I

Technische Universitat Munchen
Lehrstuhl fiir Sicherheit in der Informationstechnik
an der Fakultat fir Elektrotechnik und Informationstechnik

Highly Efficient Implementation of
Physical Unclonable Functions on
FPGAs

Stefan Gehrer

Vollstandiger Abdruck der von der Fakultat fiir Elektrotechnik und Infor-
mationstechnik der Technischen Universitdt Miinchen zur Erlangung des
akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten
Dissertation.

Vorsitzender: Prof. Dr. Holger Boche
Priifende der Dissertation:
1. Prof. Dr.-Ing. Georg Sigl
2. apl. Prof. Dr.-Ing. Walter Stechele

Die Dissertation wurde am 27. April 2017 bei der Technischen Universitét
Miinchen eingereicht und durch die Fakultat fiir Elektrotechnik und Infor-
mationstechnik am 14. August 2017 angenommen.

ii

Abstract

Physical Unclonable Functions (PUFs) are an innovative way to use uncon-
trollable production tolerances of Integrated Circuits (ICs) for the gener-
ation of device intrinsic cryptographic keys. Unfortunately, the huge area
consumption of many PUF implementations on Field-Programmable Gate
Arrays (FPGAs) made them infeasible in real world environments. This
work presents a new method for highly efficient usage of Ring Oscillator (RO)
PUFs on FPGAs.

The stability of such PUF outputs is essential for the reliability of the
cryptographic key. Any bit error in a cryptographic key makes it unusable.
Therefore, an extensive stability analysis involving both reversible environ-
mental changes and irreversible aging effects was carried out.

In the first part of this thesis, a basic implementation of RO PUFs on
FPGAs is presented. The quality properties such as Hamming Weight (HW)
or Hamming Distance (HD) promised a very good usability of RO PUFs on
FPGAs. However, the generation of a 2136 bit PUF output consumed 80 %
of the available slices on a Xilinx Zynq Z-7020.

In the second part, the complex system of logic and routing resources
on FPGAs was analyzed for their usability as entropy sources for PUFs in
combination with partial reconfiguration. Different implementations of ROs
were reconfigured on the same area of the FPGA to maximize the resource
usage. Each of them occupied the same logic block on an FPGA, but used
different logic and routing resources inside the block. A partial bit vector
response was generated by each implementation. All of them were joined to
a larger response vector that could be used to generate a cryptographic key.

The implementation of this method showed that it is possible to decrease
the required resources to generate a PUF response with a given length by
almost 98 % on a Xilinx Zynq. To achieve this big area shrinkage, every of
the eight Lookup Tables (LUTSs) within a logic block, and every of the six
input pins within a LUT was used for a unique RO implementation. The
min-entropy of this reconfigurable PUF was found to be 93 % using different
methods such as Context Tree Weighting (CTW), Principal Component
Analysis (PCA), and the NIST SP 800-90B entropy test.

iii

iv ABSTRACT

Robustness of the PUF against reversible environmental changes and
irreversible aging effects is crucial for its reliability. Although the influence of
environmental changes is studied in depth, there is still only limited research
on aging effects. An accelerated aging test on 28 nm Xilinx Zynq FPGAs
was performed for roughly one year in the third part of this thesis. The
results were compared to the impact of reversible environmental fluctuations.
A set of different designs with distinct types of logical stress was used to
amplify the effects of various aging mechanisms. The impact of accelerated
life conditions on the frequency of different RO PUFs was measured and
analyzed. It was shown that the aging effect is dramatically accelerated with
higher temperatures and voltages. The frequency of the ROs was lowered
to around 98.6 % of the initial value, after an effective accelerated aging
duration of around 60 years. The reliability of the PUFs without error
correction was decreased by up to 6 %. Furthermore, the experiments showed
that aging effects reduced the reliability in the same order of magnitude as
environmental variations, namely voltage and temperature variations.

In the last part of this work, an exemplary application of the partial
reconfiguration PUF on FPGAs was shown. The reconfigurable PUF was
used with the reliability measurements from the previous chapter to choose
an appropriate PUF-based key generation scheme from the literature. The
PUFKY algorithm was chosen in this work. The amount of slices that were
needed to implement the RO PUF part of the system could be lowered by
at least 79.4 % when using the partial reconfiguration PUF. Furthermore,
the usage of slices within the CLBs would be much more efficient when
using the method presented in this work. A scheme was proposed which
allows a secure boot of a PUF-based security module on an FPGA. The
security module is able to load encrypted Intellectual Properties (IPs) from
an unprotected non-volatile memory, as well as transmit new or modified
IPs over-the-air while preserving the confidentiality and authenticity.

Acknowledgments

Foremost, I would like to express my sincere gratitude to Prof. Dr.-Ing.
Georg Sigl for supervising this thesis and all members of the Chair of Security
in Information Technology for the fruitful discussions. I also thank my
second examiner Prof. Dr.-Ing. Walter Stechele.

Being part of the security team at Bosch was an awesome experience.
I enjoyed every conversation about work related and unrelated topics, and
they greatly contributed to the success of my thesis. A dedicated thank
you to Sébastien Léger for being a great supervisor at Bosch, as well as Dr.
Jiirgen Schirmer for always supporting me as a group leader. Furthermore,
I would like to thank Dr. Paul Duplys, Christopher Huth, Hervé Seudié, Dr.
Hans Lohr, Robert Szerwinski, Dr. David Forster, and Dr. Jan Zibuschka
for all the discussions and the good times in Moglingen and Renningen.

I would like to thank my mother for her endless support, as well as Leah
and Jennifer for the dedicated proof-reading of my thesis.

Last but not least, I would like to thank all my friends around the world
for always being there for me and making life so much more fun. It would
be pretty boring without all y’all!

vi

ACKNOWLEDGMENTS

Contents

Abstract

Acknowledgments

List of Abbreviations

1 Introduction

2 Background

2.1

2.2

2.3

24

2.5

PUF Concepts
2.1.1 History

2.1.2 Weak and Strong PUFs

2.1.3 Quality Measures
PUF Types
2.2.1 Optical PUF
2.2.2 Silicon PUFs
PUF-based Key Generation
231 Select
232 Correct
2.3.3 Compress
FPGA
2.4.1 Overview
2.4.2 Structure
Cryptography
2.5.1 Symmetric
2.5.2 Asymmetric L.

vii

iii

xvii

viii CONTENTS
3 Implementing PUFs on FPGAs 27
3.1 Imntroduction. L 27
3.2 Theory 28
3.3 TImplementation Lo oL 30
3.4 Experimental Results. 36
3.4.1 Area 37
3.42 Speed 38
3.4.3 Quality Properties 38

3.5 Conclusion 44
4 Enhancing Efficiency Using PR 45
4.1 Introduction 45
4.2 Prior Worko 47
4.3 Reconfigurable PUF 48
4.3.1 Method 1: Using Different LUTs 49
4.3.2 Method 2: Using Different Input Pins 50
4.3.3 Combining Both Methods 52
4.3.4 Analysis of Shared Resources 54

4.4 TImplementation oL 54
4.5 Experimental Results. 56
4.5.1 Speed 56
4.5.2 Frequencieso oo Y
4.5.3 Uniformity 58
454 Bit Alias 60
4.5.5 Uniqueness i 60

4.6 Entropy Estimation 63
4.6.1 Context-Tree Weighting 63
4.6.2 Principal Component Analysis 64
4.6.3 NIST SP 800-90B Entropy Test 68

4.7 Conclusion 70
5 Reliability Analysis 71
5.1 Introduction. L Lo 71
5.2 Prior Work 72
5.3 Aging 73
5.3.1 Aging Mechanisms 73

5.3.2 Stress Design 76
5.3.3 Accelerated Environmental Conditions 78
5.3.4 Implementation and Setup 79

5.3.5 Experimental Results and Discussion 82

5.4 Temperature and Voltage 88
54.1 Theory 88
54.2 Test Setup 90

5.4.3 Experimental Results 91

CONTENTS

5.5 Conclusion

6 Key Generation System

6.1 Introduction.
6.2 SoC Platform
6.3 Error Correction & Key Generation
6.4 Security Module oL
6.4.1 Enrollment Phase
6.4.2 Security Module Boot Procedure
6.4.3 IP Loading Procedure
6.4.4 IP Storage Procedure

6.5 Discussion
6.6 Conclusion

7 Conclusion

ix

95

97
97
98
99
101
101
102
103
103
105
106

107

CONTENTS

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Schematic of basic PUF behavior

Organization of PUF response data
Uniformity of a PUF response vector
Uniqueness of a PUF response compared to other devices. . .
Reliability of PUF under different environmental conditions .
Bit alias of a single PUF bit over all measured devices
Schematic of a laser PUF
Schematic of a ROPUF
Schematic of an arbiter PUF
Schematic of an SRAM PUF

Generating cryptographic keys from noisy PUF responses

Schematic of a fuzzy extractor
Schematic of a modern SoC with PS part and a PL part . . .
Schematic of the implementation of a LUT on an FPGA . . .
Schematic of a symmetric key algorithm
Schematic of a public-key algorithm for encryption

Schematic of public-key algorithm for digital signatures

Schematic and implementation of 3-inverter RO PUF on FPGA
Schematic and implementation of a TFF
Implementation of 3-inverter RO PUF on one slice
Schematic of eight RO PUFs
Biased pairof ROs
Area efficient implementation of 16 bit asynchronous counters
Heatmap of 4272 ROs on the Zynq
Bean plot of the HW on 10 different boards
Bean plot of the Intra-device HD

xi

10
12
14
14
15
16
17
18
20
22
23
24
25
25

34

xii

3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

LIST OF FIGURES

Histogram of frequency difference between RO pairs 42
Histograms of bit aliases measured over all boards 43
Functional principle of partial reconfiguration 46
Using reconfigurable PUFs for key generation 49
Two PUF implementations on same CLB using different LUTs 50
Using different pins of a LUT 51
Structure of a 3bit LUT and different implementations of RO 52
Reconfiguration process on two SoCs 53
Possible shared resources between different RO implementations 55
Frequency distribution of all 48 RO designs on one board . . 58
HW of concatenated response vectors on each SoC 59
Fractional HW of response vector of each PUF 60
Bit alias of all concatenated 2136 bit partial PUF responses . 61
Fractional HD between each partial PUF response 62
Histogram of fractional HD between each partial PUF response 63
Colorplot of the principal component coefficients 65
Separated colorplot of the principal component coefficients . . 66
Kendall rank correlation coefficient between reconfig. PUFs . 67

Principal component scores for first six principal components 68

Bit flip due to the aging of two ROs 72
HCI effect in a CMOS transistor 74
NBTI effect in a PMOS transistor 74
Schematic of TDDB effect 75
Effect of EM in microelectronics 75
Differently stressed columns on SoC 76
DC 0/1 stress and low/high frequency stress designs on LUT 77
Stress cycle used for aging an FPGA 81
Accelerated aging test setup 82
Frequency degradation by different environmental stress . . . 83
Impact of amount of inverters on frequency degradation . . . 84

Impact of the electrical stress type on the frequency degradation 84
Heatmap of frequency degradation by different electrical stress 86

Impact of the aging process on the HW of the PUFs 86
Impact of aging process on reliability of the PUFs 87
Reliability when comparing differently stressed ROs 89

Absolute frequency change when changing the FPGA voltage 91
Relative frequency change when changing the FPGA voltage 92
Intra-device HD when changing the FPGA voltage 92
Absolute frequency change when changing ambient temperature 93
Relative frequency change when changing ambient temperature 94
Intra-device HD when changing the ambient temperature . . 95

LIST OF FIGURES xiii

6.1
6.2
6.3
6.4

SoC enrollment 102
SoC boot procedure oo 103
SoC boot procedure 104

IP storage procedureo 105

Xiv

LIST OF FIGURES

List of Tables

2.1

3.1
3.2

4.1

5.1

6.1

Notation symbols used for the measurement data..

Resource utilization of a PUF design using 4272 RO PUFs . .
Inter-device HD between each PUF outputs

Configuration of 48 reconfigurable PUF implementations . . .
Effects of different stress types on the frequency of ROs. . . .

Comparison of implementations of key generation schemes . .

XV

100

xvi LIST OF TABLES

List of Abbreviations

AES
ASIC
BBRAM
CA
CAN
CLB
CMOS
CTW
DES
DFF
DSC
ECC
ECDH
ECU
EM
EMI
FF
FHD
FHW
FPGA

Advanced Encryption Standard
Application-Specific Integrated Circuit
Battery Backed RAM

Certificate Authority

Controller Area Network

Configurable Logic Block
Complementary Metal-Oxide-Semiconductor
Context Tree Weighting

Data Encryption Standard

Data Flip-Flop

Differential Sequence Coding

Error Correcting Code

Elliptic Curve Diffie-Hellman
Electrical Control Unit
Electro-migration

Electromagnetic Interference
Flip-Flop

Fractional Hamming Distance
Fractional Hamming Weight

Field-Programmable Gate Array

xvii

xviii

GMC
HCI
HD
HDL
HKMG
HMAC
HW
IBS

IC
ICAP
IP
JEDEC
LUT
MAC
NIST
NMOS
MOSFET
NBTI
mux
PBTI
PCA
PCAP
PGP
PKI

PL
PLD
PMOS

LIST OF ABBREVIATIONS

Generalized Multiple Concatenated Code
Hot Carrier Injection

Hamming Distance

Hardware Description Language

High-x Metal Gate

Keyed-Hash Message Authentication Code
Hamming Weight

Index-Based Syndrome

Integrated Circuit

Internal Configuration Access Port
Intellectual Property

Joint Electron Device Engineering Council
Lookup Table

Message Authentication Code

National Institute of Standards and Technology
N-channel MOSFET
Metal-Oxide—Semiconductor Field-Effect Transistor
Negative-Bias Temperature Instability
Multiplexer

Positive-Bias Temperature Instability
Principal Component Analysis

Processor Configuration Access Port
Pretty Good Privacy

Public Key Infrastructure

Programmable Logic

Programmable Logic Device

P-channel MOSFET

PR
PRD
PRNG
PROM
PS
PUF
RM
RNG
RO
SCA
SM
SoC
SRAM
TDDB
TFF
TI

Partial Reconfiguration

Partial Reconfiguration Design
Pseudorandom Number Generator
Programmable Read-Only Memory
Processor System

Physical Unclonable Function
Reed-Muller-Code
Random-Number Generator

Ring Oscillator

Side Channel Attack

Security Module

System-on-Chip

Static Random-Access Memory
Time-Dependent Dielectric Breakdown
Toggle Flip-Flop

Texas Instruments

xix

XX

LIST OF ABBREVIATIONS

CHAPTER 1

Introduction

Our modern society is highly characterized by an increasing number of con-
nected electronic devices in areas such as industry 4.0, smart homes, smart-
phones, and connected cars. The amount of those devices, the transmitted
data, and the complexity increases tremendously every year. We rely more
and more on the flawless, safe, and secure operation of these devices. But
the connectivity of these devices also opens up many possible gateways for
adversaries and makes them an interesting target. Furthermore, they po-
tentially carry a lot of sensitive information while being run in an untrusted
environment. Therefore, Intellectual Property (IP) and data privacy pro-
tection are major requirements for many companies such as IP vendors and
manufacturers.

Information security has four main concepts to protect the communica-
tion and storage of information:

1. Confidentiality ensures that information is not available to unau-
thorized entities. This security goal is mostly achieved by using en-
cryption of the data, where the encryption and/or decryption is only
made possible to authorized entities using cryptographic keys.

2. Integrity refers to the absence of any data corruption for the whole
life-cycle. Data can be manipulated or corrupted both when stored
locally or when using a communication channel. A checksum is mostly
used to meet this security goal.

3. Authenticity is the assurance that the identity of a subject is the
identity claimed or the communicated information is from the source
it claims to be from. Authenticity highly relies on integrity. Any ma-
nipulation or corruption of authenticated information — and therefore

2 CHAPTER 1. INTRODUCTION

the tampering of its integrity — should be detected. The proof of au-
thenticity can be made by something that is known (e.g. a password),
something you have (e.g. a smartcard), or something you are (e.g. bio-
metrics). Physical Unclonable Functions (PUFs) in particular make
use of the latter, as intrinsic information is used. In secure communica-
tion, Message Authentication Codes (MACs) and electronic signatures
based on Public Key Infrastructures (PKIs) are used to authenticate
information and identities.

4. Availability refers to the ability to access information whenever it is
needed. Systems that store and process information and communica-
tion channels have to function correctly at any point in time. Apart
from random faults, common attack vectors are denial-of-service at-
tacks.

To protect both carried and transmitted information, cryptography relies
on a secret key that has to be brought into and stored inside the system.
The key can be used in a symmetric encryption, i.e., both sides are using the
same key, to ensure confidentiality of the data. Another possibility is to use
it in an asymmetric way with public and private key pairs to ensure integrity,
authenticity, and/or confidentiality of the data. This makes knowledge of
the cryptographic key an interesting target for adversaries.

The secret key is mostly stored in a non-volatile memory, e.g., flash
memory or fuses. Flash memory, however, has the downside of being hard to
integrate in modern Complementary Metal-Oxide-Semiconductor (CMOS)
processes [WHI11, Ini08, Che06]. Fuses on the other side are potentially
susceptible to readout by decapsulation and optical analyses. Furthermore,
a key management infrastructure is needed, as the key has to be brought
into the device. If global master keys are used, losing it on one device would
have an impact on every device. Storing a device specific key requires a
key management, i.e., they have to be individualized, stored on the device
during an enrollment phase, and potentially stored centralized as well. This
makes the whole system less flexible and harder to maintain.

PUF's are using a new approach to create a device unique fingerprint or
cryptographic key for authenticity, integrity, and confidentiality [PRTGO02,
GCvDDO02, SD07]. The sources of randomness are the unpredictable varia-
tions during the manufacturing of Integrated Circuits (ICs). These functions
are easy to evaluate, but hard to predict. It should be practically impossible
to duplicate them. There is a wide range of types of PUFs, e.g., electronic
PUFs, silicon PUFs, and surface PUFs. The idea was introduced by Pappu
et al. [PRTGO02] as the physical one-way function using an optical system.
Nowadays, they are primarily used on ICs. The two mainly used types of
PUFs are the delay-based and the memory-based PUF. The latter uses
the unpredictable settle state of uninitialized digital memories like Static
Random-Access Memorys (SRAMs) [GKST07, HBF09], flip-flops [MTVO08],

or latches [SHOO8]. Delay-based PUF's rely on the delay variations of routing
and logic resources directly. One method to do this is with the arbiter PUF,
which introduces a race condition between two or more paths [LLG104].
Frequency differences between two or more Ring Oscillators (ROs) are used
by the RO PUF [GCvDD02, MS11].

Challenge Response 75

\\\\

A

"u l‘” il

,(5» il

m

Figure 1.1: Schematic of basic PUF behavior.

Figure 1.1 shows the basic concept of a PUF. The same function is
implemented on two different ICs. When those functions are challenged
with the same input, each entity will produce a unique response output.
It can be seen as a digital fingerprint and be used to authenticate devices
or to generate unique cryptographic keys. Device aging and environmental
influences such as voltage and temperature might have an influence on the
PUF responses. The cryptographic keys have to withstand those variations
and remain stable over the lifetime of the device.

The main advantage of silicon PUFs over embedded flash or fuses is
their ability to be implemented using the same production process as the
main circuit, which possibly saves cost for the device. Furthermore, when
using reprogrammable hardware such as Field-Programmable Gate Arrays
(FPGAs), the existing structures can be reused as PUFs. FPGAs are ICs
that contain many programmable logic blocks, a complex routing system,
and other dedicated logic elements. This gives them the ability to configure
their hardware after manufacturing. The exact hardware implementation
is not fixed as with Application-Specific Integrated Circuits (ASICs), but
flexible. This makes them able to be updated in-field, which is important
with the modern and fast developing technology. They are an interesting
alternative in many modern applications, especially where the quantities are
not high enough to justify an ASIC or where the flexibility and updatability
is needed. One way to implement PUFs on FPGAs is explained and analyzed
in chapter 3.

Most modern FPGAs already contain security features. Unfortunately,
most of them are already broken by Side Channel Attacks (SCAs) [MKP11,
MBKP11, MKP12, SW12, MOPS13]. SCAs are modern attacks that use
information gained by observing the behavior of the physical implementation

4 CHAPTER 1. INTRODUCTION

of a cryptosystem. This ranges from timing, power consumption, sound,
or electromagnetic emanation. Many countermeasures against SCAs are
covered by patents. PUFs on the other hand offer a new possibility to
implement own cryptographic functions that rely on intrinsic keys.

Implementing PUFs on FPGAs is very costly in terms of resources, as
later shown in this thesis. Because the hardware has to be flexible, many
resources are wasted by exclusively using them for the implementation of
PUFs. Therefore, they are not affordable in most real world scenarios.
In chapter 4, a new way to use PUFs more area efficiently on FPGAs is
introduced. Instead of using just one PUF on a logic block of an FPGA,
multiple PUFs are loaded on the same logic block in this work. By using
modern FPGAs with Partial Reconfiguration (PR), the area can be reused.
This way, more parts of the complex logic and routing system are used as
entropy sources. Due to the reuse of resources, correlation between the PUF's
might occur and lower the entropy of the PUF output. Therefore, analysis
of the entropy is a main focus in that chapter.

Stability of the generated key is crucial for the usability of PUFs. This
stands in contrast to challenge-response systems, where single bit flips are
not fatal, as they can just be ignored. Both reversible and irreversible vari-
ations can alter the behavior of a PUF. Environmental conditions such
as voltage and temperature are reversible variations. The effect of those
altered conditions usually disappear once the cause is withdrawn. Device
aging on the other hand is an irreversible variation that leads to a perma-
nently changed behavior. The effects of aging on RO-based PUFs on an
FPGA are analyzed in chapter 5. Voltage, temperature, and accelerated
aging experiments on an FPGA using a climate chamber were done for al-
most one year. The results are then compared to the effects of reversible
environmental conditions.

The generated keys can be used on modern SoCs in many different ways.
To give an outlook about the possibilities of PUFs in securing a device and
communication, a PUF-based key generation scheme and a security module
using the FPGA and processor part of an SoC is presented in chapter 6.
The key is generated solely on the FPGA and stays inside the FPGA. This
makes it obsolete to get secret keys in or out of the FPGA. A public key
can be used to communicate with the outside, whereas the private key is
kept inside the device. The system is presented in detail and an estimation
of resource usage on FPGAs is given.

CHAPTER 2

Background

This chapter provides background information about the main subjects of
this thesis: FPGAs, PUFs, and cryptography.

In the first section 2.1, the basic PUF concepts, a brief overview on the
history and the quality measures of PUFs are explained. A selection of im-
portant PUF types is presented in section 2.2. The methods of generating
cryptographic keys by using PUFs are explained in section 2.3. A short
introduction on FPGAs is given in section 2.4, as the PUFs will be imple-
mented on that platform in this thesis. The basic concepts of cryptographic
algorithms will be explained in section 2.5.

2.1 PUF Concepts

The definitions of PUFs are not consistent in literature. To have a com-
mon understanding for this thesis, the definitions will be explained in this
section. A PUF in general is a function that uses production tolerances to
generate a device specific response. To use the response in a digital system
and make it comparable, the response is usually in a binary form after post
processing. The basic principle can be explained with the three words:

Physical A physical entity embodied in a physical structure.

Unclonable The exact implementation cannot be duplicated. However,
it might still be possible to model the PUF using, e.g., machine learning.

Function In a mathematical sense, an input is mapped to an output. This
is not true for PUFs, as they are usually noisy. FError correction has to

)

6 CHAPTER 2. BACKGROUND

be used to replicate the original output. Furthermore most PUFs (‘weak
PUFs’) are used with a fixed input to, e.g., generate a fixed cryptographic
key. Maes et. al propose the term probabilistic function as more correct, as
an input is mapped with a certain probability to an output value, due to
noise.

2.1.1 History

The basic idea of a PUF, without using that exact term, was already in-
troduced by Bauder in 1983 [Bau83] and Simmons in 1991 [Sim91]. Sim-
mons proposed an optical PUF that used reflection patterns to identify
strategic arms in arms control treaties. Bauder used a paper PUF for anti-
counterfeiting of currencies. Posch et al. used an active coating to protect
devices [Pos98]. In 2001, Pappu proposed an optical PUF construction and
defined the general concept of PUFs [PRTGO02]. However, he used the term
physical one-way function. One year later Gassend et al. introduced the
silicon PUF [GCvDDO02] and used the term physical unclonable function for
the first time. This started the research on many different types of PUFs,
with a large focus on silicon PUFs. Older concepts were transformed to the
new definition of PUFs, new concepts developed and combined.

Companies specialized on PUFs were established shortly after, such as
Verayo in 2005 or Intrinsic ID in 2008.

2.1.2 Weak and Strong PUFs

PUFs can be classified by their challenge-response behavior. As explained
in the introduction, a PUF usually takes a challenge and answers with a
response. A PUF is called a strong PUF if an attacker is unable to guess
any response to an unused challenge during the lifetime of a device. This
requires a very large challenge-response set to make it impossible for an
attacker to just learn all of the pairs. Furthermore, it must be impossible
for an attacker to build an accurate model of the PUF behavior. Many
strong PUF designs fail the latter requirement, as in those cases, machine
learning algorithms are able to model the PUF behavior.

A weak PUF is the term for any PUF that does not meet the require-
ments of a strong PUF. This can either mean that the PUF constructions
were not appropriately designed or it was intentionally designed that way.
Generating cryptographic keys is an example for the latter. This extreme
case of just one challenge-response pair is not meant to communicate with
another entity via challenge-response pairs. A fixed challenge is used to
generate a device specific cryptographic key.

The sole purpose of a PUF in this thesis is the generation of a cryp-
tographic key. Hence, only weak PUF constructions will be used and the
challenge-response constructions will not be used. This has the advantage

2.1. PUF CONCEPTS 7

Table 2.1: Notation symbols used for the measurement data.

Symbol | Description

P Index of a PUF bit within response vector. 1 <p < P
P Length of PUF response vector

d Index of a device. 1 <d < D
D

m

Number of devices
Index of a measurement at a specific time and
environmental condition. 1 <m < M

M Number of measurements
Tp.dm Binary response bit p of device d within measurement m
Rym Response vector of device d at measurement m

with Ry, = {0,1}7

that any attacks on the strong PUF constructions do not apply to the sys-
tems used in this work.

2.1.3 Quality Measures

All PUF constructions share a number of specific properties. The quality of
a PUF can be measured in different ways. Distinct sets of properties such as
randomness, steadiness, correctness, diffuseness, uniqueness, uniformity, or
reliability are used in sometimes different definitions throughout the research
on PUFs [HYKS10, SHO08, MCMS10, MGS13]. As there is no standard
model that all researchers agree on, the terminology used in this work will
be explained in this section.

Organization of PUF response data

The responses of a PUF can be characterized by many different variables.
Figure 2.1 shows the dimensions used in this work. The response is assumed
to be in a binary form, i.e., the post-processing of analog data will not be
covered in this section. Additionally, the notation symbols used in this work
are summarized in Table 2.1.

When using a weak PUF for cryptographic key generation, a response
vector R with a certain bit length P is needed. Therefore, P PUF structures,
each returning a single bit p, have to be implemented. This is represented
by the vertical axis. Each of those PUFs is situated on a different location
of the device in case of the weak PUF. In a strong PUF scenario it could
also be a set of challenge-response pairs.

The index of a device d, with 1 < d < D, that the PUF will be used on
is represented by the d-axis. Each device should generate a unique crypto-
graphic key, i.e., the PUF response should be unique for every device. The

8 CHAPTER 2. BACKGROUND

m-th Time/Tempera-
ture/Voltage

(17777777

Tp,dm
d-th Device

Figure 2.1: Organization of PUF response data. The three dimensions are:
1) PUF bit position within a PUF response vector, 2) the device on which
the PUF is used, and 3) the date of the measurement and the corresponding
environmental conditions such as voltage and temperature.

responses are measured for D different devices. Fach device should have a
unique P-bit wide PUF response.

The stability of a PUF response is very important. When they are used
to generate cryptographic keys, a single bit flip could corrupt the whole key.
To measure the stability of a PUF response, it will be measured multiple
times and be compared to the initial measurement. These measurements are
represented by the third m-axis. As the device will be used under real-world
conditions, a variation of environmental conditions such as temperature and
voltage, as well as device aging will be expected. The m-axis represents a
set of M different time, temperature, and voltage conditions that the device
will be tested with.

The PUF responses have a vector length of P bit. The response of a PUF
system with P PUF bits on device d at condition m is defined as:

Ram = r1.dmllr2.dml--|7Pdm (2.1)

Uniformity

FEach PUF system on a device returns a P bit wide vector. Uniformity de-
fines the proportion of ones and zeros in this vector. An ideal, unbiased,
statistically random system returns the same amount of ones and zeros. To
measure this, the Hamming Weight (HW) is used. To calculate the HW of
the response on device d at condition m, all ones of the P bit wide vector

2.1. PUF CONCEPTS 9

are added up:

PUF
bit p

Device d

Figure 2.2: Uniformity of a PUF response vector. The distribution of zeros
and ones show a bias towards one of those values. The HW is used to
measure the uniformity by adding up each single PUF bit within a complete
response.

Figure 2.2 shows an unbiased PUF response that produces the same
amount of zeros and ones. This equals a HW of P/2 for a P bit wide vector.
To be independent from the bit width of the response, the HW can be divided
by the number of bits to get the Fractional Hamming Weight (FHW):

FHW (Ry) = HW;}W (2.3)

The ideal distribution is a FHW of g /P = 0.5. Every PUF response
vector on any device, at any time, voltage, and/or temperature should al-
ways be close to this ideal value to guarantee a uniform distribution of ones

10 CHAPTER 2. BACKGROUND

and zeros. This ensures that no fundamental design flaw was made when
constructing the PUFs.

Uniqueness
H!
A 0
P_UF Measurement m
bit p

(/77 7/]/

Zp [Pp.di,m © Tp,do,m]
Inter device
Hamming distance

Figure 2.3: Uniqueness of a PUF response compared to other devices. The
HD is used to measure the inter-device differences in the responses by cal-
culating the xor of both vectors. Ideally, the two vectors differ in exactly
half of their PUF bits.

As the PUFs are used to generate a device unique key, the statistical
independence from PUFs on one device to the same PUF on another device
has to be tested. This also makes it possible to distinguish chips of the same
type from each other, just by using production tolerances. To compare two
bit vectors with each other, the Hamming Distance (HD) will be used. The
HD is the number of positions in which two PUF responses of the same
implementation on two distinct devices, d; and do, are different:

P
HD(le,ma 7”d2,m) = Z[Tp,dhm ® Tp7d2,m] (2.4)
p=1
= HW[Rdl,m D Rdg,m] (2.5)

Ideally the two vectors should differ in half of their bits to assume un-
correlated responses, i.e., the HD should be m/2. To be independent from

2.1. PUF CONCEPTS 11

the bit length we divide the HD by the bit length P of the response to get
the Fractional Hamming Distance (FHD):

HD(Rd1 ,ms Rdz,m)
P

FHD(Rgy m> Riym) = (2.6)

The FHD should be close to the ideal value of g /P =0.5.

As the results of different devices are compared with each other, this is
commonly referred to as inter-device HD.

The uniqueness property takes all possible (12)) = D(gfl) combinations of
inter-device HDs into consideration. It can be calculated as the normalized

sum of all possible inter-device HD combinations:

D—-1 P
(

- D
U= D(Dz—l); Z Z Z Tp,d1,m @rp,dz,m) (2.7)

1=1dg2=d;+1 p=1

S

However, the inter-device HD can only be seen as a necessary condition
to assume unique and uncorrelated results. Throughout this thesis, more
approaches to rate the uniqueness of a PUF response will be presented, such
as correlation analyses and compression algorithms.

Reliability

The stability of a PUF response throughout its lifetime and under all speci-
fied environmental conditions of the device is very important. Every bit flip
of the response could corrupt a cryptographic key, the challenge response
pair, or make the error correction harder. To estimate the stability of PUF
responses, the HD is used again as shown in Figure 2.4.

The cryptographic key or the challenge-response pairs of a PUF will be
defined under the initial characterization condition my. Each subsequent
measurement of the PUF will be done under a different condition, due to
aging, temperature, or voltage variations. It should however, still result in
the same output over the lifetime of a device. As the responses of the same
device are compared with each other, the HD for reliability is commonly
referred to as intra-device HD. The HD between an initial measurement at
condition mi to a subsequent measurement at mo can be calculated to:

12 CHAPTER 2. BACKGROUND

o o0 L

0

PUF
bit p

Device d

Figure 2.4: The reliability of a PUF under different environmental conditions
and age of the device. The intra-device HD is used to measure the occurrence
of bit-flips when repeatedly measuring the same PUF on the same device
and comparing it to the initial measurement.

P

HD(Rdmlp Rd,mg) = Z Tp.dmi D Tp,d,ma (28)
p=1

Accordingly the intra-device FHD can be calculated to:

HD(Rd,ml) Rd,mg)
P

FHD(Ram,, Rims) = (2.9)

As the goal is the absence of any bit-flips within the responses on the
same device, the ideal intra-device HD is zero.

2.2. PUF TYPES 13

Bit alias

While uniformity refers to the bit distribution within the response on one
device, the bit alias refers to the distribution of ones and zeros of the same
single PUF output bit on different devices. This can be used to identify
a badly implemented RO pair within the whole response. A bad bit alias
automatically leads to a bad uniqueness as those PUF bits will not differ
when measuring the inter-device HD. The bit alias of a PUF bit measured
on D devices can be calculated to:

D
HW(Rp,m) = Z[rp,d,m] (2'10)
d=1

Accordingly, the FHW can be calculated to:

HW (Rym)

FHW (Bpm) = —+

(2.11)

The ideal bit alias is an equal distribution between ones and zeros, which
refers to a FHW of 0.5.

2.2 PUF Types

The idea of PUF's is to use intrinsic physical properties to authenticate de-
vices, objects, or systems. This concept is not new, as it has been already
widely used with humans, by using, e.g., the fingerprint. A human finger-
print is an intrinsic feature that is given at birth and is (almost) unique for
every person. It is easy to measure a fingerprint, but hard to permanently
clone a fingerprint to another human being. This basic idea has been trans-
ferred to a wide range of non-electrical, electrical, and silicon devices. They
share the requirement that they are easy to make, but hard to duplicate or
control. A selection of PUF types will be presented in this section.

2.2.1 Optical PUF

PUFs were first mentioned by Pappu [PRTG02] in 2002 as a physical one-
way function (POWF). Figure 2.6 shows the construction of such a function.
A helium-—neon laser is used to radiate a token, in this case a glass sphere.

14 CHAPTER 2. BACKGROUND

I
(V)

PUF
bit p

Device d

Figure 2.5: Bit alias of a single PUF bit over all measured devices. The bit
alias is measured using the HW, i.e., the sum of a single PUF bit over all
devices.

The resulting speckle patterns are recorded two-dimensionally. A Gabor
transform was used to generate a 2400-bit key.

Spectrum
R Response

—>» L I_XTX8—» 10011..10101

Laser/ ~

Figure 2.6: Schematic of a laser PUF. The laser hits an object and the
resulting spectrum is recorded and converted to a binary response.

The exact orientation of the laser was used to generate different chal-
lenges for the function. The challenge orientations and the resulting Gabor
hashes were recorded in a database during an enrollment phase. Whenever
the device was needed to be verified, the challenge orientation was provided
and the response requested. The response was then compared with the one
stored in the database to authenticate the device.

Another example for optical PUFs are paper PUFs [CMKO05, BSQ10,
Kir04]. A variety of possibilities to use paper PUFs exist. An easy way
is by scanning the package of a product after manufacturing. Later, the
authenticity of the product can be verified by scanning the surface again
and comparing it with the initially stored value. This can be interesting for

2.2. PUF TYPES 15

a low cost counterfeit protection for products that are counterfeited on a
regular basis such as pharmaceutical products.

2.2.2 Silicon PUFs

The main focus of research and usage of PUFs is aimed towards silicon
PUFs as an intrinsic PUF on ICs. The source of randomness are the vari-
ations of digital delays due to production tolerances. The two mainly used
types of intrinsic PUFs are the delay-based and the memory-based PUFs.
The latter use the unpredictable settle state of uninitialized digital memo-
ries like SRAMs [GKSTO07, HBF09], flip-flops [MTVO08], or latches [SHOO0S].
Delay-based PUF's rely on the delay variations of routing and logic resources
directly. One method to do this is the arbiter PUF, which introduces a race
condition between two or more paths [LLGT04]. Frequency differences be-
tween two or more ring oscillators are used by the ROPUF [GCvDDO02,
MS11].

Three mainly used PUFs will be presented in detail: the ROPUF, arbiter
PUF, and the SRAM PUF.

RO PUFs

ROs were among the first silicon-based PUFs that were proposed to extract
entropy from ICs. As shown in Figure 2.7, an odd number of inverters are
connected in a ring. This structure will begin to oscillate with a certain
frequency f, if the delay is sufficiently large. The exact frequency of this
ring depends on production tolerances of the logic gates and the delay lines.
The exact same implementation on two different locations of the chip or
on the same location on two different chips will result in slightly distinct
frequencies.

f1

Counter

response

>?7 =P

£2

Counter

Figure 2.7: Schematic of a RO PUF. The frequency of two ROs is counted
and compared with each other to generate one output bit.

16 CHAPTER 2. BACKGROUND

As shown in Figure 2.7, this fact can be used to generate bits. Two
identical implementations of ROs will oscillate with the frequencies f; and
f2 [SDO07]. These frequencies will be slightly different due to the production
tolerances. T'wo counters are started and ended at the same time to count
the amount of oscillations of f; and fo. The results will be compared and a
bit generated according to equation 2.12.

1, if fi> fiqa

: (2.12)
0, otherwise

r(fi, fir1) = {
Using this technique, k-ROs will produce a %bit long response. Other
techniques allow the creation of more bits, but they would be correlated, i.e.,
statistically dependent. By comparing every RO with each other, a total
of % = %_1) combinations is possible. This however produces correlated
results. A very fast or very slow RO will be dominant and effectively produce
a lot of 1 or 0 bits, that are quickly predictable. If used in the conventional
way of using each RO just for one bit generation, then ROs achieve one of
the best statistical behaviors [KKR12].

Arbiter PUF

Arbiter PUFs are delay-based silicon PUFs. They were first introduced by
Gassend et. al [GLCT04]. Instead of using frequencies, a race condition
is introduced as a measure. Figure 2.8 shows the working principle of an
arbiter PUF. The signal starting from the left is racing on two different
paths. The Multiplexers (muxes) at the interconnects can either cross the
signal paths or leave them straight. They are used to challenge the PUFs.
The arbiter circuit at the end of the signal path decides which path was
faster, i.e., which signal arrived at first, and produces an according binary
response.

response

Arbiter f—P»

. .
. .
. .
. .
. .
— 4 4 [
D D
- -
v v
- -
- -

Figure 2.8: Schematic of an arbiter PUF. A signal is racing on two different
paths that can be altered by using muxes. An arbiter circuit decides which
one of the paths was faster and generates a response bit accordingly.

It is crucial that all paths are designed in perfect symmetry. Unequal
length of paths will bias the PUF and lower the entropy dramatically, as the
production tolerances are not the main factor of path differences. This makes

2.2. PUF TYPES 17

their implementation on FPGAs very hard. The exact internal structures of
FPGAs are unknown. Therefore, ensuring an absolute identical symmetric
implementation is difficult. Another problem occurs when the difference in
delay between the two paths, caused by the random silicon process, is very
small. This leads either to metastability when both signals arrive at the
same time, or an unstable behavior.

When using the arbiter PUF as a strong PUF it is very prone to mod-
eling attacks. The 2™ possible challenges for n muxes have a linear correla-
tion. By using same paths for different challenges, the entropy is lowered.
Dominant paths, either very slow or very fast, highly influence the result
of multiple challenges. By attacking the challenge-response pairs with ma-
chine learning, the response to a given challenge can be calculated without
knowing the exact PUF structure. This violates the rule that a PUF should
be unclonable.

SRAM PUF

An SRAM is a silicon memory that uses a bistable circuit to store bits. The
CMOS implementation is typically built with six transistors. As shown in
Figure 2.9, two cross-coupled inverters form the memory cell. Two addi-
tional transistors are used for write and read operations. It is considered a
volatile memory, as it loses its information after a power down.

Vdd

l

—3p response

Vss

Figure 2.9: Schematic of an SRAM PUF. The cross coupled inverters act as
a memory cell and can store information. In case of a PUF, the initial state
of the SRAM is used as a response.

The usage of an SRAM as a PUF was first proposed by Guajardo et
al. [GKSTO07]. The bistable settle state of the SRAM is used as a PUF func-
tion. Upon enabling the supply voltage, the SRAM will be in a metastable
state. As the paths are designed symmetrically, only production tolerances
will define the ‘stronger’ path. This will determine the outcome bit of the

18 CHAPTER 2. BACKGROUND

SRAM, i.e., the settle state. As the settle state is unique for every cell,
it can be used as a PUF, as long as the SRAM cells are not pre-loaded
with an initial value. Unfortunately, the SRAM cells of most FPGAs are
preloaded by the hardware and therefore not usable as a PUF. Some re-
search [SGBT10, WG14] on using this method, especially on older devices,
exist but will not be covered in this thesis.

2.3 PUF-based Key Generation

Traditional secure key generation had two major premises: a) a good source
of randomness to generate unique secure keys and b) a secure non-volatile
memory to store the keys in a way that they cannot be read-out by an
unauthorized third party. Especially the demand for secure storage becomes
increasingly problematic. Embedded flash will be harder and especially
costlier to implement in current and future feature sizes. PUFs are a way to
fulfill both requirements at once. By using the device unique randomness,
a unique key can be generated, and it does not have to be stored, as it can
be reliably reproduced during its lifetime.

The PUF output bits cannot be directly used as a cryptographic key. Due
to instability of the read-outs, bit flips will occur. They can be addition-
ally enhanced by reversible and irreversible variations. A post-processing is
necessary to generate stable, high-entropy cryptographic keys under differ-
ent environmental conditions and during the complete lifetime of a device.
Helper data algorithms are used to generate reliable keys. As shown in Fig-
ure 2.10, this process can be separated in three steps: select, correct, and
compress [DGSV14].

noisy SELECT CORRECT COMPRESS
PUF output stable bits errors entropy
= information = privacy
reconcilation amplification

Figure 2.10: The basic steps of generating cryptographic keys from noisy
PUF responses.

2.3.1 Select

In this first step only the most reliable bits can be selected. This makes
the overall PUF response more stable and robust to environmental changes.
When the frequency difference between two ROs is not high enough, a bit
flip is very likely. Such PUF bits can be ignored in this first step. The
information about the used and unused PUF bits is stored in helper data.

2.3. PUF-BASED KEY GENERATION 19

2.3.2 Correct

The second step is error-correction. As the PUF response bits are unstable,
this step tries to correct all possible deviations from the initially measured
PUF output. Therefore, helper data is generated during a generation step
to restore the initial PUF output. This should always lead to a stable error
corrected PUF output, that can be used to generate a reliable cryptographic
key. Commonly used error-correction schemes are secure sketches [DRS04,
DGSV14] like syndrome coding or code-offset. A secure sketch consists of
two procedures: Sketch and Recover. Sketching takes a PUF input r and
returns a bit vector w. Recover on the other hand takes a noisy PUF output
r’ and the bit vector w and returns a r”, where the goal is that r = r”. The
latter is called the correctness property. A second property of secure sketches
is the security property. This ensures that if r contains a min-entropy of m,
that an attacker cannot recover r with a probability grater than 27.

Two examples of secure sketches are the code-offset construction and the
syndrome construction. The sketching procedure of the latter calculates a
helper data string w as a syndrome to w := r-H7. In the recover procedure a
syndrome s is calculated from the noisy PUF output to: s := - H” @w. The
syndrome decoder is then able to find an error word e such that s = e- H”,
with the HW of e being within the correctable error margin. Using the
error, the original PUF output can be recovered to 7 := r’ @ e. Common
choices for syndrome constructions are BCH codes [MVHV12], repetition
codes [MTV09b], and Reed-Muller codes [MTV09b].

In the code-offset construction [DRS04, MTV09b, BGS*08, MTV09a,
vdLSHT10] the sketching procedure XORs a random codeword ¢ with the
PUF response r to get w := r @ ¢. The recover procedure first calculates a
noisy codeword from the noisy PUF output: ¢’ := v/ @ w and then uses an
Error Correcting Code (ECC) to recover the original codeword c.

A fuzzy extractor can be seen as a generalization of a secure sketch and
a strong extractor. As PUF outputs are usually not completely uniformly
random, a certain min-entropy is guaranteed by a strong extractor. A fuzzy
extractor extracts a stable output from a fuzzy source in a generation phase
and reproduction phase. Figure 2.11 shows the schematic of a basic fuzzy
extractor. At first the generation step is executed. A secure sketch is used
to generate a helper data string from the initial PUF response. Accordingly,
the response is used in a secure extractor with a random salt to generate the
original key R. The random number is stored together with the helper data
string as the helper data. The PUF system is now ready to be shipped.

Whenever the PUF system is used in the field, the goal is to regenerate
the same key R. Therefore, the noisy PUF measurement r’ is used together
with the helper data string to regenerate the original response r. Then the
regenerated original response is used together with the same random number
salt in the extractor again to recover the key R’.

20 CHAPTER 2. BACKGROUND

PUF PUF
r Gen T Rep
Y Y
Sectre > helper »| Recover
Sketch . > Jata >
rand !
igi ‘ tored
Extractor |3 > original Extractor > res orey
X key R key R
rand
Rng

Figure 2.11: Schematic of a fuzzy extractor used for extracting high-entropy
and stable keys from a noisy bit source. The generation phase on the left
side is performed once to generate the corresponding helper data for the
device and PUF. The helper data is then used together with the noisy PUF
response to generate a stable key R in-field.

Traditionally, a fixed bit error probability is assumed for many silicon-
based PUF responses. This approach however is very pessimistic as many
PUF response bits are very robust. A soft-decision [MTV09a, MTV09b)]
secure sketch takes this into account. In these sketches every PUF response
bit has its own error probability and takes an individual likelihood into
account. The error correcting capabilities can be improved in comparison
to hard-decision sketches. The main advantage is that less PUF bits are
needed for the same failure rate and entropy level. On the other hand the
decoding effort raises dramatically. When using RO PUFs, the frequency
difference between two compared ROs can be used as an estimate for its bit
error probability. A commonly used algorithm is a soft-decision maximum-
likelihood decoding (SDML), as it offers a good performance, or generalized
multiple concatenated (GMC) codes that use, e.g., recursively split Reed-
Muller codes.

On the other hand, security criticism was recently raised by Delvaux et
al. [DGSV14], that the leakage of soft-decision coding is underestimated.
Powerful divide-and-conquer manipulation attacks are presented on some of
the used soft-decision coding schemes.

Other presented key-generation algorithms are Index-Based Syndrome
(IBS) [YD10] coding, Complementary-IBS coding [HMSS12, HDSMS12], or
Differential Sequence Coding (DSC) [HWRL"13, HS14, HYS16]. IBS is a
variant of the l-out-of-n selection, where an index to the most reliable bit
matching a codeword is stored. The index is used during reconstruction
to select the bits again and reconstruct the codeword. The C-IBS is an

2.4. FPGA 21

extension of IBS, where not only the index to a PUF bit is stored as helper
data, but also to complementary bits. This further increases the stability of
the codeword. An ECCs is used to error correct the codeword and reproduce
the key.

DSC is similiar to C-IBS, but in contrast to C-IBS, it has a fixed reli-
ability and variable block size. A sequence of PUF outputs is searched for
those outputs with an error probability under a predefined threshold. Unlike
C-IBS, the block size is not fixed, but the end of one iteration provides the
starting point for the next iteration of finding reliable bits.

2.3.3 Compress

In this last step the entropy of a PUF response is compressed, as it is mostly
not equal to its bit length. This can be both because of correlations between
the PUF bits and possible leakage of the helper data. This step is also
commonly referred to as privacy amplification. Most implementations use a
lightweight hash algorithm like SPONGENT [MVHV12, HWRL"13] or the
Toeplitz hash [BGS108].

2.4 FPGAs

FPGAs are ICs that are designed to be configured after manufacturing. The
basic idea is to have a specific Hardware Description Language (HDL) that
can be used to configure the circuit in-field. Programmable logic blocks
on the FPGA can be configured as complex logic functions and memory
elements can be used to store information. A complex routing system can be
configured to route the signals throughout the FPGA. This section contains
background information on the structures of modern FPGAs.

2.4.1 Overview

FPGAs were developed from previously used Programmable Logic Devices
(PLDs) and Programmable Read-Only Memorys (PROMs). In comparison
to PLDs the logic blocks are much more complex. They contain memory el-
ements such as Flip-Flops (FFs), and Lookup Tables (LUTs). Furthermore,
the routing possibilities to connect different logic blocks with each other are
enhanced. The leading companies pushing FPGAs were the 1983 founded
Altera, and two years later in 1985 founded Xilinx. Both companies rely on
SRAMSs as the main building block of the LUTs. SRAMs are relatively cheap
to manufacture, but require an external non-volatile memory to configure
the logic blocks at start-up. Microsemi, 1985 founded as Actel, on the other
hand relies on flash-based technology. The main advantage of flash-based
FPGAs is that it is non-volatile and very robust against single-event upsets.

22 CHAPTER 2. BACKGROUND

A recent trend is the combination of FPGAs with microcontrollers or
microprocessors to a System-on-Chip (SoC). This allows a combination of
flexible software solutions running on the processor and hardware acceler-
ated implemented on the FPGA. Among the most popular devices are the
Xilinx Zynq, Altera Cyclone, and MicroSemi’s SmartFusion. In this thesis
a Xilinx Zynq will be used, but the concepts presented are also transferable
to other devices.

2.4.2 Structure

SoC CLB
— D D / SLIIJJI_;E — Switch Matrix
]|z LUTE FF
L1000 SLICE
100 e J{0 LUTHFF
|:|!I_I!|:| OO LUTH{FFES

Figure 2.12: Schematic of a modern SoC with PS part and a PL part on the
same chip. The right side of the figure shows the basic structure of a CLB
containing LUTs, FFs, and a switch matrix.

A schematic of the SoC used in this work is shown in Figure 2.12. The
system consists of a hard-wired Processor System (PS) in the upper left part
and a Programmable Logic (PL) part. The PL part of the system consists
of many Configurable Logic Blocks (CLBs) and a complex routing system.
The CLB is built up by several slices and a switch matrix that connects the
slices to themselves and to the outside. A slice consists mainly of LUTSs to
implement logic functions, and FFs to store data. The Xilinx Zynq device,
which is used in this work, has two slices per CLB. Each slice consists of
four LUTSs and eight FFs [Xill4b]. The LUTs can be used as either one 6 bit
LUT, or two 5bit LUTs.

Dynamic partial reconfiguration allows the FPGA part to be partly re-
configured during runtime, without interfering with the rest of the FPGA.
This feature can be controlled by various interfaces, e.g., the Processor
Configuration Access Port (PCAP) or the Internal Configuration Access
Port (ICAP). In this work, we use the PCAP interface, that allows the PS
to reconfigure the PL.

Figure 2.13 shows a commonly used implementation of a CLB using N-
channel MOSFET (NMOS) pass transistors on an FPGA. This is the mainly

2.5. CRYPTOGRAPHY 23

used implementation in modern devices as it consumes less area than using
transmission gates [CB13]. Transmission gates on the other hand would
have the advantage of providing a more stable signal level. Extra level
restorer stages to refresh the signal level would not be needed. Chiasson and
Betz [CB13] wrote an interesting work about the advantages of transmission
gates on FPGAs and the current usage of pass transistors.

inputs

I0 I1 —

XN

—>
FF outputs

A\

clk

Figure 2.13: Simplified schematic of the implementation of a LUT on an
FPGA.

The LUT values are stored in SRAM cells. In this work, 6 bit LUTSs
are used, i.e., 64 SRAM cells are needed to store the LUT information. The
SRAM values of all LUTs are usually written when loading the configuration
design of the FPGA from the external non-volatile memory. They do not
change their values during runtime unless PR is used. The SRAM values
propagate through a mux network that is controlled by the inputs 10 to 15
for a 6bit LUT. For the sake of simplicity, extra buffer stages and level
restorers, which are commonly found in real implementations, are left out in
Figure 2.13. The usage of pass transistors is the reason why modern FPGAs
have more NMOS than P-channel MOSFET (PMOS) transistors.

2.5 Cryptography

Cryptography is defined as the practice and study of writing and reading
secret messages and codes. Two parties, e.g., Alice and Bob try to com-
municate with each other over an insecure channel. Active and passive
third parties should be prevented from reading messages (confidentiality),

24 CHAPTER 2. BACKGROUND

manipulating messages (integrity), claiming other identities (authenticity),
or disturb the availability of information. Two different approaches to ful-
fill these requirements are symmetric and asymmetric cryptography. Both
concepts will be explained briefly in the following subsections.

2.5.1 Symmetric

Plaintext Ciphertext Plaintext

N

Alice ——3p Encrypt ——==__3» Decrypt ——3 Bob

Alice and Bob’s
shared secret key

Figure 2.14: Schematic of a symmetric key algorithm. Alice wants to send
a secret message to Bob without a third party being able to read the infor-
mation on the communication channel.

Figure 2.14 shows the basic concept of symmetric cryptography. Sym-
metric refers to the usage of the cryptographic key. A message has to be
delivered securely from Alice to Bob. Alice uses a shared secret key to
encrypt the plaintext. After receiving the ciphertext, Bob decrypts the
message using the same shared secret key. The state-of-the-art symmetric
cryptographic algorithm is Advanced Encryption Standard (AES). It is a
block cipher that was developed by Joan Daemen and Vincent Rijmen as
the successor of the Data Encryption Standard (DES). By using symmetric
keys for encryption the confidentiality of data is ensured.

Another application purpose of symmetric keys are MACs. A MAC
is a secure checksum that can be calculated using the plaintext and the
symmetric key as input parameters. The MAC is sent together with the
plain- or ciphertext to the receiver, which himself can calculate the MAC
using the received text and the same symmetric key. The calculated MAC
has to be the same as the received MAC. Only parties holding the symmetric
key should be able to calculate a correct MAC to a given text. Aslong as the
key is being kept secret between the participating parties, the authenticity
and integrity of communicated information can be ensured.

2.5. CRYPTOGRAPHY 25

Plaintext Ciphertext Plaintext

5

Alice — 3 Encrypt — =3 Decrypt — 3 Bob

T T
e~ o=

Bob’s public key Bob’s private key

Figure 2.15: Schematic of a public-key cryptography algorithm used for
encryption of data.

2.5.2 Asymmetric

Asymmetric key algorithms follow another approach. As shown in Fig-
ure 2.15, the keys used for encryption and decryption are different. The
recipient of a message has a pair of keys: a private and a corresponding
public key. In this case Bob has a private key, which he keeps secret and a
public key, that he gives to Alice. Alice can use the public key to encrypt
the plaintext. The ciphertext can only be decrypted by holders of the pri-
vate key, which in this case is Bob. As long as Bob keeps his private key
secret and Alice uses the correct public key, the confidentiality of the data
is ensured.

Bob’s private key Bob’s public key

O

Plaintext

m} 10100011

Signature

|

Figure 2.16: Schematic of public-key cryptography algorithm used for digital
signatures.

Another possible use case of asymmetric ciphers are digital signatures as
shown in Figure 2.16. The private key can be used to sign a message. By
using the public key, this signature can be verified by any third party who
has the corresponding public key. A valid signature, however, can only be
calculated by the owner of the private key. This ensures authenticity and
integrity of the data, as long as the private key is being kept secret and the
correct public key is used.

In order to ensure the usage of the correct public keys, a PKI is needed.

26 CHAPTER 2. BACKGROUND

The PKI can either be centralized with a trusted Certificate Authority (CA)
certifying key pairs or be decentralized such as Pretty Good Privacy (PGP).

The state-of-the-art asymmetric algorithms are RSA and elliptic curve
cryptography. RSA is named by its inventors Rivest, Shamir, and Adle-
man. It is based on the practical difficulty of factoring the product of two
large prime numbers. Elliptic curve cryptography on the other, relies on
the infeasibility of finding the discrete logarithm of random elliptic curve
elements with respect to a publicly known base point. They play an inte-
gral role in modern authenticated communication, or to establish symmetric
keys. Symmetric ciphers usually outperform the asymmetric algorithms, but
don’t offer the advantages of having two distinct keys.

CHAPTER 3

Implementing RO-based PUFs on FPGAs

The implementation of PUFs on FPGAs is already covered in many research
papers. Most of them focus on gaining measurement data to show the prop-
erties of different PUF types. Very little research exists about efficiently
implementing them on FPGAs. This chapter covers the question if an ef-
ficient implementation of RO-based PUFs on FPGAs is possible without
using any partial reconfiguration. The experimental data from this chapter
is later on used as a reference for quality measures and area efficiency.

The chapter is organized as follows: in section 3.1 a short introduction is
given. Section 3.2 covers the theoretical aspects of implementing RO-based
PUFs on FPGAs. In section 3.3 a design with 4272 ROs is implemented on
a Xilinx Zynq device. The implemented design will be used and measured
in section 3.4 to analyze the characteristics of the RO-based PUF with the
focus on area, speed, and quality properties. In section 3.5 a conclusion is
given with an outlook and motivation to the next chapter.

3.1 Introduction

The SRAM cells on modern FPGAs are initialized at start-up and cannot
be used as a PUF. As it is hard to implement exact symmetrical structures
on FPGAs — which are needed for implementing own memory-based PUFs
such as butterfly PUFs — the focus was set on delay-based PUFs. Because
the arbiter PUF is susceptible to machine learning attacks [HMV12], RO-
based PUFs will be used in this thesis. The main goal of this work is to
create the bit source for a device unique key. Therefore, only PUFs with a
fixed challenge are used, i.e., weak PUFs.

The RO PUFs were implemented on a Xilinx Zynq Z7C020. This device

27

28 CHAPTER 3. IMPLEMENTING PUFS ON FPGAS

uses CLBs with two slices each. Each slice contains four LUTs. Each LUT
can be used as either one 6bit LUT, or two 5bit LUTs. Each LUT can
use up to two additional FFs to store values. Apart from logic function
generation, the slices can also be used for carry chain logic. Carry chain
logic can be used for very fast adders, comparators, and counters. The
signal path is optimized via a special direct routing to the next slice and
CLB. Each slice can be used as a 4 bit carry chain [Xill4a].

RO-based PUFs try to use frequency differences caused by production
tolerances to extract entropy from routing and logic. But this frequency also
depends on many influences such as noise, reversible variations, irreversible
variations, and location within the device. To minimize those influences on
the measurement and maximize the effect caused by production tolerances,
differential measurements, as explained in Figure 2.7, were used.

Different possible RO PUF constructions were analyzed for their area
consumption, speed, and reliability. It is always a trade-off between those
properties when using PUF technology. A high area consumption also leads
to a higher cost. Especially in high volume products, this can turn out
to be very expensive. Another aspect is speed: when using an Electrical
Control Unit (ECU) of a car, tight timing constraints are demanded by the
Controller Area Network (CAN) protocol. If a PUF-based key-generation
slows down the whole device, those timing constraints might not be reached
and the device would not work anymore. On the other hand, a low area
PUF that is read-out very fast might lead to a very unstable behavior and
an unreliable cryptographic key. Therefore, the requirements have to be
analyzed in detail before designing the PUF. The main focus of this thesis is
on an area optimized RO PUF implementation with good reliability. Every
design was tested for their area usage, speed, uniqueness, uniformity, bit
alias, and reliability.

3.2 Theory

Figure 3.1 shows the schematic and an exemplary implementation of an RO
PUF on an FPGA. In this case, three inverters are used in the oscillation
chain. The first inverter is implemented as a NAND gate to be able to
enable and disable the oscillation. Each inverter stage can be implemented
by using a single LUT, i.e., a 1bit LUT for an inverter and a 2bit LUT
for the NAND gate. The complex routing system is used to implement the
forward-feeding and loop-feeding of the signals.

Many previous RO PUF implementations used very long inverter chains,
to limit the frequency of the ring. A problem that occurs with the very short
3-inverter ring is that no current FPGA can handle the resulting frequencies
in the synchronous clock domain. These frequencies usually lie between
500 MHz and 1 GHz, as shown later in this thesis. The downside of using

3.2. THEORY 29

Schematic Implementation
enable CLB enable
¥ ¥ SLICE
NAND H----1 -[JLUT =
=Y B
L] __-hqlLutT
INVET | O = I =
7| sLIEeE —
TF'F X caall B]
LUT
LUT
LUT
y — y
output output

Figure 3.1: Schematic and implementation of a 3-inverter RO PUF on an
FPGA. A NAND gate is used to be able to enable and disable the oscillation.
A TFF is used to halve the frequency.

large inverter chains is the large area usage without gaining more extractable
entropy.

Another approach to lower the frequency is to use one or more Toggle
Flip-Flops (TFFs) after the RO. A TFF changes its state (‘toggles’) on
every input clock cycle. Figure 3.2 shows the structure of a TFF. A single
Data Flip-Flop (DFF) and an inverter can be used to halve the frequency
of an input signal. The high RO output frequency f is used as the clock
signal of the DFF to cause an inversion of the output signal. The resulting
frequency is exactly % f. It has to be ensured that the data path delay from
the Q output of the DFF, through the inverter, to the D input of the DFF
is not larger than the period of the DFF clock, i.e., the RO frequency.

By choosing an appropriate number of TFF's, the frequency can be low-
ered to an FPGA processable level. The TFF in Figure 3.1 is implemented
on the remaining LUT of the upper slice. Again, the LUT is used to im-
plement an inverter and additionally one FF for storing the current value.
The output of the FF is then routed outside the CLB and used as the out-

30 CHAPTER 3. IMPLEMENTING PUFS ON FPGAS

put frequency. Using this technique it is possible to implement a 3-inverter
RO-PUF on a single slice. A downside of using TFFs on the Xilinx Zynq is
that only one clock domain for memory elements is allowed per slice. This
limits the amount of TFFs per CLB to two [Xill4b].

< f
D Q-— mMiir
f A\

U —

Figure 3.2: Schematic and implementation of a TFF

N[—

As explained in Figure 2.7, the frequency of two such chains can then
be counted and compared to generate a single PUF bit. Various methods
to implement the counters on FPGAs exist. One possibility is to use two
synchronous counters that sample the RO frequencies with the global de-
vice clock [GCvDDO02]. Every detection of a positive signal edge will then
increment the counter. This, however, limits the RO frequency to half of
the global clock frequency. This problem can be overcome by using TFFs.

Another possible method is the usage of an asynchronous counter [Mer14].
Two ripple counters are fed by the two RO frequencies. The global clock is
used as a reference counter to start and stop both measurements at the same
moment. The advantage of this method is that higher input frequencies can
be processed. As long as the delay line capacity connecting the RO output
with the counter is not too long to be charged in time and the first DFF
can process the oscillation, very high frequencies can be processed. This
also achieves a higher measurement precision, compared to a synchronous
measurement. Another advantage of this method is the simple implementa-
tion and feasibility in FPGA logic. Most FPGAs have CLBs with integrated
carry chains, which can be used to implement the counters very efficiently.

3.3 Implementation

The implementation of RO PUF's on an FPGA requires some considerations.
As a synthesis tool always optimizes a circuit for speed and area, a RO with
unpredictable behavior would either throw a latch warning or be completely
optimized out as it serves no purpose from a tool point of view. Additionally,
every pair of ROs that is being compared had to be implemented exactly the
same. The placement and routing had to be thoroughly constrained. The
usage of slices, logic, pins, and routing was manually fixed to prevent any
optimization by the synthesis tool. In earlier works, hard macros were used

3.3. IMPLEMENTATION 31

in the Xilinx ISE suite. In the newest toolchain, Vivado, this feature was
removed. As a replacement, constraints can be defined in the TCL format
or the Xilinx proprietary XDC. In this thesis, mainly XDC constraints were
used to fix the placement of logic and routing. Each RO implementation
should only occupy one CLB and be limited from using outside logic and/or
routing.

¥ o
Dt
i O =t F
z = Rl
9 e D}
"""""""""""""""""""""""" @ L= e D!
2 b5

@ S Q%} =
. S=r=0
> e o)

Figure 3.3: RO PUF with three inverters and one TFF implemented on one
slice. The only signals entering and leaving the slice and CLB are the PUF
enable and output signal.

Figure 3.3 shows the FPGA implementation of the 3-inverter RO PUF
presented in Figure 3.1. All relevant signals for the oscillations are dashed
and therefore had a fixed routing. Every implementation of this RO PUF
was exactly identical. The usage of any logic not belonging to the PUF was
prohibited within the CLB to prevent any interference. With this method it
was possible to implement a 3-inverter RO PUF on one slice (see Figure 3.1)
and a 5-inverter RO PUF on one CLB, i.e., two slices. With seven inverters
it was not possible to keep the routing within the CLB. This would create
problems with the routing of neighbored ROs and make identical implemen-
tations very hard.

By using 3-inverter RO PUFs, it was possible to use the other slice in
the CLB for another purpose, e.g., another TFF to lower the frequency even
further. One CLB could be used for a RO with three inverters and two
TFFs. Timing problems with high frequencies might occur, if the second
TFF would not be on the same CLB. Therefore, a second TFF was used
right after the first one to divide the initial frequency by four.

32 CHAPTER 3. IMPLEMENTING PUFS ON FPGAS

pufs_i

pufs[0].inst pufs[0].puf_tff il

puf_enable puf_output tf_in| tff_out

pufs[0].inst_i_1 ro_puf__1 puf_tff__2
3

axi_pul_o[2Q pufs[].inst pufs[L].puf_tf i1
P oF——+
2 puf_enable puf_output tff_in| ff_out
073 To_put_2 pur_tt_3 puf_cnt 1 i i1
pufs[2].inst_i_1 pufs[2].inst pufs[2].puf_tff_i1 1
o o buf_output_1
2 puf_enable puf_output tff_in| f_out
B o
2 ro_puf__3 puf_tff__4 0

LUT3 pufs[3].inst pufs[3].puf_tff i1

LUT6

+H

puf_enable puf_output tff_in} tff_out

puf_cnt 2 i i 1

ro_puf__4 puf_tff_5

pufs[4].inst_i_1 pufs[4].inst pufs[4].puf_tff il 1
| | . puf_output_2
o puf_enable) puf_output f_in| tf_out
P11 o 3
2 ro_puf__5 puf_tff_6
LUT3 pufs[5].inst pufs[5).puf_tff_i1
pufs[6].inst_i_1 LuTe
2 puf_enable puf_output f_in) tf_out
p—1 o— To_pul__6 puf_tit_7
pufs[6].inst pufs[6].puf_tff_il

LUT3

puf_enable puf_output i f_out

[+
=

ro_puf__7 puf_tff__8
pufs[7].inst pufs[7].puf_tff_i1

puf_enable puf_output tff_in| tf_out

ro_puf’ puf_tff

ro_pufs

Figure 3.4: Schematic of eight RO PUFs. The yellow rectangles are the
input and output muxes. The blue rectangles are the eight ROs with two
TFFs each.

Figure 3.4 shows an exemplary schematic of eight ROs. In the first
stage, the selected RO pair is enabled, all others are disabled. The blue
rectangles are the eight ROs themselves including one TFF, and a second
TFF right after the RO block. Two ROs are activated at the same time.
Two LUTSs serve as muxes to select the correct RO outputs. Very efficient
mux implementations are possible on FPGAs [Chal4].

It will be shown in chapter 3.4, that the first implementation of the
PUF construction was very unstable. This was caused by random logic
being placed on the same CLBs as the ROs and TFFs. Figure 3.5 shows a
biased RO pair, caused by interfering logic. Both 3-inverter ROs had the
same implementation and routing. But CLB 1 was not only used for the RO
implementation (orange boxes), but also for other logic (turquoise boxes).
This surrounding logic can have various effects on the frequency of the RO
induced by, e.g., electromagnetic emanation or local power drains. CLB 2,
on the other hand, was only used for the RO chain. This ultimately led to
a lower frequency for the lower RO and therefore a bias towards 0.

This problem was fixed by forcing the second TFF to be placed on the
same CLB and restraining any other logic to be placed on the same CLB.

3.3. IMPLEMENTATION 33

[e]] g

EWFEF_INTER_R

Figure 3.5: Biased pair of ROs. Both 3-inverter ROs (orange) had the same
implementation and routing. CLB 1 used its second slice for other logic,

whereas CLB 2 left the slice free. This resulted in a lower frequency for the
RO on CLB 1 and a bias towards 0.

This, however, raised the area consumption, as another slice was occupied
by just one TFF.

The implementation of an asynchronous counter was much more area
efficient in the used FPGA technology. Furthermore, only the first flip-flop
of the ripple counter ran at the high input frequency, thus making it easier
to achieve a design that meets the timing requirements. In Figure 3.6a, four
slices were enough to implement the 16 bit version of the counter. By using
the 4 bit carry chain element in each slice together with four FFs to store the
according counter values, a much better area efficiency than a synchronous
counter was achieved. Lower slices of a CLB can only be connected with
lower slices of another CLB to a carry chain (and upper slices with upper
slices accordingly). Therefore, four CLBs were needed to implement a 16 bit
counter. This was of advantage when using two 16 bit counters. The lower
slices could be connected to a chain, and the upper slices accordingly. This
can be seen in Figure 3.6b. All four CLBs were used efficiently with no space
for other logic.

The bit size of the counters is important for the precision of the measure-
ment. The longer the measurement, the more precise, but also the slower

34 CHAPTER 3. IMPLEMENTING PUFS ON FPGAS

I s
- = -
1 » -
- =
_ U] Ll
\
(A i
| i u
] .
| Ll
|
(a) 16bit Ripple carry counter im- (b) Two 16 bit Ripple carry counters
plemented on four CLBs resp. four in four CLBs resp. eight slices

slices.

Figure 3.6: Area efficient implementation of 16 bit asynchronous ripple carry
counters.

it is. Another problem is that the longer the PUF is activated, the hot-
ter it gets. This has an influence on the frequency as shown in previous
work [SC06, LBGB00, Zhal3]. It was shown by Lopez et al. [LBGBO00], that
a countermeasure against this is to either let the oscillator run as shortly as
possible or as long as possible, because the time-frequency decrease follows a
second order exponential curve. Letting the oscillator run too shortly, on the
other hand, leads to a high possible measurement error. When measuring
a mean frequency f of the ROs for a measurement time t,,eqs & maximum
measurement error [Merl4] can be calculated to:

Emazxr =

2. tmeas : f

3.3. IMPLEMENTATION 35

Measurements of ROs with various lengths showed that 3-inverter ROs
on a 28 nm FPGA had frequencies between 513 MHz and 548 MHz. When
using 1-inverter ROs the highest frequency was measured to up to 1300 MHz.
As 3-inverter ROs were used in this chapter, a maximum frequency of
600 MHz was assumed. This was important to choose the right amount
of TFFs and the necessary bit size of the frequency counter. To lower the
maximum frequency of 600 MHz to a constrainable level, two TFFs were
used. This lowered the maximum input frequency for the measurement cir-
cuit to 150 MHz. A 12bit counter was used to have enough room for a
potentially higher frequency.

A reference counter was used to start and stop the measurement of a RO
pair. It was chosen to be 10bit wide with a frequency of f,.; = 100 MHz.
The DFF data path delay of the first TFF was calculated to 1.006 ns, of
which 0.642 ns were caused by logic delay and 0.364 ns by route delay. The
maximum input frequency for the first TFF was therefore roughly %ns =
1GHz. With a maximum RO frequency of 600 MHz this design met the
requirements.

As additional errors are introduced by, e.g., environment conditions such
as temperature and voltage, the measurement error had to be kept as small
as possible. An acceptable value could be defined as e,q, = 0.05 % [SC06].
By using TFFs before the measurement, the frequency was lowered to an ac-
ceptable value. The input frequency of the measurement circuit was timing-
constrained with the highest previously measured frequency, to guarantee
a glitch free behavior for all ROs. The minimum runtime of the measure-
ment [Mer14] can then be calculated to:

1 1
2 emaz * fmin 2+ 0.05% - 128 MHz

=T7.8us (3.2)

min(tmeas) =

A 10Dbit reference counter with a reference frequency of 100 MHz has a
runtime of:

210

tmeas = - = 10.24 3.3
meas 100 MHZ IU’S ()

Therefore, the minimum runtime requirement was fulfilled.
For each output bit, two RO frequencies had to be measured, along with
a reference clock which started and stopped the measurement. For area

36 CHAPTER 3. IMPLEMENTING PUFS ON FPGAS

efficiency it would be enough to measure only one frequency at a time, store
it, and compare it with the next measurement to generate an output bit.
On the other hand, implementing a second RO counter would accelerate
the measurement time by a factor of two, while the area overhead would
be very small with three slices for a 12 bit counter. The two counters for
the reference and the RO measurement could be efficiently implemented
according to Figure 3.6b.

For this implementation the three counter method was chosen. One
counter was used as a reference counter and two counters to count the fre-
quencies of one RO pair. If faster read outs were needed, they could be
further sped up by using more counters to measure multiple RO pairs at the
same time.

As the resulting PUF output bits are not stable, they cannot be directly
used as a key. A key generation scheme is needed. Therefore, more raw bits
are needed to be generated than can be used as key bits. Common algorithms
need around 12 input bits to generate one key bit [HMSS12, MTV09b].
These works used SRAM PUFs with a bit error probability of around 15 %.
More sophisticated methods like the DSC by Hiller et al. [HYS16] decreased
the amount to 7.6 input bits per key bit. Hence, an estimation using 12 PUF
bits per key bit is very conservative, as RO PUFs showed better results in
terms of stability [KKR12].

The total amount of unprocessed PUF bits r to generate a 128 bit key
is therefore:

r=12-128bit = 1536 bit (3.4)

As every bit needs two ROs, an implementation with 3072 ROs was
needed.

3.4 Experimental Results

In this section a design using the choices made in the previous section was
implemented using the Vivado toolchain and a Xilinx Zynq Z-7020 SoC. This
chip consists of two ARM Cortex-A9 Cores as the Processor System (PS)
part and an Artix-7 FPGA as the Programmable Logic (PL) part. The PS
has access to the external memory and can configure and reconfigure the
FPGA. After booting the system, the PS loaded the PUF design from the
external memory. The PS was furthermore used to make and control the
measurement of the PUFs on the PL part of the board.

To get a statistically more reliable result, the largest possible amount of

3.4. EXPERIMENTAL RESULTS 37

ROs was used on the available space. 4272 ROs were implemented on the
FPGA area. This resulted in a total amount of 2136 PUF bits, whereas only
1536 bit would have been needed for a 128 bit key. One counter was used for
the reference counter and two counters for a pair of ROs. As clock domain
crossing occurs when reading out the RO counters with the system clock,
additional synchronization logic was implemented.

3.4.1 Area

The area consumption of the design depended on the necessary amount
of PUF output bits. For each output bit, two ROs were needed, which
consumed one CLB each. These CLBs could not be used for any other logic.
As shown in Figure 3.6b, two 16 bit asynchronous counters consumed four
additional CLBs. The two TFFs before the measurement stage needed an
additional two CLBs.

RO PUFs | Measurement | Total available | % of total
FF 8544 67 106400 9%
LUT 24908 28 53200 48%
MUX 846 0 39900 2%
Slice 10560 25 13300 80%

Table 3.1: Resource utilization of a PUF design using 4272 3-inverter RO
PUFs with three counters to read out the frequencies of the ROs and gen-
erate one bit per RO pair. The used SoC was a Xilinx Zynq Z-7020.

Table 3.1 shows the area needed for the implemented design. It can be
easily seen that the vast majority of logic resources was used by the 4272
RO PUFs. According to Figure 3.1, three LUTs were needed for every 3-
inverter RO. An additional pair of LUT and FF was needed to implement
the TFF. Roughly one LUT per RO was occupied by the input mux stage.
348 LUTs and 143 muxes were needed to implement the output mux stage
to select the correct RO output frequencies.

The measurement circuit, on the other hand, only consumed 42 FFs and
28 LUTSs. Three muxes were needed for each 10 bit, resp. 12 bit counter, and
two additional multiplexer for the comparison of the results to generate one
output bit.

In conclusion, it can be said that using this RO PUF on existing FPGAs
was very area inefficient, which might lead to high cost. Around 80 % of
the slices and almost 50 % of the available LUTSs were occupied by the PUF
structures. The key generation algorithm is not even included in this cal-
culation. Therefore, it might be good for testing purposes, but absolutely
not feasible for real life applications. The results will be used in the next

38 CHAPTER 3. IMPLEMENTING PUFS ON FPGAS

chapter as a reference for area consumption as well as quality measures.

3.4.2 Speed

Another important requirement to PUF's is a fast processing to not hold back
the regular IC function for long times. As already calculated, the comparison
of two ROs using a 10 bit 100 MHz reference counter took 10.24 ps. As a total
of 2136 bit was generated using 4272 RO PUFs a total read-out time of

trotal = 2136 - 10.24 s = 21.87 ms (3.5)

was expected.

Simulation of the design confirmed this theoretical approach, where the
measurement took 21.98 ms, including some extra wait states causing over-
head. The real implementation of the designs suffered from an additional
delay due to the read out of the resulting bits to the ARM processor. To mea-
sure all 4272 RO PUFs 1000 times, and writing back the results to a text file
on the SD card using the PS took 27.05s. Therefore, the measurement time
of one 2136 bit PUF output could be calculated to 27.05s/1000 = 27.05 ms,
which was still a very good result, considering the overhead caused by the
interaction with the PS. This could be further improved when processing
the output bits inside the FPGA or reading out more than one RO pair at
a time.

3.4.3 Quality Properties

The experiments were done on a total of ten different boards: four Zed-
Boards and six Xilinx ZC702 evaluation boards. Both use the same Xilinx
Zynq Z-7020 SoC. Each RO was measured 1000 times. Both the resulting
bits of the RO pair comparisons and the raw counter values of each RO were
stored. This allowed a better analysis of the data in Matlab. All measure-
ments were performed in a climate chamber at exactly 25 °C and a constant
FPGA core voltage of 1.0V.

Frequencies

The counter values were transformed to frequencies using following equation:

3.4. EXPERIMENTAL RESULTS

fro="5

fref - 2mrs

Tent

39

(3.6)

With the reference frequency f,.y = 100 MHz, the number of TFFs in
the design nyyy = 2, the length of reference counter I,.; = 10 bit, this yields
an RO frequency fro of:

fro =

140 I I I
120 ! a | | " i
- - HH HE | I
100 - s=E 1 NE N
2 = M II "
n = | = | |
= 80} =‘:-_=_l=|=l!l .
2 -:'L"'::-II = =
2 ol ShlEg_igits e
o = !
- & !l.ig!: is |
= :il'l|: N, -
=N =1
- ;.-=li ;:n:._l_
- C R
I!!li. =5

100 MHz - 22
210

“Tent = 390625 - 7oy

[N}
(e=)

40
X-position on SoC

D
[an}

o
S+

100

540

535

530

525

1520

1515

(3.7)

Frequency in MHz

Figure 3.7: Heatmap of the frequencies of each of the 4272 ROs on the Zyngq.
The PS is located in the upper left corner. Each rectangle represents one

RO measurements.

This formula was used to calculate the frequency of each RO on the SoC.
The distribution of the frequencies on one SoC is shown in the heatmap in
Figure 3.7. Each of the 4272 rectangles represents the frequency of one RO

40 CHAPTER 3. IMPLEMENTING PUFS ON FPGAS

instance. The PS is situated in the left upper part of the figure. ROs in the
middle region that were close to the PS tended to have a lower frequency.
Furthermore, the left lower and especially the right upper corner tended
to produce higher frequencies. Possible reasons for that effect are diverse:
influences from the PS, chip design, manufacturing, different temperatures
within the chip, or electromagnetic interference with surrounding logic. This
could lead to spatial correlation, when comparing ROs that are not close to
each other. Therefore, only neighbored ROs were used to generate bits. It
can be seen that neighbored ROs had a more similar and therefore less cor-
related frequency. The actual frequency difference depended almost entirely
on production tolerances. On the other hand, an almost equal frequency
might lead to stability problems, as shown in chapter 5.

The mean frequency was measured to 526 MHz with a variance of 16.3
and a standard deviation of 4. This frequency met the requirements of the
12bit counter. The frequency could be theoretically up to 1.6 GHz before
wrapping around the 12 bit counter limit.

Furthermore, it can be seen that the area consumption to produce a
2136 bit key was very high. Almost all of the CLBs on the Zynq were
occupied, rendering it almost impossible to place any other logic on the
FPGA.

0.6r

+* Ny
| f‘*‘ *«‘

Hamming weight

o

=

at
T

04 L L L L L L L L L L
12 3 4 5 6 7 8 9 10

Board

Figure 3.8: Bean plot of the HW of the same 3-inverter RO PUF implemen-
tation on 10 different boards.

3.4. EXPERIMENTAL RESULTS 41

Uniformity

The uniformity of the PUF responses was measured using the HW. Fig-
ure 3.8 shows the HW of the whole 2136 bit response on each Board. To
measure the stability of the responses, 1000 consecutive measurements at
the same temperature and voltage were taken and visualized in a bean plot.
Bean plots visualize multiple probability distributions in one graph. Each
bean represents the distribution of the HW of the 2136 bit responses.

It can be seen that within the beans the results show the form of a
normal distribution with a small standard deviation. The mean value of
each bean, i.e., of each HW on each board, was very close to the ideal value
of 0.5. Therefore, an equal distribution of ones and zeros was given. The
worst results was measured on board 3 with a mean HW of 0.525. However,
this could also be the result of a statistical outlier, as the amount of bits
with 2136 was still relatively low.

Stability

The stability of the 1000 consecutive measurements was measured using
the intra-device HD. The first measurement on each board was taken as a
reference, and then the distance to each other response was calculated.

0.08r

=

(e}

=
‘

o

o

=
T

o

o

t
T

e

o

&
\

=
o
i)

Hiopptitd

1 2 3 4 5 6 7 8 9 10
Board

Intra device Hamming distance
o
o
=
‘

=

o

—
T

Figure 3.9: Bean plot of the Intra-device HD. The first measurement on
each board was taken as a reference value and compared to each of the
consecutive measurements.

Figure 3.9 shows the bean plot of the intra-device HD. It can be seen that
the mean values of each board were very close to each other. Therefore, the

42 CHAPTER 3. IMPLEMENTING PUFS ON FPGAS

intra-device HD was not depending on the board and had a value relatively
close to the mean over all boards of 2.75%. This means that almost 3% of
all bits changed during consecutive measurement at the same temperature
and voltage on the same board. This is due to very similar frequencies of
neighbored ROs. When analyzing the counter values it could be seen that
the counters sometimes even had the same output value, and a deviation
of around 2 to 3 at an absolute counter value of around 1350 was normal.
Compared to other PUF types and even other RO PUF implementations on
FPGAs, this was still a very good result [KKR*12]. The distribution of the
HD on the same board showed the form of a normal distribution in the bean
plot. An in-depth analysis of the reliability under different environmental
conditions and aging was performed in chapter 5.

300

250

[N
o
(=]

150

Number of RO pairs

100

50

0 -14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14
Frequency difference in MHz

Figure 3.10: Histogram of the frequency difference between each of the 2136
RO pairs on one of the FPGAs. The absolute mean frequency of the ROs
was 526 MHz.

Figure 3.10 gives a further insight in the counter differences of the RO
pairs. The frequency differences of all 2136 RO pairs on one of the FPGAs
are plotted. A possibility to decrease the intra-device HD is to ignore all
RO pairs with a very small frequency difference during an enrollment phase.
These RO pairs would not be used in further measurements. The choice of
RO pairs is device specific, as the production tolerances are random. On the
other hand, doing this might remove a lot of RO pairs. As seen in the graph,
most RO pairs are close to a very small frequency difference. Furthermore,
the amount of removed pairs must be known in advance, when a certain

3.4. EXPERIMENTAL RESULTS 43

45(T T T T T 450

e
o
=1

IS =)

S S

G D
S S

Number of PUFs
S

=N W

ot
S

100
50
0

O(J 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Bit alias of single bit over all Boards Bit alias of single bit over all Boards

(a) Bias of many bits towards 0. This results (b) Mean value at 0.5, a clearly visible nor-
in a bad HD and HW and therefore to a bad mal distribution and a small standard devi-
Uniqueness of the PUF. ation.

Figure 3.11: Histograms of bit aliases of single bits measured over all boards.

amount of PUF bits are needed. An estimation of the stability is also very
important for the choice of a suitable error correction algorithm and its
parameters.

Bit alias

The bit alias measures the distribution of ones and zeros of the same RO pair
on different boards. As the frequency difference should only be depending
on production tolerances, the same PUF's on different boards should produce
an equal ratio of ones and zeros. This was used in the previous section to
identify the bad design. Figure 3.11a shows the bit alias of the first imple-
mentation, where the second slice on the CLB was filled with random logic
and was not consistent for every RO. Although the histogram is centered at
0.5 and the mean value is very good with 0.49, the normal distribution is
very flat. A higher peak in the middle would be expected. The problem is,
that every deviation from 0.5 is bad, no matter if it is towards 0 or 1. The
standard deviation was measured to 0.231. This ultimately led to a bad HW
and inter-device HD.

Figure 3.11b shows the result of the new design, where the neighbored
slice was restrained from using any other logic, and the second TFF was
placed in that position. The Gaussian is much more narrow, with a high
peak in the middle. Almost no RO pair produced constant zeros or ones on
all boards. Most RO pairs had an equal distribution of ones and zeros. A
mean value of 0.52 and a standard deviation of 0.176 were calculated.

Uniqueness

To measure the uniqueness of the complete PUF responses, the inter-device
HD was used. Therefore, the HD between the PUF responses of each board

44 CHAPTER 3. IMPLEMENTING PUFS ON FPGAS

1 2 3 4 5 6 7 8 9 10
0.00 | 0.50 | 0.49 | 0.49 | 0.47 | 0.51 | 0.48 | 0.49 | 0.50 | 0.48
0.50 | 0.00 | 0.50 | 0.50 | 0.48 | 0.48 | 0.50 | 0.49 | 0.50 | 0.49
0.49 | 0.50 | 0.00 | 0.50 | 0.51 | 0.49 | 0.50 | 0.48 | 0.49 | 0.49
0.49 | 0.50 | 0.50 | 0.00 | 0.49 | 0.48 | 0.49 | 0.50 | 0.49 | 0.50
0.47 | 0.48 | 0.51 | 0.49 | 0.00 | 0.47 | 0.48 | 0.48 | 0.49 | 0.49
0.51 | 0.48 | 0.49 | 0.48 | 0.47 | 0.00 | 0.50 | 0.48 | 0.48 | 0.48
0.48 | 0.50 | 0.50 | 0.49 | 0.48 | 0.50 | 0.00 | 0.49 | 0.49 | 0.48
049 | 049 | 0.48 | 0.50 | 0.48 | 0.48 | 0.49 | 0.00 | 0.50 | 0.49
0.50 | 0.50 | 0.49 | 0.49 | 0.49 | 0.48 | 0.49 | 0.50 | 0.00 | 0.47
0.48 | 0.49 | 0.49 | 0.50 | 0.49 | 0.48 | 0.48 | 0.49 | 0.47 | 0.00

S| (N[O |[W| |-

-
o

Table 3.2: Inter-device HD between each 2136 bit PUF output of each of the
ten measured boards.

was calculated. Table 3.2 shows the results. It can be seen that every HD
was very close to the ideal value of 0.5. The worst value was measured
between board 1 and 5, and board 9 and 10 with 0.47. This might be a
statistical outlier and was still within an acceptable range considering the
relatively small amount of bits for statistical calculations. The mean value
of the inter-device HD of the unfixed design was 0.43 and validated the
assumption of a bias. The mean value of the new design was 0.492.

3.5 Conclusion

The designed 3-inverter RO PUF fulfilled all requirements to produce unique
and stable outputs. The results were in line with previous research, although
the RO chains had a much smaller amount of inverters. However, the design
still required a very large area. This made it not efficiently usable in real-
world scenarios. A solution to overcome this problem will be presented in
the following chapter. Furthermore, all measurements were made under the
same environmental conditions, i.e., temperature and voltage. Aging of the
device was not considered as well. These variations will be further examined
in chapter 5.

CHAPTER 4

Enhancing the Efficiency of PUFs on FPGAs Using Partial
Reconfiguration

The previous chapter showed the clear downside of using PUFs on FP-
GAs — the area consumption. To generate a bit vector of sufficient size,
that can be used as a reliable key source after an error correction and key
generation, almost the whole area of the Zynq Z-7020 was needed. In this
chapter a new method is presented that allows RO PUF designs with a much
smaller area consumption. The dynamic partial reconfiguration feature is
used to extract more entropy of the complex logic and routing resources
of the FPGA. Parts of this chapter were published and presented at two
conferences [GS14, GS15] and in one journal [GS16].

The chapter is organized as follows: a short introduction and motivation
for this new method is given in section 4.1. The prior work to using PR
for PUFs on FPGAs is presented in section 4.2. The novel method is then
explained in detail in section 4.3. An exemplary implementation of the
method on an FPGA is presented in section 4.4 and the experimental results
shown and analyzed in section 4.5. A detailed examination of the entropy of
the PUF data is done in section 4.6. The conclusion is given in section 4.7.

4.1 Introduction

The main advantage of an FPGA over other ICs is its logic reconfigurability.
An intuitive approach to use this feature to overcome the large area con-
sumption of PUFs on FPGAs would be to use a combination of the PS and
PL. The PS can load any design on the PL and overwrite it at any time. A
key could be generated using one big PUF design, then read back to the PS,
and the actual design could be loaded on the PL afterwards. Unfortunately,

45

46 CHAPTER 4. ENHANCING EFFICIENCY USING PR

this approach has many disadvantages. Firstly, the boot up time of the
design is largely affected. In time-critical environments a running design on
the PL is needed very fast. Furthermore, the FPGA is completely reset after
loading another design on it. This renders parallel processing of other logic
impossible. The biggest downside is that the key has to be stored temporar-
ily in the PS and thus increasing its attack surface. The goal of this work is
to generate a secure key and store it inside the FPGA without leaking it to
the outside. This makes a complete reconfiguration of the FPGA infeasible.

A more sophisticated approach to reuse area on an FPGA is the dynamic
partial reconfiguration feature of modern FPGAs. It started as a feature for
the large and expensive devices such as the Virtex-4. Throughout genera-
tions it also made its way into cheaper devices. Today, all new devices of
Xilinx and almost all new devices of Altera support this feature. Dynamic
partial reconfiguration allows the FPGA part to be partly reconfigured dur-
ing runtime, without interfering with the rest of the FPGA. This feature can
be controlled by various interfaces, e.g., the PCAPs or the ICAPs. In this
work, the PCAP interface, that allows the PS to reconfigure the PL during
runtime, was used.

FPGA
— FPGA area

Full
Design | PR area
PR

Design Interface to

PR ~ & from PR

Design

Figure 4.1: Functional principle of partial reconfiguration on a modern
FPGA. A full design is used to configure the complete FPGA. Pre-defined
parts of the FPGA can be dynamically and partially reconfigured using the
PR designs.

Figure 4.1 shows the basic functional principle of PR. A full design is
loaded on the FPGA to initialize all logic and routing resources. The com-
plete design is already aware of the PR area and defines it. Afterwards,
multiple PR designs can be loaded sequentially on the same predefined area,
which is marked by a blue rectangle in Figure 4.1. The communication be-
tween the regular FPGA area and the PR area is done through user defined
interfaces, that are realized within dedicated CLBs. Both the full design

4.2. PRIOR WORK 47

and PR designs have to be aware of those interfaces. The PR area can be
used for different types of logic that are needed for a certain time period.
Multiple PR areas can exist on the same FPGA area. The PR design has
to match the exact size of the PR area. PR designs can be programmed
linearly faster than complete designs, depending on their size [Xill5].

When using partial reconfiguration in combination with PUF-based key
generation, the area that was used for the implementation of the PUF and
the key generation can be reconfigured with other logic. The area can be
reused, while the FPGA keeps running. The key can stay inside the FPGA.
Time critical functions can be loaded on the FPGA in parallel to the PUF
key generation and already be executed. They would not be interfered with
when reconfiguring the PUF area. Unfortunately, the area that is used
for the reconfiguration has to have specified interfaces to other logic areas.
The partial reconfiguration area is fixed in size and cannot be shrinked or
enlarged during runtime of the device. Therefore, any logic that would reuse
the PUF area has to be within the same area boundaries.

When using the large design of chapter 3 with partial reconfiguration,
the possibilities would still be very limited. A PR area always has to be
programmed in a whole and cannot be further split. The whole FPGA
would have to be defined as PR area. Thus no other PR area would be
possible. The pre-defined interfaces limit the possibilities for logic placement
and routing within the PR area dramatically. For time critical designs it
might be hard to meet timing constraints or to route all IO pins at all.
Furthermore, additional area would be consumed due to those limitations
of placement and routing, and result in additional area inefficiency.

Fortunately, the PR feature can be used alternatively to overcome these
problems and maintain the flexibility of placement and routing, and the PR
feature for other logic. The core idea is having different implementations
of the same ROs on one CLB. The designs are then sequentially partially
reconfigured. This uses the entropy resources of a CLB more efficiently.

4.2 Prior Work

The idea of reconfigurable PUF's has already been proposed in several pub-
lications [KSST09, MKP09, RJA12, KKL*"11]. However, the word “recon-
figurable” is always used with a different meaning. Kursawe et al. [KSST09]
propose a constant implementation of a PUF, where its internal configura-
tion is changed by, e.g., irradiation with a laser beam. This reconfiguration
creates new challenge-response pairs. The logically reconfigurable PUF is
introduced by Katzenbeisser et al. [KKL111], which uses state-dependent
input and output transformations to change the challenge-response behav-
ior for the design on each new state. Riithrmaier et al. [RJA12] present the
erasable PUF. It can alter the behavior of single challenge-response pairs

48 CHAPTER 4. ENHANCING EFFICIENCY USING PR

irreversibly, while keeping all of the others fixed. Majzoobi et al. [MKP09]
use the reconfiguration just for an initial device characterization step. The
generated hard to invert input and output networks are used to make model-
building attacks more difficult.

The contribution of this work is a PUF system design, which uses se-
quentially loaded PUFs on the same logic block of an FPGA. Each PUF
uses the same netlist, but other routing and logic resources. Unlike a recon-
figuration of the PUF itself, a new PUF implementation is reconfigured on
the same logic blocks of an FPGA.

4.3 Reconfigurable PUF

The area usage when implementing a single RO on a CLB is very high, as
shown in chapter 3. The solution presented in this chapter uses a smaller
l-inverter RO PUF. Different implementations of the RO PUF are recon-
figured as long as enough entropy is left in the CLB. Due to the smaller
l-inverter RO PUF, more variations of implementations are possible.

The proposed system and process of using reconfigurable PUFs is de-
picted in Figure 4.2. According to Figure 4.2a, the FPGA designs are stored
in an external memory. A PR area on the FPGA is defined, as well as a
separate partial key storage. The partial key storage can store the results
of the n Partial Reconfiguration Designs (PRDs). For reasons of clarity, the
resulting bit vector is used synonymously to a key. In reality, a key gen-
eration algorithm is needed to convert the unreliable response vector to an
actual key [DGSV14].

The PS has access to the external memory and can configure and recon-
figure the FPGA. After booting the system, the PS loads the base design
from the external memory and configures the FPGA as shown in Figure 4.2b.
The PS loads the first partial PUF design from the memory and reconfig-
ures the previously empty PR area with that PUF design, as shown in
Figure 4.2c. The PUF design consists of m equally implemented RO pairs.
Each RO pair generates a 1bit result, by comparing their two frequencies.
One partial PUF design generates an m bit key, which is stored in the partial
key storage. The PUFs are read out; the response vector is generated and
stored in the key storage.

After reading out all PUFs and storing the key, the PS reconfigures
the PR area with another PUF implementation. Again, an m bit response
is generated and stored in the partial key storage. This process can be
repeated as long as there is enough entropy in the area left by using different
routings and logic resources. After reconfiguring and reading out n PUF
implementations, the partial key storage consists of n different m bit wide
PUF responses. This process is repeated n times until all partial designs were
reconfigured and read out. All of them can now be joined to an m - n bit

4.3. RECONFIGURABLE PUF 49

BASE |PRD1]|== |PRDn BASE |PRD1|== |PRDn
PL config py,
PS PS >
) -
partial key ‘ ‘ ‘ partial key
storage storage
1 dee 1 ..
PR Area : PR Area 2
‘[n ‘| n
(a) SoC design (b) configure base design
BASE |PRD1]|== |PRDn BASE |PRD1|== |PRDn
1
PL PL
PS PS
partial key partial key
config
storage storage
pUFL [key® PR Area el
&\
(c) configure first PUF (d) all keys generated

Figure 4.2: Process of using reconfigurable PUFs for key generation on an
SoC with an FPGA, base design and partial reconfiguration designs (PRDs)
are stored in an external memory.

wide response and be used to generate a cryptographic key. Figure 4.2d
shows the filled partial key storage. The generated key can now be used by
other parts of the FPGA, e.g., by a trusted platform module (TPM). The
key is exclusively generated inside the FPGA and never leaves the FPGA.
This increases the security of the system.

4.3.1 Method 1: Using Different LUTs Within the Same
CLB

An exemplary reconfiguration is illustrated in Figure 4.3. For the sake of
simplicity, only the oscillation ring is depicted, whereas the TFF part is left
out. In Figure 4.3a, only the uppermost LUT of one slice is used to imple-

50 CHAPTER 4. ENHANCING EFFICIENCY USING PR

CLB CLB
SLICE Switch Matrix SLICE Switch Matrix

LUt
LUt

> LUT
[4

[4
o [4
o ®
(a) First PUF implementation (b) Second PUF implementation

Figure 4.3: Two possible PUF implementations on the same CLB using
different LUTS, showing only the upper slice with one LUT used as a NAND
function.

ment the RO. In the case of modern Xilinx FPGAs, this means that seven
LUTs remain completely unused. Instead of just using one implementation
of the 1-inverter RO, another LUT is used for the second PR design. The
second implementation is shown in Figure 4.3b, which uses the same netlist
of a l-inverter RO PUF, but its implementation is distinct in the usage of
another LUT and routing. Therefore, the source of entropy is distinct and
the frequencies will be different. Due to routing limitations it is not possible
to implement these two PUFs at the same time of the same CLB, there-
fore, we use partial reconfiguration to implement them sequentially. When
comparing the frequencies of two ROs, the same implementation has to be
used.

It is important to always use different logic and routing resources, oth-
erwise there will be correlation between two PUF implementations and the
result will be predictable. When using this method with the Xilinx Zynq,
it is possible to implement up to eight different PUF's on one CLB, as there
are four LUTSs per slice and two slices per CLB. This would already increase
the bit response length by a factor of eight.

4.3.2 Method 2: Using Different Input Pins of the Same
LUT

After implementing PUF's on every LUT on a CLB, there is still plenty of
entropy in the logic block left. Each LUT on a 7-series Xilinx device has six
input pins. All of them can be used individually, to implement more partial
PUF designs on the same CLB.

Figure 4.4 depicts an exemplary usage of the same LUT for two different
1-inverter RO implementations. The LUT has six input pins, I1 to I6. The
first implementation of the RO uses input pin I1. After measuring this RO,
a second one can be reconfigured on the same LUT. This time input pin I3 is
used for the oscillation ring. By doing this with every input pin, it is possible

4.3. RECONFIGURABLE PUF 51

Switch Matrix

rFr—————————— —— - — —r

| —I6 .}/

| —I5 v

I.-] % LUT |-— e / 1st implement.
] % I 2nd implement.

Figure 4.4: Using different pins of a LUT.

to implement six different 1-inverter RO implementations on the same LUT.
It can be seen that the routing on the input side is distinct and therefore
ensures little correlation. On the other hand, the routing from the output
pin of the LUT to the switch matrix remains the same. Therefore, there
might be some correlation between the two PUF implementations using the
same LUT.

Furthermore, some correlation might be expected inside the LUT. Fig-
ure 4.5a shows the basic schematic of a LUT used in an FPGA [Kocl3].
For simplicity, a £k = 3 bit LUT is depicted. The inputs of the first stage
multiplexers that are controlled by input I1 are connected to 2¥ SRAM con-
figuration cells. Those values are then multiplexed through a tree that is
controlled by the input signals. Depending on which input signal is toggling
when using it as an oscillator, the delay path length varies. This is important
when implementing ring oscillators on LUTSs. In this case, only one input
pin is constantly toggled; therefore, the closer the input pin multiplexer is to
the output signal, the shorter the delay line is and the larger the frequency
that is to be expected. As we are already working with high frequencies in
the gigahertz range, the usage of pins closer to the SRAM cells and further
from the output should always be preferred when possible.

The shared resources and therefore a possible correlation between the
PUF outputs can be estimated by analyzing the signal paths through the
LUT tree. This concept is depicted in Figure 4.5b to Figure 4.5d. According
to Figure 4.5b, the first oscillator is implemented using I1, and the LUT
entries 1 and 2. Figures 4.5¢ and 4.5d show two possibilities to implement
another PUF using 12 as the oscillating input. In Figure 4.5¢, the LUT
entries 1 and 3 are used. Therefore, many logic and routing resources are
shared with the first implementation. The better option in this case would be
to use LUT entries 5 and 7, as depicted in Figure 4.5d. The implementations
would use both the left and the right multiplexer trees. This minimizes their
shared resources and uses more sources of entropy.

52 CHAPTER 4.

ENHANCING EFFICIENCY USING PR

0)

13

12
I1 Tl==

HIH [| | 1 | |
ur|12 34 56 78 LuT |0 v

(a) Structure of a 3 bit look-up table

(b) Oscillator using 11, and entry 1/2

LUT I 0 IR LUT I 0’ B
(d) Oscillator using 12, and entry 5/7

(c) Oscillator using 12, and entry 1/3

Figure 4.5: Structure of a 3bit LUT and different implementations of a RO
on this LUT showing the possibilities of resource usage for a greater entropy
of reconfigurable PUFs.

4.3.3 Combining Both Methods to Increase the Response
Size Per CLB

The previously shown methods can be used together with partial reconfigu-
ration to increase the number of usable RO implementations per CLB. The
process of using these different reconfigured designs for key generation is
depicted in Figure 4.6. In this example, the first PUF is taken from Fig-
ure 4.3a and the second one from Figure 4.3b. One partial PUF design
always uses the same RO implementation for all instances. The exemplary
design consists of four ring oscillators that have the frequencies f1 to f4.
The exact same design is used on two different SoCs. By comparing the
frequencies of neighbored ROs, a response bit r(f;, fi+1) is generated. In
this case, both f1 and f2, as well as f3 and f4, generate a 1bit response
according to equation 2.12.

By configuring the first PUF on both SoCs, it can be seen that the
frequencies are, mostly due to production tolerances, different. The response
vector r;;, for the j-th PUF on the k-th SoC can be calculated to:

4.3. RECONFIGURABLE PUF 53

PUF#1 PUF#2

- &
=i
]

PS 1 PS 1 - ' %

—

SoCH#1 O] <

0 2
=
— >
reconfig
PS || PS ||

Figure 4.6: Reconfiguration process on two SoCs, showing different frequen-
cies for either the same PUF on two SoCs and different PUF implementations
on the same SoC. Darker CLBs indicate higher frequencies of the PUF. In
this example, each design creates a 2 bit key, by comparing f1 with f2, and

f3 with f4.

1= 10b T2 = 001;

So far this is the basic concept of using RO PUFs. The contribution of
this work is the reconfiguration process that uses the second PUF on both
SoCs. As shown in Figure 4.6, the frequencies will change and the response

vectors are now:

™1 = Olb 22 = 11(,

By making sure that the two different PUF implementations share only
few common logic or routing resources, and therefore have little correlation,
the responses can be combined. In this case, the response vector for both

SoCs can be calculated to:

54 CHAPTER 4. ENHANCING EFFICIENCY USING PR

rs1 = 7“1,1 H ?”2’1 = 1001b

rs2 = 7"1,2 H ?”2’2 = 0011b

The response vector is effectively doubled. Only if the implementations
have little correlation, the results remain uncorrelated, i.e., depend solely
on random production tolerances.

The Xilinx Zynq Z-7020 uses CLBs with eight LUTs and six input pins
per LUT. This way it is possible to implement up to 6 - 8 = 48 unique RO
designs. An analysis of possible correlations between these designs will be
done in the next subsection and later analyzed using experimental data.

4.3.4 Analysis of Shared Resources Between Implementa-
tions

Figure 4.7 shows the physical layout of the CLB used by the Xilinx Zynq
7-7020. This exemplary implementation of a l-inverter RO PUF uses the
bottommost LUT of the lower slice to implement the inverter (B). The
routings of the feedback loop and the clock input for the output DFF are
highlighted in red. Different points of possible correlations are marked with
blue arrows. Arrow A highlights possible problems at the switch matrix.
Implementing 48 unique RO designs on the same CLB cannot be done with-
out reusing certain routing resources in the switch matrix. The marked node
in particular had to be reused by many implementations to make the design
routable within the CLB. This can be problematic and cause correlations
for all 48 implementations.

Problems that only affect designs that use different input pins of the same
LUT are denoted by B and C. While the routing to the input pin of the LUT
itself causes no problems, as they are all distinct, possible problems might
arise inside the LUT (B). This was already discussed in-depth in Figure 4.5.
As the LUT is a 6-to-1 logic function®, every implementation shares the
same output pin routing as well (C).

4.4 Implementation

In this section, an exemplary implementation of the method described in
this work is presented. A Xilinx ZC702 evaluation board and a ZedBoard,
both featuring the Xilinx Zynq Z-7020, were used for the implementation.

The LUT can also be used as two 5-to-1 functions, but this case is not used here

4.4. IMPLEMENTATION

1
Switch | Inpuit pins of LUT
R Slice 2
Matrix |] =0
\ —— _E—=— —jel—
=1 ‘ iﬁf,l H';J&J
e e i —to)
:A
° [l -]
= t i & —tel—
P e
________ E Y
\\ H X ;\ﬁtg . = e/
| e v w1l
- | N
\ /‘/" \\ .‘ ---
A \ .
Lo \\ | LUTs Slices FFs
R \:' ;
,’);\ :':
K ! .‘ \\,"
NS ”’, \\ .31 Slice 1 gh =
\\ \\) ! ’; \\ #):ﬁf% -
NN\ fil n| 4
Y . e e =
N A ! | —ite—
N\ ,// x i 1 °4L -
N % e A=C
N = e o ——] el |
AN N\ \,4 """"""""""" - "' AN = ol ‘:"—F)igf‘r* — I)‘\;&J :
RN i n B T t—ter i
\\\(\/\\‘\ ’.' r:L [;,11:\1\\“, e i
(AN S====eec = teeee—— R
SN L~y N
\ ==
""""""""""" LUT 1

Figure 4.7: Possible shared resources between the different RO implemen-
tations within one CLB: A - switch matrix routing of feedback loop, B -
routing within the LUT, C - output routing of LUT.

As shown in Figure 4.2a, the SoC was organized with a PR area and a
partial key storage. To make sure that each PUF in the same design was
implemented identically, the placement of logic and routing was thoroughly
constrained. Each implementation was created by using one of the eight
LUTs on the CLB and one of the six input pins of the LUT, as shown in
Figure 4.3 and Figure 4.4. This way, up to 6-8 = 48 unique RO designs could
be implemented. If those designs were not correlated, the response size for
the used area could be increased by a factor of 48. The reconfigurable PUF
implementations are numbered 1 through 48. According to Table 4.1, each
group of six implementations uses the same LUT and consecutively input
pin 1 to 6. Therefore, implementation 1 uses input pin 1 of the first LUT,
implementation 6 uses input pin 6 of the first LUT, and implementation 48
uses input pin 6 of the eighth LUT of the CLB.

Each of those 48 ROs was then placed 4272 times on the FPGA. Almost
all CLBs of the device were used to get a statistically more relevant result. In
reality, a far smaller area could be used. Each PUF design itself generated a

55

56 CHAPTER 4. ENHANCING EFFICIENCY USING PR

Table 4.1: Configuration of 48 reconfigurable PUF implementations accord-
ing to annotations used in Figure 4.7. Each implementation uses the same
CLB but different LUTs within the CLB (see Figure 4.3) and different input
pins within the LUT (see Figure 4.4).

Input pin of LUT
1 2 3 4 5 6

4|43 |44 | 45 | 46 | 47 | 48
3137383940 |41 |42 %3
& 2131(32/33[34/35[36 |,
A 102526 27282930
;’ 4119(20 |21 |22|23]|24
S 313/ 1af15]16]17]18 =
2| 7189 |10]11|12]2
11|23]4|5]|6

%m = 2136 bit partial key, which was stored in the key storage. By using
every of the 48 designs, the key storage had to be 48 - 2136 bit = 102 528 bit
wide.

The width of the counter was extended to 13 bit, as the frequencies of
the l-inverter RO were much higher than the 3-inverter RO.

4.5 Experimental Results

The PUF designs were tested on six Xilinx Zynq ZC702 and four ZedBoards.
All measurements were performed in a climate chamber at exactly 25 °C and
a constant FPGA core voltage of 1.0 V. The ROs were enabled sequentially.
This assured that no surrounding RO could interfere with the measured
RO. The raw frequencies were stored by the PS and evaluated with Matlab
using equation 2.12. In the analysis of the results, it was important to not
only analyze the properties between SoCs, but also between the partial PUF
implementations.

4.5.1 Speed

It takes around 44 ms to configure a full FPGA design using the PS [Koh13].
When only configuring a partial design, linearly less time is needed. A full
bitstream would reconfigure 6650 CLBs. The reconfiguration time per CLB
is therefore roughly 44 ms/6650 = 6.62ps. A RO pair consuming two CLBs

4.5. EXPERIMENTAL RESULTS 57

would need 2-6.62 ps = 13.23 s to be reconfigured. As shown in chapter 3,
the time to read out one RO pair was 10.24 ps. The total time that is needed
to reconfigure and measure one RO pair can be calculated to:

tmeas = 2 - 6.62 s + 10.24 ns = 23.48 s (4.1)

This does not include the reconfiguration of the surrounding logic such as
input mux, output mux, and counters. But as shown in chapter 3, these are
relatively small compared to the actual ROs. Therefore, a value of 23.5 ps
can be used as a rough estimate of the time that was needed to reconfigure
and measure one RO pair and generate one PUF output bit. The generation
of all 102528 bit should take 102528 - 23.48 pus = 2.4s.

The actual measurement on the SoC took 3.78s. This included all addi-
tional delays caused by, e.g., reconfiguration of additional logic, the PCAP
interface, the read out to the PS, and the reading and writing to the SD card.
Therefore, a time of 3.78s/102 528 = 36.87 s was needed to reconfigure and
measure one RO pair.

4.5.2 Frequencies

Figure 4.8 shows the frequencies of the 48 different RO implementations on
one of the tested boards using the configuration shown in Table 4.1. Each
bean represents the frequency distribution of all 4272 RO instances. Very
high frequencies were measured, due to the fact that only one inverter was
used to implement the RO. The frequencies varied from around 600 MHz up
to 1.3 GHz depending on the RO implementation. As shown in Figure 4.5
lower input pins were further away from the output pin than higher input
pins. Therefore, it can be seen that the first implementations within the
same LUT using input pins 1 or 2 tended to have lower frequencies. Ad-
ditionally, the frequency depends on the routing in the switch matrix. Not
every oscillation ring could be directly routed back from the output pin
of the LUT to the input pin. The longer routing then resulted in a lower
frequency.

Frequencies of around 1.3 GHz as seen in PUF design 29, were the highest
that could still offer reliable and stable results. However, frequencies over
1 GHz were theoretically too high for the first TFF, as its data path delay
was given to 1ns by Vivado. These estimations are very conservative, and
assume the slowest possible device at the worst operating conditions such as
temperature and voltage. Therefore, some ROs over 1 GHz were still working
properly. But in fact, while implementing the 48 different designs, a lot of

58 CHAPTER 4. ENHANCING EFFICIENCY USING PR

1600 ¢

1400 -

—_
DO
o
o

e

B
>
-

1000

-
<>
<t
>
¢*
-
-
e

800 ¢ #’* t " \ #

* 4 4+t Q‘
600 - A S n

Frequency in MHz

00—
9 13 17 21 25 29 33 37 41 45
Reconfigurable PUF

Figure 4.8: Frequency distribution of all 48 RO designs on one board. Each
bean is represented by 4272 RO frequencies.

fine tuning had to be done, as some frequencies were too high. This led to
ultimately no oscillation at all in some rings, or very unreliable results. As
the goal of this work was also to analyze the robustness of PUFs at extreme
conditions, ROs over the technical limitations were still tested.

The advantage of the high frequency implementations is that only little
routing is shared with other implementations. The lower the frequency,
the longer the RO chain, the longer the routing, and therefore, the higher
the possibly shared resources. Although the FPGA was operated far out
of its specifications with frequencies in the gigahertz range, the ROs and
TFFs were still operating reliably. To measure the resulting frequencies
reliably, a total of three TFFs was used to lower the maximal frequency to:
1.3 GHz/23 = 162.5 MHz. Two of these TFFs were placed in the same CLB
as the RO to save more area.

4.5.3 Uniformity

Figure 4.9 and Figure 4.10 show the results of the HW for all 2136 bit results
of the 48 RO designs on all of the ten tested SoCs.

Figure 4.9 shows the box plot of the fractional HW separated by the
SoCs. A boxplot can be a first estimate to make sure that no SoC shows
an abnormal behavior. It depicts groups of data through their quartiles.
The red line marks the median and 50 % of the data lies within the blue

4.5. EXPERIMENTAL RESULTS 59

0.7
0.65 | |
0.6 |

=

5 0.55 | B L |

Gé? e — —-— I - T - a —

» 05 03 T E == =

z -~ ¥ ¥ L o+ T 44

E 4 . + +

S 045 .
0.4 |
0.35 | |
03 | | | | | | | | | |

Figure 4.9: Fractional HW of concatenated response vectors on each SoC,
mean value over all tested PUFs.

box (25th and 75th percentiles). The two whiskers outside the rectangle
correspond to approximately 99.3 % of the data, but are not further away
than 1.5 times the distance from the median to either quartile. This makes
it possible to spot outliers that are marked by a red cross.

The measurements of 48 partial vectors are represented in each box plot.
Every PUF implementation produced a bit vector that is close to the ideal
result of 0.5. Some statistical outliers are normal, as the HW of only 2136 bit
vectors was plotted. The worst results were found to be 0.55 and 0.46,
whereas the mean and median value were always very close to 0.5.

Figure 4.10 shows the box plot of the fractional HW separated by the 48
RO implementations. The box plots are represented by the measurements on
the ten different SoCs. This makes it possible to detect bad implementations
quickly and improve them. Most of the results were close to the ideal value
of 0.5. Some statistical outliers reached a HW of 0.55 and 0.46. The mean
and median values on the other hand suggested very good results close to
0.5. No RO implementation resulted in HWs that were far off 0.5.

The uniformity property was therefore given both for all different partial
PUF implementations and the concatenated vector on all SoCs. This assured
an almost equal distribution of ones and zeros, which is also important for
a good HD.

60 CHAPTER 4. ENHANCING EFFICIENCY USING PR

0.65

0.6 ,
0.55 R ! .

0.5 |-

Hamming weight

0.45 - N

0.4 i

5 9 13 17 21 25 29 33 37 41 45
Reconfigurable PUF

0.35 1

Figure 4.10: Fractional HW of response vector of each PUF, mean value
over all tested SoCs.

4.5.4 Bit Alias

Figure 4.11 shows the bit alias of each of the 102 528 bits that are generated
by concatenating all 48 RO implementations with 2136 bit each. The alias
was then calculated by calculating the mean value of each bit for the mea-
surements on all ten boards. The results are very promising with a mean
value of u = 0.509 and a standard deviation of ¢ = 0.173. Both the mean
value and the standard deviation are very close to the ideal expected values
for a completely random distribution of bits.

4.5.5 Uniqueness

To calculate the inter-device HD between each SoC, the PUF bit vector
response of each RO implementation was concatenated to a 102 528 bit wide
vector. The fractional HD between each full PUF response of all ten tested
SoCs was either 0.48 or 0.49 and thus very close to the ideal results of
0.5. In other words: after concatenating all 48 partial PUF responses, the
complete responses could still be used to uniquely distinguish each SoC.
Using Equation 2.7 the uniqueness between the SoCs can be calculated to
Usoc = 0.489. The important uniqueness property using the inter-device
HD was therefore maintained using the method of partial reconfiguration
PUFs. The results were still comparable to the ones that were implemented
on ASICs by Katzenbeisser et al. [KKR12].

The inter-device HD should not be used as the only method to guarantee

4.5. EXPERIMENTAL RESULTS 61

25000

20000

15000

10000

Number of PUFs

5000

0 0.2 0.4 0.6 0.8 1
Bit alias of single bit over all Boards PUFs

Figure 4.11: Bit alias of all concatenated 2136 bit responses by the 48 RO
implementations. The alias was calculated by calculating the mean over the
measurements of all ten tested SoCs.

a good uniqueness property. Most of the possible correlation effects when
reusing area might stay hidden in the binary representation and simple con-
catenation of vectors. More dedicated methods have to be used to analyze
the ROs for possible correlation effects. A new inter-implementation HD
will be used as the HD between different RO implementations. This gives a
much deeper insight in possible correlation effects between the different RO
implementations that might share logic or routing resources. Every entry
on the diagonal equals 0, as it represents the HD of two equal bit vectors.

Figure 4.12 shows the fractional HD between each partial PUF imple-
mentation, averaged over all ten SoCs. This plot is important to measure the
usability of the method presented in this chapter. Any value too far from 0.5
would suggest a possible correlation between partial RO implementations.

Most of the results are close to the ideal value. As expected, some darker
blocks — representing PUFs with lower HD — form around the diagonal.
These are RO implementations that only use different pins, but have both
the LUT and output routing in common. Therefore, their shared resources
are possibly the largest. This leads to a smaller FHD, i.e., they have more
than half of their bits in common.

Some blocks are easily recognizable around the diagonal, whereas others
are barely visible. This possible correlation could be confirmed by analyzing
their implementations and the shared routing and logic resources. This is
mainly caused by the effects presented in Figure 4.5, i.e., the routing within

62 CHAPTER 4. ENHANCING EFFICIENCY USING PR

T T 1] F10.5
i m
40 F = = | o4
3
=
P 30 | = 03
Q
<
=
=]
&
S 20F - 0.2
g
~
=
10E = 0.1
=
L L 1 1 1 1 | | | O

5 10 15 20 25 30 35 40 45
Reconfigurable PUF

Figure 4.12: Fractional HD between each partial PUF response, mean value
over all tested SoCs.

a LUT. Unfortunately, it was impossible to make every RO implementation
unique enough to reach an ideal HD of 0.5 for every response. This was
mainly due to the fixed output routing of the LUT and limitations of the
method shown in Figure 4.5. A very unique implementation was achieved
for instance with RO 41, which has an almost perfect HD to every other
implementation. This was managed by using a very short routing, which
also resulted in a very high frequency as seen in Figure 4.8.

Figure 4.13 shows the histogram of the inter-implementation HD between
all partial PUF responses that are plotted in Figure 4.12. It can be seen,
that most results lie within a good HD of 0.40 to 0.50. They seem to
be uncorrelated to other PUF implementations and can be used to extend
the concatenated response bit size. However, as the PUF implementations
share some resources, a tendency to produce the same bits between different
implementations can be seen by the asymmetry towards a small FHD. Some
results are as low as 0.2, which suggest serious correlation between those RO
implementations. An estimation of the overall entropy from these results is
not trivial. This would be important to quantify the amount of new bits
of entropy that are gained by using a PUF that does not have full entropy.
The overall uniqueness property for the plots in Figure 4.12 and 4.13 was
calculated to Up,s = 0.430.

An easy approach to avoid this problem would be the complete removal

4.6. ENTROPY ESTIMATION 63

250

200

150

100

Number of PUFs

50

%.2 0.25 0.3 0.35 04 0.45 0.5 0.55
HD between partial PUFs

Figure 4.13: Histogram of fractional HD between each partial PUF response.

of the partial PUF responses with a bad HD. But as this also implies losing
some entropy, compressing the concatenated response vector sufficiently is
the better option.

4.6 Entropy Estimation

Various methods are used in this subsection to estimate a min-entropy for the
concatenated responses, including all partial RO implementations. These
results can then be used to compress the responses to a high-entropy bit
size.

4.6.1 Context-Tree Weighting

Pehl et al. [PPHG14] suggest the use of compression algorithms to estimate
the entropy. The usage of Context Tree Weighting (CTW) [WST95] is
an approach to estimate an upper bound of the entropy of experimental
data [KKR"12]. It offers both theoretical guarantees and good practical
performance [BEYY04]. In this work, the CTW compression algorithm
by F. Willems [WST95] was used. All 48 individual 2136 bit long partial
PUF responses on each of the SoCs were concatenated to a 102 528 bit large
bit vector and written in a binary file. To compare the performance of
the algorithm, a binary file containing a pseudorandom bit sequence was

64 CHAPTER 4. ENHANCING EFFICIENCY USING PR

generated. The Matlab function randi was used with the Pseudorandom
Number Generator (PRNG) mrg32k3a.

After compressing both files, the overall file size could not be significantly
shrunk. The algorithm needed 8.02 bits per byte to store the pseudorandom
bit sequence. As expected, it was not possible to compress the pseudoran-
dom data file and an overhead resulted from storing the tree information.
On the other hand, 7.8 bits per byte were needed to store the compressed
data containing the PUF responses. This equals a compression ratio of
8/7.8 = 1.03. Reordering the data brought no improvement in compressibil-
ity of the response vectors.

The result suggested a high entropy, but considering the bad HD of
some vectors, the algorithm might not find every correlation to compress
the data even more. Another problem was the relatively small sample size
of PUF responses, which made it harder for the compression algorithm to
find correlations.

4.6.2 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method to simplify
datasets by explaining them using a linear combination of linearly uncor-
related variables (principal components) [Jol02]. The first component is
defined by having the largest variance and therefore explaining the most
variability in the original data. Every following component itself has the
largest variance of the remaining components as well, under the constraint
that they are orthogonal to their predecessors. The resulting vector set
spans an orthogonal basis.

This method has been previously used to analyze the spatial patterns in
mean frequency and correlation coefficients [WHP14]. Here, the method is
used to detect possible linear dependence between the partial result vectors
of different RO implementations.

Matlab offers a very easy way to use PCA with the pca function. It
returns for an n-by-p matrix, among others, the corresponding coefficients,
scores, and an explained vector. The principal component coefficients or
loadings, returned as p-by-p matrix, contain column-wise the coeflicients
for one principal component. They are sorted in descending order by their
explained variance. The principal component score, returned as a n-by-p
matrix, are the transformed variable values corresponding to a particular
data point. The explained vector is the percentage of the total variance
explained by each principal component. This is important to see, if lower
components still have an influence on the final result, or if they can be
neglected.

To get more meaningful results, the unmodified RO frequencies were
used to calculate the PUF response, instead of using a binary result vector.
The 4272 measured frequencies of all ROs were stored in a vector for each of

4.6. ENTROPY ESTIMATION 65

the 48 implementations. The neighbored frequencies were then subtracted
to get a 2136 bit wide vector for each of the 48 implementations. The result
was a 48-by-2136 matrix containing the 2136 frequency differences for all 48
implementations. This matrix was then compressed using the PCA, with
the 2136 frequency differences as observations and the 48 implementations
as features. By using the differential frequency differences, no principal

component showed just a mean frequency value, as the mean value should
be close to 0.

5 10 15 20 25 30 35 40 45

Principal Components

Reconfigurable PUF

Figure 4.14: Colorplot of the principal component coefficients with the rows
containing the influence of the principal components on each RO implemen-
tations.

Figure 4.14 shows the resulting 48-by-48 coefficient matrix, containing
the influence of each principal component on each RO implementation. It
can be seen, that the first principal component had an almost equal in-
fluence on all different RO implementations. This could have numerous
reasons, such as a slightly biased frequency or a spatial dependence. The
following principal components usually had a bigger influence on one or two
RO implementations, and almost no influence on the others. This was good
for assuming high entropy, as each principal component is almost solely
needed to explain the variance of a single RO implementation. No princi-
pal component, except for the first one, explained a larger amount of RO
implementations, i.e., there was no correlation.

Figure 4.15 shows another visualization of the principal component coef-
ficients. Here, each box contains the influence of one principal components
on the 48 RO implementations. The RO implementations are separated in

66 CHAPTER 4. ENHANCING EFFICIENCY USING PR

i B
HRHGL 8 R

0.4
MR L

o

.-.l.... N
—0.4
..l...'. —0.6

Figure 4.15: Colorplot of the principal component coefficients. Each box
contains the influence of one principal component on the 48 RO implemen-
tations. The implementations are separated by their use of the eight LUTs
(columns) and the six input pins (rows).

each box by their usage of the eight LUTs (columns) and the six input pins
(rows). A potential linear dependence of using certain pins and LUTs could
be seen by this. Again, it can be seen that the first PC influenced all pins
and LUTs equally. Although some boxes show multiple larger influences
along the same LUT or pin, no major correlation could be found here ei-
ther. That means, that no principal component had a influence on multiple
LUTs with fixed pins or vice versa.

Listing 4.1 shows the explained vector for each of the 48 principal com-
ponents in descending order.

Listing 4.1: Explained variance by each of the 48 principal components in
descending order

21.0724 3.2841 1.5899 0.9000 0.4922 0.2762
8§.4100 2.9118 1.4962 0.8383 0.4178 0.2568
7.3911 2.5476 1.4758 0.7716 0.4068 0.2261
5.9685 2.3866 1.2490 0.7034 0.3867 0.2134
5.6104 2.2622 1.1963 0.6258 0.3631 0.1968
4.3027 2.1125 1.1253 0.6004 0.3337 0.1721
3.9845 1.9504 1.0138 0.5736 0.3129 0.1688
3.0728 1.8686 0.9808 0.5567 0.2953 0.1487

4.6. ENTROPY ESTIMATION 67

The first principal component already explained 23.76 % of the variance.
A fast convergence of the values towards 0 would be bad for the entropy of
the principal components. In that case, a linear combinability would render
the lower principal components meaningless. Fortunately, all principal com-
ponents had an influence on the variance. Equal results were also obtained
when using the PCA method with regular PUF results, not using the partial
reconfiguration method.

Reconfigurable PUF

5 10 15 20 25 30 35 40 45
Reconfigurable PUF

Figure 4.16: Kendall rank correlation coefficient between every reconfig-
urable PUF implementation for the 2136 measured frequency differences.

Figure 4.16 shows a rank-based statistical method: the Kendall rank
correlation coefficient (Kendall’s tau) [New02]. In contrast to, e.g., Pear-
son’s correlation, it assesses not only linear, but any monotonic relationship
between variables. A value of 1 represents a complete positive or negative
correlation between the two variables, whereas 0 stands for the absence of
any positive or negative correlation. It is more robust against outliers, that
often distort the correlation when using other methods. For more precision,
unprocessed frequency differences were used. The boxes around the diagonal
are visible, which indicates to the usage of the same LUT for different imple-
mentations. Again, RO 41 stood out as a very uncorrelated implementation.
Nevertheless, no major correlation could be found here either.

A last possibility is to analyze the principal component scores. Fig-
ure 4.17 shows an area plot of the scores. The results for each principal
component were mapped on the real local position of the implementation
on the FPGA. No spatial dependence of the principal component was vis-
ible. Each principal component had a randomly looking influence on the

68 CHAPTER 4. ENHANCING EFFICIENCY USING PR

1150

4100

150

20 40 60 80 100 20 40 60 80 100

20 40 60 80 100

Figure 4.17: Principal component scores for the first six principal compo-
nents, mapped on the FPGA area.

observations.

As a conclusion, it can be said that the analysis of PCA data is very com-
plicated and not straightforward. Especially, when using a complex dataset
as in this experiment, where the frequencies depend on many intrinsic vari-
ables. On the other hand, the PCA is a very fast method to detect a linear
dependability of data. This does not mean that it is able to detect any statis-
tical dependence, which might be caused by non-linear effects. Fortunately,
no major linear dependability between the analyzed RO implementations
could be found, which indicates a high entropy.

4.6.3 NIST SP 800-90B Entropy Test

The National Institute of Standards and Technology (NIST) published a rec-
ommendation for entropy sources used for random bit generation in SP 800-
90B [Bar16] in its second draft. The proposed tests can be used to estimate
the min-entropy of an entropy source. In contrast to other Random-Number
Generator (RNG) tests, these also work with a much smaller dataset. Most
tests base on a principle that make the estimations for smaller data sets
more conservative, and they get more precise with a larger data amount.
The problem of using RNG tests for PUFs is that usually the available

4.6. ENTROPY ESTIMATION 69

dataset is relatively small, as PUFs are not constantly producing random
values like RNGs.

In accordance to the SP 800-90B guideline, the NIST also maintains a
test suite on GitHub?. The test suite is split in two groups: IID (inde-
pendent and identically distributed) and non-IID. As already seen in the
previous results, there are correlations in the different RO implementations.
Therefore, a non-IID dataset has to be assumed and the noniid_main.py was
used. The tests are working on binary files with customizable value length.
The noniid_main.py takes the binary file as input, as well as the bits per
symbol. The data is always packed in complete bytes, e.g., 1 bit data require
1 byte in the binary field.

To test the entropy of the RO implementations, a binary file of the
resulting bit vector was created. For each board, one binary file containing
the 1bit per symbol result vector was constructed. The results of all 2136
binary results of the 48 implementations were all packed in the same binary
file for each of the ten SoCs.

Listing 4.2 shows the results for the analysis of the binary PUF responses.
All tests were passed. The test size was correctly evaluated to be 102 528 bit
symbols. The min-entropy was estimated to 0.927 bit per 1bit. This is a
very good result and shows that the algorithm was not able to find any major
correlation using the binary values. The results of this implementation of
the second draft is more conservative than the implementation of the first
draft of SP 800-90B, which estimated a min-entropy of 0.934 bit per 1 bit.

Listing 4.2: NIST entropy test results for 2136x48 binary measurements on
one of the measured boards.

reading 102528 bytes of data

Read in file 34430.bin, 102528 bytes long.

Dataset: 102528 1—bit symbols, 2 symbols in alphabet.
Output symbol values: min = 0, max = 1

Running entropic statistic estimates:
— Most Common Value Estimate: p(max) = 0.513785, min—entropy = 0.960764

— Collision Estimate: p(max) = 0.5, min—entropy = 1
— Markov Estimate: p(max) = 3.89774e—38, min—entropy = 0.970864
— Compression Estimate: p(max) = 0.5, min—entropy = 1

— t—Tuple Estimate: p(max) = 0.526013, min—entropy = 0.926828
— LRS Estimate: p(max) = 0.506003, min—entropy = 0.982781

— MultiMCW Estimate: p(max) = 0.504634, min—entropy = 0.986692
— Lag Estimate: p(max) = 0.510377, min—entropy = 0.970366

— MultiMMC Estimate: p(max) = 0.51243, min—entropy = 0.964574
— LZ78Y Estimate: p(max) = 0.511656, min—entropy = 0.966755

The listing also shows the min-entropy estimation for every test. The test
that led to the smallest min-entropy was the t-tuple estimate. This method
analyzes the frequency of t-tuples (pairs, triples, etc.) in the input data

Zavailable at: https://github.com/usnistgov/SP800-90B_EntropyAssessment

https://github.com/usnistgov/SP800-90B_EntropyAssessment

70 CHAPTER 4. ENHANCING EFFICIENCY USING PR

and estimates an entropy based on their occurrence. These tuples can also
overlap. The relatively low min-entropy of this test showed the correlation
of the PUF data, that likely occurred due to the reuse of logic and routing.
As multiple bits were generated using the same CLB, some patterns might
have been created. However, the min-entropy of 0.927 bit is still a very good
result, considering the PUF size has been increased by a factor of 48. The
collision and compression estimate both showed that each binary value had
an equal probability with p,,q.; = 0.5.

The min-entropy of 0.927 bit per 1bit input is taken as a conservative
guess of the min-entropy for the whole system. By assuming this value, later
in post-processing the PUF results, the bit vector size has to be compressed
by at least 1 —0.927 = 7.3 % to assume a complete entropy for the resulting
cryptographic key. In other words, when using the big design used in this
experiment, of the 102 528 bit, the cryptographic key could use 102 528 bit -
0.927 = 95043 bit with full entropy.

4.7 Conclusion

A new method to use the area of an FPGA more efficiently for PUFs was
presented in this chapter. Instead of using just one PUF implementation,
multiple implementations with different logic and routing resource usage
were loaded on the same logic block using partial reconfiguration. This
way the huge resource consumption of PUFs on FPGAs was compensated
by extracting more entropy from the complex logic and routing resources.
The presented method was implemented by using 48 different 1-inverter RO
PUF implementations using all available LUTs and pins in a CLB. A total
of 4272 RO instances were used per implementation and tested on ten SoCs.
By concatenating all partial PUF responses, the bit vector size could be
increased by a factor of 48. This equaled an area shrinkage of almost 98%
to get the same bit size as the straightforward static method.

The HW was always close to the ideal value of 0.5. The inter-device HD
between the concatenated bit vectors showed that they can be used as a key
source, as all of them had a HD close to 0.5. The inter-implementation HD
between the partial RO designs was — as expected — more correlated, but
still close to the ideal value of 0.5. The analysis of the bit vectors using CTW
showed a compression ratio of only 1.03. The algorithm could not find any
major correlation. The PCA was used to find linear dependence. Using this
method no major dependability could be found either. When comparing the
results to regular RO results, no big difference could be found.

The most conservative method of estimating the min-entropy was using
the NIST SP 800-90B test. The min-entropy was found to be 0.93 bit per
bit of input data. The entropy of the reconfigurable PUF is therefore rated
with 93 %.

CHAPTER D

Reliability Analysis of PUFs on FPGAs

As ROs are not always run under controlled conditions, but a real world
environment, their frequency is affected by physical influences such as tem-
perature, voltage, and Electromagnetic Interference (EMI) from neighbored
logic or devices. By operating a device, it also becomes susceptible to aging.
The aging process influences the frequency and therefore the PUF behavior
as well. The influence of both reversible and irreversible variations were
examined in this chapter. Long-term aging, voltage, and temperature ex-
periments have been conducted on real devices and the influence on the
reliability of the PUF constructions was analyzed.

This chapter is organized as follows: a short introduction is given in
section 5.1. The relevant prior work is presented in section 5.2. An extensive
aging examination as the main contribution of this chapter is then presented
in section 5.3, followed by the analysis of temperature and voltage influences
in section 5.4. A conclusion is given in section 5.5.

First results of this chapter have been released at the ReConFig 2015
[GLS15].

5.1 Introduction

The stability of a generated cryptographic key is crucial for the usability of
PUFs. Both reversible and irreversible variations can alter the behavior of
the ROs. Environmental conditions, such as voltage and temperature, are
reversible variations. The effect of the altered conditions disappear mostly
once the cause is withdrawn. Device aging on the other hand is an ir-
reversible variation that leads to a permanently changed behavior of the
device.

71

72 CHAPTER 5. RELIABILITY ANALYSIS

output =1 output =0

RO 1

Frequency

Figure 5.1: Bit flip due to the aging of two ROs.

Measuring the same PUFs on the same device should always yield an
intra-device HD close to zero. Figure 5.1 shows a possible effect that can
occur due to the aging of a device. In the beginning, the first RO is faster
than the second one, thus producing a ‘1’ output. But as the first PUF is
aging faster, it becomes slower than the second one throughout the lifetime
of the device. This leads to a bit flip and the intra-chip HD rises. The
occurrence of this effect is mostly inevitable, but has to be estimated. Any
negative effect on the PUF-based key generation has to be prevented.

The effects of both reversible and irreversible variations on the RO fre-
quency and the PUF output will be presented and confirmed with experi-
mental results. The analysis is very important for the usability of RO-based
PUFs in real-world environments during a complete device lifetime.

5.2 Prior Work

Much work has been done on the analysis of temperature and voltage influ-
ences on PUFs. Almost every paper that presents a PUF implementation
on ASICs or FPGAs also includes an analysis of robustness against tem-
perature and voltage fluctuations. Aging on the other hand, has not been
covered widely in current publications. No long term evaluation was found.

Katzenbeisser et al. [KKR112] implemented many different custom PUF
designs on ASICs and tested their robustness against variations of supply
voltage and temperature.

Stott et al. [SWC10] analyzed the effect of aging on FPGAs. They did
both experimental measurements and theoretical simulations. The FPGA
was stressed under different electrical conditions. The accelerated life con-
ditions were very high. An overvoltage of almost 80% above the nominal

5.3. AGING 73

voltage might lead to other effects than the regular aging mechanisms. Un-
fortunately, the tests were not PUF specific.

Maes et al. [MRVT12] carried out aging tests on several PUFs that were
implemented on their ASIC. The analysis included many different PUF
types, but details were missing. Only the fractional HD as a measurement
of stability was given in this work.

A more detailed analysis was carried out by Maiti et al. [MS14]. Dif-
ferent FPGAs were tested under various higher voltages and temperatures.
The electrical stress was induced by the PUF itself. Therefore, only high
frequency stress was applied and no other stress condition was tested. The
elevated stress conditions were very high with an overvoltage of 66.7 %.

This work contributes the testing of RO PUFs of various lengths under
different elevated aging conditions. This is the first work that was being done
with modern 28 nm devices. The FPGA was stressed under five distinct elec-
trical stress types to test their influence on the RO frequency. Additionally,
the effects of aging were compared to the ones of reversible environmental
changes.

5.3 Aging

In this section, the effects of device aging on the frequency of ROs and the
stability of PUF outputs are described. Long term experiments were made
to prove the assumptions and describe the severity of aging on PUF stability.
Experiments were conducted during a period of over six months. Different
types of stress and different types of PUF's were analyzed.

5.3.1 Aging Mechanisms

Four main types of degradation are relevant for modern ICs [WH11]:

1. Hot Carrier Injection (HCI)
2. Negative-Bias Temperature Instability (NBTI)
3. Time-Dependent Dielectric Breakdown (TDDB)

4. Electro-migration (EM)

HCI is the effect that a carrier, which gains sufficient energy, overcomes a
potential barrier and is trapped in the oxide layer. A schematic of this prin-
ciple is shown in Figure 5.3. This results in an alteration of the transistor
characteristics typically increasing the threshold voltage. HCI is amplified
by a high frequency switching behavior. Hot carriers lead to impact ion-
ization. Hot electrons are injected in the dielectric as gate current. Some

74 CHAPTER 5. RELIABILITY ANALYSIS

— Gate I, vdd
—I_ A)
Source - Z 3» | Drain
d

Figure 5.2: HCI effect in a CMOS transistor. A carrier gains sufficient energy
to overcome the potential barrier and gets trapped in the oxide layer.

charge carriers can become trapped and change the switching behavior per-
manently.

Si-H+ht —
Si-Ht —
ov Sit +H
I /
Gate Vaa

H H o |

a Drain Source

Vad
|

|
|

|
3 |

Vad

Figure 5.3: NBTI effect in a PMOS transistor. As the holes (h™) in the
inversion layer interact with the Si-H bonds, the electric field breaks the Si-
H bonds. H migrates into the substrate, and the remaining dangling bond
Si causes a threshold voltage degradation.

NBTI is a static mechanism. As shown in Figure 5.3, dangling bonds at
the interface of the channel and oxide layer develop by applying an electric
field across the gate oxide. PMOS transistors are mainly susceptible to this
type of stress. The impact on the threshold voltage Vy;, is usually higher
than with HCI. The equivalent mechanism for NMOS transistors, Positive-
Bias Temperature Instability (PBTI), is becoming a bigger concern with the
introduction of high-k metal gates. By applying a negative bias at the gate
oxide of a PMOS transistor, holes become the majority carriers. Inversion
hole induced breaking of Si-H bonds at the Si/SiO2 interface occurs [Ala03].

5.3. AGING 75

The generated hydrogen is diffused into the oxide and captured. This effect
ultimately decreases I and shifts V.

An additional threshold voltage degradation is caused by the filling of
preexisting traps in the dielectric with holes coming from the channel. Re-
moval of stress voltage, however, can empty the traps and recover the thresh-
old voltage degradation [BDBRR12, Ala03].

Poly — St Poly Si N\ Poly

®
®
SiOQ SZOQ SlOQ

Si A

Figure 5.4: Schematic of TDDB effect. An accumulation of trapped charges
across the gate oxide form a conductive path.

TDDB is a failure mechanism which is, as shown in Figure 5.4, caused by
an accumulation of trapped charges or defects across the gate oxide, while
an electric field is applied. A conductive path through the dielectric forms,
increases the leakage over time, and finally might even prevent the transistor
from switching at all. TDDB is a static mechanism that is only active for
PMOS transistors under negative bias and NMOS transistors under positive
bias [BDBRR12, Pan09].

Electro-migration

/
cmrent > T [awme >

Figure 5.5: Effect of EM in microelectronics. Material is transported by
gradual movements of ions. The device behavior can be changed and ulti-
mately lead to failure.

EM is sketched in Figure 5.5. It is an effect in which metal ions migrate
over time. High current flows, as present in modern nanoelectronics, can lead
to faulty interconnects and ultimately to a device failure. EM is accelerated
by a DC behavior, i.e, a low switching frequency, and found to be partly self-
healing under frequencies above 10 Hz [Liel3, ZWF*15, TVG*13, TCH93].

76 CHAPTER 5. RELIABILITY ANALYSIS

5.3.2 Stress Design

St PL - Routing
ps [|O{O0)1O
DDD/—CLB
] o] o | Y
] o | | [
Q0|0 00|
E HE L 0 1 ans tsyt;e;ss

Figure 5.6: SoC with PS and PL part, each column of CLBs was stressed
under different conditions, E: empty CLBs ('no stress’), H: high frequency
stress, L: low frequency stress, 0: DC 0 stress, 1: DC 1 stress.

In this work an SoC consisting of a PS and a PL was used. The general
structure of the SoC was shown in Figure 2.12. In order to age the CLBs,
on which the ROs are implemented, in various ways, different electrical
stress types were used. As shown in Figure 5.6, the SoC was separated
into columns, each of which was stressed with one of five stress types. By
having the same type of stress at various positions on the FPGA, it was also
possible to measure spatial dependence of the aging.

Five different types of electrical stress were used: DC' 0 stress (constant
zero), DC 1 stress, low frequency stress, high frequency stress, and ‘no’
stress. To lower the impact of the high frequency stress on the other stress
types, they were surrounded by ‘no’ stress columns. After that followed a
low frequency, a DC' 0 stress, and a DC' 1 stress zone, as shown in Figure 5.6.
This pattern was repeated on the whole FPGA. Each CLB in a column was
stressed with the same electrical stress.

To understand how the stress designs work, it is important to be aware
of the rough structure of a LUT. In Figure 2.13, the implementation of a
LUT using NMOS pass transistors was shown. However, the exact imple-
mentation of the LUTs are being kept secret by the vendors. This makes
modeling a device aging or even explaining the aging effects on FPGAs in
detail very hard. It is not possible to directly control the CMOS transistors,
which would be needed to induce controlled aging effects, such as NBTT or
HCI. Instead of modeling the aging of the LUT, real measurements were
performed in this work.

As explained in subsection 2.4.2, the LUT values are stored in an SRAM

5.3. AGING 77

and propagated through a mux network that is controlled by the inputs 10
to I5. The frequency measurements shown in Figure 4.8 confirmed that the
input pin 10 is closest to the SRAM cells and farthest from the output of
the LUT.

Counter jg——clk
 C(0..n)

/

1
0/1 0/1 mun rau

SRAM SRAM
0/100H 0 O

0103+ 1 O+
Emnm ()/1 wuw [N
0/ 1D_ output 0 D_ output

0/1 1 [H

Figure 5.7: DC 0 and DC 1 stress and low and high frequency stress designs
on LUT level.

The various stress designs used the SRAM entries and the input signals
in distinct ways. Figure 5.7 shows the usage of SRAM entries and input
signals for three different stress types. On the left side, the DC 0 and DC
1 stress is sketched. In case of DC 0 stress, all SRAM entries as well as
all input pins were hardwired to ground. The constant SRAM values were
propagated all the way through the LUT. Therefore, the output of this LUT
was 0 as well. This however did not ensure that all internal signal lines were
also fixed to 0. Due to the inverter sketched in Figure 2.13, some of the
NMOS transistors still had an inverted signal applied at their gate. The DC
1 stress was designed accordingly with the only difference, that all SRAM
entries and input pins were hardwired to a high signal level.

The design of the frequency stress is sketched in Figure 5.7 on the right
side. The SRAM contained alternating static entries (0,1,0,1...), such that
every inversion of the 10 signal led to a bit flip at the output of the LUT. A
6 bit counter was connected to the input signals I0 to I5, where 10 was con-
nected to the least significant bit. Every time the counter was incremented,
the output bit of the LUT was changed. Each multiplexer stage toggled its
tree with half the frequency of the previous stage. This way, every signal
path within the LUT was actually used during the aging process. Different
input frequencies clk, namely a low and high frequency, can then be used to
simulate different types of low and high frequency stress.

78

CHAPTER 5. RELIABILITY ANALYSIS

Table 5.1: Effects of different stress types on the frequency of ROs.

Stress type Dynamic effect | Static effect
DCO0 - strong
DC1 - strong

Low frequency moderate moderate
High frequency strong weak
No stress - strong

An additional stress type was the ‘no’ stress design. This represented an
unused LUT, that was initialized by the synthesis tool. When using Xilinx
FPGASs, this usually leads to the same result as setting all SRAM values to
DC 0 by hand [SFKP15].

The flip-flops as the memory part of the slices that followed the LUT
stage were all equally stressed according to their stress type, i.e., constant
stress for DC 0 and DC 1, as well as frequency stress.

The various electrical stress designs enhanced different types of aging
effects. Table 5.1 shows the stress types and their degradation influence. As
NBTI is still the dominant effect in modern ICs [ZKN106], a DC 0 stress,
which enables more PMOS transistors, should have more influence on the
aging than a DC' 1 stress. DC 1 stress on the other hand should have
a bigger PBTI effect. Both constant effects should show only little HCI
effects, as this effect is accelerated by a high frequency. The high frequency
stress should reveal by far the biggest HCI effect. The low frequency stress
balances between the dynamic HCI effect as it is still oscillating and the
static NBTT effect as it still spends sufficient time in stable signal levels,
i.e., in saturation. The impact of the ‘no’ stress design was unknown, as it
was initialized by the synthesis tool, but should be comparable to the DC 0
stress.

5.3.3 Accelerated Environmental Conditions

In order to accelerate the degradation of the IC significantly, elevated envi-
ronmental conditions were used. The two easiest controllable environmental
influences are voltage and temperature, which were therefore used in this
work to accelerate the aging. In contrast to previous papers [SWC10, MS14]
the accelerated conditions were kept within the absolute maximum ratings
of the vendor. Operating an IC far out of its specifications could lead to
other than the desired aging effects.

The acceleration factor AFp caused by a higher temperature [Alt16,
WHI11] can be calculated to:

5.3. AGING 79

Ea(1 1)

AFT = eT TopiTstress (5]_)

with T, as the normal operation junction temperature, T ess as the
stress condition temperature, F, = 0.7 the activation energy, and k = 8.62 -
1075eV/K the Boltzmann constant.

The acceleration factor due to higher voltage AFy can be calculated to:

AFV — e('}’(Vetress_Vop)) (52)

with V;, as the normal operation voltage, Viiress as the elevated voltage,
and v = 2.0 as the voltage exponent factor [Alt16]. The product of AFp
and AFy yields the total aging factor.

These formulas are based on the Joint Electron Device Engineering
Council (JEDEC) models for semiconductor devices [JED16]. The device
specific acceleration factors were taken from similar Altera devices [Alt16],
as Xilinx does not have this information publicly available. The accelera-
tion factors are based on modeling and experimental data. Both voltage
and temperature have similar effects on HCI and NBTI/PBTI [JED16].

5.3.4 Implementation and Setup

Four 28 nm Xilinx Zynq XC77Z020 were aged in this work. The absolute
maximum voltage for the PL part of this SoC was given as 1.1V, which

equals an over-voltage of 10%. The maximum junction temperature was
given as 125°C [Xill3].

Two ZedBoards containing the XC7Z020 were aged by only using an
elevated ambient temperature of 60 °C, which was found to be the maximum
ambient temperature under which the board was still working under stress.
As the voltage was not modified for theses boards, these aging conditions
will be referred to as ‘low’ stress. The junction temperature under stress was
measured t0 Tgtress = 85 °C = 358 K and the normal junction temperature
to Tpp = 55°C = 328 K. This yielded an acceleration factor of:

80 CHAPTER 5. RELIABILITY ANALYSIS

E 1
2 (

AEOW = AFTlow =€ m_ﬁ) = 7'96 (5'3)

The devices were aged for a test duration of 230 days with several breaks
to test the effects of recovery. The effective accelerated aging duration was
calculated to:

230d-7.96 =5.01a. (5.4)

As the Xilinx ZC702 allows an easy manipulation of the device voltages,
they were used to evaluate very high stress conditions. Two of these devices
were aged under the maximum operating conditions of Tgsress = 125°C =
398 K and Vsypess = 1.1 V. This yielded an acceleration factor of:

APy, = et (was) — 77.82 (5.5)
AFy,, , = e0(t1=D) =1.22 (5.6)
AFpigh = AFThigh) AFVhigh =95.05 (5.7)

For a test duration of 230 days, the effective accelerated aging duration
was calculated to:

230d - 95.05 = 59.85 a. (5.8)

The sequence in which the devices were stressed and the PUFs measured
was separated in six steps. Figure 5.8 shows a sketch of the used stress
cycle. At first a stress design was loaded and the ambient temperature (and
voltage if applicable) were elevated. This was kept stable for a six hour stress
duration cycle. Afterwards, normal conditions of 1.0V and 25°C ambient
temperature were applied and blank FPGA design was loaded by the PS.

5.3. AGING 81

As the climate chamber and FPGA were still heated up, it was necessary
to wait until the device cooled down. Afterwards, the RO frequencies were
measured and stored by the PS.

Stress for six hours

Apply normal conditions
(1V/25C), load blank
FPGA design

Load stress design and
apply stress conditions

measure ROs wait for cool down

Figure 5.8: Stress cycle used for aging an FPGA

This cycle was performed continuously for 160 days, including two single
day breaks to test the effect of regeneration. After 160 days of measurement,
the experiment was paused for 100 days to see if the FPGA showed signs
of long-term recovery. The FPGA was not used in this period. After that
period, the stress experiments were continued normally for another 70 days.

The ambient temperature was controlled by a Heraeus Voetsch VMT
04/16 climate chamber and stayed at the same levels throughout the whole
test. The test setup is shown in Figure 5.9. The supervision of the test
was performed by the PS part of the SoC. This included programming the
FPGA, performing the measurement of the PUFs, storing the test results,
changing the voltage of the FPGA, and monitoring the test.

RO PUFs with different amounts of inverters were investigated in this
work. RO chains with one, three, and five inverters were implemented (see
chapter 3 and 4). This gave an insight whether the length of the RO was
important for its reliability. A higher length would lead to a lower frequency
oscillation. The PUFs were thoroughly constrained and placed on the device.
This guaranteed that each PUF implementation on the FPGA was exactly
the same and only the production tolerances were the reason for frequency
differences. Each PUF type was placed on every of the 6650 available CLBs
on the FPGA. This was achieved by using multiple designs for the same
type of PUF and testing them sequentially. As two ROs generate a one
bit output, a 3325 bit long bit vector per PUF type was calculated. While
measuring the frequencies, only one RO was activated at a time to avoid
influences on neighbored ROs. During stress operation, the low frequency

82 CHAPTER 5. RELIABILITY ANALYSIS

Figure 5.9: Accelerated aging test setup. A Heraeus Voetsch VMT 04/16
climate chamber was used together with two ZedBoards and two Xilinx
7ZC702 boards, all containing the Zynq XC77Z020 SoC.

was chosen to 100 Hz and the high frequency to 300 MHz.

To compare the results of the elevated degradation to the influence of
reversible environmental conditions, the frequency of the oscillators at volt-
ages from 0.9V to 1.1V and ambient temperatures from —30°C to 70°C
was also measured.

5.3.5 Experimental Results and Discussion

The experiment was conducted during a timespan of over 330 days. The
frequencies of all ROs were measured every six hours and saved by the PS.
All data was collected and examined using Matlab.

Figure 5.10 shows the comparison of the boards that were aged using
the maximum operation conditions (high V/T), and the ones that were just
aged under a higher ambient temperature (low V/T). It can be seen that the
aging was significantly accelerated using the higher voltage and temperature.
The frequency under high V /T stress dropped to around 98.4 % of the initial
value after 330 days, whereas the low V/T stress conditions only led to a
decrease to 99.4%. The degradation of the frequency was very fast during
the first few days and slowed down towards the end of the experiments.

The regeneration phase of 100 days led to an increase of the frequency of
around 0.2 % on all four boards. However, this increase vanished a few days
after stressing the devices again. A reversibility of the HCI and NBTI/PBTI
effect could not be proven in this experiment by just disabling the stress-
ing. As the devices were cooled down every six hours to measure the RO

5.3. AGING 83

— FPGA 1 (high stress)
— FPGA 2 (high stress)

FPGA 3 (low stress)
— FPGA 4 (low stress)

0.998

0.996
0.994
0.992

0.99
0.988
0.986

Relative frequency change

0.984 b
0.982 i

1 1 1 1 1 1
0'980 50 100 150 200 250 300

Aging Duration in days

Figure 5.10: Degradation of the frequency of ROs using different environ-
mental stress conditions, median value over all tested ROs.

frequency, the influence of a regeneration phase was not high. The regener-
ation effects likely occurred during these cool down phases already.

In the following analyses, only the boards aged under high V/T condi-
tions are analyzed.

Figure 5.11 shows the relative frequency change of the different inverter
RO PUF types. It can be seen that the degradation process was slightly
different for all lengths of ROs. In this case, it was not the shortest PUF
that aged the fastest, but the 3-inverter RO PUF. This might be due to
the exact implementation of the PUF, which might use more hidden PMOS
transistors than the other PUF implementations. It is impossible to analyze
this in detail without knowing the exact, secret structure of the FPGA.

Figure 5.12 shows a comparison of the influence of the different elec-
trical stress types for one of the boards that was aged under high stress
conditions. In this experiment, the DC 1 stress led to the lowest frequency
change, whereas the low frequency stress had the highest impact. The rel-
atively low impact of the DC 1 stress was consistent with the results of
previous research [SWC10]. This type of stress enabled the smallest number
of PMOS transistors, which lowered the impact of the NBTI. As no dynamic
effects occurred, the impact of HCI was also very low. The susceptibility
of NMOS transistors to PBTI is increasing with the usage of high-k gates.
Nevertheless, using this 28 nm device, this trend could not be confirmed in
this experiment.

84 CHAPTER 5. RELIABILITY ANALYSIS

—— 1-inv RO PUF
0.998 |- — 3-inv RO PUF

0.996

— 5-inv RO PUF

0.994
0.992

0.99
0.988
0.986

Relative frequency change

0.984

0.982

098 L L L L L L
0 50 100 150 200 250 300

Aging Duration in days

Figure 5.11: Impact of amount of inverters in RO on the frequency degra-
dation, median value over all tested ROs.

1,

—— constant 0 stress
0.998 — constant 1 stress
— low frequency stress
— high frequency stress
0.994 — 'no’ stress

0.996

0.992

0.99
0.988
0.986

Relative frequency change

0.984

0.982

L L L L L L
0-98 0 50 100 150 200 250 300

Aging Duration in days

Figure 5.12: Impact of the electrical stress type on the frequency degrada-
tion.

The DC 0 stress enabled more PMOS transistors and therefore had a
slightly higher frequency degradation effect than DC' 1 stress. The low fre-
quency stress combined both aging effects of dynamic and static stress. It
oscillated fast enough to induce HCI effects, and still spent sufficient time in
stable ‘0’ and ‘1’ states to enable NBTI/PBTT effects. It is interesting that

5.3. AGING 85

the high frequency stress showed a smaller impact than the low frequency
stress. This might be due to the relatively high frequency, where the transis-
tors did not spend much time in stable ‘1’ states, thus lowering the impact
of NBTI. An absolute difference of around 0.23 % was measured between the
most and least severe electrical stress types. The relatively small difference
between DC 0 and DC 1 stress could be explained by the structure of the
LUT. Due to the inverters, half of the NMOS transistors were enabled and
the other half were disabled, no matter which stress type was used. Just the
inverters themselves, and the buffers were differently stressed when using
DC 0 and DC' 1 stress.

After recovering for 100 days, the frequency was slightly raised by around
0.15%. This is in line with other research [MS14] that showed no big healing
effects when not using the device. Furthermore, after letting the device run
for a few days, the recovered frequency was lowered again and reached its
old level after around 24 days.

It has to be noted, that the relative frequency degradation difference
between the stress conditions having the highest and lowest impact was just
0.3 %. This can lead to measurement errors, as well as spatial and random
effects, to have a large impact on the results, especially because the sample
size was relatively small. However, the results were similar for every tested
board. For every board the DC 1 stress had the lowest impact and the low
frequency had the highest impact on the frequency degradation. As shown
in the next paragraph, all stress regions were also visibly distinguishable on
a heatmap.

Figure 5.13 shows the frequency degradation of the ROs mapped on the
FPGA. The different types of stress are abbreviated with the numbers 0 to
5 and described in the caption of the figure. It can be seen that the columns
with DC' 1 stress are the darkest, i.e., they had the lowest frequency change
and therefore still had the highest frequency after the aging process. In
contrary, the low frequency stress columns appear the brightest. Although
the absolute difference in frequency change was very small, it is still clearly
visible on a map and the areas are easily distinguishable.

It can also be seen that the areas in the upper right corner aged slower
than the rest of the chip. In contrary, everything close to the ARM PS in
the left upper corner appears brighter and therefore aged faster. The PS
itself might be the reason for this, as it was continuously used and heated
up the FPGA locally.

To analyze the uniformity, uniqueness, and stability property of PUFs,
binary result vectors were created for every data set. The raw frequencies
were used in combination with equation 2.12 to create the PUF results and
analyze them.

In order to achieve good uniformity and uniqueness of the PUF, a frac-
tional HW close to 0.5 is important. Figure 5.14 shows the HW of the
PUF output throughout the aging process. It can be seen that fractional

86 CHAPTER 5. RELIABILITY ANALYSIS

40

20 40 60 80 100
140 _ 1.9
120 g |18 =
= £
= [, 8
100 ! 78
s 3
o
= 80 >
2 2
Q S
> 60 g
2
©
0]
[v4

3420143420143420143434201434
stress type

20

[|

Figure 5.13: Heatmap of the FPGA illustrating the influence of different
electrical stress conditions on the frequency degradation. Each column was
equally stressed. 0: DC 0, 1: DC 1, 2: low frequency, 3: high frequency, 4:
no stress

0.6

—— 1-inv RO PUF
0.58 — 3-inv RO PUF
— 5-inv RO PUF

0.56

0.54

0.52

0.5

0.48

0.46 -

Fractional Hamming weight

0.44 -

0.42

04 L L L L L L
0 50 100 150 200 250 300

Aging Duration in days

Figure 5.14: Impact of the aging process on the HW of the PUFs.

HW remained constantly close to the ideal value 0.5 for all three PUF im-
plementations. The impact of reversible noise was much greater than the

5.3. AGING 87

influence of aging.

0.08 -
0.07
0.06
0.05

0.04

0.03

Fractional Hamming distance

0.02 —— 1-inv RO PUF
— 3-inv RO PUF
— 5-inv RO PUF

0.01}

L L L L L
0 50 100 150 200 250 300
Aging duration in days

Figure 5.15: Impact of the aging process on the reliability of the PUFs
measured with the intra-device HD.

An intra-device HD close to 0 is important for a stable PUF output.
Figure 5.15 shows the fractional HD of each measurement referenced to the
initial measurement. The fractional HD reached a level of 3% very quickly
for all three PUF implementations. After the burn-in phase, it stabilized
at a value of around 4 % to 6 %. The 1l-inverter RO PUF showed a slightly
higher fractional HD than the other implementations. This suggested, that
ROs with slower frequencies, due to more involved transistors, led to slightly
more stable PUF outputs. The impact of a single irregular transistor with
a large delay is compensated. The recovery phase had almost no influence
on the stability of the PUF. Some random peaks of the HD occurred for all
RO implementations, during which the HD raised by almost 3% for a single
measurement. These peaks could be explained by random noise, such as
EMI, temperature fluctuations in the climate chamber, voltage variations, or
measurement noise within the FPGA. However, they have to be taken into
consideration when designing a key generation algorithm that guarantees
stable key outputs.

Neighbored ROs were compared to generate the PUF bits, as shown in
Figure 5.6. As those pairs were always in the same stress zones, the stress on
the differential measurement was always the same as well. This might not
be the case when the PUF area is reused with other logic, as explained in
chapter 4. A question that arises from this is: what happens to the stability
of the PUF outputs, when two ROs are stressed differently. To analyze

88 CHAPTER 5. RELIABILITY ANALYSIS

this, the bit generation was now changed to a comparison of two ROs of
neighbored stress regions. The spatial effects were kept at a minimum by
using RO pairs close to each other. The resulting PUF vectors still showed
good results in uniformity with a HW close to 0.5 and uniqueness with
inter-device HDs close to 0.5. In the following, the stability of these PUF
constructions will be analyzed.

Figure 5.16 shows the intra-device HD throughout the aging process. In
comparison to Figure 5.15, it can be clearly seen that the resulting fractional
HD to the initial measurement was much higher. Although the absolute
frequency difference between the different types of stress was very small,
the impact on the reliability when using different stresses for the same PUF
seemed to be very high. The larger the frequency differences, the higher the
resulting fractional HD. This can be seen, as the fractional HD was higher
when comparing one RO from a low and one from a high frequency aging.
In contrary, when comparing two ROs from DC 0 and DC 1, the resulting
fractional HD was smaller. The maximum measured fractional HD raised
from 6 % to almost 10 %. However, these results also have to be taken with a
grain of salt. The DC0/DCI1 stress zones were closer to each other than the
low/high stress zones. This might have influenced the result by introducing
spatial effects. Unfortunately, the stress design was not implemented to take
this into consideration. Nevertheless, instead of reusing the area for other
logic, the results hint that it would be better — from a stability point of view
— to apply no stress or hardwire all logic to constant 1. This ensures that
the logic being used for the ROs is always stressed the same way.

5.4 Temperature and Voltage

When operating RO PUFs in real world environments, they are prone to
constantly changing external noise sources. These reversible variations can
range from temperature — caused by device heating or ambient temperature
changes — to voltage variations of the device. Robustness of the PUF against
such variations is very important. In order to design a key generation scheme
properly, the influence of temperature and voltage variations of RO PUFs
is analyzed in this section.

5.4.1 Theory

Applying a higher supply voltage to CMOS gates leads to a higher drain
current [WH11, Che06]. This effectively charges the capacitive gates of the
following transistors faster. With Cf, as the capacitive load at the output,
B as the PMOS/NMOS gain factor, k as the scaling factor, and Vpp as the
supply voltage; the rise time ¢, as well as the fall time ¢y can be approximated
to [WH11]:

5.4. TEMPERATURE AND VOLTAGE 89

0.14

— low/high frequency
—DC 0/DC 1

0.12 -

e
=
\

0.08 |-

0.06

0.04

Fractional Hamming distance

0.02

| | | | |
0 50 100 150 200 250 300
Aging duration in days

Figure 5.16: Intra-device HD throughout the aging when two ROs of two
different stress zones compared.

C
tr = k- 5.9
BpVDD (5.9)

C
tr~k- 5.10
! BnVDD (5:10)

A higher supply voltage decreases both the rise and fall time of a CMOS
inverter. Therefore, the propagation delay of a signal is lowered. In the
case of an FPGA with pass transistors, as shown in Figure 2.13, the higher
voltage leads to faster switching between signal paths within the LUT. This
results in a faster frequency of an oscillation ring.

The influence of temperature variations on the RO frequency is more
complex, as multiple effects are overlaid. One effect is the decreasing thresh-
old voltage with increased temperatures [WH11, WDDJ71, GWWT12]. This
leads to higher drain currents and faster switching times at higher temper-
atures. Another effect is the influence on the carrier mobility in the silicon,
caused by lattice scattering and impurity scattering. In normal temperature
ranges, e.g., —30°C to 120°C for the FPGAs used in this work, the lattice
scattering effect is dominant. It will cause the drain current to decrease with

90 CHAPTER 5. RELIABILITY ANALYSIS

higher temperatures and thus lowering the switching times of the transistors.

The threshold voltage effect is higher, the smaller the difference between
threshold voltage and supply voltage. In larger CMOS processes (> 32nm)
with classic polysilicon dielectrics, the difference used to be large [HGW109).
The main effect was the scattering effect, effectively leading to a negative
temperature-frequency correlation: the higher the temperature, the lower
the frequency. But with the introduction of High-x Metal Gates (HKMGs),
the supply voltage is closer to the threshold voltage. Recent research [Zegl0,
WA08, HGW109, HH15, GWWT12| shows that with HKMG and small
supply voltages, the correlation between temperature and frequency can
be turned around. Some experiments showed a positive correlation between
temperature and frequency for supply voltages of 1 V and below, thus having
a larger effect than the scattering.

Another effect that comes into play is local heating by frequencies of
the RO. Assuming a negative correlation, the frequency raises with lower
temperatures. This, on the other hand, causes a higher power dissipation,
which is heating up the RO.

5.4.2 Test Setup

For the temperature analysis, both ZedBoard and Xilinx boards were tested
in the climate chamber. The temperature varied between —45°C to 80 °C.
The board cold-started from —45°C to ensure the lowest possible temper-
ature inside the SoC. The on-chip condition was measured using the inte-
grated temperature sensor.

The voltage experiments were made using the Xilinx boards. These
boards use five Texas Instruments (TI) power switching regulators PTD
08D210W. The TIT power controller can be accessed via a PMBus controller,
that is connected via 12C to the PS. The power controller allows adjustments
of all power lines in the SoC, including the PS and PL voltage!. In this
experiment, the internal FPGA voltage VCCINT was adjusted from 0.9V
to 1.15V and the frequency of the ROs was measured.

Four distinct RO PUFs were used for both temperature and voltage
analysis. Single 1-inverter RO PUFs of three different frequencies were used
to analyze the influence on PUF's of different periodicity. The 1-inverter RO
PUFs 1 (low frequency), 15 (medium frequency), and 29 (high frequency)
of chapter 4, Figure 4.8, were used. Additionally, a 3-inverter RO PUF was
measured to test the influence on presumably more stable RO PUFs. The
5-inverter RO PUF was not considered in this test, as routing problems
occurred when trying to route the oscillation line directly to an output pin
for a secondary frequency measurement using an oscilloscope.

'Details can be found under http://www.wiki.xilinx.com/Zyng-7000+AP+SoC+
Low+Power+Techniques+part+2+-+Measuring+ZC702+Power+using+TI+Fusion+Power+
Designer+Tech+Tip

http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+2+-+Measuring+ZC702+Power+using+TI+Fusion+Power+Designer+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+2+-+Measuring+ZC702+Power+using+TI+Fusion+Power+Designer+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+2+-+Measuring+ZC702+Power+using+TI+Fusion+Power+Designer+Tech+Tip

5.4. TEMPERATURE AND VOLTAGE 91

5.4.3 Experimental Results
Voltage

Frequency in MHz
©
S
S
T
|

700 - :

1 1 1 1
9 0.920.940.960.98 1 1.021.041.061.08 1.1 1.121.141.161.18 1.2
Voltage in V

Figure 5.17: Absolute frequency change of the 1-inverter RO PUF 1 when
changing the FPGA voltage from 0.9V to 1.15V.

Figure 5.17 shows the influence of voltage on the absolute frequency of an
RO. The frequency at the recommended voltage of 1 V was around 850 MHz.
This frequency changed highly when the voltage was varied. At 0.9V a
frequency of only 670 MHz was measured. The maximum frequency was
measured to 1130 MHz at 1.15V. Although the frequency was higher than
the normal frequency, the RO was still fully operational and measurable.
This showed the robustness of the RO PUF configuration. The frequency
had a linear dependence of the voltage.

Figure 5.18 shows the influence of voltage variations on the relative fre-
quency of different RO PUF architectures. The 1-inverter RO PUF 29 had
the highest absolute frequency, but it showed the smallest relative frequency
change. On the other hand, the 3-inverter RO PUF showed the largest rel-
ative frequency change, roughly 10 % higher than 1-inverter RO PUF 29 at
the highest voltage. However, the relative frequency change was very similar
for all RO PUF implementations.

The influence of voltage variations on the intra-device HD is shown in
Figure 5.19. The reference measurement was taken at 1V, hence a HD of 0.
It can be seen how the intra-device HD rises linearly with both an increase
and decrease of the voltage. The impact is greater on ROs with a higher
frequency. The 1-inverter RO PUF 29 had a fractional HD of 9.2% at 0.9V

92 CHAPTER 5. RELIABILITY ANALYSIS

1.4

1.3 *
o l2f .
o
>
g
z 1.1p |
=
o
£
[N
g1)
=
Q
= o09f .

= 1-inv RO PUF 1
sl — 1-inv RO PUF 15 | |
: 1-inv RO PUF 29
= 3-inv RO PUF
| | | | | | | | | | | |

1 1
0'70.9 0.920.940.960.98 1 1.021.041.061.08 1.1 1.121.141.161.18 1.2
Voltage in V

Figure 5.18: Relative frequency change when changing the FPGA voltage
for different lengths and speed of PUF's.

0.12

0.1 N

g 0.08) |

=]

g

£

Ei 0.06 - .

g

g

<

T o0.04) g

— 1-inv RO PUF 1

0.02 | — 1-inv RO PUF 15 |

1-inv RO PUF 29
= 3-inv RO PUF

| | |
%.9 0.920.940.960.98 1 1.021.041.061.08 1.1 1.121.141.161.18 1.2
Voltage in V

Figure 5.19: Intra-device HD when changing the FPGA voltage for different
lengths and speed of PUFs.

and 11.5% at 1.15V. The other three tested RO types had a fractional
HD of around 6.6 % at 0.9V and roughly 9.5 % at 1.15V. For small voltage
variations, the intra-device HD is not distinguishable from normal noise of

5.4. TEMPERATURE AND VOLTAGE 93

the output as shown in chapter 3.

Temperature

492 |-

490

486 |-

484

Frequency in MHz

482

480 |-

Il Il Il
-30 =20 =10 O 10 20 30 40 50 60 70 80 90

Temperature in C

Figure 5.20: Absolute frequency change of the 3-inverter RO PUF when
changing the ambient temperature from —45°C to 80 °C.

Figure 5.20 shows the absolute change of frequency for the 3-inverter
RO PUF under different ambient temperatures. The experiment started
with the device turned off at the lowest ambient temperature to ensure a
cold start. The internal temperature was measured to —31 °C at an ambient
temperature of —45°C. This temperature was well below the specifications,
but the the tested device was still working properly. At the standard tem-
perature of 25°C, the internal temperature was measured to 38 °C in idle
mode.

For internal temperatures of —31°C to 70°C a positive correlation be-
tween temperature and frequency can be seen in Figure 5.20. As the Xilinx
Zynq uses HKMG technology, the influence of threshold voltages changes
might became greater than the influence of scattering. The lowest frequency
was reached at the lowest temperature with 476 MHz. The frequency then
increased in form of a negative quadratical curve until an internal temper-
ature of 70°C, where it reached its maximum of 493.5 MHz. At higher
temperatures the correlation started to be negative. From an internal tem-
perature of 70°C to 90°C the frequency dropped to 491 MHz. This might
be caused by an even more accelerated local heating due to the high fre-
quencies. The impact of the scattering effect became greater and caused the
frequency to drop again. As the maximum frequency difference was only
17.5 MHz, the influence of temperature variations on the frequency of ROs
was much smaller than the influence of voltage variations.

94 CHAPTER 5. RELIABILITY ANALYSIS

Relative frequency f/f,
[=}
<
N=}
T

0.98 - h
= 1-inv RO PUF 1
—— 1-inv RO PUF 15
0.975 |- 1-inv RO PUF 29 b
= 3-inv RO PUF
Il Il Il Il Il Il
0'9140 —20 0 20 40 60 80 100

Temperature in C

Figure 5.21: Relative frequency change when changing the ambient temper-
ature for different lengths and speed of PUFs.

Figure 5.21 shows the comparison of the correlation between the relative
temperature and the frequency for different lengths and speeds of RO PUF's.
The 3-inverter RO PUF is the same one that is used in Figure 5.20. It can be
seen, that with higher frequencies of the RO PUFs, the correlation between
temperature and frequency became more negative. Both the 1-inverter RO
PUF 1 and 15 showed a very similar behavior. Their frequency was positively
correlated from —31°C to 40 °C, where it reached its maximum. At higher
temperatures, the frequency was negatively correlated. The lowest frequency
was reached at the highest internal temperature of 90 °C.

The 1-inverter RO PUF 29 had a constant frequency for internal tem-
peratures of —31°C to 10°C, where it also reached its maximum. At higher
temperatures the frequency was negatively correlated with the temperature
and reached its minimum at 90°C. The impact of scattering seemed to be
higher, the faster the ROs were.

As a conclusion it can be said that the correlation between frequency and
temperature was very unpredictable. Multiple temperature effects seemed to
influence the frequency when using a device with the 28 nm HKMG technol-
ogy. As the exact structure of the FPGA is not publicly known, it is hard to
model the effects. The empirical measurements showed a very unpredictable
behavior. This also supports the idea of a differential measurement using
neighbored ROs to generate bits. Their absolute frequency change might
be unpredictable but was very similar in relation for every pair during the
experiment.

Figure 5.22 shows the dependence of the intra-device HD from the am-
bient temperature for different PUF types on one of the boards. The initial

5.5. CONCLUSION 95

0.07 T T

——1-inv RO PUF 1
— 1-inv RO PUF 15
0.06 - 1-inv RO PUF 29 iy
! s — 3-inv RO PUF
0.05 | /K .
. M
3] [\
e J .
7 0.04| * . " a
f hi i
£ Lk ,
é 0.03 L w) \ l\ f”' i
0.02 | ' a
i Mv) “V
0.01 | a
0 Il Il Il Il Il Il
=40 —20 0 20 40 60 30 100

Temperature in C

Figure 5.22: Intra-device HD when changing the ambient temperature for
different lengths and speed of PUFs. Initial measurement taken at 25°C
ambient temperature.

measurement of all 6650 ROs was taken at 38 °C junction temperature, i.e.,
25°C ambient temperature. This also explains the spike, as only the ini-
tial measurement compared with itself has a HD of zero. Every consecutive
measurement, even at the same temperature, shows a HD of at least 1.5 %
to 2.5 % compared to the initial measurement. The HD raised linearly for
both lower and higher temperatures for all RO types. The highest HD was
reached by the 1-inverter RO PUF 1 at 90 °C with a HD of 6.6 %. The other
PUFs had a HD of 3.2% to 4.6 % at that temperature. At lower tempera-
tures the results were very similar for all PUF's with HDs ranging from 4.8 %
to 5.4 %. The most reliable PUF was the 1-inverter RO PUF 15 in these
experiments.

5.5 Conclusion

The impact of reversible and irreversible variations on the quality of RO-
based PUFs on 28 nm FPGAs was studied in this chapter. It was shown that
one year of accelerated aging, which equaled an effective aging duration of
roughly 60 years, lowered the frequency of ROs to around 98.6 %. As the
highest frequency degradation occurs during the beginning of the lifetime,
a burn-in phase would lower possible instability problems. Low frequency
stress was found to cause the highest frequency degradation. Both HCI and
NBTI effects are active when CMOS logic is stressed with a low frequency.

The complete aging process caused an intra-device HD of roughly 4 % to

96 CHAPTER 5. RELIABILITY ANALYSIS

6 %. Stressing RO pairs equally is recommended, as comparing differently
stressed ROs with each other caused an intra-device HD of up to 12 %. The
uniqueness property remained valid with HWs close to 0.5 and inter-device
HDs close to 0.5.

The effects of reversible variations such as temperature and voltage were
comparable with aging effects. The impact on the absolute frequency was
very high when varying the voltage of the device. The frequency changed by
over 20 % for voltages from 0.9V to 1.15V. At the same time the intra-device
HD reached maximum values of up to 11.5%. The impact of temperature
variations on the absolute frequency was very unpredictable and depended
highly on the used RO. This was mainly caused by multiple concurring
effects when using the 28 nm HKMG technology. The impact of scattering,
threshold voltage changes, and local heating caused by ambient temperature
variations had different effects on the RO. Depending on the base frequency
and the structure of the PUF, different correlations between temperature
and frequency were measured. The impact on the intra-device HD, however,
was very comparable for both different PUF implementations and boards,
with maximum HDs of 3% to 6.5 %.

The effects of reversible and irreversible frequency variations can be com-
pletely compensated by using error correction algorithms. This ensures a
reliable behavior of the PUF throughout the lifetime of the device. The re-
sults from this chapter can be used to choose an appropriate error correction
algorithm.

CHAPTER 6

PUF-Based Key Generation System

The methods shown in chapter 3 and chapter 4, as well as the results shown
in chapter 5 are used in this chapter to design a PUF-based key generation
system on an FPGA. As detailed analysis and implementation of key gen-
eration schemes are not part of this thesis, well known research results and
their FPGA implementation results were used. Furthermore, a key enroll-
ment scheme for the protection of the FPGA bitstream against manipula-
tion, cloning, and reverse engineering is presented. The scheme can be used
to securely transmit and store IPs on insecure flash memory. The chapter is
organized as follows: In chapter 6.1 a short introduction is given. The used
SoC platform with the given security features is presented in chapter 6.2.
Using the results from chapter 5, a suitable error correction and key gener-
ation algorithm is chosen in chapter 6.3 and the optimized results using the
reconfigurable PUF from chapter 4 are presented. A new method to trans-
mit and store IPs securely on FPGA-based SoCs is shown in chapter 6.4.
Finally, a conclusion is given in chapter 6.6.

6.1 Introduction

Modern FPGAs such as the 7-series of Xilinx and the V-series of Altera
already make use of measures to protect the confidentiality, integrity, and
authenticity of bitstreams [San13, DTB*15]. Unfortunately, most encryp-
tion schemes were broken with Side Channel Attacks [MKP12, MKP11,
MOPS13]. These attacks revealed the encryption keys that were stored
inside the device through differential power analysis attacks and the confi-
dentiality of the IPs was voided.

On the other hand, modern FPGA-based SoCs implement secure boot

97

98 CHAPTER 6. KEY GENERATION SYSTEM

mechanisms based on public key cryptography, which only protect firmware
(PL and PS part) authenticity and integrity. These schemes are, of today,
not broken and can be used securely. Based on these mechanisms, a root
of trust can be established and utilized for PUF-key-based cryptographic
implementations.

The cryptographic functions that are provided by the vendors can only
be used for a very limited amount of purposes. These include the encryp-
tion and authentication of a very specified protocol to load partitions from
memory. User modules and functions cannot access the cryptographic ac-
celerators [San13].

To be more flexible, the FPGA can be configured with own cryptographic
functions. Furthermore, the implementations can be hardened against SCAs.
The system design and protocol presented in this chapter can be used to de-
sign a secure and flexible solution to provide cryptographic functions for the
PS and PL of FPGA-based SoCs.

6.2 SoC Platform

Modern SoCs with FPGAs already offer a variety of security features. They
can be separated in two categories: the ones that ensure authenticity and
the ones that ensure confidentiality. The latter is usually done by encrypting
the FPGA bitstream using a symmetric encryption algorithm such as AES.
For the Xilinx Zynq an AES-256 was chosen [San13]. The AES key is stored
in fuses or Battery Backed RAM (BBRAM). A Keyed-Hash Message Au-
thentication Code (HMAC) provides additional integrity protection of the
bitstream using a SHA-256 hash function. The HMAC feature, however,
relies on the bitstream encryption, as both the HMAC and the HMAC key
are stored in the encrypted bitstream.

Unfortunately, various successful Side Channel Attacks (SCAs) on the
symmetric cryptography of both Altera and Xilinx devices MKP12, MKP11,
MOPS13] showed the vulnerability of their implementations. As the HMAC
key is stored in the encrypted bitstream, any security feature of the HMAC
are also voided. Therefore, the system designed in this chapter does not rely
on any symmetric encryption scheme provided by the manufacturer.

To ensure secure boot of the device the Xilinx 7-series also provides a
2048 bit RSA authentication. Every partition, i.e., PL bitstream (.bit files)
and PS software (.elf and .bin files) can be authenticated. A SHA-256 hash
of the partition is calculated and signed. This asymmetric authentication
method is independent from the AES/HMAC encryption/authentication.
The main advantage of this method is that the device only has to store a
(hash of the) public key, as the private key is only needed for signing the
partitions off-site. This makes the key management flexible and secure. It
is not important to ensure the confidentiality of the public key, only the

6.3. ERROR CORRECTION & KEY GENERATION 99

authenticity and integrity. This is realized using eFuses. The complete
public key is transmitted with every signed partition and verified against
a stored hash of the public key by the SoC. There are no known attacks
against the RSA authentication of modern FPGAs.

6.3 Error Correction and Key Generation Algo-
rithm

The main goal of PUFs in this thesis is the ability to generate intrinsic,
secure, and stable keys. PUFs face two main problems: a) their outputs
are generally noisy (as shown in chapter 5) and b) the entropy is lower and
harder to estimate compared to a true RNG (as shown in chapter 4). The
resulting bit vector can not be directly used as a cryptographic key. In PUF
key generation schemes fuzzy extractors are used to tackle both of these
problems by increasing the reliability and compressing the entropy.

As shown in chapter 4 and 5, the PUF bits are not completely uniform
and stable. Therefore, a fuzzy extractor is used to enhance the min-entropy
of the PUF bits and to ensure a stable output. Many key generation al-
gorithms with FPGA implementations have been proposed [DGSV14]. In
the following, four of these schemes are presented with the implementation
results taken from the papers.

The PUFKY algorithm by Maes et al. in 2012 [MVHV12] uses a modular
design with RO PUFs. A bit error probability of p. = 12 % is assumed by
the authors. A raw PUF output of 2226 bit is used together with 2052 bit
helper data to generate a full-entropy 128 bit key. The design occupied 1162
slices, of which the main part of 82 % was occupied by the RO PUF itself.
As the area consumption of RO PUFs was tackled in chapter 4 of this thesis,
the design could be further shrunk. The runtime was measured to 5.62 ms,
where the major part of the runtime was needed for the PUF output with
4.59 ms.

A soft-decision helper data algorithm for SRAM PUFs was proposed by
Maes et al. in 2009 [MTVO09b]. A soft-decision Reed-Muller-Code (RM)
based on a Generalized Multiple Concatenated Code (GMC) was used. The
design consumed significantly less resources than previously presented de-
signs [BGST08]. It occupied 237 slices, needed 13952bit helper data, a
1536 bit SRAM, and had a runtime of 205 ps.

The C-IBS implementation by Hiller et al. [HDSMS12] used a RM-GMC.
2304 PUF output bits were needed together with 9216 helper data bits to
generate a 128bit key. The design consumed 250 slices. The bit error
probability p. was given with 15 %.

The compressed DSC using convolutional codes by Hiller et al. [HS14,
HWRL*'13, HYS16] needed 974 PUF output bits and 1108 helper data bits.
The design consumed a total of 249 slices. The Seesaw Viterbi decoder

100 CHAPTER 6. KEY GENERATION SYSTEM

consumed with 10752 bit very many block RAM bits. The advantages of
the DSC are the small amount of required PUF bits and helper data bits.
The runtime was roughly 3 times slower than the soft decision algorithm by
Maes et al..

Scheme H PUF bits ‘ Slices ‘ Helper data bits
PUFKY [MVHV12] 2226 209 2052
Soft-Decision [MTV09b] 1536 237 13952
C-IBS [HDSMS12] 2304 250 9216
DSC [HYS16] 1224 262 2176

Table 6.1: Comparison of implementations of 128 bit key generation schemes.
The PUFKY scheme assumes a bit error probability of 13% and a desired
128 bit key error probability of 1072, The other schemes assume a bit error
probability of 15 % and a desired 128 bit key error probability of 1076, The
slices do not include the implementations of the PUF instances themselves.

Table 6.1 shows the presented PUF key generation schemes in compar-
ison. For this work the PUFKY algorithm seemed the most appropriate
algorithm to balance between area and runtime. As the algorithm was de-
signed for RO PUFs it is also very suitable for this work. The PUFKY
algorithm uses a combination of repetition code (REP) and BCH code se-
cure sketches. The repetition code is used to relax the design constraints,
whereas the BCH code is used to do the main work. The largest part of slices
is needed for the BCH decoder with 112 slices. The decoding time is given
with 50320 cycles. After the REP and the BCH stage, a small and area
efficient SPONGENT hashing is used to compress the entropy to a 128 bit
key. The hash algorithm consumed 22 slices. The algorithm is fed by 2226
PUF output bits, which contain an estimated 2180 bits of min-entropy.

As shown in chapter 4, a very conservative estimate showed an entropy
of 93% for the presented partial reconfiguration PUF. To generate 2180 bit
of entropy, a raw PUF output size of 2180/0.93 = 2344 bit would be needed.
As 48Dbit can be generated per pair of CLBs, a total of [2-2344/48] = 98
CLBs would be needed to generate that amount of bits using the partial
reconfiguration PUF. This equals 98 - 2 = 196 slices, as one CLB consists
of 2 slices for a XILINX Zynqg. The measurement circuit consumes another
25 slices (see Table 3.1). The original PUFKY implementation, on the
other hand, needed 952 slices for the RO PUFs. This equals a reduction
of necessary slices by 79.4%. Furthermore, the reconfigurable PUF uses
the slices of the CLBs more efficiently. With the RO PUF used in the
PUFKY implementation, some slices might not be usable anymore, as the
PUF already occupied major parts of the CLB. This fact is not considered
when using the raw amount of slices that are occupied by a design.

A main concern of helper data algorithms is their potential entropy leak-

6.4. SECURITY MODULE 101

age by public data. There is still a lot of open research about the actual
leakage [DGSV14]. However, in comparison to other suggested protocols the
PUFKY approach is very conservative as every helper data bit is subtracted
from the amount of PUF bits to calculate the final entropy. This allows a
higher confidence in the full entropy of the resulting 128 bit key. The fail
rate of the PUFKY implementation is given with py.; < 1079.

6.4 Security Module

A new security module and protocol using the previously presented reliable
PUF-based key generation scheme is proposed in this section. Using this
module, the FPGA-based SoC is able to store confidential and authenti-
cated firmware on the (external) device memory, allow secure over-the-air
flashing, and allow secure communication using device unique keys. As these
IPs contain a lot of valuable knowledge, the protection of their confidential-
ity is very important. As the symmetric ciphers of most modern FPGAs are
broken by SCAs, an own AES has to be implemented and used. The authen-
ticity of the firmware is even more important in modern device protection
and secure communication. This is especially true for the PUF bitstream.
The confidentiality of this bitstream is not very important, but its authen-
ticity and integrity is. Any attacker being able to alter the bitstream and
load own bitstreams on the target FPGA could reroute PUF outputs and
simply read out the responses. The attacker should be prevented from us-
ing the SoC with any unauthenticated firmware, thus hindering him from
characterizing a device.

The most important requirement of the SoC platform is therefore a
public-key-based secure boot mechanism in which the internal boot code
validates the signature of the next firmware/bitstream part. This feature is
offered by most modern FPGA SoCs.

The proposed security module offers the following features:

1. an enrollment in a secure environment of the vendor

2. a secure boot procedure including the FPGA bitstream
3. an IP loading procedure, and

4. an IP storage procedure

Any protected IP can be stored on untrusted non volatile memory, as it
is encrypted and authenticated.

6.4.1 Enrollment Phase

The system is enrolled in a secure environment, where only authorized staff
has access to workstations and its strictly separated I'T network. Figure 6.1

102 CHAPTER 6. KEY GENERATION SYSTEM

Enrollment
SoC PL with enrollment design workstation Device flash
Helper Helper
PUF ' Data > Data
Generator Vendor
* Slgnatulre »| Signature
T Generation
Repro- 8 symim. o PUF
duction Top | ey Pair public | Public Ke
’ PUF | Generator ke Y
key ey

Figure 6.1: SoC enrollment in a secure environment of the vendor.

shows the enrollment process. An enrollment bitstream is used to generate
the PUF response. It is then used within the device to generate the helper
data. The PUF response is used together with the helper data to generate
a reliable and uniform key. This key can be used, e.g., as a salt for a PRNG
to generate a private and public key pair. The key length should be at least
2048 bit to be sufficient until 2030. The private key never leaves the FPGA,
only the public key does [Barl6].

The PUF public key is signed on an external enrollment workstation to
ensure that the device was enrolled by the vendor. The signature is then
stored together with the public key and the helper data on the device flash
memory.

The public key of the system vendor respectively a hash of the key is
burned in the device fuses. The fuses that enforce secure boot and disable
JTAG are set as well. The Security Module (SM) firmware that contains,
e.g., the PUF is signed with the system vendor private key. Both signature
and SM firmware are stored in the device flash memory. The device can
then be used in a non-secure environment, as only vendor signed firmwares
can be executed.

6.4.2 Security Module Boot Procedure

Figure 6.2 and 6.3 show the boot procedure of the SoC. The PS bootloader
loads (1a) the SM firmware together with the according certificate, including
the vendor public key, from the device flash memory. The hash of the vendor
public key is read from the internal fuses and compared with a hash from
the provided vendor public key (1b) and used to verify the certificate of
the SM. If the public key and/or the certificate is not correct, the system
enters a fail-secure state. Otherwise, the SM including the PUF is loaded
(2) into the PL. If the reconfigurable PUF is used, the PS loads the partial
implementations sequentially on the PL and the intermediate results are
stored within the PL. The complete PUF response is used together with the

6.4. SECURITY MODULE 103

helper data to reconstruct the device unique private key and stored together
with the PUF public key inside the PL. The private key never leaves the PL
part of the SoC.

SoC
Security
Module (SM) > 1a PS Fuses
SM * ROM | _[1b]| [Hash(Vendor
Certificate Bootloader | PubKey)
EncStm'Kcy(IP# 1) 2
— ||y
Encpufpubicey(StorKey) 3 = YR »| 1P 41
and IP #1 Certificate 4
PUF -

Figure 6.2: SoC boot procedure with the non-volatile memory on the left
side and the SoC on the right side.

If the reconfigurable PUF is used together with a very robust ECC,
the complete area could now be reused by other IPs. Otherwise, the area
used for the ROs should be reconfigured with a blank design according to
Figure 5.12 and Figure 5.16. After the boot procedure, a device unique
PUF-based public/private key pair is available inside the PL. The SM can
be used as a root of trust.

6.4.3 IP Loading Procedure

After establishing a root of trust in the PL using the PUF-based key gen-
eration, the encrypted and signed IP cores can be loaded from the flash
memory. As shown in Figure 6.2, the SM (3) loads the encrypted IP, the
corresponding storage key, which is encrypted with the PUF public key, and
the IP certificate. At first, the certificate of the encrypted IP is verified to
ensure authenticity and integrity of the partition using the PUF public key.
The PUF private key is then used to decrypt the storage key, which itself
is then used to decrypt the IP. The IP can then be programmed (4) to the
FPGA using partial reconfiguration.

6.4.4 IP Storage Procedure

A secure communication with the vendor’s server can be used to update
IPs or load new IPs over-the-air. Figure 6.4 shows a scheme for secure IP

104 CHAPTER 6. KEY GENERATION SYSTEM

[ROM bootloader starts]

l

Bootloader reads vendor public key

from fuses (or reads from flash and
compares with hash value in fuses)

no Fail-
Secure
Bootloader verifies sig-
nature of SM partition

no Fail-
Secure
SM configured, PUF output
generated, key pair generated

l

[SM verifies IP signature J
no Fail-
Secure
yes

[SM decrypts IP storage key]

SM decrypts and loads
IP using IP storage key

]

[IP executed]

Figure 6.3: SoC boot procedure.

transmission and storage on the device. In order to set up a secure commu-
nication with the vendor’s server, the device sends its own PUF public key
together with the vendors signature to the server. The server verifies the
signature to ensure the authenticity of the communication partner and its
PUF public key. An ephemeral symmetric transport key is used to protect
the confidentiality of the transmitted IP. The transport key is encrypted
with the PUF public key and transmitted to the device.

When a secure communication with the vendor’s server is set up, the IP
can be encrypted with the transport key and transmitted to the PL part of
the device. The device decrypts the IP with the transport key and stores
it in the device flash memory using a random storage key. The storage key
is encrypted with the PUF public key and also stored in the device flash
memory. The encrypted IP is signed with the PUF private key in order
to ensure authenticity and integrity. No plain text leaks outside of the PL

6.5. DISCUSSION 105

Vendor
anKcy TransKey P

\ v
) Encrransiey(IP)

T Encpufpubkey|TransKey

Vendor

SoC
TransKey

PUF PubK ¢
n Signlzlituri‘,y 4>|Decrypt I—)IEncrypt I—)I Sign I

PUF PrivKey StorKey \PUFPHVK(&

Encsiork, ey IP

PUFPubKey » | Encrypt | CertpUFPM,UKCy(IP)

Encpyrpubiey(StorKey)

Figure 6.4: IP storage procedure using symmetric transport and storage
keys, as well as the asymmetric PUF generated key pair.

during this procedure.

6.5 Discussion

The presented scheme can only be seen as an exemplary application of a
PUF-based key generation on an FPGA. Some security problems might
arise in the schemes, depending on the use case. One example is the re-
usage of the PUF-based asymmetric key pair for both decryption and signa-
ture verification. This is not an ideal design standard. Only if an attacker
could not use the FPGA as an oracle in a chosen-ciphertext attack, most
attacks would not be possible. However, especially with future attacks be-
ing more sophisticated, the requirements to the security level have to be
thoroughly analyzed to justify this design choice. A possible alternative
would be the generation of two asymmetric keys, one for each purpose. This
would require a longer PUF key size to provide sufficient entropy for the
key generation. Alternatively, an AES-GCM could be used to sign and en-
crypt an IP inside an FPGA using a symmetric, PUF-based key. If the goal
is the usage of smaller keys, an elliptic-curve-based algorithm like Elliptic
Curve Diffie-Hellman (ECDH) in combination with a signature verification
could be used as a symmetric key agreement protocol. An in-depth analysis
of these protocols is not part of this thesis. Hence, the proposed scheme
should always be analyzed for the security needs of the desired protocol.

106 CHAPTER 6. KEY GENERATION SYSTEM

6.6 Conclusion

In this chapter an exemplary application of the highly efficient implemen-
tation of PUFs on FPGAs was shown. The measured quality properties of
chapter 5 were used to choose an appropriate PUF-based key generation
scheme. The PUFKY algorithm was used in this work. The amount of
slices that were needed to implement the RO PUF part of the system could
be lowered by at least 79.4 % when using the partial reconfiguration PUF
presented in chapter 4. The actual reduction of occupied CLBs and area is
even bigger, as the slices of the CLBs are used much more efficiently.

As the implementation of symmetric encryption algorithms on most
modern FPGA-based SoCs is broken, a new scheme was introduced. This
scheme allows the secure boot of an authenticated SM that is able to gener-
ate a device specific asymmetric key pair. This key pair can be used to load
encrypted IPs from an unprotected device flash memory. Furthermore, a
procedure was proposed that allows the transmission of modified or new IPs
over-the-air from the vendor. All IPs are transmitted and stored encrypted,
such that the confidentiality of the IPs is preserved. Furthermore, all IPs
are authenticated to ensure that only verified firmwares and partitions can
be run on the device.

CHAPTER [

Conclusion and Future Work

In this thesis it was shown how to efficiently implement RO PUFs on FPGAs
using partial reconfiguration. All PUF implementations were tested on their
quality properties. An extensive examination of the reliability of the PUFs
was done by performing accelerated aging tests over a period of around one
year, and complemented with voltage and temperature variation tests.

In the first part of the thesis, a basic 3-inverter RO PUF system was im-
plemented on a 28 nm FPGA. All tested quality properties such as bit alias,
uniformity, stability, uniqueness, and read-out time showed very promising
results. The intra-device HD was measured to 3%. The inter-device HD
and the HW of the bit vectors were very close to an ideal value of 0.5. The
downside of this design was its huge area consumption. The generation of
2136 raw PUF bits consumed almost 80 % of all available slices on a Xilinx
Zynq Z-7020.

In the second part of this thesis, the problem of the high area con-
sumption was tackled by introducing the partial reconfiguration PUF. All
available LUTs in a CLB, as well as all available input pins of the LUTs
were used for separate 1-inverter RO designs. The designs were reconfigured
one after another using partial reconfiguration. Each result was stored in-
side the FPGA. Finally, all partial bit vectors were concatenated to a large
bit vector. Using this method, the raw PUF output could be increased by
a factor of 48 by using all eight LUTs of a CLB and six input pins of a
LUT. In other words, the required resources to generate a PUF response
with a given length could be decreased by 98 %. Instead of consuming 80 %
of the available slices to generate 2136 PUF bits, only roughly 2 % would be
needed using this method.

A design was implemented that generated a total of 102528 raw output

107

108 CHAPTER 7. CONCLUSION

bits using the same area as the design in the first part. The design was tested
on a total of ten Xilinx Zynq Z-7020. The read-out time, including measure-
ments, reconfiguration, and write-back of all 102 528 bits was measured to
3.78s. The HWs of the partial and concatenated bit vectors were very close
to an ideal value of 0.5. As expected, some of the partial bit vectors on the
same board were correlated due to shared resources between the partial RO
designs. The HD between those correlated designs was in a few cases as low
as 0.2, but mostly close to the ideal result of 0.5. The inter-device HD of
the concatenated partial bit vectors was always very close to 0.5.

The entropy of the concatenated bit vectors was shown to be good using
three tests: CTW, PCA, and the NIST SP 800-90B entropy test. CTW
showed that the bit vectors were incompressible. The algorithm was not
able find any compressible correlations. The PCA showed that each partial
RO design contributed to the final result and could not be linearly combined
by using any other partial RO designs. The NIST SP 800-90B, a very
young entropy test that works on small data sets, measured a min-entropy
of 0.927bit per raw PUF bit. This is a very promising result, considering
that the total bit vector size could be increased by a factor of 48.

In the third part of this work, the reliability of RO PUFs on FPGAs was
analyzed. The first section covered the aging behavior of ROs on FPGAs.
Different aging designs, each accelerating different kinds of aging mecha-
nisms, were implemented on an FPGA. They were then run inside a climate
chamber with accelerated aging conditions, i.e., higher voltage and temper-
ature. The average RO frequency on a device that was effectively aged for
almost 60 years was lowered by 1.6 %. The HW was not affected by the
aging and stayed close to the ideal value of 0.5. At the same time, the ag-
ing process caused an intra-device HD of up to 6 %. The experiments also
showed that it is very important to compare equally stressed ROs with each
other. Otherwise, the intra-device HD reached values up to 12 %.

In the second section, the influence of temperature and voltage variations
was tested. A maximum of 11.5% intra-device HD was measured when
changing the voltage from 1V to 1.15V. Voltage variations showed a linear
effect on the frequency of the ROs. Temperature variations, on the other
hand, had a very unpredictable impact on the frequency. This could be
explained by the usage of the 28 nm HKMG technology. The intra-device
HD caused by temperature variations showed an almost linear behavior with
maxima of 5% at —38 °C ambient temperature and 6 % at 90 °C.

In the last part, a PUF-based key generation system was introduced. A
suitable error correction and key generation algorithm was chosen from lit-
erature and the possible area reduction calculated. When using the PUFKY
algorithm, the CLB usage could theoretically be reduced by 79.4 %. Fur-
thermore, the partial reconfiguration PUF would have a more efficient usage
of the slices in the CLBs and hence a better usability of the remaining area.
Afterwards, a security module was presented as an outlook for the secure

109

boot and secure storage possibilities of an FPGA-based SoC using the stable
and area-saving partial reconfiguration PUF. The system is able to enroll
a device during manufacturing, securely boot the SoC, load encrypted IPs
from an unprotected non-volatile memory, and securely store IPs transmit-
ted over-the-air.

Future Work This thesis showed the efficiency and usability of RO PUFs
on FPGAs. In future work, other types of PUFs could be implemented with
the partial reconfiguration method presented in chapter 4. The sources of
entropy could even be extended by using different routing possibilities within
the CLB. This, on the other hand, would increase the correlation between
those partial RO designs. A problem that could be tackled by a higher
compression (privacy amplification) of the raw output bits. Other methods
to analyze the entropy of the resulting bit vectors could be used. The work
on entropy estimation of relatively small data sets is still very young and
not much prior work exists. The methods presented in this work could be
used as a basis and extended by other methods.

The accelerated aging tests that were done in chapter 5 could be ex-
tended by more stress designs that would accelerate other types of aging
mechanisms. Furthermore, an inverse stress could be applied on the stressed
logic, which might invert some aging mechanisms. A larger number of de-
vices should be tested for more reliable results. Due to the relatively small
climate chamber, only four devices were aged in this work.

The error correction and key generation algorithm PUFKY presented in
chapter 6 could practically be implemented with the partial reconfiguration
PUF. After the implementation of a key generation algorithm, the security
module could be implemented in future efforts to demonstrate the usability
of the proposed secure system design.

110 CHAPTER 7. CONCLUSION

Bibliography

[Ala03]

[Alt16]

[Bar16]

[Bau83]

[BDBRR12]

[BEYY04]

[BGST08]

M. A. Alam, “A Critical Examination of the Mechanics of Dy-
namic NBTI for PMOSFETS,” in IEEFE International Electron
Devices Meeting 2003, Dec. 2003, pp. 14.4.1-14.4.4.

Altera, “Reliability Report MNL-1085,” 2016. [Online]. Avail-
able: https://www.altera.com/content/dam/altera-www/
global/en_US/pdfs/literature/rr/rr.pdf

E. Barker, “Recommendation for Key Management Part 1:
General,” National Institute of Standards and Technology,
Tech. Rep. NIST SP 800-57ptlr4, Jan. 2016.

D. W. Bauder, “An Anti - Counterfeiting Concept for Currency
Systems,” Sandia National Labs, Tech. Rep., 1983.

P. F. Butzen, V. Dal Bem, A. I. Reis, and R. P. Ribas, “Design
of CMOS logic gates with enhanced robustness against aging
degradation,” Microelectronics Reliability, vol. 52, no. 9-10,
pp. 1822-1826, Sep. 2012.

R. Begleiter, R. El-Yaniv, and G. Yona, “On Prediction Using
Variable Order Markov Models,” Journal of Artificial Intelli-
gence Research, vol. 22, no. 1, pp. 385-421, Dec. 2004.

C. Bésch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and
P. Tuyls, “Efficient Helper Data Key Extractor on FPGAs,” in
Proc. International Workshop on Cryptographic Hardware and
Embedded Systems (CHES). Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 181-197.

111

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/rr/rr.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/rr/rr.pdf

112

[BSQ10]

[CB13]

[Chal4]

[Che06]

[CMKO05]

[DGSV14]

[DRS04]

[DTB*15]

[GCvDDO02]

[GKSTO7]

BIBLIOGRAPHY

P. Bulens, F.-X. Standaert, and J.-J. Quisquater, “How to
Strongly Link Data and its Medium: The Paper Case,” IET
Information Security, vol. 4, no. 3, pp. 125-136, Sep. 2010.

C. Chiasson and V. Betz, “Should FPGAs Abandon the
Pass-Gate?” in Proc. International Conference on Field Pro-
grammable Logic and Applications (FPL). TEEE, Sep. 2013.

K. Chapman, “Multiplexer Design Techniques for
Datapath Performance with Minimized Routing Re-
sources, Xilinx XAPP522,” Oct. 2014. [Online|. Avail-
able: https://www.xilinx.com/support/documentation/
application_notes/xapp522-mux-design-techniques.pdf

W.-K. Chen, The VLSI Handbook, Second Edition (Electrical
Engineering Handbook). Boca Raton, FL, USA: CRC Press,
Inc., 2006.

Y. Chen, M. K. Mih¢ak, and D. Kirovski, “Certifying Authen-
ticity via Fiber-Infused Paper,” ACM SIGecom FEzchanges,
vol. 5, no. 3, pp. 29-37, Apr. 2005.

J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede,
“Helper Data Algorithms for PUF-Based Key Generation:
Overview and Analysis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 1-1, 2014.

Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy Extractors: How
to Generate Strong Keys from Biometrics and Other Noisy
Data,” in Advances in Cryptology - EUROCRYPT. Springer,
2004, pp. 523-540.

R. Druyer, L. Torres, P. Benoit, P. V. Bonzom, and P. Le-
Quere, “A Survey on Security Features in Modern FPGAs,” in

Proc. Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC). 1EEE, 2015.

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon
Physical Random Functions,” in Proc. Conference on Com-
puter and Communications Security. Washington, DC, USA:
ACM, 2002, pp. 148-160.

J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA
Intrinsic PUFs and Their Use for IP Protection,” in Proc. In-
ternational Workshop on Cryptographic Hardware and Embed-
ded Systems (CHES). Vienna, Austria: Springer-Verlag, 2007,
pp. 63-80.

https://www.xilinx.com/support/documentation/application_notes/xapp522-mux-design-techniques.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp522-mux-design-techniques.pdf

BIBLIOGRAPHY 113

[GLC*04]

[GLS15]

[GS14]

[GS15]

[GS16]

[GWWT12]

[HBF09)]

[HDSMS12]

[HGW*09]

[HH15]

B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas,
“Identification and Authentication of Integrated Circuits: Re-
search Articles,” Concurrency and Computation: Practice &

Ezperience - Computer Security, vol. 16, no. 11, pp. 1077-1098,
Sep. 2004.

S. Gehrer, S. Leger, and G. Sigl, “Aging Effects on Ring-
Oscillator-Based Physical Unclonable Functions on FPGAs,”

in Proc. International Conference on ReConFigurable Comput-
ing and FPGAs (ReConFlig), Dec. 2015.

S. Gehrer and G. Sigl, “Reconfigurable PUFs for FPGA-based
SoCs,” in Proc. International Symposium on Integrated Cir-
cuits (ISIC), Dec. 2014, pp. 140-143.

S. Gehrer and G. Sigl, “Using the Reconfigurability of Modern
FPGAs for Highly Efficient PUF-Based Key Generation,” in
Proc. Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), Jun. 2015.

S. Gehrer and G. Sigl, “Area-Efficient PUF-Based Key Gener-
ation on System-on-Chips with FPGAs,” Journal of Circuits,
Systems and Computers, vol. 25, no. 01, Jan. 2016.

M. Gag, T. Wegner, A. Waschki, and D. Timmermann, “Tem-
perature and On-Chip Crosstalk Measurement Using Ring
Oscillators in FPGA,” in Proc. International Symposium on

Design and Diagnostics of Electronic Clircuits € Systems
(DDECS). 1IEEE, 2012, pp. 201-204.

D. Holcomb, W. Burleson, and K. Fu, “Power-Up SRAM State
as an Identifying Fingerprint and Source of True Random
Numbers,” IEEE Transactions on Computers, vol. 58, no. 9,
pp. 1198-1210, Sep. 2009.

M. Hiller, F. De Santis, D. Merli, and G. Sigl, “Reliability
Bound and Channel Capacity of IBS-Based Fuzzy Embed-
ders,” in Proc. NASA/ESA Conference on Adaptive Hardware
and Systems (AHS). 1EEE, Jun. 2012, pp. 213-220.

S. J. Han, D. Guo, X. Wang, A. C. Mocuta, W. K. Henson,
and K. Rim, “Reverse Temperature Dependence of Circuit Per-
formance in High- /Metal-Gate Technology,” IEEE FElectron
Device Letters, vol. 30, no. 12, pp. 1344-1346, Dec. 2009.

J. Hussein and M. Hart, “Lowering Power at 28 nm with
Xilinx 7 Series Devices, Xilinx WP389,” 2015. [Online].

114

[HMSS12]

[HMV12]

[HS14]

[HWRL*13]

[HYKS10]

[HYS16]

[Ini08]

[JEDI16]

[Jol02]

BIBLIOGRAPHY

Available: https://www.xilinx.com/support/documentation/
white_papers/wp389_Lowering_Power_at_28nm.pdf

M. Hiller, D. Merli, F. Stumpf, and G. Sigl, “Complementary
IBS: Application Specific Error Correction for PUFs,” in Proc.

International Symposium on Hardware-Oriented Security and
Trust (HOST), 2012.

G. Hospodar, R. Maes, and 1. Verbauwhede, “Machine Learn-
ing Attacks on 65nm Arbiter PUFs: Accurate Modeling Poses
Strict Bounds on Usability,” in Proc. International Workshop
on Information Forensics and Security (WIFS). 1EEE, Dec.
2012, pp. 37-42.

M. Hiller and G. Sigl, “Increasing the Efficiency of Syndrome
Coding for PUFs with Helper Data Compression,” in Proc.
Conference on Design, Automation € Test in Europe (DATE),
ser. DATE ’14. Belgium: European Design and Automation
Association, 2014, pp. 71:1-71:6.

M. Hiller, M. Weiner, L. Rodrigues Lima, M. Birkner, and
G. Sigl, “Breaking Through Fixed PUF Block Limitations with
Differential Sequence Coding and Convolutional Codes,” in
Proc. International Workshop on Trustworthy Embedded De-
vices (TrustED). New York: ACM, 2013, pp. 43-54.

Y. Hori, T. Yoshida, T. Katashita, and A. Satoh, “Quantita-
tive and Statistical Performance Evaluation of Arbiter Physi-
cal Unclonable Functions on FPGASs,” in Proc. International
Conference on ReConFigurable Computing and FPGAs (Re-
ConFig), Dec. 2010, pp. 298-303.

M. Hiller, M. D. Yu, and G. Sigl, “Cherry-Picking Reliable
PUF Bits With Differential Sequence Coding,” IEEE Trans-
actions on Information Forensics and Security, vol. 11, no. 9,
pp- 2065-2076, Sep. 2016.

K. Iniewski, Clircuits at the Nanoscale: Communications,
Imaging, and Sensing. CRC Press, Sep. 2008.

JEDEC, “Failure Mechanisms and Models for Semiconductor
Devices,” Sep. 2016. [Online]. Available: http://www.jedec.
org/sites/default /files/docs/JEP122H.pdf

1. T. Jolliffe, Principal Component Analysis, 2nd ed., ser.
Springer Series in Statistics. Springer-Verlag New York, 2002.

https://www.xilinx.com/support/documentation/white_papers/wp389_Lowering_Power_at_28nm.pdf
https://www.xilinx.com/support/documentation/white_papers/wp389_Lowering_Power_at_28nm.pdf
http://www.jedec.org/sites/default/files/docs/JEP122H.pdf
http://www.jedec.org/sites/default/files/docs/JEP122H.pdf

BIBLIOGRAPHY 115

[Kir04]

[KKL*11]

[KKR*12]

[Kocl13]

[Koh13]

[KSST09]

[LBGBO00]

[Liel3]

[LLGT04]

D. Kirovski, “Toward an Automated Verification of Certifi-
cates of Authenticity,” in 5th ACM Conference on Electronic
Commerce, ser. EC '04. New York, NY, USA: ACM, 2004,
pp- 160-169.

S. Katzenbeisser, n. Kocabas, V. v. d. Leest, A.-R. Sadeghi,
G. J. Schrijen, and C. Wachsmann, “Recyclable PUFs: Log-
ically Reconfigurable PUFs.” Journal of Cryptographic Engi-
neering, pp. 177-186, 2011.

S. Katzenbeisser, n. Kocabag, V. Rozi¢, A.-R. Sadeghi, I. Ver-
bauwhede, and C. Wachsmann, “PUFs: Myth, Fact or Busted?
A Security Evaluation of Physically Unclonable Functions
(PUFs) Cast in Silicon,” in Proc. International Workshop
on Cryptographic Hardware and Embedded Systems (CHES).
Leuven, Belgium: Springer-Verlag, 2012, pp. 283-301.

D. Koch, Partial Reconfiguration on FPGAs - Architectures,
Tools and Applications. New York, NY: Springer, 2013.

C. Kohn, “Partial Reconfiguration of a Hardware Ac-
celerator on Zyng-7000 All Programmable SoC Devices,
Xilinx XAPP1159,” Jan. 2013. [Online]. Available: http://
www.xilinx.com/support/documentation/application_notes/
xappl159-partial-reconfig- hw-accelerator-zyng-7000.pdf

K. Kursawe, A.-R. Sadeghi, D. Schellekens, B. Skoric, and
P. Tuyls, “Reconfigurable Physical Unclonable Functions -
Enabling Technology for Tamper-resistant Storage,” in Proc.
International Symposium on Hardware-Oriented Security and
Trust (HOST). Washington, DC, USA: IEEE Computer So-
ciety, 2009, pp. 22-29.

S. Lopez-Buedo, J. Garrido, and E. Boemo, “Thermal Testing
on Reconfigurable Computers,” IEEFE Design Test of Comput-
ers, vol. 17, no. 1, pp. 84-91, Jan. 2000.

J. Lienig, “Electromigration and Its Impact on Physical Design
in Future Technologies,” in Proceedings of the 2013 ACM In-
ternational Symposium on International Symposium on Phys-
ical Design, ser. ISPD "13. New York, NY, USA: ACM, 2013,
pp- 33-40.

J. Lee, D. Lim, B. Gassend, G. Suh, M. van Dijk, and S. De-
vadas, “A Technique to Build a Secret Key in Integrated Cir-
cuits for Identification and Authentication Applications,” in
Symposium on VLSI Circuits, Jun. 2004, pp. 176-179.

http://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf

116

[MBKP11]

[MCMS10]

[Mer14]

[MGS13]

[MKP09)

[MKP11]

[MKP12]

[MOPS13]

BIBLIOGRAPHY

A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the
Vulnerability of FPGA Bitstream Encryption Against Power
Analysis Attacks: Extracting Keys from Xilinx Virtex-1I FP-
GAs,” in Proc. Conference on Computer and Communications
Security. ACM, 2011, pp. 111-124.

A. Maiti, J. Casarona, L. Mchale, and P. Schaumont, “A
Large Scale Characterization of RO-PUF,” in Proc. Interna-
tional Symposium on Hardware-Oriented Security and Trust

(HOST), 2010, pp. 94-99.

D. Merli, “Attacking and Protecting Ring Oscillator Phys-
ical Unclonable Functions and Code-Offset Fuzzy Extrac-

tors,” Doctoral dissertation, Technische Universitat Miinchen,
Miinchen, 2014.

A. Maiti, V. Gunreddy, and P. Schaumont, “A Systematic
Method to Evaluate and Compare the Performance of Physi-
cal Unclonable Functions,” in Embedded Systems Design with
FPGAs, P. Athanas, D. Pnevmatikatos, and N. Sklavos, Eds.
New York, NY: Springer New York, 2013, pp. 245-267.

M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Tech-
niques for Design and Implementation of Secure Reconfig-
urable PUFs,” ACM Transactions on Reconfigurable Technol-
ogy and Systems (TRETS), vol. 2, no. 1, pp. 5:1-5:33, Mar.
2009.

A. Moradi, M. Kasper, and C. Paar, “On the Portability of
Side-Channel Attacks — An Analysis of the Xilinx Virtex 4,
Virtex 5, and Spartan 6 Bitstream Encryption Mechanism,”
2011. [Online|. Available: https://eprint.iacr.org/2011/391

A. Moradi, M. Kasper, and C. Paar, “Black-Box Side-Channel
Attacks Highlight the Importance of Countermeasures: An
Analysis of the Xilinx Virtex-4 and Virtex-5 Bitstream En-
cryption Mechanism,” in Proc. 12th Conference on Topics in
Cryptology. San Francisco, CA: Springer-Verlag, 2012.

A. Moradi, D. Oswald, C. Paar, and P. Swierczynski, “Side-
Channel Attacks on the Bitstream Encryption Mechanism
of Altera Stratix Ii: Facilitating Black-Box Analysis Using
Software Reverse-Engineering,” in Proc. ACM/SIGDA In-
ternational Symposium on Field Programmable Gate Arrays
(FPGA). Monterey, California, USA: ACM, 2013, pp. 91—
100.

https://eprint.iacr.org/2011/391

BIBLIOGRAPHY 117

[MRV*12]

[MS11]

IMS14]

[IMTV0S]

[MTV09a]

[MTV09b]

[MVHV12]

[New(02]

[Pan09)

[Pos98]

R. Maes, V. Rozic, I. Verbauwhede, P. Koeberl, E. Van der
Sluis, and V. van der Leest, “Experimental Evaluation of Phys-
ically Unclonable Functions in 65 nm CMOS,” in Proc. of the
ESSCIRC. 1EEE, 2012, pp. 486-489.

A. Maiti and P. Schaumont, “Improved Ring Oscillator PUF:
An FPGA-friendly Secure Primitive,” Journal of Cryptology,
vol. 24, no. 2, pp. 375-397, 2011.

A. Maiti and P. Schaumont, “The Impact of Aging on a Phys-
ical Unclonable Function,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, no. 9, pp. 1854—
1864, Sep. 2014.

R. Maes, P. Tuyls, and I. Verbauwhede, “Intrinsic PUFs from
Flip-Flops on Reconfigurable Devices,” in Proc. Benelux Work-
shop on Information and System Security (WISSec), vol. 17,
2008.

R. Maes, P. Tuyls, and I. Verbauwhede, “A Soft Decision
Helper Data Algorithm for SRAM PUFs,” in Proc. Interna-
tional Symposium on Information Theory (ISIT), Jun. 2009,
pp. 2101-2105.

R. Maes, P. Tuyls, and I. Verbauwhede, “Low-Overhead Im-
plementation of a Soft Decision Helper Data Algorithm for
SRAM PUFs,” in Proc. International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES). Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 332-347.

R. Maes, A. Van Herrewege, and 1. Verbauwhede, “PUFKY: A
Fully Functional PUF-Based Cryptographic Key Generator,”
in Proc. International Workshop on Cryptographic Hardware
and Embedded Systems (CHES). Leuven, Belgium: Springer-
Verlag, 2012, pp. 302-319.

R. Newson, “Parameters Behind ”Nonparametric” Statistics:
Kendall’s Tau, Somers’ D and Median Differences,” Stata
Journal, vol. 2, no. 1, pp. 4564, 2002.

Panasonic, “Failure Mechanism of Semiconductor Devices -
T04007be-3,” 2009. [Online]. Available: http://www.semicon.
panasonic.co.jp/en/aboutus/reliability.html

R. Posch, “Protecting Devices by Active Coating,” Journal of
Universal Computer Science, vol. 4, no. 7, pp. 652-668, 1998.

http://www.semicon.panasonic.co.jp/en/aboutus/reliability.html
http://www.semicon.panasonic.co.jp/en/aboutus/reliability.html

118

[PPHG14]

[PRTGO2]

[RJA12]

[San13]

[SCO6]

[SDO7]

[SFKP15]

[SGB*10]

[SHOOS]

[Sim91]

BIBLIOGRAPHY

M. Pehl, A. R. Punnakkal, M. Hiller, and H. Graeb, “Advanced
Performance Metrics for Physical Unclonable Functions,” in

Proc. International Symposium on Integrated Circuits (ISIC).
IEEE, Dec. 2014, pp. 136-139.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical
One-Way Functions,” Science, vol. 297, no. 5589, pp. 2026—
2030, 2002.

U. Rithrmair, C. Jaeger, and M. Algasinger, “An Attack
on PUF-Based Session Key Exchange and a Hardware-Based
Countermeasure: Erasable PUFs,” in Proc. International Con-
ference on Financial Cryptography and Data Security. Gros
Islet, St. Lucia: Springer-Verlag, 2012, pp. 190-204.

L. Sanders, “Secure Boot of Zyng-7000 All Pro-
grammable SoC, Xilinx XAPP1175,” 2013. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/
application_notes/xappl1175_zynq_secure_boot.pdf

P. Sedcole and P. Cheung, “Within-Die Delay Variability in
90nm FPGAs and Beyond,” in IFEE International Conference
on Field Programmable Technology, 2006. FPT 2006, Dec.
2006, pp. 97-104.

G. Suh and S. Devadas, “Physical Unclonable Functions for
Device Authentication and Secret Key Generation,” in Proc.
Design Automation Conference (DAC), 2007, pp. 9-14.

P. Swierczynski, M. Fyrbiak, P. Koppe, and C. Paar, “FPGA
Trojans Through Detecting and Weakening of Cryptographic
Primitives,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 8, pp. 1236-1249,
Aug. 2015.

O. Sander, B. Glas, L. Braun, K. Miiller-Glaser, and J. Becker,
“Intrinsic Identification of Xilinx Virtex-5 FPGA Devices Us-
ing Uninitialized Parts of Configuration Memory Space,” in
Proc. International Conference on ReConFigurable Computing
and FPGAs (ReConF'ig), 2010, pp. 13-18.

Y. Su, J. Holleman, and B. Otis, “A Digital 1.6 pJ/bit Chip
Identification Circuit Using Process Variations,” IEEE Journal
of Solid-State Circuits, vol. 43, no. 1, pp. 69-77, Jan. 2008.

G. Simmons, “Identification of Data, Devices, Documents and
Individuals,” in Proc. 25th Annual International Carnahan

https://www.xilinx.com/support/documentation/application_notes/xapp1175_zynq_secure_boot.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1175_zynq_secure_boot.pdf

BIBLIOGRAPHY 119

[SW12]

[SWC10]

[TCH93]

[TVGT13]

[vALSHT10)

[WAOS]

[WDDJ71]

(WG14]

[WH11]

[WHP14]

Conference on Security Technology. IEEE, Oct. 1991, pp.
197-218.

S. Skorobogatov and C. Woods, “In the Blink of an Eye:
There Goes Your AES Key,” 2012. [Online]. Available: https:
//eprint.iacr.org/2012/296

E. Stott, J. S. Wong, and P. Y. Cheung, “Degradation Analysis
and Mitigation in FPGAs,” in Proc. International Conference
on Field Programmable Logic and Applications (FPL). 1EEE,
Aug. 2010, pp. 428-433.

J. Tao, N. Cheung, and C. Hu, “Metal Electromigration Dam-
age Healing Under Bidirectional Current Stress,” IEEFE Elec-
tron Device Letters, vol. 14, no. 12, pp. 554-556, Dec. 1993.

A. Thaduri, A. K. Verma, V. Gopika, R. Gopinath, and U. Ku-
mar, “Reliability Prediction of Semiconductor Devices Using
Modified Physics of Failure Approach,” International Jour-
nal of System Assurance Engineering and Management, vol. 4,
no. 1, pp. 33-47, Mar. 2013.

V. van der Leest, G.-J. Schrijen, H. Handschuh, and
P. Tuyls, “Hardware Intrinsic Security from D Flip-Flops,” in
Proc. ACM Workshop on Scalable Trusted Computing (STC).
ACM, 2010, pp. 53-62.

D. Wolpert and P. Ampadu, “Normal and Reverse Tem-
perature Dependence in Variation-Tolerant Nanoscale Sys-
tems with High-K Dielectrics and Metal Gates,” in Nano-Net.
Springer, 2008, pp. 14-18.

R. Wang, J. Dunkley, T. A. DeMassa, and L. F. Jelsma,
“Threshold Voltage Variations with Temperature in MOS
Transistors,” IEEE Transactions on Electron Devices, vol. 18,
no. 6, pp. 386-388, Jun. 1971.

A. Wild and T. Giineysu, “Enabling SRAM-PUFs on Xil-
inx FPGAs,” in Proc. International Conference on Field Pro-
grammable Logic and Applications (FPL), Sep. 2014.

N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A
Circuits and Systems Perspective, 4th ed. Boston: Addison
Wesley, 2011.

F. Wilde, M. Hiller, and M. Pehl, “Statistic-Based Security
Analysis of Ring Oscillator PUFs,” in Proc. International Sym-
posium on Integrated Circuits (ISIC), Dec. 2014, pp. 148-151.

https://eprint.iacr.org/2012/296
https://eprint.iacr.org/2012/296

120

[WST95]

[Xil13]

[Xill4a]

[Xil14b]

[Xil15]

[YD10]

[Zeg10]

[Zhal3]

[ZKN+06]

[ZWFT15]

BIBLIOGRAPHY

F. Willems, Y. Shtarkov, and T. Tjalkens, “The Context-Tree
Weighting Method: Basic Properties,” IEEE Transactions on
Information Theory, vol. 41, no. 3, pp. 653-664, May 1995.

Xilinx, “Zyng-7000 All Programmable SoC Overview,” Dec.
2013. [Online]. Available: http://www.xilinx.com/support/
documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

Xilinx, “7 Series FPGAs Configurable Logic Block
User Guide,” Nov. 2014. [Online]. Available: http:
//www xilinx.com/support/documentation /user_guides/
ugd74_7Series_CLB.pdf

Xilinx, “Zyng-7000 All Programmable SoC Techni-
cal Reference Manual,” Feb. 2014. [Online]. Available:
http://www.xilinx.com/support/documentation/data_sheets/
ds190-Zyng-7000-Overview.pdf

Xilinx, “Vivado Design Suite User Guide - Par-
tial Reconfiguration,” Nov. 2015. [Online]. Available:
http://www.xilinx.com/support/documentation/sw_manuals/
xilinx2015_4 /ug909-vivado-partial-reconfiguration.pdf

M.-D. Yu and S. Devadas, “Secure and Robust Error Correc-
tion for Physical Unclonable Functions,” Design Test of Com-
puters, IEEE, vol. 27, no. 1, pp. 48-65, 2010.

B. V. V. Zeghbroeck, Principles of Semiconductor Devices and
Heterojunctions, 1st ed. Upper Saddle River, N.J.; London:
Prentice Hall, May 2010.

S. Zhang, “Delay Characterization in FPGA-Based Reconfig-
urable Systems,” Master Thesis, Universitiat Stuttgart, 2013.

S. Zafar, Y. Kim, V. Narayanan, C. Cabral, V. Paruchuri,
B. Doris, J. Stathis, A. Callegari, and M. Chudzik, “A Com-
parative Study of NBTI and PBTI (Charge Trapping) in
Si02/HfO2 Stacks with FUSI, TiN, Re Gates,” in Proc. Sym-
posium on VLSI Technology. IEEE, 2006, pp. 23-25.

C. Zhou, X. Wang, R. Fung, S. J. Wen, R. Wong, and C. H.
Kim, “High Frequency AC Electromigration Lifetime Measure-
ments from a 32nm Test Chip,” in 2015 Symposium on VLSI
Technology (VLSI Technology), Jun. 2015, pp. T42-T43.

http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug909-vivado-partial-reconfiguration.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug909-vivado-partial-reconfiguration.pdf

	Abstract
	Acknowledgments
	List of Abbreviations
	Introduction
	Background
	PUF Concepts
	History
	Weak and Strong PUFs
	Quality Measures

	PUF Types
	Optical PUF
	Silicon PUFs

	PUF-based Key Generation
	Select
	Correct
	Compress

	FPGA
	Overview
	Structure

	Cryptography
	Symmetric
	Asymmetric

	Implementing PUFs on FPGAs
	Introduction
	Theory
	Implementation
	Experimental Results
	Area
	Speed
	Quality Properties

	Conclusion

	Enhancing Efficiency Using PR
	Introduction
	Prior Work
	Reconfigurable PUF
	Method 1: Using Different LUTs
	Method 2: Using Different Input Pins
	Combining Both Methods
	Analysis of Shared Resources

	Implementation
	Experimental Results
	Speed
	Frequencies
	Uniformity
	Bit Alias
	Uniqueness

	Entropy Estimation
	Context-Tree Weighting
	Principal Component Analysis
	NIST SP 800-90B Entropy Test

	Conclusion

	Reliability Analysis
	Introduction
	Prior Work
	Aging
	Aging Mechanisms
	Stress Design
	Accelerated Environmental Conditions
	Implementation and Setup
	Experimental Results and Discussion

	Temperature and Voltage
	Theory
	Test Setup
	Experimental Results

	Conclusion

	Key Generation System
	Introduction
	SoC Platform
	Error Correction & Key Generation
	Security Module
	Enrollment Phase
	Security Module Boot Procedure
	IP Loading Procedure
	IP Storage Procedure

	Discussion
	Conclusion

	Conclusion

