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1 Introduction

In reinforced timber beams, the moment of brittle failure, i.e. the transition from the
unfractured to the fractured state, is characterized by dynamic effects. In the unfrac-
tured state, the stresses under consideration are transferred proportionally by the tim-
ber beam and the reinforcement. Brittle failure in the timber results in associated
stress release in the beam. The reinforcement is activated to carry the released
stresses by deformations between the beam and the reinforcement. This sudden pro-
cess leads to dynamic impact, resulting in additional stresses in the system. To receive
an idea about the corresponding effects, a simple model is presented.

2 Method

To evaluate this situation, a spring-mass system can be used, see Fig. 2.1. In the un-
fractured state, the spring stiffness is given by the relevant stiffness of the timber beam
Kimber (€.8. perpendicular to grain stiffness or shear stiffness) and the additional stiff-
ness of the reinforcement embedded in the timber kreint. From the moment of brittle
failure of the timber, the force has to be solely carried by the spring representing the
reinforcement. Due to the reduction of total spring stiffness, the system falls from its
original position into its new position of equilibrium. The magnitude of deformations
is dependent on the proportion of force and spring stiffness before and after fracture.
The system is in vibration, the maximum amplitude is double the static deformation
between the original position and the new position of equilibrium. The vibration can
be damped by either an activation of friction (k) in the fracture plane (e.g. in the case
of shear fracture) and/or by the plastic deformation of the reinforcement. See Fig. 2.1.
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Figure 2.1. Spring-mass-system after timber fracture: free undamped vibration incl. static
deformation uo between initial position and new position of rest and the dynamic deformation;
dissipation of energy through plastic deformation upiast of the reinforcement.

The following explanations concerning the sequence and influencing factors at the
time of fracture are given on the basis of a load-deformation diagram that is combined
with a time-deformation diagram, as shown in Fig. 2.2. This representation is based on
comparable considerations in an unpublished expertise. The following discussion is
based on the numbered sequence given in Fig 2.2. The values given are based on the
assumption of a pure brittle failure over the full beam length and disregarding poten-

tially higher properties during impact.
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Figure 2.2. Schematic of the processes at the transition from the unfractured state (equilibrium,
static position of rest u1) to the fractured state (equilibrium, static position of rest u,).



0. The beam is not loaded. Increasing load will lead to increasing deformation. These
are smaller in the case of a reinforced beam compared to an unreinforced beam.

1. The load has reached the resistance of the rigid composite beam. The deformation
uy is dependent on the stiffness of the timber beam and the embedded reinforcement.
The exceedance of the design situation results in a sudden, brittle timber failure in the
timber cross-section.

2. The elimination of the stiffness of the timber beam in the fracture plane results in a
lower stiffness of the interconnection between the now mechanically jointed parts of
the composite beam. The stresses that were proportionally transferred by the timber
and the reinforcement are now solely transferred by the latter. The activation of the
resistance of the reinforcement results in additional deformation. Another potential
mechanism to transfer the released stresses is friction, which is activated in the case
of shear stresses interacting with compression stresses perpendicular to the grain. Due
to the high uncertainty of the friction coefficients, this mechanism is mostly neglected
in structural design.

3. The system falls from its original state of equilibrium into the new position of equi-
librium whereby it is restrained by the elastic deformation of the reinforcement. In the
case of free vibration, i.e. elastic deformation of the reinforcement without energy dis-
sipation, the maximum amplitude would be double the static deformation between
the original and the new position of equilibrium (Ustatic - U1). A corresponding design
would result in a considerable increase in necessary capacity of the reinforcement. In
[1] it is shown that, in the case of shear reinforcement, the load-carrying capacity of
the interconnection would have to be increased by 60 % - 80 %, compared to a pure
static design.

4. Another possible approach is to take into account the dissipation of kinetic energy
by the plastic deformation of the reinforcement. The limit deformation Uelast.im.,, at
which a transition from elastic to plastic deformation is acceptable, should have a safe
distance from the static position of rest, usatic. The relationship between both defor-
mations can be expressed by an increase factor ¢ (Uelast,iim. = Ustatic'(1+ ¢)). Static equi-
librium is established in the elastic-plastic range.

5. The plastic deformation of the reinforcement ends when all kinetic energy is dissi-
pated. The area defined by the resistance of the reinforcement during plastic defor-
mation and the load in the fracture plane equals the dissipated kinetic energy. The
larger the difference between resistance and load, the lower the necessary plastic de-
formation. The maximum deformation umax can be expressed as a function of the static
deformation in the unfractured state, uj, the new position of equilibrium, ustst, and the
increase factor ¢, as follows (a derivation can be found in [1]).

((1—u1/ustatic)2—€02)} (1)
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If the capacity for plastic deformation of the reinforcement is known, the minimum
necessary increase factor ¢ can be determined with Eq. (1).

6. After the damped movement, a free movement around the new static position of
equilibrium, uy, is reached. The vibration amplitude is uswtic- @, equaling the proportion
of the elastic deformation, exceeding the static position of rest (Ustat).

By increasing the ratio of deformations (ui/usatic) through the stiffness ratio
(Kreint./kTimber reinf.) before and after fracture, the magnitude of vibration amplitude uo
and thus the magnitude of kinetic energy to be dissipated, is reduced. Here, bonded-
in reinforcement has some advantage over screwed-in reinforcement, due to its higher
withdrawal stiffness. The same effect can be reached by an increase of reinforcing el-
ements.

An important parameter is the ductility of the reinforcement. An increase in plastic
deformation capacity is synonymous with a reduction in increase factor ¢. Hence the
necessary increase in capacity to take into account the additional load from dynamic
effects will reduce. Most reinforcing elements used in modern timber structures are
optimized for high axial capacity which involves a reduction of ductility of the (high-
strength) steel cross-section. Comparative calculations indicate that rather low ductil-
ity is necessary to reach a considerable reduction in the increase factor ¢. Comparative
calculations on shear reinforcement reported in [1] show that, under the assumption
of a capacity of plastic deformation equal to three times the elastic deformation ca-
pacity, increase factors 0.1 <9 <0.18 (mean = 0.15) can be reached.

Self-tapping fully threaded screws that are optimized for high axial capacity feature a
rather low relationship between plastic and elastic deformation capacity. Static tensile
tests on typical self-tapping screws delivered values in the range of
D = vy/v, = 2.8 —3.7. Self-tapping screws that are less hardened or screwed-in rods
feature a larger plastic deformation capacity. For the latter, relationships of
Ds = vy/vy = 11.8 — 14.0 were determined.
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