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Bursts of Bipolar Microsecond 
Pulses Inhibit Tumor Growth
Michael B. Sano1,2, Christopher B. Arena1, Katelyn R. Bittleman1, Matthew R. DeWitt1, 
Hyung J. Cho1, Christopher S. Szot1, Dieter Saur3, James M. Cissell4, John Robertson1, 
Yong W. Lee1 & Rafael V. Davalos1

Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the 
treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses 
ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell 
membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, 
implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the 
unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality 
which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve 
these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and 
determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. 
Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 
2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve 
complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy 
can be delivered without the need for a neuromuscular blockade. This work shows the potential for 
H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.

Irreversible electroporation (IRE) is a relatively new focal ablation technique for the treatment of solid 
tumors1. The procedure uses brief high-intensity pulsed electric fields which results in rapid cell death 
of a targeted volume2. Typical treatment protocols involve the insertion of two needle electrodes into the 
tumor volume. Electrical pulses 50–100 μ s in duration, are then delivered in synchrony with the patient’s 
heartbeat. A total of 80–200 pulses are usually delivered in a typical IRE protocol3. The pulsed electrical 
fields lead to the formation of nano-scale defects in the cell membrane which, above a critical threshold, 
the cells are unable to recover from. The volume of tumor tissue treated is controlled by adjusting the 
separation between electrodes, the length of metal exposed on each electrode, and the applied voltage.

IRE is currently being clinically evaluated for the treatment of multiple oncological diseases including 
pancreatic4–6, lung7, brain8, kidney9–13, and liver14–18 cancers. A review positively highlighting the safety 
and efficacy of these treatments in a clinical setting was recently published by Scheffer et al.19 IRE appears 
to be ideally suited for the treatment of tumors less than 3.0 cm with success rates between 93%15 and 
98%14 reported in early clinical studies on hepatic tumors below this size.

IRE may also be effective for treatment of tumors in organs or locations which are sensitive to thermal 
damage. Complication rates for ablations in pancreatic tissue are significantly lower in IRE (19%) versus 
radio frequency ablation (28–40%)19 due to the non-thermal nature of IRE treatments. Martin et al.4 
recently showed that combinatorial treatment including chemo-, radiation, and IRE therapy improved 
local progression-free survival times by eight months in patients with primary pancreatic tumors, 
highlighting the potential of IRE for multimodal tumor therapy. Though limited data is available, both 
cryo- and radio-frequency ablation techniques appear to have high complication rates in neurologi-
cal applications due to the sensitive nature of the tissue20,21. However, recent canine studies by Garcia  
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et al.21 and Ellis et al.22 showed the safety of IRE for applications in the brain and its effectiveness against 
malignant glioma in combination with adjunctive fractionated radiotherapy22. These recent advance-
ments highlight the promise of IRE in combinatorial therapy and as a standalone treatment for solid 
tumors.

One of the key highlights of IRE is the ability to safely treat tumors which are in close proximity to 
sensitive structures such as large blood vessels14, nerve beds23, or the ventricles24. However, electrically 
induced muscle contractions are an unintended consequence which may move the electrodes during 
treatment, resulting in possible complications, and must be considered when treating near these sensitive 
structures. When improperly managed, organ translocations of 3 to 5 cm have been reported in response 
to pulse delivery25. To prevent this, patients are anesthetized during IRE treatment using a strict protocol 
which includes the administration of a neuro-muscular blockade (vecuronium or rocuronium) which 
requires intubation and mechanical ventilation25. There is evidence that these neuromuscular blocks 
interfere with pulmonary, respiratory, and pharyngeal function26 and in some cases mild local muscle 
contraction continues despite these preventative measures27.

Minimizing the effects of these muscle contractions has recently become a significant area of research28. 
One promising technique is to optimize the electrode design to limit exposure of nearby muscle tissue 
to the applied field by minimizing current flow outside of the treatment volume. Golberg and Rubinsky 
recently demonstrated the use of a current cage, or array of grounding electrodes around a central ener-
gized electrode, to minimize the volume of tissue exposed to fields above the muscle contraction thresh-
old29. Pulse parameters including shape, polarity, and timing can also be modified to exploit biophysical 
phenomena which limit muscle contractions. Daskalov et al. showed that by delivering eight 50 μ s pulses 
with a 1 ms spacing, patients only experienced a single muscle contraction sensation30. The threshold for 
inducing muscle contractions increases exponentially as pulse duration decreases below 100 μ s31,32 and 
an alternative approach to mitigating muscle contractions is to deliver short duration pulses on the order 
of one microsecond.

High-frequency irreversible electroporation (H-FIRE) replaces the single monopolar pulse (Fig. 1A) 
with a burst of higher frequency bi-polar pules (Fig. 1B). These applied bursts are repeated once per sec-
ond in synchrony with the heart rate of a clinical patient. Arena et al. demonstrated that in vivo H-FIRE 
treatments with 1 or 2 μ s pulses eliminated muscle contractions associated with equivalent energy IRE 
treatments33 and bursts of short duration pulses have been theoretically shown to short through epithelial 
layers and produce more uniform treatment regions in heterogeneous tissues34.

The lethal electric field threshold for this H-FIRE protocol has not yet been established and electropo-
ration effects of pulses in the 1 to 100 μ s range are still relatively unexplored35. Typically, the response of 
cells in a media suspension has been used as a surrogate for determining the lethal electric field thresh-
old, however, 3D tissue mimics have been found to more accurately represent the thresholds found in 
vivo36. These 3D tissue engineered tumor models overcome many of the shortcomings and limitations of 
cells in suspension through better replication of in vivo morphology, and the inclusion of cell-cell and 
cell-matrix interactions. Additionally, the tissue like nature allows for cells to remain stabilized in the 
matrix which allows for studies of actual applied electrical field which varies spatially.

This study presents the lethal electric field intensity for a number of H-FIRE protocols as determined 
in a 3D tissue model. For equivalent energy H-FIRE treatments, we found that the lethal electric field 
intensity increased from 530 V/cm to 2020 V/cm as the pulse-width was decreased from 50 μ s to 250 ns, 
respectively. We showed that H-FIRE was effective in vivo against a murine flank tumor model using 
bursts containing 1, 2, and 5 μ s pulses. In total, 6 of 14 treated mice had no measurable signs of tumors 
30 days after treatment and at least one mouse from each protocol reached complete regression. Finally, 
we show qualitatively that the H-FIRE protocol reduces the extent of muscle contractions in both a 
murine and equine model, enabling the delivery of the therapy under mild sedation rather than complete 
anesthetic conditions.

Materials and Methods
Collagen Hydrogel Tumor Mimics.  PPT8182 murine primary pancreatic tumor cells37, shown to 
replicate human pancreatic cancer in terms of histology, metastasis, and genetic alterations37–40, were 
used in the 3D tumor platform experiments. Cells were cultured in Dulbecco’s Modified Eagle Medium 
(DMEM) supplemented with L-glutamine (ATCC, Manassas, VA) containing 10% fetal bovine serum 
(FBS; Sigma Aldrich, St. Louis, MO) and 1% penicillin/streptomycin (Invitrogen, Carlsbad, CA) at 37 °C 
in 5% CO2 in a humidified atmosphere. All cells were harvested for experiments by trypsinization at 
80% confluence.

Collagen I hydrogels, shown in Fig.  1C, were produced as described previously41. Briefly, Sprague 
Dawley rat tail tendons were excised and allowed to dissolve under agitation overnight in 10 mM HCl 
at room temperature. The resulting monomeric collagen suspension was centrifuged at 22,500 ×  g for 
30 min, and the supernatant was decanted and stored at 4 °C until later use. The collagen hydrogels were 
formed by neutralizing the collagen I in HCl with a buffer containing 10×  concentrated DMEM (sup-
plemented with 4.5 g/L glucose, L-glutamine, sodium pyruvate, and sodium bicarbonate; Mediatech Inc., 
Manassas, VA), 1 N NaOH, and deionized H2O to obtain a final concentration of 8 mg/mL at a pH of 7.4. 
The PPT8182 cells were suspended in the neutralizing buffer at a final seeding density of 1 ×  106 cells/mL  
and then mixed with the collagen I solution. The collagen-cell suspension was pipetted into 10 mm 
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diameter cylindrical molds to achieve a thickness of 3 mm after polymerization. Following a 20 min 
gelation period at 37 °C, the hydrogels were removed from the molds and cultured in complete media 
for 18 hours prior to pulse delivery.

Electronics and Protocols.  A custom pulse generation system was used to deliver bursts of bi-polar 
pulses with constitutive pulse widths of 250 ns, 500 ns, 1 μ s, 2 μ s, 5 μ s, 10 μ s, and 50 μ s. A 500 Ω  resistor 
was placed in parallel with the load to ensure proper pulse shaping and to protect against delivering 
pulses to an open circuit. Representative examples of these bursts can be seen in Supplemental Figure 1.  
Custom electrodes were made from hollow 1.27 mm diameter dispensing needles (Howard Electronic 
Instruments Inc., El Dorado, KS) with a 2.0 mm edge-to-edge separation distance.

A pilot study was conducted at 540 Vpeak and a total energized time of 100 μ s for all pulse widths. This 
protocol used 400, 200, 100, 50, 20, 5, or 2 pulses to comprise a burst, with individual pulse durations 
of 250 ns, 500 ns, 1 μ s, 2 μ s, 5 μ s, 10 μ s, or 50 μ s, respectively. The ablation zones at 540 Vpeak for bursts 
containing pulses 1 μ s or less were not well formed ovals surrounding the electrodes. Instead, dead cells 
occupied small triangular zones which extended, but did not connect between the two electrodes. The 
electric field intensity changed rapidly in this zone resulting in large variations in the calculation of 
electric field thresholds. To avoid this, a higher voltage of 650 V was used for the 250 ns, 500 ns, 1 μ s 
and 2 μ s groups. To facilitate comparison between groups, a simplified electrical dose formula was used.

= ∗ ∗ ∗ ( )V n N V sDose T [ ] 12
p

2

where V is the applied voltage, Tp is the pulse width, n is the number of pulses per burst, and N is the 
number of bursts per treatment which was typically 80. The 540 Vpeak group had an approximate dose of 
2300 V2s. At 650 Vpeak, 256, 128, 64, and 32 pulses were used for the 250 ns, 500 ns, 1 μ s, and 2 μ s groups, 
respectively. This resulted in an approximate dose of 2200 V2s. An additional 2 μ s group at 250 Vpeak with 
216 pulses an approximate dose of 2000 V2s was also conducted to compare effects of energy and lethal 
electric field threshold.

To explore the effect of burst energized time, a set of experiments were conducted with 80 bursts 
containing 2 μ s pulses at 540 V. Pulses were repeated 2, 24, or 50 times per burst with a 2 μ s inter-pulse 
delay. To compare ‘diffuse’ and ‘burst’ delivery of pulses an additional group of 50 pulses per second was 
tested. In this group, one positive and one negative pulse were delivered, with a 2 μ s inter-pulse delay, 

Figure 1.  H-FIRE treatment in a 3D tumor mimic. Schematics of (A) traditional monopolar IRE pulse 
and (B) high frequency bipolar burst. (C) The experimental setup with electrodes inserted into the 3D tissue 
mimic. Live [green] and dead [red] regions of the tissue mimic after treatment with eighty bursts containing 
(D) 2, (E) 24, and (F) 50 bipolar 2 μ s pulses with a 2 μ s delay between alternating pulses. (G) Diffuse 
treatment of 50 bipolar 2 μ s pulses with 20 ms between alternating pulses. Scale bar represents 2 mm.



www.nature.com/scientificreports/

4Scientific Reports | 5:14999 | DOI: 10.1038/srep14999

every 20 ms for a total of 80 seconds. This is the only group presented in which a 1 second inter-burst 
delay was not used.

To explore the effect of treatment time, a set of experiments were conducted with eight bursts. These 
groups had 2 μ s, 50 μ s, and 100 μ s pulses which were repeated 50, 2, and 1 times per burst, respectively. 
The experimental parameters are summarized in Table 1. All parameters were repeated a minimum of 
three (n =  3) times.

Sample Processing.  At 24 hours after treatment, normal culture media was replaced with 2.5 mL 
of media supplemented with 4 μ M Calcein AM (live stain, λ em =  515 nm, Invitrogen, Eugene, OR) and 
incubated at 37 °C for 30 minutes. Five minutes prior to visualization, the media was supplemented with 
75 μ L of 1.5 mM propidium iodide (PI; dead stain, λ em =  617 nm, Invitrogen, Eugene, OR) for 5 minutes. 
Finally, the hydrogels were rinsed with PBS to flush out any unabsorbed dyes and increase the signal to 
noise ratio. A Leica DMI 6000 fluorescent microscope with a 20x objective (Leica Microsystems Inc., 
Buffalo Grove, IL) was used to tile a set of images and reconstruct an entire plane of the treated scaffolds 
just under the surface.

Analysis of Electric Field Thresholds in Tissue Mimics.  Finite element models were created in 
COMSOL Multiphysics (Version 4.2a, COMSOL Inc., Burlington, MA). The collagen hydrogels were 
modeled as a 3 mm thick cylinder with a 5 mm radius and conductivity of 1.2 S/m. Cylinders represent-
ing the 1.27 mm outer diameter electrodes were offset such that their edge-to-edge distance was equal 
to 2 mm. Within the solution domain, the Electric Currents module was used to solve for following 
equations
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where U is the electric potential, E is the electric field, J is the current density, Q is the current source, σ  
is the conductivity, ε r is the relative permittivity, and ε 0 is the permittivity of free space. The boundaries 
surrounding one electrode were assigned a constant electrical potential

Pulse Width [μs] Voltage [V] Pulses per Burst Delay [μs] On-Time per Burst [μs] Bursts Dose [V2·s]

0.25 650 256 2 64 80 2163.2

0.5 650 128 2 64 80 2163.2

1 650 64 2 64 80 2163.2

2 650 32 2 64 80 2163.2

2 540 50 2 100 80 2332.8

5 540 20 2 100 80 2332.8

10 540 10 2 100 80 2332.8

50 540 2 2 100 80 2332.8

100* 540 1 — 100 80 2332.8

2 540 50 2 100 8 233.3

2 650 32 2 64 8 209.7

2 540 2 2 4 80 93.3

2 540 24 2 48 80 1119.7

2 540 50 200 100 80 2332.8

2 250 216 2 432 80 2021.1

50 540 2 2 100 8 233.3

100 540 1 — 100 8 233.3

Table 1.   Tissue mimic experimental parameters (*data from Arena et al.37).
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The boundaries of the other electrode were assigned as a relative ground
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The remaining boundaries were defined as electrical insulation
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where n is the normal vector to the surface, J is the electrical current.
Changes in temperature due to Joule heating were calculated for 540 V and 100 μ s energized time over 

80 seconds using a modified duty cycle approach33,42. The temperature distribution (T) was obtained by 
transiently solving a modified heat conduction equation:
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where τ  is the pulse duration, P is the period of the pulses, k is the thermal conductivity, c is the specific 
heat at constant pressure, and ρ is the density. Outer boundaries were treated as convective cooling
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with an exterior temperature (Text) of 22 °C and a heat transfer coefficient (h) of 25 (W m−2 K−1). 
Intermediate time stepping was used to ensure that at least one time step was taken each second. 
Parameter values for these simulations can be found in Supplemental Table  1. Simulations at 540 V 
showed that that thermal effects resulted in a negligible impact on the electric field distribution and 
changes in conductivity due to temperature increases were neglected in subsequent models to minimize 
computational time. Changes in conductivity due to electroporation were similarly neglected due to the 
low concentration of cells within the scaffold. To replicate the values measured experimentally, the volt-
age on one electrode was swept between 470–700 V, in steps of 10 V, and the other was held at ground.

Tiled images near the surface of the hydrogels (representative examples in Fig. 1D,E) were examined 
using ImageJ (version 1.43u, National Institutes of Health, USA). The width and height of the region of 
cells that had taken up PI (dead region) was measured. These values were then correlated to the electric 
field intensity from the numerical simulations to determine the electric field threshold required for cell 
death36. Statistical analysis of the data was completed using JMP (Version 10.0 Pro, SAS Institute Inc., 
Cary, NC) with a confidence level of 99% (α  =  0.01) unless otherwise noted.

Murine tumor model.  This experimental protocol was approved by the Virginia Tech Institutional 
Animal Care and Use Committee. All methods were carried out in accordance to the approved institu-
tional guidelines. 6–7 week old Hsd:Athymic Nude-Foxn1nu male mice (Harlan, Dublin, VA were inoc-
ulated subcutaneously in the dorsolateral flank region with human glioblastoma cells (DBTRG-05MG) 
while anesthetized by inhalation of 3% isoflurane (Abbott Laboratories, Abbott Park, IL). Mice were 
housed in individually ventilated cages in groups of five under specific pathogen free conditions and 
allowed access to sterilized water and food ad libitum. Prior to inoculation, cells were cultivated using 
standard techniques in DMEM (High-glucose supplemented with L-glutamine; Thermo Scientific, Logan, 
UT) containing 10% FBS and 1% penicillin/streptomycin. Upon reaching 80% confluence, cells were sus-
pended at a concentration of 5 ×  106 cells/mL in an 85/15 mixture of PBS and Matrigel (BD Biosciences, 
San Jose, CA). 200 μ L aliquots of this final suspension was used for each injection (1 ×  106 cells total).

Tumor growth was measured over time using calipers, and volumes (v) were calculated according to 
the modified ellipsoid formula43:

= ∗ ( )v l w mm
2

[ ] 9

2
3

where l is the length of the longitudinal diameter and w is the width of the transverse diameter. Tumors 
were treated when the greatest diameter reached approximately 5 mm. Mice were anesthetized follow-
ing the same isoflurane inhalation protocol, and the skin over the tumor was prepped with 70% iso-
propyl alcohol. Then, custom steel needle electrodes (0.4 mm Ø) were advanced into the center of the 
tumor. A 0.4 cm spacing (center-to-center) was used in all treatments. In all HFIRE treatment groups, 
the pulse generation system was set to deliver its maximum 1000 Vpeak output. The energized time per 
burst was fixed to 100 μ s and bursts were delivered with a repetition rate of 1 Hz for 2 minutes. Mice were 
assigned to treatments with constituent pulse widths of 5 μ s (n =  8), 2 μ s (n =  2), 1 μ s (n =  4) or sham 
control (n =  4) with specific pulse parameters shown in Table 2. Each treatment was video recorded to 
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qualitatively evaluate the extent of muscle contractions. To compare these results with clinically imple-
mented IRE protocols, an additional mouse received 100 μ s mono-polar pulses at 200 V.

Following treatment, topical antibiotic ointment was applied to the needle insertion wounds. Mice 
were removed from anesthesia and provided 5 mg/kg ketoprofen analgesic diluted in 1 mL sterile saline 
solution for recovery. The mice were euthanized 30 days post-treatment or earlier for humane reasons 
if the tumor volume reached 800 mm3. Statistical significance between groups was determined at day 30 
using a one sided Student’s T-test with unequal variances and alpha =  0.1.

Samples of any present tumor tissue were excised and sectioned for processing. Representative tissues 
were preserved in 10% neutral buffered formalin and embedded in paraffin. Formalin preserved paraf-
fin embedded samples were sectioned and processed for histology using hematoxylin and eosin (H&E) 
staining. All photomicrographs were obtained with a Leica DMI 6000 inverted microscope.

Results
H-FIRE pulse width, pulse number, and total energized time affect the lethal electric field 
threshold.  Typical IRE treatments involve the delivery of 80 monopolar pulses, each 100 μ s in dura-
tion at a repetition rate of 1 Hz. Using the PPT8182 cell line and the same tissue mimic, Arena et al. 
found that the lethal threshold for this standard protocol is 501 V/cm36. Figure  2A shows the lethal 
threshold when the monopolar pulse is replaced by a burst of bipolar pulses with an equivalent electrical 
dose. The lethal electric field thresholds were found to be 2022, 1687, 1070, 755, 640, 629, and 531 V/cm 
for bursts containing 0.25, 0.5, 1, 2, 5, 10 and 50 μ s pulses, respectively.

The temperature profiles measured were well correlated to those predicted numerically (Fig.  2C). 
Simulations of these pulses predict a temperature increase of approximately 12 °C at the center of the 
tissue mimic after 80 pulses were delivered. Experimentally, the average temperature increase across all 
groups was 14.4 ±  2.2 °C. Experiments were conducted at room temperature and the maximum tem-
perature measured experimentally was 34.8 °C. The largest variation in maximum temperature, 3.2 °C, 
occurred between the 2 μ s and 50 μ s groups.

Group Pulse Width (μs) Pulses per Burst Bursts Voltage (V) Dose (V2/s)

1 (n =  8) 5 20 120 1000 12000

2 (n =  2) 2 50 120 1000 12000

3 (n =  4) 1 100 120 1000 12000

2 (n =  4) Sham — — — —

Table 2.   Treatment matrix for mouse tumor ablation.

Figure 2.  Non-thermal lethal thresholds are dependent on pulse-width. (A) Lethal electric field threshold 
for PPT cells in tissue mimic for 2200 V2s dose. (B) Relative viability of PPT cells in media suspension after 
treatment with 1500 V/cm; Data in (B) from Sano et al.47 and ‡ (A,B) from Arena et al.37. (C) Temperature 
profile at center of tissue mimic as measured experimentally and predicted numerically. (*, α = 0.01), (**, α 
= 0.05), and (***, α = 0.1).
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Treatments with 8 and 80 bursts were conducted for bursts with 2 and 50 μ s pulses. For compari-
son, treatments with either 8 or 80 monopolar pulses 100 μ s in duration were conducted (Fig. 3A). The 
thresholds for 8 pulses were found to be 1675, 1211, and 820 V/cm, for the 2, 50, and 100 μ s groups, 
respectively. The corresponding thresholds for 80 pulses were found to be 756, 531, and 501 V/cm.

To explore the limitations of our equivalent dose approximation, eighty bursts held constant with 2 μ s 
pulses were delivered at three different voltages: 250, 540, and 650 V. For these cases, each burst contained 
216, 50, and 32 pulses, resulting in approximate doses of 2000, 2300, and 2200 V2s, respectively. The 
threshold for cell death for these treatments were 663, 718, and 822 V/cm (Fig. 3B). The 250 and 650 V 
groups were found to be statistically different with a 99% confidence level (α  =  0.01).

For bursts with 2 μ s pulses, when the voltage was held constant at 540 V, but the energized time 
per burst was decreased from 100 to 48 or 4 μ s, the electric field threshold was found to increase from 
718 V/cm to 855 and 1110 V/cm, respectively (Fig. 3C). The difference between 100 and 48 μ s was not 
statistically significant.

Figure  3D shows the effect of inter-pulse delay on lethal electric field threshold. At 540 V, the 
inter-pulse delay between 2 μ s pulses was increased from 2 μ s to 200 μ s. Similar to the ‘burst’, this ‘dif-
fuse’ treatment was energized for 100 μ s per second and this waveform was delivered for 80 seconds. This 
change in inter-pulse delay resulted in an increase in electric field threshold from 718 V/cm to 770 V/cm; 
this difference was not statistically different.

H-FIRE treatment inhibits tumor growth in vivo.  At the time of treatment, tumors were on aver-
age 91, 101, 45, and 44 mm3 for the sham, 5 μ s, 2 μ s, and 1 μ s groups. Thirty days post-treatment, these 
averages had changed to 332, 62, 16, and 44 mm3 (Fig.  4). Three of the four sham tumors more than 
doubled in size by day 30 (Fig. 4). The fourth did not significantly increase in size and measured 92 mm3 
at the conclusion of the study. Tumors in the 1, 2, and 5 μ s group (Fig. 4B–D) exhibited varying increases 
in size over days 1–5 before regression was observed. The 1 μ s group had two complete regressions at 
the end of the study. The other two tumors measured 85 and 91 mm3 on day 30. The 2 μ s group had 1 
complete regression and the other tumor measured 32.9 mm3 on day 30 (Fig. 4C). The 5 μ s group had 
3 complete regressions. The remaining tumors had volumes of 77, 77, 97, 106, and 144 mm3. Figure 4E 
shows the average tumor volumes for each treatment group over the 30 day trial. All treatment groups 
achieved a statistically significant reduction in tumor volume versus control on day 30.

Immediately following in vivo treatment, whitening of the tumor occurred. This is associated with 
reduced blood flow and the beginning stages of edema (Fig. 5B). This characteristic anti-vascular effect 
of electroporation-based therapies has been utilized in electro-chemotherapy (ECT) to treat bleeding 
metastasis44. Due to the use of uninsulated electrodes, the skin overlying the tumor was killed in con-
junction with the tumor. This resulted in scab formation (Fig.  5C) within 1 day post-treatment which 

Figure 3.  Exploration of treatment parameters. Lethal electric field threshold for (A) 540 V and 100 us 
energized time per burst with 8 or 80 bursts per treatment. 2 and 50 μ s groups contained bipolar pulses, 
100 μ s group had monopolar pulses (B) 2 μ s group at 250, 540, and 650 V with equivalent energy per burst 
(C) 2 μ s group at 540 V with 4, 48, or 100 μ s energized per burst (D) 2 μ s group at 540 V where inter-
burst delay was 1 s [burst] or 20 ms [diffuse]. (B–D) Treatment groups received 80 bursts or treatment for 
80 seconds [diffuse group]. ‡ Data from Arena et al.37. (*, α = 0.01) and (**, α = 0.05).
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typically resolved within two weeks. Endpoint images taken immediately prior to and following tissue 
harvesting (Fig. 5D–G) show evidence of complete tumor regression 30 days after H-FIRE treatment.

Figure  5H,I shows histological sections from the study endpoint of a mouse in the sham group 
(Fig. 5H) and 5 μ s treatment group (Fig. 5I). Despite the fact that no measurable tumor was observed in 
the treated mouse, pockets of viable glioblastoma cells were present surrounding blood vessels located 
above the musculature. Similar features were seen in the sham mouse, with the addition of a viable tumor 
mass beneath the muscle layer. Cells comprising the viable tumor display a large nucleus surrounded 
by a well-marked cytoplasm and well-defined cell membrane. Additionally, there is evidence of healthy 
vasculature along the margin of the tumor at the interface between the muscle and fat layer.

The H-FIRE Protocol Reduces Muscle Contractions In Vivo.  During the murine in vivo exper-
iments, some muscle contractions were observed in all treatment groups. Supplemental video 1 com-
pares 5 μ s bursts with 100 μ s mono-polar pulses at 1000 V and 200 V, respectively. Qualitatively, muscle 
contractions occurred to a lesser extent in treatments with bi-polar bursts of pulses between 1 and 5 μ s 
than occurred in treatments with mono-polar 100 μ s pulses. Delivery of 200 V, 100 μ s mono-polar pulses 
resulted in significant muscle contractions of both hind limbs. Less intense muscle contractions were 
observed in the bi-polar treatments, typically confined to the proximal limb, which could be further 
minimized by gently lifting the electrodes to pull the tumor away from nearby muscle tissue.

Mice represent the smallest possible animal model and their bodies have relatively little inertia, result-
ing in some movement despite the use of bi-polar bursts. Supplemental video 2 shows a comparison of 
100 μ s mono-polar pulses and bursts of 5 μ s pulses in the treatment of spontaneous tumors in an equine 
model. At 400 V, the 100 μ s pulses induce such strong muscle contractions that complete anesthesia is 
necessary carry out the procedure, while the animal is in a prone position. In contrast, 1000 V treatments 
with bursts of 5 μ s pulses are well tolerated with light sedation and local anesthesia while the patient is 
in an orthostatic position.

Discussion
For bursts of bipolar pulses, the electric field threshold required to induce cell death is inversely cor-
related to the duration of the constitutive pulses (Fig.  2A). The lethal threshold increases slightly as 
pulse duration is decreased from 50 μ s to 2 μ s. The threshold for cell death for bursts with 1 μ s pulses 

Figure 4.  H-FIRE treatment inhibits tumor growth. Tumor volume as a function of days post treatment 
for (A) Sham group, (B) 1 μ s group (C) 2 μ s group, and (D) 5 μ s group. (E) Volume of tumors averaged 
across all mice for each treatment group.
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is approximately double the threshold for bursts with 50 μ s pulses and 250 ns pulses have a threshold 
approximately four times greater than the 50 μ s treatments. The treatments shown in Fig. 2A all received 
equivalent doses in 80 bursts.

Figure 2B shows data adapted from Sano et al.45 and Arena et al.36 for PPT8182 cells suspended in 
media and exposed to 80 monopolar 100 μ s pulses or 80 bi-polar bursts with pulses between 250 ns and 
50 μ s (100 μ s energized per burst) with a 1500 V/cm voltage-to-distance ratio. In suspension, bursts with 
2 μ s or shorter pulses do not affect cell viability. In contrast, 1500 V/cm is sufficient to kill all of the cells 
in the tissue mimics for bursts with pulses 1 μ s or longer.

When the cells are in suspension, they take on a more spherical appearance. In contrast, when grown 
in the 3D tissue mimics they begin to stretch out and obtain a more natural phenotype. In vivo, IRE 
is typically observed in regions which are exposed to approximately 500–750 V/cm 24,46,47 and the field 
strengths predicted in these 3D tissue mimics are more likely to represent the in vivo thresholds for 
bipolar bursts. However, extensive in vivo evaluation is still needed to determine how these thresholds 
compare to those necessary to ablate complex heterogeneous tissues such as pancreatic tumors which 
contain healthy and malignant cells, vasculature, ductile systems, and connective tissue.

Electrogenetransfer (EGT) and ECT protocols typically employ 8 pulses with the goal of permeabiliz-
ing the cell membrane, but not inducing cell death. Figure 3A shows that there is a significant difference 
between 8 monopolar 100 μ s pulses and bipolar 50 μ s bursts. This is interesting because these groups 
were not significantly different when the burst number was increased to 80. Increasing the number of 
pulses reduced the lethal electric field threshold significantly for all groups. Between 8 and 80 pulses, 
the thresholds drop by 920 V/cm (55%), 679 V/cm (56%), and 319 V/cm (39%) for the 2 μ s bipolar, 50 μ s 
bipolar, and 100 μ s monopolar groups, respectively. Interestingly, the lethal thresholds for 80 bursts with 
2 μ s pulses was the same as 8 monopolar 100 μ s pulses. Though not investigated here, the use of bi-polar 
pulses may allow investigators to treat larger volumes using EGT or ECT without deleterious lethal 
effects.

Figure 5.  In vivo H-FIRE treatments. (A) Pulses were delivered through needles inserted into the tumor. 
(B) Immediate tumor whitening and (C) scab formation after 24 hours were observed after most treatments. 
Representative end point images from (D,F) the sham group and (E,G) the 5 μ s group show the existence 
and absence of subcutaneous tumor 30 days post-treatment, respectively. Numbers written on the surface of 
the skin are for tissue orientation during histological preparation. (H) Sham mouse superficial skin (top of 
image) and underlying tumor (bottom of image). (I) 5 μ s treated mouse superficial skin (top of image) and 
underlying musculature (bottom of image). Scale bars represent 250 μ m.
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Protocols with 1 μ s, 500 ns, and 250 ns failed to produce connected lesions in the tissue mimics when 
the voltage was set to 540 V and the energized time per burst was 100 μ s. This made it difficult to accu-
rately calculate the lethal electric field threshold. In our initial pilot study, we found that increasing the 
voltage to 650 V while delivering 80 pulses with 100 μ s energized time resulted in thermal denaturing of 
the collagen matrix. Arena et al. associated collagen denaturation during IRE with temperatures greater 
than 45 °C36. Reducing the energized time to 64 μ s at 650 V, a similar dose to 540 V and 100 μ s, resulted 
in well-formed oval shaped lesions for all groups. We used this higher voltage, equivalent dose protocol 
for all groups with 1 μ s pulses and shorter.

In Fig. 3B we investigated the validity of this equivalent dose hypothesis using bursts with 2 μ s pulses, 
which formed connected lesions at the lowest voltage tested, 250 V. There is no statistical difference 
between equivalent dose protocols at 650 V and 540 V nor between 540 V and 250 V protocols with a 
99% confidence level (α  =  0.01) and there is no statistical difference between the three groups with a 
95% confidence level (α  =  0.05). This indicates that in the 3D tumor mimic model, an equivalent dose 
approximation is sufficient for comparing protocols.

It is unclear how far outside this range (250–650 V) the equivalent dose hypothesis is valid. However, 
clinical IRE systems are currently limited to outputs of 2700 V. At this voltage, a burst energized for 4 μ s 
would have an equivalent dose and a lethal threshold of approximately 750 V/cm (the average of values 
from Fig. 3B). Figure 3C shows that when bursts are energized for 100 μ s versus 4 μ s, there is 35% reduc-
tion in the lethal threshold. If these two effects are additive, we can hypothesize that a protocol with 80 
burst of 2 μ s pulses, energized for 100 μ s per burst (Dose ≈  58,000 V2s), will have a lethal threshold of 
approximately 460 V/cm. This indicates that H-FIRE treatments should be capable of creating similar 
ablation volumes as the clinical systems currently employed. However, extensive in vivo testing and 
measurement of ablation volumes will be required to validate this.

Previous in vivo IRE experiments on murine tumor models required the application of pulses with 
1000 Vpeak amplitude or greater to obtain complete regression of similar sized tumors. Neal et al.48 achieved 
complete regression in 5 of 7 mice when 100 monopolar pulses, each 100 μ s in duration and 1300 Vpeak 
(5600 V/cm) were applied through a bi-polar probe with a 2.3 mm electrode spacing. Al-Sakere et al.49 
achieved complete regression in 12 of 13 mice when 80 pulses, each 100 μ s in duration and 1000 Vpeak 
(2500 V/cm) were applied between plate electrodes spaced 4 mm apart.

To mimic the clinical protocol, treatments in this study were applied through two needle electrodes. A 
spacing of 0.4 cm was used to maximize coverage of the tumors while accounting for the 1000 Vpeak limit 
of our pulse generation system. The 0.4 mm diameter electrodes used in these in vivo experiments were 
significantly smaller than the 1 mm diameter electrodes used clinically and the 1.27 mm electrodes used 
in the tumor mimics. Electrode diameter is closely linked to the electric field distribution and smaller 
electrodes will produce a smaller ablation zone. To account for this, the number of bursts delivered was 
increased to 120 to provide the best possible outcomes while avoiding extensive thermal heating effects. 
Gross and histological examination did not indicate any scar formation from thermal damage.

In the treated groups, the measured tumor volume increased over the first 1–5 days post treatment. 
The formation of a scab along with the occurrence of edema may have led to an overestimation of tumor 
volumes during short-term follow-up. Within two weeks after treatment delivery, scabs resolved and 
evidence of tumor regression was observable.

This treatment protocol inhibited tumor growth. The average tumor volumes in the treatment groups 
were statistically significantly smaller than control at the end of the study. Due to the limited time-span 
of the IACUC protocol, it is unclear if the tumors would have entered an exponential growth period 
post-treatment and we were unable to obtain Kaplan-Meier survival curves. In total, 6 of 14 treated mice 
had no measurable signs of tumors 30 days after treatment and all protocols were able to achieve some 
complete regressions. Future work should include a long-term study to monitor tumor regression over 
the lifetime of the animals.

Histological examination of some treated animals revealed pockets of neoplastic cells superficial to 
the muscle fascia in the dermal layers. This is indicative of under-treatment and it is possible that better 
regression results can be obtained by using a protocol with a higher applied voltage, increased number 
of bursts, or higher energized time per burst. It should be noted that the work presented by Al-Sakere 
did not obtain a 100% regression rates, however, their protocol has been successfully adapted to human 
clinical applications with promising results. Neal et al. observed improved progression free survival times 
for immunocompetent mice, compared to immunocompromised mice, when tumors were treated with 
200 ×  100μ s mono-polar pulses50. CD3+  immune cells were observed to infiltrate the regions between 
live and dead tumor cells. Additionally, immunocompetent mice re-challenged with tumors 18 days after 
their initial treatment displayed significantly reduced cell growth in the second tumor. Future work will 
be necessary to examine if this systemic immune response following IRE protocols is present following 
H-FIRE protocols.

Qualitatively, bursts of 1–5 μ s pulses significantly decreased the muscle contractions observed in 
murine and equine models of disease. We previously demonstrated quantitatively that the transition from 
long duration mono-polar pulses to bursts of bipolar pulses eliminates muscle contractions during the 
ablation of healthy rodent brain tissue even when electric field intensities of 2000 V/cm are employed33,51. 
In contrast, mono-polar 100 μ s pulses induced measureable muscle contractions at 500 V/cm33. Rogers et 
al. showed that the threshold for muscle contractions, of gastrocnemius muscles, increased from 1.83 V/
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cm to 112 V/cm when pulse duration was decreased from 100 μ s to 1 μ s32, a 61x increase. This indicates 
that shorter pulses are much less efficient at inducing muscle contractions. In contrast, we show here 
that the lethal threshold for bursts of 1 μ s pulses is only 2.1× higher than for mono-polar 100 μ s pulses. 
The significant increase in muscle contraction threshold paired with a relatively small increase in lethal 
threshold indicates that clinically relevant ablations can be created without inducing the extreme muscle 
contractions seen in typical IRE procedures, possibly eliminating the need for anesthetic paralytics.

Golberg et al. recently demonstrated that, for IRE pulses, large blood vessels distort the local electric 
field and protect cells in the region, resulting in pockets of viable cells surrounding the vessel52. Arena et 
al. showed numerically that bursts of shorter pulses (0.5–2 μ s) pulses are capable of penetrating epithelial 
layers and producing more uniform electric fields in heterogeneous tissues34. Additionally, Bhonsle et al. 
experimentally showed that the electric field distribution during H-FIRE pulses more closely matches 
the analytical solution than traditional IRE pulses53. These combined results indicate that H-FIRE pulses 
may be less susceptible to distortions due to large vessels in the treatment field, however, experimental 
validation of this hypothesis is necessary. The results of this in vivo pilot study warrant further explo-
ration of H-FIRE as a complementary clinical tool. Large animal studies using clinical electrodes and a 
higher voltage pulse generator should be conducted to determine the maximum ablation sizes achievable 
using H-FIRE. Additional equivalent energy studies in pancreatic tissue may help illuminate the extent 
to which H-FIRE pulses can short through complex heterogeneous tissues.

Conclusion
This study shows the differences in lethal threshold for IRE and H-FIRE protocols. Despite delivering 
equivalent doses, bursts with shorter constituent pulses require higher electric field strengths for ablation. 
The number of bursts, energized time per burst, and pulse duration are all significant factors affecting 
the lethal threshold. Using 80 bursts we found that 1, 2, and 5 μ s pulses had electric field thresholds of 
1070, 755, and 640 V/cm. When 120 bursts were delivered in vivo, these pulses had similar effects on 
tumor volume. All mice treated with H-FIRE tolerated the therapy well and experienced a significant 
reduction in tumor volume when compared to untreated controls. Each group attained at least one com-
plete regression. The extent of muscle contractions during H-FIRE treatment was observably less than 
IRE treatments and safety studies in equine models demonstrate that these protocols can be administered 
under mild sedation conditions. This study provides strong evidence that H-FIRE can be used for tumor 
ablation and future investigation is warranted.
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