corresponding
module of a state-of-the-art eigenvalue solver in terms of runtime. Both utilize the
SBTH algorithm but are implemented on different computing devices. It is hard to draw
a comparison between the two codes because ours runs on GPUs while ELPA is optimized
for distributed memory clusters and the results for comparison were taken more than
four years ago. However, the Tesla K20x was already available at that time and shows
only slightly worse performance than a setup of four nodes of the Power6 cluster. The
recently released Tesla P100 is even competitive against an eight nodes setup. Two final

59

aspects should be considered in this comparison: First, the scalability of ELPA breaks
down for larger core numbers, beginning from 256 cores. Assuming scalability even at
this level of parallelism, ELPA would outperform the Tesla P100. Second, a distributed
memory parallelized implementation can exploit much more memory than is available on
a single GPU. The matrix processed in this section already requires about 700MBytes of
memory, even with the storage scheme of section 5.4. Auckenthaler can deal with much
larger matrices in [12] such as rp1088 (n = 1,088,092, d = 2964), rt1379 (n = 1,379,917,
d = 4157), and rc1965 (n = 1,965,206, d = 5427), matrices from the field of network
analysis, all being too large for one single GPU.

Concluding part II

We present the SBTH algorithm in chapter 4 and how to implement it on single GPUs
in chapter 5. By delegating operations to BLAS routines, a significant speed-up can be
achieved using concurrent kernel execution. As demonstrated in chapter 6, this leads
to a competitive GPU implementation of the SBTRD routine, an important step in the
determination of eigenvalues.

Although the transformation process of a banded to a tridiagonal matrix using the
SBTH algorithm is memory-bound (it only applies BLAS level 1 and level 2 routines),
the use of GPUs is beneficial. The parallel SBTH algorithm (cf. section 4.3) introduces
an additional level of parallelism, namely a pipelined approach where the tasks in the
pipeline can be executed in parallel. This structure can be mapped to the concurrent ker-
nel execution feature (cf. section 5.3) of GPUs leading to an acceleration of up to 3.70×.
An even higher speed-up is limited by the choice of the BLAS implementation for the
GPU, the programming platform, and overheads originating from the host-controlled
approach we select. Such overheads have a serious share of the total runtime (cf. section
6.1). Delegating work to BLAS routines prohibits improvements such as kernel fusion
and makes enhancements such as caching more complicated. Furthermore, including
already existing BLAS implementations for the GPU may be convenient but hides many
further opportunities for optimization, such as setting the parallel setup manually. Mov-
ing the program control from the host to the device could significantly accelerate the
execution for the cost of flexibility and simplicity. The same holds for writing custom,
hardware-aware kernels. However, our shared memory implementation for GPUs offers
similar performance to the corresponding module of the ELPA library (cf. section 6.3)
running on distributed memory systems and also relying on the SBTH algorithm. This
performance is not solely driven by the pipelined approach of the parallel SBTH algo-
rithm but also by the parallel execution of the particular BLAS routines and the high
memory bandwidth of GPUs. To our knowledge, there is no alternative GPU implemen-
tation of the SBTH algorithm in special or of the SBTRD routine in general, thus, we are
limited to comparisons with CPU implementations.

60

6.3. Comparison with ELPA

Depending on the utilized GPU and library, single GPUs can show equivalent perfor-
mance or even outperform multi-node distributed memory parallel systems. They are
powerful shared memory computing devices, which make sophisticated parallel imple-
mentations using message passing obsolete, even if the problem is not compute-bound.

So far, we deal with only one GPU. The SBTH algorithm can be extended to multiple
GPUs by realizing the distributed memory parallelization approach used in the original
paper [128]. On the one hand, this would enable the processing of larger matrices such
as rp1088, rt1379, and rc1965 because more memory is available. On the other hand,
already the usage of single GPU provides a high degree of computational power. In the
following parts III and IV, multiple GPUs are exploited simultaneously.

61

Part III.

Multiple levels of parallelism to
solve random ordinary differential

equations

63

Mathematical models considering random input are of increasing interest. Fields such
as uncertainty quantification (UQ) [222], the science of quantitative characterization
and reduction of uncertainties, show that such models presently gain much attention
in current research. One further class of such models are random ordinary differential
equations (RODEs), an alternative modeling approach to well-known stochastic ordi-
nary differential equation (SODE) systems, especially in the context of time-dependent
problems.

μn1
(0)

+
n1

(1)

μn1
(2)

+
n1

(3)

n1
(0) n1

(1) n1
(2) n1

(3)

n1
(0) n1

(2)

n1
(2)

μ3n1
(0)

+...+
n1

(3)

μ3n1
(0)

+...+
n1

(3)

μn1
(0)

+
n1

(1)

μn1
(0)

+
n1

(1)

n1
(0)

n1
(0)

μ2n1
(0)

+...+
n1

(2)

Pseudorandom
Number Generation

Ornstein-Uhlenbeck
Process

Averaging Coarse
Timestepping

x0 x3 x6 x9

x1 x4 x7 x10

x2 x5 x8 x11

x0
+...+
x2

x3
+...+
x5

x6
+...+
x8

x9
+...+
x11

x0
+...+
x5

x6
+...+
x11

x0
+...+
x11

Pseudorandom
Number Generation

Ornstein-Uhlenbeck
Process

Averaging Coarse
Timestepping

Pseudorandom
Number Generation

Ornstein-Uhlenbeck
Process

Averaging Coarse
Timestepping

...

...

...

...

M
o
n
te

 C
a
rl

o

GPU 0

GPU 1

GPU N-1

Figure III.1.: This figure illustrates how the four building blocks — generation of random
numbers satisfying normal distribution, realization of the OU process, av-
eraging of the elements of the OU process, and the coarse timestepping —
interact with each other. On every GPU, one realization of the OU process
is computed using different sequences of normal random numbers. In the
end, all solutions from the different GPUs based on different realizations
of the OU process are merged in a Monte Carlo-like manner. This figure
and caption is taken from our contribution [199].

The numerical treatment of RODEs is computationally challenging: We follow a Monte
Carlo approach to tackle RODEs by alternatively solving a massive amount of determin-
istic ordinary differential equations (ODEs). In addition, the numerical solvers applied to
each deterministic ODE require a very fine sub-sampling to achieve a reasonable order of
convergence. Every sub-sampling step is associated with the realization of a normally dis-
tributed random variable making the whole solution process computationally extremely

65

demanding. However, this kind of solution offers multiple ways for parallelization mak-
ing it very interesting for GPU-equipped clusters. We map the various possibilities for
parallelization on the multiple levels of parallelism of GPU clusters, namely two levels
of parallelism per GPU and an extra level of parallelism by applying numerous GPUs in
parallel.

This endeavor leads to a workflow consisting of four consecutive building blocks to
solve arbitrary RODEs. The idea of four building blocks has been first presented in our
contribution [199] being the first attempt to generalize the solution process of RODEs.
Each building block represents a major algorithmic and computational task. Figure
III.1 depicts the interaction between the four building blocks to solve an RODE for one
particular realization of the underlying stochastic process and the Monte Carlo approach
for a variety of realizations. While the first building block deals with the generation of
normally distributed random numbers, building block two consumes these numbers to
realize different paths of the Ornstein-Uhlenbeck (OU) process, the elemental stochastic
process of RODEs. Most of the accomplishments in the context of random number
generation on GPUs has been published by us in [197, 198] and we follow the structure
of these two publications. One of the most significant achievements is the parallelization
of the OU process. The third building block averages large sub-sequences of an OU
process path eventually plugged in the coarse timestepping solver representing the fourth
building block. Building blocks one to three are not specific for a particular RODE, not
even limited to RODEs in general, but are also relevant for other fields. Only the final
building block has to be adapted to a specific application. So our implementation of the
first three building blocks can also be utilized in a library-like way. Thus, this work is
relevant not only in the context of RODEs but also for other fields or approaches that
rely on the efficient generation of normally distributed random numbers or the efficient
solution of the popular OU process. All four building blocks are parallelized on the GPU
using up to two levels of parallelism being mapped to the two levels of parallelism of
a GPU. Every GPU performs the four building blocks for a distinct realization of the
OU process. To obtain the overall solution, i.e. the solution of the RODE, the expected
value of the path-wise solutions from the particular GPUs has to be determined in a
Monte Carlo-like manner. This is the only point where global communication is required.
Until this point, the GPUs can run totally independent from each other. Basing on this
property, excellent values for parallel speed-up and, thus, parallel efficiency are expected
and achieved because the workload per GPU is constant and equal during the entire
runtime. Hence, the actual challenge lies in the parallelization of the building blocks.

Extra levels of parallelism could be introduced, e.g. by utilizing parallelization in
time [21, 81]. However, we restrict ourselves to the above-mentioned three levels of
parallelization, thus, parallelization in time is not part of this thesis. There are also
efforts to solve stochastic differential equations (SDEs) on GPUs [112, 66]. In this thesis,
we limit ourselves to the treatment of RODEs.

RODEs are the central mathematical object of this subsequent part. They are a spe-
cial type of general differential equations running through this thesis as a golden thread.
Additionally, this part covers further aspects of GPU programming. Due to the intrinsic

66

multi-level parallelism, solving RODEs simultaneously on multiple GPUs makes sense.
For all four building blocks, custom GPU kernels are developed and analyzed. They are
either latency- or memory-bound. However, GPUs fit very well to the computational
tasks as shown in the building block’s specific chapters 7 to 11. Accordingly, we not
just present an HPC implementation to solve RODEs but introduce the first attempt to
solve RODEs in a reasonable scale. This allows to derive insight for real-world problems
as shown in section 12.4. Computations are only carried out on the GPUs. The com-
putational capacities of the CPUs in the corresponding GPU cluster are not considered
and communication between GPUs is realized via MPI.

The notation from previous part II does not apply to the following part III. Some of
the identifiers are reused but with a different meaning. All kernels are written in CUDA,
thus, all analysis and benchmarking is carried out on NVIDIA GPUs. However, none
of the algorithmical aspects is limited to CUDA or NVIDIA hardware but can also be
adopted to other GPUs in particular and parallel computing devices in general. For
benchmarking of the random number generation, the OU process, and the averaging,
the Tesla M2090, the Tesla K40m, and the GTX 750 Ti are used. Every GPU represents
another GPU architecture (Fermi, Kepler, and Maxwell) and the potential performance
ranges from mid-range consumer hardware (GTX 750 Ti) to high-end professional prod-
ucts (M2090 and Tesla K40m). Incorporating the Monte Carlo approach, our RODE
solver is tested in its entirety on the three GPU clusters JuDGE, Hydra, and TSUB-
AME2.5. Technical details for the three GPUs are listed in table 2.1 and for the three
clusters in table 2.5. The benchmarks of the OU process, the averaging, and lastly the
entire RODE solver are carried out in single and double precision. Just the benchmarks
of the random number generation are restricted to single precision.

The remainder of this part is structured as follows: Before discussing the four building
blocks in detail, we provide an introduction to RODEs in chapter 7. This includes a
conceptional discussion of RODEs, their mathematical relation to SODEs, and a listing
of numerical schemes to reasonably solve RODEs. The four building blocks derive from
the numerics for RODEs. Throughout this work, we apply the Kanai-Tajimi (KT)
earthquake model as an example RODE also introduced in chapter 7. Afterwards, each of
the four building blocks is assigned to a dedicated chapter beginning with the generation
of normally distributed pseudorandom numbers in chapter 8. The parallelization of the
OU process is demonstrated in chapter 9, and chapter 10 deals with various methods to
average sequences of values essential for the RODE solvers. Since the first three building
blocks are not only relevant in the context of RODEs but can be used as separate modules
for other applications, they are individually benchmarked in the corresponding chapter.
Thus, chapters 8 to 10 are concluded each by a separate results section evaluating the
performance on single GPUs. This does not hold for the final building block chapter
11 dealing with the application of the actual numerical solver because it is application-
specific. Finally, chapter 12 concludes this part by evaluating the interplay of all four
building blocks, the Monte Carlo approach, its scalability on three GPU clusters, and
its statistical properties.

67

7. Random ordinary differential equations

In this chapter, we first review the concept of RODEs, their relation to UQ, and their
connection to the more prominent SODEs in section 7.1. Afterwards, we introduce
the KT earthquake model for ground motion under earthquake excitations in section
7.2. The KT earthquake model is the RODE application being used in this thesis
for demonstration. Finally, we present several low- and high-order numerical schemes
essential to deal with RODEs in section 7.3.

This chapter does not contain any new concepts or ideas in the context of RODEs.
Instead, we recapture work from various contributors, being cited at the corresponding
positions, to build a solid foundation for the subsequent chapters of part III. For the
sake of a compact presentation, we only focus on aspects relevant for our multi-GPU
implementation to solve RODEs and the relation of the mathematical foundations to the
four building blocks. Further material, for example a detailed mathematical discussion,
is provided in [51, 173]. We use the notation from [173, 172].

7.1. Random & stochastic ordinary differential equations

In UQ, a number of input parameters are represented by a random distribution. A
particular value combination of the input parameters leads to a corresponding smooth,
distinct solution, similar to the deterministic case [222]. In contrast to such UQ problems,
a variety of non-smooth problems with stochastic input in the form of stochastic processes
exist. Such problems are typically formulated as SODEs or stochastic partial differential
equations (SPDEs). The solutions of such SODEs and SPDEs are again non-smooth
stochastic processes.

RODEs are less prominent than the well-known, white noise driven, SODEs [114]
but they offer some nice and conveniant features: They are immediately applicable to
additive white noise excited systems, naturally model capacity of real processes, and,
most important, provide a conceptually easier formalism. In addition, there are new
numerical methods with high convergence rates for RODEs discussed in more detail in
section 7.3. Hence, RODEs represent an interesting alternative for modeling random
behavior in real-world problems.

An SODE can be disassembled in a stochastic, white-noise driven part, called diffusion,
and a deterministic part, called drift :

dXt = a(Xt, t)︸ ︷︷ ︸
drift (deterministic)

dt+ b(Xt, t)︸ ︷︷ ︸
diffusion (stochastic)

dWt

with Wt the standard Wiener process and a and b sufficiently well-defined, progressively

69

7. Random ordinary differential equations

measurable functions with respect to the filtration generated by Wt. The solution Xt

represents a stochastic Markovian diffusion process that is as well adapted to the filtra-
tions of the Wiener process. See [211] for more details. Solving SODEs is challenging
since it requires considerable mathematical effort such as Itô’s calculus [118, 201]. Itô’s
calculus extends the methods of calculus to stochastic processes and typically results in
low-order numerical schemes.

An alternative approach are RODEs. Let (Ω,A,P) be a probability space, I = [t0, T] ⊆
R+

0 an interval, and X : I × Ω → Rd an Rd-valued stochastic process with continuous
sample paths. Then, an RODE is defined as

dXt

dt
= f(Xt(·), t, ω), Xt(·) ∈ Rd (7.1)

with a continuous function f : Rd×I×Ω→ Rd. Xt is a stochastic process on the interval
I and is called path-wise solution of RODE (7.1). For (almost) every fixed realization
ω ∈ Ω of the driving stochastic process Xt, the RODE (7.1) turns into a deterministic,
non-autonomous ODE

ẋ =
dx

dt
= Fω(x, t), x := Xt(ω) ∈ Rd. (7.2)

To cover the statistics of the solution of RODE (7.1), a lot of solutions of the determin-
istic ODE (7.2) in the sense of, e.g., Monte-Carlo with different ω ∈ Ω are necessary.
This set of different realizations introduces one level of parallelism in our RODE solver
implementation because for every particular ω, the corresponding ODE can be treated
totally independently.

An SODE allows a path-wise solution if, for example, the drift a and diffusion b are
globally Lipschitz-continuous functions. If an SODE is finite-dimensional and allows
a path-wise solution, the SODE can be transformed into an RODE by using the Doss-
Sussmann/Imkeller-Schmalfuss (DSIS) correspondence explained in [225, 110, 114]. This
results in a change of the driving stochastic process from the white noise of the SODE
into, typically, a stationary OU process for the RODE, cf. [110, 109]. The DSIS corre-
spondence also allows a transformation in the opposite direction, namely from an RODE
to an SODE. Simple examples for both directions are given in [114]. To demonstrate
the DSIS correspondence, we use the KT earthquake model in the next section.

7.2. The Kanai-Tajimi earthquake model

Throughout this part of the thesis, we use a model proposed by Kanai [116, 117] and
Tajimi [227] which is a simple but still decently sophisticated approach to obtain ground
excitations induced by earthquakes. It describes the earth’s crust as one layer repre-
sented by a damped mass-spring-like system. The mass-spring is excited by an white-
noise driven event propagating from the bottom to the top of the system. This is a
serious simplification of the geology but due to Snell’s law of refraction, the direction of
propagation of seismic waves is almost vertically upward if the source of an earthquake

70

7.2. The Kanai-Tajimi earthquake model

is reasonable deep [140]. The KT model does not model a single event in time start-
ing the earthquake but the white-noise driven source continuously excites the system.
For high frequencies, the KT model displays the characteristic properties of earthquakes
quite well, whereas for low frequencies inaccuracies occur [187]. The solution of the KT
model is an acceleration üg(t) affecting, for example, ground-bound structures such as
buildings. Thus, u̇g(t) gives the velocity of the ground for a certain point in time t and
ug(t) the corresponding position of the point inducing the excitation. In this section, we
introduce the KT model in its SODE form and show how to transform it to an RODE
via the DSIS. Along the way, we define the OU process and offer a timestepping method
to numerically solve it.

The SODE formulation of the KT model with ground acceleration üg(t) has the fol-
lowing form:

üg = ẍg + ξt = −2ζgωgẋg − ω2
gxg,

where ζg and ωg are parameters representing the geological conditions of the ground.
Housner [106] suggests ζg = 0.64 and ωg = 15.56 rads representing stable and solid ground
conditions. We apply these values in our implementation. ξt is a stochastic process
describing zero mean Gaussian white noise. Langtangen discusses a certain stochastic
oscillator model in [130]. xg represents the solution of such a stochastic oscillator driven
by ξt. Solving the KT SODE for ξt gives

− ξt = ẍg + 2ζgωgẋg + ω2
gxg, xg(0) = ẋg(0) = 0. (7.3)

According to previous section 7.1, Wt denotes a Wiener process. Using Wt, the OU
process Ot can be expressed via the SODE

dOt = −1

τ
Ot dt+

√
c dWt (7.4)

with parameters τ and c representing the diffusion and relaxation times of the OU
process. We set τ = c = 1 in this work but our implementation supports arbitrary τ and
c, as well as arbitrary ζg and ωg. Expected value and variance for the OU process are
given in [62]. According to [87], the OU process can be numerically exactly integrated.

With a (coarse) timestep size h, µX = e−
h
τ , and σX =

√
cτ
2 (1− µ2

X), the exact solution

of (7.4) is
Ot+h = Ot · µX + σX · n1. (7.5)

n1 is a sample from normal distribution N (0, 1) with zero mean and variance 1. The
realization of such a sample on a computer consumes a considerable amount of runtime,
hence, chapter 8 deals with implementations of this operation on GPUs forming the first
building block. Moreover, the realization of the OU process (7.5) is strictly sequential.
Its parallelization leads to the second building block explained in chapter 9.

With the OU process (7.4), the SODE (7.3) can be reformulated as a first-order RODE
system via the DSIS correspondence:

(
ż1

ż2

)
=

(
−(z2 +Ot)

−2ζgωg(z2 +Ot) + ω2
gz1 +Ot

)
(7.6)

71

7. Random ordinary differential equations

with Z = (z1, z2)T ∈ R2. The transformation is demonstrated in more detail in [173].

In the now following section, we provide low- and high-order schemes to numerically
solve (7.6).

7.3. Numerical schemes for RODEs

Classical solvers for ODEs such as Euler, Heun, or Runge-Kutta schemes in general can
also be applied to deal with path-wise RODEs (7.2) in general and thus, also with the
KT RODE (7.6) in special. However, such solvers suffer a considerable decrease in their
order of convergence if applied to path-wise RODEs, more precisely, the convergence lies
in order of O(h

1
2). Due to the stochastic process ξt, the right-hand side of the KT RODE

(7.6) is only continuous or at most Hölder continuous but not differentiable in t. Hence,
the right-hand side is not smooth leading to the decrease in the order of convergence.
Therefore, various solvers for path-wise RODEs have been developed [122, 92]. In this
section, we present two classes of path-wise RODE solvers. First, averaged schemes are
introduced in subsection 7.3.1 followed by the higher-order K-RODE-Taylor schemes in
subsection 7.3.2. We conclude this section with a short discussion on the correct choice
of a particular solver in subsection 7.3.3.

7.3.1. Averaged schemes

In principle, averaged schemes are simply modified classical solvers such as Euler and
Heun using averaged values of the right-hand side of (7.6). Consequently, this leads to
the averaged Euler and averaged Heun schemes.

Let us consider the family of RODEs with separable vector field

dx

dt
= Fω(t, x) := G(t) + g(t) ·H(x). (7.7)

H : Rc → Rc is an at least once continuously differentiable function, g : [0, T]→ R, and
G : [0, T]→ Rc. Separating the right-hand side of (7.6) according to (7.7),

Fω(t, Z) =

(
−(z2 +Ot)

−2ζgωg(z2 +Ot) + ω2
gz1 +Ot

)

leads for example to

G(t) := −Ot
(

1
2ζgωg − 1

)
(7.8a)

g(t) := 1 (7.8b)

H(Z) := −
(

z2

2ζgωgz2 − ω2
gz1

)
(7.8c)

with c = 2 and shows that g and H are only deterministic parts while G incorporates
the OU process.

72

7.3. Numerical schemes for RODEs

h

︸ ︷︷ ︸

︷ ︸︸ ︷δtn tn+1

Figure 7.1.: Subdivision of the interval [tn, tn+1] with length h in M = 6 sub-intervals of
length δ. This figure is taken from [172].

The underlying idea of the averaged schemes is to apply a classical explicit step with
timestep size h = tn+1 − tn to (7.7) and substituting G and g with averaged values
Ḡ and ḡ. n denotes the n-th interval [tn, tn+1] of discretized time [0, T]. Ḡ and ḡ
are obtained by using a considerably finer discretization in time to compensate for the
reduced smoothness of the stochastic processes. Hence, the time interval [t, t + h] is
subdivided in M sub-intervals of length δ = h

M as depicted by figure 7.1.
The application of the explicit Euler scheme to (7.7) results in

yn+1 = yn + h · Fω(tn, yn).

The single-averaged values ḡ
(1)
h,δ(t) and Ḡ

(1)
h,δ(t) defined as

ḡ
(1)
h,δ(t) =

1

M

M−1∑

j=0

g(t+ jδ) (7.9a)

and

Ḡ
(1)
h,δ(t) =

1

M

M−1∑

j=0

G(t+ jδ) (7.9b)

are used as the averaged values Ḡ and ḡ. Applying (7.8a) to (7.9b) leads to (10.1) in
section 10.1 in the chapter of the third building block. As result, we get for the averaged
Euler scheme the explicit iteration rule

yn+1 := yn + h


 1

M

M−1∑

j=0

G(tn + j · δ) +H(yn) · 1

M

M−1∑

j=0

g(tn + j · δ)


 . (7.10)

Like the explicit Euler method for ODEs, the averaged Euler scheme for path-wise
RODEs (7.10) possesses an order of convergence of 1 [92] if M , i.e. the number of sub-
samples, is chosen correctly.

Analogously, the explicit Heun method can be modified to the averaged Heun method.
The application of the explicit Heun scheme to (7.7) results in

yn+1 = yn + h · 1

2


Fω(tn, yn) + Fω(tn+1, yn + h · Fω(tn, yn)︸ ︷︷ ︸

averaged Euler

)


 .

73

7. Random ordinary differential equations

Hence, two evaluations of the right-hand side Fω are necessary being still considered to

be separable. In addition to the single-averaged functions ḡ
(1)
h,δ(t) and Ḡ

(1)
h,δ(t), double-

averaged functions ḡ
(2)
h,δ(t) and Ḡ

(2)
h,δ(t) are necessary, defined as

ḡ
(2)
h,δ(t) =

2

M2

M−1∑

i=0

i∑

j=0

g(t+ j · δ) =
2

M2

M−1∑

j=0

(M − j) · g(t+ j · δ) (7.11a)

and

Ḡ
(2)
h,δ(t) =

2

M2

M−1∑

j=0

(M − j) ·G(t+ j · δ). (7.11b)

Applying (7.8a) to (7.11b) leads to (10.2) in third building block’s section 10.1. Accord-
ingly, the iteration rule for the averaged Heun method for the RODE (7.7) is

yn+1 := yn +
h

2


Ḡ

(1)
h,δ(tn) +H(yn) · ḡ(1)

h,δ(tn)
︸ ︷︷ ︸

Fω(yn,tn)

+

+ Ḡ
(1)
h,δ(tn) +H

(
yn + h

(
Ḡ

(2)
h,δ(tn) +H(yn) · ḡ(2)

h,δ(tn)
))
· ḡ(1)
h,δ(tn)

)
.

(7.12)

In contrast to the averaged Euler scheme (7.10), we do not substitute the single- and
double-averaged values for clarity. Again, if M is chosen correctly, the averaged Heun
scheme for path-wise RODEs (7.12) and the explicit Heun scheme possess the same order
of convergence, namely 2 [92].

The correct sub-interval length δ = h
M , in the following also called sub-step size or fine

timestep size, for the averaged Euler method depends linearly on h, thus, δ = h · h = h2

and and M =
⌈

1
h

⌉
. Hence, the sub-step size is significantly smaller than the coarse

timestep size h (for h < 1). For the averaged Heun method, the fine timestep size
is even two orders of magnitude smaller than for the averaged Euler method, i.e. δ
depends cubic on h. This leads to δ = h · h3 = h4 and and M = 1

h3
for the averaged

Heun method. Due to the required sub-sampling, the averaged values introduce a severe
increase in computational effort. This increase suggests the usage of GPUs to solve
path-wise RODEs.

Plugging the single- and double-averaged values in the numerical solver is the task
of the final building block presented in chapter 11. For the averaged Euler and Heun
method, this process is demonstrated in section 11.1.

7.3.2. K-RODE-Taylor schemes

K-RODE-Taylor schemes are a class of solvers for RODE initial value problems de-
rived by Jentzen [114] and Kloeden [122] providing arbitrary order of convergence K,
converging for each K > 0 and having a global discretization error of K − 1. Hence,

74

7.3. Numerical schemes for RODEs

K-RODE-Taylor schemes can also be used as high-order schemes. They base on Taylor
expansions of the right-hand side function f of

dx

dt
= Fω(t, x) := f(ω(t), x), x(t0) = x0

in the smooth directions of variables Xt and ω for (almost) all ω ∈ Ω. Their flexibility
for arbitrary K comes at the price of a slightly more complex notation and evaluations.
First, we describe the K-RODE-Taylor schemes in their general form before we adapt
them for the KT model in section 11.2.

Let α = (α1, α2) ∈ N2
0 be a multi-index with magnitude |α| := α1+α2 and α! := α1!α2!.

The magnitude can be generalized by a weight θ ∈ ()0, 1] such that |α|θ := θα1 +α2 and
for each K ∈ R+ with K ≥ |α|θ, let |α|Kθ := K−|α|θ. The underlying stochastic process
determines the correct choice of θ. It is set to the supremum of the Hölder coefficients of
the process’ sample paths. In our case of RODEs, θ = 1

2 because the underlying process
is the OU process (7.4). With K being the order of (the local error of) the scheme, we
can define the sets of multi-indices

AK :=
{
α = (α1, α2) ∈ N2

0 : |α|θ = θα1 + α2 < K
}
.

The multi-index is introduced due to the Taylor expansion of f in directions Xt and
ω. So, let partial derivatives with respect to the multi-index be denoted by fα :=
(∂1)α1(∂2)α2f , with f0 = f . The K-RODE-Taylor scheme can be expressed via the
explicit iteration rule

yK,hn+1 := yK,hn +
∑

α∈AK

N (K)
α (tn+1, tn, y

K,h
n) (7.13)

with

N (K)
α (tn+1, tn, yn) :=

1

α!
fα(ω(tn), yn)

∫ tn+1

tn

(∆ωs)
α1

(
∆M

(|α|Kθ)

∆s (tn, yn)
)α2

ds, (7.14a)

∆M
(`)
h (tn, yn) :=

∑

α∈A`

N (`)
α (tn+1, tn, yn), (7.14b)

∆ωs := ω(s)− ω(tn),

and

∆s = s− tn.

Note the superscripts K and h of the numerical solution yK,hn being used to distinguish
solutions of different order of convergence. As visible in (7.14a) and (7.14b), the defini-

tion of the K-RODE-Taylor scheme (7.13) is recursive because the term ∆M
(|α|Kθ)

∆s is of
order |α|Kθ = K − |α|θ < K.

Since the derivation of specific K-RODE-Taylor schemes for concrete K requires con-
siderable effort due to the recursivity, especially for larger K, we provide the explicit

75

7. Random ordinary differential equations

iteration rules for K = 1, 3, and 4. The formulas for K = 3 and 4 are taken from [188].
With ∆Os := Os −Otn , the 1-RODE-Taylor scheme is

y1,h
n+1 = y1,h

n + hf(Otn , z) + f(1,0)(Otn , z)

∫ tn+1

tn

∆Osds,

and the scheme for K = 3 reads

y3,h
n+1 = y3,h

n + hf + f(1,0)

∫ tn+1

tn

∆Osds

+
h2

2
f(0,1)f + f(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∆Ovdv ds

+
h3

6
f2

(0,1)f + f2
(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∆Owdw dv ds. (7.15)

In the case of order K = 4, the corresponding K-RODE-Taylor scheme includes two
additional terms and has the form

y4,h
n+1 = y4,h

n + hf + f(1,0)

∫ tn+1

tn

∆Osds

+
h2

2
f(0,1)f + f(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∆Ovdv ds

+
h3

6
f2

(0,1)f + f2
(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∆Owdw dv ds

+
h4

24
f3

(0,1)f + f3
(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∫ w

tn

∆Oxdx dw dv ds. (7.16)

Most of the K-RODE-Taylor schemes contain multiple integrals, for example (7.15)
and (7.16). The multi-integrals can be rewritten as

∫ tn+1

tn

∫ xd

tn

∫ xd−1

tn

. . .

∫ x1

tn

g(z)dz dx1 . . . dxd =

∫ tn+1

tn

1

d!
(tn+1 − z)dg(z)dz (7.17)

which strongly simplifies the integration. Equivalence of left- and right-hand side of
(7.17) is shown in [114]. The simplified multi-integral (7.17) can be approximated via a
quadrature rule. It does not make sense to use a high-order quadrature rule because the
stochastic process involved in f is typically only continuous. Thus, a low-order quadra-
ture rule is sufficient. There are numerous candidates such as trapezoidal sums but we
realize the approximation via Riemann sums. Then, the single integral is approximated
via ∫ tn+1

tn

1

d!
(tn+1 − z)dg(z)dz ≈ δ

M∑

j=1

1

d!
(tn+1 − zj)dg(zj) (7.18)

with zj := tn + jδ. Evaluating the quadrature rule in parallel represents the third
building block for the K-RODE-Taylor scheme demonstrated in section 10.2.

76

7.3. Numerical schemes for RODEs

Similar to the averaged Euler and Heun scheme, M has to be chosen properly to
achieve the desired order of convergence K. Here, the fine timestep size depends to the
power of K on the coarse timestep size h, thus, for K = 1, δ = h ·h1 = h2 and M =

⌈
1
h

⌉
.

Analogously, for K = 3, δ = h · h3 = h4 and M =
⌈

1
h3

⌉
and for K = 4, δ = h · h4 = h5

and thus M =
⌈

1
h4

⌉
. The enormous degree of sub-sampling leads to an extremely high

computational load which can be tackled by GPUs.

7.3.3. Remarks on numerical schemes

To conclude this section, we would like to take up a discussion raised in [92, 172] concern-
ing the choice of the numerical scheme in dependence of the number of fine timesteps.
Both, the averaged schemes in subsection 7.3.1 and the K-RODE-Taylor schemes in
subsection 7.3.2 require for every coarse timestep of length h several fine timesteps of
length δ. For the averaged schemes, G and g have to be evaluated at the fine timesteps
to retrieve single- ((7.9a) and (7.9b)) and double-averaged ((7.11a) and (7.11b)) values.
Similarly, the K-RODE-Taylor schemes require a fine evaluation of f for the numerical
quadrature rule, e.g. (7.18). Actually, both schemes calculate some sort of mean value.
To obtain a certain order of convergence, δ has to be chosen properly. Let us assume
we want to solve a path-wise RODE with an absolute error of order O(10−4). If we use
the averaged Euler method, we have to choose h = 10−4 and, thus, δ = 10−8. Using
the averaged Heun method instead leads to h = 10−2 and, thus, δ = 10−8. The explicit
Euler method (without sub-sampling) with its order of convergence of 1

2 could also be
used with h = 10−8. Finally, the 3-RODE-Taylor scheme would also do the job with
h = 10−1 and δ = 10−8. All four methods need the same amount of sub-samplings
because all δ are the same order of magnitude. The best choice for such a scenario are
higher order schemes as stated in [92]. Higher order schemes allow a larger choice of h
and, thus, less evaluations of the whole right-hand side are necessary. In addition, it
is easier to compute the averages and Riemann sums, respectively, instead of applying
classical explicit schemes.

77

8. Building block 1:
Pseudo random number generation

Various applications of Computational Science and Engineering (CSE) essentially rely on
random numbers. Many models incorporate the realization or approximation of stochas-
tic processes and Monte Carlo sampling, both holding for RODEs. Furthermore, fields
such as performance modeling and cryptography fundamentally depend on random num-
bers. There are several sources for random numbers. Real randomness can be sampled
from suited physical processes, for example from radioactive decay. Such physical pro-
cesses suffer in general from low generation rates, thus, the amount of random numbers
per time is low. Another, very popular, source for random numbers are pseudorandom
number generators (PRNGs) [85]. PRNGs are deterministic rules generating sequences
of random numbers which can be implemented on computers [41, 132]. Thus, PRNGs
do not generate real randomness but random numbers fulfilling certain statistical crite-
ria [143]. For simplicity, we omit the term pseudo in the following even if we restrict
ourselves to pseudo random numbers.

There are a lot of PRNG categories each comprising numerous generators satisfy-
ing different statistical distributions (uniform, normal, exponential, etc.) with diverse
capabilities, properties, and characteristics [133, 70, 229]. Almost all PRNGs produce
uniformly distributed random numbers, in the following called uniform random numbers
and analogously normal, exponential, etc. random numbers. If a random number from
another distribution is required, an uniform random number is generated first and af-
terwards transformed to the desired distribution by a corresponding operation. In most
cases, such operations try to approximate the inverse cumulative distribution function
(CDF) of the aimed distribution. Examples to directly approximate the inverse nor-
mal CDF are given in, e.g. [47, 196]. Hence, generating random numbers complying
non-uniform distributions is in most cases a two stages process. There are exceptional
generators directly generating random numbers of a certain distribution but they are
quite exotic and uncommon. The combination of uniform random number generation
followed by transformation to target distribution is also called PRNG even if it is not
a single step assimilation. In our implementations of such PRNGs, we always fuse the
generation of the uniform random number and its transformation in one single kernel.

In this work, normal random numbers are required due to the solution of the OU pro-
cess (7.5). So we focus on the generation of normal random numbers representing the
first building block of our RODE HPC implementation and leaving out the generation
of uniform random numbers. High-performance implementations of uniform generators,
especially for GPUs, can be found in [23, 134]. The PRNGs introduced in this chapter
are not necessarily limited to normal distribution: Every time one of the treated PRNGs

79

8. Building block 1:
Pseudo random number generation

is also capable to deal with other distributions, we mention this fact accordingly. There
is already much experience in optimizing PRNGs, especially for CPUs. Yet when it
comes to GPUs, alternative and lesser known generators fitting well on the accelerator’s
hardware are promising. Hence, we deal with three uncommon PRNGs which are typi-
cally not considered the first choice when it comes to the generation of normal random
numbers due to their difficult implementation, high complexity, and bad performance
because of immense computational intensity. In contrast to CPUs, these properties can
be partly beneficial on GPUs. The three investigated PRNGs are the Ziggurat method,
rational polynomials to approximate the inverse CDF of the normal distribution (in the
following just called rational polynomials), and the Wallace method. We are not intro-
ducing any newly developed generators, and this chapter is also not a broad overview
on general PRNGs. The three mentioned methods are optimized for GPUs exploiting
intrinsic properties of the particular PRNGs making them competitive against or even
superior to well established normal PRNGs on CPU and GPU. Results of this endeavor
are published by us in [197, 198] and we transfer the articles’ structure to this chapter.
Statistical properties of PRNGs can be experimentally checked with test batteries such
as Diehard [153] or TestU01 [135, 136]. Investigating those is, however, not within the
scope of this thesis. A discussion on popular methods such as Mersenne Twister [159],
Polar [155], and Box/Muller [38] in the context of GPUs is provided by us in [200] but
is not content of this chapter.

The common parallelization approach for PRNGs is not to parallelize the generation
of a single continuous sequence of random numbers but to assign one (sub-) sequence
to every thread. Ergo, parallelizing a PRNG means generating multiple sequences in
parallel. From a statistical point of view, that is not a problem at all because interleaved
(sub-) sequences of random numbers are as random as concatenated (sub-) sequences
of random numbers. There are also approaches to cooperatively work on one single
sequence of random numbers called counter-based PRNGs [207, 58].

There is a dedicated section for every considered normal PRNG in this chapter: The
setup and function of the Ziggurat method as well as its encouraging memory/runtime
trade-off are explained in section 8.1. Together with rational polynomials discussed in
section 8.2, they are representatives of transformation functions depending on a source
of uniform random numbers. This does not hold for the Wallace method in section 8.3:
It is a method to directly obtain normal random numbers without a preceding step.
Section 8.4 concludes this chapter with benchmark and profiling results of the presented
PRNGs and draws a comparison with state-of-the-art library functions for CPUs and
GPUs. We suspend the notation for RODEs introduced in previous chapter 7 for this
chapter because we reuse some of the identifiers.

8.1. The Ziggurat method

The Ziggurat method is a rejection method also used in MATLAB for its normal PRNG1.
It is named after Ziggurats, massive buildings having the form of a terraced step pyramid

1https://de.mathworks.com/company/newsletters/articles/normal-behavior.html

80

https://de.mathworks.com/company/newsletters/articles/normal-behavior.html

8.1. The Ziggurat method

of successively receding levels. In the best case, it realizes the transformation from uni-
form to normal distribution with just one table lookup and one multiplication. However,
in all other cases, the transformation becomes much more expensive by evaluations of
sqrt(), exp(), and log() or a restart of the method. Via a memory/runtime trade-off
it is possible to increase the likelihood of the cheap cases making the Ziggurat method
an interesting candidate for GPUs. It is not only capable to transform from uniform to
normal distribution but to transform to every distribution with decreasing probability
density function (PDF) such as the exponential distribution.

Marsaglia et al. first proposed the Ziggurat method in the original paper [156]. Over
time, the method was improved in terms of simplicity and performance with the latest
version presented in [157] building the base for our GPU implementation. We focus
on the implementation and optimization for GPUs but a discussion on the statistical
properties of the Ziggurat method can be found in [72, 138]. There are already sev-
eral successful attempts to implement the Ziggurat method on various special purpose
hardware, mainly on Field Programmable Gate Arrays (FPGAs). Examples of these
attempts can be found in [256, 74, 67]. Thomas et al. present in [228] an extensive
survey on several, also massively parallel architectures where the Ziggurat method turns
out to be the best choice on CPUs but not on GPUs. We come to a different conclusion
as shown in section 8.4. The memory/runtime trade-off is also exploited by Buchmann
et al. [50] for their cryptosystem application but their implementation is limited to a
normal distribution for integers.

The structure and notation of this section follows [197]. First, we introduce a Ziggurat-
shaped approximation of the area under the normal distribution’s PDF in subsection
8.1.1. This approximation is used for the transformation from uniform to normal distri-
bution in subsection 8.1.2 detailing on cheap and expensive cases. Hence, the Ziggurat
method requires uniform random numbers as input. The setup of the approximating
Ziggurat is non-trivial, thus, we explain its construction in subsection 8.1.3. Finally,
subsection 8.1.4 illustrates how the likelihood for cheap and expensive cases can be
altered via the memory/runtime trade-off.

8.1.1. Definition of the Ziggurat

Figure 8.1 depicts how the Ziggurat approximates the area under the Gaussian function

f(x) = e−
x2

2 for x ≥ 0. The Ziggurat consists of N vertically stacked, axis-aligned strips.
f is the PDF of the normal distribution and N can be an arbitrary number ≥ 2. There
are two different kinds of strips: On the one hand, there are N − 1 rectangular shaped
strips Ri, i = 0, . . . , N − 2, in the following simply called rectangles. On the other hand,
there is one single base strip RN−1 = RB having a different shape and hatched from
bottom left to top right in figure 8.1. The rectangles R0, . . . , RN−2 are bounded from
the left by x = 0, from the right by xi+1, and from the bottom and top by yi and yi+1,
respectively, with f(xi) = yi and 0 = x0 < x1 < . . . < xN−1 = r. The base strip RB is
bounded from the left by x = 0, from the right by f(x), from the bottom at y = 0, and
from the top at y = yN−1. v denotes the common area of every single strip Ri, so all

81

8. Building block 1:
Pseudo random number generation

x0

x7 =ry6

R6

x6y5

R5

x5y4

R4

x4y3

R3

x3y2

R2

x2y1

R1

x1y0

R0

y7

R7 =RB

Figure 8.1.: Eight strips (seven rectangles and one base strip (hatched from bottom left
to top right)) forming a Ziggurat. Central regions are not hatched, tail
regions are hatched with diagonal crosses, and cap regions are hatched from
bottom right to top left. This figure is taken from our contribution [198].

strips have the same area, even the non-rectangular RB. All rectangles R0, . . . , RN−2 are
further subdivided in three regions: The central region of Ri is an axis-aligned rectangle
with upper-left corner (0, yi) and lower right corner (xi, yi+1). R0 does not have such
a central region because x0 = 0. Ri’s tail region is bordered by x = xi from the left,
y = yi+1 from the bottom, and f from right and top, thus, tail regions are no rectangles.
Finally, Ri’s cap region is the part of Ri which is not covered by the central and tail
region, thus, bordered by f from left and bottom, from right by x = xi+1, and from
y = yi from top. While the central and tail region lie completely below the PDF, the
cap region lies completely above it. Central regions are not hatched, tail regions are
hatched with diagonal crosses, and cap regions are hatched from bottom right to top
left in figure 8.1. Consequently, the union of the three regions results in the rectangles
R0, . . . , RN−2.

8.1.2. Algorithmic description of the Ziggurat method

Algorithm 5 outlines the Ziggurat method. For the transformation of a uniform integer
random number uuniform

int and its normalized floating-point value uuniform
float ∈ [0, 1], respec-

tively, to a normal random number, unormal, uuniform
int is used in two different ways: First,

obviously, uuniform
int is the random number being transformed. Second, it is used to ran-

domly select one particular strip Rk. If the number of strips of the Ziggurat N is chosen
as a power of 2, thus N = 2n, then the selection of a strip Rk can be done in a very
efficient way by using the n least significant (or any other) bits of uuniform

int . The selected
strip has index k (line 4). Depending on uuniform

int , one of the following four cases can
occur:

82

8.1. The Ziggurat method

Algorithm 5 The Ziggurat method

1: procedure ziggurat(n, r)
2: uuniform

int ← uniform integer number
3: uuniform

float ← normalized uuniform
int

4: k ← uuniform
int &(2n − 1) . select a strip

5: if uuniform
float ≤ xk

xk+1
then . central

6: unormal ← uuniform
float · xk+1

7: return unormal

8: else
9: while true do

10: if k = N − 1 then . normal tail of base strip
11: repeat
12: (u1, u2)← pair of normalized uniform numbers

13: (t1, t2)←
(
− ln(u1)

r ,− ln(u2)
)

14: until t21 > t22
15: unormal ← r + t1
16: return unormal

17: else
18: unormal ← uuniform

float · xk+1

19: t1 ← normalized uniform number
20: t2 ← t1 · (f(xk)− f(xk+1))
21: if t2 < f(unormal)− f(xk+1) then . tail
22: return unormal

23: else . cap
24: uuniform

int ← uniform integer number
25: uuniform

float ← normalized uuniform
int

26: k ← uuniform
int &(2n − 1)

27: continue

(a) A central region is hit:
This occurs if k 6= N − 1 and uuniform

float ≤ xk
xk+1

(line 5).

(b) A tail region is hit:
This occurs if k 6= N − 1, the central region is not hit and uuniform

float · (f(xk) −
f(xk+1)) < f(uuniform

float · xk+1)− f(xk+1) (line 21).

(c) A cap region is hit:
This occurs if k 6= N − 1 and neither the central nor tail region are hit (line 23).

(d) The base strip it hit:
This occurs if k = N − 1 (line 10).

If cases (a) and (b) occur, the transformation can simply be done by the operation
unormal = uuniform

float ·xk+1 (lines 6 and 18, respectively), thus, a multiplication and a lookup

83

8. Building block 1:
Pseudo random number generation

for the value xk+1. For the cap region case (c), the Ziggurat method is restarted (line
27) with a new uuniform (lines 24–26) leading to additional computational costs. This
behavior has no impact on the statistics of the Ziggurat method because the likelihood
for a particular uuniform not hitting a cap region is still uniform. It only decreases the
number of possible samples. Finally, for the much more expensive case (d), two sub-cases

have to be considered depending on x =
v·uuniformfloat

f(r) : If x < r, then unormal = x. Otherwise,

a treatment of the normal tail as described by Marsaglia [152] is necessary involving the
generation of further uniform random numbers and the evaluation of ln(). Lines 11–16
outline the two sub-cases and Marsaglia’s treatment of the normal tail.

8.1.3. Setup of the Ziggurat

For now, a Ziggurat approximating the area under the normal PDF with N strips of
area v was expected to be simply given as in subsection 8.1.1. Now, we determine how
to setup the Ziggurat.

Algorithm 6 Setup of the Ziggurat

1: procedure setup(N, r)
2: xN−1 ← r

3: v ← r · f(r) +

∫ ∞

r
f(x)dx

︸ ︷︷ ︸√
π
2
·erfc

(
r√
2

)
4: for (N − 2) ≤ i ≤ 1 do

5: xi = f−1
(

v
xi+1+f(xi+1)

)

6: return v − (x1(1− f(x1))

Determining the Ziggurat means finding all xi, i = 0, . . . , N − 1 such that all strips
have area v, x0 = 0, and f(x0) = y0 = 1. Once the rightmost rectangle border r = xN−1

is found, all other right rectangle borders 0 = x0 < x1 < . . . < xN−2 can be determined
by stacking rectangles with v = r · f(r) +

∫∞
r f(x)dx on top of each other according to

algorithm 6. The next xi is computed via the formula xi = f−1
(

v
xi+1

+ f(xi+1)
)

where

xi+1 is already known. r is figured out via a binary search for a given N : Initially, an
arbitrary r is guessed and used in algorithm 6, thus, a Ziggurat is setup for this r. For
every iteration of the binary search it is checked if 0 is returned, successfully terminating
the binary search. In such a case, all strips have the correct area, even the top rectangle
R0, and so, the correct r is found. If a value < 0 is returned, then r was chosen too
large as depicted by subfigure 8.2(a). Hence, a smaller guess for r is used for the next
iteration of the binary search. Too small values of r, as illustrated by subfigure 8.2(b),
lead to a mathematical problem during the execution of algorithm 6 because arguments
> 1 can occur for f−1(x) : (0, 1] → R+. Then, the setup of the Ziggurat has to be
canceled in time and for the next iteration of the binary search, a larger guess for r has

84

8.1. The Ziggurat method

x7 =r

y0

(a)

x7 =r

y0

(b)

Figure 8.2.: Two examples of a Ziggurat using eight strips with over- and underestimated
r. If r is chosen too large as in subfigure 8.2(a), v becomes too small so there
are not enough strips to approximate the area under f correctly. The not
dealt space is filled with dots. Subfigure 8.2(b) shows a scenario where r is
guessed too large so N · v is too big for the approximation. Both subfigures
are taken from our contribution [198].

to be used. The original paper of the Ziggurat method [156] demonstrates how to setup
the Ziggurat for exponential distribution.

We provide values r and v for a given N , all of them powers of 2, in table 8.1. The
table’s values are determined by the binary search procedure. We use these values in
our own implementation leading to the results in section 8.4. The numbers in table 8.1
offer enough digits for double precision.

During runtime, the values xi are calculated once at the beginning of execution and
are stored afterwards in a lookup table. Hence, the size of such a lookup table depends
linearly on N . Besides just storing the right rectangle edges xi, it can make sense to also
manage lookup tables for the ratios xi

xi+1
and the values yi to save computation time.

Here, it depends on the characteristics of the actual computing device if additional
lookup tables are useful: CPUs benefit from this approach but on GPUs, the better
strategy is calculating the ratios and yi whenever they are needed because computations
are fast while the size of fast memories is limited on GPUs.

The values xi are constant for a given N . Thus, a single lookup table is sufficient
even if multiple normal PRNGs using the Ziggurat method are running in parallel. The
Ziggurat method can be tweaked by adding one entry to the lookup table storing the
value of v

f(r) in entry xN . On the one hand, this ensures that the conditional statement
in line 5 of algorithm 5 also can be evaluated for k = N − 1, and on the other hand, the
non-tail case of the base strip can be treated like a central region.

85

8. Building block 1:
Pseudo random number generation

N r v

2 = 21 1.329,233,128,110,321 7.797,780,032,623,92 · 10−1

4 = 22 1.914,928,263,803,744 3.756,758,421,647,67 · 10−1

8 = 23 2.338,371,698,247,252 1.761,736,401,187,77 · 10−1

16 = 24 2.675,536,765,737,614 8.398,946,374,782,72 · 10−2

32 = 25 2.961,300,121,264,019 4.075,874,443,221,99 · 10−2

64 = 26 3.213,657,627,158,896 2.002,445,715,735,16 · 10−2

128 = 27 3.442,619,855,896,652 9.912,563,035,336,47 · 10−3

256 = 28 3.654,152,885,361,008 4.928,673,233,974,66 · 10−3

512 = 29 3.852,046,150,368,391 2.456,766,351,541,35 · 10−3

1024 = 210 4.038,849,846,109,505 1.226,324,646,353,08 · 10−3

2048 = 211 4.216,370,409,511,898 6.126,065,176,240,44 · 10−4

4096 = 212 4.385,945,034,871,305 3.061,541,032,784,63 · 10−4

8192 = 213 4.548,600,609,949,139 1.530,372,349,462,99 · 10−4

Table 8.1.: Depending on the number of strips N of a Ziggurat, the second column gives
rightmost rectangle edge r. Accordingly, the third column lists the area v of
a particular Ziggurat strip. Enough digits are provided to use these numbers
for double precision computations. This table is taken from our contribution
[197].

8.1.4. Memory/runtime trade-off for the Ziggurat method

The Ziggurat method is fast if a central or tail region is hit because in these cases, only a
table lookup for and a multiplication with xk+1 is required to perform the transformation
from uniform to normal distribution. However, if a cap region or the base strip’s normal
tail is hit, the Ziggurat method becomes very slow, slower then most other approaches
for transformation. Thus, we look for a mechanism to increase the likelihood of cases
(a) or (b) while reducing the likelihood for cases (c) and hitting the normal tail of RB.

On GPUs, the maximization of likelihood of one particular case becomes even more
crucial due to their SIMT architecture. If not all threads of a warp execute the same
case, warp divergence occurs because different threads handle different cases. Warp
divergence leads to extended execution times and, thus, a decrease in performance.

The more strips N are used for the Ziggurat, the higher the likelihood gets to hit
case (a). This relation is illustrated by figure 8.3 showing four different Ziggurats with
N = 4, 16, 32, and 64. The larger N , the bigger the un-hatched area representing the
likelihood for case (a) gets in comparison to the area of the whole Ziggurat. Since the
size of the lookup table depends on N , we achieve a classical runtime/memory trade-off:
The more strips are used, the faster the transformation gets due to cheaper calculations
of the Ziggurat method (increased likelihood of hitting a central region) and reduced
likelihood for warp divergence but the size of the lookup tables grows resulting in higher
memory consumption.

To testify the observations of figure 8.3, table 8.2 lists the likelihoods to hit a central

86

8.2. Rational polynomials

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 8.3.: Four Ziggurats using N = 4, 16, 32, and 64 strips to approximate the area
under the Gaussian PDF. The fewer strips are used (e.g. subfigure 8.3(a)),
the smaller the ratio of area covered by central regions (case (a)) becomes in
comparison to the total area of the Ziggurat. By using more strips, almost
the whole area is covered by central regions (cf. subfigure 8.3(d)). All four
subfigures are taken from our contribution [198].

region (case (a)) or the non-tail area of the base strip in dependence of N . The optimiza-
tion opportunity mentioned at the end of subsection 8.1.3 enables a fast transformation
also for the non-tail area of RB. The more strips are used, the bigger the corresponding
values in the second column get and, thus, a fast transformation becomes more likely.
These percentages can be used to calculate an indicator for the likelihood that not all
threads of a warp deal with a central region, i.e. being an indicator for warp divergence,
given in the last column of table 8.2. For larger N , this value decreases.

8.2. Rational polynomials

Instead of trying to approximate the area under the Gaussian bell function, as the
Ziggurat method does, explicit functions can be used to directly approximate the inverse
CDF. These explicit functions can then directly be applied as transformation functions
to alter a uniform random number u ∈ [0, 1) to the target distribution. Luu [147] gives
an example for such explicit functions by using piecewise Chebyshev polynomials using
CUDA for implementation, but for the inverse CDF of the gamma distribution. In this
section, we are using rational polynomials as explicit functions for the inverse CDF of
normal distribution. They can achieve a high degree of accuracy and are computationally

87

8. Building block 1:
Pseudo random number generation

number of strips
likelihood to hit central region

likelihood of warp divergence
or non-tail area of the base strip

2 = 21 ∼ 35.23% 1− 0.352332 ≈ 99.9%

4 = 22 ∼ 56.22% 1− 0.562232 ≈ 99.9%

8 = 23 ∼ 72.80% 1− 0.728032 ≈ 99.9%

16 = 24 ∼ 84.02% 1− 0.840232 ≈ 99.6%

32 = 25 ∼ 90.93% 1− 0.909332 ≈ 95.2%

64 = 26 ∼ 94.96% 1− 0.949632 ≈ 80.9%

128 = 27 ∼ 97.24% 1− 0.972432 ≈ 59.2%

256 = 28 ∼ 98.51% 1− 0.985132 ≈ 38.2%

512 = 29 ∼ 99.20% 1− 0.992032 ≈ 22.7%

1024 = 210 ∼ 99.57% 1− 0.995732 ≈ 12.9%

2048 = 211 ∼ 99.77% 1− 0.997732 ≈ 7.1%

4096 = 212 ∼ 99.88% 1− 0.998832 ≈ 3.8%

8192 = 213 ∼ 99.94% 1− 0.999432 ≈ 1.9%

Table 8.2.: The second column lists the likelihoods to hit a central region or the non-tail
area of the base strip in dependence of N . These values can be utilized to
estimate the likelihood for warp divergence caused by at least one thread of
a warp not dealing with the just mentioned cheap scenario.

cheap to evaluate.

There is no optimal single set of coefficients for such a rational polynomial. Depend-
ing on the applied polynomial degree, the examined interval, and demands on numerical
stability, different coefficient sets are suited. Furthermore, a piecewise definition of the
approximating rational polynomial makes sense if high accuracy for all regions or com-
plete R is desired. In such a scenario, the inner region around 0 could be approximated
by one rational polynomial while another rational polynomials could be used for the tail
regions of f . Generally, rational polynomials allow the approximation of every kind of
CDF making them very flexible and widely applicable.

In our implementation of rational polynomials as transformation function, we use
the coefficient set suggested by Wichura in [245]. We do not explicitly mention the
coefficients but refer to the original paper. Wichura uses a piecewise rational polynomial
with a dedicated function for the inner region

[
−17

40 ,
17
40

]
and two for the tail regions. An

auxiliary variable s =
√
− log(min(u, 1− u)) decides for s > or ≤ 5 over the best fitting

rational polynomial at the outer regions to further increase accuracy. Nominator and
denominator degree are 7 for all three rational polynomials. As already mentioned,
there are alternative coefficient sets for approximations of the inverse normal CDF. For
example, Beasley offers in [27] a piecewise rational polynomial with an higher accuracy in[
−7

2 ,
7
2

]
but less precision in the tails of the distribution than Wichura’s set. The actual

accuracies and error bounds for the coefficient sets are given in the original publications
[27, 245].

88

8.3. The Wallace method

The piecewise definition of the approximation suggests a potential risk for warp di-
vergence on the GPU. Depending on u, one of three available rational polynomials is
selected to perform the transformation when using Wichura’s coefficient set. A popular
technique to overcome this issue is blending: Instead of dealing with just one branch
of a conditional statement (in the context of our approximation, a branch corresponds
to the evaluation of a particular rational polynomial), all branches are evaluated. Af-
terwards, the results of the branches are weighted by the outcome of the conditional
statement causing the branching with weight 0 for false and weight 1 for true. Finally,
all weighted results are summed up leading to the transformed value because the correct
branch is multiplied by 1 and all wrong branches are multiplied by 0. This idea in-
troduces many superfluous computations but completely avoids warp divergence. Since
GPUs deal very well with computational intense problems but can suffer from the over-
head caused by warp divergence, the application of blending is advisable. Furthermore,
additions and multiplications accruing during the evaluation of polynomials using the
Horner scheme [105] have an especially high throughput on GPUs. In the results sec-
tion 8.4, benchmarks are given for a version using branching, thus, suffering from warp
divergence, and a version using blending, thus, avoiding warp divergence.

8.3. The Wallace method

A completely different approach for a normal PRNG is given by Wallace [237]. Instead
of bringing up a transformation operation requiring uniform random numbers as input,
he describes a method to directly generate normal random numbers. It uses a chunk of
previously computed normal random numbers to evolve them to a new chunk of normal
random numbers. This operation can be repeated to generate a sequence of normal
random numbers with unlimited length. Wallace’s method utilizes a linear operator and
gets along without any transcendental functions such as log() or sin() or conditional
statements. This property makes the Wallace method a promising candidate for GPUs.

We use the vectorized version of the Wallace method presented in [42] and realized
in the library rannw [45] as basis for our GPU code. It comes up with some ideas
easily adaptable to GPUs leading to a high-performance implementation. Considering
alternative computing devices than CPUs and GPUs, there is an implementation of the
Wallace method for FPGAs [137]. Some very useful comments in terms of mathematical
and historical background can be found in [44].

The idea behind the Wallace method is the usage of the maximum entropy property
[113], which is E(x2) = 1 for normal distribution. E generally denotes the expected value
of a random number x. The Wallace method evolves a vector X of previously generated
normal random numbers to a new vector Y of different normal random numbers. This
transformation is linear and expressed by Y = A · X. Both vectors, X and Y have
length k, thus, A is a k × k matrix with additional mandatory properties: A has to be
orthogonal to satisfy the maximum entropy property of the normal distribution because
orthogonal matrices preserve the sum of squares. A pool consists of l of such vectors of
size k, hence, ν = k · l normal random numbers form a pool. To evolve a complete pool,

89

8. Building block 1:
Pseudo random number generation

l transformation steps are necessary because A is applied to every k elements of the
current pool. The transition from an old to an updated pool is called a pass. We use a
4×4 orthogonal matrix A, i.e. k = 4, but different values for k are also possible: [43, 44]
deal with k = 2 leading to a rotation matrix in the plane A. Due to the linear operator
A, the execution time of a pass depends quadratically on k , so k should not become too
large. Even on GPUs, this issue can decrease the performance of the Wallace method in
a way disqualifying it as a competitive PRNG.

Since the Wallace method relies on the maximum entropy property, it can also be
used to sample from non-normal distributions. For example, the uniform distribution’s
maximum entropy property is 0 ≤ x ≤ 1. This leads to the class of generalized Fibonacci
generators [123]: (u1 +u2) mod 1 is a uniform random number if u1 and u2 are uniform
random numbers. Another example of a maximum entropy property is E(x) = 1 (x ≥ 0)
for the exponential distribution.

The Wallace method introduced so far has several statistical flaws. To eliminate
them, some modifications are indispensable. First, it is desired that every element of a
pool has a contribution to all elements of succeeding pools evolved after some passes.
An elegant way to satisfy this property is an alternating reinterpretation of the pool’s
storage scheme: During odd passes, the pool of normal random numbers being stored
linearly in memory is read row-major order (the elements of a k vector lie continuously in
memory) while during even passes, the pool is read column-major order (the elements of
a k vector lie in memory separated by a stride). Hence, between two passes, an implicit
transposition is performed if the pool is interpreted as a k × l matrix. For large pools,
i.e. l > 256, additional measurements are crucial to guarantee an adequate mixing. A
more general idea of the implicit transposition is the usage of a random odd stride to
access the rows of the pool and to use a random offset 6= 0 for the first row of the
pool. This makes it mandatory to take the adapted row index modulo l. Second, a
further improvement of the statistical quality can be reached by using multiple different
orthogonal operators instead of only one to perform the passes. For example, Wallace
suggests in his original paper [237] four different matrices A1, . . . , A4 randomly chosen
in every pass instead of only one single A.

A1 =
1

2




1 1 −1 1
1 −1 1 1
1 −1 −1 −1
−1 −1 −1 1


 A2 =

1

2




1 −1 −1 −1
1 −1 1 1
1 1 −1 1
−1 −1 −1 1




A3 =
1

2




1 −1 1 1
−1 −1 1 −1
1 −1 −1 −1
−1 1 1 1


 A4 =

1

2




−1 1 −1 −1
−1 −1 1 −1
−1 1 1 1
1 1 1 −1




A1, . . . , A4 share the common property that they require seven additions and one multi-
plication with 1

2 to execute the transformation. Third, the usage of orthogonal operators
leads to the obvious defect of constant sum of squares of the numbers of one pool, thus,
||Y ||2 = ||A · X||2. Instead, a chi-squared distribution χ2

ν is aspired for the sum of

90

8.4. Results

squares. There are several solutions to overcome this issue but already a very simple
one leads to fair results: One random element of every pool is used to approximate a

variate V from χ2
ν . Using this element, a scaling factor

√
V
k·l is determined and applied

to the remaining k · l− 1 elements of the pool. These three improvements are just some
approaches to deal with such statistical defects. Further ideas and alternative solutions
are given in [237, 42, 137, 44].

Regarding optimization of the Wallace method for GPUs, we follow the vectorization
strategy in [42]. Vectorization is carried out along l direction, thus, every thread trans-
forms k elements of the pool. Consequently, l threads work cooperatively to do a pass
being the size of a thread block, and different thread blocks are working on different
pools. Although the Wallace method directly produces normal random numbers and,
thus, does not rely on a source of uniform random numbers, a uniform PRNG is re-
quired to deal with the above discussed statistical defects. Uniform random numbers
are needed to resolve a stride and offset for the mixing of the pools and to randomly
select Ai (i = 1, . . . , 4) but one uniform random number is enough to perform a whole
pass.

8.4. Results

In the following, we first profile and benchmark the particular three normal PRNGs in
subsection 8.4.1 to examine how well they are suited for GPUs. Afterwards, we compare
the performance (in terms of generation rate) of the PRNGs in subsection 8.4.2 with
each other to determine the best generator for our RODE implementation. To get a
bigger picture of our PRNG implementations, we also compare to our results with state-
of-the-art CPU and GPU random number libraries.

We do not investigate or implement any uniform PRNGs even though the Ziggurat
method, rational polynomials, and the Wallace method depend on them but provide
benchmark results for the uniform PRNGs and a corresponding discussion in subsection
8.4.2. The first two PRNGs require uniform random numbers as input to be trans-
formed, the latter PRNG needs uniform random numbers to deal with statistical issues.
Instead, we use cuRAND’s [181, 183] XORWOW shift-register generator [154] as source
of uniform random numbers. Except the binary rank test, all tests of Diehard [153]
are passed by XORWOW. Therefore, its statistical properties such as long periods, a
uniform distribution, and a hard predictability of the sequence are sufficient for our sce-
nario. Furthermore, it offers high generation rates and has a small memory footprint.
The benchmark results incorporate the runtimes of the uniform PRNG but not the setup
times summed up in table 8.4. Thus, we do not identify the pure execution times of the
transformation from uniform to normal distribution. Specifications for the Tesla M2090,
the Tesla K40m, and the GTX 750 Ti used for the tests are given in table 2.1.

When it comes to the actual implementation of the presented PRNGs, the choice of
the utilized GPU memory matters. Since the same lookup table of the Ziggurat can
be used for all threads, it can either be stored in local memory or in shared memory.
The same holds for the states of the uniform PRNG to improve the Wallace method.

91

8. Building block 1:
Pseudo random number generation

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.5

1.0

1.5

2.0

2.5

gi
ga

 p
se

ud
o

ra
nd

om
 n

um
be

rs
 p

er
 s

ec
on

d

Tesla M2090 (Fermi)

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.5

1.0

1.5

2.0

2.5 Tesla K40m (Kepler)

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.5

1.0

1.5

2.0

2.5 GTX 750 Ti (Maxwell)

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.5

1.0

1.5

2.0

2.5

gi
ga

 p
se

ud
o

ra
nd

om
 n

um
be

rs
 p

er
 s

ec
on

d

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.5

1.0

1.5

2.0

2.5

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.5

1.0

1.5

2.0

2.5

local 25 ×211

shared 25 ×211

local 26 ×210

shared 26 ×210

local 27 ×29

shared 27 ×29

local 28 ×28

shared 28 ×28

local 29 ×27

shared 29 ×27

Figure 8.4.: Performance in GPRNs/s over number of strips N of different versions of
the Ziggurat method measured on three different NVIDIA GPUs. First row
of plots shows the local memory version colored in red, second row shows
the shared memory version colored in blue. Different grid configurations
(“threads per block” × “blocks per grid”), ranging from 25× 211 to 29× 27,
are depicted by different lines. This plot is taken from our contribution
[198].

Local memory is actually global memory with caching showing best performance if the
same value is broadcasted to all threads. However, not all threads are dealing with the
same strip of the Ziggurat and different threads are dealing with different k vectors of
a pool. Hence, serialization may occur. Shared memory is fast on-chip memory with
low latency but its performance can suffer from bank conflicts. We analyze both, a local
and a shared memory version of the Ziggurat and the Wallace method. The pools of the
Wallace method are always kept in shared memory, independent on where the states of
the uniform PRNG are held. In the plots of subsection 8.4.1, results of the local memory
version are colored in red and of the shared memory version in blue, respectively. Results
for the investigated normal PRNGs can also be found in our work [198].

To test the PRNGs, 1GByte of single precision normal random numbers is generated
during each run, corresponding to 228 = 268,435,456 float numbers. From a statistical

92

8.4. Results

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

pa
nc

y

Tesla M2090 (Fermi)

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.2

0.4

0.6

0.8

1.0

Tesla K40m (Kepler)

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.2

0.4

0.6

0.8

1.0

GTX 750 Ti (Maxwell)

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

pa
nc

y

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.2

0.4

0.6

0.8

1.0

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.2

0.4

0.6

0.8

1.0

local 25 ×211

shared 25 ×211

local 26 ×210

shared 26 ×210

local 27 ×29

shared 27 ×29

local 28 ×28

shared 28 ×28

local 29 ×27

shared 29 ×27

Figure 8.5.: Achieved occupancy over number of strips N of different implementations
of the Ziggurat method measured on three different NVIDIA GPUs. Color
coding, line captions, and markers are identical to figure 8.4. This plot is
taken from our contribution [198].

point of view, it does not make sense to use double precision if the input is generated by
cuRAND’s XORWOW because it only delivers 32bit uniform random numbers. Thus,
there are just up to 232 distinct numbers possible to form. This limitation can easily
be overcome by concatenating two successive 32bit random numbers to obtain one 64bit
random number. We measure performance in giga (109) pseudo random numbers per
second (GPRNs/s), use it as a unit for generation rate and put it on the ordinates of the
following plots. Depending on the PRNG, we are either interested in the influence of the
number of used strips or the grid configuration on the performance, so we assign these
units to the abscissas. The grid configuration, or parallel setup, is denoted by “threads
per block” × “blocks per grid” and ranges from 25× 211 to 29× 27 always leading to 216

threads per grid. Therefore, every thread produces 212 = 228

216
normal random numbers.

8.4.1. Evaluation of particular pseudo random number generators

To measure how well the memory/runtime trade-off works for the Ziggurat method, we
vary the number of strips and assign them to the ordinates of figures 8.4 and 8.5. While

93

8. Building block 1:
Pseudo random number generation

2
5 ×2

11

2
6 ×2

10

2
7 ×2

9

2
8 ×2

8

2
9 ×2

7

grid configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

gi
ga

 p
se

ud
o

ra
nd

om
 n

um
be

rs
 p

er
 s

ec
on

d Tesla M2090 (Fermi)

2
5 ×2

11

2
6 ×2

10

2
7 ×2

9

2
8 ×2

8

2
9 ×2

7

grid configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Tesla K40m (Kepler)

2
5 ×2

11

2
6 ×2

10

2
7 ×2

9

2
8 ×2

8

2
9 ×2

7

grid configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0 GTX 750 Ti (Maxwell)

branching blending

Figure 8.6.: Performance in GPRNs/s over grid configuration (“threads per block” ×
“blocks per grid”) for rational polynomials measured on three different
NVIDIA GPUs. The version with conditional statements is colored in green,
the version using blending instead is colored in orange. This plot is taken
from our contribution [198].

figure 8.4 illustrates the generation rate in PRNG/s for the Ziggurat method, figure
8.5 depicts the corresponding occupancies. In both figures, different grid configurations
are indicated by different lines. Results originating from the local memory version (the
lookup table is stored in local memory) are colored in red in the top rows of plots and
results of the shared memory version are colored in blue in the bottom rows. Due to
the limited size of shared memory, especially on older GPU architectures, some results
are missing for some combinations of memory version, grid configuration, and number
of strips. For example, there are no results for N > 211 strips on Fermi or for N = 213

strips using the shared memory version with grid configuration 29 × 27 on Kepler.

On Teslas M2090 and K40m, a single peak of performance is recognizable for almost
all versions and configurations. This peak can also be retrieved on the GTX 750 Ti,
but less significantly. High warp divergence limits the maximum performance if fewer
strips than the peak performance configuration are used as the memory/runtime trade-
off suggests. As figure 8.5 shows, the occupancy drops if more strips than the peak
performance configuration are used being the limiter for higher strip numbers than the
peak performance configuration. Until this point, the occupancy stays constant. In
general, the occupancy of the shared memory version is lower than the one of the local
memory version due to its higher shared memory consumption. However, in most cases,
the shared memory version performs better than the local memory version. On the Tesla
M2090, best performance is obtained with the local memory version using 1024 strips
and a grid configuration of 26 × 210 leading to 1.23 GPRNs/s. The shared memory
version gives the best performance on the Tesla K40m and the GTX 750 Ti with 2.17
GPRNs/s on Kepler (1024 strips and grid configuration 26× 210) and 1.91 GPRNs/s on
Maxwell (256 strips and grid configuration 25 × 211).

Different to the Ziggurat method, we are interested how the performance of the rational
polynomials is influenced by the grid configuration. Thus, the grid configuration is

94

8.4. Results

2
5 ×2

11

2
6 ×2

10

2
7 ×2

9

2
8 ×2

8

2
9 ×2

7

grid configuration

0

2

4

6

8

10

gi
ga

 p
se

ud
o

ra
nd

om
 n

um
be

rs
 p

er
 s

ec
on

d Tesla M2090 (Fermi)

2
5 ×2

11

2
6 ×2

10

2
7 ×2

9

2
8 ×2

8

2
9 ×2

7

grid configuration

0

2

4

6

8

10 Tesla K40m (Kepler)

2
5 ×2

11

2
6 ×2

10

2
7 ×2

9

2
8 ×2

8

2
9 ×2

7

grid configuration

0

2

4

6

8

10 GTX 750 Ti (Maxwell)

no statistical treatment local shared

Figure 8.7.: Performance in GPRNs/s over grid configuration (“threads per block” ×
“blocks per grid”) for the Wallace method measured on three different
NVIDIA GPUs. Like in figures 8.4 and 8.5, the local and shared mem-
ory versions are colored in red and blue, respectively. Results from a shared
memory version without any treatment of the statistical flows is plotted in
purple. This plot is taken from our contribution [198].

assigned to abscissas and performance in GPRNs/s to ordinates of figure 8.6. The
version using conditional statements is represented by green lines, the more advanced
version avoiding branching by orange lines.

In contrast to the Ziggurat method, there is only a minor influence of the grid config-
uration and of the occupancy on the performance of rational polynomials. The version
using blending always performs better then the default version using branching but the
difference varies much depending on the utilized GPU. On the Teslas M2090 and K40m,
there is only a span of up to 1.03× (grid configuration 28 × 28) and 1.06× (grid config-
uration 29 × 27), respectively. The GTX 750 Ti is much more sensitive to this kind of
optimization: An improvement of up to 3.64× (grid configuration 26× 210) can be mea-
sured when using the blending version. Obviously, the overhead to synchronize and join
diverged threads of a warp is much bigger on Maxwell than on Fermi and Kepler. Best
achieved performance is 0.97 GPRNs/s on the Tesla M2090, 1.70 GPRNs/s on the Tesla
K40m, and 2.77 GPRNs/s on the GTX 750 Ti each using grid configuration 25 × 211.

The axes assignment in figure 8.7, showing the generation rates for the Wallace
method, is the same like the results of the rational polynomials. Results of the local
memory version keeping the states of the uniform PRNG in cached global memory are
colored in red, the shared memory version in colored in blue. Both versions utilize a
uniform PRNG to deal with the statistical weaknesses of the Wallace method as ex-
plained in section 8.3. In addition, we added in purple results of a version without any
special statistical treatment. The normal random numbers obtained by this version are
improper to be used in any application but it shows how compelling the idea of the
Wallace method of using a linear orthogonal operator can be.

Similar to the Ziggurat method, there is a single peak of performance for all versions
on all GPUs. Using more threads per block than the peak performance configuration

95

8. Building block 1:
Pseudo random number generation

lowers the occupancy and, thus, the performance. Pools are always kept in shared
memory and in our parallelization approach for GPUs, the pool size depends on the
number of threads per block. The shared memory version always outperforms the local
memory version leading to a highest generation rate of 4.46 GPRNs/s on the Tesla
M2090, 4.18 GPRNs/s on the Tesla K40m, and 2.21 GPRNs/s on the GTX 750 Ti.
Optimal grid configurations are 27 × 29 on the Teslas and 26 × 210 on the GTX 750
Ti. Comparing the results of the local (red) and shared (blue) memory version with the
purple line demonstrates the overhead of the statistical treatment: Omitting it leads to
an acceleration of 2.14× on Tesla M2090, of 2.44× on Tesla K40m, and of 1.93× on
GTX 750 Ti.

On a first look, the orthogonal linear operator A to update the pools seems expensive
but it is chosen as cheap as possible in terms of number of mathematical operations.
A1, . . . , A4 only cause seven additions and one multiplication per K vector. Hence, the
Wallace method neither has to be computationally expensive nor compute-bound as
verified by table 8.3 (see row “Wallace”).

method implementation Tesla M2090 Tesla K40m GTX 750 Ti

Ziggurat
local 0.02% 0.02% 0.38%

shared 0.04% 0.02% 0.58%

rational polynomial
branching 0.29% 0.08% 1.65%
blending 0.88% 0.26% 17.87%

Wallace
no treatment 0.50% 0.13% 1.44%

local 0.06% 0.01% 0.42%
shared 0.23% 0.04% 0.70%

Table 8.3.: Achieved single precision FLOPS efficiency (achieved FLOPS rate over the-
oretical peak FLOPS rate) of different normal PRNGs (rows) implemented
in different versions on three different NVIDIA GPUs (columns). Grid con-
figuration (and for the Ziggurat method, number of strips N) leading to best
performance is used (see results of the particular PRNGs). This table is
taken from our contribution [198].

Table 8.3 lists the achieved single precision FLOPS efficiencies of the Ziggurat method,
rational polynomials, and the Wallace method. Configurations leading to best perfor-
mance for the particular PRNGs are applied, cf. peaks in figures 8.4, 8.6, and 8.7 to
obtain the efficiencies. None of the three normal PRNGs is compute-bound on any of
the three GPUs whose theoretical maximum FLOPS rates can be found in table 2.1. The
FLOPS rates are actually quite low which is not a problem at all because none of the
discussed normal PRNGs is computationally expensive and still, the generation rates are
very high. All PRNGs are also not memory- but latency-bound. Hence, the PRNGs of
this chapter benefit from GPU architectures dealing well with latency-bound problems
by better instruction scheduling and lower instruction latencies. Such an architecture is
Maxwell’s SMM [178] design and that is the reason why the mid-range consumer GPU
GTX 750 Ti can keep up with the theoretically much more powerful Teslas relying on

96

8.4. Results

less sophisticated architectures [177].

method implementation Tesla M2090 Tesla K40m GTX 750 Ti

Ziggurat
local 24.063ms 61.889ms 52.176ms

shared 24.042ms 26.801ms 34.417ms

rational polynomial 22.089ms 18.332ms 31.631ms

Wallace
local 3617.30ms 3193.11ms 1311.23ms

shared 3619.79ms 4015.01ms 2841.78ms

Table 8.4.: Setup times to initialize the states of different normal PRNGs (rows) on three
different NVIDIA GPUs (columns). Parameters leading to best performance
are used, cf. peaks in figures 8.4, 8.6, and 8.7. This table is taken from our
contribution [198].

Finally, table 8.4 lists the setup times of all three normal PRNGs essential before
random numbers can be fabricated. For the Ziggurat method, setup times include the
computation of the Ziggurat approximation according to subsection 8.1.3 and the ini-
tialization of the uniform PRNGs. The initialization of the uniform PRNGs is also
compulsory for rational polynomials because both PRNGs are just transformation oper-
ations. Besides the initialization of the uniform PRNGs to improve statistical properties,
the Wallace method has to create an original pool of normal random numbers. For ra-
tional polynomials, the state initialization is identical for both versions (branching and
blending), hence only one value is indicated. Since the shared memory version and
the version without any special treatment for statistical defects of the Wallace method
handle the same data structures in the same kinds of memory, only one setup time is
given. The setup times for the Ziggurat method and rational polynomials are negligible.
This does not hold for the Wallace method because the generation of the original pools
composed of ν = k · l normal random numbers takes some time.

8.4.2. Performance comparison of pseudo random number generators

The particular results of the normal PRNGs are used to draw a comparison between
them. In addition, we match the outcomes with generation rates obtained from other
well-established random number libraries for CPU and GPU. For the Ziggurat method
(local memory version on the Tesla M2090, shared memory version on the Tesla K40m
and the GTX 750 Ti), rational polynomials (version using blending), and the Wallace
method (shared memory version) we use those parameters (number of strips, grid con-
figuration) achieving best performance on the corresponding GPUs. These parameters
are the same as for tables 8.3 and 8.4.

To make a fair comparison with a state-of-the-art random number generator library
for the CPU, we benchmark the capabilities of two Intel Xeon E5-2680 v2 representing a
high-end CPU system. The Math Kernel Library (MKL) is used as CPU library. Since
it is hard to find any absolute generation rates for the MKL, we wrote our own CPU
code to benchmark the MKL and highly optimized it by using AVX vectorization and

97

8. Building block 1:
Pseudo random number generation

2
5 ×2

11

2
6 ×2

10

2
7 ×2

9

2
8 ×2

8

2
9 ×2

7

grid configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

gi
ga

 p
se

ud
o

ra
nd

om
 n

um
be

rs
 p

er
 s

ec
on

d

Tesla M2090 (Fermi)

2
5 ×2

11

2
6 ×2

10

2
7 ×2

9

2
8 ×2

8

2
9 ×2

7

grid configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 Tesla K40m (Kepler)

2
5 ×2

11

2
6 ×2

10

2
7 ×2

9

2
8 ×2

8

2
9 ×2

7

grid configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 GTX 750 Ti (Maxwell)

Ziggurat
Inverse CDF

Rational Polynomial
cuRAND

Wallace
XORWOW

MKL on Xeon E5-2680 v2

Figure 8.8.: Performance in GPRNs/s over grid configuration (“threads per block” ×
“blocks per grid”, ranging from 25 × 211 to 29 × 27) of various PRNGs.
Three different NVIDIA GPUs are used for the GPU PRNGs. The CPU
reference colored in blue is taken on two Intel Xeon E5-2680 v2 using the
MKL. The GPU references Box/Muller and normcdfinvf() are colored in
green. Best performing parametrizations of the normal PRNGs presented
in sections 8.1–8.3 are colored in red. Finally, the pure uniform random
number generation result from XORWOW is colored in purple. This plot is
taken from our contribution [198].

OpenMP for multithreading with 20 threads. Sources such as [111] only offer speed-up
factors, e.g. in comparison to the C function rand(), without mentioning absolute values
for the reference. Our CPU code bases on the MKL 11.3 and is translated by the Intel
C++ Compiler (ICC) 16.0. According to our experience, the combination of MKL’s
59bit multiplicative congruential generator (uniform random number generation) and
inverse CDF of the Gaussian function (transformation to normal distribution) delivers
best performance on the two Intel CPUs with 1.71 GPRNs/s.

Besides the XORWOW generator, cuRAND also provides normal random number
generators. Hence, we use cuRAND as state-of-the-art GPU library, namely its im-
plementation of the Box/Muller method [38] for transformation to normal distribution.
Furthermore, CUDA itself offers a built-in approximation of the inverse normal CDF sim-
ilar to our rational polynomials called normcdfinvf(). Both, the Box/Muller method
and normcdfinvf() are transformation operations relying on uniform random numbers
supplied by XORWOW. Speaking of XORWOW, its performance is also added to figure
8.8 to get an impression how big its share in total runtime of the normal PRNGs is.

Figure 8.8 shows the performance results of all mentioned PRNGs drawn by different
lines using the fastest results from subsection 8.4.1. GPRNs/s is plotted on ordinates,
grid configuration on the abscissas. On the Teslas, the Wallace method clearly shows
best performance exceeding the second best candidate, the Ziggurat method, by factors
of 3.62× (Tesla M2090) and 1.93× (Tesla K40m). Rational polynomials provide worst

98

8.4. Results

performance of the three uncommon methods on these two GPUs. All methods presented
in sections 8.1–8.3 (red lines) always achieve at least similar performance to the GPU
libraries (green lines) and the Wallace method outperforms them by 4.53× (Tesla M2090)
and 2.55× (Tesla K40m). The performance of cuRAND’s Box/Muller and CUDA’s
normcdfinvf() seems to be limited by XORWOW (purple lines) because generation
rates are almost identical. The same holds for rational polynomials on the Tesla M2090.

On the GTX 750 Ti, the relation between the results of the PRNGs is totally different.
Best performance is carried out by cuRAND’s Box/Muller implementation being 1.08×
faster than the second best method, the rational polynomials. Hence, rational polyno-
mials have the highest generation rates of the three methods presented in this chapter,
1.25× faster than the Wallace method and 1.44× faster than the Ziggurat method.

A direct comparison between our CPU implementation with our best performing GPU
implementations shows that the GPUs exceed the CPUs by factors of 2.61× (Tesla
M2090), 2.45× (Tesla K40m), and 1.74× (GTX 750 Ti), respectively. These are common
factors being expected when comparing highly-optimized CPU with highly-optimized
GPU code.

In many cases, our implementations of the Ziggurat method and rational polynomials
perform better than the pure XORWOW generator. This also holds for cuRAND’s
Box/Muller implementation on the GTX 750 Ti. At a first sight, this is quite surprising
because all these methods require a uniform random number from XORWOW before
they can transform it to normal distribution. Thus, the performance of the Ziggurat
method, rational polynomials, and cuRAND’s Box/Muller should be actually limited
by the performance of the uniform PRNG. We assume that this discrepancy can be
explained by a higher degree of instruction level parallelism stemming from the fusion
of uniform random number generation and transformation to normal distribution in one
single kernel, what we do.

Now, we have several normal PRNGs at hand whose characteristics fit very well on
GPUs: The memory/runtime trade-off allows to adapt the Ziggurat method to be ef-
ficiently implemented on GPUs and to tailor it for particular GPUs. GPUs offer high
computational performance, thus, also methods such as (piecewise) rational polynomials
with high nominator and denominator degree to approximate the inverse normal CDF
utilizing blending deliver high performance. The Wallace method benefits from this
computational performance, too, even if special measurements have to be taken to deal
with statistical pitfalls. With such high-performance normal PRNGs available, we now
proceed to the parallel realization of the OU process, the second building block of our
RODE solver layout, in chapter 9 which incorporates normal random numbers.

99

9. Building block 2:
Ornstein-Uhlenbeck process

The OU process (7.4) is, besides the geometric Brownian motion, one of the simplest but
also important stochastic processes. It is incorporated in RODEs, thus, its realization is
essential for our general RODE solver but also for numerous other stochastic applications.
The solution of the OU process (7.5) is a strictly sequential formula where the next
element Otn+1 is determined from Otn . This property makes it hard to parallelize the
solution of the OU process, especially when multiple levels of parallelism should be
exploited as we plan to do with our GPU implementation.

In this chapter, we first demonstrate how to map the explicit formula to realize a
path of the OU process to the operation of building prefix sums in section 9.1. For the
various types of prefix sums, there are successful strategies for parallelization. Section
9.2 illustrates how to use these strategies to parallelize the OU process also applicable
but not limited to GPUs. Here, our contribution is not the parallelization of prefix sums
but in the mapping of the OU process to them. Finally, we measure in section 9.3 the
number of generated OU process elements per time on the three NVIDIA GPUs already
used throughout part III. Identifiers of chapter 7 are utilized in the following.

9.1. From the Ornstein-Uhlenbeck process to prefix sum

To find a strategy to realize multiple elements of the OU process (7.5) in parallel, we
first have a look how the OU process evolves. We are interested in the dependence of the
i-th element Otn+i on the first element Otn . If there is a direct relation without requiring
Otn+i−1 , . . . , Otn+1 , then an independent calculation of distinct elements is possible.

Otn+1

(7.5)
= µXOtn + σXn

(1)
1

Otn+2 = µXOtn+1 + σXn
(2)
1 =

= µX

(
µXtn + σXn

(1)
1

)
+ σXn

(2)
1 =

= µ2
XOtn + σX

(
µXn

(1)
1 + n

(2)
1

)

Otn+3 = µXOtn+2 + σXn
(3)
1 =

= µX

(
µXOtn+1 + σXn

(2)
1

)
+ σXn

(3)
1 =

= µX

(
µX

(
µXOtn + σXn

(1)
1

)
+ σXn

(2)
1

)
+ σXn

(3)
1 =

101

9. Building block 2:
Ornstein-Uhlenbeck process

= µ3
XOtn + σX

(
µ2
Xn

(1)
1 + µXn

(2)
1 + n

(3)
1

)

... =
...

Otn+i = µiXOtn + σX

i∑

k=1

(
µi−kX n

(k)
1

)
(9.1)

n
(i)
1 denotes the i-th normal random number of N (0, 1). In the final general evolution

step (9.1), the first summand µiXOtn just depends on i and the very first element Otn .

Furthermore, σX =
√

cτ
2 (1− µ2

X) is constant for a given timestep length h. Ignoring

µi−kX for a moment simplifies the sum in the second summand to
∑i

k=1 n
(k)
1

1. This
simplified operation is exactly a prefix sum or scan [34].

x0
x0
+
x1

x0
+...+
x3

x0
+...+
x5

x0
+...+
x7

x0
+...+
x9

x0
+...+
x11

x0
+...+
x13

x0
+...+
x15

x0 x2 x4 x6 x8 x10 x12 x14

x0
+...+
x14

x0
+...+
x12

x0
+...+
x10

x0
+...+
x8

x0
+...+
x6

x0
+...+
x4

x0
+...+
x2

x1 x3 x5 x7 x9 x11 x13 x15

Figure 9.1.: Illustration of the inclusive prefix sum. The sum over the first i+ 1 contin-
uous elements of the input sequence including xi are assigned to xi of the
output sequence, i.e. xi =

∑i
k=1 xk.

Basically, there are two types of prefix sums, just slightly differing from each other:
exclusive prefix sum (also called prescan) and inclusive prefix sum. Exclusive prefix
sums assign the sum of the first i continuous elements of a given sequence of numbers
x0, . . . , xn−1 to the i-th element. This sum goes up to xi but not xi itself, i.e. xi =∑i−1

k=0 xk. Inclusive prefix sums determine the sum of the first i + 1 elements of the
sequence including xi, i.e. xi =

∑i
k=1 xk. Figure 9.1 depicts an inclusive prefix sum with

a sequence length of 16. Having an inclusive prefix sum, the corresponding exclusive
prefix sum is easily obtained by shifting all elements of the inclusive prefix sum one
position to the right and setting the very first element x0 to 0.

The general evolution step of the OU process (9.1) requires inclusive prefix sums, thus,
we do not consider exclusive prefix sums in the following and mean inclusive prefix sum
when mentioning the terms prefix sum or scan. A modification of the default prefix sum
is necessary to be usable in the OU process, namely the re-integration of µi−kX in the

sum. Hence, we get xi =
∑i

k=1

(
µi−kX xk

)
.

To keep pseudocodes and figures clear and simple, we restrict ourselves to realizations
of the OU process with powers of 2 elements in the explanations. However, all methods
can be generalized to any arbitrary number of elements and also our implementation
does not suffer from this limitation.
1The normal random numbers in the sum are already computed in the previous building block step,

cf. chapter 8.

102

9.2. Parallel prefix sum

9.2. Parallel prefix sum

The major advantage of mapping the OU process to a prefix sum is the possibility to
exploit existing parallelization approaches of scans. We can adapt these approaches
to parallelize the realization of the OU process. Parallel versions of the prefix sum as
described in [126] are called parallel prefix sum or parallel scan, respectively. There are
also parallel strategies targeting GPUs, cf. [100, 99, 216]. We use these strategies to
parallelize the OU process.

Algorithm 7 Up-sweep phase

1: procedure up
2: for d = 1; d ≤ log2(n); d++ do
3: for i = 0; i < n

2d
; i++ do

4: x(i+1)2d−1 ← x(i+1)2d−1 + x(i+ 1
2)2d−1

Algorithm 8 Down-sweep phase

1: procedure down
2: for d = log2(n)− 1; d ≥ 0; d-- do
3: for i = 0; i < n

2d
− 1; i++ do

4: x(i+ 3
2)2d+1−1 ← x(i+1)2d+1−1 + x(i+ 3

2)2d+1−1

Parallel implementations not using more operations in total than a serial implementa-
tion are called work efficient. One possible and the most popular work efficient parallel
version of inclusive prefix sums subdevides the task in an up-sweep phase and a down-
sweep phase. Both phases have a tree-like structure. The up-sweep phase is described by
algorithm 7 and visualized by figure 9.2. It is the same operation like building the sum
over all elements of the sequence in parallel but the intermediate results are essential
for the down-sweep phase and, thus, for the determination of the prefix sum. Algorithm
8 expresses the down-sweep phase which is depicted by figure 9.3. Simply spoken, the
down-sweep phase updates all those values of the sequence which are not already cor-
rect after the up-sweep phase by adding the missing terms. The particular iterations of
the inner loops of algorithms 7 and 8, i.e. the loops over i, are independent from each
other, hence, they can be executed in parallel. A thread sums up at least 2 elements per
outer iteration, i.e. loop over d. Since the stopping criterion of the inner loop depends
on the index of the outer loop, not all threads are doing work all the time. Actually,
during the up-sweep phase, more and more threads get idle while during the down-sweep
phase, the number of busy threads increases. This leads to the tree-like structure and
O(log(n)) parallel operations are necessary instead of O(n) serial operations. Further
details concerning standard parallel prefix sum on GPUs are explained in [100].

For now, we just illustrated how the parallelization for the prefix sum works but for the
realization of the OU process, powers of µX have to be multiplied at correct positions
to regain the factor µi−kX omitted so far. During the up-sweep phase, µ2d

X has to be

103

9. Building block 2:
Ornstein-Uhlenbeck process

n1
(0) n1

(1) n1
(2) n1

(3) n1
(4) n1

(5) n1
(6) n1

(7) n1
(8) n1

(9) n1
(10) n1

(11) n1
(12) n1

(13) n1
(14) n1

(15)

n1
(0) n1

(2) n1
(4) n1

(6) n1
(8) n1

(10) n1
(12) n1

(14)
μXn1

(0)

+
n1

(1)

μXn1
(2)

+
n1

(3)

μXn1
(4)

+
n1

(5)

μXn1
(6)

+
n1

(7)

μXn1
(8)

+
n1

(9)

μXn1
(10)

+
n1

(11)

μXn1
(12)

+
n1

(13)

μXn1
(14)

+
n1

(15)

μX
3n1

(12)

+...+
n1

(15)
n1

(0) n1
(2) n1

(4) n1
(6) n1

(8) n1
(10) n1

(12) n1
(14)

μXn1
(0)

+
n1

(1)

μXn1
(4)

+
n1

(5)

μXn1
(8)

+
n1

(9)

μXn1
(12)

+
n1

(13)

μX
3n1

(8)

+...+
n1

(11)

μX
3n1

(4)

+...+
n1

(7)

μX
3n1

(0)

+...+
n1

(3)

μX
7n1

(8)

+...+
n1

(15)

μX
7n1

(0)

+...+
n1

(7)
n1

(0) n1
(2) n1

(4) n1
(6) n1

(8) n1
(10) n1

(12) n1
(14)

μXn1
(0)

+
n1

(1)

μXn1
(4)

+
n1

(5)

μXn1
(8)

+
n1

(9)

μXn1
(12)

+
n1

(13)

μX
3n1

(8)

+...+
n1

(11)

μX
3n1

(0)

+...+
n1

(3)

μX
15n1

(0)

+...+
n1

(15)

μX
7n1

(0)

+...+
n1

(7)
n1

(0) n1
(2) n1

(4) n1
(6) n1

(8) n1
(10) n1

(12) n1
(14)

μXn1
(0)

+
n1

(1)

μXn1
(4)

+
n1

(5)

μXn1
(8)

+
n1

(9)

μXn1
(12)

+
n1

(13)

μX
3n1

(8)

+...+
n1

(11)

μX
3n1

(0)

+...+
n1

(3)

⋅μX ⋅μX ⋅μX ⋅μX ⋅μX ⋅μX ⋅μX ⋅μX

⋅μX
2 ⋅μX

2 ⋅μX
2 ⋅μX

2

⋅μX
4 ⋅μX

4

⋅μX
8

+ + + + + + + +

+ + + +

+ +

+

d
=
4

d
=
3

d
=
2

d
=
1

d
=
0

Figure 9.2.: Illustration of the up-sweep phase according to Algorithm 7 with a sequence
length of 16. Every row represents the state of the sequence after one itera-
tion of the outer loop. Blue and red arrows (ignoring the red powers of µX)
indicate an addition of 2 elements of the sequence, gray dotted arrows mark
unaltered elements. To extend the parallel prefix sum for the OU process,
powers of µX have to be multiplied to the correct summands as expressed
by the red factors. At least one addition is assigned to one thread. This
figure is taken from our contribution [199].

multiplied to every x(i+1)2d−1. During the down-sweep phase, µ2d

X has to be multiplied
to every x(i+1)2d+1−1. In figures 9.2 and 9.3, this augmentation of the default parallel
prefix sum is represented by red powers of µX . Re-interpreting the parallel prefix sum
makes it a quasi parallel-in-time method [81] for the OU process because the OU process
evolves in time and we realize multiple elements of it simultaneously.

To reduce the number of accesses to slow global memory, a chunk of normal random
numbers originating from building block 1 is loaded in shared memory before a path of
the OU process is computed. This measurement increases performance because multiple
elements are modified multiple times during the up- and down-sweep phase. If every
thread of a thread block sums up 2 elements, only a fraction of the available shared
memory is utilized. Currently, a thread block can consist of up to 210 threads, thus, 210

threads per block times 2 elements per thread times 8 bytes for every element in double
precision results in only 16KByte memory consumption. Today’s GPU architectures
offer at least 48KByte of shared memory per multiprocessor (cf. table 2.1), thus, every
thread could also deal with more than 2 elements. On the one hand, this action leads to
an increase in computational intensity per thread being preferable on GPUs due to their
high FLOP

byte ratio. On the other hand, shared memory consumption per thread block is
increased directing to less active blocks per multiprocessor, thus, lowering occupancy.
Figure 9.4 shows two different setups of the parallel realization of the OU process: Every
thread block consists of 2 threads. In subfigure 9.4(a), each thread deals with 2 elements

104

9.3. Results

n1
(0)

μXn1
(0)

+
n1

(1)

μX
3n1

(0)

+...+
n1

(3)

μX
5n1

(0)

+...+
n1

(5)

μX
7n1

(0)

+...+
n1

(7)

μX
9n1

(0)

+...+
n1

(9)

μX
11n1

(0)

+...+
n1

(11)

μX
13n1

(0)

+...+
n1

(13)

μX
15n1

(0)

+...+
n1

(15)

μX
15n1

(0)

+...+
n1

(15)
n1

(0) n1
(2) n1

(4) n1
(6) n1

(8) n1
(10) n1

(12) n1
(14)

μXn1
(1)

+
n1

(0)

μX
5n1

(0)

+...+
n1

(5)

μX
9n1

(0)

+...+
n1(9)

μX
13n1

(0)

+...+
n1

(13)

μX
11n1

(0)

+...+
n1

(11)

μX
7n1

(0)

+...+
n1

(7)

μX
3n1

(0)

+...+
n1

(3)

μX
15n1

(0)

+...+
n1

(15)

μX
7n1

(0)

+...+
n1

(7)
n1

(0) n1
(2) n1

(4) n1
(6) n1

(8) n1
(10) n1

(12) n1
(14)

μXn1
(1)

+
n1

(0)

μXn1
(4)

+
n1

(5)

μXn1
(8)

+
n1

(9)

μXn1
(12)

+
n1

(13)

μX
11n1

(0)

+...+
n1

(11)

μX
3n1

(0)

+...+
n1

(3)

μX
15n1

(0)

+...+
n1

(15)

μX
7n1

(0)

+...+
n1

(7)
n1

(0) n1
(2) n1

(4) n1
(6) n1

(8) n1
(10) n1

(12) n1
(14)

μXn1
(1)

+
Xn1

(0)

μXn1
(4)

+
n1

(5)

μXn1
(8)

+
n1

(9)

μXn1
(12)

+
n1

(13)

μX
3n1

(8)

+...+
n1

(11)

μX
3n1

(0)

+...+
n1

(3)

μX
14n1

(0)

+...+
n1

(14)

μX
12n1

(0)

+...+
n1

(12)

μX
10n1

(0)

+...+
n1

(10)

μX
8n1

(0)

+...+
n1

(8)

μX
6n1

(0)

+...+
n1

(6)

μX
4n1

(0)

+...+
n1

(4)

μX
2n1

(0)

+...+
n1

(2)

+ + + + + + +

+ + +

+⋅μX
4

⋅μX
2 ⋅μX

2 ⋅μX
2

⋅μX ⋅μX ⋅μX ⋅μX ⋅μX ⋅μX ⋅μX

d
=
3

d
=
2

d
=
1

d
=
0

Figure 9.3.: Illustration of the down-sweep phase according to Algorithm 8 with a se-
quence lenth of 16. Row indexing, arrow coloring, the meaning of the powers
of µX , and the principal assignment of mathematical operations to threads
are the same as for figure 9.2. This figure is taken from our contribution
[199].

requiring 4 thread blocks to handle 16 elements. If every thread deals with 4 elements
as depicted in subfigure 9.4(b), 2 thread blocks process 16 elements.

In most cases, more elements of an OU process path are realized than fit in a single
shared memory. Hence, multiple thread blocks have to be started. Our GPU implemen-
tation of the OU process uses three different kernels, executed consecutively, to enable
a correct calculation:

• scanInclusiveOUKernel():
Realizes up- and down-sweep phase specified by algorithms 7 and 8 in a straight
forward way.

• scanOUFixKernel():
Adds the results from the previous i− 1 blocks to the i-th block. This fix is only
necessary if more than one block is launched.

• realizeOUProcessKernel():
Extends the modified parallel prefix sum to the complete parallel OU process. σX
is multiplied to the result of the modified parallel prefix sum and the addition of
µiXOtn eventually gives the final general evolution step (9.1).

There are much more sophisticated versions of parallel prefix sum on GPUs than
the strategy explained so far. The usage of warp shuffle functions [69, 244] for example,
available since the Kepler architecture for NVIDIA GPUs, allow more refined approaches
[145]. However, this idea only works if the input elements of the prefix sum are integers
and it only leads to a speed-up if a short bit representation of the elements is possible.

105

9. Building block 2:
Ornstein-Uhlenbeck process

n1
(0) n1

(1) n1
(2) n1

(3) n1
(4) n1

(5) n1
(6) n1

(7) n1
(8) n1

(9) n1
(10) n1

(11) n1
(12) n1

(13) n1
(14) n1

(15)

t0 t1 t0 t1 t0 t1 t0 t1
b0 b1 b2 b3

(a)

n1
(0) n1

(1) n1
(2) n1

(3) n1
(4) n1

(5) n1
(6) n1

(7) n1
(8) n1

(9) n1
(10) n1

(11) n1
(12) n1

(13) n1
(14) n1

(15)

t0 t1 t0 t1
b0 b1

(b)

Figure 9.4.: Two versions of assignment of threads to elements to process. In both cases,
thread blocks consist of 2 threads (indicated by curly arrows). Subfigure
9.4(a) depicts the case of 2 elements per thread resulting in 4 thread blocks
for a sequence of 16 elements. For the same number of elements, 2 thread
blocks are necessary if every thread deals with 4 elements as illustrated by
subfigure 9.4(b). Both subfigures are taken from our contribution [199].

9.3. Results

Figure 9.5 shows the benchmark results of our parallel implementation of the OU process
basing on parallel prefix sum. Benchmarks are conducted on the same three GPUs as
used for benchmarking in the previous chapter 8: Tesla M2090, Tesla K40m, and GTX
750 Ti. In all runs, 226 elements of the OU process are realized in parallel. We are
interested in the influence of the number of elements per thread on performance, thus,
we assign this value to the ordinates. The rate of realized elements of the OU process
is used as performance indicator measured in giga (109) realizations of the OU process
per second (GROUPs/s) assigned to the abscissas. Different lines represent different
applied “threads per block” parallel setups ranging from 27 to 210. Red lines represent
single precision results, double precision outcomes are colored in blue. Runtimes refer to
the realization of the OU process only including all three kernels scanOUFixKernel(),
scanOUFixKernel(), and realizeOUProcessKernel() but do not incorporate random
number generation.

For many combinations of GPU model, elements per thread, number of threads per
block in one dimension, and number of blocks per grid in one dimension, there are
no results because hardware limitations avoid a successful execution. So for instance,
realizing 226 elements of the OU process using 27 threads per block and every thread
handling 23 elements would require 226

27·23 = 216 blocks per grid. Due to its compute
capability, the Tesla M2090 only supports 216 − 1 blocks per grid per dimension. Or
using 29 threads per block and every thread handling 24 elements in double precision

106

9.3. Results

2 4 8 16
elements per thread

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

gi
ga

 re
al

iz
at

io
ns

 o
f O

U
 p

ro
ce

ss

Tesla M2090 (Fermi)

2 4 8 16
elements per thread

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Tesla K40m (Kepler)

2 4 8 16
elements per thread

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 GTX 750 Ti (Maxwell)

float, 27 threads/block
double, 27 threads/block

float, 28 threads/block
double, 28 threads/block

float, 29 threads/block
double, 29 threads/block

float, 210 threads/block
double, 210 threads/block

Figure 9.5.: Performance in GROUPs/s over number of elements per thread of our par-
allel OU process implementation on three different NVIDIA GPUs. Single
precision results are colored in red, double precision results are colored in
blue. Different “threads per block” configurations ranging from 27 to 210

are depicted by different lines. Due to hardware limitations, there are not
results for all combinations of GPU, elements per thread, and number of
threads per block. This plot is taken from our contribution [199].

would require 210 ·24 ·8Bytes = 128KByte of shared memory. None of the utilized GPUs
offers that amount of shared memory per multiprocessor.

Even though there are only few results per line, one single peak of performance is rec-
ognizable for almost all results in single precision. For example, the 210 threads per block
version shows best performance on the Tesla K40m when assigning 4 elements to every
thread or on the GTX 750 Ti, 16 elements per thread is the best choice when running
28 threads per block. Low computational intensity is the reason for worse performance
when using less elements per thread than the peak performance configuration. Low oc-
cupancy due to higher shared memory consumption is the reason for worse performance
when using more elements per thread than the peak performance configuration. Using
more elements per thread almost always leads to better performance when executing op-
erations in double precision. On the Tesla K40m, 4 elements per thread and 210 threads
per block result in the best double precision performance on this particular GPU. For
all other combinations of GPU and precision, the best performing configuration is al-
ways 8 elements per thread and 29 threads per block. Peak performance values of the
Tesla M2090 are 2.28 GROUPs/s and 0.89 GROUPs/s for single and double precision,
respectively, with according occupancy 1 and 0.33. The highest realization rates are
accomplished on the Tesla K40m with 3.20 GROUPs/s in single (occupancy 0.75) and
1.11 GROUPs/s in double precision (occupancy 0.5). The corresponding performance
of the GTX 750 Ti is 1.78 GROUPs/s (occupancy 1) and 0.36 GROUPs/s (occupancy
0.5), respectively. Configurations for all utilized GPUs leading to best performance of
the OU process are clearly listed in table 12.1.

The major bottleneck of the parallel OU process is its tree-like algorithmic struc-

107

9. Building block 2:
Ornstein-Uhlenbeck process

ture. Hence, approximately half of the threads are idle during execution. However,
our approach of mapping the OU process to prefix sum and exploiting its paralleliza-
tion strategies is the first successful attempt to parallelize this stochastic process also
applicable to other parallel computing devices and architectures. The next building
block determines different averaged values of continuous sub-sequences of a realized OU
process path in parallel and is presented in the next chapter 10.

108

10. Building block 3:
Averaging

To complete the transition from fine timestepping with timestep size δ to coarse timestep-
ping with timestep size h, different kinds of averaged values of the elements of the OU
process (cf. chapter 9) have to be determined. Hence, averaging forms the third building
block of our RODE solver pipeline. The averager type depends on the actual numerical
solver for the RODE. Even if we start with averaged values for the KT model, we see
that this leads to the determination of general, problem-independent averages. These
averages are not limited to the solution of RODEs but can also be assigned to many other
domains. Averaging is the only memory-bound building block of our RODE solver. We
continue using the identifiers from chapter 7.

In section 10.1 we show that the calculation of single and double averaged values
(7.9b) and (7.11b) simply leads to the computation of a (modified) universal averaged
value. The same holds for the approximation of multi-integrals by Riemann sums for the
K-RODE-Taylor schemes (7.18) demonstrated in section 10.2. We conclude this chapter
with section 10.3 containing benchmarks and profilings of our averager implementations
for GPUs highlighting the performance of this particular building block.

10.1. Single & double averaging

The averaged Euler scheme (7.10) incorporates the single averaged value (7.9b). Rewrit-

ing Ḡ
(1)
h,δ(t = tn) and applying the KT model’s G(t) gives

Ḡ
(1)
h,δ(tn)

(7.9b)
=

1

M

M−1∑

j=0

G(tn + jδ)

(7.8a)
=

1

M

M−1∑

j=0

−Otn+jδ

(
1

2ξgωg − 1

)

= − 1

M

(
1

2ξgωg − 1

)

︸ ︷︷ ︸
KT model-specific

M−1∑

j=0

Otn+jδ. (10.1)

(
1

2ξgωg − 1

)
is specific to the utilized KT model but the remainder of (10.1) is just

the average of M continuous elements of the OU process. Depending on M , this average

is by far the computationally most expensive part of Ḡ
(1)
h,δ(t).

109

10. Building block 3:
Averaging

We come to a similar conclusion when investigating the averaged Heun scheme (7.12):

It incorporates the double averaged value (7.11b). Applying the KT model to Ḡ
(2)
h,δ(t =

tn) leads to

Ḡ
(2)
h,δ(tn)

(7.11b)
=

2

M2

M−1∑

j=0

(M − j)G(tn + jδ)

(7.8a)
=

2

M2

M−1∑

j=0

−(M − j)Otn+jδ

(
1

2ξgωg − 1

)

= − 2

M2

(
1

2ξgωg − 1

)

︸ ︷︷ ︸
KT model-specific

M−1∑

j=0

(M − j)Otn+jδ. (10.2)

Again, the KT model-specific factor can be separated resulting in an average value of M
continuous elements of the OU process. In contrast to the average value of the averaged
Euler scheme, the average value of the averaged Heun scheme has to be extended by a
factor M − j but this factor is still independent from the actual model. Building the

average value is the computationally most expensive part of Ḡ
(2)
h,δ(t = tn).

Actually, we also have to analyze the averaged values (7.9a) and (7.11a). Since for the

KT model g(t)
(7.8b)
:= 1, also the averaged values become 1 and, thus, can be neglected.

Parallelizing the averagers is trivial due to the associativity of the add operation.
Since there are in general much more elements to be summed up than working threads,
a parallel averager works in two steps exemplified by figure 10.1: First, an exclusive
equally-sized segment of the values to be averaged is assigned to every thread which
computes the sum of the segment (multiplying each value with M − j if double averages
are requested). Second, the global sum of all segments is determined in a tree-like
manner, also called a reduce operation. Finally, the global sum has to be divided by M
or −M2

2 for single or double averages, respectively. Regarding numerical stability, it can
make sense to not perform the division at the end of the averaging process but already
sooner.

10.2. Tridiagonal averaging

The simplified multi-integrals (7.17) originating from the K-RODE-Taylor schemes, each
over a sub-interval [tn, tn+1], are approximated by us via Riemann sums (7.18). Neither
the multi-integrals nor the Riemann sums are problem-dependent, cf. equation (7.14a),
but they just depend on elements of the OU process. Rearranging the Riemann sums
gives

∫ tn+1

tn

1

d!
(tn+1 − u)d∆Otdu

(7.18)
≈ δ

M∑

j=1

1

d!
(tn+1 − uj)d ∆Ot

110

10.2. Tridiagonal averaging

x0 x3 x6 x9

x1 x4 x7 x10

x2 x5 x8 x11

x0
+...+
x2

x3
+...+
x5

x6
+...+
x8

x9
+...+
x11

x0
+...+
x5

x6
+...+
x11

x0
+...+
x11

x12 x15 x18 x21

x13 x16 x19 x22

x14 x17 x20 x23

x12
+...+
x14

x15
+...+
x17

x18
+...+
x20

x21
+...+
x23

x12
+...+
x17

x18
+...+
x23

x12
+...+
x23

x0
+...+
x23

Figure 10.1.: Parallel averaging of a sequence of input numbers. First, every thread sums
up a segment of equal size (here, consisting of 3 elements, e.g. [x9, . . . , x11])
depicted in the upper part of the figure. Second, the partial results of
the particular threads are reduced in parallel in a tree-like manner to get
the overall sum depicted in the lower part. This figure is taken from our
contribution [199].

=
δ

d!

M∑

j=1

(tn+1 − (tn + jδ))d (Otn+jδ −Otn)

=
δ

d!

M∑

j=1

(h− jδ)d(Otn+jδ −Otn). (10.3)

Similar to the averaged values Ḡ
(1)
h,δ(tn) and Ḡ

(2)
h,δ(tn) in the previous subsection 10.1, the

Riemann sum leads to the determination of a modified average value. The same two step
parallelization approach as used for the averaged schemes and depicted by figure 10.1
can be reused for the parallel computation of the Riemann sums. The corresponding
kernel just has to be modified in a minor way to incorporate the factor (h− jδ)d (h, δ,
and d are constant during the calculation of a particular Riemann sum) and to sum over
the difference ∆Ot instead of just the realized elements of the OU process.

111

10. Building block 3:
Averaging

25 26 27 28 29 210

threads per block

0

5

10

15

20

25

30

35

bi
llio

n
el

em
en

ts
 fo

r a
ve

ra
gi

ng

Tesla M2090 (Fermi)

25 26 27 28 29 210

threads per block

0

5

10

15

20

25

30

35

Tesla K40m (Kepler)

25 26 27 28 29 210

threads per block

0

5

10

15

20

25

30

35

GTX 750 Ti (Maxwell)

float, single averaging
double, single averaging

float, double averaging
double, double averaging

float, 3-tridiagonal
double, 3-tridiagonal

float, 4-tridiagonal
double, 4-tridiagonal

Figure 10.2.: Performance in billion elements for averaging over “threads per block” of
different averagers measured on three different NVIDIA GPUs. Single pre-
cision results are colored in red, double precision results are colored in
blue. The averagers for the methods averaged Euler (single averaging),
averaged Heun (double averaging), 3-RODE-Taylor (3-tridiagonal) scheme
and 4-RODE-Taylor (4-tridiagonal) scheme are depicted by different lines.
Due to hardware limitations, some results on Fermi for computing in dou-
ble precision using 210 threads are missing. This plot is taken from our
contribution [199].

10.3. Results

For averaging, we measure performance in billion input elements processed per second in
dependence of “threads per block” grid configuration. Hence, we assign billion elements
for averaging to the abscissas and threads per block, ranging from 25 to 210, to the
ordinates of figures 10.2 and 10.3. Once again, the Teslas M2090 and K40m and the
GTX 750 Ti are employed for benchmarks and profilings. Four different averagers are
tested, each noted by a dedicated line and line marker: The averager originating from

the single averages Ḡ
(1)
h,δ(tn) for the averaged Euler scheme (cf. (10.1)), the averager

originating from the double averages Ḡ
(2)
h,δ(tn) for the averaged Heun scheme (cf. (10.2)),

and the tridiagonal averagers used in the K-RODE-Taylor schemes for K = 3 and
K = 4 (cf. (10.3)). Red lines represent runs using single precision operations, double
precision runs are colored blue. Runtimes refer to the averaging process only but do not
incorporate the generation of the input elements.

As in chapter 9, 226 elements, provided by an OU process, are processed per run.
Every thread block computes an average value over 214 elements, thus, 226

214
= 212 thread

blocks are started. Depending on the number of launched threads per block, every thread
sums up between 24 and 29 elements during the first step. There are always much more
threads than processing elements. Our implementation of the averagers also supports
the joint computation of a single average value by multiple or even all thread blocks
but this feature is not benchmarked in this section. The first reason for this cutback is

112

10.3. Results

25 26 27 28 29 210

threads per block

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

 o
f m

ax
im

um
 b

an
dw

id
th

Tesla M2090 (Fermi)

25 26 27 28 29 210

threads per block

0.0

0.2

0.4

0.6

0.8

1.0

Tesla K40m (Kepler)

25 26 27 28 29 210

threads per block

0.0

0.2

0.4

0.6

0.8

1.0

GTX 750 Ti (Maxwell)

float, single averaging
double, single averaging

float, double averaging
double, double averaging

float, 3-tridiagonal
double, 3-tridiagonal

float, 4-tridiagonal
double, 4-tridiagonal

Figure 10.3.: Share of utilized memory bandwidth in peak memory bandwidth over
“threads per block” of different averagers measured on three different
NVIDIA GPUs. Color coding, line captions, and markers are equal to
figure 10.2. This plot is taken from our contribution [199].

the setting of solving RODEs where multiple coarse timesteps, each requiring at least
a single averaged value, have to be calculated instead of only one. The second reason
is the observation of just small discrepancies in benchmarks and profilings between the
one thread block per average value version and the multiple thread blocks per average
value version.

Analyzing the benchmark results in figure 10.2 shows a familiar picture: Two limiters,
one for low threads per block numbers and one for high threads per block numbers,
lead to a single peak of performance on almost all GPU architectures. In this case,
the non-optimal ratio of warps executing computations and warps performing memory
transfers is the common limiting source. This prevents the scheduler from optimally
hiding communication with computation. Performance of the averagers of the averaged
Euler and Heun schemes is quite similar because they only differ in a factor M − j per
element. The same holds for the Riemann sums: If the number of elements per sum is
the same like in our benchmark scenario, the particular tridiagonal sums just vary in the
exponent d with a negligible influence on performance. Parallel setups leading to best
performance on all utilized GPUs of the particular averagers are clearly listed in table
12.1.

Averaging in the way we parallelize it on the GPU is a memory-bound problem. During
the first step, warps can make full advantage of coalesced memory access with a very low
computational intensity. Coalesced memory access is possible due to the associativity
of the add operation allowing an arbitrary optimization of the memory access pattern.
In contrast, the runtime of the second step is relatively short. Let us assume a setup
where 26 threads determine the average value of 214 elements. Then, each thread sums
up 214

26
= 256 elements during the first step but just 6 parallel operations are necessary

to realize the reduction in the second step. Since every input element is only treated
once, it does not make sense to utilize shared memory but to directly read from global

113

10. Building block 3:
Averaging

memory. Figure 10.3 depicts the share of the actual memory bandwidth utilization
to the peak memory bandwidth (cf. table 2.1). For single and double precision, the
best carried out memory bandwidth utilizations are 84.2% and 88.5% (both running 28

threads per block) on the Tesla M2090, 64.7% and 72.1% (both running 28 threads per
block) on the Tesla K40m, and 74.6% (running 26 threads per block) and 81.1% (running
27 threads per block) on the GTX 750 Ti, respectively. These values, all achieved by
averager (10.1), confirm the memory-bondage of averaging and could even be improved
by vectorized memory access [144].

The peaks and slopes of figures 10.2 (processing rate) and 10.3 (memory bandwidth
utilization) do not perfectly correlate. There are two reasons explaining this behavior:
First, the computational intensity for the averages of the averaged Euler and Heun
schemes is lower than the intensity of the Riemann sums of the K-RODE-Taylor schemes
while the amount of transferred data is the same. Second, computations in double
precision require to transfer twice the amount data than single precision.

Exploiting the high memory bandwidth of GPUs makes the memory-bound task of
averaging a very fast and efficient operation on these parallel computing devices. Up to
25.29, 37.22, and 18.45 billion elements are treated per second on the Teslas M2090 and
K40m and the GTX 750 Ti, respectively. With normal PRNGs, realization of the OU
process, and averaging, we now have everything at hands to do the transition from fine
timestepping to coarse timestepping in chapter 11. This fourth building block finally
enables us to determine a path-wise solution of an RODE.

114

11. Building block 4:
Coarse timestepping for the right-hand side

The groundwork of the first three building blocks presented in chapters 8–10 enables
the path-wise solution of RODEs with coarse timestepping. The averaged values, basing
on the OU process, again basing on normal random numbers, are now used in the
fourth building block. This final building block is the only application-specific stage of
our RODE solver approach and we demonstrate it for the KT model. That means we
combine terms of chapters 7 and 10 to set a path-wise numerical solution of reasonable
order of convergence. To get the overall solution, the expected value of the multiple
path-wise solutions is still needed.

At the beginning, we specify the averaged Euler and Heun schemes for the KT model
(7.6) in section 11.1 and for the K-RODE-Taylor scheme in section 11.2 for K = 1,
3, and 4. In contrast to the first three building blocks, this chapter does not contain
a results section. Experiments in section 12.2 show that the final building block itself
actually has a negligible share in total runtime, thus, we neither optimize, parallelize,
nor analyze it in any way. Using a different RODE than the KT model may increase the
computational effort of the fourth building block. Then, a more detailed analysis of the
coarse timestepping method can be beneficial.

11.1. Averaged schemes

The averaged Euler scheme (7.10) for the KT model (7.6) has the following form:

(
z1

z2

)

n+1

= Zn+1
(7.10)

= Zn + h · Fω(Zn, tn)

(7.7)
= Zn + h · (Ḡ(1)

h,δ(tn) + ḡ
(1)
h,δ(tn) ·H(Zn))

(7.8c)
= Zn + h ·


Ḡ

(1)
h,δ(tn)
︸ ︷︷ ︸

(10.1)

+ ḡ
(1)
h,δ(tn)
︸ ︷︷ ︸

=1

· −
(

(z2)n
2ζgωg(z2)n − ω2

g(z1)n

)



It determines the numerical solution for the next coarse timestep Zn+1 ∈ R2. The

functions Ḡ
(1)
h,δ(tn) and ḡ

(1)
h,δ(tn) are single averages, H is the deterministic part of the KT

model, h denotes the coarse, and δ the fine timestep size. The constants ζg and ωg are
introduced in section 7.2.

115

11. Building block 4:
Coarse timestepping for the right-hand side

Analogously, incorporating double averaged values Ḡ
(2)
h,δ(tn) and ḡ

(2)
h,δ(tn), the averaged

Heun scheme (7.12) for the KT model (7.6) reads

Zn+1
(7.12)

= Zn +
h

2
(Fω(Zn, tn) + Fω(Zn+1, tn+1))

(7.7)
= Zn +

h

2

(
Ḡ

(1)
h,δ(tn) + ḡ

(1)
h,δ(tn) ·H(Zn)

+Ḡ
(1)
h,δ(tn) + ḡ

(1)
h,δ(tn) ·H(Zn+1)

)

= Zn +
h

2


Ḡ

(1)
h,δ(tn)
︸ ︷︷ ︸

(10.1)

+ ḡ
(1)
h,δ(tn)
︸ ︷︷ ︸

=1

·H(Zn)︸ ︷︷ ︸
(7.8c)

+ Ḡ
(1)
h,δ(tn)
︸ ︷︷ ︸

(10.1)

+ ḡ
(1)
h,δ(tn)
︸ ︷︷ ︸

=1

·H


Zn + h


Ḡ

(2)
h,δ(tn)
︸ ︷︷ ︸

(10.2)

+ ḡ
(2)
h,δ(tn)
︸ ︷︷ ︸

=1

·H(Zn)︸ ︷︷ ︸
(7.8c)







︸ ︷︷ ︸
(7.8c)




with Zn+1 ∈ R2 being the numerical solution at the next coarse timestep tn+1.

11.2. K-RODE-Taylor schemes

The 1-RODE-Taylor scheme using Riemann sums for quadrature has the form

Z1,h
n+1 = Z1,h

n + hf + f(1,0)

∫ tn+1

tn

∆Osds

(7.18)
≈ Z1,h

n + hf + f(1,0) δ

M∑

j=1

(Otn+jδ −Otn)

︸ ︷︷ ︸
(10.3) with d=0

with Zn+1 ∈ R2 representing the numerical solution at the next coarse timestep tn+1.
After setting up the 3-RODE-Taylor scheme according to (7.13), the multi-integrals

are simplified by (7.17) and approximated by (7.18). This leads to the numerical ap-
proximation

Z3,h
n+1

(7.15)
= Z3,h

n + hf + f(1,0)

∫ tn+1

tn

∆Osds

+
h2

2
f(0,1)f + f(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∆Ovdvds

+
h3

6
f2

(0,1)f + f2
(0,1)f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn

∆Owdwdvds

116

11.2. K-RODE-Taylor schemes

(7.17)
= Z3,h

n + hf + f(1,0)

∫ tn+1

tn

∆Otdt

+
h2

2
f(0,1)f + f(0,1)f(1,0)

∫ tn+1

tn

(tn+1 − (tn + jδ))∆Otdt

+
h3

6
f2

(0,1)f + f2
(0,1)f(1,0)

∫ tn+1

tn

1

2
(tn+1 − (tn + jδ))2∆Otdt

(7.18)
≈ Z3,h

n + hf + f(1,0) δ
M∑

j=1

(Otn+jδ −Otn)

︸ ︷︷ ︸
(10.3) with d=0

+ f(0,1)f
h2

2
+ f(0,1)f(1,0) δ

M∑

j=1

(h− jδ)(Otn+jδ −Otn)

︸ ︷︷ ︸
(10.3) with d=1

+
h3

6
f2

(0,1)f + f2
(0,1)f(1,0)

δ

2

M∑

j=1

(h− jδ)2(Otn+jδ −Otn)

︸ ︷︷ ︸
(10.3) with d=2

with third order of convergence.

Analogously, the 4-RODE-Taylor scheme is derived by introducing a fourth term. To
keep the derivation compact, we skip the intermediate step with the multi-integrals and
indicate the final approximation:

Z4,h
n+1

(7.16)(7.17)(7.18)
≈ Z4,h

n + hf + f(1,0) δ

M∑

j=1

(Otn+jδ −Otn)

︸ ︷︷ ︸
(10.3) with d=0

+
h2

2
f(0,1)f + f(0,1)f(1,0) δ

M∑

j=1

(h− jδ)(Otn+jδ −Otn)

︸ ︷︷ ︸
(10.3) with d=1

+
h3

6
f2

(0,1)f + f2
(0,1)f(1,0)

δ

2

M∑

j=1

(h− jδ)2(Otn+jδ −Otn)

︸ ︷︷ ︸
(10.3) with d=2

+
h4

24
f3

(0,1)f + f3
(0,1)f(1,0)

δ

6

M∑

j=1

(h− jδ)3(Otn+jδ −Otn)

︸ ︷︷ ︸
(10.3) with d=3

.

In general, K Riemann sums are necessary for a K-RODE-Taylor scheme.

117

11. Building block 4:
Coarse timestepping for the right-hand side

The right-hand side of the KT model is

f
(7.6)
=

(
−(z2 +Ot)

−2ζgωg(z2 +Ot) + ω2
gz1 +Ot

)
.

The partial derivatives f(1,0) and f(0,1) of f are parts of the Jacobian of f(Ot, z1, z2)

∇f(ω,Z) = ∇f(Ot, z1, z2) =




∂f1

∂Ot
(x) ∂f1

∂z1
(x) ∂f1

∂z1
(x)

︸ ︷︷ ︸
=: f(1,0)

∂f2

∂Ot
(x)

︸ ︷︷ ︸
=: f(0,1)

∂f2

∂z1
(x) ∂f2

∂z1
(x)



∣∣∣∣∣∣
x=(Ot,z1,z2)

with f, Z ∈ R2 and ω ∈ R. Hence,

f(1,0) =

(
−1

−2ζgωg + 1

)
∈ R2, f(0,1) =

(
0 −1
ω2
g −2ζgωg

)
∈ R2×2.

The solution of the KT model introduced so far is Z = (z1, z2)T . The actual physical
values of the earthquake namely ground position xg, velocity ẋg, and acceleration ẍg are
finally determined via

xg = z1,

ẋg = −(z2 +Ot),

and
ẍg = −2ζgωgẋg − ω2

gxg

with xg, ẋg, ẍg ∈ R.
This finishes the final building block and, thus, the central elements of our RODE

solver. The final building block is the only application-specific step in the presented
solver pipeline. Hence, depending on the actual application, a parallelization of the
coarse timestepping can make sense being not necessary for the KT model as discussed,
amongst other things, in the next chapter 12.

118

12. Results of the full random ordinary
differential equations solver

With an efficient GPU implementation of the four building blocks (generation of normal
random numbers, realization of the OU process, averaging of the elements of the OU
process, and the solution of the right-hand side of the application RODE using coarse
timestepping) at hand, it is possible to analyze and benchmark the interaction of them.
The first three building block chapters 8–10 already provide profiling and benchmark
results for the particular building blocks in their final sections (cf. sections 8.4, 9.3, and
10.3). In this chapter, we apply the best performing configurations (number of Ziggurat
strips, parallel setup, elements per thread, etc.) to the building blocks and evaluate the
performance of our entire RODE solver approach. This includes the study of a single
path-wise solution as well as the investigation of the expected value of multiple path-wise
solutions.

For building blocks two and three (cf. chapters 9 and 10, respectively), only one
concrete parallel concept to realize the corresponding task (realization of the OU process
and averaging) was given, thus, these particular approaches are executed here. Out of the
three normal random number generators presented in chapter 8, the Ziggurat method is
used throughout this chapter. To keep it compact, only one normal PRNG is utilized; it
could be replaced by rational polynomials or the Wallace method without any limitations.
The RODE application is still the KT model. Regarding the RODE solver, we conduct
measurements with the averaged Euler scheme as representative for the averaged schemes
and the 3-RODE-Taylor scheme as representative for the K-RODE-Taylor schemes and
omit results for the averaged Heun scheme and K-RODE-Taylor schemes for K 6= 3.
For the single-GPU evaluations, the Teslas M2090 and K40m and the GTX 750 Ti are
utilized in sections 12.1 and 12.2. The GPU clusters JuDGE, Hydra, and TSUBAME2.5
(cf. table 2.5) are employed for the multi-GPU evaluations in section 12.3.

The remainder of this chapter is structured as follows: First, the best performing con-
figurations for the first three building blocks being used for profiling and benchmarking
in the subsequent sections are summed up in section 12.1. In addition, profiling values
such as FLOPS rate relative to maximum peak performance and occupancy resulting
from these configurations are provided. Second, the share of every GPU kernel in total
runtime for a path-wise solution of the RODE is listed in section 12.2 which, hence,
profiles the first two levels of parallelism originating from the building blocks. In section
12.3, the scalability of the Monte Carlo approach, i.e. the third level of parallelism, is
evaluated on three GPU clusters. Finally, an empirical analysis of the statistical prop-
erties of the presented RODE solver is given in section 12.4 by comparing the solutions
of different solvers using various amounts of path-wise solutions.

119

12. Results of the full random ordinary differential equations solver

12.1. Configurations of choice for the building blocks

building configuration Tesla M2090 Tesla K40m GTX 750 Ti
block parameter float double float double float double

1. PRNG
t./b. 26

-
26

-
25

-
#strips 210 210 28

implementation local mem. shared mem. shared mem.

2. OU process
t./b. 29 210 29

elements/thread 23 22 23

3. averaging

t./b. (single) 28 26 27

t./b. (double)
28

27 28 27

t./b. (3-trid.)
27 26

t./b. (4-trid.) 26 25

Table 12.1.: Optimal configuration parameters leading to best performance of the first
three building blocks. Configuration parameters vary depending on the uti-
lized GPU and floating-point precision (float or double). The abbreviation
t./b. stands for “threads per block” and specifies the parallel setup. Single
and double refers to the averagers for the averaged Euler and Heun scheme,
respectively. 3-tridiag. and 4-tridiag. denote the Riemann sums for the 3-
and 4-RODE-Taylor scheme.

To achieve the best overall performance for our entire RODE solver, the best per-
forming configurations of the particular building blocks are applied. The performance is
measured in GPRNs/s, GROUPs/s, and processed elements per second for PRNG, OU
process, and averaging, respectively. These configurations for the first three building
blocks are already discussed in the corresponding result sections and listed in table 12.1.
The configuration parameters for the PRNG refer to the Ziggurat method.

Using these optimal configuration parameters leads to the profiling values in table
12.2 determined by the command line profiler nvprof [182]. FLOPS rate relative to
maximum peak performance and theoretical and measured occupancy are determined
for all kernels of the first three building blocks. Table 2.1 lists the peak FLOPS rates
being the reference value for the relative FLOPS rates. Having a closer look on these
rates testifies that none of the building blocks is compute-bound. Only the GTX 750 Ti
performing double precision operations shows significant relative FLOPS rates but this
behavior is related to the very low double precision performance of this GPU. Instead, the
kernels of the PRNG and OU process building block are latency-bound, the averaging is
memory-bound. The measured occupancies correlate well with the expected theoretical
occupancies. Since benchmarks for the normal PRNG are only carried out in single
precision, no corresponding double precision values are given in tables 12.1 and 12.2.

120

12.1. Configurations of choice for the building blocks

building
k.

perfor. Tesla M2090 Tesla K40m GTX 750 Ti
block value float double float double float double

PRNG

1a
% peak 0.01%

-
0.01%

-
0.01%

-occ. theo. 0.33 0.28 0.5
occ. meas. 0.32 0.27 0.46

1b
% peak 0.02%

-
0.02%

-
0.58%

-occ. theo. 0.33 0.16 0.3
occ. meas. 0.33 0.15 0.29

OU
process

2a
% peak 0.14% 0.21% 0.03% 0.06% 0.98% 11.89%

occ. theo. 0.66 0.33 0.5 0.75 0.25
occ. meas. 0.66 0.33 0.49 0.73 0.25

2b
% peak 0.28% 1.60% 0.03% 0.59% 0.79% 47.69%

occ. theo. 1
occ. meas. 0.91 0.97 0.89 0.91 0.87 0.89

2c
% peak 0.44% 0.38% 0.06% 0.11% 1.05% 27.84%

occ. theo. 1
occ. meas. 0.89 0.83 0.87 0.82 0.86 0.91

aver-
aging

3a
% peak 0.14% 0.22% 0.06% 0.10% 1.15% 21.34%

occ. theo. 1 0.83 1 0.72 0.81
occ. meas. 0.99 0.8 1 0.71 0.77

3b
% peak 1.28% 1.78% 0.31% 0.69% 5.88% 48.86%

occ. theo. 1 0.5 0.86 0.56 0.72 0.4
occ. meas. 0.99 0.5 0.87 0.56 0.71 0.4

Table 12.2.: Profiling values for the first three building blocks using the optimal
parameters from Table 12.1: FLOPS rate relative to maximum peak
performance (% peak) and theoretical (occ. theo.) and actually measured
(occ. meas.) occupancy. The values are broken down kernel-wisely (k.)
for three different GPUs. Row 1a lists values for the initialization of
the PRNG (initStatesNormalKernel()) while the actual kernel for
the generation (getRandomNumbersNormalKernel()) is listed in row
1b. Explanations of the three kernels scanExclusiveOUKernel()

(denoted by 2a), scanOUFixKernel() (denoted by 2b), and
realizeOUProcessKernel() (denoted by 2c) for the OU process can
be found in section 9.3. The averager for the averaged Euler scheme
(singleAverageKernel()) and the Riemann sums for the 3-RODE-Taylor
scheme tridiagIntegralApproximationKernel() are given in rows 3a
and 3b. This table is taken from our contribution [199].

121

12. Results of the full random ordinary differential equations solver

12.2. Profiling of single path-wise solutions

In this section, the share each kernel of our RODE solver contributes in total runtime
is examined depending on the problem size. All four building blocks are considered for
a single path-wise solution of the RODE, thus, one OU process is realized to profile the
first two levels of parallelism. Results for an averaged Euler scheme scenario are depicted
in figure 12.1 and for an 3-RODE-Taylor scheme scenario in figure 12.2 conducted on the
Tesla M2090, Tesla K40m, and the GTX 750 Ti. Runtimes are normalized to 1, thus,
the runtime of all four building blocks adds up to 1 and the runtimes of the particular
kernels are divided by this total runtime. Hence, the shares of the particular kernels are
easier to identify independent of the actual problem size. The problem size is denoted by
“seconds of simulated time” × “coarse timesteps per second” (i.e. 1

h) × “fine timesteps

per coarse timestep” (i.e. h
δ) and ranges from 23 seconds up to 210 seconds (which is a

relatively big problem size) of simulation time. The execution of the kernels is configured
according to table 12.1.

In contrast to the building blocks two, three, and four, the normal random number

SP
, 2

3
×2

10
×2

10

D
P,

 2
3
×2

10
×2

10

SP
, 2

4
×2

10
×2

10

D
P,

 2
4
×2

10
×2

10

SP
, 2

5
×2

10
×2

10

D
P,

 2
5
×2

10
×2

10

0.0

0.2

0.4

0.6

0.8

1.0

sh
ar

e

Tesla M2090 (Fermi)

SP
, 2

3
×2

10
×2

10

D
P,

 2
3
×2

10
×2

10

SP
, 2

4
×2

10
×2

10

D
P,

 2
4
×2

10
×2

10

SP
, 2

5
×2

10
×2

10

D
P,

 2
5
×2

10
×2

10

SP
, 2

6
×2

10
×2

10

D
P,

 2
6
×2

10
×2

10

SP
, 2

7
×2

10
×2

10

D
P,

 2
7
×2

10
×2

10

SP
, 2

8
×2

10
×2

10

D
P,

 2
8
×2

10
×2

10

SP
, 2

9
×2

10
×2

10

D
P,

 2
9
×2

10
×2

10

SP
, 2

10
×2

1
0
×2

10

D
P,

 2
10
×2

1
0
×2

10

0.0

0.2

0.4

0.6

0.8

1.0
Tesla K40m (Kepler)

SP
, 2

3
×2

10
×2

10

D
P,

 2
3
×2

10
×2

10

SP
, 2

4
×2

10
×2

10

D
P,

 2
4
×2

10
×2

10

SP
, 2

5
×2

10
×2

10

D
P,

 2
5
×2

10
×2

10

SP
, 2

6
×2

10
×2

10

D
P,

 2
6
×2

10
×2

10

SP
, 2

7
×2

10
×2

10

D
P,

 2
7
×2

10
×2

10

SP
, 2

8
×2

10
×2

10

D
P,

 2
8
×2

10
×2

10

0.0

0.2

0.4

0.6

0.8

1.0
GTX 750 Ti (Maxwell)

initStatesNormalKernel()
scanExclusiveOUKernel()
averagedEulerKernel()

getRandomNumbersNormalKernel()
scanOUFixKernel()

singleAverageKernel()
realizeOUProcessKernel()

Figure 12.1.: Shares in total runtime of all necessary kernels to determine a path-wise
solution of the KT model applying the averaged Euler scheme on three
different GPUs. Results depend on problem size denoted by “seconds of
simulated time” × “coarse timesteps per second” × “fine timesteps per
coarse timestep” and are conducted in single (SP) and double precision
(DP). All values are normalized. The generation of normal random num-
bers also includes times for initialization of the PRNGs and is shown in
green. The realization of the OU process executing three kernels is de-
picted in blue. The share of averaging is colored in orange and the red bar
corresponds to the coarse timestepping of the averaged Euler scheme. This
figure is taken from our contribution [199].

122

12.2. Profiling of single path-wise solutions

SP
, 2

3
×2

10
×2

10

D
P,

 2
3
×2

10
×2

10

SP
, 2

4
×2

10
×2

10

D
P,

 2
4
×2

10
×2

10

SP
, 2

5
×2

10
×2

10

D
P,

 2
5
×2

10
×2

10

SP
, 2

6
×2

10
×2

10

D
P,

 2
6
×2

10
×2

10

SP
, 2

7
×2

10
×2

10

D
P,

 2
7
×2

10
×2

10
0.0

0.2

0.4

0.6

0.8

1.0

sh
ar

e

Tesla M2090 (Fermi)

SP
, 2

3
×2

10
×2

10

D
P,

 2
3
×2

10
×2

10

SP
, 2

4
×2

10
×2

10

D
P,

 2
4
×2

10
×2

10

SP
, 2

5
×2

10
×2

10

D
P,

 2
5
×2

10
×2

10

SP
, 2

6
×2

10
×2

10

D
P,

 2
6
×2

10
×2

10

SP
, 2

7
×2

10
×2

10

D
P,

 2
7
×2

10
×2

10

SP
, 2

8
×2

10
×2

10

D
P,

 2
8
×2

10
×2

10

SP
, 2

9
×2

10
×2

10

D
P,

 2
9
×2

10
×2

10

SP
, 2

10
×2

10
×2

10

D
P,

 2
1
0
×2

10
×2

10

0.0

0.2

0.4

0.6

0.8

1.0
Tesla K40m (Kepler)

SP
, 2

3
×2

10
×2

10

D
P,

 2
3
×2

10
×2

10

SP
, 2

4
×2

10
×2

10

D
P,

 2
4
×2

10
×2

10

SP
, 2

5
×2

10
×2

10

D
P,

 2
5
×2

10
×2

10

SP
, 2

6
×2

10
×2

10

D
P,

 2
6
×2

10
×2

10

SP
, 2

7
×2

10
×2

10

D
P,

 2
7
×2

10
×2

10

SP
, 2

8
×2

10
×2

10

D
P,

 2
8
×2

10
×2

10

0.0

0.2

0.4

0.6

0.8

1.0
GTX 750 Ti (Maxwell)

initStatesNormalKernel()
scanExclusiveOUKernel()
taylor3Kernel()

getRandomNumbersNormalKernel()
scanOUFixKernel()

tridiagIntegralApproximationKernel()
realizeOUProcessKernel()

Figure 12.2.: Shares in total runtime of all necessary kernels to determine a path-wise
solution of the KT model applying the 3-RODE-Taylor scheme on three
different GPUs. Axes assignments and color coding are equal to figure
12.1. This figure is taken from our contribution [199].

generation is always carried out in single precision as in section 8.4, also for the double
precision setups. That is the reason why its share in the single precision benchmark is
always higher than in the corresponding double precision benchmarks because on the
GPU, operations in double precision are always more expensive than in single precision.
For both the averaged Euler and the 3-RODE-Taylor scheme scenario the first three
building blocks have the largest shares in total runtime. They are 77.2% for normal ran-
dom number generation (3-RODE-Taylor scheme on the Tesla M2090 in single precision
simulating 24 seconds), 87.0% for the realization of the OU process (3-RODE-Taylor
scheme on the Tesla K40m in double precision simulating 210 seconds), and 28.7% for
averaging (averaged Euler scheme on the Tesla K40m in double precision simulating 24

seconds). With a contribution between 0.3% (3-RODE-Taylor scheme on the GTX 750
Ti in single precision simulating 28 seconds) and 7.6% (averaged Euler on Tesla M2090 in
single precision simulating 23 seconds) in total runtime, the share of the coarse timestep-
ping is negligible1. There are two reasons for this ratio: First, the initial three building
blocks operate on fine timesteps δ, thus, their computational load is much higher than
the final building block which operates only on coarse timesteps h. That especially holds
for the 3-RODE-Taylor scheme because there δ = h4 instead of δ = h2. Second, the final
solution of the KT model (7.3) is very cheap in comparison to other RODEs because
üg is only one-dimensional. Therefore, the parallelization and optimization for GPUs of
the KT model’s final building block is unnecessary.

1Actually, 7.6% is a considerable share but it refers to a serial implementation while all other building
blocks are parallelized on and optimized for GPUs.

123

12. Results of the full random ordinary differential equations solver

On all utilized GPUs, independent of single or double precision operations, the share
of the OU process becomes larger the bigger the problem size gets. This phenomenon
can be best observed on the Tesla K40m. Since our implementation of the OU process
bases on parallel prefix sums, its scalability is limited by the parallel scan’s tree-like
execution pattern (cf. figures 9.2 and 9.3). Such an algorithmical limitation does not
apply to normal random number generation and averaging (its second step to reduce the
partial sums is negligible), so they scale much better for larger problem sizes.

12.3. Scalability of the multi-path solution

In this section, the third level of parallelism of the RODE solver, i.e. the Monte Carlo
approach to combine multiple path-wise solution to a global solution by identifying the
expected value, is examined. This level of parallelism is mapped to multiple GPUs and
its scaling behavior is benchmarked. Every GPU determines an own path-wise solution
with a dedicated realization of the OU process which can be done embarrassingly parallel
because no communication is required for this operation. Only at the end, one global
communication step is necessary, more specifically, a global reduce operation realized
via the MPI Reduce() operation. Since the problem size is the same for all GPUs during
the entire runtime, no load balancing is required, neither at the beginning nor during

21 22 23 24 25 26 27

number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ef
fic

ie
nc

y

JuDGE

21 22 23 24 25 26 27

number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Hydra

24 25 26 27 28 29 210

number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 TSUBAME2.5

float, GPU computations
double, GPU computations

float, MPI_Reduce()
double, MPI_Reduce()

float, total
double, total

Figure 12.3.: Parallel efficiency of the entire multi-path RODE solver using the averaged
Euler scheme depending on the number of utilized GPUs/MPI ranks on
three GPU clusters. Single precision results are colored in red, double pre-
cision results are colored in blue. Dotted lines depict the parallel efficiency
of all four building blocks carried out on the GPU. Dashed lines indicate
the parallel efficiency of the final global reduction step. Solid lines give
the combined parallel efficiency for the the entire RODE solver. The base-
line value for parallel efficiency is 2 GPUs for JuDGE and Hydra and 15
GPUs for TSUBAME2.5. The largest run uses 232 GPUs on JuDGE and
Hydra and 1248 GPUs on TSUBAME2.5. This figure is taken from our
contribution [199].

124

12.3. Scalability of the multi-path solution

21 22 23 24 25 26 27

number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ef
fic

ie
nc

y

JuDGE

21 22 23 24 25 26 27

number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Hydra

24 25 26 27 28 29 210

number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 TSUBAME2.5

float, GPU computations
double, GPU computations

float, MPI_Reduce()
double, MPI_Reduce()

float, total
double, total

Figure 12.4.: Parallel efficiency of the entire multi-path RODE solver using the 3-RODE-
Taylor scheme depending on the number of utilized GPUs/MPI ranks on
three GPU clusters. Axes assignments, color coding, line captions, and
markers are equal to figure 12.3. This figure is taken from our contribution
[199].

the execution. Such an approach is comparable to weak scaling: The problem size
(here, the problem size corresponds to the number of path-wise solutions) is altered in
the same way (increased or decreased) as the degree of parallelism (here, the degree
of parallelism corresponds to the number of utilized GPUs). However, in contrast to
classical weak scaling, the degree of parallelism influences the statistical properties of
the Monte Carlo solution instead of spatial or temporal size or resolution. In such a
context, a strong scaling scenario is also conceivable: A constant number of path-wise
solutions is determined by a varying number of GPUs. The benchmarks in this section
are only dealing with the weak scaling-like scenario. Strong scaling-like scenarios are not
considered because according to our experience, the scaling behavior is quite similar to
the weak scaling-like scenarios and, thus, does not provide any new insights.

Benchmarks to analyze the scaling behavior are carried out on JuDGE, Hydra, and
TSUBAME2.5. Technical data for these three GPU clusters is listed in table 2.5. This
table also gives information regarding the utilized CUDA version for the building blocks
and MPI implementation for the Monte Carlo level of parallelism. JuDGE is equipped
with Teslas M2050 which are quite similar to the Tesla M2090. Hence, the best per-
forming parameter configurations given in table 12.1 in column Tesla M2090 also hold
for the Tesla M2050 and are used throughout this section. Hydra and TSUBAME2.5
are equipped with Teslas K20x which are quite comparable to the Tesla K40m. Accord-
ingly, the values of table 12.1’s Tesla K40m column are used throughout this section
because they are also the best performing parameter configurations for the Tesla K20x
due to their similar architecture. One MPI rank is started per GPU, so the number of
MPI ranks per node is equal to the number of GPUs per node. All GPUs per node
are utilized. Table 12.3 lists the problem sizes of the utilized test scenarios denoted
by “seconds of simulated time” × “coarse timesteps per second” × “fine timesteps per

125

12. Results of the full random ordinary differential equations solver

coarse timestep”.

JuDGE Hydra TSUBAME 2.5

averaged Euler scheme 24 × 210 × 210 29 × 210 × 210

3-RODE-Taylor scheme 27 × 25 × 215 29 × 25 × 215

Table 12.3.: Problem sizes for multi-GPU benchmarks denoted by “seconds of simu-
lated time” × “coarse timesteps per second” × “fine timesteps per coarse
timestep”.

Figures 12.3 and 12.4 depict the parallel efficiencies (assigned to the ordinates) achieved
on the three GPU clusters for the two different RODE solver scenarios (see rows in table
12.3). The baseline for parallel efficiency is 1 node/2 GPUs for JuDGE and Hydra and
5 nodes/15 GPUs for TSUBAME2.5 and the largest runs on JuDGE and Hydra utilize
232 GPUs/MPI ranks and 1248 GPUs/MPI ranks on TSUBAME2.5 (assigned to the
abscissas). Three times are measured: (1) The accumulated runtime of the four building
blocks, (2) the runtime for the final global reduction operation calling MPI Reduce(),
and (3) the total runtime of the entire multi-path solver summing up the first two run-
times indicated by dotted, dashed, and solid lines, respectively. Experiments are run
in single (red lines) and double precision (blue lines) where the normal random num-
ber generation of the double precision scenario is carried out in single precision. While
the execution times of the four building blocks do not differ much on the particular
GPUs, there is a significant variation in runtime of the MPI Reduce() operation due to
its usually tree-like implementation. Hence, benchmarks are run 100 times, afterwards,
runtimes are averaged and, finally, the worst average of all nodes is taken for figures 12.3
and 12.4.

Comparing the parallel efficiencies of the four building blocks (dotted lines) with
parallel efficiencies of the global reduce operation (dashed lines) reveals an almost perfect

system #GPUs
averaged Euler scheme 3-RODE-Taylor scheme
float double float double

JuDGE
232

59.6% 70.6% 88.5% 59.6%
Hydra 98.7% 99.3% 81.0% 99.2%

TSUBAME2.5
213 94.4% 96.4% 95.2% 98.2%
1248 42.9% 60.9% 80.5% 79.5%

Table 12.4.: Selected values of parallel efficiency for total runtime on the three bench-
marked GPU clusters (rows) applying the averaged Euler and 3-RODE-
Taylor scheme (columns). Values given for JuDGE and Hydra are the largest
runs on these two GPU clusters each using 232 GPUs. For TSUBAME2.5,
results of a run of similar size (213 GPUs) are listed. In addition, the overall
largest run is done on TSUBAME2.5 using 1248 GPUs.

126

12.4. Statistical evaluation of the multi-path solution

scaling of the path-wise solution of the RODE but a very poor scalability to resolve the
expected value to optain the multi-path solution. Depending on the chosen numerical
RODE solver (cf. table 12.3), the reduce operation has a varying share in the total
execution time: In the averaged Euler scheme scenarios, 210 fine timesteps are realized
per coarse timestep while in the 3-RODE-Taylor scheme, 215 fine timesteps are computed.
So the computational effort of the latter solver for the four building blocks is much higher
than for the averaged Euler scheme and, thus, the global reduction has less influence
in total runtime. Furthermore, the scalability of MPI operations depends on the actual
MPI implementation (see row “MPI” in table 2.5) and the network topology of the
cluster being a fat tree for Hydra and TSUBAME2.5 showing a significantly better MPI
performance than JuDGE. Table 12.4 lists the parallel efficiencies of total execution
time of the largest runs performed on the corresponding GPU clusters. To compare the
results of JuDGE and Hydra with the ones of TSUBAME2.5, a run of similar size (213
GPUs) on this cluster is also given. The most remarkable values are the 99.3% and
99.2% achieved parallel efficiency on Hydra for the two numerical RODE solvers using
double precision. Very good values 80.5% and 79.5% using single and double precision,
respectively, for the 3-RODE-Taylor scheme are obtained in the overall largest runs using
1248 GPUs on TSUBAME2.5. These values demonstrate the outstanding scalability of
our RODE solver approach on GPU clusters.

12.4. Statistical evaluation of the multi-path solution

The main goal of this work is the development of an efficient solver for RODEs on GPU
clusters exploiting their multiple levels of parallelism. The performance of our RODE
solver is discussed in the previous sections 12.2 and 12.3. With such a high-performance
implementation at hand it is possible to experimentally analyze the statistical properties
of an RODE solution. This section is limited to an experimental study giving qualitative
instead of quantitative statements and omits a mathematical discussion. The expected
value E and the variance V of the path-wise solutions are the most interesting statistical
values because E corresponds to the final RODE solution and V can be used as an
indicator how many path-wise solutions are required to obtain a reasonable solution.

Once again, we use the KT model for demonstration. For the statistical experiments,
the same scenarios as listed in table 12.3 on the Hydra cluster are investigated using
double precision. E(ü) and V (ü) for the averaged Euler scheme using different numbers
of path-wise solutions are plotted in figure 12.5. Figure 12.6 depicts the statistical values
for the 3-RODE-Taylor scheme scenario. E(ü) at a certain point of simulation time is
determined by calculating the averaged value of all considered path-wise solutions at
the same point of simulation time. V (ü) is computed accordingly. Both figures show
the arbitrary interval [65, 70] of simulated time. The number of path-wise solutions is
varied between 26 = 64 and 212 = 4096 and indicated by different lines. Since h differs
by a factor 25 between the averaged Euler and the 3-RODE-Taylor scheme, there is a
clearly visible discrepancy between the sampling rates in figures 12.5 and 12.6. The
same sequences of normal random numbers are used for both solvers leading to the same

127

12. Results of the full random ordinary differential equations solver

65 66 67 68 69 70
simulated time

0.4

0.2

0.0

0.2

0.4

E
(ü

)

(a) Expected value

65 66 67 68 69 70
simulated time

0.0

0.5

1.0

1.5

2.0

V
(ü

)

26 path-wise solutions 28 path-wise solutions 210 path-wise solutions 212 path-wise solutions

(b) Variance

Figure 12.5.: Expected value E(ü) (subfigure 12.5(a)) and variance V (ü) (subfigure
12.5(b)) of path-wise solutions for the KT model obtained by the aver-
aged Euler scheme in the arbitrary time interval [65, 70]. Initial value Z0 is
0, h = 1

210
, and δ = 1

220
. Different lines represent different numbers of used

path-wise solutions to determine a global solution ranging from 26 to 212.

realizations of the OU process because in both cases δ = 1
220

. Solutions involving more
path-wise solutions reuse the random number sequences of solutions incorporating less
path-wise solutions. Z0 = 0 is used as initial start value.

Subfigure 12.5(a) shows a decreasing amplitude for E(ü) the larger the number of
involved path-wise solutions gets because they start to cancel out each other. While V (ü)
varies much for lower number of path-wise solutions when comparing different points in
simulation time, the variance becomes “smoother” for larger path-wise solution numbers
in subfigure 12.5(b). There is only a minor difference in smoothness between the 210 (red)
and 212 (blue) path-wise solutions setup but still a significant difference between the 28

(green) and 210 setups. Hence, combining 210 path-wise solutions from the averaged
Euler scheme for the KT model using the above given h and δ is a meaningful choice
because it is a good compromise between low cancellation and smooth variance.

A similar behavior is observed in figure 12.6 plotting E and V for the 3-RODE-Taylor

128

12.4. Statistical evaluation of the multi-path solution

65 66 67 68 69 70
simulated time

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4
E

(ü
)

(a) Expected value

65 66 67 68 69 70
simulated time

0.0

0.5

1.0

1.5

2.0

V
(ü

)

26 path-wise solutions 28 path-wise solutions 210 path-wise solutions 212 path-wise solutions

(b) Variance

Figure 12.6.: Expected value E(ü) (subfigure 12.6(a)) and variance V (ü) (subfigure
12.6(b)) of path-wise solutions for the KT model obtained by the 3-RODE-
Taylor scheme in the arbitrary time interval [65, 70]. Initial value Z0 is 0,
h = 1

25
, and δ = 1

220
. Different lines represent different numbers of used

path-wise solutions to determine a global solution ranging from 26 to 212.

scheme scenario. The more path-wise solutions are combined, the smaller the magni-
tude of the expected value (see subfigure 12.6(a)) and the smoother the variance (see
subfigure 12.6(b)) over simulated time get. In contrast to the averaged Euler scheme
scenario, already the Monte Carlo solution combining 28 path-wise solutions shows a sim-
ilar variance behavior like solutions comprising more path-wise solutions. So using less
path-wise solutions in comparison to the averaged Euler scheme scenario is acceptable
and preferable because fewer path-wise solutions lead to less computational effort.

Figure 12.7 illustrates a direct comparison of the expected values stemming from the
different solver scenarios each using 210 = 1024 path-wise solutions. The green and blue
lines correspond to the values in figures 12.5 and 12.6 while the red line represents an
averaged Euler scenario with h = 1

25
and δ = 1

220
satisfying the order of convergence

criterion in subsection 7.3.1. Comparing the red and blue lines reveals almost the same
shape of E. Both use the same h = 1

25
and the same sequences of random numbers and,

129

12. Results of the full random ordinary differential equations solver

65 66 67 68 69 70
simulated time

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

E
(ü

)

averaged Euler scheme h= 1

210
averaged Euler scheme h= 1

25
3-RODE-Taylor scheme

Figure 12.7.: Comparison of expected values E(ü) using 210 path-wise solutions for the
KT model over the arbitrary time interval [65, 70] obtained by three differ-
ent solver scenarios: The green and red expected values stem from solutions
obtained by the averaged Euler method with h = 1

210
and h = 1

25
, respec-

tively. The blue lines corresponds to solutions from the 3-RODE-Taylor
scheme h = 1

25
. δ = 1

220
for all three RODE solutions.

thus, the only difference is the usage of single averages (10.1) for the averaged Euler
scheme instead of the Riemann sums (10.3) for the 3-RODE-Taylor scheme. Further-
more, the green line also has a similar shape in many sub-intervals of simulated time
in comparison to the solutions using h = 1

25
although the temporal resolution is much

finer. More importantly, the minimum and maximum values of all solver scenarios are
quite comparable which is a relevant qualitative statement: The KT model models a
white-noise driven excitement, so depending on the realization of the white-noise, solu-
tions are not deterministic. Instead, information such as maximum ground acceleration
is much more relevant and can be obtained from the KT model.

Besides the statistical properties, another insight of chapter 12 is that the execution
times of normal random number generation, the realization of the OU process, and its
averaging have by far the most dominant shares in total runtime while the share of the
fourth building block is negligible, especially when applying the 3-RODE-Taylor scheme
as shown in section 12.2. For these shares, the first three building blocks are already
parallelized on and optimized for the GPU but the actual coarse timestepping solver for
the KT model is executed in a sequential way. In section 12.3 we exemplify the excellent
scalability of our RODE solver obtaining a parallel efficiency of up to 99.3% on Hydra
utilizing 232 GPUs and 80.5% on TSUBAME2.5 employing 1248 GPUs. These values
can be achieved because the share of the four building blocks in total execution time
is vastly larger than the final reduction step to determine the overall solution. This
terminating step is the only one requiring global communication among multiple GPUs,
all other steps are restricted to dedicated GPU.

130

Concluding part III

We present a common approach to numerically solve arbitrary RODEs. It is the first
attempt to deal with RODEs at a large scale, not just on GPU clusters but on high-
performance systems in general. The algorithms and parallelization techniques presented
so far are not limited to GPU clusters but are also applicable to other parallel computing
devices. RODEs are a special class of ODEs incorporating a stochastic process. Our
approach consists of four subsequent building blocks to determine a path-wise solution of
the RODE and a Monte Carlo step combining multiple path-wise solutions to obtain the
actual solution. While the four building blocks are mapped to the GPUs of the cluster
without any communication, the final step requires communication among these GPUs.
Only the GPUs carry out actual computations, CPUs just perform MPI communication.
All functionality of the building blocks is realized by newly developed CUDA kernels,
no external libraries are utilized.

The introduction to RODEs (containing their relation to SODEs, their numerical so-
lution, and the presentation of the KT model as an example for an RODE) is followed
by the first building block dealing with normal random number generation. Three es-
tablished normal PRNGs (the Ziggurat method, rational polynomials, and the Wallace
method) with properties making them high-performance candidates on GPUs are ex-
plained. Benchmarks state that our GPU-optimized implementation of these normal
PRNGs can deliver up to 4.46 GPRN/s (Wallace method on the Tesla M2090) out-
performing state-of-the-art normal PRNGs for the CPU (MKL) by up to 2.61× and
state-of-the-art GPU libraries (cuRAND) by up to 4.53×. The normal random num-
bers are necessary for the realization of the OU process being the fundamental stochastic
process of RODEs. Our implementation for GPUs leads to the first successful paralleliza-
tion of this stochastic process. The central idea for parallelization is the mapping of the
OU process to prefix sums and afterwards exploiting existing parallelization strategies
for prefix sums. Due to the tree-like structure of these strategies, perfect scaling is not
possible but realization rates of up to 3.20 and 1.11 GROUPs/s in single and double pre-
cision, respectively, are achievable on a Tesla K40m. The numerical solvers for RODEs,
all doing some kind of sub-sampling, require different kinds of averages of continuous
sequences of the OU process. GPUs are suited very well for this task averaging up to
37.22 billion single precision 20.82 billion double precision elements per second on a Tesla
K40m. Up to the third building block, none of the operations is specific to a particular
RODE but are required to solve RODEs in general. Furthermore, normal random num-
ber generation, the realization of the OU process, and averaging are not restricted to
RODEs but are applied in many other fields such as performance modeling and image
processing. The only RODE-specific building block is the path-wise solution of RODEs
with coarse timestepping handling the averaged values from the previous building block

131

12. Results of the full random ordinary differential equations solver

step. Its share in total runtime of the four building blocks is negligible, thus, in contrast
to the first three building blocks, neither an optimization nor a parallelization for GPUs
is necessary if the KT model is applied.

Except the final building block, the building blocks are parallelized using two levels
of parallelism being mapped to the two levels of hardware parallelism of GPUs. The
determination of the expected value of a bunch of path-wise solutions, being the actual
solution of the RODE, forms a third level of parallelism being mapped to multiple GPUs.
Depending on the parameter configuration of the building blocks, the largest share in
runtime of normal random number generation is 77.2%, 87.0% for the realization of the
OU process, 28.7% for averaging, and 7.6% for coarse timestepping. Since the particular
path-wise solutions all have equal load during the entire runtime and no communication
is needed to determine them, our RODE solver scales extremely well with a parallel
efficiency of up to 99.3% utilizing 232 GPUs on Hydra and 80.5% employing 1248 GPUs
on TSUBAME2.5. The RODE solver developed throughout this part of the thesis makes
it possible to tackle RODEs of reasonable size: For example, a high-order numerical
solver such as the 3-RODE-Taylor scheme with h = 1

25
and δ = 1

220
can be utilized to

solve the KT model for dozens of minutes of simulated time incorporating thousands of
path-wise solutions. The entire solution process just takes some seconds of wall-clock
time.

Similar to the SBTH algorithm in part II, none of the operations of the RODE solver
applied to the KT model is compute-bound. However, GPUs perform very well executing
these operations being latency- (normal random number generation and realization of the
OU process) and memory-bound (averaging) because the GPU’s warp schedulers hide
latency with computations of other warps and memory bandwidth of GPUs is very high
(see tables 2.1 and 2.2). So far, we omitted the computational performance of the CPUs
in the utilized GPU clusters and just used them for communication purposes. The final
part IV also incorporates these computing devices leading to a hybrid implementation
of the LBM, an alternative approach to describe fluid dynamics, fully exploiting the het-
erogeneity of GPU clusters. In contrast to the RODE solver, permanent communication
between all computing devices, CPU and GPUs, is indispensable.

132

Part IV.

Scalability on heterogeneous systems
of the lattice Boltzmann method

133

One of the most relevant applications of scientific computing, especially in industry,
is the simulation of the behavior of fluids called computational fluid dynamics (CFD).
Performing numerical fluid simulations is computationally very demanding, especially
in 3D, due to steadily rising demands in spatial, and hence temporal, resolution, larger
and more complex domains, and the tracking of phenomena such as turbulence. There
are several models describing the nature of fluids, the most prominent ones are the
Euler and Navier-Stokes equations [171]. An alternative model is the lattice Boltzmann
method (LBM) which has very convenient properties when it comes to parallelization
and intrinsically uses Cartesian grids. On the basis of the LBM, best practices and
techniques to achieve scalability on large-scale heterogeneous systems are the central
object of this subsequent part. As a result, a holistic hybrid reference implementation
applying these practices and techniques is provided and discussed.

From a modeling point of view, the LBM is an alternative approach to describe the
physical values of a fluid such as flow velocities and fluid densities. Instead of discretizing
these values in time and space, the LBM introduces virtual particles and deals with
the likelihood these particles move along discretized directions. It can be shown that
for a small time scale and a corresponding small spatial scale, the LBM leads to the
macroscopic Euler and Navier-Stokes equations, respectively, as a formal limit [55, 73].
Hence, the LBM is a different access to these differential equations.

From a hardware point of view, this part demonstrates how to fully exploit the com-
putational resources of large-scale heterogeneous systems to satisfy the computational
demands of CFD on the basis of the LBM. Again, multiple levels of parallelism are ap-
plied. On the lowest level, this means the parallel implementation and optimization of
the LBM for CPUs and GPUs. Moreover, a domain decomposition to evenly distribute
work among different computing devices is given. Such a domain decomposition raises
the need for a communication scheme to exchange data of subdomain boundaries forming
the highest level of parallelism. A further contribution is a tailored performance model
predicting the runtime and scalability of the presented hybrid LBM implementation and
identifying its bottlenecks.

To fully exploit large-scale heterogeneous systems, scalability is indispensable. It is
achieved by, among other things, hiding communication times with computations and
by keeping these communication times as short as possible. So, the processing of the
domain is subdivided in two phases: Initially, the data required by neighboring MPI
processes is processed which is then communicated while the remaining computations
are executed. For both operations, the same kernels, and thus functionality, are applied
but on different parts of the simulation domain at different times.

We follow an approach where all different kinds of computing devices perform the
same actions, namely the operations of the LBM, thus, the functionality of the CPU
and GPU kernels is the same. Alternatively, different tasks can be tackled by the most
suited computing device (cf. [165, 82, 240]) or only a minor workload is assigned to the
CPU (cf. [219]). In contrast, we aim to fully exploit all available computing devices at all
times. Utilizing heterogeneous systems requires hybrid programming. The code for the
CPU is written in C++ utilizing OpenMP to simultaneously run on multiple CPU cores.

135

GPU kernels are developed with CUDA and the distributed memory parallelization is
achieved with MPI. The usage of OpenCL is obvious because CPU and GPU kernels
implement the same functionality. However, since the support of OpenCL on the latest
GPU clusters is very poor or even missing, we choose CUDA instead of OpenCL.

There are various aspects in the context of the LBM and HPC not being covered in
this work. We do not modify the LBM in any way but apply it as given in literature.
Only regular and static grids are considered to simulate single-phase flows. Such kinds
of grids do not require load-balancing during runtime and a static resource assignment
is possible in advance. Discussions on adaptive mesh refinement (AMR) for the LBM
are provided in [202, 76]. Dynamic grids for LBM are dealt within [175]. The LBM
for multi-phase flows is object of investigation in [217, 226], for free surface flows in
[205, 124, 252]. Multi-phase flow in combination with AMR is investigated in [231]. The
major goal of this part is to show how to achieve scalability on large-scale heterogeneous
systems with the LBM. Hence, scenarios are limited to benchmark applications such as
lid-driven cavity [39, 86] instead of simulations dealing with free surface flows [230] or
complex domains [108].

The hybrid LBM code used for demonstration in the following four chapters bases
on work by Schreiber [209, 210] whose GPU kernels are used. They are ported to
and parallelized for the CPU by us. A first multi-GPU version of Schreiber’s code
using MPI was implemented by Bakhtiari [20] and extended by us with CPU kernels,
simultaneous memory copies, non-blocking communication, and communication hiding.
The performance model bases on Feichtinger’s work [77, 78] but is refined by us to model
our approach of domain decomposition and communication.

The notation from previous parts II and III does not apply to this part IV. Some
of the identifiers are reused to formulate the LBM. Since all GPU kernels are written
in CUDA, analysis and benchmarks are carried out on NVIDIA GPUs. None of the
techniques and concepts presented in the following are limited to CUDA, NVIDIA hard-
ware, or GPU clusters but can also be adopted to parallel computing devices in general
and heterogeneous setups. To represent a broad variety of large-scale heterogeneous sys-
tems, experiments are carried out on the GPU clusters Hydra, TSUBAME2.5, and Piz
Daint. They differ in the number of CPUs and GPUs per node, cores per CPU, GPU
architecture, and software such as CUDA version and MPI implementation (cf. table
2.5).

The remainder of this part is structured as follows: Chapter 13 provides a short in-
troduction to the LBM, explains the basic idea behind it, and recaps a procedure to
implicitly synchronize the particular steps of the LBM to enable embarrassing paral-
lelism. These concepts are necessary to follow the parallelization of the LBM in chapter
14 including optimizations for the CPU and GPU and introducing an efficient and scal-
able communication scheme. A brief overview on performance modeling in general and
the tailored performance model for our LBM implementation are given in chapter 15.
Strong and weak scaling scenarios are used to experimentally validate the performance
model and to obtain benchmark results for single- and multi-computing device setups in
chapter 16 showing scalability on up to 2048 GPUs and 24,576 CPU cores.

136

13. The lattice Boltzmann method and its
serial implementation

The LBM is a popular, typically memory-bound, procedure of CFD for fluid simulation
briefly sketched in this chapter. Major principles and important terms of the LBM are
presented to have a solid basis for the parallelization techniques listed in the following
chapter 14. This chapter is written from a computer scientist point of view with a focus
on data structures instead of mathematics including implementation aspects not related
to parallelization. A derivation of the LBM is given by [103]. We use the nomenclature
from [174] whose topical structure we follow in the next two sections. For a deeper
insight in the LBM, we refer to [56, 251, 6, 224].

Instead of particle-based (e.g. molecular dynamics) and continuum (e.g. Navier-Stokes)
methods, the LBM is a grid-based mesoscopic method. Historically, it originates from
cellular and lattice gas automata [107] and is a particular simplified discretization of the
Boltzmann equation [103]. The (lattice) cells of the Cartesian grid are squares in 2D
and cubes in 3D, thus, the regular grid generation is simple. Physical values such as
flow velocities and fluid densities are not directly assigned to the lattice cells but can be
derived from probability densities, also called density distribution functions, densities of
virtual particles discretized along specific lattice velocities associated with each lattice
cell. Due to this kind of discretization, updates can be performed local1 (only requiring
data from the current and directly neighboring lattice cells) because the lattice velocities
are chosen such that virtual particles move at most to adjacent lattice cells. This makes
it very easy to parallelize the LBM cell-wise. The current values of the probability
densities form the state of the simulation.

A more detailed look on probability densities and discretized directions is given in
section 13.1. Following this, section 13.2 explains the modeling of fluid dynamics by
alternating collision, also called relaxation, and propagation, also called streaming, steps.
Finally, a memory-efficient storage scheme for the probability densities is presented in
section 13.3.

13.1. Discretization schemes

The LBM assigns probability densities fi(x, t), i = 1, . . . , q to the center of every lattice
cell. So, q values have to be managed per cell. They model the probability that a virtual
particle moves along the direction of lattice velocity ci within a small region around x
at time t. The lattice velocities ci are chosen such that the virtual particles traverse

1The property of local updates requires a suited collision operator, cf. section 13.2.

137

13. The lattice Boltzmann method and its serial implementation

x

y
13

2

47

6 5

8

0

(a) D2Q9 discretization scheme

x

y

z

01

2

3

16

17

15

5

11

9

12
7

14

4

10

8

13

6

(b) D3Q19 discretization scheme

Figure 13.1.: Discretization schemes for the LBM using q = 9 probability densities in
2D (subfigure 13.1(a)) and q = 19 probability densities in 3D (subfigure
13.1(b)), respectively. Blue arrows represent probability densities with
lattice speed ci = 1, red arrows with lattice speed ci =

√
2, and green dots

with lattice speed ci = 0. The orientation of the corresponding coordinate
systems is indicated in the right parts of the subfigures.

exactly one lattice cell per timestep dt. Depending on the number d of dimensions and q
of probability densities, the notation DdQq is used to describe the actual discretization
scheme. For example, figure 13.1 depicts the D2Q9 and D3Q19 discretization scheme. In
this work, the D3Q19 discretization scheme is applied. For clarity, the D2Q9 scheme is
used for illustration throughout the remainder of this thesis. There are also alternative
discretization schemes such as D3Q15 or D3Q27 with different numerical properties and
performance behavior [160].

The macroscopic quantities fluid density ρ(x, t) and flow velocity u(x, t) are obtained
from the probability densities via

ρ(x, t) =

q∑

i=0

fi (13.1a)

and

ρ(x, t)u(x, t) =

q∑

i=0

fici (13.1b)

with x a position in space and t a point in time. Due to the discretization of the spatial
domain in cells and the usage of probability densities, all quantities are dimensionless.
Instead, the spacial mesh size is scaled to one and so is the timestep.

138

13.2. Collision & propagation

13.2. Collision & propagation

The LBM evolves the system by alternating collision and propagation steps modeling
the diffusion and convection of the lattice Boltzmann equation

fi(x + cidt, t+ dt) = fi(x, t) + ∆i(f − feq). (13.2)

Separating the lattice Boltzmann equation (13.2) in diffusion and convection leads to
the two subsequent algorithmic steps collision

f∗i (x, t) = fi(x, t) + ∆i(f − feq) (13.3a)

and propagation
fi(x + cidt, t+ dt) = f∗i (x, t). (13.3b)

Collision steps model the interaction of the virtual particles expressed by the collision
operator ∆i(f − feq). Performing collisions requires computations. Propagation steps
describe movement of the particles and, thus, lead to memory copy operations from and
to other cells. For the collision steps it is assumed that the thermodynamical system only
slightly deviates from its equilibrium state given by the discretized equilibrium functions
feqi . There are various formulations for feqi , e.g. given in [102] and [10] but we stick to
the standard polynomial form

feqi (ρ,u) = wiρ

(
1 +

ciu

c2
s

+
(ciu)2

2c4
s

− u

2c2
s

)
(13.4)

with cs denoting the speed of sound and wi being lattice weights. Constraints which
have to be fulfilled by the weights wi are given in [174].

There are various collision models for ∆i(f−feq). We use the most common choice for
a collision operator, the Bhatnagar-Gross-Krook (BGK) scheme [31], also called single-
relaxation-time scheme (SRT), denoted by

∆BGK(f − feq) = −1

τ
(f − feq) (13.5)

with τ the relaxation time directly related to the kinematic2 viscosity ν = c2
sdt(τ − 0.5)

of the fluid. The relaxation time has to be chosen properly such that a positive viscosity
results, i.e. τ > 0.5. To keep the simulations stable, it is common to use a τ ∈ (0.5, 2).
A further example for a collision operator is the multiple-relaxation-time (MRT) scheme
[71]. Both, the BGK and the MRT collision operator allow local updates only involving
the local and directly neighboring cells.

One further aspect not discussed in this chapter is the treatment of boundary condi-
tions by the LBM. They have an influence on the function of collision and propagation
steps. Our implementation supports some boundary conditions such as no-slip con-
ditions but since this work focuses on optimization and parallelization on large-scale
heterogeneous systems, we refer to [88, 209, 174].

2The kinematic viscosity is the ratio of the dynamic viscosity µ to the density of the fluid ρ.

139

13. The lattice Boltzmann method and its serial implementation

collision

step

propagation

step

Figure 13.2.: By memory accesses affected probability densities of four processed cells
(colored in red, green, blue, and orange) using the A-B memory layout
pattern illustrating the unaltered procedure of collision and propagation
steps. Different lengths of same-color arrows in the same direction represent
an update of the probability densities due to a collision step.

13.3. Memory layout pattern

After briefly introducing the LBM in the previous two sections, this chapter is continued
with its serial implementation. In particular, a storage-efficient memory layout pattern
enabling coalesced memory access and caching is presented. Further aspects regarding
the serial implementation of the LBM are discussed in [241].

In figures 13.2 and 13.3, different values of the probability densities are indicated by
different lengths of the lattice velocities. Figure 13.2 depicts one step of the LBM con-
sisting of a collision and a propagation. As illustrated by the four colors red, green, blue,
and orange, a parallelization of the LBM assigns one thread to one cell as a most fine-
granular approach. Same color means handled by the same thread. To avoid race condi-
tions, this straight-forward parallelization approach requires two dedicated instances of
all probability densities in memory because hazards such as reading an already updated
probability density by a different thread is possible. The proposed solution of keeping
two copies of the data is called A-B memory layout pattern. Data is always read from
one copy and written to the other before source and destination sets are switched. This
resolves the race conditions at the cost of halved usable memory.

A much more memory-efficient approach is the A-A memory layout pattern proposed
in [19] which only uses one copy of data in memory and, thus, does not introduce any
memory overhead. Race conditions are avoided by a rearrangement of the collisions and
propagations of two consecutive (first an odd, then an even) steps of the LBM. α-steps as
depicted by subfigure 13.3(a) are just the collision of the odd regular LBM steps while
β-steps as shown in subfigure 13.3(b) implicitly combine the propagations of the odd
regular LBM steps and the collisions and propagations of the even regular LBM steps.
Hence, both, α- and β-steps read from and write to the same memory locations of the
probability densities. During α-steps, a thread only deals with data corresponding to its
assigned cell. A contrary behavior is performed during β-steps where a thread only deals
with data corresponding to adjacent cells (except the probability densities with lattice

140

13.3. Memory layout pattern

stepα

(a) α-step

stepβ

(b) β-step

Figure 13.3.: By memory accesses affected probability densities of four processed cells
(colored in red, green, blue, and orange) using the A-A memory layout
pattern. Different lengths of same-color arrows in the same direction rep-
resent an update of the probability densities due to a collision step. Subfig-
ure 13.3(a) illustrates the α-step consisting of one collision step, subfigure
13.3(b) depicts the β-step consisting of two propagation and one collision
step.

speed 0). So, synchronization is only required between α- and β-steps but not within
them. The major drawback of the A-A memory layout pattern is that after odd numbers
of steps, the simulation is not in a valid state because more collision than propagation
steps are executed. Only after β-steps, the simulation is in a consistent state. The A-A
memory layout pattern is used for our LBM implementation. A deeper investigation on
the A-A memory layout pattern as well as additional memory layout patterns for the
LBM are given in [250]. When it comes to higher geometrical flexibility and local mesh
refinement, the esoteric twist (EsoTwist) [84] is a more sophisticated alternative to the
A-A memory layout pattern.

To achieve high performance, the arrangement of the probability densities in memory
is crucial. Intuitively, fi, i = 1, . . . , q is stored cell-wise avoiding coalesced memory access
on the GPU and efficient caching on the CPU. Hence, storing the probability densities of
one particular direction continuously in memory is the better strategy applied to both,

141

13. The lattice Boltzmann method and its serial implementation

the CPU and GPU kernels of our implementation. While the first strategy corresponds
to an array of structures (AoS) design, the second represents an example of a structure
of arrays (SoA).

Probability densities are interpreted as a three-dimensional array and continuously
stored in memory. The indices i, j, and k are used to iterate in x-, y-, and z-direction.
i is chosen to be the fastest, j the second fastest, and k the least fastest running index,
thus, for a fixed j and k, data in x-direction is continuously aligned in memory. This
choice is not limited to the A-A memory layout pattern but is generally applicable.

With these information about the LBM at hand, its parallelization on different levels
of a large-scale heterogeneous cluster is presented in the next chapter.

142

14. Parallelization of the lattice Boltzmann
method

With the foundations of the LBM at hand, our contributions in terms of parallelization
of the LBM on large-scale heterogeneous systems, i.e. GPU clusters, are presented in this
chapter. Due to the complexity of these systems such as different types of computing
devices each requiring different approaches of parallelization and numerous communi-
cation links, there are various possibilities for optimization. The hardware side offers
multiple levels of parallelism and due to different types of computing devices, not all
of them behave in the same way and require different programming models. This also
increases the complexity for the application developer.

Before discussing the parallelization techniques applied by us, an overview on al-
ready existing successful attempts incorporating more than one parallel technology is
given, not only restricted to the LBM. Neglecting different types of computing devices,
Debudaj-Grabysz et al. [68] and Rabenseifner et al. [192] present classical examples
of hybrid parallelization using OpenMP for the shared memory and MPI for the dis-
tributed memory parallelization. These techniques can also be utilized for the LBM as
shown by Linxweiler in [141]. Considering single-GPU setups, first attempts were car-
ried out by Tölke et al. [232] using the D3Q13 discretization scheme. Bailey et al. [19]
could experimentally validate that a GPU implementation of the D3Q19 discretization
scheme delivers superior performance in comparison to an optimized implementation for
the CPU. Since the LBM is memory-bound, most optimizations target memory issues,
e.g. presented in [184, 93] and already mentioned in sections 13.1 and 13.3. Considering
only one heterogeneous computing node, Feichtinger et al. present a patch-based LBM
approach to assign work to the CPU and to the GPU. The LBM can also be incorpo-
rated as the fluid solver in fluid-structure interaction (FSI) applications which benefit
from heterogeneous computing nodes [233], too. There, similar to our implementation,
both computing devices are executing the same functionality. An implementation of
the LBM for small-scale GPU systems is reported by Obrecht et al. in [185]. Moving
to large-scale systems, communication has to be overlapped by computations as shown
by Wang et al. in [239]. The uncommon D2Q37 discretization scheme is applied by
Calore et al. [53] who demonstrate how multi-layered boundaries are exchanged between
multiple GPUs. Xiong et al. were the first who also use OpenMP for multi-core CPU
parallelization in addition to the usage of multiple GPUs [253]. In this work, only static
resource assignment is applied but Hagan et al. [94] provide a general load balancing
mechanism for GPU clusters.

All these works deal with aspects captured by us in this chapter but none of them
provides the full level of complexity of our implementation. The combination of the

143

14. Parallelization of the lattice Boltzmann method

techniques listed in this chapter allows the full utilization of all computing capabilities
of a large-scale GPU cluster. It is not limited to one particular GPU cluster but can be
generalized to common GPU clusters such as those listed in table 2.5. The major goal
is scalability being achieved as successfully confirmed in chapter 16 without losing sight
of computing device-level performance.

To better orientate in 3D, the terms “left”, “bottom”, and “back” are used for smaller
lattice cell indices in x-, y-, and z-direction, respectively. Analogously, the terms “right”,
“top”, and “front” are used for larger lattice cell indices in x-, y-, and z-direction,
respectively. Our implementation works with 3D domains but illustrations in this part
are drawn in 2D for clarity, thus, cuboids are visualized as rectangles.

The remainder of this chapter is structured as follows: First, the decomposition of the
simulation domain and the assignment of lattice cells of subdomains to the computing
devices is illustrated in section 14.1. Section 14.2 deals with the individual properties
and optimizations of the LBM kernels for GPU and CPU, thus, with the lower levels of
parallelism. Finally, a communication scheme is presented in section 14.3 incorporating
communication between GPUs and CPUs, communication between different MPI pro-
cesses minimizing the number of communication partners per process, and overlapping
of communication with computations. These are aspects of the highest level of paral-
lelism. Measurements to validate the scalability of the presented techniques are given in
chapter 16.

14.1. Domain decomposition

We parallelize the LBM according to a data-parallel approach: Different chunks of data,
i.e. sets of lattice cells with their probability densities, are assigned to different processing
elements. The entire domain in subdivided in equally-sized connected subdomains of
cuboid shape as depicted by figure 14.1 for a 2D example with 40 × 24 lattice cells.
There is no overlap of subdomains. Hence, the size of the whole domain is divisible
without remainder by the size of a subdomain in each dimension. This forms the highest
level of parallelism. Every subdomain is further subdivided by a plane in xz-direction.
The resulting upper cuboid is assigned to one GPU, the lower cuboid to at least one
CPU core colored in green and blue in figure 14.1. Accordingly, they are called GPU-
and CPU-part of the subdomain. The computation of multiple lattice cells on particular
computing devices introduces additional levels of parallelism. All GPU-parts of the
subdomains are of the same size, hence, also all CPU-parts of the subdomains are of the
same size. The ratio between GPU- and CPU-part of a subdomain can be arbitrarily
chosen at the beginning of the simulation but is then fixed during runtime. This makes
it possible to adapt the simulation to computing devices with any ratio of computational
performance. Our implementation supports GPU- or CPU-parts of subdomains of size 0
in y-direction. If the GPU-part of the subdomain is of size 0 in y-direction, a CPU-only
scenario results and vice versa.

Every subdomain consisting of a GPU- and a CPU-part is assigned to one MPI process.
Hence, the number of subdomains, the number of utilized GPUs, and the number of MPI

144

14.1. Domain decomposition

Figure 14.1.: Decomposition of a 2D domain consisting of 40 × 24 lattice cells in 5 × 3
subdomains. Each 8 × 8 subdomain is subdevided in a 8 × 5 upper part
assigned to a GPU (green) and a 8×3 lower part assigned to a CPU (blue).

processes are equal. For every node of the GPU cluster, the number of executed MPI
processes corresponds to the number of GPUs per node. Every MPI process uses the
same number of CPU threads to process its CPU-part of the subdomain. If the number
of CPU cores per node is a multiple of the number of GPUs per node, then one CPU
thread can be pinned on one dedicated core. In such a case, there are no dedicated
CPU cores for program control and communication and no simultaneous multithreading
(SMT) such as hyperthreading is applied. Otherwise, either less threads are created
so every thread can run on a separate core or oversubscription is applied leading to
bad cache efficiency. No special treatment is used if there is more than one CPU per
node, so non-uniform memory access (NUMA) effects are neglected. For example, on
TSUBAME2.5 (see table 2.5 for specification), we launch three MPI processes on a
node, each utilizing four CPU threads. Assignment of lattice cells to computing devices
means that the probability densities of the cells exclusively reside in the corresponding
computing device’s memory. No copies of this data (except ghost cells explained in
section 14.3) are managed by other computing devices.

This assignment of data to computing devices and parallel programming models such
as MPI processes and CPU threads is special in terms of rigid rules but offers best
performance. Alternatively, one of the following three assignment policies could be
applied:

145

14. Parallelization of the lattice Boltzmann method

(a) One MPI process for each GPU and one MPI process for each CPU (or all CPU
cores of one node)

(b) One MPI process for each GPU and one MPI process for each CPU core

(c) One MPI process for every node

The major drawback of option (a) is that GPUs and CPUs cannot communicate directly
with each other but have to use MPI messages, even if they are located in the same
node and could perform direct memory copy operations. Furthermore, it is much harder
to evenly distribute work between GPUs and CPUs depending on their computational
performance. Option (b) comes with the same drawbacks as option (a). In addition,
communication between different CPU cores cannot be done in a shared memory manner
but requires MPI messages. However, options (a) and (b) keep the complexity of the
implementation low because synchronization is implicitly achieved by MPI mechanisms.
Finally, option (c) gives full control for node-level optimizations to the application devel-
oper at the cost of a high degree of code complexity and synchronization requirements.
Hence, the one MPI process per GPU- and CPU-part of a subdomain is utilized for the
LBM implementation.

During the simulation, neighboring subdomains have to exchange data of their bound-
ary cells, the outermost layer of cells of a subdomain; the remaining cells of a subdomain
are called inner cells. This communication requires memory copy operations between
the computing devices as well as within the host memory and MPI message passing.
These mechanisms are explained in section 14.3.

14.2. Computation of the GPU- & CPU-part of a subdomain

In this section, the parallelization of the LBM on computing device level and computing
device-specific optimization features are shown. GPU and CPU kernels perform the
same operations, the data layout is the same for both computing devices. Hence, no
conversation is necessary if data is copied from the GPU to the CPU and vice versa. Since
the A-A memory layout pattern is applied (cf. section 13.3), no additional mechanisms
for synchronization are required because synchronization occurs implicitly by α- and
β-steps. For both, α- and β-step, there is each a dedicated kernel for the GPU and the
CPU also implementing the necessary functionality to handle boundary conditions in
the correct way. They implement the BGK collision operator and just differ in the way
probability densities are read and written (see figure 13.3). All kernels cannot only be
applied to entire subdomains but also to arbitrary sub-cuboids of a subdomain, e.g. to
boundary or inner lattice cells. So, there are no dedicated kernels for boundary and
inner lattice cells and code duplication is avoided.

14.2.1. Lattice Boltzmann method kernels for the GPU

The two GPU kernels for the α- and β-step are taken from [209]. For both kernels,
one GPU thread is assigned to one lattice cell leading to the desired high amount of

146

14.2. Computation of the GPU- & CPU-part of a subdomain

threads during runtime to hide memory latencies. To achieve coalesced memory access,
continuous threads are assigned to continuous lattice cells. So, according to the memory
layout pattern, index i for the x-direction is the fastest, index j for the y-direction is
the second fastest, and index k for the z-direction is the slowest running index. For
every probability density of a lattice cell, a dedicated register is used. Hence, it is not
necessary to utilize shared memory to increase performance because data is once read
from global memory to the registers at the start of the kernel and once written back to
global memory at the end of the kernel. In the meantime, all computational operations
can be performed directly using registers. On the Fermi and Kepler GPU architecture
(cf. table 2.1), the unused shared memory can be exploited to increase the size of the L2
cache. However, this approach leads to a high per thread register consumption. Since
the treatment of different boundary conditions is handled by the same kernels of the α-
and β-step, the register pressure becomes even higher due to higher complexity of the
kernels. This leads to a duality when reaching for high occupancy. On the one hand,
small thread block sizes can limit occupancy because multiprocessors have a maximum
number of blocks that can be active at a time. If the thread block size is small, the
product of threads per block and maximum number of blocks that can be active at once
per multiprocessor is too small to reach full occupancy. On the other hand, large thread
block sizes lead to high register usage per block also limiting occupancy. A detailed
discussion on this issue can be found in [176]. The best performing thread block size
in such a scenario has to be determined experimentally as done in subsection 16.1.1 for
the Tesla P100 utilized in Piz Daint. The performance of the GPU kernels when dealing
with boundary cells highly depends on the face direction of the outermost lattice cell
layer of the GPU domain. If the face points in y- (bottom and top face, respectively) or
z-direction (back and front face, respectively), the performance is much higher than in
x-direction (left and right face, respectively). This difference in performance originates
from the memory layout pattern which uses i in x-direction as fastest running index. It
only allows coalesced memory access if data to be loaded or stored is aligned continuously
in x-direction being the case for layers in the xz- (bottom and top face) and xy-plane
(back and front face) but not for layers in the yz-plane (left and right face). Since the
LBM with the D3Q19 discretization scheme is memory-bound, its performance highly
depends on the possibility of coalesced memory access.

14.2.2. Lattice Boltzmann method kernels for the CPU

The two kernels for the CPU originate from the α- and β-step kernel for the GPU.
Instead of assigning lattice cells to threads, three nested loops iterate over the cells. The
innermost loop iterates in x-direction, the outermost loop iterates in z-direction to fit
the memory layout pattern. Blocking [127] is applied to increase the cache efficiency
of the code for the CPU. Since cache lines are a contiguous chunk of linear data and
the fastest running index is in x-direction, the best performing block sizes are big in
x-direction and small in z-direction. Benchmark results for the Xeon E5-2690v3 utilized
in Piz Daint using different blocking sizes are given in subsection 16.1.2.

147

14. Parallelization of the lattice Boltzmann method

1 ...

2 #pragma omp parallel

3 #pragma omp single

4 {

5 for (int k = 0; k < O; k++)

6 {

7 #pragma omp task

8 {

9 for (int j = 0; j < N; j++)

10 {

11 for (int i = 0; i < M; i++)

12 // do cell -wise work

13 } } }

14 // do work while OpenMP tasks are still running

15 }

16 // OpenMP task work is finished

17 ...

Listing 14.1: Code example for CPU kernels to use OpenMP tasks for parallelization.
Clauses to configure the visibility of variables are neglected.

The parallelization of the CPU kernels is realized with OpenMP as demonstrated by an
example given in listing 14.1. OpenMP tasks [15] are utilized, originally introduced in
OpenMP 3.0 to deal with asymmetric work in OpenMP programs but also applicable to
our LBM implementation. The most common way to parallelize loops with OpenMP is
using #pragma omp parallel for but this construct leads to a loss of program control
until the parallel section is finished by all threads. Even with the nowait clause, program
control is returned not before the first thread finished the parallel section. In contrast,
OpenMP tasks allow to spawn non-blocking tasks forming a pool of work being processed
by OpenMP threads within a parallel section (lines 2–15). As soon as all OpenMP tasks
are issued, work is continued within the parallel region (line 14). During this time,
memory copy operations and MPI communication can be issued while the OpenMP
tasks are still executed in parallel. Hence, OpenMP tasks are preferred to #pragma omp

parallel for not because they provide superior performance but offer more flexibility
to the application developer. An implicit synchronization assuring all OpenMP tasks
are finished occurs after the parallel region (line 17). A new OpenMP task is issued with
#pragma omp task (line 7). In the example of listing 14.1, for every iteration of the
outermost loop (line 5), a new OpenMP task is created. Every OpenMP task deals with
full iterations over the inner two loops (lines 9 and 11) and, thus, processes one plane in
xy-direction of the domain. As for multi-threaded programming in general, the number
of OpenMP tasks should be as small as possible (and the workload per OpenMP task
should be as big as possible) to keep overhead small but enough OpenMP tasks should
be created to utilize all available CPU cores. Hence, creating new OpenMP tasks for
iterations of outer loops is more reasonable than issuing new OpenMP tasks in inner
loops. Instead of creating new OpenMP tasks for iterations of loops, we initiate one
OpenMP task for every block used to increase the cache efficiency. Using OpenMP tasks

148

14.3. Communication scheme

is the only technique utilized to parallelize the CPU kernels, no vectorization is applied.

Similar to the GPU kernels, the performance of the CPU kernels when handling bound-
ary cells depends on the orientation of the outermost layer of lattice cells of a subdomain.
If they point in y- or z-direction, the performance is much higher than in x-direction.
The reason for this performance gap is again the memory layout pattern. Analogously
to the possibility of coalesced memory access on the GPU, it enables efficient caching
for data of a xz- and xy-plane but not of a yz-plane.

14.3. Communication scheme

In this section, the parallelization of the LBM on process level and the optimization of
communication are shown. Subdomains have to exchange probability densities of bound-
ary cells because the LBM requires data of neighboring cells to perform its operations.
So a single layer of ghost cells is added around each GPU- and CPU-part of a subdomain
always containing the probability densities stemming from adjacent subdomains essen-
tial to update the boundary cells. This leads to two phases during each step, holding
for the classical collision and propagation step but also for the α- and β-step: First,
computations are performed only for the boundary cells of each subdomain. Second,
data is copied from the boundary cells to the ghost cells of the corresponding proximate
subdomains. In the meantime, the computation of the inner cells can be carried out
to hide the communication times with computation times. Specialties of the computa-
tions are already discussed in previous section 14.2, features of the communication are
presented in the following.

There are two types of communication which have to be realized by an MPI process:

(a) Exchange of data inside MPI processes. This includes copy operations between
the GPU- and CPU-parts of a subdomain as well as copy operations to and from
communication buffers required for the second type of communication.

(b) Exchange of data between MPI processes.

For communication of type (a), the CUDA function cudaMemcpy3DAsync() is applied.
It enables coping data of any cuboid-shaped region of a subdomain. Source and target
can either be the device or the host. In our case, these cuboidic-shaped regions corre-
spond to the data of lattice cells to be transfered and always have a thickness of one
cell. Internally, cudaMemcpy3DAsync() delegates copy operations to successive calls of
cudaMemcpy() or memcpy(). For every chunk of data contiguously stored in memory
following the fastest running index, one execution of cudaMemcpy() or memcpy(), re-
spectively, is issued. As seen for GPU and CPU kernels, this has a significant impact on
performance depending on the orientation of the plane of data to be copied. Assuming
a GPU- or CPU-part of a subdomain of size M × N × O ∈ N3, a copy operation in
x-direction leads to N · O function calls, each transferring one element. This is much
more inefficient than copy operation in y- or z-direction where O and N , respectively,
calls are issued each transferring M elements at a time. If data has to be exchanged

149

14. Parallelization of the lattice Boltzmann method

(a) Collecting data for communication buffers. (b) Copying data from buffers to ghost cells.

Figure 14.2.: Collection (subfigure 14.2(a)) and distribution (subfigure 14.2(b)) of data
during an α-step for one MPI process. GPU- and CPU-part of the subdo-
main are colored in green and blue, respectively. Boundary cells are colored
in light-green and light-blue, respectively, ghost cells are colored in white.
Memory for the communication buffers is colored in red. Gray arrows in-
dicate copy direction and location. Only those probability densities are
depicted by black arrows which are actually copied.

between the GPU- and the CPU-part of a subdomain, it can be directly copied via
cudaMemcpy3DAsync(). To send data to adjacent subregions, it has to be collected from
the GPU- and the CPU-part of the subdomain in dedicated communication buffers, al-
located and managed by the application developer, before it can be transferred via MPI.
This collection step (and the distribution of data once it is received) is also achieved with
cudaMemcpy3DAsync(). It performs memory copy operations asynchronously meaning
that program control is immediately returned once copying is issued. Hence, compu-
tations can be performed while data exchange inside MPI processes are simultaneously
performed in the background.

With the boundary data copied to the communication buffers, communication of type
(b) can be performed. To overlap communication with computation, the non-blocking
MPI functions MPI Isend() and MPI Irecv() are utilized. Dedicated communication
buffers for send and receive operations avoid race conditions. All communication be-
tween MPI processes can be maintained with point-to-point communication because

150

14.3. Communication scheme

(a) Collecting data for communication buffers. (b) Copying data from buffers to subdomains.

Figure 14.3.: Collection (subfigure 14.3(a)) and distribution (subfigure 14.3(b)) of data
during an β-step for one MPI process. Color coding and meaning of data
transfer arrows are equal to figure 14.2. Only those probability densities
are depicted by black arrows which are actually copied.

only neighboring subdomains have to interact with each other. No global information
has to be exchanged, thus, no collective operations are necessary.

Figures 14.2 and 14.3 depict a 2D representation of the per MPI process communica-
tion of the α- and β-step, separated in sending to (left subfigures) and receiving from
(right subfigures) neighboring subdomains. GPU and CPU domain are colored in green
and blue, inner cells are colored darker, boundary cells are highlighted. Ghost cells
are colored in white and added around the actual computational subdomain. For every
communication direction (left, right, bottom, top, back, and front), there are communi-
cation buffers for sending and receiving colored in red. While an α-step is performed,
data is eventually transferred from boundary to ghost cells required not before the β-step
because the collision operator of the α-step only deals with cell-local probability densi-
ties. During β-steps, data is transferred from ghost to boundary cells to implement the
propagations as depicted by subfigure 13.3(b). Only probability densities whose lattice
velocity points outward of the target subdomain have to be copied implicitly avoiding
some memory transfers discussed in more detail in [20].

Actually, every subdomain has to exchange information with all neighbors in the di-
rections of the lattice velocities. For the D3Q19 discretization scheme, these are 18

151

14. Parallelization of the lattice Boltzmann method

communication partners: Six adjacent to the faces of the subdomain and twelve neigh-
boring to the edges of the cuboid. The face neighbors need information from an entire
face, the edge neighbors only from a single line of lattice cells. By ordering the communi-
cation between MPI processes, communication can be reduced to the six face neighbors.
First, data is exchanged between connected neighbors in x-direction (left and right),
afterwards in y-direction (bottom and top), and finally in z-direction (back and front).
Thereby, data designated to the, for example, right front edge neighbor is first transferred
to the right neighbor in x-direction and from there to the front neighbor in z-direction.
Analogously, communication with all other edge neighbors is possible. On the one hand,
this idea serializes inter-process communication in three distinct phases, on the other
hand, it significantly reduces the number of communication partners.

All computation and communication operations during one α- or β-step of an MPI
process are summarized in figure 14.4. Vertically, figure 14.4 shows three dedicated blocks
for operations on the GPU, the CPU, and for MPI. Horizontally, it shows temporal
progress. The blocks for GPU and CPU are further broken down in operations for
boundary cells of the six cuboid faces and inner cells. The block for MPI operations
is itemized in communication directions denoted by “from . . . neighbor → . . . boundary
layer”. Computations on the GPU and CPU are colored in green and blue, respectively.
MPI communication is colored in red. The orange bars before MPI Isend() and the
gray bars after MPI Irecv() signal copy operations between the communication buffers
managed by the application developer and the MPI buffers maintained by MPI. Different
lengths of the bars indicate varying length in runtime depending on the size of the cuboid
to process or effects such as coalesced memory access or caching. Bar lengths do not
correspond to real-world measurements but just give a rough estimation of the actual
runtimes. Black arrows depict data dependencies meaning probability densities cannot
be send via MPI before they are copied from the computing devices to the communication
buffers and cannot be copied to the computing devices before received via MPI. Purple
arrows depict dependencies due to shared resources, for example either data from the
GPU- or the CPU-part of the subdomain is written to the communication buffers at a
time. During the phase for communication in y-direction, only data of the top face of the
GPU-part and from the bottom face of the CPU-part of the subdomain are transferred to
the communication buffers because the remaining faces in y-direction directly exchange
data by utilizing cudaMemcpy3DAsync(), denoted by “CPU2GPU” and “GPU2CPU”
in figure 14.4.. Dotted lines connect associated operations, e.g. direct copy operations
between GPU and CPU or sending to and receiving from the same MPI communication
partner. The latter example explicitly invokes send and receive operations instead of
using MPI Isendrecv(). Communication (framed by yellow areas) is carried out while
the inner cells are processed. Depending on which procedure takes longer, the current
step ends as soon as all communication or the treatment of the inner cells is finished.

After presenting the direction-dependent properties of the kernels for the computing
devices in section 14.2 and introducing a communication scheme for the LBM on large-
scale heterogeneous systems in this section, a performance model can be setup in the
next chapter predicting the performance when combining these techniques.

152

14.3. Communication scheme

left→right

right→left

bottom→top

top→bottom

back→front

front→back

right

bottom

top

back

front

inner

C
P
U

left

right

bottom

top

back

front

inner

G
P
U

left

MPI_Isend()

MPI_Irecv()

MPI_Isend()

MPI_Irecv()

MPI_Isend()

MPI_Irecv()

MPI_Irecv()

MPI_Isend()

MPI_Irecv()

MPI_Isend()

MPI_Irecv()

MPI_Isend()

GPU
2
buf

GPU
2
buf

GPU
2
buf

GPU
2
buf

GPU
2
buf

CPU
2
buf

CPU
2
buf

CPU
2
buf

CPU
2
buf

CPU
2
buf

buf
2
GPU

buf
2
GPU

buf
2
GPU

buf
2
GPU

buf
2
GPU

buf
2
CPU

buf
2
CPU

buf
2
CPU

buf
2
CPU

buf
2
CPU

CPU
2
GPU

CPU
2
GPU

GPU
2
CPU

GPU
2
CPU

Figure 14.4.: Operations within one MPI process broken down in device (top), host (mid-
dle), and MPI (bottom) operations. Yellow background marks communi-
cation operations, white background shows computations. Green and blue
bars indicate computations on the GPU and CPU, respectively. Gray bars
represent copy operations to the communication buffers of the host, orange
bars represent read operations from these buffers. Red bars symbolize
MPI communication. Bars marked with “GPU2buf” perform a copy op-
eration from the GPU to the communication buffers of the host and with
“CPU2buf” from the CPU to the communication buffers. The vice versa
copy operations from the communication buffers to the computing devices
are marked with “buf2GPU” and “buf2CPU”. “CPU2GPU” is assigned
to copy operations from the CPU domain directly to the GPU domain
and “GPU2CPU” is assigned to copy operations in the opposite direction.
Black arrows indicate data dependencies, purple bars illustrate dependen-
cies due to shared resources.

153

15. Performance modeling of the lattice
Boltzmann method on heterogeneous
systems

In this chapter, we introduce a performance model for the LBM considering for the
first time the distinct properties of the different memories and communication channels
in a heterogeneous system. By considering such components of heterogeneous systems,
performance predictions of very high accuracy are feasible.

An often occurring question in computer science is how well a given program performs
on a particular hardware architecture. Performance values of interest are for example
runtime, achieved peak performance, or, especially relevant in the area of HPC, scal-
ability. So, in the field of performance modeling [243], models describing features and
properties of target hardware architectures are setup to predict the performance of pro-
grams executed on these particular architectures. Such performance models help to
identify bottlenecks and ease the optimization for specific hardware or the adaptation
of hardware to certain applications. In this chapter, a performance model for our LBM
implementation with the parallel features presented in chapter 14 for GPU clusters ex-
ploiting all available computing devices and modeling all necessary communication is
derived. Hence, we do not develop a performance model for hybrid parallel software on
heterogeneous systems and clusters in general but present an application-tailored model.

Classical performance modeling [36, 37] utilizes tools such as queuing networks and
Markov chains [151] to describe various types of hardware such as processing elements,
memory buses, I/O devices, and networks. When it comes to HPC, properties such
as compute- or memory-bound are of interest which can be determined, e.g., by the
balance model [95]. For a complex application such as our LBM implementation, the
performance of various components can be modeled: On a lower level, the particular par-
allel computing devices such as GPU and CPU are object of investigation. The roofline
model [247, 246] incorporating the FLOPS per byte ratio for a particular operation is
a very popular method for such tasks in general and in [93], a performance model tai-
lored to LBM is presented. On a higher level, insight on the interplay of the computing
devices with all aspects of copying and communicating data is desired. Within a single
heterogeneous node, a model by Malony et al. [148] can be used while for a larger scale,
the model by Lu et al. [142] handles a hybrid scenario similar to ours: Using CUDA
and OpenMP to parallelize the GPU and CPU part, respectively, and the inter-node
communication is achieved by MPI.

The main focus of part IV does not lie on the optimization of particular kernels for
specific computing devices but on the scalable implementation of the LBM on large-scale

155

15. Performance modeling of the lattice Boltzmann method on heterogeneous systems

heterogeneous systems by hybrid programming. Hence, the performance model in this
chapter targets the above mentioned higher level, especially for strong scaling scenarios.
It bases on work by Feichtinger [77, 78] but differs in two important aspects: First, the
original model is adapted to match the domain decomposition, work assignment, and
communication approach from sections 14.1 and 14.3. On the one hand, this modifi-
cation restricts the general applicability of Feichtinger’s model but on the other hand,
more individual features are captured making our model more precise. Second, a gener-
alization is realized by including the property of anisotropic behavior when it comes to
the treatment of boundary cells. Depending on the orientation of the outermost layer
of a subdomain, i.e. the boundary cells, the performance of updating cells and copying
data from or to device or host memory varies much. This anisotropic behavior stems
from the possibility of coalesced memory access and caching being feasible for boundary
layers in y- and z-direction, but not in x-direction due to the utilized memory layout
pattern with i as fastest running index in x-direction.

Our performance model estimates an upper bound for the runtime to execute an entire
α- or β-step. Since the number of computations, memory accesses, and the amount of
communicated data is almost equal for both types of steps, it is not necessary to do a
separate modeling for the particular steps. The runtime of a single MPI process is mod-
eled and it is assumed that the runtime of all MPI processes is equal independent from
the number of running MPI processes. Instead, the size of the subdomain handled by
the MPI process and, of course, the hardware properties of the GPU cluster, determine
the total runtime. Such an assumption is only valid in a point-to-point communica-
tion scenario as it holds for the parallelization of the LBM. If collectives are used, the
communication time does not only depend on the amount of transferred data but also
on the number of communication participants. Performance values such as LUPS or
FLOPS rate or memory bandwidth are not taken into account by our model. Instead,
actual runtimes are incorporated which can either be derived from the even mentioned
performance values or by micro-benchmarks as done in section 16.3 in the next chapter.
A worst case scenario is assumed for the event that an MPI rank interacts with all six
logical neighbors neglecting MPI ranks processing the boundaries of the domain and,
hence, dealing with less neighbors.

With T denoting the total runtime to perform one α- or β-step, our performance
model looks as follows:

T = max(τGPUboundary, τ
CPU
boundary)︸ ︷︷ ︸

time to compute boundary cells

+ max(max(τGPUinner, τ
CPU
inner)︸ ︷︷ ︸

time to compute inner cells

, tcomm) (15.1)

While the first summand models the computation times of the boundary cells, the second
summand describes accumulated communication times and computation times of the
inner cells. It considers the hiding of communication times with computation times by
the outer max() function.

All τ computing device
region : N3 → R+ are functions indicating the runtime until a three-

dimensional cuboid of lattice cells is updated, thus, specifies computation time. The
runtimes refer to a “GPU” or a “CPU” as “computing device” and it is distinguished

156

between “boundary” and “inner” cells to be updated as “region”. Since the time to
update the boundary cells depends much on the face direction of the boundary layer,
τGPUboundary and τCPUboundary are further subdivided in

τGPUboundary = max(τx,GPUboundary, τ
y,GPU
boundary, τ

z,GPU
boundary) (15.2a)

and
τCPUboundary = 2(τx,CPUboundary + τy,CPUboundary + τ z,CPUboundary). (15.2b)

The superscripts x, y, and z indicate the face direction of the corresponding bound-
ary layer; the factor of 2 in equation (15.2b) originates from the negative and positive
communication directions, e.g. left and right for x-direction. On the GPU, all kernel
executions to update the boundaries are performed simultaneously to increase the de-
gree of parallelism, so the max() function is used in equation (15.2a). On the CPU, all
faces of boundary cells are processed after each other because there is already a sufficient
degree of parallelism within a single kernel execution, so the particular execution times
sum up in equation (15.2b).

The term tcomm in performance model (15.1) represents the total communication times
of an MPI process including the communication and copy times in the MPI process itself
and the communication times to other MPI processes. In weak scaling scenarios, tcomm is
constant because the subdomain size does not depend on the degree of parallelism leading
to constant, per MPI rank execution times and linear scalability. The communication
time is further broken down in

tcomm = txcomm + tycomm + tzcomm (15.3)

to distinguish the communication times in specific directions. Due to the subdivision
of every subdomain as described in section 14.1, the particular, direction-dependent
communication times tdirection

comm are assembled by

txcomm = 2(txGPU2buf + txCPU2buf︸ ︷︷ ︸
gather boundary data

+tMPI + txbuf2GPU + txbuf2CPU︸ ︷︷ ︸
update boundaries

) (15.4a)

tycomm = tyGPU2buf + tyCPU2buf + 2tMPI + tybuf2GPU + tybuf2CPU + tyGPU2CPU + tyCPU2GPU

(15.4b)
tzcomm = 2(tzGPU2buf + tzCPU2buf︸ ︷︷ ︸

gather boundary data

+tMPI + tzbuf2GPU + tzbuf2CPU︸ ︷︷ ︸
update boundaries

) (15.4c)

with functions tdirection
link : N3 → R+ denoting times to transfer a three-dimensional cuboid

of data via the connection “link” in a specific “direction”. Copy operations are performed
from GPU and CPU memory, respectively, to the buffer used by MPI to exchange prob-
ability densities of boundary cells and vice versa. Accordingly, “link” is “GPU2buf”,
“buf2GPU”, “CPU2buf”, and “buf2CPU” corresponding to the same identifiers in figure
14.4. The term tyGPU2CPU + tyCPU2GPU in equation (15.4b) expresses the time to directly
exchange boundary data between the GPU- and the CPU-part of the subdomain as in

157

15. Performance modeling of the lattice Boltzmann method on heterogeneous systems

figure 14.4. Communication between dedicated MPI processes is indicated by the sub-
script “MPI”. Analogously to equations (15.2a) and (15.2b), the “direction” is one of the
three spatial dimensions x, y, and z. Equations (15.4a)–(15.4c) base on the assumption
that communication times tdirection

link cannot be overlapped in any way. Depending on two
MPI processes that are running on the same or different cluster nodes, tMPI can vary
for the same three-dimensional cuboid of data because data can either be copied inside
the node or transferred via the network. This effect occurs on GPU clusters with more
than one GPU per node such as JuDGE, Hydra, and TSUBAME2.5. The proposed
performance model does not consider varying tMPI for the same cuboid size.

For now, the performance model is very fine-grained. Yet it can be simplified because
some terms behave similarly. For example,

τ computing device
inner ≈ τy,computing device

boundary ≈ τ z,computing device
boundary (15.5)

because as long as computations can benefit from coalesced memory access and caching,
respectively, the performance is basically the same for boundary and inner cells if the
same number of lattice cells is handled. This does not hold for left and right boundary
cells of a subdomain, i.e. the faces in x-direction, hence, showing significantly worse
performance and justifying a direction-dependent modeling. When it comes to commu-
nication, it sounds reasonable that tdirection

GPU2CPU ≈ tdirection
CPU2GPU ≈ tdirection

GPU2buf ≈ tdirection
buf2GPU and

tdirection
CPU2buf ≈ tdirection

buf2CPU . So, there is no difference in runtime depending on the communica-
tion direction (from the computing device to the buffer used for MPI communication or
vice versa) and the purpose of memory (buffer or actual domain). However, experiments
in section 16.3 show that this assumption is wrong, at least on the tested hardware.

The performance model presented so far models the execution time of an MPI process
by incorporating the runtimes of particular operations such as computations and various
communication. This approach is software-driven since it follows the order of operations
of the actual implementation as depicted by figure 14.4. An alternative approach is
hardware-driven by modeling the particular hardware components of the utilized cluster
such as computing devices, buses, and communication links. Such an approach orientates
for example on figure 2.4 and considers the simultaneous utilization of shared resources
by dedicated operations. An example of a shared resource is the memory of the host
being a bottleneck for a memory-bound application such as the LBM using the D3Q19
discretization scheme. The host memory stores and loads data stemming from the GPU
and MPI communication while the CPU performs α- and β-steps of the inner cells which
themselves execute host memory operations. Our performance model assumes that such
operations are performed simultaneously without any conflicts. This does not hold in
reality but this issue has only a minor effect and, thus, does not limit the validity of the
performance model.

The following chapter 16 lists numerous benchmark results of the discussed LBM
implementation. Its concluding section 16.3 provides real-world values for the functions
τdirection, computing device

region and tdirection
link enabling a performance estimation of large-scale

runs. These estimations are compared to actually measured results to validate the
performance model.

158

16. Results

Results and corresponding discussions of profilings and benchmarks are given in this
chapter to validate the scalability of the combined optimization and parallelization tech-
niques presented in chapter 14 on large-scale heterogeneous systems. This includes
performance measurements of kernels on particular computing devices, analysis of the
heterogeneous computation of a single subdomain, and scalability tests on three GPU
clusters. Furthermore, the validity of the performance model introduced in the previous
chapter 15 is testified experimentally.

Performance is measured in giga (109) lattice updates per second (GLUPS). For all
test runs, the lid-driven cavity benchmark scenario [39, 86] is applied, cf. figure 16.1. The
lid is attached on the top of the domain and drives from left to right with velocity 1m/s.
Domain size in x-direction is always set to 1m. If the test domain is not a cube, its length
in y- and z-direction is adapted accordingly to guarantee cubic lattice cells. To ensure
a stable simulation, the timestep size dt is chosen 10× smaller than required to satisfy
the Courant-Friedrichs-Lewy (CFL) condition [63]. Hence, since dimensionless units are
used within the simulation, the velocity is 0.1. Relaxation time τ = 0.6152 ∈ (0.5, 2),
thus, the simulation is stable. All test runs take 1024 timesteps, thus, each 512 α- and

(a) 3840 timesteps =̂ 1s (b) 11,520 timesteps =̂ 3s (c) 46,080 timesteps =̂ 12s

Figure 16.1.: Visualization of a lid-driven cavity scenario with Reynolds number 1000
after 3840, 11,520, and 46,080 timesteps of length dt = 1

3840s ≈ 0.260,417 ·
10−3s. The size of the cubic domain is 3843 lattice cells, its volume is 1m3.
The domain is partitioned in 43 equally-sized subdomains and assigned to
the same number of MPI processes. The upper 90% of every subdomain
are processed by the GPU, the lower 10% by the CPU. Colors indicate
velocity magnitude (red: high velocity, blue: low velocity) with lid velocity
1ms . Arrows point in velocity direction.

159

16. Results

32
×1×

1

64
×1×

1

128
×1×

1

256
×1×

1

512
×1×

1

32
×2×

1

64
×2×

1

128
×2×

1

256
×2×

1

32
×4×

1

64
×4×

1

128
×4×

1

32
×8×

1

64
×8×

1

32
×16

×1
0.5

1.0

1.5

2.0

2.5

3.0

G
LU

PS

LBM performance

32
×1×

1

64
×1×

1

128
×1×

1

256
×1×

1

512
×1×

1

32
×2×

1

64
×2×

1

128
×2×

1

256
×2×

1

32
×4×

1

64
×4×

1

128
×4×

1

32
×8×

1

64
×8×

1

32
×16

×1
0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

 o
f m

ax
im

um
 b

an
dw

id
th

Memory bandwidth

64×64×64 128×128×128 256×256×256 512×512×128 384×384×384

Figure 16.2.: Performance in GLUPS (left) and share of utilized memory bandwidth in
peak memory bandwidth (right) of a Tesla P100. Values are determined in
dependence of parallel setup for different domain sizes depicted by differ-
ent lines. Single precision performance is colored in red, double precision
performance in blue.

β-steps are executed. Single subdomain tests are carried out on one node of Piz Daint,
multiple subdomains tests on the GPU clusters Hydra, TSUBAME2.5, and Piz Daint.
Properties of the clusters and utilized software are listed in table 2.5. For these GPU
clusters, the number of CPU cores per node is a multiple of the number of GPUs per
core. Hence, each thread can be pinned on a dedicated CPU core and no cores idle.
To improve the readability, the term “GPU/CPU ratio” is used instead of “ratio of the
GPU-part of the domain to the CPU-part of the domain”.

The remainder of this chapter is structured as follows: First, the lower levels of par-
allelism are evaluated in section 16.1 profiling and benchmarking the GPU and CPU
kernels on their corresponding computing devices, thus, on homogeneous architectures.
Following, the performance on heterogeneous systems consisting of GPUs and CPUs is
tested in section 16.2, starting with single subdomain scenarios before coming to large-
scale setups consisting of multiple subdomains. Finally, the validity of our performance
model is demonstrated for two weak and two strong scaling setups in section 16.3.

16.1. Characteristics of kernels

To evaluate the performance of the LBM kernels on the particular computing devices,
four cubic domains of different size ranging from 643 to 3843 and one cuboid domain con-
sisting of 512× 512× 128 lattice cells are benchmarked. Experiments are carried out in
single and double precision. The largest 3843 domain requires approximately 4.22GByte
and 8.23GByte of memory when using float and double, respectively, the latter men-
tioned domain 2.50GByte and 4.86GByte, respectively. Kernels of the α- and β-step
perform the same amount of computations and (coalesced or cached) memory accesses,
thus, their performance is similar in terms of GLUPS. So it is not distinguished between

160

16.1. Characteristics of kernels

64
×1×

1

128
×1×

1

256
×1×

1

512
×1×

1

64
×64

×1

128
×64

×1

256
×64

×1

512
×64

×1

64
×12

8×1

128
×12

8×1

256
×12

8×1

512
×12

8×1

64
×25

6×1

128
×25

6×1

256
×25

6×1

512
×25

6×1

64
×51

2×1

128
×51

2×1

256
×51

2×1

512
×51

2×1
0.00

0.05

0.10

0.15

0.20

0.25

G
LU

PS

LBM performance

64
×1×

1

128
×1×

1

256
×1×

1

512
×1×

1

64
×64

×1

128
×64

×1

256
×64

×1

512
×64

×1

64
×12

8×1

128
×12

8×1

256
×12

8×1

512
×12

8×1

64
×25

6×1

128
×25

6×1

256
×25

6×1

512
×25

6×1

64
×51

2×1

128
×51

2×1

256
×51

2×1

512
×51

2×1
0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

 o
f m

ax
im

um
 b

an
dw

id
th

Memory bandwidth

64×64×64 128×128×128 256×256×256 512×512×128 384×384×384

Figure 16.3.: Performance in GLUPS (left) and share of utilized memory bandwidth in
peak memory bandwidth (right) of a Xeon E5-2690v3. Values are deter-
mined in dependence of block size used to increase cache efficiency. Color
coding, line captions, and markers are equal to figure 16.2.

the performance of the two kernels. Since the LBM using the D3Q19 discretization
scheme is memory-bound, plots depicting the percentages of achieved memory band-
width performance are provided. Only computations are carried out, no copy operations
or communication occurs. Measurements are just performed on one GPU and CPU
architecture because the more relevant result is the behavior on heterogeneous systems
presented in section 16.2. Further results of the kernels for different GPUs are given in
[209, 20].

16.1.1. Results of the GPU kernels

Results of the GPU kernels carried out on a Tesla P100 are plotted in figure 16.2.
Performance values depend on the parallel setup denoted by “threads per block in x-
direction” × “threads per block in y-direction” × “threads per block in z-direction”
assigned to the x-axes. Problem size is depicted by different lines. Single precision
results are colored in red, double precision results in blue. The peak memory bandwidth
of the Tesla P100 is 719.87GByte/s (cf. table 2.1).

Comparing the same problem size, the single precision version shows between 57.8%
(domain size 643, parallel setup 64× 8× 1) and 112.6% (domain size 643, parallel setup
512 × 1 × 1) higher performance than the double precision version while the latter one
has a slightly higher memory bandwidth utilization. In general, larger domains lead to
higher GLUPS numbers but performance only slightly grows for domains bigger than
1283. For such domains, there are enough lattice cells to invoke enough threads for
optimal latency hiding. Performance is only slightly influenced by the parallel setup, the
only exception occurs when using 512× 1× 1 threads per block for the smallest domain.
Since every lattice cell is assigned to a dedicated thread, the total number of warps is
independant from the parallel setup explaining its low impact. Highest achieved single
precision performance is 2.96GLUPS for the 2563 domain when applying a parallel setup

161

16. Results

of 512×1×1 threads per block reaching 64.2% of the peak memory bandwidth. With the
same parallel setup, 1.58GLUPS are accomplished for the non-cubic domain with double
precision leading to a memory bandwidth utilization of 67.7%. Due to the complexity of
the kernels for α- and β-step and integer overheads for index computations, especially
to check the boundary conditions, such values of memory bandwidth utilization are
expectable and satisfying. Since we mainly focus on scalability on large-scale systems,
no further effort is spent to improve the single-GPU performance.

16.1.2. Results of the CPU kernels

Results of the CPU kernels carried out on a Xeon E5-2690v3 (all 12 cores utilized, each
executing one thread) are plotted in figure 16.3. Performance values depend on the
block size used to increase cache efficiency denoted by “number of cells in x-direction” ×
“number of cells in y-direction” × “number of cells in z-direction” and assigned to the
x-axes. Different problem sizes are depicted by different lines. Single precision results
are colored in red, double precision results in blue. The peak memory bandwidth of the
Xeon E5-2690v3 is 68GByte/s1.

The difference between single and double precision performance ranges from 0.4%
(domain size 2563, block size 64×1×1) to 42.1% (domain size 643, block size 64×128×
1) and, thus, is much smaller than for the GPU kernels. Problem size influences the
performance but a smaller or larger problem does not necessarily lead to lower or higher
performance. However, the applied block size has a major impact on performance: The
larger the size of the block in x-direction, the higher the GLUPS number, pointed out
by the drops in performance if number of cells in x-direction of the block size is only 64.
Since probability densities are only used once per α- or β-step, the only performance
improvement due to caching stems from data already moved to the cache as part of
a cache line previously loaded. Due to the alignment of the probability densities in
memory with fastest running index i in x-direction, large block sizes in x-direction are
beneficial. This effect becomes clearer for larger problem sizes with the smallest impact
when using the 643 lattice cells domain. The single precision version has a much smaller
memory bandwidth utilization than the double precision version reaching at maximum
48.9% (domain size 3843, block size 512 × 128 × 1) of the peak bandwidth resulting
in 0.21GLUPS. In comparison, the best double precision configuration utilizes 74.1%
(domain size 3843, block size 512×64×1) of the peak bandwidth leading to 0.17GLUPS
being a solid performance value. Further improvement could be achieved by considering
the assignment of CPU cores to memory channels but this optimization approach is
omitted due to the main focus on scalability on large-scale systems.

The best performing parallel setup for the GPU kernels when running a 512×512×128
lattice cells domain is 512 × 1 × 1 threads per block. Accordingly, the best performing
block size for the CPU kernels for the same domain size is 512× 64× 1. Both configura-
tions hold for double precision. These values are used throughout the remainder of this
chapter.

1https://ark.intel.com/products/81713/

162

https://ark.intel.com/products/81713/

16.2. Benchmark results for heterogeneous systems

16.2. Benchmark results for heterogeneous systems

After evaluating the LBM kernels on the particular computing devices, performance is
now benchmarked on heterogeneous systems consisting of GPUs and CPUs. First, the
interplay between one GPU and one CPU is analyzed in subsection 16.2.1. Subsequently,
after providing more background on the setup of the large-scale tests on heterogeneous
systems in 16.2.2, weak and strong scaling behavior are discussed in subsections 16.2.3
and 16.2.4. Those parallel setups for the GPU (see figure 16.2) and block sizes for the
CPU (see figure 16.3) are used which lead to best performance.

16.2.1. Single subdomain results

To determine potential performance improvement by simultaneously using a GPU and
a CPU instead of a computing device of only one type, measurements with a varying
GPU/CPU ratio are conducted. Once again, different domain sizes ranging from 643 to
3843 and the cuboid domain with 512×512×128 lattice cells are used. For all tests, one
GPU and one entire CPU handle the domain, thus, all CPU cores are utilized. Since
only one domain with one GPU- and one CPU-part is handled, no MPI communication
and, hence, no copy operations to the communication buffers is necessary.

0.0 0.2 0.4 0.6 0.8 1.0
CPU-part of the domain size to total domain size ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
LU

PS

64×64×64 128×128×128 256×256×256 512×512×128 384×384×384

Figure 16.4.: Performance in GLUPS of a heterogeneous system in dependence of the
size of the CPU-part of the domain. Size is given as share of the CPU-part
in the total domain size ranging from 0 (100%/0% GPU/CPU ratio) to 1
(0%/100% ratio). The GPU-part is processed by a Tesla P100, the CPU-
part by a Xeon E5-2690v3. Different lines depict different domain sizes.
Single and double precision are colored in red and blue, respectively.

Figure 16.4 depicts benchmark results for all five domain sizes on one node of Piz Daint
carried out in single (red lines) and double precision (blue lines). For single precision,
it is hard to achieve any improvements with a heterogeneous setup. Actually, only for
the large domains with 512 × 512 × 128 and 3843 lattice cells, similar results like for
the GPU-only homogeneous version are accomplishable. Applying a GPU/CPU ratio of
94%/6% leads to 99.52% (512 × 512 × 128 lattice cells) and 99.83% (3843 lattice cells)

163

16. Results

of the homogeneous performance. Here, overheads such as copy operations between
the GPU- and CPU-part of the domain equalize the additional computational potential
of the CPU. Single precision operations are carried out faster than double precision
operations, thus, constant communication overheads such as copy invocation times have
a bigger influence in single precision scenarios. For double precision, an improvement
of 1.59%, 4.74%, and 3.49% can be realized for the 2563, 512 × 512 × 128, and 3843

domain, respectively, when applying the optimal GPU/CPU ratio of 91%/9%. This
is still worse than the theoretical improvement of 9.45% obtained by the ratio of the
accumulated peak bandwidth of GPU and CPU to the sole GPU’s peak bandwidth. Once
again, communication overheads consume the theoretical maximum improvement but an
acceleration is clearly observable. Small domains do not benefit from a heterogeneous
setup at all: As soon as a CPU-part of the domain is involved, performance drops on
the level of the CPU-only homogeneous version. Smaller domains require less runtime
to be processed, thus, constant communication overheads become even more dominant.

cluster GPU CPU ratio imp. GPU theo. imp. CPU

Hydra
K20x

E5-2680v2 80%/20% 16.22% 23.91% 483.74%
TSUBAME2.5 X5670 95%/5% 1.17% 12.82% 1437.62%

Piz Daint P100 E5-2690v3 91%/9% 4.74% 9.45% 962.85%

Table 16.1.: Performance improvement by using a heterogeneous system instead of a ho-
mogeneous one. Experiments are carried out for a 512× 512× 128 domain
using double precision. Column “ratio” lists the best performing GPU/CPU
ratio. All GPUs are NVIDIA Tesla GPUs, all CPUs are Intel Xeon CPUs.
Imp. stands for improvement, theo. for theoretical. Values in the columns
“imp. GPU” and “imp. CPU” list the measured relative performance im-
provement of the heterogeneous setup in comparison to the particular com-
puting devices. The theoretical improvement in comparison to the GPU-
only configuration is given in column “theo.”.

Improvements measured on nodes of all GPU clusters utilized for the large-scale bench-
marks are summed up in table 16.1. These results are limited to only one domain of size
512 × 512 × 128 and double precision, also being the setup applied for the large-scale
runs in subsections 16.2.3 and 16.2.4. Such a domain fits entirely in the memory of every
utilized GPU and every cluster node is equipped with enough host memory to store all
subdomains assigned to the MPI processes running on it. A non-cubic test domain is
chosen because its face in z-direction is of different size than in x- or y-direction leading to
different communication times in all directions. Similar to the more detailed evaluation
on Piz Daint illustrated in figure 16.4, one GPU and one entire CPU handle the domain,
thus, all CPU cores are utilized. Table 16.1 contains the best performing GPU/CPU ra-
tio, the theoretical improvement basing on the accumulated peak bandwidth of GPU and
CPU, and the achieved improvement relative to a GPU- and CPU-only configuration.
While on TSUBAME2.5 the achieved performance gain of the heterogeneous version in
comparison to the GPU-only version is negligible, the performance on Hydra is not only

164

16.2. Benchmark results for heterogeneous systems

significantly improved but also a relevant portion of the theoretical improvement can be
reached. The behavior on a TSUBAME2.5 node can be explained by its architecture
containing three GPUs and two CPUs. This leads to high GPU performance per node
and restricts the heterogeneous performance due to a complex PCIexpress bus [89].

16.2.2. Preparations for multiple subdomains results

The large-scale benchmarks are carried out in double precision. Values of interest are
performance in GLUPS, and from this quantity derived, parallel efficiency, both assigned
to the ordinates of figures 16.5–16.12. Since we are interested how performance and
parallel efficiency depend on the number of subdomains, these values are written to the
abscissas of the figures. The number of subdomains is denoted by “number of subdomains
in x-direction” × “number of subdomains in y-direction” × “number of subdomains in
z-direction”. Weak (see subsection 16.2.3 and figures 16.5–16.8) and strong scaling
(see subsection 16.2.4 and figures 16.9–16.12) measurements are conducted. Adding
subdomains in x-direction in such a way that communication is performed between left
and right faces is parallelization in x-direction. Analogously, there is parallelization in
y- and z-direction. If subdomains have neighbors in all spatial directions, it is called
parallelization in x/y/z-direction. In all figures of the large-scale tests, different lines
depict different homogeneous and heterogeneous versions: The homogeneous GPU- and
CPU-only versions are colored in green and blue, respectively. For every GPU cluster,
there are heterogeneous results for a GPU/CPU ratio of 90%/10% and for Hydra, there
are also results for ratios 80%/20% and 70%/30%. The heterogeneous results are colored
in purple. In addition, the heterogeneous version showing best performance in most cases

system scenario
parallelization in . . . -direction

x y z xyz

Hydra
GPU-only 30.2%

(29)
99.6%

(29)
76.2%

(28)
16.9%

(29)CPU-only 51.5% 98.3% 89.7% 42.9%
hetero. 26.3% 97.3% 60.2% 15.4%

TSUBAME2.5
GPU-only 5.1%

(27)
83.0%

(29)
64.8%

(29)
4.8%

(29)CPU-only 71.0% 92.5% 98.8% 41.9%
hetero. 12.1% 84.4% 62.9% 4.8%

Piz Daint
GPU-only 37.6%

(211)
91.4%

(211)
54.8%

(211)
17.7%

(211)CPU-only 58.7% 99.9% 90.8% 49.5%
hetero. 36.6% 90.6% 53.5% 17.6%

Table 16.2.: Weak scaling parallel efficiencies on three different GPU clusters for the
largest performed runs. Number of utilized processes is given in parenthesis.
Hetero. stands for heterogeneous. The best performing GPU/CPU ratio is
taken for the heterogeneous scenario. Results for parallelization in x/y/z-
direction as well as in all directions are listed. Detailed results are plotted
in figures 16.7 and 16.8.

165

16. Results

1×1
×1
2×1

×1
4×1

×1
8×1

×1
16
×1×

1

32
×1×

1

64
×1×

1

12
8×1

×1

25
6×1

×1

51
2×1

×1

number of MPI ranks/GPUs

10-1

100

101

102

103

G
LU

PS

Hydra

1×1
×1
2×1

×1
4×1

×1
8×1

×1
16
×1×

1

32
×1×

1

64
×1×

1

12
8×1

×1

25
6×1

×1

51
2×1

×1

number of MPI ranks/GPUs

10-1

100

101

102

103

TSUBAME 2.5

1×1
×1
2×1

×1
4×1

×1
8×1

×1
16
×1×

1

32
×1×

1

64
×1×

1

12
8×1

×1

25
6×1

×1

51
2×1

×1

10
24
×1×

1

20
48
×1×

1

number of MPI ranks/GPUs

10-1

100

101

102

103

Piz Daint

(a) Parallelization in x-direction

1×1
×1
1×2

×1
1×4

×1
1×8

×1
1×1

6×1
1×3

2×1
1×6

4×1

1×1
28
×1

1×2
56
×1

1×5
12
×1

10-1

100

101

102

103

G
LU

PS

Hydra

1×1
×1
1×2

×1
1×4

×1
1×8

×1
1×1

6×1
1×3

2×1
1×6

4×1

1×1
28
×1

1×2
56
×1

1×5
12
×1

10-1

100

101

102

103

TSUBAME 2.5

1×1
×1
1×2

×1
1×4

×1
1×8

×1
1×1

6×1
1×3

2×1
1×6

4×1

1×1
28
×1

1×2
56
×1

1×5
12
×1

1×1
024

×1

1×2
048

×1

10-1

100

101

102

103

Piz Daint

90%/10% GPU/CPU ratio
GPU-only version

80%/20% GPU/CPU ratio
CPU-only version

70%/30% GPU/CPU ratio
best GPU/CPU ratio

(b) Parallelization in y-direction

Figure 16.5.: Weak scaling performance in GLUPS on three different GPU clusters in
dependence of number of subdomains. The number of subdomains is de-
noted by “number of subdomains in x-direction” × “number of subdomains
in y-direction” × “number of subdomains in z-direction”. One subdomain
consists of 512 × 512 × 128 lattice cells. Different lines depict different
GPU/CPU ratios: The GPU-only homogeneous version is colored in green,
the CPU-only homogeneous version in blue and different heterogeneous
versions in purple. The best performing heterogeneous version is colored
in red. Subfigure 16.5(a) plots results for parallelization in x-, subfigure
16.5(b) in y-direction. Axes are logarithmically scaled.

is colored in red. The GPU/CPU ratio of the best performing heterogeneous version
varies for different parallelization strategies and on different GPU clusters. Although
TSUBAME2.5 is equipped with three GPUs per node, only two of them are utilized
while the remaining GPU idles. Hence, only two MPI processes are assigned to each
TSUBAME2.5 node. Our experiments show that running three MPI processes per node
leads to worse performance than running just two of them. The complex PCIexpress
bus of a TSUBAME2.5 node [89] restricts performance when using all three GPUs and
the CPU memory bandwidth has to be shared among three MPI processes.

166

16.2. Benchmark results for heterogeneous systems

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

number of MPI ranks/GPUs

10-1

100

101

102

103

G
LU

PS

Hydra

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

number of MPI ranks/GPUs

10-1

100

101

102

103

TSUBAME 2.5

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

1×1
×10

24

1×1
×20

48

number of MPI ranks/GPUs

10-1

100

101

102

103

Piz Daint

(a) Parallelization in z-direction

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8

10-1

100

101

102

103

G
LU

PS

Hydra

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8

10-1

100

101

102

103

TSUBAME 2.5

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8
8×1

6×8

8×1
6×1

6

10-1

100

101

102

103

Piz Daint

90%/10% GPU/CPU ratio
GPU-only version

80%/20% GPU/CPU ratio
CPU-only version

70%/30% GPU/CPU ratio
best GPU/CPU ratio

(b) Parallelization in x/y/z-direction

Figure 16.6.: Weak scaling performance in GLUPS on three different GPU clusters in
dependence of number of subdomains. Subfigure 16.6(a) plots results for
parallelization in z-direction, subfigure 16.6(b) in x/y/z-direction. Axes
assignment and scaling, color coding, line captions, and subdomain size
are equal to figure 16.5.

16.2.3. Weak scaling results of multiple subdomains

For the weak scaling benchmarks, a subdomain size of 512 × 512 × 128 lattice cells
is used because such a subdomain has different communication times in all directions.
Figures 16.5 and 16.6 depict results for different parallelization strategies. The corre-
sponding parallel efficiencies using the one subdomain setup as reference are plotted
in figures 16.7 and 16.8, and are summed up in table 16.2 for clarity. On all three
clusters, parallelization in x-direction does not lead to increased performance for small
MPI process numbers. As mentioned in section 14.3, communication performance in
x-direction is much worse than in other directions limiting performance when paral-
lelizing in x-direction. This effect can also be observed for combined parallelization in
x/y/z-direction in subfigures 16.6(b) and 16.8(b): As soon as additional subdomains are
added in x-direction, increase in performance is worse than adding subdomains in y-

167

16. Results

1
×1
×1

2
×1
×1

4
×1
×1

8
×1
×1

16
×1
×1

32
×1
×1

64
×1
×1

12
8
×1
×1

25
6
×1
×1

51
2
×1
×1

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ef
fic

ie
nc

y

Hydra

1
×1
×1

2
×1
×1

4
×1
×1

8
×1
×1

16
×1
×1

32
×1
×1

64
×1
×1

12
8
×1
×1

25
6
×1
×1

51
2
×1
×1

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 TSUBAME 2.5

1×
1×

1

2×
1×

1

4×
1×

1

8×
1×

1

16
×1
×1

32
×1
×1

64
×1
×1

12
8×

1×
1

25
6×

1×
1

51
2×

1×
1

10
24
×1
×1

20
48
×1
×1

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Piz Daint

(a) Parallelization in x-direction

1×1
×1
1×2

×1
1×4

×1
1×8

×1
1×1

6×1
1×3

2×1
1×6

4×1

1×1
28
×1

1×2
56
×1

1×5
12
×1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ef
fic

ie
nc

y

Hydra

1×1
×1
1×2

×1
1×4

×1
1×8

×1
1×1

6×1
1×3

2×1
1×6

4×1

1×1
28
×1

1×2
56
×1

1×5
12
×1

0.0

0.2

0.4

0.6

0.8

1.0

1.2 TSUBAME 2.5

1×1
×1
1×2

×1
1×4

×1
1×8

×1
1×1

6×1
1×3

2×1
1×6

4×1

1×1
28
×1

1×2
56
×1

1×5
12
×1

1×1
024

×1

1×2
048

×1
0.0

0.2

0.4

0.6

0.8

1.0

1.2 Piz Daint

90%/10% GPU/CPU ratio
GPU-only version

80%/20% GPU/CPU ratio
CPU-only version

70%/30% GPU/CPU ratio
best GPU/CPU ratio

(b) Parallelization in y-direction

Figure 16.7.: Weak scaling parallel efficiency on three different GPU clusters in depen-
dence of number of subdomains basing on values of figure 16.5. Paral-
lel efficiency with one MPI process as baseline is plotted along ordinates.
Subfigure 16.7(a) plots results for parallelization in x-, subfigure 16.7(b)
in y-direction. The abscissa assignment, axes scaling, color coding, line
captions, and subdomain size are equal to figure 16.5.

or z-direction. Pure parallelization in y-direction shows very nice scalability achieving
parallel efficiencies of 97.27% on Hydra (512 MPI processes, 85%/15% GPU/CPU ratio),
84.40% on TSUBAME2.5 (512 MPI processes, 96%/4% GPU/CPU ratio), and 90.60%
on Piz Daint (2048 MPI processes, 95%/5% GPU/CPU ratio). This results in highest
measured performance of 2604.72GLUPS on Piz Daint utilizing 2048 GPUs and 24,576
CPU cores. Since the communication effort in y-direction (face size 512× 1× 128 = 216

lattice cells) is smaller than in z-direction (face size 512 × 512 × 1 = 218 lattice cells),
parallelization in y-direction performs better than in z-direction. Such nice scaling rates
are possible because communication can be entirely hidden by computations.

168

16.2. Benchmark results for heterogeneous systems

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ef
fic

ie
nc

y

Hydra

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 TSUBAME 2.5

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

1×1
×10

24

1×1
×20

48

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Piz Daint

(a) Parallelization in z-direction

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ef
fic

ie
nc

y

Hydra

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8
0.0

0.2

0.4

0.6

0.8

1.0

1.2 TSUBAME 2.5

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8
8×1

6×8

8×1
6×1

6
0.0

0.2

0.4

0.6

0.8

1.0

1.2 Piz Daint

90%/10% GPU/CPU ratio
GPU-only version

80%/20% GPU/CPU ratio
CPU-only version

70%/30% GPU/CPU ratio
best GPU/CPU ratio

(b) Parallelization in x/y/z-direction

Figure 16.8.: Weak scaling parallel efficiency on three different GPU clusters in depen-
dence of number of subdomains basing on values of figure 16.6. Paral-
lel efficiency with one MPI process as baseline is plotted along ordinates.
Subfigure 16.8(a) plots results for parallelization in z-direction, subfigure
16.8(b) in x/y/z-direction. The abscissa assignment, axes scaling, color
coding, line captions, and subdomain size are equal to figure 16.5.

16.2.4. Strong scaling results of multiple subdomains

For the strong scaling benchmarks, two different domain sizes are applied: A smaller
512× 512× 128 domain whose results are plotted in figures 16.9 and 16.10 and a larger
domain consisting of 5123 lattice cells whose results are given in figures 16.11 and 16.12.
The larger domain is initially subdivided in 4 × 1 × 1 subdomains and an alternative
decomposition strategy is applied to increase performance and parallel efficiency.

Using more computational resources for the smaller domain does not lead to higher
GLUPS numbers if parallelization occurs in z-direction (see subfigure 16.9(a)). Just the
CPU-only version is accelerated by this kind of parallelization but parallel efficiency is
still poor as illustrated in subfigure 16.10(a). Parallelizing in x/y/z-direction leads to
slightly better scaling behavior (see subfigure 16.9(b)), although performance just slowly

169

16. Results

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

number of MPI ranks/GPUs

10-1

100

101

102

103

G
LU

PS

Hydra

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

number of MPI ranks/GPUs

10-1

100

101

102

103

TSUBAME 2.5

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

1×1
×10

24

1×1
×20

48

number of MPI ranks/GPUs

10-1

100

101

102

103

Piz Daint

(a) Parallelization in z-direction

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8

10-1

100

101

102

103

G
LU

PS

Hydra

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8

10-1

100

101

102

103

TSUBAME 2.5

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8
8×1

6×8

8×1
6×1

6

10-1

100

101

102

103

Piz Daint

90%/10% GPU/CPU ratio
GPU-only version

80%/20% GPU/CPU ratio
CPU-only version

70%/30% GPU/CPU ratio
best GPU/CPU ratio

(b) Parallelization in x/y/z-direction

Figure 16.9.: Strong scaling performance in GLUPS on three different GPU clusters in
dependence of number of subdomains. The number of subdomains is de-
noted by “number of subdomains in x-direction” × “number of subdomains
in y-direction” × “number of subdomains in z-direction”. Domain size is
512× 512× 128 lattice cells. Different lines depict different GPU/CPU ra-
tios: The GPU-only homogeneous version is colored in green, the CPU-only
homogeneous version in blue and different heterogeneous versions in pur-
ple. The best performing heterogeneous version is colored in red. Subfigure
16.9(a) plots results for parallelization in z-direction, subfigure 16.9(b) in
x/y/z-direction. Axes are logarithmically scaled.

grows for higher process numbers. Again, just the CPU-only version shows a significant
performance improvement, especially on Hydra. This strong scaling scenario is clearly
dominated by communication times. For example, if parallelization in z-direction is
applied, the size of the faces in z-direction stays constant while the actual subdomains
shrink. Subdomains become very thin in z-direction, thus, executions with more than 32
subdomains are not possible. Parallelizing in all spatial directions reduces the amount
of data to be transferred, but subdomain faces become so small that communication
latencies dominate communication times. Since communication times from and to the

170

16.2. Benchmark results for heterogeneous systems

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ef
fic

ie
nc

y

Hydra

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 TSUBAME 2.5

1×1
×1
1×2

×2
1×4

×4
1×8

×8
1×1

×16
1×1

×32
1×1

×64

1×1
×12

8

1×1
×25

6

1×1
×51

2

1×1
×10

24

1×1
×20

48

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Piz Daint

(a) Parallelization in z-direction

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ef
fic

ie
nc

y

Hydra

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8
0.0

0.2

0.4

0.6

0.8

1.0

1.2 TSUBAME 2.5

1×1
×1
1×2

×1
1×2

×2
2×2

×2
2×4

×2
2×4

×4
4×4

×4
4×8

×4
4×8

×8
8×8

×8
8×1

6×8

8×1
6×1

6
0.0

0.2

0.4

0.6

0.8

1.0

1.2 Piz Daint

90%/10% GPU/CPU ratio
GPU-only version

80%/20% GPU/CPU ratio
CPU-only version

70%/30% GPU/CPU ratio
best GPU/CPU ratio

(b) Parallelization in x/y/z-direction

Figure 16.10.: Strong scaling parallel efficiency on three different GPU clusters in depen-
dence of number of subdomains basing on values of figure 16.9. Parallel
efficiency with one MPI process as baseline is plotted along ordinates.
Subfigure 16.10(a) plots results for parallelization in z-direction, subfig-
ure 16.10(b) in x/y/z-direction. The abscissa assignment, axes scaling,
color coding, line captions, and domain size are equal to figure 16.9.

GPU are dropped for the CPU-only version, communication latencies are much shorter
and the scaling behavior is better than for heterogeneous or GPU-only versions.

For the larger strong scaling scenario, basically the same performance behavior is ob-
served as for the smaller domain if parallelization in z-direction is applied (see subfigures
16.11(a) and 16.12(a)): Except for the CPU-only version, performance stagnates or even
decreases (using 256 processes on TSUBAME2.5) when more computational resources
are utilized. However, the strong scaling behavior can be significantly enhanced by a
smart decomposition strategy in all three spatial directions: First, subdividing the do-
main in x-direction should be avoided. Second, an alternating subdivision of the domain
in y- and z-direction leads to subdomains having a more cube- than layer-shape appear-
ance. Applying this strategy enables parallel efficiencies of 31.09% (GPU-only), 36.16%
(75%/25% GPU/CPU ratio), and 75.16% (CPU-only) on Hydra with 512 subdomains.

171

16. Results

1×4
×1
1×4

×2
1×4

×4
1×4

×8
1×4

×16
1×4

×32
1×4

×64

1×4
×12

8

number of MPI ranks/GPUs

10-1

100

101

102

103

G
LU

PS

Hydra

1×4
×1
1×4

×2
1×4

×4
1×4

×8
1×4

×16
1×4

×32
1×4

×64

1×4
×12

8

number of MPI ranks/GPUs

10-1

100

101

102

103

TSUBAME 2.5

1×4
×1
1×4

×2
1×4

×4
1×4

×8
1×4

×16
1×4

×32
1×4

×64

1×4
×12

8

1×4
×25

6

1×4
×51

2

number of MPI ranks/GPUs

10-1

100

101

102

103

Piz Daint

(a) Parallelization in z-direction

4×1
×1

4×2
×1

4×2
×2

4×4
×2

4×4
×4

4×8
×4

4×8
×8

8×8
×8

10-1

100

101

102

103

G
LU

PS

Hydra

4×1
×1

4×2
×1

4×2
×2

4×4
×2

4×4
×4

4×8
×4

4×8
×8

8×8
×8

10-1

100

101

102

103

TSUBAME 2.5

4×1
×1
4×2

×1
4×2

×2
4×4

×2
4×4

×4
4×8

×4
4×8

×8
8×8

×8
8×1

6×8

8×1
6×1

6

10-1

100

101

102

103

Piz Daint

90%/10% GPU/CPU ratio
GPU-only version

80%/20% GPU/CPU ratio
CPU-only version

70%/30% GPU/CPU ratio
best GPU/CPU ratio

(b) Parallelization in x/y/z-direction

Figure 16.11.: Strong scaling performance in GLUPS on three different GPU clusters
in dependence of number of subdomains. The number of subdomains is
denoted by “number of subdomains in x-direction” × “number of subdo-
mains in y-direction” × “number of subdomains in z-direction”. Domain
size is 5123 lattice cells. Subfigure 16.11(a) plots results for parallelization
in z-direction, subfigure 16.11(b) in x/y/z-direction. Axes scaling, color
coding and line captions are equal to figure 16.9.

On a first look, these values look poor but considering the small subdomain sizes for high
subdomain numbers and the eminent communication effort, such parallel efficiencies are
notable in communication-dominated scenarios. Again, best scalability is accomplished
for the CPU-only version because no communication times with the GPU have to be
incorporated. The achievable parallel efficiencies on TSUBAME2.5 and Piz Daint are
not as big as on Hydra but still much better than for the small subdomain scenario
using the straight-forward parallelization strategy. Anyway, for very small subdomain
sizes, even the smart decomposition strategy does not guarantee increasing performance
as indicated on Piz Daint with 2048 processes (see subfigure 16.11(b)). In this case, a
subdomain consists of just 64× 32× 32 lattice cells.

Concluding this section, the application of heterogeneous computing leads to better

172

16.2. Benchmark results for heterogeneous systems

1×4
×1

1×4
×2

1×4
×4

1×4
×8
1×4

×16
1×4

×32
1×4

×64

1×4
×12

8

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ef
fic

ie
nc

y

Hydra

1×4
×1

1×4
×2

1×4
×4

1×4
×8
1×4

×16
1×4

×32
1×4

×64

1×4
×12

8

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 TSUBAME 2.5

1×4
×1
1×4

×2
1×4

×4
1×4

×8
1×4

×16
1×4

×32
1×4

×64

1×4
×12

8

1×4
×25

6

1×4
×51

2

number of MPI ranks/GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Piz Daint

(a) Parallelization in z-direction

4×1
×1

4×2
×1

4×2
×2

4×4
×2

4×4
×4

4×8
×4

4×8
×8

8×8
×8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ef
fic

ie
nc

y

Hydra

4×1
×1

4×2
×1

4×2
×2

4×4
×2

4×4
×4

4×8
×4

4×8
×8

8×8
×8

0.0

0.2

0.4

0.6

0.8

1.0

1.2 TSUBAME 2.5

4×1
×1
4×2

×1
4×2

×2
4×4

×2
4×4

×4
4×8

×4
4×8

×8
8×8

×8
8×1

6×8

8×1
6×1

6
0.0

0.2

0.4

0.6

0.8

1.0

1.2 Piz Daint

90%/10% GPU/CPU ratio
GPU-only version

80%/20% GPU/CPU ratio
CPU-only version

70%/30% GPU/CPU ratio
best GPU/CPU ratio

(b) Parallelization in x/y/z-direction

Figure 16.12.: Strong scaling parallel efficiency on three different GPU clusters in depen-
dence of number of subdomains basing on values of figure 16.11. Parallel
efficiency with four MPI processes as baseline is plotted along ordinates.
Subfigure 16.12(a) plots results for parallelization in z-direction, subfigure
16.12(b) in x/y/z-direction. The abscissa assignment corresponds to the
assignment in figure 16.11. Axes scaling, color coding, line captions, and
domain size are equal to figure 16.9.

performance for the LBM than limiting operations to computing devices of only one type
in most cases. Regarding the single subdomain results, the theoretical performance gain
corresponds to the accumulated memory bandwidth of the computing devices in com-
parison to the memory bandwidth of the particular computing devices because the LBM
is memory-bound. Depending on the node setup, the actually achieved performance
gain varies: While on a Hydra node, 67.83% of the theoretical improvement is reached,
this value is only 9.13% on a node of TSUBAME2.5. Regarding multiple subdomain re-
sults, the best performing heterogeneous version (85%/15% GPU/CPU ratio) achieves
12.85% higher GLUPS values than the GPU-only version when using 512 subdomains
in weak scaling applying parallelization in y-direction on Hydra (cf. subfigure 16.5(b)).
However, this does not hold for all combinations of scenario, parallelization strategy,

173

16. Results

and GPU cluster. For example on Hydra and TSUBAME2.5, the GPU-only version
always achieves higher GLUPS values than the best performing heterogeneous version
(90%/10% and 97%/3% GPU/CPU ratio, respectively) for weak scaling applying par-
allelization in z-direction (cf. subfigure 16.6(a)). There are also strong scaling examples
such as for the smaller domain on Piz Daint when applying parallelization in x/y/z-
direction (cf. subfigure 16.9(a)). In such cases, the overhead to incorporate the CPUs
is bigger than the performance gain. Except for parallelization in x-direction, excellent
weak scaling can be achieved on all three utilized GPU clusters (cf. table 16.2) because
in most cases, communication times can be hidden with computation times of the inner
cells. For strong scaling scenarios, communication times and especially communication
latencies for large subdomain numbers become dominant. Hence, smart decomposition
strategies have to applied to reach satisfying parallel efficiencies.

16.3. Validation of the performance model

With the measured large-scale results from subsections 16.2.3 and 16.2.4 at hand, it
is possible to experimentally validate the performance model from chapter 15. Two
weak and two strong scaling scenarios are evaluated on Piz Daint: For the weak scaling
scenarios, parallelization in y-direction and in x/y/z-direction is applied, thus, measured
results are given in subfigures 16.5(b) and 16.6(b). For the strong scaling scenarios,
parallelization in x/y/z-direction is applied for the cuboid domain consisting of 512 ×
512×128 lattice cells (cf. subfigure 16.9(b)) and the cubic domain with 5123 lattice cells
(cf. subfigure 16.11(b)). A heterogeneous version with a 90%/10% GPU/CPU ratio is
used for all four test scenarios.

The performance model requires experimentally measured values of the functions
τ computing device

region : N3 → R+ modeling computation times and tdirection
link : N3 → R+

modeling communication times for different spatial directions. Figure 16.13 gives all
required runtimes for different cuboid sizes denoted by “number of lattice cells in x-
direction” × “number of lattice cells in y-direction” × “number of lattice cells in z-
direction”. Measured values are taken from scenarios using two subdomains giving
a minimal parallel example in the corresponding spatial direction running for 1024
timesteps. For each spatial direction, there is a dedicated subfigure. Computing de-
vices of a node of Piz Daint are utilized, hence, a Tesla P100 as GPU and a Xeon E5-
2690v3 as CPU. In general, τ computing device

region and tdirection
link do not scale linearly because

for small cuboid sizes, kernel invocation times and communication latencies become rel-
evant. As mentioned in chapter 15, results in figure 16.13 testify that the assumptions
tdirection
GPU2CPU ≈ tdirection

CPU2GPU ≈ tdirection
GPU2buf ≈ tdirection

buf2GPU and tdirection
CPU2buf ≈ tdirection

buf2CPU are wrong
because the corresponding runtimes differ much, at least on Piz Daint.

A comparison of measured and predicted performance values for the four evaluated
scenarios is illustrated in figure 16.14. Here, for the smaller scenarios using paralleliza-
tion in x/y/z-direction in which subdomains do not have a neighbor in all three spatial
directions as assumed by the performance model, the corresponding runtimes are ne-
glected to obtain more accurate predictions. Perfect linear scaling is predicted by the

174

16.3. Validation of the performance model

1×3
×8
1×3

×16
1×6

×16
1×6

×32

1×1
2×3

2

1×1
2×6

4

1×2
5×6

4

1×2
5×1

28

1×5
1×1

28

1×2
9×8

1×2
9×1

6

1×5
8×1

6

1×5
8×3

2

1×1
16
×32

1×1
16
×64

1×2
31
×64

1×2
31
×12

8

1×4
61
×12

8

1×3
2×8

1×3
2×1

6

1×6
4×1

6

1×6
4×3

2

1×1
28
×32

1×1
28
×64

1×2
56
×64

1×2
56
×12

8

1×5
12
×12

8
10-5

10-4

10-3

10-2

ru
nt

im
e

in
 s

ec
on

ds

τ x,GPUboundary τ x,CPUboundary t xGPU2buf t xCPU2buf t xbuf2GPU t xbuf2CPU tMPI

(a) x-direction

64
×1×

8

64
×1×

16

12
8×1

×16

12
8×1

×32

12
8×1

×64

12
8×1

×12
8

25
6×1

×32

25
6×1

×64

51
2×1

×64

51
2×1

×12
8

64
×3×

16

64
×3×

16

12
8×6

×16

12
8×1

2×3
2

12
8×1

2×6
4

12
8×1

2×1
28

25
6×1

2×3
2

25
6×2

5×6
4

51
2×2

5×6
4

51
2×5

1×1
28

64
×29

×8

64
×29

×16

12
8×5

8×1
6

12
8×1

16
×32

12
8×1

16
×64

12
8×1

16
×12

8

25
6×1

16
×32

25
6×2

31
×64

51
2×2

31
×64

51
2×4

61
×12

8
10-5

10-4

10-3

10-2

ru
nt

im
e

in
 s

ec
on

ds

τGPUinner

τCPUinner

τ y,GPUboundary

τ y,CPUboundary

t
y
GPU2buf

t
y
CPU2buf

t
y
buf2GPU

t
y
buf2CPU

t
y
GPU2CPU

t
y
CPU2GPU

tMPI

(b) y-direction

64
×3×

1

64
×6×

1

128
×6×

1

128
×12

×1

128
×25

×1

128
×51

×1

256
×12

×1

256
×25

×1

512
×25

×1

512
×51

×1

64
×29

×1

64
×58

×1

128
×58

×1

128
×11

6×1

128
×23

1×1

128
×46

1×1

256
×11

6×1

256
×23

1×1

512
×23

1×1

512
×46

1×1

64
×32

×1

64
×64

×1

128
×64

×1

128
×12

8×1

128
×25

6×1

128
×51

2×1

256
×12

8×1

256
×25

6×1

512
×25

6×1

512
×51

2×1
10-5

10-4

10-3

10-2

ru
nt

im
e

in
 s

ec
on

ds

τ z,GPUboundary τ z,CPUboundary t zGPU2buf t zCPU2buf t zbuf2GPU t zbuf2CPU tMPI

(c) z-direction

Figure 16.13.: Selected runtimes (assigned to ordinates) of τ computing device
region and tdirection

link

(depicted by different lines) for different three-dimensional cuboids of data
(assigned to abscissas). Ordinates are logarithmically scaled. Different
subfigures refer to different spatial directions. Piz Daint’s computing de-
vices Tesla P100 and Xeon E5-2690v3 are utilized.

175

16. Results

20 21 22 23 24 25 26 27 28 29 210 211

number of MPI ranks/GPUs

100

101

102

103

G
LU

PS

weak scaling

y-direction
x/y/z-direction

measured
measured

predicted
predicted

(a) weak scaling

20 21 22 23 24 25 26 27 28 29 210 211

number of MPI ranks/GPUs

0

5

10

15

20

G
LU

PS

strong scaling

512×512×128

5123

measured
measured

predicted
predicted

(b) strong scaling

Figure 16.14.: Comparison of predicted (orange lines) and measured (purple lines) per-
formance for two weak (subfigure 16.14(a)) and two strong (subfigure
16.14(b)) scaling scenarios. Performance is given in GLUPS (ordinates)
and depends on number of subdomains (abscissas). The GPU/CPU ra-
tio is 90%/10%. In subfigure 16.14(a), solid lines depict parallelization
in y-direction and dashed lines in x/y/z-direction. In subfigure 16.14(b),
solid lines depict results of the cuboid 512×512×128 domain and dashed
lines of the cubic 5123 domain. All axes except the ordinate of subfigure
16.14(b) are scaled logarithmically.

performance model for the weak scaling scenario using parallelization in y-direction be-
ing actually realized by our LBM implementation. The same holds for parallelization
in x/y/z-direction once parallelization in every spatial direction is realized (≥ 8 sub-
domains) because from then on, the runtime per subdomain stays constant. Largest
deviations between measured and predicted performance are 9.10% (256 subdomains)
and 15.44% (4 subdomains), respectively, for the two weak scaling scenarios plotted in
subfigure 16.14(a). Regarding the two strong scaling scenarios, the difference between
measured and predicted performance are 17.09% (16 subdomains) and 12.82% (2048 sub-
domains), respectively, as shown in subfigure 16.14(b). Besides quantitative predictions,
the performance model is also a qualitative indicator as for the drop in performance of
the large strong scaling scenario when using 2048 subdomains.

This comparison shows that the performance model reliably predicts the performance
of our LBM implementation, for weak scaling as well as strong scaling scenarios. Limi-
tations such as the simultaneous usage of shared resources only have a minor influence
on its quality.

176

Concluding part IV

We briefly present the LBM with the D3Q19 discretization scheme and aspects for an ef-
ficient serial implementation in chapter 13. Various techniques for a parallelization of the
LBM on large-scale heterogeneous systems are presented in chapter 14. As demonstrated
in chapter 16, the combination of these techniques enables a scalable implementation of
the LBM on GPU clusters. Furthermore, a performance model tailored to the applied
techniques is introduced in chapter 15 to predict the performance on different heteroge-
neous systems.

Our main goal is to achieve good scalability on large-scale heterogeneous systems. Scal-
ability is a measurement of future-proofness since prospective supercomputers mainly
achieve higher performance by a larger degree of parallelism, maybe using different types
of specialized computing devices. In this part, a collection of best practices is presented,
basically applicable to every high performance application for heterogeneous architec-
tures, enabling such scalability. Using the LBM, a holistic reference implementation of
these best practices is provided and discussed. Beginning from the bottom, we use dedi-
cated kernels for the particular computing devices basing on work by Schreiber [209, 210].
These kernels are optimized by using the A-A memory layout pattern for the GPU and
the CPU enabling data exchange between computing devices without any conversions.
Since the LBM is memory-bound, optimizations such as coalesced memory access on the
GPU and caching on the CPU permit high-performance kernels. Due to the high theo-
retical memory bandwidth of GPUs (see row “PMBW (GByte/s)” in tables 2.1 and 2.2),
they are an ideal computing device for memory-bound problems. All computing devices
perform the same type of work, namely α- and β-steps applying CUDA for the GPU
and OpenMP tasks for the CPU. From the top, communication between the computing
devices within one node and communication among multiple nodes has to be realized.
This task is achieved by mapping each GPU and some CPU cores handling a cuboid
subdomain to one MPI process. To gain good scalability of the hybrid implementation,
communication times have to be hidden by computation times. Hence, the boundary
cells of the GPU- & CPU-parts are processed before the inner cells are handled. While
the inner cells are computed, communication can be performed simultaneously. The
challenge is the successful and efficient combination of the parallelization models for all
levels of parallelism (computing devices, computing devices within one node, and mul-
tiple nodes) on the one hand and programming models such as CUDA, OpenMP, and
MPI on the other hand. The GPU is one incorporated aspect, but only one besides
many others.

For a GPU (Tesla P100), up to 67.7% of the peak memory bandwidth could be reached
for a 2563 lattice cells domain using double precision resulting in 1.58GLUPS. Accord-
ingly, for a CPU (Xeon E5-2690v3), the highest achieved peak memory bandwidth uti-

177

16. Results

lization is 74.1% leading to 0.17GLUPS for a 3843 lattice cells domain using double
precision. Combining all computational resources of a node can increase performance
by up to 16.22% (one GPU and one CPU of Hydra, GPU/CPU ration 80%/20%) in
comparison to a GPU-only version achieving 67.84% of the maximum potential perfor-
mance improvement. Going one step further and utilizing multiple GPUs and CPUs,
up to 2604.72GLUPS are carried out in a weak scaling scenario on Piz Daint by using
2048 subdomains (95%/5% GPU/CPU ratio) parallelized in y-direction with a parallel
efficiency of 90.60%. In this scenario, communication times can be completely hidden by
computations of inner lattice cells. By using a smart decomposition scheme, a parallel
efficiency of 36.2% can be obtained by the best performing heterogeneous version in the
large strong scaling scenario on Hydra with 512 subdomains. The CPU-only version
with the same setup accomplishes 75.2% parallel efficiency. Using a heterogeneous GPU
cluster can accelerate the application by up to 12.85% in comparison to the GPU-only
version (weak scaling, Hydra, 512 subdomains, 85%/15% GPU/CPU ratio).

The presented performance model estimates the runtime by determining the execu-
tion time to perform all computations and communication of one single subdomain and
assumes this runtime to be equal for all subdomains. It considers different computation
and communication times depending on the face orientation of the corresponding lattice
cells but ignores shared resources such as joint memories and buses. The deviations be-
tween measured and predicted performance are always < 20% for the tested scenarios,
in most cases even < 5% and, thus, quite accurate.

This final part IV does not only deal with single or multiple GPUs but sketches how
to use them in a heterogeneous scenario by applying the LBM. The CPUs of the clusters
are not degraded to communication tasks but actively contribute to the computations.
Numerous communication channels are considered, optimizations on all levels of paral-
lelism are applied, data transfers and computations are executed concurrently, and so,
scalability is achieved with thousands of GPUs and ten-thousands of CPU cores.

178

Part V.

Conclusion

179

Although GPUs now have been used for more than a decade to enhance scientific
computing applications in special and much experience was gained in the context of
accelerators in general, GPUs still offer untapped potential usable by applying non-
trivial approaches. Following two golden threads—various aspects of differential equa-
tions as the central object for modeling and a comprehensive view on GPUs and their
ecosystem—new utilization areas and scenarios for GPUs by means of three applications
are discussed in this thesis: First, the SBTH algorithm, one possible step of the solution
of the Eigenvalue problem, e.g. to interpret phenomena described by differential equa-
tions, is implemented on single GPUs by delegating work to BLAS level 1 and level 2
routines in a pipelined way. This application is subject of part II. Afterwards, three
levels of parallelism are exploited to generally solve RODEs, differential equations incor-
porating a stochastic process, by applying four successive algorithmical steps on multiple
GPUs. Part III deals with this application. Finally, various optimization and paralleliza-
tion techniques are applied in part IV to achieve scalability of the LBM, an alternative
discretization of differential equations modeling fluid dynamics, on large-scale heteroge-
neous clusters. It is shown that GPUs are not just interesting for compute-bound but
also memory- and latency-bound problems.

We show that one single GPU can provide equivalent performance or even outperform
multi-node distributed memory parallel systems on the basis of the SBTH algorithm, de-
pending on the utilized GPU and BLAS implementation. Our RODE solver consisting of
four building blocks is the first high-performance implementation for this type of differ-
ential equations. Since numerical solvers for RODEs are computationally very expensive,
such a high-performance implementation allows simulating scenarios of reasonable size
for the first time. The first three building blocks generation of normal random num-
bers, realization of the OU process, and averaging are not limited to handle RODEs
but are also generally applicable in other domains. A quasi by-product of parallelizing
and optimizing the building blocks are very competitive normal PRNGs delivering up
to 4.46 GPRN/s (Wallace method on the Tesla M2090) outperforming state-of-the-art
normal PRNGs for the CPU (MKL) by up to 2.61× and state-of-the-art GPU libraries
(cuRAND) by up to 4.53×. Another quasi by-product is the first successful paralleliza-
tion of the OU process. The hybrid implementation of the LBM realized by us offers
excellent scaling behavior achieving up to 2604.72GLUPS in a weak scaling scenario
utilizing 2048 GPUs and 24,576 CPU cores of Piz Daint in a heterogeneous way with
a parallel efficiency of 90.60%. Such good scalability promises high performance when
executing bigger jobs on larger (future) clusters enabling simulations of yet unfeasible
size, resolution, and numerical accuracy. By incorporating all computational resources
of a heterogeneous cluster (in our case, also utilizing the CPUs besides the GPUs), a
performance improvement of up to 12.85% is possible for the LBM (512 subdomains on
Hydra with a GPU/CPU ratio of 85%/15%). This proves that characteristics of diverse
computational devices such as peak memory bandwidth can be combined to increase per-
formance. The implementation of the LBM is accompanied by a tailored performance
model to predict performance on different architectures. It is limited to our LBM im-
plementation but considers specific properties of it allowing a prediction accuracy with

181

a deviation of < 20% between measured and predicted performance.
None of the presented algorithms, optimization and parallelization techniques, and

best practices is limited to GPUs or GPU-equipped systems but can be generalized to
numerous architectures. For example, the pipelined approach of the SBTH algorithm
works on any kind of hardware architecture supporting concurrent kernel execution, the
parallelization of the OU process works on parallel architectures in general, and the
domain decomposition scheme and separated processing of boundary and inner cells
enables scalability of Cartesian grid based methods on all kinds of heterogeneous archi-
tectures. In many cases, the wheel does not have to be reinvented to tackle challenges in
the context of GPUs and heterogeneous computing: The SBTH algorithm can be com-
pletely expressed by BLAS level 1 and level 2 routines enabling the operation of existing
BLAS implementations for GPUs. The parallelization of the OU process is obtained
via a mapping to the prefix sum operation and the usage of existing parallelizations
for this operation. The memory layout pattern of the LBM on GPUs also provides
nice properties and good performance on CPUs. GPUs are not just ideal candidates
for compute-intensive problems but also for tasks requiring many memory operations
due to the GPU’s extraordinary high memory bandwidth. Even if the FLOP/byte ratio
of GPUs is much higher than for CPUs, memory-bound problems can be significantly
accelerated as demonstrated for averaging and the LBM. Latency-bound problems such
as the realization of the OU process benefit from the capability of GPUs to handle enor-
mous amounts of threads to hide memory latencies. Various programming models are
necessary to address the different levels of parallelism and they have to be combined
to develop software for large-scale heterogeneous systems: The programming model for
GPUs expresses parallelism by scalar kernels being executed in a SIMT way, (OpenMP)
tasks are utilized by us to write parallel code for the CPU, and message passing is used
for inter-process communication.

Even if it is not clear yet how the details of actual exaFLOPS machines look like, it
is very likely that they will be some kind of heterogeneous system, e.g. augmented by
GPUs. Thus, techniques on all levels of parallelism such as those ones presented in this
thesis are indispensable to fully exploit such systems. This includes the programming
of the multiple levels of hardware parallelism by hybrid programming as well as the
introduction of new algorithmic levels of parallelism such as the pipelining of the SBTH
algorithm or the Monte Carlo approach for RODEs. So this thesis discusses a small but
comprehensive number of ideas. Since different scientific computing applications require
different solutions for the multiple levels of parallelism issue, this topic will stay an active
field of HPC research.

182

Bibliography

[1] Basic Linear Algebra Subprograms - A Quick Reference Guide. http://www.

netlib.org/blas/blasqr.pdf, May 1997.

[2] clBLAS. https://github.com/clMathLibraries/clBLAS, 2016.

[3] hcBLAS. https://bitbucket.org/multicoreware/hcblas, 2016.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
https://arxiv.org/abs/1603.04467, March 2016.

[5] E. Agullo, J. Demmel, J. J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures:
The PLASMA and MAGMA projects. Journal of Physics: Conference Series,
180(1), 2009.

[6] C. K. Aidun and J. R. Clausen. Lattice-Boltzmann Method for Complex Flows.
Annual Review of Fluid Mechanics, 42(1):439–472, January 2010.

[7] AMD. AMD Accelerated Parallel Processing - OpenCL User Guide, December
2014.

[8] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint com-
puter conference on - AFIPS ’67 (Spring), New York, New York, USA, 1967. ACM
Press.

[9] E. Anderson, Z. Bai, C. H. Bischof, L. S. Blackford, J. W. Demmel, J. J. Dongarra,
J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen.
LAPACK Users’ Guide. SIAM, 3rd edition, 1999.

[10] S. Ansumali, I. V. Karlin, and H. C. Öttinger. Minimal entropic kinetic models
for hydrodynamics. Europhysics Letters (EPL), 63(6):798–804, September 2003.

183

http://www.netlib.org/blas/blasqr.pdf
http://www.netlib.org/blas/blasqr.pdf
https://github.com/clMathLibraries/clBLAS
https://bitbucket.org/multicoreware/hcblas
https://arxiv.org/abs/1603.04467

Bibliography

[11] M. W. Attia, N. Maruyama, and T. Aoki. Daino: A High-Level Framework for
Parallel and Efficient AMR on GPUs. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis - SC
’16, pages 53:1–53:12, Salt Lake City, Utah, 2016.

[12] T. Auckenthaler. Highly Scalable Eigensolvers for Petaflop Applications. PhD
Thesis, Technische Universität München, 2013.

[13] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krämer,
B. Lang, H. Lederer, and P. Willems. Parallel solution of partial symmetric
eigenvalue problems from electronic structure calculations. Parallel Computing,
37(12):783–794, December 2011.

[14] T. Auckenthaler, H.-J. Bungartz, T. Huckle, L. Krämer, B. Lang, and P. Willems.
Developing algorithms and software for the parallel solution of the symmetric eigen-
value problem. Journal of Computational Science, 2(3):272–278, August 2011.

[15] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, E. Su,
P. Unnikrishnan, and G. Zhang. A Proposal for Task Parallelism in OpenMP. In
B. Chapman, W. Zheng, G. R. Gao, M. Sato, E. Ayguadé, and D. Wang, editors, A
Practical Programming Model for the Multi-Core Era, pages 1–12. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[16] R. Babich, M. A. Clark, B. Joó, G. Shi, R. C. Brower, and S. Gottlieb. Scaling
lattice QCD beyond 100 GPUs. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis - SC ’11, New
York, New York, USA, 2011. ACM Press.

[17] M. Bach, V. Lindenstruth, O. Philipsen, and C. Pinke. Lattice QCD based on
OpenCL. Computer Physics Communications, 184(9):2042–2052, September 2013.

[18] M. Bach, V. Lindenstruth, C. Pinke, and O. Philipsen. Twisted-mass lattice QCD
using OpenCL. In 31st International Symposium on Lattice Field Theory - LAT-
TICE 2013, 2013.

[19] P. Bailey, J. Myre, S. D. C. Walsh, D. J. Lilja, and M. O. Saar. Accelerating lattice
boltzmann fluid flow simulations using graphics processors. In Proceedings of the
International Conference on Parallel Processing, pages 550–557, 2009.

[20] A. Bakhtiari. MPI Parallelization of GPU-based Lattice Boltzmann Simulations.
Master’s Thesis, Technische Universität München, 2013.

[21] G. Bal. Parallelization in time of (stochastic) ordinary differential equations.
Math. Meth. Anal. Num., 2003.

[22] G. M. Ballard. Avoiding Communication in Dense Linear Algebra. PhD Thesis,
University of California, Berkeley, 2013.

184

Bibliography

[23] L. Y. Barash and L. N. Shchur. PRAND: GPU accelerated parallel random number
generation library: Using most reliable algorithms and applying parallelism of
modern GPUs and CPUs. Computer Physics Communications, 185(4):1343–1353,
April 2014.

[24] E. H. Bareiss. Numerical solution of linear equations with Toeplitz and Vector
Toeplitz matrices. Numerische Mathematik, 13(5):404–424, October 1969.

[25] P. Bastian, C. Engwer, J. Fahlke, M. Geveler, D. Göddeke, O. Iliev, O. Ippisch,
R. Milk, J. Mohring, S. Müthing, M. Ohlberger, D. Ribbrock, and S. Turek.
Hardware-Based Efficiency Advances in the EXA-DUNE Project. In H.-J. Bun-
gartz, P. Neumann, and W. E. Nagel, editors, Software for Exascale Computing -
SPPEXA 2013-2015, pages 3–23. Springer International Publishing, 2016.

[26] K.-J. Bathe and E. L. Wilson. Numerical methods in finite element analysis.
Prentice-Hall Englewood Cliffs, NJ, 1976.

[27] J. D. Beasley and S. G. Springer. Algorithm AS 111: The Percentage Points of
the Normal Distribution. Applied Statistics, 26(1), 1977.

[28] B. Bebee. Graph Database and Analytics in a GPU-Accelerated Cloud
Offering. http://on-demand.gputechconf.com/gtc/2016/presentation/

s6395-brad-bebee-graph-database-analytics-gpu-accelerated-cloud-offering.

pdf, 2016. GPU Technology Conference 2016 (GTC’16).

[29] J. Bedorf, E. Gaburov, M. S. Fujii, K. Nitadori, T. Ishiyama, and S. P. Zwart.
24.77 Pflops on a Gravitational Tree-Code to Simulate the Milky Way Galaxy
with 18600 GPUs. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis - SC ’14, pages 54–65.
IEEE, November 2014.

[30] N. Bell and J. Hoberock. Thrust: A productivity-oriented library for CUDA. In
GPU Computing Gems: Jade Edition, pages 359–371. Elsevier, 2011.

[31] P. L. Bhatnagar, E. P. Gross, and M. Krook. A Model for Collision Processes in
Gases. Physical Review, 94(3):511–525, May 1954.

[32] C. H. Bischof, B. Lang, and X. Sun. A framework for symmetric band reduction.
ACM Transactions on Mathematical Software, 26(4):581–601, December 2000.

[33] C. H. Bischof, X. Sun, and B. Lang. Parallel tridiagonalization through two-step
band reduction. In Proceedings of IEEE Scalable High Performance Computing
Conference, pages 23–27. IEEE Comput. Soc. Press, 1994.

[34] G. E. Blelloch. Prefix Sums and Their Applications. Technical report, Synthesis
of Parallel Algorithms, 1990.

185

http://on-demand.gputechconf.com/gtc/2016/presentation/s6395-brad-bebee-graph-database-analytics-gpu-accelerated-cloud-offering.pdf
http://on-demand.gputechconf.com/gtc/2016/presentation/s6395-brad-bebee-graph-database-analytics-gpu-accelerated-cloud-offering.pdf
http://on-demand.gputechconf.com/gtc/2016/presentation/s6395-brad-bebee-graph-database-analytics-gpu-accelerated-cloud-offering.pdf

Bibliography

[35] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Schef-
fler. Ab initio molecular simulations with numeric atom-centered orbitals. Com-
puter Physics Communications, 180(11):2175–2196, November 2009.

[36] G. Bolch. Leistungsbewertung von Rechensystemen. Vieweg+Teubner Verlag,
Wiesbaden, 1989.

[37] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and
Markov Chains. John Wiley & Sons, Inc., Hoboken, NJ, USA, March 2006.

[38] G. E. P. Box and M. E. Muller. A Note on the Generation of Random Normal
Deviates. The Annals of Mathematical Statistics, 29(2):610–611, 1958.

[39] J. D. Bozeman and C. Dalton. Numerical study of viscous flow in a cavity. Journal
of Computational Physics, 12(3):348–363, July 1973.

[40] T. Bradley. GPU Performance Analysis and Optimisation. https://people.

maths.ox.ac.uk/gilesm/cuda/lecs/NV_Profiling_lowres.pdf, 2012. GPU
Technology Conference 2012 (GTC’12).

[41] P. Bratley, B. L. Fox, and L. E. Schrage. A guide to simulation. Springer-Verlag
New York, 1983.

[42] R. P. Brent. A fast vectorised implementation of Wallace’s normal random number
generator. Technical report, Australian National University, April 1997.

[43] R. P. Brent. Random Number Generation and Simulation on Vector and Parallel
Computers. In Euro-Par’98 Parallel Processing, pages 1–20. Springer, 1998.

[44] R. P. Brent. Some Comments on C. S. Wallace’s Random Number Generators.
The Computer Journal, 51(5):579–584, February 2008.

[45] R. P. Brent. Uniform and Normal Random Number Generators. http://

maths-people.anu.edu.au/~brent/random.html, 2016.

[46] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake. GPU-Accelerated
Database Systems: Survey and Open Challenges. In Transactions on Large-Scale
Data- and Knowledge-Centered Systems XV, pages 1–35. Springer Berlin Heidel-
berg, 2014.

[47] A. L. Brophy. Approximation of the inverse normal distribution function. Behavior
Research Methods, Instruments, & Computers, 17(3):415–417, May 1985.

[48] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington. Implement-
ing molecular dynamics on hybrid high performance computers – Particle–particle
particle-mesh. Computer Physics Communications, 183(3):449–459, March 2012.

186

https://people.maths.ox.ac.uk/gilesm/cuda/lecs/NV_Profiling_lowres.pdf
https://people.maths.ox.ac.uk/gilesm/cuda/lecs/NV_Profiling_lowres.pdf
http://maths-people.anu.edu.au/~brent/random.html
http://maths-people.anu.edu.au/~brent/random.html

Bibliography

[49] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington. Implementing
molecular dynamics on hybrid high performance computers – short range forces.
Computer Physics Communications, 182(4):898–911, April 2011.

[50] J. Buchmann, D. Cabarcas, F. Göpfert, A. Hülsing, and P. Weiden. Discrete
Ziggurat: A time-memory trade-off for sampling from a Gaussian distribution over
the integers. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8282
LNCS, pages 402–417, 2014.

[51] H. Bunke. Gewöhnliche Differentialgleichungen mit zufälligen Parametern.
Akademie-Verlag, Berlin, 1972.

[52] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A. Huebl, G. Juckeland,
T. Kluge, W. E. Nagel, R. Pausch, F. Schmitt, U. Schramm, J. Schuchart, and
R. Widera. Radiative signatures of the relativistic Kelvin-Helmholtz instability.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis - SC ’13, pages 1–12, New York, New York,
USA, 2013. ACM Press.

[53] E. Calore, D. Marchi, S. F. Schifano, and R. Tripiccione. Optimizing commu-
nications in multi-GPU Lattice Boltzmann simulations. In 2015 International
Conference on High Performance Computing & Simulation (HPCS), pages 55–62.
IEEE, July 2015.

[54] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu. A Superfast Algorithm
for Toeplitz Systems of Linear Equations. SIAM Journal on Matrix Analysis and
Applications, 29(4):1247–1266, January 2008.

[55] S. Chapman and T. G. Cowling. The Mathematical Theory of Non-uniform Gases.
Cambridge University Press, 1970.

[56] S. Chen and G. D. Doolen. LATTICE BOLTZMANN METHOD FOR FLUID
FLOWS. Annual Review of Fluid Mechanics, 30(1):329–364, January 1998.

[57] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber. Multi-column deep neural
network for traffic sign classification. Neural Networks, 32:333–338, August 2012.

[58] K. Claessen and M. H. Pa lka. Splittable pseudorandom number generators using
cryptographic hashing. In Proceedings of the 2013 ACM SIGPLAN symposium on
Haskell - Haskell ’13, pages 47–58, New York, New York, USA, 2013. ACM Press.

[59] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi. Solving lattice
QCD systems of equations using mixed precision solvers on GPUs. Computer
Physics Communications, 181(9):1517–1528, September 2010.

[60] R. Collobert, Koray Kavukcuoglu, and C. Farabet. Torch7: A Matlab-like Envi-
ronment for Machine Learning. In BigLearn, NIPS Workshop, pages 1–6, 2011.

187

Bibliography

[61] S. Cook. CUDA programming - A developer’s guide to parallel computing with
GPUs. Morgan Kaufmann, Amsterdam, 2013.

[62] S. Corlay and G. Pagès. Functional quantization-based stratified sampling meth-
ods. Monte Carlo Methods and Applications, 21(1):1–32, January 2015.

[63] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen
der mathematischen Physik. Mathematische Annalen, 100(1):32–74, December
1928.

[64] J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal
eigenproblem. Numerische Mathematik, 36(2):177–195, June 1980.

[65] S. Dalton, N. Bell, L. Olson, and M. Garland. CUSP: Generic Parallel Algorithms
for Sparse Matrix and Graph Computations. https://cusplibrary.github.io/,
2014.

[66] N. Darapaneni, P. Somawanshi, and M. Joshi. Stochastic Differential Equations
simulation using GPU. In Proceedings of International Simulation Conference of
India, 2012.

[67] C. De Schryver, D. Schmidt, N. Wehn, E. Korn, H. Marxen, and R. Korn. A
new hardware efficient inversion based random number generator for non-uniform
distributions. In Proceedings - 2010 International Conference on Reconfigurable
Computing and FPGAs, ReConFig 2010, pages 190–195, 2010.

[68] A. Debudaj-Grabysz and R. Rabenseifner. Nesting OpenMP in MPI to Implement
a Hybrid Communication Method of Parallel Simulated Annealing on a Cluster
of SMP Nodes. In B. Di Martino, D. Kranzlmüller, and J. J. Dongarra, edi-
tors, Recent Advances in Parallel Virtual Machine and Message Passing Interface:
12th European PVM/MPI Users’ Group Meeting Sorrento, Italy, September 18-21,
2005. Proceedings, pages 18–27. Springer Berlin Heidelberg, 2005.

[69] J. Demouth. Shuffle: Tips and Tricks. http://on-demand.gputechconf.com/

gtc/2013/presentations/S3174-Kepler-Shuffle-Tips-Tricks.pdf, 2013.
GPU Technology Conference 2013 (GTC’13).

[70] L. Devroye. Nonuniform Random Variate Generation. In Handbooks in Operations
Research and Management Science, volume 13, pages 83–121. Springer, 2006.

[71] D. D’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo. Multiple-
relaxation-time lattice Boltzmann models in three dimensions. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 360(1792):437–451, March 2002.

[72] J. A. Doornik. An improved Ziggurat method to generate normal random samples.
Technical report, University of Oxford, 2005.

188

https://cusplibrary.github.io/
http://on-demand.gputechconf.com/gtc/2013/presentations/S3174-Kepler-Shuffle-Tips-Tricks.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3174-Kepler-Shuffle-Tips-Tricks.pdf

Bibliography

[73] F. Dubois. Equivalent partial differential equations of a lattice Boltzmann scheme.
Computers & Mathematics with Applications, 55(7):1441–1449, April 2008.

[74] H. M. Edrees, B. Cheung, M. Sandora, D. Nummey, and S. Deian. Hardware-
Optimized Ziggurat Algorithm for High-Speed Gaussian Random Number Gen-
erators. In International Conference on Engineering of Reconfigurable Systems &
Algorithms, ERSA, pages 254–260, 2009.

[75] R. G. Edwards and B. Joó. The Chroma Software System for Lattice QCD. Nuclear
Physics B - Proceedings Supplements, 140:832–834, March 2005.

[76] A. Fakhari and T. Lee. Finite-difference lattice Boltzmann method with a block-
structured adaptive-mesh-refinement technique. Physical Review E, 89(3):033310,
March 2014.

[77] C. Feichtinger. Design and Performance Evaluation of a Software Framework
for Multi-Physics Simulations on Heterogeneous Supercomputers. PhD Thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg, 2012.

[78] C. Feichtinger, J. Habich, H. Köstler, U. Rüde, and T. Aoki. Performance Model-
ing and Analysis of Heterogeneous Lattice Boltzmann Simulations on CPU-GPU
Clusters. Parallel Computing, 46:1–13, 2014.

[79] J. Foley. Lattice QCD using MILC and QUDA. http://on-demand.gputechconf.
com/gtc/2014/presentations/S4641-lattice-qcd-milc-quda.pdf, 2014.
GPU Technology Conference 2014 (GTC’14).

[80] A. Gaikwad and I. M. Toke. GPU based sparse grid technique for solving multi-
dimensional options pricing PDEs. In Proceedings of the 2nd Workshop on High
Performance Computational Finance - WHPCF ’09, pages 1–9, New York, New
York, USA, 2009. ACM Press.

[81] M. J. Gander. 50 Years of Time Parallel Time Integration. In T. Carraro,
M. Geiger, S. Körkel, and R. Rannacher, editors, Multiple Shooting and Time
Domain Decomposition Methods, pages 69–113. Springer International Publishing,
2015.

[82] P. C. Gao, Y. B. Tao, Z. H. Bai, and H. Lin. Mapping the SBR and TW-ILDCs
to heterogeneous CPU-GPU architecture for fast computation of electromagnetic
scattering. Progress In Electromagnetics Research, 122:137–154, 2012.

[83] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa. Heterogeneous Com-
puting with OpenCL. Morgan Kaufmann, 2nd edition, 2012.

[84] M. Geier and M. Schönherr. Esoteric Twist: An Efficient in-Place Streaming
Algorithmus for the Lattice Boltzmann Method on Massively Parallel Hardware.
Computation, 5(2), March 2017.

189

http://on-demand.gputechconf.com/gtc/2014/presentations/S4641-lattice-qcd-milc-quda.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4641-lattice-qcd-milc-quda.pdf

Bibliography

[85] J. E. Gentle. Random number generation and Monte Carlo methods. Springer
Science & Business Media, 1998.

[86] U. Ghia, K. N. Ghia, and C. T. Shin. High-Re solutions for incompressible flow
using the Navier-Stokes equations and a multigrid method. Journal of Computa-
tional Physics, 48(3):387–411, December 1982.

[87] D. Gillespie. Exact numerical simulation of the Ornstein-Uhlenbeck process and
its integral. Physical Review E, 54(2):2084–2091, 1996.

[88] I. Ginzburg, F. Verhaeghe, and D. D’Humières. Two-relaxation-time Lattice Boltz-
mann scheme: About parametrization, velocity, pressure and mixed boundary
conditions. Communications in Computational Physics, 3(2):427–478, 2008.

[89] Global Scientific Information and Computing Center. TSUBAME2.5 Hardware
Software Specifications. Technical report, Tokyo Institute of Technology, Tokyo,
2013.

[90] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.

[91] M. J. Grote and T. Huckle. Parallel Preconditioning with Sparse Approximate
Inverses. SIAM Journal on Scientific Computing, 18(3):838–853, May 1997.

[92] L. Grune and P. E. Kloeden. Pathwise Approximation of Random Ordinary Dif-
ferential Equations. Bit Numerical Mathematics, 41(4):711–721, 2001.

[93] J. Habich, C. Feichtinger, H. Köstler, G. Hager, and G. Wellein. Performance
engineering for the lattice Boltzmann method on GPGPUs: Architectural require-
ments and performance results. Computers & Fluids, 80:276–282, July 2013.

[94] R. D. Hagan. Multi-GPU Load Balancing for Simulation and Rendering. Master’s
thesis, Virginia Polytechnic Institute and State University, 2011.

[95] G. Hager and G. Wellein. Introduction to High Performance Computing for Scien-
tists and Engineers. Chapman & Hall/CRC Computational Science. CRC Press,
July 2010.

[96] A. Haidar, R. Solcà, M. Gates, S. Tomov, T. C. Schulthess, and J. J. Don-
garra. Leading Edge Hybrid Multi-GPU Algorithms for Generalized Eigenprob-
lems in Electronic Structure Calculations. In J. M. Kunkel, T. Ludwig, and H. W.
Meuer, editors, Supercomputing: 28th International Supercomputing Conference,
ISC 2013, Leipzig, Germany, June 16-20, 2013. Proceedings, pages 67–80. Springer
Berlin Heidelberg, 2013.

[97] M. J. Hallock, J. E. Stone, E. Roberts, C. Fry, and Z. Luthey-Schulten. Simulation
of reaction diffusion processes over biologically relevant size and time scales using
multi-GPU workstations. Parallel Computing, 40(5-6):86–99, 2014.

190

Bibliography

[98] P. Harish and P. J. Narayanan. Accelerating Large Graph Algorithms on the GPU
Using CUDA. In High Performance Computing – HiPC 2007, pages 197–208.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[99] M. Harris and M. Garland. Optimizing Parallel Prefix Operations for the Fermi
Architecture. In GPU Computing Gems: Jade Edition, pages 29–38. Elsevier,
2011.

[100] M. Harris, S. Sengupta, and J. D. Owens. Parallel Prefix Sum (Scan) with CUDA.
In GPU Gems 3, pages 1–24. Addison-Wesley Professional, 2007.

[101] M. J. Harvey and G. De Fabritiis. A survey of computational molecular science
using graphics processing units. Wiley Interdisciplinary Reviews: Computational
Molecular Science, 2(5):734–742, September 2012.

[102] X. He and L.-S. Luo. Lattice Boltzmann Model for the Incompressible
Navier–Stokes Equation. Journal of Statistical Physics, 88(3/4):927–944, August
1997.

[103] X. He and L.-S. Luo. Theory of the lattice Boltzmann method: From the Boltz-
mann equation to the lattice Boltzmann equation. Physical Review E, 56(6):6811–
6817, December 1997.

[104] C. Hirsch. Numerical computation of internal and external flows: The fundamen-
tals of computational fluid dynamics. Butterworth-Heinemann, 2007.

[105] W. G. Horner. A New Method of Solving Numerical Equations of All Orders,
by Continuous Approximation. Philosophical Transactions of the Royal Society of
London, 109:308–335, 1819.

[106] G. W. Housner and P. C. Jennings. Generation of Artificial Earthquakes. Journal
of the Engineering Mechanics Division, 90(1):113–152, 1964.

[107] D. Hänel. Molekulare Gasdynamik - Einführung in die kinetische Theorie der Gase
und Lattice-Boltzmann-Methoden. Springer-Verlag, Berlin/Heidelberg, 1 edition,
2004.

[108] K. Iglberger and U. Rüde. Massively parallel granular flow simulations with non-
spherical particles. Computer Science - Research and Development, 25(1-2):105–
113, May 2010.

[109] P. Imkeller and C. Lederer. The Cohomology of Stochastic and Random Differential
Equations, and Local Lineraization of Stochastic Flows. Stochastics and Dynamics,
2(2):131–159, 2002.

[110] P. Imkeller and B. Schmalfuss. The Conjugacy of Stochastic and Random Differ-
ential Equations and the Existence of Global Attractors. Journal of Dynamics and
Differential Equations, 13(2):215–249, 2001.

191

Bibliography

[111] Intel Corporation. Benchmarks for Intel Math Kernel Library. https://software.
intel.com/en-us/intel-mkl/benchmarks, 2016.

[112] M. Januszewski and M. Kostur. Accelerating numerical solution of stochastic dif-
ferential equations with CUDA. Computer Physics Communications, 181(1):183–
188, 2010.

[113] E. T. Jaynes. Bayesian Methods: General Background. In J. H. Justice, edi-
tor, Maximum Entropy and Bayesian Methods in Applied Statistics, pages 1–25,
Cambridge, 1986. Cambridge University Press.

[114] A. Jentzen and P. E. Kloeden. Taylor Approximations for Stochastic Partial Dif-
ferential Equations. SIAM Press, 2011.

[115] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional Architecture for Fast Feature Embed-
ding. In Proceedings of the ACM International Conference on Multimedia - MM
’14, pages 675–678, New York, New York, USA, 2014. ACM Press.

[116] K. Kanai. Semi-Empirical Formula for the Characteristics of the Ground. Bulletin
of the Earthquake Research Institute, 35:307–325, 1957.

[117] K. Kanai. An Empirical Formula for the Spectrum of Strong Earthquake Motions.
Bulletin of the Earthquake Research Institute, 39:85–95, 1961.

[118] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer,
2nd edition, 1991.

[119] L. Kaufman. Banded Eigenvalue Solvers on Vector Machines. ACM Transactions
on Mathematical Software, 10(1):73–85, January 1984.

[120] L. Kaufman. Band reduction algorithms revisited. ACM Transactions on Mathe-
matical Software, 26(4):551–567, December 2000.

[121] D. Kirk and W.-m. Hwu. Programming Massively Parallel Processors - A Hands-on
Approach. Morgan Kaufman, 2nd edition, 2012.

[122] P. E. Kloeden and A. Jentzen. Pathwise convergent higher order numerical schemes
for random ordinary differential equations. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 463(2087):2929–2944, 2007.

[123] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Addison-Wesley, 3rd edition, 1997.

[124] C. Körner, M. Thies, T. Hofmann, N. Thürey, and U. Rüde. Lattice Boltzmann
Model for Free Surface Flow for Modeling Foaming. Journal of Statistical Physics,
121(1-2):179–196, October 2005.

192

https://software.intel.com/en-us/intel-mkl/benchmarks
https://software.intel.com/en-us/intel-mkl/benchmarks

Bibliography

[125] H. Köstler, D. Ritter, and C. Feichtinger. A Geometric Multigrid Solver on GPU
Clusters. In GPU Solutions to Multi-scale Problems in Science and Engineering,
pages 407–422. Springer Berlin Heidelberg, 2013.

[126] R. E. Ladner and M. J. Fischer. Parallel Prefix Computation. Journal of the ACM,
27(4):831–838, 1980.

[127] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and opti-
mizations of blocked algorithms. In Proceedings of the fourth international confer-
ence on Architectural support for programming languages and operating systems -
ASPLOS-IV, pages 63–74, New York, New York, USA, 1991. ACM Press.

[128] B. Lang. A Parallel Algorithm for Reducing Symmetric Banded Matrices to Tridi-
agonal Form. SIAM Journal on Scientific Computing, 14(6):1320–1338, 1993.

[129] B. Lang. Effiziente Orthogonaltransformationen bei der Eigen- und Singulärw-
ertzerlegung. Habilitation Thesis, Bergische Universität Wuppertal, 1997.

[130] H. P. Langtangen. Numerical Solution of First Passage Problems in Random
Vibrations. SIAM Journal on Scientific Computing, 15(4):977–996, July 1994.

[131] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast BVH
Construction on GPUs. Computer Graphics Forum, 28(2):375–384, April 2009.

[132] P. L’Écuyer. Random numbers for simulation. Communications of the ACM,
33(10):85–97, 1990.

[133] P. L’Écuyer. Uniform random number generation. Annals of Operations Research,
53(1):77–120, 1994.

[134] P. L’Écuyer, D. Munger, B. Oreshkin, and R. Simard. Random numbers for parallel
computers: Requirements and methods, with emphasis on GPUs. Mathematics and
Computers in Simulation, 135:3–17, May 2016.

[135] P. L’Écuyer and R. Simard. A Software Library in ANSI C for Empirical Testing
of Random Number Generators. Technical report, Département d’Informatique et
de Recherche Opérationnelle Université de Montréal, 2002.

[136] P. L’Écuyer and R. Simard. TestU01. ACM Transactions on Mathematical Soft-
ware, 33(4), 2007.

[137] D.-U. Lee, W. Luk, J. D. Villasenor, G. Zhang, and P. H. W. Leong. A hardware
Gaussian noise generator using the Wallace method. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 13(8):911–919, August 2005.

[138] P. H. W. Leong, G. Zhang, D.-U. Lee, W. Luk, and J. D. Villasenor. A Comment
on the Implementation of the Ziggurat Method. Journal of Statistical Software,
12(7):1–4, 2005.

193

Bibliography

[139] D. Li and M. Becchi. Deploying Graph Algorithms on GPUs: An Adaptive So-
lution. In 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing, pages 1013–1024. IEEE, May 2013.

[140] Y. K. Lin and G. Q. Cai. Probabilistic Structural Dynamics. McGraw-Hill, 2004.

[141] J. Linxweiler. Ein integrierter Softwareansatz zur interaktiven Exploration und
Steuerung von Strömungssimulationen auf Many-Core-Architekturen. Phd thesis,
Technische Universität Braunschweig, 2011.

[142] F. Lu, J. Song, F. Yin, and X. Zhu. Performance evaluation of hybrid programming
patterns for large CPU/GPU heterogeneous clusters. Computer Physics Commu-
nications, 183(6):1172–1181, 2012.

[143] M. G. Luby. Pseudorandomness and cryptographic applications, volume 31. Prince-
ton University Press, 1996.

[144] J. Luitjens. CUDA Pro Tip: Increase Performance with Vector-
ized Memory Access. http://devblogs.nvidia.com/parallelforall/

cuda-pro-tip-increase-performance-with-vectorized-memory-access/,
2013.

[145] J. Luitjens. Faster Parallel Reductions on Kepler. https://devblogs.nvidia.

com/parallelforall/faster-parallel-reductions-kepler/, 2014.

[146] D. Lukarski and N. Trost. PARALUTION User Manual. http://www.

paralution.com/downloads/paralution-um.pdf, 2016.

[147] T. Luu. Efficient and Accurate Parallel Inversion of the Gamma Distribution.
SIAM Journal on Scientific Computing, 37(1):C122–C141, January 2015.

[148] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R. Di-
etrich, D. Poole, and C. Lamb. Parallel Performance Measurement of Heteroge-
neous Parallel Systems with GPUs. In 2011 International Conference on Parallel
Processing, pages 176–185. IEEE, September 2011.

[149] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke,
H.-J. Bungartz, and H. Lederer. The ELPA library: scalable parallel eigenvalue
solutions for electronic structure theory and computational science. Journal of
Physics: Condensed Matter, 26(21), May 2014.

[150] A. Marek and H. Lederer. Recent optimizations of ELPA eigensolvers.
http://www.mpcdf.mpg.de/about-mpcdf/publications/bits-n-bytes?

BB-View=194&BB-Doc=173, 2016.

[151] A. A. Markov. Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie
drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom uni-
versitete, 15:135–156, 1906.

194

http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
http://www.paralution.com/downloads/paralution-um.pdf
http://www.paralution.com/downloads/paralution-um.pdf
http://www.mpcdf.mpg.de/about-mpcdf/publications/bits-n-bytes?BB-View=194&BB-Doc=173
http://www.mpcdf.mpg.de/about-mpcdf/publications/bits-n-bytes?BB-View=194&BB-Doc=173

Bibliography

[152] G. Marsaglia. Generating a variable from the tail of the normal distribution.
Technometrics, 6(1):101–102, 1964.

[153] G. Marsaglia. The Marsaglia Random Number CDROM including the Diehard
Battery of Tests of Randomness. http://stat.fsu.edu/pub/diehard/, 1995.

[154] G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8:1–6, 2003.

[155] G. Marsaglia and T. A. Bray. A Convenient Method for Generating Normal Vari-
ables. SIAM Review, 6(3):260–264, 1964.

[156] G. Marsaglia and W. W. Tsang. A Fast, Easily Implemented Method for Sampling
from Decreasing or Symmetric Unimodal Density Functions. SIAM Journal on
Scientific and Statistical Computing, 5(2):349–359, 1984.

[157] G. Marsaglia and W. W. Tsang. The Ziggurat Method for Generating Random
Variables. Journal of Statistical Software, 5(8), 2000.

[158] N. Maruyama and T. Aoki. Optimizing Stencil Computations for NVIDIA Kepler
GPUs. In Proceedings of the 1st International Workshop on High-Performance
Stencil Computations, Vienna, pages 89–95, 2014.

[159] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally
Equidistributed Uniform Pseudo-random Number Generator. ACM Transactions
on Modeling and Computer Simulation, 8(1):3–30, 1998.

[160] R. Mei, W. Shyy, D. Yu, and L.-S. Luo. Lattice Boltzmann Method for 3-D Flows
with Curved Boundary. Journal of Computational Physics, 161(2):680–699, July
2000.

[161] D. Merrill, M. Garland, and A. Grimshaw. High-Performance and Scalable GPU
Graph Traversal. ACM Transactions on Parallel Computing, 1(2):1–30, February
2015.

[162] P. Micikevicius. Local Memory and Register Spilling. http://on-demand.

gputechconf.com/gtc-express/2011/presentations/register_spilling.

pdf, 2011. GPU Technology Conference 2011 (GTC’11).

[163] V. Minden, B. Smith, and M. G. Knepley. Preliminary Implementation of PETSc
Using GPUs. In GPU Solutions to Multi-scale Problems in Science and Engineer-
ing, pages 131–140. Springer Berlin Heidelberg, 2013.

[164] S. Mittal and J. S. Vetter. A Survey of CPU-GPU Heterogeneous Computing
Techniques. ACM Computing Surveys, 47(4):1–35, July 2015.

[165] J.-i. Muramatsu, T. Fukaya, S.-L. Zhang, K. Kimura, and Y. Yamamoto. Ac-
celeration of Hessenberg Reduction for Nonsymmetric Eigenvalue Problems in a
Hybrid CPU-GPU Computing Environment. International Journal of Networking
and Computing, 1(2):132–143, 2011.

195

http://stat.fsu.edu/pub/diehard/
http://on-demand.gputechconf.com/gtc-express/2011/presentations/register_spilling.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/register_spilling.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/register_spilling.pdf

Bibliography

[166] A. F. Muraraşu. Advanced Optimization Techniques for Sparse Grids on Modern
Heterogeneous Systems. PhD Thesis, Technische Universität München, 2013.

[167] A. F. Muraraşu, J. Weidendorfer, G. Buse, D. Butnaru, and D. Pflüger. Com-
pact data structure and scalable algorithms for the sparse grid technique. ACM
SIGPLAN Notices, 46(8), September 2011.

[168] K. Murata and K. Horikoshi. A New Method for the Tridiagonalization of the
Symmetric Band Matrix. Inf. Proc. Japan, 15:108–112, 1975.

[169] Y. Nakamura and H. Stüben. BQCD - Berlin quantum chromodynamics program.
Technical report, Konrad-Zuse-Zentrum für Informationstechnik Berlin, October
2010.

[170] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton, S. Layton,
N. Markovskiy, I. Reguly, N. Sakharnykh, V. Sellappan, and R. Strzodka. AmgX:
A Library for GPU Accelerated Algebraic Multigrid and Preconditioned Iterative
Methods. SIAM Journal on Scientific Computing, 37(5):S602–S626, January 2015.

[171] C.-L. Navier. Mémoire sur les lois du mouvement des fluides. Mem. Acad. Sci.
Inst. France, 6:389–416, 1823.

[172] T. Neckel, A. Parra Hinojosa, and F. Rupp. Path-Wise Algorithms for Ran-
dom & Stochastic ODEs with Applications to Ground-Motion-Induced Excitations
of Multi-Storey Buildings. Technical Report TUM-I1758, Technische Universität
München, 2017.

[173] T. Neckel and F. Rupp. Random Differential Equations in Scientific Computing.
Versita, De Gruyter publishing group, Warsaw, 2013.

[174] P. Neumann. Hybrid Multiscale Simulation Approaches For Micro- and Nanoflows.
PhD Thesis, Technische Universität München, 2013.

[175] P. Neumann and T. Neckel. A dynamic mesh refinement technique for Lattice
Boltzmann simulations on octree-like grids. Computational Mechanics, 51(2):237–
253, February 2013.

[176] NVIDIA Corporation. Achieved Occupancy. https://docs.nvidia.

com/gameworks/content/developertools/desktop/analysis/report/

cudaexperiments/kernellevel/achievedoccupancy.htm, 2015.

[177] NVIDIA Corporation. Tuning CUDA applications for Kepler. http://docs.

nvidia.com/cuda/kepler-tuning-guide/, 2015.

[178] NVIDIA Corporation. Tuning CUDA applications for Maxwell. http://docs.

nvidia.com/cuda/maxwell-tuning-guide/, 2015.

[179] NVIDIA Corporation. cuBLAS, 8.0 edition, September 2016.

196

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
http://docs.nvidia.com/cuda/kepler-tuning-guide/
http://docs.nvidia.com/cuda/kepler-tuning-guide/
http://docs.nvidia.com/cuda/maxwell-tuning-guide/
http://docs.nvidia.com/cuda/maxwell-tuning-guide/

Bibliography

[180] NVIDIA Corporation. CUDA C Programming Guide, 8.0 edition, September 2016.

[181] NVIDIA Corporation. cuRAND Library Programming Guide. http://docs.

nvidia.com/cuda/curand/, 2016.

[182] NVIDIA Corporation. Profiler User’s Guide, 8.0 edition, September 2016.

[183] NVIDIA Corporation. cuRAND. https://developer.nvidia.com/curand, Jan-
uary 2017.

[184] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux. A new approach to the
lattice Boltzmann method for graphics processing units. Computers & Mathemat-
ics with Applications, 61(12):3628–3638, June 2011.

[185] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux. Multi-GPU implemen-
tation of the lattice Boltzmann method. Computers & Mathematics with Applica-
tions, 65(2):252–261, January 2013.

[186] S. Páll and B. Hess. A flexible algorithm for calculating pair interactions on SIMD
architectures. Computer Physics Communications, 184(12):2641–2650, December
2013.

[187] L. G. Paparizos. Some observations on the random response of hysteretic systems.
Technical report, California Institute of Technology, 1986.

[188] A. Parra Hinojosa and T. Neckel. K-RODE-Taylor schemes of order 3 and 4 for
the Kanai-Tajimi earthquake model. Technical Report TUM-I1524, Technische
Universität München, 2015.

[189] M. Petschow and P. Bientinesi. MR3-SMP: A symmetric tridiagonal eigensolver
for multi-core architectures. Parallel Computing, 37(12):795–805, December 2011.

[190] O. Philipsen, C. Pinke, A. Sciarra, and M. Bach. CL2QCD - Lattice QCD based on
OpenCL. In The 32nd International Symposium on Lattice Field Theory, Novem-
ber 2014.

[191] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale. NAMD: Biomolecular Simula-
tion on Thousands of Processors. In SC ’02: Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing. IEEE, 2002.

[192] R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP Parallel Program-
ming on Clusters of Multi-Core SMP Nodes. In 2009 17th Euromicro International
Conference on Parallel, Distributed and Network-based Processing, pages 427–436.
IEEE, 2009.

[193] A. Rahimian, I. Lashuk, S. K. Veerapaneni, A. Chandramowlishwaran, D. Malho-
tra, L. Moon, R. Sampath, A. Shringarpure, J. S. Vetter, R. Vuduc, D. Zorin, and
G. Biros. Petascale direct numerical simulation of blood flow on 200K cores and

197

http://docs.nvidia.com/cuda/curand/
http://docs.nvidia.com/cuda/curand/
https://developer.nvidia.com/curand

Bibliography

heterogeneous architectures. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis - SC ’10, 2010.

[194] D. A. Reed, R. Bajcsy, M. A. Fernandez, J.-M. Griffiths, R. D. Mott, J. J. Don-
garra, C. R. Johnson, A. S. Inouye, W. Miner, M. K. Matzke, and T. L. Ponick.
Computational science: Ensuring America’s competitiveness. Technical report,
National Coordination Office for Information Technology Research and Develop-
ment, 2005.

[195] S. Rennich. CUDA C/C++ Streams and Concurrency. http:

//on-demand.gputechconf.com/gtc-express/2011/presentations/

StreamsAndConcurrencyWebinar.pdf, 2011. GPU Technology Conference
2011 (GTC’11).

[196] W. A. Richards, R. Antoine, A. Sahai, and M. R. Acharya. An Efficient Polynomial
Approximation to the Normal Distribution Function and Its Inverse Function.
Journal of Mathematics Research, 2(4), October 2010.

[197] C. Riesinger and T. Neckel. A runtime/memory trade-off of the continuous Zig-
gurat method on GPUs. In 2015 International Conference on High Performance
Computing & Simulation (HPCS), pages 27–34. IEEE, July 2015.

[198] C. Riesinger, T. Neckel, and F. Rupp. Non-standard Pseudo Random Number
Generators revisited for GPUs. Future Generation Computer Systems, 2016.

[199] C. Riesinger, T. Neckel, and F. Rupp. Solving Random Ordinary Differential
Equations on GPU Clusters using Multiple Levels of Parallelism. SIAM Journal
on Scientific Computing, 38(4):C372–C402, July 2016.

[200] C. Riesinger, T. Neckel, F. Rupp, A. Parra Hinojosa, and H.-J. Bungartz. GPU
Optimization of Pseudo Random Number Generators for Random Ordinary Dif-
ferential Equations. In 2014 International Conference on Computational Science,
volume 29, pages 172–183. Elsevier, 2014.

[201] C. Rogers and D. Williams. Diffusions, Markov processes and martingales - Volume
2: Itô calculus. Cambridge University Press, 2nd edition, 2000.

[202] M. Rohde, D. Kandhai, J. J. Derksen, and H. E. A. van den Akker. A generic,
mass conservative local grid refinement technique for lattice-Boltzmann schemes.
International Journal for Numerical Methods in Fluids, 51(4):439–468, June 2006.

[203] D. Rohr. The L-CSC cluster: An AMD-GPU-based cost- and power-efficient multi-
GPU system for Lattice-QCD calculations at GSI. https://www.top500.org/

files/green500/SC14-bof-lcsc.pdf, 2014.

[204] D. Rossinelli, G. Karniadakis, M. Fatica, I. Pivkin, P. Koumoutsakos, Y.-H. Tang,
K. Lykov, D. Alexeev, M. Bernaschi, P. Hadjidoukas, M. Bisson, W. Joubert, and

198

http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
https://www.top500.org/files/green500/SC14-bof-lcsc.pdf
https://www.top500.org/files/green500/SC14-bof-lcsc.pdf

Bibliography

C. Conti. The in-silico lab-on-a-chip: petascale and high-throughput simulations
of microfluidics at cell resolution. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis - SC ’15,
pages 1–12, New York, New York, USA, 2015. ACM Press.

[205] U. Rüde and N. Thürey. Free surface lattice-Boltzmann fluid simulations with and
without level sets. In Proceedings of Vision, Modeling and Visualization, pages
199–208, 2004.

[206] K. Rupp. The High-Level Linear Algebra Library ViennaCL and Its Ap-
plications. http://on-demand.gputechconf.com/gtc/2012/presentations/

S0071-High-Level-Linear-Algebra-Library-ViennaCL-Apps.pdf, 2012. GPU
Technology Conference 2012 (GTC’12).

[207] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw. Parallel random
numbers: As easy as 1, 2, 3. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis - SC ’11, pages
1–12, 2011.

[208] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, January 2015.

[209] M. Schreiber. GPU based simulation and visualization of fluids with free surfaces.
Diploma Thesis, Technische Universität München, 2010.

[210] M. Schreiber, P. Neumann, S. Zimmer, and H.-J. Bungartz. Free-Surface Lattice-
Boltzmann Simulation on Many-Core Architectures. In Procedia Computer Sci-
ence, volume 4, pages 984–993, 2011.

[211] Z. Schuss. Theory and Applications of Stochastic Processes. Springer-Verlag, 2010.

[212] H. R. Schwarz. Algorithm 183: reduction of a symmetric bandmatrix to triple
diagonal form. Communications of the ACM, 6(6):315–316, June 1963.

[213] H. R. Schwarz. Tridiagonalization of a symetric band matrix. Numerische Math-
ematik, 12(4):231–241, November 1968.

[214] M. Schönherr, K. Kucher, M. Geier, M. Stiebler, S. Freudiger, and M. Krafczyk.
Multi-thread implementations of the lattice Boltzmann method on non-uniform
grids for CPUs and GPUs. Computers & Mathematics with Applications,
61(12):3730–3743, June 2011.

[215] V. Sellappan and B. Desam. Accelerating ANSYS Fluent sim-
ulations with NVIDIA GPUs. http://resource.ansys.com/

staticassets/ANSYS/staticassets/resourcelibrary/article/

Accelerationg-ANSYS-Fluent-Simulations-with-NVIDIA-GPUs-AA-V9-I1.

pdf, 2015.

199

http://on-demand.gputechconf.com/gtc/2012/presentations/S0071-High-Level-Linear-Algebra-Library-ViennaCL-Apps.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0071-High-Level-Linear-Algebra-Library-ViennaCL-Apps.pdf
http://resource.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/article/Accelerationg-ANSYS-Fluent-Simulations-with-NVIDIA-GPUs-AA-V9-I1.pdf
http://resource.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/article/Accelerationg-ANSYS-Fluent-Simulations-with-NVIDIA-GPUs-AA-V9-I1.pdf
http://resource.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/article/Accelerationg-ANSYS-Fluent-Simulations-with-NVIDIA-GPUs-AA-V9-I1.pdf
http://resource.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/article/Accelerationg-ANSYS-Fluent-Simulations-with-NVIDIA-GPUs-AA-V9-I1.pdf

Bibliography

[216] S. Sengupta, M. Harris, M. Garland, and J. D. Owens. Efficient Parallel Scan
Algorithms for Many-core GPUs. In Scientific Computing with Multicore and
Accelerators, pages 413–442. Chapman & Hall/CRC Computational Science, 2011.

[217] X. Shan and H. Chen. Lattice Boltzmann model for simulating flows with multiple
phases and components. Physical Review E, 47(3):1815–1819, March 1993.

[218] J. Shen, A. L. Varbanescu, H. Sips, M. Arntzen, and D. G. Simons. Glinda: A
Framework for Accelerating Imbalanced Applications on Heterogeneous Platforms.
In Proceedings of the ACM International Conference on Computing Frontiers - CF
’13, New York, New York, USA, 2013. ACM Press.

[219] T. Shimokawabe, T. Aoki, T. Takaki, A. Yamanaka, A. Nukada, T. Endo,
N. Maruyama, and S. Matsuoka. Peta-scale Phase-Field Simulation for Dendritic
Solidification on the TSUBAME 2.0 Supercomputer. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis - SC ’11, pages 1–11, 2011.

[220] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489, January 2016.

[221] R. Smith. Retrofit of Legacy MPI CFD System with GPU Ac-
celeration. http://on-demand.gputechconf.com/gtc/2013/presentations/

S3181-MPI-CFD-Retrofit-with-GPU-Acceleration.pdf, 2013. GPU Technol-
ogy Conference 2013 (GTC’13).

[222] R. C. Smith. Uncertainty Quantification: Theory, Implementation, and Applica-
tions. SIAM, 2013.

[223] J. E. Stone, R. McGreevy, B. Isralewitz, and K. Schulten. GPU-accelerated anal-
ysis and visualization of large structures solved by molecular dynamics flexible
fitting. Faraday Discuss., 169:265–283, March 2014.

[224] S. Succi. The Lattice Boltzmann equation: for fluid dynamics and beyond. Oxford
University Press, 2013.

[225] H. J. Sussmann. On the Gap Between Deterministic and Stochastic Ordinary
Differential Equations. The Annals of Probability, 6(1):19–41, February 1978.

[226] M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans. Lattice Boltzmann
simulations of liquid-gas and binary fluid systems. Physical Review E, 54(5):5041–
5052, November 1996.

200

http://on-demand.gputechconf.com/gtc/2013/presentations/S3181-MPI-CFD-Retrofit-with-GPU-Acceleration.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3181-MPI-CFD-Retrofit-with-GPU-Acceleration.pdf

Bibliography

[227] H. Tajimi. A Statistical Method of Determining the Maximum Response of a
Building Structure During an Earthquake. In 2nd World Conference on Earthquake
Engineering, volume 2, pages 781–798, 1960.

[228] D. B. Thomas, L. Howes, and W. Luk. A comparison of CPUs, GPUs, FPGAs, and
massively parallel processor arrays for random number generation. In Proceeding
of the ACM/SIGDA international symposium on Field programmable gate arrays
- FPGA ’09, pages 63–72, 2009.

[229] D. B. Thomas, W. Luk, P. H. W. Leong, and J. D. Villasenor. Gaussian Random
Number Generators. ACM Computing Surveys, 39(4), 2007.

[230] N. Thürey. Physically based Animation of Free Surface Flows with the Lattice
Boltzmann Method. Phd thesis, Friedrich-Alexander-Universität Erlangen-Nürn-
berg, 2007.

[231] J. Tölke, S. Freudiger, and M. Krafczyk. An adaptive scheme using hierarchical
grids for lattice Boltzmann multi-phase flow simulations. Computers & Fluids,
35(8-9):820–830, September 2006.

[232] J. Tölke and M. Krafczyk. TeraFLOP computing on a desktop PC with GPUs for
3D CFD. International Journal of Computational Fluid Dynamics, 22(7):443–456,
August 2008.

[233] P. Valero-Lara, F. D. Igual, M. Prieto-Mat́ıas, A. Pinelli, and J. Favier. Accelerat-
ing fluid–solid simulations (Lattice-Boltzmann & Immersed-Boundary) on hetero-
geneous architectures. Journal of Computational Science, 10:249–261, September
2015.

[234] F. G. van Zee and R. A. van de Geijn. BLIS: A Framework for Rapidly Instantiating
BLAS Functionality. ACM Transactions on Mathematical Software, 41(3):1–33,
June 2015.

[235] V. Volkov. Better Performance at Lower Occupancy. http://www.nvidia.com/

content/gtc-2010/pdfs/2238_gtc2010.pdf, 2010. GPU Technology Conference
2010 (GTC’10).

[236] M. Wahib and N. Maruyama. Data-centric GPU-based adaptive mesh refinement.
In Proceedings of the 5th Workshop on Irregular Applications Architectures and
Algorithms - IA3 ’15, pages 1–7, New York, New York, USA, 2015. ACM Press.

[237] C. S. Wallace. Fast Pseudorandom Generators for Normal and Exponential Vari-
ates. ACM Transactions on Mathematical Software, 22(1):119–127, 1996.

[238] M. Wang, B. Wang, Q. He, X. Liu, and K. Zhu. Analysis of GPU Parallel Com-
puting based on Matlab. CoRR, abs/1505.0, May 2015.

201

http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf
http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf

Bibliography

[239] X. Wang and T. Aoki. Multi-GPU performance of incompressible flow computation
by lattice Boltzmann method on GPU cluster. Parallel Computing, 37(9):521–535,
February 2011.

[240] Y. Wang, H. Du, M. Xia, L. Ren, M. Xu, T. Xie, G. Gong, N. Xu, H. Yang, and
Y. He. Correction: A Hybrid CPU-GPU Accelerated Framework for Fast Mapping
of High-Resolution Human Brain Connectome. PLoS ONE, 8(9), September 2013.

[241] G. Wellein, T. Zeiser, G. Hager, and S. Donath. On the single processor perfor-
mance of simple lattice Boltzmann kernels. Computers & Fluids, 35(8-9):910–919,
September 2006.

[242] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to com-
putational continuum mechanics using object-oriented techniques. Computers in
Physics, 12(6):620–631, 1998.

[243] B. Wescott and A. Macijeski. Every Computer Performance Book. CreateSpace
Independent Publishing Platform, 1 edition, 2013.

[244] E. Westphal. Voting and Shuffling to Optimize Atomic Op-
erations. https://devblogs.nvidia.com/parallelforall/

voting-and-shuffling-optimize-atomic-operations/, 2015.

[245] M. J. Wichura. Algorithm AS241: The percentage points of the normal distribu-
tion. Applied Statistics, 37:477–484, 1988.

[246] S. W. Williams. The Roofline Model. In D. H. Bailey, R. F. Lucas, and S. W.
Williams, editors, Performance Tuning of Scientific Applications, pages 195–216.
CRC Press, 2010.

[247] S. W. Williams, A. Waterman, and D. Patterson. Roofline: An Insight Visual
Performance Model for Multicore Architectures. Communications of the ACM,
52(4), April 2009.

[248] N. Wilt. The CUDA Handbook - A Comprehensive Guide to GPU Programming.
Addison-Wesley, 2013.

[249] F. T. Winter, M. A. Clark, R. G. Edwards, and B. Joó. A Framework for Lat-
tice QCD Calculations on GPUs. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, pages 1073–1082. IEEE, May 2014.

[250] M. Wittmann, T. Zeiser, G. Hager, and G. Wellein. Comparison of different
propagation steps for lattice Boltzmann methods. Computers & Mathematics with
Applications, 65(6):924–935, March 2013.

[251] D. A. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice Boltzmann Models
- An Introduction. Springer, Berlin, 2000.

202

https://devblogs.nvidia.com/parallelforall/voting-and-shuffling-optimize-atomic-operations/
https://devblogs.nvidia.com/parallelforall/voting-and-shuffling-optimize-atomic-operations/

Bibliography

[252] X. Q. Xing, D. L. Butler, and C. Yang. Lattice Boltzmann-based single-phase
method for free surface tracking of droplet motions. International Journal for
Numerical Methods in Fluids, 53(2):333–351, January 2007.

[253] Q. Xiong, B. Li, J. Xu, X. Fang, X. Wang, L. Wang, X. He, and W. Ge. Effi-
cient parallel implementation of the lattice Boltzmann method on large clusters of
graphic processing units. Chinese Science Bulletin, 57(7):707–715, March 2012.

[254] I. Yamazaki, T. Dong, R. Solcà, S. Tomov, J. J. Dongarra, and T. C. Schulthess.
Tridiagonalization of a dense symmetric matrix on multiple GPUs and its applica-
tion to symmetric eigenvalue problems. Concurrency and Computation: Practice
and Experience, 26(16):2652–2666, November 2014.

[255] B. Zhang, S. Xu, F. Zhang, Y. Bi, and L. Huang. Accelerating MatLab code using
GPU: A review of tools and strategies. In Artificial Intelligence, Management
Science and Electronic Commerce (AIMSEC), 2011 2nd International Conference
on, pages 1875–1878. IEEE, 2011.

[256] G. Zhang, P. H. W. Leong, D.-U. Lee, J. D. Villasenor, R. C.-C. Cheung, and
W. Luk. Ziggurat-based hardware Gaussian random number generator. In Inter-
national Conference on Field Programmable Logic and Applications, 2005., pages
275–280, 2005.

[257] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time KD-tree construction on
graphics hardware. ACM Transactions on Graphics, 27(5):126:1–126:11, 2008.

203

	Introduction
	Opening
	Motivation
	Contribution
	Outline

	Architecture of GPUs
	Hardware structure of GPUs
	Programming & execution model
	Scheduling & GPU indicators
	Heterogeneous computing & GPU-equipped HPC clusters

	Relevance of GPUs in scientific computing
	Acceleration of scientific computing software
	Lighthouse projects

	Pipelined approach to determine eigenvalues of symmetric matrices
	The SBTH algorithm
	Block decomposition of a banded matrix
	Serial reduction
	Parallel reduction

	Implementation of the SBTH algorithm
	Determination of Householder transformations
	Transformation of block pairs
	Pipelining
	Matrix storage format

	Results
	Profiling
	Scalability of the pipelined approach
	Comparison with ELPA

	Multiple levels of parallelism to solve random ordinary differential equations
	Random ordinary differential equations
	Random & stochastic ordinary differential equations
	The Kanai-Tajimi earthquake model
	Numerical schemes for RODEs
	Averaged schemes
	K-RODE-Taylor schemes
	Remarks on numerical schemes

	Building block 1: Pseudo random number generation
	The Ziggurat method
	Definition of the Ziggurat
	Algorithmic description of the Ziggurat method
	Setup of the Ziggurat
	Memory/runtime trade-off for the Ziggurat method

	Rational polynomials
	The Wallace method
	Results
	Evaluation of particular pseudo random number generators
	Performance comparison of pseudo random number generators

	Building block 2: Ornstein-Uhlenbeck process
	From the Ornstein-Uhlenbeck process to prefix sum
	Parallel prefix sum
	Results

	Building block 3: Averaging
	Single & double averaging
	Tridiagonal averaging
	Results

	Building block 4: Coarse timestepping for the right-hand side
	Averaged schemes
	K-RODE-Taylor schemes

	Results of the full random ordinary differential equations solver
	Configurations of choice for the building blocks
	Profiling of single path-wise solutions
	Scalability of the multi-path solution
	Statistical evaluation of the multi-path solution

	Scalability on heterogeneous systems of the lattice Boltzmann method
	The lattice Boltzmann method and its serial implementation
	Discretization schemes
	Collision & propagation
	Memory layout pattern

	Parallelization of the lattice Boltzmann method
	Domain decomposition
	Computation of the GPU- & CPU-part of a subdomain
	Lattice Boltzmann method kernels for the GPU
	Lattice Boltzmann method kernels for the CPU

	Communication scheme

	Performance modeling of the lattice Boltzmann method on heterogeneous systems
	Results
	Characteristics of kernels
	Results of the GPU kernels
	Results of the CPU kernels

	Benchmark results for heterogeneous systems
	Single subdomain results
	Preparations for multiple subdomains results
	Weak scaling results of multiple subdomains
	Strong scaling results of multiple subdomains

	Validation of the performance model

	Conclusion

