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Abstract. A tracking solution for collision avoidance in in-
dustrial machine tools based on short-range millimeter-wave
radar Doppler observations is presented. At the core of the
tracking algorithm there is an Extended Kalman Filter (EKF)
that provides dynamic estimation and localization in real-
time. The underlying sensor platform consists of several ho-
modyne continuous wave (CW) radar modules. Based on
In-phase-Quadrature (IQ) processing and down-conversion,
they provide only Doppler shift information about the ob-
served target. Localization with Doppler shift estimates is a
nonlinear problem that needs to be linearized before the lin-
ear KF can be applied. The accuracy of state estimation de-
pends highly on the introduced linearization errors, the ini-
tialization and the models that represent the true physics as
well as the stochastic properties.

The important issue of filter consistency is addressed and
an initialization procedure based on data fitting and maxi-
mum likelihood estimation is suggested. Models for both,
measurement and process noise are developed. Tracking re-
sults from typical three-dimensional courses of movement at
short distances in front of a multi-sensor radar platform are
presented.

1 Introduction

The fusion of electronics and mechanics is an ongoing pro-
cess, which benefits from by downscaling and reduced pro-
duction costs for various kinds of sensor technologies. For
monitoring of machine states, all sorts of physical quanti-
ties are captured and analyzed. An even more sophisticated
task is the prediction of future machine states and of tempo-
rary and instantaneous production steps, such as processes in

milling machines. This leads to the notion of collision avoid-
ance in automated machine tools in order to prevent damages
and downtimes, which cause high maintenance and material
costs (Wichter et al., 2014).

For these kinds of industrial machine tools, different ap-
proaches of systems for damage reduction are already under
investigation, (e.g., Abele et al., 2012). However, for the time
being, none of them is able to reliably predict the imminent
risk and efficiently avoid collisions by proactive shutdown
and deactivation.

In this contribution, the approach of a predictive 24 GHz
Doppler surveillance and collision avoidance radar is de-
scribed. Extensions and continuations of the fundamental in-
vestigations in Wichter et al. (2015), Azodi et al. (2013)
and Azodi et al. (2014) are merged. A new signal process-
ing stage for nonlinear target tracking based on Doppler
shift estimates is introduced. It is essentially based on an
Extended Kalman Filter (EKF). The algorithm is designed
for short-range, single-target tracking. Appropriate process
and measurement noise models are derived, test statistics
are applied and trajectory estimation is shown. Recently, in-
vestigations on solvability, uniqueness of the solution, and
the required minimum number of sensors were published by
Shames et al. (2013). In the application discussed herein, the
solution space for target position and velocity is restricted.
Symmetries and ambiguities due to unfavorable sensor place-
ment are reduced. Another approach, based on a two-stage
filter, was proposed by Battistelli et al. (2013) in order to re-
duce the computational costs of a stand-alone particle filter.

The next sections are structured as follows: in Sect. 2, we
introduce the model for mono-static Doppler radar on a mov-
ing observer platform and give the resultant equations. Sec-
tion 3 contains the involved tracking algorithm, the underly-
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ing derived process and noise models, as well as an extensive
study on appropriate filter initialization. Additionally, statis-
tical tests for filter consistency are introduced. The methods
are applied to simulation examples and experimental data de-
scribed in Sect. 4. The final conclusion is given in Sect. 5.

2 Problem formulation and Doppler radar model

Within the scope of this work, we consider the following
three-dimensional problem: The position of a single target
in Cartesian coordinates shall be represented by

p=Ix,yz" (1)

and may be understood as the mass center of a point scat-
terer, which is assumed to be the dominant target compared
to all other returns received from a cluttered environment.
The observer platform comprises N sensors with states

s =™ s s v vy 0T 2)

where the sensor positions are known, fixed and related to
the origin of the global coordinate system, which lies in the
center of the observer platform, see Fig. 1. The velocity vec-
tor of the platform is v = [vy, vy, vZ]T and unknown. To get
a state vector consisting of full three-dimensional position
and velocity, we perform a transformation and assume the
observer platform is fixed and the target is moving relative to
the platform with just the reversed velocity. Hence, the full
target state is

xZ[PTv _vT]TZ[xa y727_vx’_vy,_vz]T- (3)

A typical 2-D scenario (z =const) is illustrated in Fig. 1,
with two sensors at the positions sV and s®, and a sin-
gle moving target (scatterer) at position p with velocity v.
In the following investigation, the radar sensors are assumed
to have an isotropic radiation pattern, and they detect a target
at distance [|s® — p|| with Doppler shift f.".

The system equation describes the evolution of the target
state with time. The target state at time 7 is given by position
and velocity x = [pT, vT]T. The kinematic state of the target
can be deduced from the previous step fx—1 using the pro-
cess matrix F of a constant velocity (CV) model. Small de-
viations from the true trajectory are modeled by zero-mean,
white Gaussian noise wg, with corresponding process noise
covariance matrix Q. Then, the following linear discrete-
time dynamic model is obtained:

wi ~ N(0, Q). “

The measurement equation relates the measurements zj to
the state xj, where the dimension of z equals the number of
sensors being involved. In mono-static radar systems the ob-
served Doppler shift, corrupted by additive zero-mean, white
Gaussian measurement noise 7y, can be represented by

ni ~ N (0, Ry), &)

xp=Fxp 1 +wi_q,

zk =hg (xp) +ng,
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Figure 1. Top view (x-y-plane) of the scenario with two sensors at
position s and s@ on a platform with velocity v, illuminating a
single target at position p. The dashed circles represent locations of
constant range relative to each sensor. Their intersects are potential
position estimates.

where Ry is the measurement noise covariance matrix. The
measurement model is given by the nonlinear equation of the
Doppler shift observed at the nth sensor

25" = po) - w

(n)
R () =
k A Is@ — pyll

; (6)

where in contrast to Eq. (2), s™ = [s)(cn), s;"), s ! is
the sensor position in Cartesian coordinates, for all n =
I, ..., N. | - || denotes the Euclidean norm. The radar wave-
length A = ¢/ f. depends on the carrier frequency and the
speed of light in the considered medium. Thus, X has influ-
ence on the Doppler sensitivity, which is 160 Hz/(ms™!) in
24 GHz radar systems.

If only Doppler is estimated, Eq. (6) represents the mea-
surement model, which is the only source of information
in the localization algorithm. For state estimation, recursive
Kalman filtering concepts are established as efficient algo-
rithms. In this case, nonlinear approaches are necessary, like
the EKF or the Unscented Kalman Filter (UKF), see e.g. Bar-
Shalom et al. (2001), Anderson and Moore (1979), Julier and
Uhlmann (2004). The application requires fast response on
a millisecond scale (rapid estimation). Thus, it also neces-
sitates short time for reaching a decision about shutdown.
Additionally, due to the closely spaced sensor placement, the
target observability is poor. Hence, a general maximum like-
lihood (ML) approach seems to be inappropriate here, as the
number of required measurements might be very large in this
nonlinear problem, to find an efficient, unbiased estimate. As
a consequence, the integration time may be too long with re-
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Figure 2. Illustration of the radar system concept and fundamental signal processing blocks for single target multi-sensor tracking. This work
is focused on the state estimation algorithm represented by the highlighted part.

spect to the change rate of the state. The ML approach is used
only for the initialization procedure to obtain reliable initial
states close to the true target state.

3 State estimation via Kalman filtering

For the considered application the EKF is employed. De-
spite of the known flaws of the EKF, see e.g. Julier and
Uhlmann (2004), first order linearization of the nonlinear
Doppler function is assumed to be sufficient, since the sce-
narios considered here assume either constant velocity (CV,
non-maneuvering) or constant acceleration within a limited
range of values. If turning maneuvers and directional changes
of motion have to be tracked, UKF is preferred (e.g. Smith,
2008). However, both EKF and UKEF, require appropriate ini-
tialization of expected values and covariance matrices. Oth-
erwise, tracking with these kinds of deterministic filters may
lead to poor tracking accuracy or — in case of fatal ambigui-
ties — to completely misdirected estimates.

In this section we introduce the adapted EKF algorithm,
process and noise models, and give the initialization proce-
dure based on maximum likelihood estimation. Furthermore,
statistical methods for filter consistency tests are described.

3.1 Tracking filter algorithm

Taylor series expansion is used to linearize the measurement
equation around the current target state xj. Second order
terms and above are neglected. From Eq. (5) we get

zi =hg (xp) +ng

. d .
~ hy (Xgk—1) + ahk(x)(xk — Xijk—1) +ny. @)

This will, from now on, serve as a linear measurement equa-
tion to establish the filtering procedure.

The system model consists of the linear equation given by
Eq. (4). Now, the standard Kalman Filter equations can be
applied for recursive state estimation, see Table 1 for the fil-
ter algorithm of an autonomous system (control input u = 0),
with F, Q and R being constant. Noise processes are as-
sumed to have zero-mean Gaussian distribution, even though
other distributions may be possible and may be tackled by
the KF/EKF, which would lead to the best linear estimates.

www.adv-radio-sci.net/14/39/2016/

Table 1. Adapted EKF Algorithm. The initialization is based on
MLE, with initial state X, the transition matrix F is linear and
constant, and the measurement equation is linearized.

Initialization

X9 =E{xo} =%ML
Py = E{(xo — £0)(xg — %0) T}

Time Update

Fre—1 = Frp_qk—1,
Pr—1 =FPr_—1 FT +Q

Compute Partial Derivative

0
H; = ?hk(x)
x

X=Xpk—1

Measurement Update

Sk =Hi Pt HkT +R

Ky =Py Hi TS !

Epik = Xkk—1 + K (25 — g Fge—1))
Prik = X — K Hp) Prjr—1

3.2 Measurement noise model

For experimental investigations low-cost CW radar sensor
modules available from RFbeam Microwave GmbH (2014)
were used. The signal processing chain consisting of radar
sensor, analog-to-digital converter, digital low-pass filter and
short-time frequency estimator is given in Fig. 2.

The observed noise voltage of the down-converted, dig-
itized 1Q-signal at the mixer output typically has a vari-
ance of less than 1uV?2, with Gaussian probability distribu-
tion. The following frequency estimator based on FFT and
spectral peak detection (Wichter et al., 2014, 2015) attains
the Cramer-Rao lower bound (CRLB) for signal-to-noise ra-
tios (S/N) larger than 0dB. The frequency estimation un-
certainty is Gaussian distributed with variances of less than
1 Hz?, dependent on the S/N and the length of the observa-
tion interval k7.

Adv. Radio Sci., 14, 39-46, 2016
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For mutually independent and uncorrelated sensors, the
measurement noise covariance matrix R is described by

0 ifk#¢

Ty _

E{nkn[ } - R(Sk[ lfk — E, (8)
where §;¢ denotes the Kronecker delta. The diagonal matrix
R can be denoted as R = diag {012, o2, ..., crl%,}.

3.3 Process noise model

The linear drive system of machine tools are capable of fast
traverse velocities up to 2ms~! and high accelerations up
to 10ms~!2. Also, the highly precise position encoder for
synchronization of the drive ensures very low deviation from
disturbance free motion (e.g. irregular motion and rattling).
In this contribution we consider only the non-maneuvering
case of constant velocity (CV) with ¥ = 0, see Bar-Shalom
et al. (e.g. 2001, Ch. 6). Small, non-deterministic accelera-
tions and deviations from the ideal rectilinear trajectory are
modeled as a zero-mean Gaussian process, see Eq. (4), where

Ty _ 0 ifk#4¢
Measurement and process noise are uncorrelated, as fully de-
scribed by E{wynT} =0 Vk, £.

3.4 Filter initialization

For initialization of a tracking filter, usually the expectation
value of x( and the associated covariance matrix Py are used.
As prior information about the true mean x¢ is very limited,
a non-Bayesian parameter estimation approach for position
and velocity seems to be more appropriate, due to the fact
that measurements and the corresponding true target state are
very ambiguous and disturbed by noise (Bar-Shalom et al.,
2001, p. 91f.). Restrictions due to the given geometry of the
observed space in front of the sensor platform and the ve-
locity interval from —|vpax| tO |[Umax| Of the drive motor are
considered. This leads to a non-convex, but constrained, six-
dimensional optimization problem.

The method of maximum likelihood estimation (MLE) is
used in consideration of the following circumstances:

The a-priori knowledge about the true state is uncertain
or not sufficient.

The measurement function (Doppler equation) is highly
nonlinear and ambiguous.

The current target state is a deterministic constant.

The length of the observation interval k7 does not in-
terfere the constant parameter assumption.

The measurement noise is a zero-mean Gaussian pro-
cess with known covariance matrix R.
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The MLE is given by

*m = argmax p(Z¥|x), (10)
X

where ZF = {z1,..., zx} is the set of k observations gathered
by N sensors. The likelihood function is given by

k
p(ZHlx) = ;exp(—% > @m— h(x))z),
/(27.[)1102n 20 =

where h(x) is the Doppler model given by Eq. (6), containing
all unknown parameters. Here, the measurement noise is set
to R = o?Iy for identical sensor properties.

Next, two extensive simulations are described. Figure 3
depicts the contour plots for MLE for a single measurement
(left) and a set of ten sequential measurements z (right). For
illustration, the z- and v,-component were set to zero. In this
example the velocity vector was preset and kept constant at
V= (—ﬁ, \/E) ms! throughout all simulation runs. The
frequency estimation uncertainty was o = 0.1 Hz. The color-
bar represents the magnitude of the estimation error || x — X||.
Since the whole geometry is symmetric, including a sym-
metric arrangement of ideal, isotropic sensors, the error has
symmetric properties in the x-y-plane. This is influenced
by the velocity components as well, e.g. if the sign of the
v-component is flipped, the pattern will be mirrored verti-
cally. Broad areas with high error levels (top right and bottom
left) indicate poor observability and solvability of the equa-
tion system due to high similarity of the obtained Doppler
shift amongst the sensors. In Fig. 3 (right), significant ac-
curacy improvements can be identified if several sequential
Doppler estimates were exploited. The sampling interval be-
tween each estimate was 1 ms. Improvements can be identi-
fied in almost every region. Hence, more accurate initial es-
timates can be found by increasing the integration time. Of
course, the resulting error characteristic shown in Fig. 3 de-
pends on the velocity vector v. Hence, different velocities v
result in different regions of poor observability.

A set of different random velocities is investigated next.
Figure 4 depicts the absolute errors on position and ve-
locity estimates for Monte Carlo (MC) simulations, carried
out on a regular grid in space (x € [0.3, 0.35,...,1]m, y €
[—0.5, —0.45,...,0.45, 0.5]m, z = 0). For every grid point
in the z = 0-plane, eleven different velocity vectors, each
representing an approaching motion, were tested. Addition-
ally, the noise level is varied, starting with o =0.01 Hz up to
of = 1 Hz. The resulting errors are below 0.3 m for the posi-
tion estimate and below 0.2ms~! for the velocity estimate.

3.5 Filter consistency

Consistency of a state estimator means that the estimates X
are unbiased and the state estimation errors match the filter-
calculated covariance matrix Py for a given finite number
of measurements Z* (Bar-Shalom et al., 2001, Ch. 5.4):

E{(x0 — %0)(x0 — £0)T|Z"} = Py (11)
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Figure 3. Error contour plot of a two-dimensional scenario for MLE, exploiting a single Doppler estimate (left) and a set of ten (right)
sequential Doppler estimates Z*, with an integration time of 1 ms resp. 10ms. The velocity vector was preset to v = (=2, vV2)ms L.
A non-coherent uniform linear array (ULA) with five sensors of length 0.4 m serves as observer. The standard deviation of the frequency
estimation uncertainty of each sensor was set to oy = 0.1 Hz. The colorbar represents the magnitude of the estimation error ||x — X ||.
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Figure 4. Averaged error magnitudes for increasing measurement noise variances afz. As shown in Fig. 3, a non-coherent ULA of five sensors
is used, and sequential Doppler estimates Z*, with an integration time of 10 ms. For each grid point, the velocity vector was varied according

to a set of 11 randomly defined, different approaching movements towards the ULA.

This definition differs from parameter estimation, where con-
sistency is an asymptotic property and an infinite set of sam-
ples is assumed.

The preferred measure for checking filter consistency in
MC simulations is the covariance matrix Pyx, which is re-
lated to the estimate error Xix = (xx — Xkx). The normal-
ized state estimation error squared (NEES) is defined by the
quadratic form

NEES =3c'{|kP,;|,15c’k|k. (12)

As Xgk is Gaussian, the NEES is the sum of the squares of
ny independent zero-mean, unity-variance, Gaussian random
variables. The filter is consistent, if the NEES has X,% distri-
bution with n, degrees of freedom (Bar-Shalom et al., 2001,
Ch. 5.4). For illustration, Fig. 5 shows the x,%—distribution for
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n =2, 4 and 6. Furthermore, the confidence interval for n =
6 is highlighted. In three-dimensional scenarios, the (e.g.)
95 % confidence interval for NEES can be determined from
the xZ distribution as

[Xg(o.ozs), Xg(o.975)] = [1.237, 14.449].

For observation of a set of N independent samples, the av-
erage NEES can be used as a statistical test for filter consis-
tency:

1 N
NEES,yg = > NEES;. (13)
k=1

Adyv. Radio Sci., 14, 39-46, 2016
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Figure 5. Chi-Square distributions with 2, 4 and 6 degrees of free-
dom. For the case of n = 6, the 95 % confidence interval is given by
[1.237, 14.449] (filled area). For optimized illustration, the axis are
scaled appropriately.

NEES is restricted to simulations only, as it requires
knowledge of the true state x;. An exploitation of the above
quantity is impossible if real processes are observed, without
knowledge of the true state. In this case a similar statistic can
be evaluated, called the Normalized Innovation Squared:

NIS=vIS: 'vi, i =2z —hi(xpp—t). (14)

The residual covariance matrix Sy = Hy Pyjx—1 HkT +R is
part of the measurement update process, see Table 1. This
can be applied in simulations, as well as for measurements.
For analyzing a set of N independent samples, the average
value is used, which is

1 &
NS = ;lek. 15)
Usage of this quantity has several important benefits, e.g.
outliers detection and gating capability, as demonstrated in
the next section. In the simulated examples (see Fig. 6) the
NIS and the 95 % confidence intervals will be given.

It can be shown that E{ Xn} = n and var{ xn} = 2n. Hence,
the quantities NEES, NIS and the averages have to converge
to n, resp. ng, if the filter models are correctly designed.
These quantities were used in the following to check initial-
ization and the running estimate in the simulations.

4 Simulation results

In this section, an illustrative simulation example, performed
in Matlab, is described. The scenario is depicted in Fig. 6
(top), with the sensor platform inside the machine tool and
six circularly arranged radars on the side front of it. The sen-
sor radius is 20 cm. The global origin of the Cartesian coordi-
nate system lies in the center of the platform. A single-target
is given, moving towards the platform with constant velocity.
This represents a typical situation of imminent danger, which
has to be handled by a monitoring collision avoidance radar.

The initial target state xo is given in Table 2, together
with the initial estimate Xy, obtained from MLE. The ini-
tial state covariance matrix is set to Pg = 0.1I¢. These values

Adyv. Radio Sci., 14, 39-46, 2016
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Figure 6. Example of an approaching motion of a point scatterer
and tracking results for the applied EKF. The picture on top shows
the scenario with six sensors, placed in the x = O-plane, on a ring
with radius 20cm. In the middle, the absolute error of the posi-
tion estimate is shown. The bottom picture shows the NIS. The
NISayg = 5.82 &~ n; and matches very well with the expectation.

can be derived from the results in Fig. 3. Additionally, the
minor diagonal elements are overlaid by low-power additive
noise (matrix still symmetric). This leads to improved con-
vergence. Furthermore, the process and measurement noise
matrices are defined as

R=0/ls, and (16)
Q=Go, G", (17)
where G = (T2/2 T2/2,T2/2, T, T, T)". The variances

are set to O’f (0. 4HZ)2 resp. O‘p (0.4ms_2)2. The sam-
pling interval is 7 = 1ms. The initial NEES = 0.25 <« n,
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Table 2. Comparison of true and estimated initial state in a simula-
tion example. Sampling interval 7 = 1 ms, integration time 10 ms.
The estimation error for position || py — Py |l and velocity |vg —
DML is 0.078 m resp. 0.059 ms ™.

true initial estimated initial

state: x) state: XL
X0 0.833m 0.767m
Y0 0.111m 0.086 m
20 0.092m 0.124m
veo  —0750ms™!  —0.757ms™!
vyo —0.125ms™!  —0.113ms™!
v,0 —0.018ms™!  —0.076ms!

has a quite low value. This comes along with low estimation
error and the relative high initial covariance matrix. Better
overall performance was observed during the MC simula-
tions with larger elements in the initial covariance Py.

Figure 6 (middle) gives an insight into the high track-
ing accuracy, with steadily decreasing estimation error. After
1 s, the final true position is p = (0.083, —0.014, 0.073)T m,
which corresponds excellently with the estimated position of
p = (0.083, —0.021, 0.077)T m. As can be identified from
Fig. 6 (middle), the parameter Z is the most erroneous one.
However, this depends on the sensor configuration. If the
sensors are rotated around the x axis, the estimation error
!z - 2| becomes lower, whereas | y— )7} is slightly increased.
The distance x is a crucial parameter in collision avoidance.
It is estimated with sub-centimeter accuracy.

Estimated velocities are not depicted. The estimation prop-
erties of the velocities are similar to the coordinates: the es-
timation performance for v, is better compared to ;. This is
again due to the sensor arrangement and could be improved
by rotating the sensor arrangement. The parameter vy is esti-
mated with very high accuracy.

In Fig. 6 (bottom) the NIS is depicted. This quantity is
used for outlier tests, for the gating procedure, and for noise
level increasing for the initialization period. Additionally, in
Fig. 6 lower and upper bounds of the 95 % confidence inter-
vals ( Xg-distribution) are given as dashed lines. In this sim-
ulation, 95.4 % of all estimates (NIS) are within this accep-
tance interval. The time-average NIS,yg has a value of 5.82,
which matches excellently to the expectation of n, = 6.

A further statistical test for correct filter design is the
mean-value of the innovation vy, which has to be zero, with
associated covariance matrix Si. In this simulation the ob-
tained mean values were in the range —0.04 to 0.08 Hz.

5 Conclusions

This paper presented investigations and results on important
issues of Doppler target tracking in short-range scenarios.
The utilized Extended Kalman Filter (EKF) was designed
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considering the requirements for predictive 24 GHz Doppler
radar processing aiming at collision warning and collision
avoidance in industrial machine tools. The proposed proce-
dure for filter initialization is based on Maximum Likelihood
Estimation from several sequential measurements. It deliv-
ered reliable initial guesses close to the true target state. In
combination with the known restrictions of the considered
application, the utilization of a deterministic EKF was inves-
tigated. Simulation results confirmed the filter models and
showed very high tracking accuracy.

As a next step, we plan to extend the algorithm to handle
extended targets with more irregular shapes. In this case we
expect that increased Doppler spreading due to multiple scat-
tering centers will be observed and a data association prob-
lem will arise.

6 Data availability

Datasheet Version 2.0 of K-LC5 Radar Transceiver
(RFbeam Microwave GmbH, 2014) is available at
http://www.rfbeam.ch/downloads.
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