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Pesented by P Dietsch 
P Dietsch discussed the question whether the thesis covered cases where shear cracks followed a step pattern and did not 
follow a horizontal line.  P Dietsch stated the model could consider such cases however friction could come into play in a step 
pattern which would not be considered. 
M Fragiacomo stated it would be a good idea to pre-stress.  P Dietsch stated that pre-stressing could be lost due to creep.  M 
Fragiacomo suggested using a spring to maintain pre-stressing.  P Dietsch stated this might not be the best idea.  
A Frangi questioned whether minimum stiffness of the screw can be given.  P Dietsch stated that a general method was 
presented without presenting a minimum value.  He further discussed results from TU Munich and Karlsruhe Institute of 
Technology where different connectors were considered and large glued in rods achieved higher stiffness compared to self-
tapping wood screws.  H Blass commented that stiffness per unit length should be considered.  P Dietsch commented that 45 
degree inclined screw angle made the best option for shear reinforcement. 
F Lam asked about availability of information for stiffness as a function of inclined angle.  P Dietsch responded that not much 
information is available although the Karlsruhe data indicated a trend that the stiffness increased as the angle decreased. 
U Kuhlmann stated that rehabilitation of existing structures could be an interesting field of study.  P Dietsch agreed and stated 
there are many practical examples for such applications. 
M Fragiacomo asked whether one can achieve full capacity using screws to reinforce a fully cracked beam.  P Dietsch stated 
very close screw spacing would be needed to achieve full capacity. 
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Design of shear reinforcement for timber beams 

P. Dietsch, H. Kreuzinger, S. Winter 

Lehrstuhl für Holzbau und Baukonstruktion 

Technische Universität München, Germany 

1 Introduction and objective 
The use of glulam beams with changing depth offers the possibility to adapt the section 
modulus to the bending moment. In the case of single-span beams under uniformly 
distributed load, however, a change in beam depth will lead to a contrary effect for the 
shear stresses, see Figure 1. Curved and pitched cambered beams feature not only high 
utilization rates in bending but also areas of high tension stresses perpendicular to the grain 
and shear parallel to the grain stresses, two stress components for which timber features 
only small capacities as well as brittle failure modes. Out of 245 cases of damaged or 
failed large-span timber structures, evaluated in [1], several failures document the 
possibility of a shear fracture (full separation) developing in grain direction from the 
curved part towards the supports, partly followed by a failure of the beam in flexural 
tension due to a change in stress distribution resulting from the change in section modulus. 
Reinforcements against tension stresses perpendicular to the grain in form of fully threaded 
screws or threaded rods can be considered state of the art [2], [3]. With respect to their 
application as shear reinforcement, not many research results are yet available [4], [5], 
resulting in a lack of experimentally validated design approaches.  

Figure 1: Schematic illustration of the distribution of shear stresses and bending stresses 
in straight beam and pitched cambered beam 

Most approaches to design reinforcement against tension stresses perpendicular to the 
grain assume that the stresses are entirely carried by the reinforcement [2], [3]. However, 
with respect to an economic use of reinforcing elements it is of interest, whether a 
proportionate distribution of shear stresses between the timber beam and the shear 
reinforcement can be achieved in the unfractured state. This is particularly relevant, if a 
high number of reinforcing elements is necessary to achieve the full design capacity of the 
timber beam. For timber, the shear strength is in the range of five times the magnitude of 
tension perpendicular to the grain strength.  
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Within this paper, approaches to design shear reinforcement for glulam beams in the 
unfractured and the fractured state are presented, validated and discussed. The moment of 
failure, i.e. the transition from the unfractured to the fractured state is characterized by 
dynamic effects. This situation is not covered in this paper. A possible approach is given in 
[1]. The same applies to the subject of moisture induced stresses, resulting from the 
reinforcement restricting the free shrinkage or swelling of the glulam beam. 

2 Design of shear reinforcement for the unfractured state 

2.1 Analytical approach 

In the following, an analytical approach is presented which allows calculating the 
effectivity of shear reinforcement in the unfractured state (see also [6]). Using matrix 
format, the approach is based on common theoretical concepts and constitutive equations 
for material properties. It considers the structural anisotropy of the cross-sections with 
shear reinforcement and enables to incorporate the semi-rigid composite action between 
the reinforcement and the wood material. The stresses caused by the shear forces are used 
to determine the shear strains which are in turn used to determine the stresses in the 
reinforcement and in the timber beam.  

The approach is applicable to structural members featuring uniaxial load transfer and - 
within segments of the member - a uniform arrangement of reinforcing elements and 
uniform shear stress. The latter is given for beams under concentrated loads and 
correspondingly segment-wise constant shear stress. In the case of beams under uniform 
load, featuring common length to depth ratios, an adequate approximation can be assumed. 
For areas close to the supports (0 ≤ x ≤ h from the support), separate investigations have to 
be carried out, if necessary. In the case of direct supports, the area close to the supports is 
subjected to compression stresses perpendicular to the grain, resulting in an increased shear 
capacity of the timber beam in this area [7].  

The approach is based on the theory for composite materials. In [8] (and on the basis of [9] 
and [10]), anisotropic material properties of composite materials were derived for the 
example of laminated timber elements under in-plane loading and in bending. The 
orientation of the different layers of boards is accounted for; the effect of the composite 
action is described. In [11], these material properties were used in combination with the 
theory of composite materials to conduct numerical calculations on walls made of cross-
laminated timber. The derivation of stiffness coefficients for individual layers with 
different orientation to enable a calculation of the overall stiffness of the system under 
consideration [8] can be transferred to reinforcement in timber elements.  

According to the law of elasticity, the stress-strain-relationship of an element under in-
plane loading in the x-z-plane (see Figure 2) is:   S . Inverting the matrix S leads to 
the stiffness matrix C, enabling to determine the resulting stresses due to known strains: 
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     resp.      1SC  (1)

Regarding a composite section, featuring two or more layers of structural elements with 
different orientations, the stiffness matrices of the individual layers have to be transformed 
into a global coordinate system. Using the global stiffness matrix, loads can be applied on 
the composite section. Based on this, the resulting strains are determined, which are in turn 
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used to determine the stresses in the individual layers of structural elements. The procedure 
is shown schematically in Figure 2. Since the local coordinate system of layer 1 coincides 
with the global coordinate system, neither a transformation of its stiffness matrix (C1), nor 
of the strains determined for the global system (ε0) is required. Therefore, for the 
calculation of the global stiffness matrix, only the stiffness matrix of layer 2 (C2) has to be 
transformed into the global system. According to the law of elasticity, the strains (ε0) of the 
composite section can be determined by a multiplication of the inverse global stiffness 
matrix (C0

-1) with a load vector (n0). To determine the stresses in layer 2 (n2), the strains in 
the global system have to be rotated into the local coordinate system of layer 2. 

 

Figure 2: Calculation procedure based on the structural anisotropy  

2.2 Application to shear reinforcement 

The before explained method can also be applied to glulam elements (and cross-laminated 
timber (CLT) elements) featuring shear reinforcement, see [6]). For simplification, the 
global coordinate system should be matched with the local coordinate system of the timber 
section, see Figure 3. 

Considering the coordinates and angular relationships defined in Figure 3, the stiffness 
coefficients of the reinforcing elements can be transformed into the global system, 
following common mechanical rules (see e.g. Equation 3 and [6]). The same is valid for 
the strains in the reinforcing elements which are determined by transforming the strains in 
the global system into the local coordinate system (see e.g. Equation 9 and [6]). 

(Transformation 
into global system)

C1,0 = C1,1 Global stiffness matrix
C0 = C1,0 + C2,0

Stresses in layer 1
n1,0 = C1,0  ε0

Stresses in layer 2 
n2,2 = C2,2  ε2

(Transformation 
of strains)
ε1 = ε0

Orientation of layer 1 
(e.g. glulam)

stiffness matrix C1,1

x1 x0

z1 z0

Orientation of layer 2
(e.g. reinforcing elements)

stiffness matrix C2,2

x2

z2

Transformation 
into global system
C2,0 = C2,2  TC,2-0

Load vector: n0

Law of elasticity
ε0 = S0  n0 resp. 
ε0 = C0

-1  n0

Transformation 
of strains

ε2 = Tε, 0-2  ε0

Composite section

Ci,j Stiffness matrix of layer i relating to coordinate system j
TC,i-j Matrix to transform the stiffness matrix from coordinate system i to j
Tε,i-j Matrix to transform the strains from coordinate system i to j
ni,j Stresses in layer i relating to coordinate system j
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Figure 3: Denomination of coordinates and angles for the transformation of stiffness  
parameters within the structural anisotropy 

2.2.1 Determination of stiffness parameters in the global system 

When determining the global stiffness, the cross-sectional layup of the structural element 
to be reinforced has to be considered. In the case of glulam elements, constant material 
properties are assumed in direction of the global coordinates, meaning that the stiffness 
matrix of the glulam element, CGL,0, is a result of the material parameters in the respective 
directions. Due to the lack of precise data for wood and for purposes of simplification, the 
Poisson's ratio μ is set to zero.  
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Assuming that the shear reinforcement in the form of threaded rods or fully threaded 
screws is primarily loaded in axial direction, the axial stiffness EAS of the reinforcement is 
essential with respect to the load bearing behavior. The bending stiffness has a minor effect 
and is therefore neglected for reasons of simplification. By means of the transformation 
matrix, the stiffness matrix of the reinforcement with respect to the global system, CS,0, can 
be determined as follows:  





2233

3422

3224

0,0,

cossincossincossin

cossinsincossin

cossincossincos











 






   e

EA

b

n
T

e

EA

b

n
C Ss

SC
Ss

S
 (3)

with: 
EAS  Axial stiffness of the reinforcing elements 
nS  number of rows of reinforcing elements perpendicular to loaded plane 

The total stiffness of the composite section in the global system, C0, is determined by 
adding the stiffness matrices of the glulam element, CGL,0, and the reinforcement, CS,0. 

 0,0,0 SGL CCC   (4)

2.2.2 Determination of stresses 

The load on a reinforced timber element can be introduced by means of the vector n0. The 
vector contains the stresses σx0 and σz0 in the main axes of the global system as well as the 
shear stresses τxz0 in the x-z-plane. The stresses applied by the vector n0 are constant in the 
segment under consideration. The strains resulting from the given stresses are determined 
by multiplying the vector n0 with the inverse stiffness matrix C0

-1: 

x0 = xglulam

z0 = zglulam

xS
zS

φ

e

d


x0, z0 global coordinates
(= local coordinates of glulam element)

xS, zS local coordinates of reinforcing elements
φ,  Angles for transformation
e Distance of reinforcing elements

perpendicular to longitudinal axis
d Element depth
b Element width (perpendicular to 

plane of representation)
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 0
1

00 nC    (5)

Due to the differently oriented local coordinate systems, the strains determined for the 
global system are used to separately determine the stresses in the glulam element and the 
shear reinforcement.  

Glulam element: 

Since the local coordinates of the glulam element coincide with the global coordinates, no 
transformation of the strains is necessary when determining the stresses.  

 00,0,   GLGLGLGL CCn  (6)

A comparison between the shear stresses in the global system τxz0 and the resulting shear 
stresses in the glulam element τGL,xz0 delivers the degree of strengthening ητ, which 
describes the reduction in shear stress due to the reinforcement.  
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   (7) 

In addition, Equation (6) delivers the normal stress component σGL,z0. If the arrangement is 
chosen so that the shear reinforcement is loaded in axial tension, the resulting stresses in 
the glulam element are in compression perpendicular to the grain. Several experimental 
investigations, e.g. [12], [13], [14] have shown, that compression stresses perpendicular to 
the grain have a positive effect on the shear capacity. This means that the shear 
reinforcement leads not only to a reduction of shear stresses in the timber but, in the case 
of appropriate arrangement,  to a stress interaction which has a positive effect on the shear 
capacity of the glulam element. In [4], based on the results given in [12], the following 
equation is proposed:  

]/[13.015.1/75.4 222 mmNmmN     (8) 

Shear reinforcement: 

The stresses in the shear reinforcement are determined by transforming the strains in the 
global coordinate system into the local coordinate system of the shear reinforcement. Since 
only the axial stiffness EAs of the shear reinforcement is considered, it is sufficient to 
calculate the strain parallel to the axis of load transfer of the reinforcement.  
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The stresses in the axis of the reinforcement σS in each reinforcing element are:  

 
SxxS E

SS
  ,

 (10)

2.2.3 Incorporation of the semi-rigid composite action between the reinforcement 
and the wood material 

In the determination of the global stiffness matrix C0, see 2.2.1, a rigid bond between the 
shear reinforcement and the glulam element is assumed. This is approximately the case, if 
glued-in rods are applied, see e.g. [15]. Reinforcing with pre-drilled, screwed-in threaded 
rods or fully threaded screws leads to a semi-rigid composite action between the wood 
material and the thread of the reinforcement. It is therefore necessary to take into account 
that different strains occurr in the timber section and the reinforcement. The semi-rigid 
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composite action can be incorporated by an embedment modulus (modulus of foundation). 
This can be determined from appropriate tests, see e.g. [16]. 

Alternatively it is possible to describe the semi-rigid composite action with the axial slip 
modulus Kax,ser, which is usually included in the technical approvals of fully threaded 
screws or threaded rods. This is comparable to a spring stiffness and enables to determine 
the relative displacement between an axially loaded screw or rod and the wood surface.  

The axial slip modulus Kax,ser is only of limited suitability for the method presented, since it 
does not provide information about the distribution of shear stresses in the embedding 
wood material and the resulting distribution of normal forces in the reinforcing element. 
However, it is possible to deduce an embedment modulus from the coefficient Kax,ser. For 
this purpose, the load-bearing behavior of the reinforcement can be described by an 
equivalent mechanical system that consists of an elastically (in the direction of the 
reinforcement) supported beam, see Figure 4.   

 

Figure 4: Experimental setup to determine Kax [17] and equivalent mechanical system 

The general approach for the homogeneous solution of the differential equation of the 
beam on horizontally elastic foundation is: 

 xx
x eCeCu   

21)(
     with:    

SEAk /  (11)

Taking into account the present boundary conditions, the following solution for the 
differential equation can be obtained: 

   Sax
ll EAKee efef /2     (12)

The coefficient λ can be determined iteratively or by using appropriate software. 
Subsequently the embedment modulus k, can be calculated with Equation 13.  

 
SEAk  2  (13)

Values for the axial slip modulus Kax,ser, given in literature or technical approvals, are 
generally valid for angles of 90° between the screw or rod axis and the grain direction (as 
shown in Figure 4. In the case of shear reinforcement, the typically applied angle is 45° (as 
shown in Figure 5). In [4], axial slip moduli were determined for screwed-in threaded rods 
of d = 16 mm and 20 mm, penetration lengths of 200 mm and 400 mm and angles between 
the rod axis and the grain direction of 45° and 90°. For angles of 45°, higher axial slip 
moduli are determined. In addition, a disproportionate (above-average) increase of the 
axial stiffness is determined when doubling the penetration length. When applying these 
values within the analytical method, it should be considered that the applicable length ℓef 
corresponds to half the length of the reinforcing element, see Figure 5.   

k
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Figure 5: Semi-rigid composite between reinforcement and the wood material 

Different methods exist to account for the semi-rigid composite action between two 
structural elements. One common approach in structural timber design is the -method [7]. 
This method is mostly applied to timber-concrete composite elements or mechanically 
jointed beams, however it can be extended in order to utilize it for the semi-rigid composite 
action of shear reinforcements. In this case, the relationships given in Figure 5 apply. 

Assuming that the shear deformation of the glulam element will approximately result in a 
sinusoidal distribution of axial force in the reinforcement, the distribution of shear flow in 
the embedment has to follow cosinusoidal form. The deformation u0 is a combination of 
the deformations in the composite and in the reinforcement under normal force. 
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The deformation of a reinforcing element with an effective axial stiffness efEAS under 
given load, and without consideration of the elastic foundation, is calculated as follows: 
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Combining Equations (14) and (15), the effective axial stiffness efEAS is obtained: 
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In analogy to the -method, the axial stiffness of the reinforcing element can be reduced by 
the factor  to account for the semi-rigid composite action. For the stiffness matrix of the 
reinforcement with respect to the global system, the following applies:  
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The semi-rigid composite action leads to the following equation to determine the axial 
stresses σS,xs in each reinforcing element:   
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 with:  factor   according to Equation (16)  
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2.3 Comparison with experimental tests 

To validate the design method for shear reinforcement in the unfractured state, experiments 
on glulam beams, shear reinforced with fully threaded screws were performed. First, non-
destructive tests, according to EN 408 [18], were performed in the linear-elastic range to 
determine the effective shear stiffness of the reinforced glulam beams. The same specimen 
was tested several times, while its properties (reinforcement) were changed between the 
experiments. Cracks were introduced in half of the twelve glulam specimens, to study a 
potential increase in the effect of the reinforcement in cracked members. After assessing 
the pros and cons of introducing cracks through drying processes or mechanically (in 
which the wood fibers are cut locally), latter option was chosen since only in this case, the 
depth of the crack and remaining cross-section can clearly be defined. After testing all 
specimens without shear reinforcement, two configurations of shear reinforcement (at a 
distance of 160 mm and 80 mm) were applied and tested, see Figure 6. For this, fully 
threaded screws, featuring a diameter d = 8 mm and a length ℓS = 280 mm were used [19].  

Figure 6: Experimental tests to determine the effective shear modulus G of glulam 
elements with fully threaded screws as shear reinforcement - experimental setup and geometry 

Based on the data obtained from the unreinforced elements, the expected effective shear 
modulus G was determined for the reinforced elements by means of the analytical method. 
The embedment modulus k of the reinforcement was derived from test results for fully 
threaded screws in glulam, given in [4] and [20]. The increase of the effective shear 
modulus G, determined from tests and analytical calculations, was for all configurations in 
the single digit percentage range. The results of the analytical calculations and the 
experimental results are compared in Figure 7. The compression perpendicular to the grain 
stresses induced into the glulam element by the reinforcement were too small to have a 
positive influence in terms of the stress interaction between shear and compression 
perpendicular to the grain.  

The test results confirm the small effect of the reinforcing elements on the shear stiffness 
(see also [5]) and hence the low transfer of shear from the glulam beams to the shear 
reinforcement in the unfractured state. The reduction of shear stiffness due to the cracks 
could clearly be seen. For the second level of reinforcement, no further increase of the 
effective shear modulus could be observed. Comparative experiments to study a potential 
reduction of the axial slip modulus Kax,ser in the case of repeated loading could not confirm 
this possibility. On the contrary, an improvement of stiffness of the composite between 
reinforcement and the wood material was found in the case of repeated loading [1]. A 
possible explanation can be concluded from the known sensitivity of the shear modulus G 
to the apparent modulus of elasticity Eapp, see [21], which has to be determined at small 
span ℓ = 5·h (see Figure 6 lower part) and hence small deformations w and high loads F. 

ℓE = 50 mm

6·h = 1.2 m

F/2
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6·h 6·h
ℓ = 18·h = 3.6 m

ℓE = 50 mmF
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2
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0
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of reinforced test specim. [mm]

70
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(n)
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45° 20
0

70160

45° 20
0

140

20
0

5·h
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A comparison with two other methods to determine the shear modulus (dynamic response, 
shear field) showed that the applied bending method returned the most acceptable 
accuracy.   

Figure 7: Effective shear modulus G of glulam beams with and without cracks at different 
levels of shear reinforcement – comparison of analytical approach with experimental results 

After the non-destructive tests in the linear-elastic range had been completed, the beams 
were cut into smaller segments. By removing some of the screws, three different 
configurations of reinforcement could be realized with at least ten specimens for each 
configuration, see Figure 8. The destructive tests to determine the shear strength of each 
series were carried out again on the basis of EN 408 [18], see Figure 8.  

 

Figure 8: Experimental tests to determine the shear strength fv of glulam elements with 
self-tapping screws as shear reinforcement – experimental setup and geometry 

The experimental and analytical results were in accordance with abovementioned finding. 
Again, the increase in shear strength was only in the single digit percentage range, see 
Figure 9. Here, the influence of compression stresses perpendicular to the grain on the 
shear capacity was taken into account using the abovementioned proposal. The increase in 
shear strength determined in the tests correlates well with the tensile load-carrying capacity 
of the screws in direction of the shear plane [4]. For the specimens featuring more 
reinforcing elements (series 2 and 3), a resumption of load-carrying capacity could be 
observed at lower load-level after the shear fracture. Here, after fracture, the load was 
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carried by the screws. The activation of friction led to an additional load-carrying capacity. 
The shear strength of specimens with cracks was on average 14% lower than that for the 
specimens without cracks. The reason is believed the local weakening of the cross-section 
due to the local cutting of the wood fibers when introducing the cracks mechanically. 

Figure 9: Shear strength fv of glulam elements with and without cracks at different levels of 
shear reinforcement – comparison of analytical approach with experimental results. 

For the purpose of further validation, previous experiments carried out by [4] with glulam 
beams featuring shear reinforcement in form of fully threaded screws or screwed-in 
threaded rods, were calculated using the analytical method. For this comparison, all test 
series were utilized which complied with the prerequisites for the application of the 
analytical method (i.e. consistent positioning of the reinforcing elements).  Furthermore, 
the axial slip moduli Kax,ser, determined by the same authors [4] were applied. In the 
experiments, considerable increases of the shear capacity (max. 38 %) were recorded, due 
to the partly very high extent of reinforcement. The differences between the experimentally 
obtained shear capacity and the analytical results were on average below 4%. Also, the 
negative influence of tension stresses perpendicular to the grain on the shear strength, 
occurring in the case of reinforcing elements under compression, was approximated well.  

3 Design of shear reinforcement for the fractured state 
The analytical approach presented in chapter 2 to calculate the effectiveness of shear 
reinforcement, ends with the shear fracture of the timber beam. During the destructive tests 
it was found, that after shear fracture of the glulam element, the reinforcing elements were 
mostly still intact and able to carry loads, resulting in the activation of frictional resistance 
in the fracture plane. This finding can be considered positive with respect to the robustness 
of the reinforced beam: reinforcement can be designed to carry the full shear stresses 
parallel to the grain or tension stresses perpendicular to grain in the damaged state, 
preventing a full separation of the upper and lower parts of the beam in the case of a 
fracture. Thereby the reinforcement introduces internal redundancy since it provides a 
second barrier against brittle failure mechanisms, see Figure 10 and [22]. 
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Figure 10: Barrier model in terms of robustness considerations 

A method to calculate the load-carrying capacity of the two parts of the beam, 
mechanically jointed by reinforcing elements, is given by the shear analogy developed by 
Kreuzinger (e.g. [23], [24], [25] and [3]). Here, the composite section is transformed into 
an imaginary two-point section, featuring two levels A and B which are only coupled in 
terms of deflections. Level A represents the proportion of the unconnected layers to the 
bending rigidity of the complete section. Accordingly, the sum of bending stiffness of the 
individual parts is assigned to level A. The shear stiffness of level A is infinite. Level B 
describes the interaction of the individual parts of the cross-section due to the composite 
effect, i.e. the influence of shear deformation in or between the layers. Accordingly, an 
equivalent shear stiffness is assigned to level B which is derived from the stiffness of the 
fasteners/reinforcement and their distance or the shear stiffness of the layers. In addition, 
the bending rigidity assuming a rigid bond between the layers (parallel axis theorem) is 
assigned to level B. After determining the internal forces in the imaginary system, the real 
stresses in the individual parts of the composite section are calculated by reverse 
transformation. Figure 11 contains a schematic representation of the procedure.  

 

Figure 11: Schematic representation of the procedure applied in the shear analogy 
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The shear analogy is suitable for a computer-based implementation by means of structural 
analysis software. This software, e.g. 2-D frame programs, has to be able to account for 
shear deformation. Computer-based implementation creates the possibility of a segment-
wise definition of the section properties and stiffness values. This enables the calculation 
of beams with varying depth and segment-wise variable stiffness of the joint between the 
cross-sections. 

Using this method, a parametric study on curved and pitched cambered beams was 
performed, featuring geometries which are 1) relevant for building practice and 2) feature a 
high utilization rate in bending, shear and tension perpendicular to the grain. To determine 
the relevant geometries, all boundary conditions associated with curved and pitched 
cambered beams were varied in equal step sizes, whereby all relevant stress verifications 
were performed [1]. With predefined lower bounds (economical limit) and upper bounds 
(stress limits), a relevant subset was determined for each stress verification. By 
superimposing these subsets, the intersecting set of geometries which are relevant with 
regard to abovementioned objectives was determined. From this set, ten samples were 
selected for each beam shape (curved and pitched cambered beams). These samples 
covered the entire intersecting set of highly stressed geometries. For these geometries, a 
minimum reinforcement was determined to carry the shear flow and tension perpendicular 
to the grain stresses, occurring after fracture of the timber beam. Here, the approach was 
that the load-carrying capacity of the reinforcing elements just covered the occurring 
stresses, i.e. the reinforcing elements are fully utilized and placed at maximum possible 
distances. Due to the correlation between joint stiffness and resulting shear flow, this 
process is iterative. To cover the worst case in terms of bending stresses, the fracture plane 
was assumed to occurr at half the beam depth. A possible frictional resistance in the 
fracture plane was neglected. The axial slip moduli Kax,ser of the pre-drilled and screwed-in 
threaded rods were taken from [4]. Characteristic values for the load-carrying capacity of 
threaded rods, Fax,Rk and Fv,Rk, are given for example in [26]. With regard to the slip 
moduli Kser and the necessary number of reinforcing elements to carry the occurring 
stresses in tension perpedicular to the grain, a standardized procedure was applied [2]. The 
length segment featuring reinforcements was varied between 10 % and 20 % of the total 
beam length, starting at the supports, so that in extreme cases the total beam length 
featured reinforcements (including reinforcement against tension stresses perpendicular to 
the grain in the curved part).  

In the case of the smallest chosen length segment featuring shear reinforcement, the 
maximum increase of bending stresses, compared to the intact (unfractured) state, reached 
33 %, see Figure 12. This can be explained by the high axial slip moduli of the threaded 
rods and the resulting high joint stiffness. This in turn results in high shear flows and thus - 
taking into account the axial load-carrying capacity of the threaded rods - in rather small 
distances of the reinforcing elements. At a given level of joint stiffness, an increase of the 
joint stiffness will only result in a highly under-proportional increase of shear flow and 
thus in only marginal changes of bending stresses. Between the different forms of beams, 
only minor differences of utilization factors could be determined. With increasing ratio 
ℓ/(hap or h1), the utilization rate slightly increased. 

An increasing length of the segment featuring shear reinforcement resulted in a 
significantly lower increase of bending stresses in the case of fracture. Furthermore, with 
an increasing length of shear reinforced area, a significant change in magnitude of shear 
flow but only a marginal change in the sum of shear flow to be transferred was determined. 
Accordingly, the sum of necessary reinforcing elements increases only marginally with 
increasing length of the shear reinforced segment, meaning that the maximum possible 
distances between the reinforcing elements increase in a nearly linear manner. 
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Figure 12: Exemplary results (pitched cambered beam) of the parametric study on the 
increase of bending stresses in the case of fracture of the glulam beam – variation of 
geometry and arrangement of shear reinforcement  

To validate the results presented above, selected forms of curved and pitched cambered 
beams were calculated using the finite element method [27]. The calculations were 
performed using two different models, 1) a model with plane elements and spring elements 
to model the stiffness of the reinforcing elements and 2) a model with plane elements in 
which the reinforcing elements were completely modelled by beam elements, see [1] and 
[28] for further information. The results obtained with both models were almost identical. 
The beam geometries were chosen to differ greatly from the form of a straight beam, i.e. 
the variation of depth as well as the curvature were distinctive. The comparison was made 
based on the bending stresses on the top and bottom edge along the length of the beam. A 
comparison with the results obtained with the shear analogy showed good agreement for 
the areas of the beam with varying depth. In the apex area (within ca.  2·hap) however, the 
differences were not negligible. They were more pronounced in the case of short lengths of 
shear reinforced area in comparision to longer lengths featuring shear reinforcement. The 
reason for the differences is mainly described by the fact that the shear analogy is derived 
from the beam theory, while the non-linear stress-distribution in the apex area of curved or 
pitched cambered beams has to be approximated by plate theory [29]. Accordingly, a 
significantly better fit could be achieved when the coefficients given in [29] are applied to 
account for the non-linear stress distribution However it should be noted that these 
coefficients were not derived for the given case of the fractured, mechnically jointed cross-
section. In all cases, the shear analogy method provided slightly higher absolute values of 
maximum bending stresses, i.e. delivered results on the safe side.  

4 Conclusions 
An analytical approach is proposed to determine the load-carrying capacity of timber 
beams in the intact (unfractured) state, featuring shear reinforcement in form of threaded 
rods or fully threaded screws. A comparison was conducted with results from laboratory 
tests with reinforced glulam beams as well as with experimental data from other research 
institutions. This showed good agreement between the experimental shear stiffness and 
analytically determined stiffness as well as experimental failure load and analytically 
determined load-carrying capacity. The best agreement is found if the increase in shear 
capacity due to the interaction between shear and compression stresses perpendicular to the 
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grain is taken into account, in addition to the proportional load uptake of the reinforcement. 
The quality of the results depends on the accuracy of the input parameters (e.g. the axial 
slip modulus of the fully threaded screws or threaded rods) and the principles describing 
the effect of stress interaction on shear capacity.  

Considering the intact (unfractured) state, comparative calculations of glulam elements 
which are reinforced by threaded rods indicate that, under realistic constructive conditions 
(dimensions and configuration), an increase in shear capacity of up to 20% is feasible. 
These calculations include a potential reduction of shear capacity of the glulam beam due 
to e.g. shrinkage cracks as well as the influence of relaxation effects. Preliminary 
investigations with respect to a further increase in shear capacity by using threaded rods 
show, that an examination of pre-stressed threaded rods, anchored in disc springs with 
degressive spring characteristics (load-deformation curves) could prove adequate. In 
existing structures, the upper portion of the threaded rod could be screwed or glued into the 
timber beam and the remaining part of the threaded rod would remain without bond. The 
anchorage of the lower part of the threaded rod in the disc springs could be realized by 
means of nuts, which could simultaneously be used for applying the pretensioning force. 

With respect to internal redundancy of the reinforced beam against brittle failure 
mechanisms such as shear or tension perpendicular to the grain it is possible to design the 
reinforcing elements such that they prevent the complete separation of the upper and lower 
parts in the event of fracture of the beam along the grain. For the fractured beam, which is 
mechanically jointed by the reinforcing elements, an applicable approximation method is 
given by the shear analogy. This method is also applicable to curved and pitched-cambered 
beams in which the maximum bending stresses occur outside the apex zone. In these cases, 
the shear analogy method provides slightly higher absolute values of maximum bending 
stresses, i.e. delivers results on the safe side. Extensive comparative calculations of highly 
stressed shapes of glulam beams, featuring the minimum required reinforcement to carry 
the released stresses after fracture, show that the maximum increase in bending stresses 
between the intact state and the fractured state is in the range of one third. When the 
accidental design situation is applied for this case, it translates into a maximum utilization 
rate of 70%. Due to the resulting high level of joint stiffness, a change of joint stiffness 
will only have a minor influence on the magnitude of bending stresses. A reduction of the 
distance of the reinforcing elements or the use of glued-in instead of pre-drilled, screwed-
in threaded rods would not lead to any noteworthy improvement of stress levels in the 
fractured state. However, an increasing length of the segment featuring shear 
reinforcement leads to significantly lower increase in bending stresses in the case of 
fracture of the beam along the grain. The sum of shear flow to be transferred increases only 
marginally. It is therefore desirable to choose an arrangement of the shear reinforcement 
over longer segments of the beam length since this also implicates clear benefits for 
construction practice due to larger possible distances between the reinforcing elements.    
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