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ABSTRACT
The main problem when trying to optimize the parameters
of libraries, such as MPI, is that there are many parameters
that users can configure. Moreover, predicting the behav-
ior of the library for each configuration is non-trivial. This
makes it very difficult to select good values for these pa-
rameters. This paper proposes a model for autotuning MPI
applications. The model is developed to analyze different pa-
rameter configurations and is expected to aid users to find
the best performance for executing their applications. As
part of the AutoTune project, our work is ultimately aiming
at extending Periscope to apply automatic tuning to paral-
lel applications. In particular, our objective is to provide a
straightforward way of tuning MPI parallel codes. The out-
put of the framework are tuning recommendations that can
be integrated into the production version of the code. Ex-
perimental tests demonstrate that this methodology could
lead to significant performance improvements.

CCS Concepts
•Computing methodologies→Parallel computing me-
thodologies; •Theory of computation → Parallel algo-
rithms;
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Autotuning; MPI; runtime parameters; PTF;

1. INTRODUCTION
MPI is the ”de facto” standard for inter-process communi-

cation in distributed parallel programs and thus it represents
a key factor in the optimization of MPI-based applications.
However, a library setup for a specific system might not per-
form equally in different environments (e.g., different archi-
tecture or interconnection network). To increase portability,
MPI implementations provide multiple configuration param-
eters. These parameters are usually set by experienced users
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with a deep knowledge of a specific MPI application and how
it might behave on the target architecture.

The main problem when trying to optimize the parame-
ters of the libraries that handle the communication among
processes in parallel applications is that there are many pa-
rameters that users can configure, and predicting the behav-
ior of the library for each configuration is non-trivial. This
makes it very difficult to select good values for these param-
eters. The fact that we have so many parameters, several
with many possible values, makes it difficult to exhaustively
explore all the possible configurations. For example, IBM
MPI, Intel MPI, and Open MPI include from more than 50
to more than 150 parameters and, in this set, from ten to
several tens of them can influence performance. These are
the main motivations for automating the process of testing
configurations, and for providing heuristic search algorithms
to explore the search space in a reasonable time.

The researchers and the vendors of parallel architectures
developed a number of performance analysis (PA) tools that
support and partially automate the tuning process. Much
research has been dedicated in the last years to the devel-
opment of auto-tuning strategies and tools to provide the
application developer with hints on how to tune their code.

This paper presents a model for autotuning MPI appli-
cations that addresses the aforementioned optimizations of
MPI applications and is expected to aid users to find the best
performance for executing their applications. This work was
part of the AutoTune project [11], which extended Periscope
[2], an automatic online and distributed performance analy-
sis tool developed by Technische Universität München, with
automatic tuning capabilities. Plugins, provided by Auto-
Tune, can use the performance properties and bottlenecks
found by Periscope to come up with performance improve-
ments for the application.

The goal of AutoTune is to close the gaps in the applica-
tion tuning process and thus to simplify the development of
efficient parallel programs on a wide range of architectures.
Periscope Tuning Framework (PTF) is unique, since it is the
first work to combine analysis and tuning of multiple aspects
into an online automatic tuning framework. PTF is able to:

• identify tuning variants based on codified expert knowl-
edge;

• evaluate the variants online (i.e., within the same ex-
ecution of an application), reducing the overall search
time for a tuned version;

• address a wide and extensible range of tuning aspects

xxxx
Schreibmaschinentext
Pre-print version of accepted paper



through its plugin-based structure, including energy
consumption properties; and

• provide recommendations on how to improve the code,
which can be manually or automatically applied.

PTF executes both performance analysis and performance
tuning using an online approach. During the execution of
the application, the analysis is carried out and the found per-
formance and energy properties are forwarded to the tuning
plugins, which determine code alternatives and evaluate the
different tuned versions. Finally, detailed recommendations
are given to application developers on how to improve their
code with respect to performance and energy consumption.

The remainder of this paper is as follows. Section 2 re-
views similar works and describes other approaches being
used in the autotuning field. Section 3 introduces the func-
tionality of PTF. Next, Section 4 presents the model for
autotuning MPI parameters for MPI applications. Section
5 describes the MPI Parameter plugin that is integrated into
PTF. In Section 6, a set of experiments is presented to show
the improvements that are obtained by using the developed
plugin in PTF. Finally, Section 7 concludes the work.

2. RELATED WORK
The complexity of today’s parallel architectures has a sig-

nificant impact on application performance. In order to
avoid wasting energy and money due to low utilization of
processors, developers have been investing significant time
into tuning their codes. However, tuning implies searching
for the best combination of code transformations and pa-
rameter settings of the execution environment, which can
be fairly complicated. Thus, much research has been dedi-
cated to the areas of performance analysis and auto-tuning.

The explored techniques, similar in approach to ours, can
be grouped into the following categories:

• self-tuning libraries for linear algebra and signal pro-
cessing like ATLAS [19], OSKI [18] and SPIRAL [14];

• tools that automatically analyze alternative compiler
optimizations and search for their optimal combina-
tion [17, 8, 12, 7];

• auto-tuners that search a space of application-level pa-
rameters that are believed to impact the performance
of an application [5, 3];

• frameworks that try to combine ideas from all the other
groups [16].

Performance analysis and tuning are currently supported
via separate tools. AutoTune aims at bridging this gap
and integrating support for both steps in a single tuning
framework. The fact that tuning the MPI parameters al-
lows for significantly improving the application performance
is demonstrated by the development of tuning tools such
as mpitune [6] and OPTO [4]. These tools are similar to
our approach in the sense of executing the application for
testing different parameter combinations. However, they are
specific to a particular MPI implementation, while PTF can
be applied to any MPI flavour.

Pellegrini et al. [13] propose a machine learning approach
to the MPI parameter tuning. This approach is faster than

Figure 1: Architecture of the Periscope Tuning
Framework.

the one followed by PTF because it only runs the applica-
tion once and then uses a predictive model for determining
the parameters. However, PTF can produce more accurate
results because it tests every parameter combination on the
application itself.

3. PTF
The Periscope Tuning Framework (PTF) [1] consists of

Periscope and the tuning plugins developed in the AutoTune
project. It supports tuning applications at design time. The
most important novelty of PTF is the close integration of
performance analysis and tuning. It enables the plugins to
gather detailed performance information during the evalua-
tion of tuning scenarios, to shrink the search space, and to
increase the efficiency of the tuning plugins.

The overall architecture of PTF is shown in Figure 1. It
consists of the user interface, frontend, analysis agent hierar-
chy, and monitor that is linked to the application. The user
interface allows to inspect performance properties in Eclipse,
the frontend triggers performance analysis strategies that
are executed by the analysis agents, and the MRI moni-
tor (Monitoring Request Interface) measures performance
data required for the automatic identification of performance
properties.

Periscope’s performance analysis determines information
about the execution of an application in the form of perfor-
mance properties. A performance property (e.g., load im-
balance, communication, cache misses, redundant computa-
tions, etc.) characterizes a specific performance behavior of
a program and can be checked by a condition. Conditions
are associated with a confidence value (between 0 and 1)
indicating the degree of confidence about the existence of a
performance property. In addition, for every performance
property a severity value is provided that specifies the im-



portance of the property. The higher the severity, the more
important or severe a performance property is.

The frontend triggers performance analysis strategies, e.g.,
investigating certain performance properties related to spe-
cific programming models such as MPI.

The real analysis is performed by the analysis agents, the
leaf nodes of the agent hierarchy. Each agent is responsi-
ble for a subset of the MPI processes. It configures the MRI
monitor to measure the required performance metrics during
an experiment. The experiment is then performed and the
measurements are retrieved from the monitor. The anal-
ysis agent determines the properties and propagates them
through the agent hierarchy to the frontend. PTF supports
several analysis strategies, such as single core analysis, MPI
analysis, OpenMP analysis, and configurable analysis.

PTF goes beyond automatic performance analysis and al-
lows to automatically tune applications with respect to var-
ious aspects. It provides a rich toolbox for implementing
tuning plugins. They follow a predefined tuning model that
defines the sequence of operations that all plugins have to
implement. The operations are defined by the Tuning Plu-
gin Interface (TPI). Plugins are loaded dynamically and can
be provided in source or binary form. The sequence of TPI
operations is determined by the frontend. It calls the plugin
operations and implements the interface between the plugins
and the rest of Periscope.

The plugins typically investigate a number of variants
called scenarios to identify optimizations. In this process,
analysis information is used to shrink the search space and
to improve the search efficiency of plugins.

4. AUTOTUNING OF MPI APPLICATIONS
We have developed an MPI Parameter plugin that aims at

automatically optimizing the values of a user selected sub-
set of MPI parameters. Users indicate MPI parameters to
be tuned and a range of values to be explored. In addition,
users indicate the preferred search strategy (exhaustive, evo-
lutionary) and if an automatic strategy should be used for
the eager limit parameter. Then, the plugin generates the
search space that is the crossproduct of all possible combi-
nations of values of the parameters and selects scenarios to
be evaluated based on the search strategy. Finally, the best
results are provided to the users as advice.

Given the amount of MPI parameters that can influence
performance and their dependence on the library imple-
mentation, it is difficult to find general models to guide
the search, although, it can be possible for a reduced set
of specific parameters. Consequently, we have decided to
give users the possibility of using evolutionary algorithms to
heuristically guide the search executing a reasonable num-
ber of experiments. In particular, genetic algorithms can be
defined as a search heuristic used in optimization and search
problems inspired by natural evolution mechanisms such as
inheritance, selection, crossover, and mutation.

In addition, for the case of the eager limit parameter in
combination with the memory buffer one, we have developed
a special analysis strategy that further shrinks the search
space for this tuning plugin. These parameters are specially
relevant because of their potential influence on the applica-
tion performance.

4.1 Heuristic Search
Suppose that a user wants to configure the following 5 pa-

rameters for an application using IBM MPI on SuperMUC
[9]: eager_limit (from a few bytes to 64 KB), buffer_mem
(from 4 KB to 2 GB), pe_affinity (yes,no), task_affinity
(core, cpu), and polling_interval (from 1 to 2 billion mi-
croseconds). The number of scenarios that will be included
in the search space is 480000 (15x80x2x2x100), which is un-
feasible to explore exhaustively in a reasonable time, even if
the application execution takes only a few seconds.

A promising way of traversing the search space obtaining
reasonably good results consists of using heuristic search al-
gorithms, such as genetic or incremental ones. PTF has
been enriched with the implementation of different search
strategies: the Generalized Differential Evolution 3 (GDE3)
genetic algorithm [10], individual based on testing parame-
ters incrementally, and probabilistic random search.

In the GDE3 strategy, a population of 10 initial scenarios
is randomly generated and executed, then, an iterative pro-
cess is followed generating new populations by selecting the
best five scenarios (those with the smallest execution time)
for the next generation (elitism), generating five new scenar-
ios by crossing over the previous population, and introducing
mutations with a fixed probability. The number of iterations
can be configured, but, generally, a close to optimal solution
can be found in less than 30 iterations (generations). In the
example presented above, this would mean executing 300
experiments instead of 480,000, which can take a few hours
or maybe some days depending on the application execution
time. However, this can be an affordable analysis and tuning
time for many applications.

The individual strategy iterates through the list of pa-
rameters and incrementally adds a new parameter to the
already explored set of parameters. Consequently, in each
search step it explores the effect of one new tuning parame-
ter in combination with the already processed ones. In the
example, this strategy will lead to the execution of only 199
experiments (15+80+2+2+100).

Finally, the random strategy samples the search space for
a pre-configured number of scenarios using a parametrizable
probability distribution (uniform by default).

4.2 Eager Limit Strategy
Specific analysis strategies can be developed for certain

parameters in order to reduce the search space. In particu-
lar, we have developed a special analysis strategy for the case
of the eager limit parameter in combination with the mem-
ory buffer one. These parameters have been chosen because
of their potential influence on the applications performance.

The eager limit parameter allows users to establish the
maximum size of messages that will be sent using the ea-
ger protocol. This parameter is usually limited by an upper
bound by MPI implementations. For example, in the case
of the IBM MPI version installed in SuperMUC the max-
imum is 64 KB, and it can range from a few bytes up to
this limit. Because there are many possible values for this
parameter, evaluating every value exhaustively can generate
many scenarios in the plugin search space.

The eager limit parameter can affect the performance of
point to point communications significantly. This type of
communication is affected by the actual protocol used in the
communication. Sending a message eagerly means that the
sender is sure that the receiver has enough buffer space for
storing the message, so it simply sends the message, avoid-
ing the hand shake costs of other protocols, such as the



rendezvous protocol. Using the eager protocol may reduce
communication time up to 60%, depending on the message
size. However, the eager protocol introduces also some dis-
advantages, such as the necessity of bigger memory buffers,
which can negatively affect the application performance, and
the potential under-utilization of these buffers if the appli-
cation traffic consists mostly of messages larger than the set
limit.

Because of the performance impact of this parameter, it is
worthwhile to define a specific performance property that is
related to the optimal values (application dependent) for this
parameter. This property allows for a significant reduction
of the plugin search space and, as a consequence, the overall
tuning time.

To detect this property for MPI applications, 8 new met-
rics were added to the framework:

• PSC_MPI_MSG_P2P_THR: this metric contains the total
number of bytes transferred near the eager limit (cur-
rently between 1 KB and 64 KB).

• PSC_MPI_MSG_P2P_TOT: total number of bytes trans-
ferred using the MPI point to point operations.

• PSC_MPI_MSG_P2P_<2K-64K>: total number of messages
(count) at certain size ranges. The first one contains
messages up to 2 KB, while the rest are the counts of
messages greater than the previous slot and under the
KB value in the metric’s name (for example, the 32K
metric contains the message count of transfers between
16 KB + 1 and 32 KB).

With those metrics the performance analysis strategies
provided by PTF detect the new property called EagerLim-

itDependency. When found, it means that the generated
point to point traffic is sensible to alterations of the eager
limit. In that sense, the performance of the application is
dependent on the eager limit setting.

The severity of the EagerLimitDependency property is
computed based on the fraction of the total MPI point to
point traffic that took place near valid eager limit settings.
That is simply the division of the PSC_MPI_MSG_P2P_THR

metric over the PSC_MPI_MSG_P2P_TOT metric. The rest of
the metrics are embedded in the extra information fields of
the new property and can be used by the plugin to detect
where exactly the traffic occurred; this extra information is
then used to clip the search space and significantly accelerate
the search in the dimension of this parameter.

We have developed a specific tuning model for the case of
the eager limit parameter in combination with the memory
buffer one. The plugin calls a pre-analysis using a config-
urable analysis strategy to obtain EagerLimitDependency

property and, with the information provided, it first decides
if it is worthy to tune the eager limit parameter. Conse-
quently, the parameter will be included in the tuning space
only if the proportion of messages in the valid range of the
eager limit is more than 30% of the total number of mes-
sages sent by the application. We have considered that for
a lower proportion the potential performance improvements
would be too small.

Next, if it is worthy to tune the eager limit, the plugin
analyzes the number of messages in each range and sets its
search space in the limits of the range with the bigger num-
ber of messages. For example, Figure 2 shows that the range
including more messages is from 4 KB to 16 KB, the plugin

will generate a search space from 4 KB to 16 KB with a step
of 1 KB. In addition, the plugin will use Expression 1 to cal-
culate the appropriated search space for the memory buffer
parameter. In this expression n is the number of processes
of the application and the eager limit is expressed in KB,
so for our example using 1000 processes it would produce a
search space for the memory buffer going from 8000 KB to
32000 KB with a step of 1000 KB.

Figure 2: Hypothetical output produced by the Ea-

gerLimitDependency property.

mem buff = 2n ∗max(eager limit, 64) (1)

5. MPI PARAMETERS PLUGIN
Based on the presented model, we developed the MPI Pa-

rameter plugin and integrated it into PTF. The integration
with PTF provides the plugin with on-line measurements in
the form of high level properties, allowing it to make tuning
decisions based on the actual performance of the application.
The plugin generates the scenarios to represent specific MPI
configurations in the form of tuples of parameter-value pairs
(i.e., specific combinations of values for the selected subset
of MPI parameters). These scenarios are executed via PTF
and evaluated using the resulting properties.

Before the execution of the experiments, the application
must be prepared for tuning. In this case, the user should
create the configuration file specifying the configuration op-
tions for the MPI library and a range of valid values for
each of them. In addition, the used MPI implementation is
specified, so the plugin will configure it accordingly.

5.1 Configuration File
In the MPI Parameters plugin there is one configuration

file where all the parameters for the tuning process can be
defined. The plugin uses its own parser and syntax for this
file. Users create the configuration file specifying the MPI
library parameters to be tuned and a range of valid val-
ues for each of them. Depending on the parameter, the
valid values may vary; some of them require a Boolean value
(e.g., pe_affinity (yes,no)), while others need a string of
characters (e.g., task_affinity (core, cpu)), or a range of
integers (e.g., eager_limit (from a few bytes to 64 KB),
polling_interval (from 1 to 2 billion microseconds)). In
addition, users can specify the kind of search strategy the
plugin should apply, choosing between exhaustive, genetic
strategy, individual, or random strategies (SEARCH= exhaus-

tive, gde3, individual or random).



5.2 Complete Tuning Flow
Figure 3 shows the workflow of the MPI Parameters plu-

gin. First, a set of MPI parameters and their possible values
is obtained from a configuration file and scenarios are cre-
ated for each possible combination of parameter-value pairs.
The plugin then starts to experiment with the scenarios se-
lected by the search strategy and evaluates each of them us-
ing an objective function. The plugin finishes when all the
selected scenarios are explored or a time limit is reached.
Finally, the scenario with the best performance (the combi-
nation of values that has given the lowest execution time) is
used as a recommendation to the user. This advice can be
applied by assigning the values to the corresponding environ-
ment variables, for example set MP_EAGER_LIMIT = 16384

or by passing the value as an option in the mpirun command,
for example -eager_limit 16384 for IBM MPI.

Figure 3: MPI Parameters plugin flowchart.

6. EVALUATION
To perform the experimentation on the plugin, we selected

10 IBM MPI parameters that can significantly influence the
application’s performance. They are the following:

• eager_limit: The eager limit is a threshold that con-
trols which messages are sent using the eager protocol
instead of the slower rendezvous one. It can be set
between 0 and 64 KB (default 64 KB).

• buffer_mem: This parameter is closely related to the
eager limit, given that messages sent eagerly must be
stored in buffers, whichs size is indicated by this pa-
rameter. Consequently, increasing the eager_limit

and buffer_mem could reduce communication time at
the cost of reserving more memory for the MPI library,
which could negatively affect application performance.
The maximum value of this parameter is 64 MB (it is
set accordingly to the number of application processes
and the eager_limit value).

• use_bulk_xfer: If set to yes (the default), this trans-
parently causes portions of the user’s virtual address

space to be pinned and mapped to a communications
adapter. This causes the low level communication pro-
tocol to use Remote Direct Memory Access to copy
data from the send buffer to the receive buffer as part
of the MPI receive.

• bulk_min_msg_size: Contiguous messages with data
lengths greater than or equal to the value of this pa-
rameter will use the bulk transfer, while messages that
are smaller than the value, or are non-contiguous, will
use packet mode transfer. This parameter has effect
only when use_bulk_xfer is set to yes. Again, there
is a tradeoff between use of memory and faster data
transfers. Its values can be in the range 4 KB to 2 GB
(default 64 KB).

• task_affinity: Tasks of a parallel application can be
allocated to a single core (CORE - the default), sev-
eral cores (CORE:n), a whole processor (CPU), several
processors (CPU:n), or over the processors of a node
in a round-robin fashion (MCM). This parameter is
useful for assigning resources for hybrid applications
and for managing which tasks are closer among them
or the amount of memory assigned to each task.

• pe_affinity: Determines whether Load Leveler or the
MPI environment determine the task scheduling. In
the latter case, which is the default, MPI will use the
value specified by the task_affinity parameter.

• cc_scratch_buf: If set to yes, this parameter uses the
fastest collective communication algorithm even if it
requires the allocation of more scratch buffer space
(default yes).

• wait_mode: Used to specify how a thread or task be-
haves when it discovers it is blocked, waiting for a mes-
sage to arrive. It can be set to poll (default) or nopoll.

• css_interrupt: Used to specify whether or not ar-
riving packets generate interrupts. It is recommended
to set this parameter to yes when wait_mode is set to
nopoll (default no).

• polling_interval: Used to specify a fixed period of
time to interrupt the nopoll wait (wait mode set to
nopoll and css interrupt set to no). Its values can be in
the range 1 to 2 billion micro seconds (default 400000).

In addition, we also selected a set of Intel MPI parameters
covering approximately the same features described before
in order to demonstrate the functionality of the plugin over
different MPI implementations.

6.1 Settings
To test the plugin we have used the FSSIM application

[15], which is a biological simulator that models the move-
ment of large fish schools. It uses individual oriented sim-
ulation to recreate the patterns in which actual fish schools
move. FSSIM uses a distributed cluster-based approach to
parallelize the simulation and follows an SPMD model to di-
vide the workload among the processes. We ran PTF with
the MPI Parameters plugin on the FSSIM application, using
a medium workload of 64K individuals and 64 threads and
a big workload of 256K individuals and 256 threads.



In addition, we have also tested the plugin with the NAS
Parallel Benchmarks (NPB 3.2) executing class C of Conju-
gate Gradiant (CG) and Integer Sort (IS) on 16 cores.

Depending on the number of parameters to be tuned and
the range of values they can take, the potential size of the
search space can be huge. As it is not feasible to test all
parameters combination exhaustively, we have used the ex-
haustive search strategy for a very limited configuration of
the parameters and the heuristic search strategies for a more
complete configuration.

We have prepared the following configuration files for dif-
ferent searches, where (SEARCH = gde3, individual, or ran-
dom, by default exhaustive) :

• exhaustive search on IBM MPI

MPI_PIPO BEGIN ibm

eager_limit=1024:8192:65536;

use_bulk_xfer=yes,no;

bulk_min_msg_size=4096:32768:1048576;

cc_scratch_buf=yes,no;

MPI_PIPO END

• heuristic search on IBM MPI

MPI_PIPO BEGIN ibm

SEARCH=gde3;

eager_limit=1024:1024:65536;

buffer_mem=131072:131072:8388608;

use_bulk_xfer=yes,no;

bulk_min_msg_size=4096:4096:1048576;

task_affinity=CORE,MCM;

pe_affinity=yes,no;

cc_scratch_buf=yes,no;

wait_mode=nopoll,poll;

css_interrupt=yes,no;

polling_interval=100000:10000:1000000;

MPI_PIPO END

6.2 Automatic tuning results
The exhaustive search strategy, tested only for the medium

size case of FSSIM, generated all possible combinations of
the selected parameters and values, 1024 for IBM MPI in
our example. Each scenario was executed and the one with
the smallest wall time was chosen as the best one. PTF pro-
duced the results shown in Figure 4. The worst execution
times are obtained for small values of the eager_limit (<
17KB) in combination with the use_bulk_xfer set to yes.

The best combination corresponds to scenario 940, with
an execution time of 2.77 sec, which is more than 1.5 times
better than the time for the execution using the parameters’
default values (4.32 sec). The drawback is that for finding
the optimum scenario in the set of tested ones, PTF needed
26819 sec (almost 7.5 hours). It is worth noticing that many
scenarios lead to similarly good solutions (around 2.8 sec).
Consequently, we expect that an heuristic search will find
one of these solutions significantly reducing the search time.

Both cases of FSSIM (64K and 256K individuals) have
been executed using the three heuristics offered by PTF,
namely GDE3 (genetic), individual and random.

Figure 7 shows the results for the 6 combinations and
Table 1 compares the execution time of the application with
the default parameters and the best cases found by each
heuristic. In all cases, a good combination of parameters is

Figure 4: Execution of FSSIM using the MPI Pa-
rameters plugin with exhaustive search and IBM
MPI.

found, obtaining a performance improvement of 1.5 and 2.1
for the 64K and 256K individuals simulations respectively.

However, the reasons that led to these improvements were
different in each case. For the 64K individuals simulation the
application requires less memory and sends smaller messages
than in the 256K individuals case. Consequently, the 64K in-
dividuals simulation is more sensitive to the values of the ea-
ger_limit and buffer_mem parameters. Actually, the three
search algorithms found solutions where the eager_limit

was set to 40 KB approximately and the buffer_mem was big
enough to ensure that each process would be able to send
up to 3 messages eagerly at a time to any other process.
The worst execution times shown in the figure correspond
to small values of the eager_limit parameter.

This conclusion is reinforced when using the automatic
eager limit strategy explained in Section 4.2. In this case,
the plugin determines that more of 90% of the bytes commu-
nicated by the application were sent in messages of less than
64 KB, which means that the eager limit is a very significant
parameter for the application performance.

In this case, the genetic search strategy (GDE3) executed
420 different scenarios (41 generations) in 11025 sec (approx-
imately 3 hours), which reduced the analysis time by a factor
of 2.5 with respect to the exhaustive search. The individual
strategy executed 119 scenarios in 3127 sec (approximately
52 min), which reduced the analysis time by a factor of 3.5
with respect to the GDE3 strategy. Finally, the random
strategy executed 100 scenarios in 2642 sec (approximately
44 min), reducing the analysis time an extra 15%.

In addition, the FSSIM 64K individuals simulation was
also tuned for Intel MPI. Figure 6 shows the results for
this experiment and Table 1 includes the execution time
for the best parameter configuration found using GDE3.
The results are similar to the previous ones, in particu-
lar, the best execution times are obtained for a intran-

ode_eager_threshold value of 40KB approximately. It is
worth noticing that in this case GDE3 only needed to exe-
cute 150 scenarios (14 generations) because the results con-
vergence was faster than for IBM MPI.

On the other hand, for the 256K individuals simulation
the analysis results indicate that the eager_limit must be
bigger as the messages are also bigger, the buffer mem should
be smaller because the application requires more memory for
the simulation, and the application is sensitive to the value of
task affinity (pinning). Actually, all search strategies found
solutions where the eager_limit was set to more than 60
KB and, in addition, the worst execution times are obtained
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Figure 5: Execution of FSSIM using the MPI Parameters plugin with GDE3, individual and random search
and IBM MPI for 64 K and 256 K individuals.

for the round robin assignment of tasks (MCM) and small
values of the eager_limit parameter.

Exec. time 64K Exec. time 256K
default params 4.32 39.74
GDE3 2.86 18.5
individual 2.86 18.48
random 2.86 18.48

Intel GDE3 3.03 -

Table 1: Execution time of FSSIM using default val-
ues and the best cases found by each heuristic.
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Figure 6: Execution of FSSIM using the MPI Pa-
rameters plugin with GDE3 search and Intel MPI.

Finally, for demonstrating the effectivity of the plugin on
other applications, it was also tested using the NAS bench-
marks CG and IS on 16 cores, IBM MPI and random search.
Figure 7 shows the obtained results. The plugin determined
that the default values of the parameters included in the con-
figuration file led to the best execution time in the case of
CG, which is not surprising because usually the MPI param-
eters default values are determined using these benchmarks
(among others). However, the plugin determined that sig-
nificantly reducing the value of the eager_limit led to an
improvement of more than 10% in the case of IS.

7. CONCLUSION
PTF is a framework that allows easy development of tun-

ing plugins. This plugins explore search space and find the
best variants of tuning parameters based on performance
information resulting from PTF’s analysis strategies. Dif-
ferent variants are explored by running experiments that
return measurements for each variant. The main advantage
of PTF comes from combined performance analysis and tun-
ing. By applying performance analysis, PTF can shrink the
search space by reducing the amount of tuned regions and
by reducing a range of values for a tuning parameter. This
paper presents the MPI Parameters plugin, which automat-
ically optimizes the values of a user selected subset of MPI
configuration parameters. The plugin uses different strate-
gies for guiding the search depending on the search space
size and user’s specification. If the search space generated
by the crossproduct of the specified parameters is small, the
plugin may perform an exhaustive search to find the best
combination of values. If not, users can indicate an heuris-
tic search strategy (GDE3, individual or random) to guide
the search executing a reasonable number of experiments. In
addition, a specific tuning strategy has been developed for
the eager_limit parameter because of the impact of this
parameter on the application performance. This strategy
analyzes the sizes of the messages interchanged by the ap-
plication to determine if it is worthy to tune this parameter,
and focus the search in a reduced set of meaningful values.
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