
Fakultät für Mathematik

Lehrstuhl für Effiziente Algorithmen I14

Radicals of Binomial Ideals and
Commutative Thue Systems

Stefan Toman

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Gregor Kemper
Prüfer der Dissertation:

1. Prof. Dr. Ernst W. Mayr
2. Prof. Dr. Dr.h.c.mult. Bruno Buchberger

Die Dissertation wurde am 28.03.2017 bei der Technischen Universität München
eingereicht und durch die Fakultät für Mathematik am 14.06.2017 angenom-
men.

Acknowledgments

Writing this thesis would not have been possible without all the people who supported me in
one way or the other or contributed to it. I would like to express my sincere appreciation to
everybody who was involved.

First of all, I wish to thank my advisor Ernst W. Mayr. I consider myself very fortunate to
have had an advisor who is not only a brilliant researcher, but who also always took the time
to discuss any ideas with me and guided me with invaluable help and advice on all matters
related to academics, be it research, teaching, financial support or anything else I needed. I
also want to thank Gregor Kemper and Bruno Buchberger for completing my examination
committee and reviewing this thesis.

The financial support of my work at the Technical University of Munich came from the priority
project “Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory”
of the German Research Foundation. I was a member of the graduate program TopMath of
the Elite Network of Bavaria and the TUM Graduate School which gave me the chance to
start working on the topics of this thesis early during my studies and connected me with re-
markable fellow students and friends. During my studies I was also supported by scholarships
of the Max Weber-Program of the State of Bavaria and the German Academic Scholarship
Foundation. I am very grateful for the support of all those institutions and the people involved
there.

Additionally, I want to thank the many people who helped me with the final touch of this
thesis, in particular Elisabeth Ackermann for contributing the image of cyclohexane as well
as Daniel Ackermann, Moritz Fuchs, Anna Maria Mathes and Sabine Toman for long hours
of proofreading all the versions of this thesis and calling my attention to numerous parts that
have been considerably improved since the first drafts.

Ernst Bayer fixed my computer every time I broke something and I am grateful that he always
knew how to make it work again. However, I did not spend my entire time at the university
writing this thesis. For all the homeworks solved and later courses taught together, lunch
breaks, and gaming sessions I would like to thank my great colleagues, fellow students, and
friends who made me truly enjoy my time at Garching, in particular Moritz Fuchs, Philipp
Hoffmann, Christian Müller, Chris Pinkau, Hanjo Täubig, Harald Räcke, Benedikt Scham-
berger, Saskia Schiele and Richard Stotz to just name a few.

Last, but not least, I want to thank my family and in particular my fiancée Anna for the un-
conditional support during the whole course of my life, for always having an ear for any
difficulties I might face, and all the wonderful time spent together.

Thank you for making this possible!

iii

Abstract

Solving systems of polynomial equations is one of the most fundamental problems of com-
puter algebra. The theory of Gröbner Bases allows for algorithmic solutions of many problems
of polynomial ideals, but their computation takes an exponential amount of space in the worst
case. Therefore, such computations are only feasible for subclasses of systems with small
generators or ones that exhibit a special structure. One of the most interesting subclasses is
the set of binomial ideals as they have more structure than general polynomial ideals, but still
comprise the full complexity. We present a new algorithm for computing the radical of a bino-
mial ideal which uses binomials as intermediate results of the computations only, but matches
the running time of the best known algorithms. With this algorithm we can define radicals of
commutative Thue systems.

Zusammenfassung

Das Lösen von Polynomgleichungssystemen gehört zu den grundlegendsten Problemen der
Computeralgebra. Die Theorie der Gröbner-Basen ermöglicht algorithmische Lösungen von
vielen Problemen auf Polynomgleichungssystemen, aber ihre Berechnung hat im schlecht-
esten Falle einen exponentiellen Speicherplatzbedarf. Daher sind diese Berechnungen nur für
Teilklassen solcher Systeme möglich, die kleine Erzeuger haben oder eine besondere Struktur
aufweisen. Eine der interessantesten Teilklassen ist die Menge der Binomideale, da sie mehr
Struktur als allgemeine Polynomideale haben und trotzdem die volle Komplexität aufweisen.
Wir präsentieren einen neuen Algorithmus um Radikale von Binomidealen zu berechnen,
welcher nur Binome als Zwischenergebnisse verwendet und trotzdem die Laufzeit der besten
bekannten Algorithmen aufweist. Mit diesem Algorithmus können wir Radikale von kommu-
tativen Thue-Systemen definieren.

v

Contents

Acknowledgments iii

Abstract v

Contents v

I Introduction 1

1 Motivation 3
1.1 An Example from Chemistry . 3
1.2 Summary of the Thesis . 5

2 About this Thesis 9
2.1 Structure . 9
2.2 Fundamentals and Notation . 10

II Algebraic Foundations 11

3 Groups, Rings, and Fields 13
3.1 Groups . 13
3.2 Rings . 18
3.3 Fields . 25

4 Polynomial Rings 29
4.1 Formal Power Series and Polynomials . 29
4.2 Properties of Polynomial Rings . 31
4.3 Polynomial Ideals . 36
4.4 Modules, Vector Spaces, and Algebras . 39
4.5 Varieties and the Zariski topology . 45
4.6 Operations on Polynomial Ideals . 48

5 Gröbner Bases 55
5.1 The Univariate Case . 55
5.2 Definition of Gröbner Bases . 58
5.3 Buchberger’s Algorithm . 63

vii

Contents

III Complexity Results 67

6 The Computational Model 69
6.1 Historical Introduction . 69
6.2 Turing Machines . 70
6.3 Non-Determinism . 76
6.4 Complexity Classes and Reductions . 78

7 Known Complexity Results for Polynomial Ideals 83
7.1 Problems in Algorithmic Computer Algebra 83
7.2 General Gröbner Bases . 85
7.3 Polynomial Ideals with Low Dimension . 89

IV Subclasses of Polynomial Ideals 93

8 Radical Ideals 95
8.1 Roots of Polynomials . 95
8.2 Degree Bounds for Radical Ideals . 98
8.3 Computation of Radical Ideals . 102

9 Binomial Ideals 107
9.1 Definition and Properties of Binomial Ideals 107
9.2 Between Monomial Ideals and General Polynomial Ideals 112

10 Toric Ideals 115
10.1 Definition of Toric Ideals . 115
10.2 The Word Problem of Toric Ideals . 117

11 Cellular Decomposition 123
11.1 Cellular Decomposition . 123
11.2 The Radical Word Problem for Binomial Ideals 126
11.3 Modeling Binomial Ideals Using Pure Binomials 129

V Radicals of Commutative Thue Systems 133

12 Term Replacement Systems 135
12.1 Grammars and Term Replacement Systems 135
12.2 Thue Systems . 138

13 Radicals of Term Replacement Systems 143
13.1 Algorithms for Computing the Radical of Pure Binomial Ideals 143
13.2 Proof of the Algorithm . 146
13.3 Experimental Degree Bounds . 149

viii

Contents

13.4 A Formal Degree Bound . 153
13.5 Radicals of Commutative Thue Systems . 155

14 Degree Bounds for Radical Ideals 159
14.1 Upper Bounds . 159
14.2 Lower Bounds . 160
14.3 Degree Bounds for Radicals of Commutative Thue Systems 164
14.4 Adjustments of the Closure Operation . 166

VI Conclusion 171

15 Conclusion 173

VII Appendix 175

A Source Code 177
A.1 Cyclohexane . 177
A.2 Experimental Degree Bound . 178

Bibliography 181

List of Algorithms 189

List of Figures 189

List of Tables 191

List of Listings 191

Index 192

ix

Part I

Introduction

1 Motivation 3
1.1 An Example from Chemistry . 3

1.2 Summary of the Thesis . 5

2 About this Thesis 9
2.1 Structure . 9

2.2 Fundamentals and Notation . 10

1 Motivation

1.1 An Example from Chemistry

To motivate the theorems and tools used within this thesis we will discuss an application from
chemistry first. Organic chemistry is the subdiscipline studying materials containing carbon
atoms. Those carbon atoms have bonds to other atoms. Carbon has a valence of four, meaning
that each carbon atom can enter four bonds. With these bonds they can attach to other carbon
atoms or atoms of other elements. The carbon atoms in a molecule may form chains, cycles
or more complicated structures. We want to discuss carbon cycles in this example.

The easiest cycle of carbon atoms is called cyclohexane. Cyclohexane molecules consist of a
cycle of six carbon atoms. The bonds within the cycle occupy two bonds of each carbon atom.
All remaining bonds are filled with hydrogen atoms which have a valence of one. A line angle
diagram of cyclohexane is shown in Figure 1.1. These diagrams depict the bonds by lines,
carbon atoms are located on the unlabeled corners of the lines. Bonds which are connected to
hydrogen atoms are usually omitted. A line angle diagram with all atoms explicitly drawn and
no hydrogen bonds omitted is displayed in Figure 1.2.

Carbon atoms organize themselves typically in tetrahedral structures. Such a structure is
the most dense regular close-packing of equal spheres as proven by Carl Friedrich Gauß in
1831 [Gau31]. The claim that there is no irregular packing with a higher density is known as
the Kepler Conjecture and was proven by Thomas Hales only much later in 1998 and published
after a profound check of his computer-based proof in 2009 [Hal05].

In the line angle diagram it seems like all carbon atoms are in one plane, which is not true in

C
H

H

C

H
H

C

H
H

C
H

H

C

H
H

C

H
H

Figure 1.1: The line angle diagram of a cyclohex-
ane molecule.

Figure 1.2: An extended line angle diagram of a
cyclohexane molecule.

3

Part I – Chapter 1: Motivation

Figure 1.3: Ball-and-Stick model of a cyclohexane molecule in chair conformation. White balls repre-
sent hydrogen atoms, black balls represent carbon atoms. Image by Elisabeth Ackermann.

practice. The angles inside a tetrahedron arccos
(
−1

3

)
≈ 109.4712◦ are called the tetrahedral

angle. If all carbon atoms were in a planar hexagon the angle between adjacent bonds would
be 120◦. To achieve the tetrahedral angle between adjacent bonds the carbon atoms rotate
around their bonds and wrap around the plane. With these rotations the atoms move slightly
away from the plane which is called the mean plane of the molecule. Such a three-dimensional
arrangement of the carbon atoms is called a conformation of the cyclohexane molecule. The
so-called chair conformation of cyclohexane is shown as an example in Figure 1.3.

The conformation of the molecule defines the relative positions of all contained atoms since
the hydrogen atoms try to maximize their distance. Their positions are therefore determined
by the positions of the carbon atoms. One bond to a hydrogen atom of each carbon atom
is almost perpendicular to the mean plane of the carbon atoms. These atoms are alternating
above or below the mean plane and are called axial. The other six hydrogen atoms are almost
contained in the mean plane and are called equatorial.

In nature cyclohexane stabilizes at a certain balance of the different conformations of the
molecules. The conformation has a considerable impact on the properties of the material as
different conformations have different amounts of energy bound in their bonds. Thus, energy
may be added or removed from cyclohexane by changing the conformation. Also, the confor-
mation changes when heating or cooling the material. Experimental data shows that at room
temperature only 0.1% of the molecules are in so-called twist-boat conformation whereas at
800◦ Celsius approximately 30% are in twist-boat conformation.

4

Section 1.2: Summary of the Thesis

At room temperature cyclohexane is a colorless, flammable liquid used in the production of ny-
lon and cleaning products. It is important to know the possible conformations of the molecules
for the industrial production and usage of cyclohexane. Also, many other materials from or-
ganic chemistry feature carbon cycles. In order to understand them it is important to know
about their easiest form.

To describe a conformation of cyclohexane it is enough to describe the rotations of the six
carbon atoms around their bonds in the carbon cycle. Since the cycle needs to be closed it is not
needed to have six indeterminates to describe the angles. In 1987 Andreas Dress described the
possible conformations of cyclohexane using the following system of four equations involving
three indeterminates x1, x2, and x3 over the real numbers [MMN89].

f1 B det



0 1 1 1 1 1
1 0 1 8

3 x1
8
3

1 1 0 1 8
3 x2

1 8
3 1 0 1 8

3
1 x1

8
3 1 0 1

1 8
3 x2

8
3 1 0


= 0, f2 B det



0 1 1 1 1 1
1 0 1 8

3 x2
8
3

1 1 0 1 8
3 x3

1 8
3 1 0 1 8

3
1 x2

8
3 1 0 1

1 8
3 x3

8
3 1 0


= 0

f3 B det



0 1 1 1 1 1
1 0 1 8

3 x3
8
3

1 1 0 1 8
3 x1

1 8
3 1 0 1 8

3
1 x3

8
3 1 0 1

1 8
3 x1

8
3 1 0


= 0, f4 B det



0 1 1 1 1 1 1
1 0 1 8

3 x1
8
3 1

1 1 0 1 8
3 x2

8
3

1 8
3 1 0 1 8

3 x3

1 x1
8
3 1 0 1 8

3
1 8

3 x2
8
3 1 0 1

1 1 8
3 x3

8
3 1 0


= 0

In this formulation the indeterminates x1, x2, and x3 describe distances between the carbon
atoms and thus only positive solutions are of interest in this application. This system of equa-
tions has been solved by Herbert Melenk, Hans-Michael Möller and Winfried Neun in 1989
using Gröbner Basis techniques [MMN89] and all conformations of cyclohexane are well-
known today.

In this thesis we will discuss Algorithms to find properties of the solutions of similar equations
or solve similar equations and the complexity of those problems.

1.2 Summary of the Thesis

Gröbner Bases which are used to solve the systems of equations like the one presented in Sec-
tion 1.1 were introduced in 1965 by Bruno Buchberger [Buc65] and named after his advisor
Wolfgang Gröbner. They provide a powerful tool for symbolic computations with polynomial

5

Part I – Chapter 1: Motivation

systems of equations and are the basis of many algorithms in the field of computer algebra.
In particular, Gröbner Bases allow for membership tests in polynomial ideals, i.e. checking
whether a given equation is an implication of other equations, and the elimination of indeter-
minates from these systems.

The speed of computers and the quality of the available software has increased vastly since
1989. While it was an achievement to solve the system of equations given above at that point
of time, nowadays the computation of a Gröbner Basis of the given set of equations is done
within seconds. An implementation of this system of equations using the computer algebra
system Macaulay 2 [GS] can be found in Listing A1.1 in the appendix at Section A.1.

Cyclohexane is one of the easiest molecules that exists though and for bigger systems of equa-
tions we are not able to find solutions as fast. Known algorithms require a running time that
is double exponential in the size of the input. This means that the running time squares with
every additional indeterminate introduced into the system. Running times thus explode even
for relatively small examples. There are examples of systems of polynomial equations with
less than 100 indeterminates such that the computation of a Gröbner Basis is not doable within
a reasonable time on modern computers. When solving systems of equations in practice prob-
lems of that size and also much bigger ones appear, for instance when dealing with molecules
having many more atoms than cyclohexane.

This double exponential growth of the running time is inevitable as shown by Ernst W. Mayr
and Albert R. Meyer in 1982 [MM82]. They have proven that the word problem for polyno-
mial ideals is exponential space-complete by reducing the halting problem for three-counter
machines, which is known to be exponential space-complete, to the uniform word problem
for commutative semigroups. It is still an open question whether the same problems can be
computed in exponential space and double exponential time, but this is strongly believed to be
the case.

With this growth of the running time large problems will not be solvable even if the compu-
tational power continues to increase like in the last decades. Thus, it cannot be expected that
we will be able to solve large systems of polynomial equations within reasonable amounts of
time without fundamental changes in the computational machines available.

For this reason we will consider complexity classes and degree bounds for subclasses of poly-
nomial ideals in this thesis that may allow for better algorithms. There are subclasses of
polynomial ideals and problems that do already implicitly contain the full complexity of gen-
eral polynomial ideals whereas for others we will find better complexity classes. We will also
use the techniques known for polynomial ideals for solving related problems.

Two of these subclasses are the sets of binomial ideals and pure binomial ideals. We will
present a new method for modeling binomial ideals with pure binomial ideals and provide new
complexity bounds on the radical word problem of binomial ideals. Also, we will contribute
a new algorithm for computing the radical of binomial ideals that uses binomials only. This
algorithm allows the usage of specialized data structures that can only handle binomials.

6

Section 1.2: Summary of the Thesis

Additionally, with the help of this algorithm we can define radicals of commutative Thue sys-
tems, certain term replacement systems from theoretical computer science that are equivalent
to binomial ideals. With this result it is now possible to use techniques from the theory of term
replacement systems for the analysis of radicals of polynomial ideals. We will also analyze the
complexity of our algorithm and prove that it matches that asymptotic running time bounds of
the best known algorithms for computing radicals of polynomial ideals.

7

2 About this Thesis

2.1 Structure

This thesis is structured into several parts, chapters and sections. In Chapter 1 we motivate
the word problem and radical word problems of polynomial ideals and name the main tools
needed for their solution. Chapter 2 contains this summary of the thesis and hints about the
basic notation we use within this thesis.

Afterwards, we define the basic algebraic structures that we need for our main results. As we
modify some very basic structures in later chapters, we present detailed definitions of the most
common algebraic structures. In Chapter 3 we present groups, rings, and fields. Polynomial
rings, polynomial ideals and their properties are introduced in Chapter 4. Gröbner Bases are
introduced as the main tool that we need for computations with polynomial ideals in Chapter 5
together with algorithms to compute them.

We want to discuss the computational complexity of numerous Algorithms. To do so, we
introduce our computational model and basic complexity theory in Chapter 6. In Chapter 7 we
apply the computational model to problems in computer algebra and present relevant degree
bounds and complexity results.

In the following chapters we analyze subclasses of polynomial ideals that allow for specialized
algorithms or better degree and complexity bounds. Radical ideals are discussed in Chapter 8,
binomial ideals and pure binomial ideals are discussed in Chapter 9, and toric ideals are dis-
cussed in Chapter 10. All those subclasses are combined in Chapter 11 to discuss the cellular
decomposition, a decomposition of radical binomial ideals into toric ideals. We also present a
new way of modeling binomial ideals as pure binomial ideals and provide a new complexity
bound for the radical word problem of binomial ideals in this chapter.

The following chapters contain the main result of this thesis, an algorithm to compute the
radical of commutative Thue systems and binomial ideals using binomials only. Those term
replacement systems are introduced in Chapter 12. In Chapter 13 we prove that for every
binomial contained in the radical of a binomial ideal there is a power of the binomial such that
all terms of that power of the binomial are equivalent modulo the binomial ideal. This allows
us to contribute a definition of radicals of commutative Thue systems in the same chapter.
Degree bounds on that power are presented in Chapter 14 which allows for a complexity
analysis of our algorithm to compute radicals of binomial ideals.

The findings of this thesis are summarized again in the conclusion in Chapter 15.

9

Part I – Chapter 2: About this Thesis

2.2 Fundamentals and Notation

We assume that the reader is familiar with the basics of mathematical notation and fundamen-
tal mathematics like basic set theory. We will also use elemental mathematical concepts and
definitions like injective, surjective, and bijective maps or equivalence classes without refer-
ence. For a good introduction to this refer for instance to Gerd Fischer’s book [Fis14]. On the
other hand all basic algebraic structures will be introduced from scratch as this thesis is about
algebraic topics and we want to adjust the definitions of some basic objects like polynomial
rings in later sections.

We will use standard notation wherever possible. The non-negative integers will be denoted
by N0 and the positive integers will be denoted by N>0. When working with polynomial rings,
n ∈ N0 will be the number of indeterminates x1, . . . , xn if not stated otherwise. For vectors
u ∈ Nn

0 we will write xu as a short form of xu1
1 · . . . · x

un
n .

When defining the algebraic structures used within this thesis we will often state some usual
conditions on them. For instance we will always assume that the coefficient rings R of our
polynomial rings are commutative. These conditions will nevertheless be mentioned in all
following theorems for clarity.

We will omit punctuation marks after equations if this does not decrease the readability of the
text. For example, sentences may end with a formula like

eiπ = −1

Important theorems and definitions are highlighted with gray background color. All theorems
and definitions are labeled using the chapter and an index such that the labels are unique
throughout the whole thesis.

10

Part II

Algebraic Foundations

3 Groups, Rings, and Fields 13
3.1 Groups . 13

3.2 Rings . 18

3.3 Fields . 25

4 Polynomial Rings 29
4.1 Formal Power Series and Polynomials . 29

4.2 Properties of Polynomial Rings . 31

4.3 Polynomial Ideals . 36

4.4 Modules, Vector Spaces, and Algebras . 39

4.5 Varieties and the Zariski topology . 45

4.6 Operations on Polynomial Ideals . 48

5 Gröbner Bases 55
5.1 The Univariate Case . 55

5.2 Definition of Gröbner Bases . 58

5.3 Buchberger’s Algorithm . 63

3 Groups, Rings, and Fields

3.1 Groups

In this chapter we are going to introduce the fundamentals of the algebraic objects we want
to study. We will mainly introduce the definitions and theorems needed for the work in later
chapters and sketch many proofs, in particular we will often just state properties of the struc-
tures presented here without proving them if the proofs are not short. On the other hand, we
state some interesting results for the sake of completeness that are not directly needed later
during this thesis. Details about the algebraic structures and detailed proofs can be found in
many textbooks, for instance the ones by Siegfried Bosch [Bos09], Christian Karpfinger and
Kurt Meyberg [KM10], or Bartel L. van der Waerden [vdWANB43].

To construct the algebraic objects we are interested in we will always need a set of numbers or
other objects M to work with. Also, we need to define an operation ◦ between the elements of
M. Such an operation is a map ◦ : M × M → M and we usually write a ◦ b instead of ◦ (a, b)
for a, b ∈ M. A set together with an associative operation is called a semigroup.

Definition 3.1 A semigroup (M, ◦) consists of a non-empty set M and an operation ◦ : M ×
M → M on M such that ◦ is associative, i.e.

(a ◦ b) ◦ c = a ◦ (b ◦ c)

for all a, b, c ∈ M. Additionally, if there is also a neutral element e ∈ M of ◦, i.e. an element
with

e ◦ a = a ◦ e = a

for all a ∈ M, we call (M, ◦, e) a monoid.

Since we have associativity for the operations of semigroups and monoids we will always omit
brackets when using such an operation to simplify notation. We call any of these structures
finite if the set M is finite. In this case, the order of the structure is the number of elements
contained in M.

The neutral element is also called identity element or just identity. It is always unique in a
monoid. To show this assume that there were two elements e, e′ ∈ M with

e ◦ a = a ◦ e = e′ ◦ a = a ◦ e′ = a

for all a ∈ M. This would imply e ◦ e′ = e for a = e and e ◦ e′ = e′ for a = e′ which means
e = e′. Thus, we usually omit the neutral element in the notation (M, ◦, e) of the monoid since

13

Part II – Chapter 3: Groups, Rings, and Fields

set N>0 N>0 N0 N0 Z Z S n S n

n ≤ 2 n ≥ 3
operation + · + · + · ◦ ◦

neutral elem. - 1 0 1 0 1 id id
associative X X X X X X X X

commutative X X X X X X X -
semigroup X X X X X X X X

monoid - X X X X X X X
group - - - - X - X X

Table 3.2: Some examples of semigroups, monoids, and groups.

it can always uniquely be determined from the set and operation. Likewise, if the operation is
clear from context we will also omit it and say that M is a semigroup, monoid or any of the
following structures.

Examples of monoids are the integers with addition (Z,+, 0), the integers with multiplication
(Z, ·, 1), the non-negative integers with addition (N0,+, 0), the non-negative integers with mul-
tiplication (N0, ·, 1), and the positive integers with multiplication (N>0, ·, 1). All monoids are
also semigroups. Note that the positive integers with addition (N>0,+) are a semigroup but no
monoid since there is no neutral element. An overview of the examples in this section can be
found in Table 3.2.

Similar to these examples we usually stick to the notation of additive semigroups and monoids
with operation + and neutral element 0 or multiplicative semigroups and monoids with oper-
ation · (which is often omitted to write the shorter ab instead of a · b for a, b ∈ M) and neutral
element 1. For additive semigroups or monoids we usually write

2 B 1 + 1, 3 B 1 + 1 + 1, 4 B 1 + 1 + 1 + 1, . . .

The monoid (Z,+) also has the property that we have inverse elements for each number,
namely for each a ∈ N0 we have an element −a ∈ M with a + (−a) = 0. Together with
this property we call (Z,+) a group.

Definition 3.3 A group (M, ◦) is a monoid with the property that for each a ∈ M there is an
inverse element b ∈ M with a ◦ b = b ◦ a = e where e is the neutral element of ◦.

For additive monoids we usually write the inverse element as −a B b, i.e.

a + (−a) = (−a) + a = 0

for all a ∈ M, and for multiplicative monoids we usually write the inverse element as a−1 B b,
i.e.

aa−1 = a−1a = 1

14

Section 3.1: Groups

for all a ∈ M.

The inverse element of a fixed element a ∈ M is always unique. To prove this, assume there
were two inverse elements b, c ∈ M with

a + b = b + a = a + c = c + a = 0

In this case we have
b = b + 0 = b + a + c = 0 + c = c

which shows that both inverse elements have to be identical. This justifies our notation of the
inverse element.

All examples seen above are commutative which can formally be defined as follows.

Definition 3.4 An operation ◦ : M ×M → M on a set M is called commutative if and only if

a ◦ b = b ◦ a

for all a, b ∈ M. A semigroup, monoid or group (M, ◦) is called commutative if the corre-
sponding operation ◦ is commutative. A commutative group is also called an Abelian group
in honor of the Norwegian mathematician Niels Abel.

For an example of a non-commutative group we will consider the symmetric group S n for
n ∈ N>0. A symmetric group acting on a set X consists of all permutations of the set X, i.e.
all bijective maps from X to itself. The operation of the symmetric group is the composition
of maps, i.e. for bijections µ, τ : X → X we have φ = µ ◦ τ for a bijection φ : X → X with
φ(a) B µ(τ(a)) for all a ∈ X. For all n ∈ N>0 we write S n for the symmetric group acting on
{1, . . . , n}.

While S 1 and S 2 are rather simple Abelian groups of order one and two, respectively, the
groups S n for n ≥ 3 are non-Abelian. To see this take µ, τ : {1, . . . , n} → {1, . . . , n} with

µ(1) B 2, µ(2) B 1, µ(3) B 3, τ(1) B 1, τ(2) B 3, τ(3) B 2

and
µ(i) B τ(i) B i

for i ∈ N>0, i > 3. In this case we have

(µ ◦ τ) (1) = 2, but (τ ◦ µ) (1) = 3

and thus µ ◦ τ , τ ◦ µ. A visualization of these maps can be found in Figure 3.5.

The symmetric groups are in particular interesting because all finite groups are equivalent to
substructures of them. To state this formally we need to define those substructures first.

15

Part II – Chapter 3: Groups, Rings, and Fields

1 1

2 2

3 3

4 4

n n

1 1

2 2

3 3

4 4

n n

1 1

2 2

3 3

4 4

n n

τ

· · ·

µ

· · ·

τ

· · ·

µ

· · ·

Figure 3.5: An example showing that the symmetric groups S n for n ∈ N>0, n ≥ 3 are non-Abelian.

Definition 3.6 Let N and M be two sets with N ⊆ M and ◦ : M×M → M be an operation on
M (and thus also on N). (N, ◦) is a subsemigroup or subgroup of a semigroup or group (M, ◦),
respectively, if (N, ◦) is a semigroup or group itself and a ◦ b ∈ N for all a, b ∈ N. (N, ◦) is a
submonoid of a monoid (M, ◦) if (N, ◦) is a monoid itself, a ◦ b ∈ N for all a, b ∈ N, and the
neutral element of ◦ is contained in N.

Note that in contrast to submonoids for subgroups we do not need to require that the neutral
element of ◦ is contained in N. This is because for any a ∈ N for a subgroup N we know that
the inverse element of a and its product with a, namely the neutral element, are also contained
in N since N is a group itself. This argument does not work on monoids as there do not have
to be inverse elements.

We have seen above that the neutral element in a monoid is always unique, so the neutral
elements of N and M need to be the same. This does not work for submonoids also due to
the lack of inverse elements. For example consider the monoid (N0 ∪ {e},+) with the usual
addition and a + e B a, e + a B a for all a ∈ N0 ∪ {e}. The neutral element of this monoid is
e. (N0,+) is not a submonoid of (N0 ∪ {e},+) since it does not contain e, even though it is a
monoid itself.

We know that for submonoids and subgroups the neutral element of the bigger structure is
also contained in the substructure. Thus, it also has to be a neutral element there and we
have seen above the neutral elements are unique. This shows that all substructures of monoids
and groups have the same neutral element. Similarly, for a subgroup (N, ◦) of (M, ◦) and an
element a ∈ N the inverse element of a is the same in both groups.

To be able to describe similarities of these structures we need to define when two structures
are essentially the same even though their elements have different names.

16

Section 3.1: Groups

Definition 3.7 A map φ : M → N between two semigroups (M,⊕) and (N,⊗) is a semigroup
homomorphism if and only if φ(a⊕b) = φ(a)⊗φ(b) for all a, b ∈ M. A map between monoids
is a monoid homomorphism if and only if it is a semigroup homomorphism and the neutral
element of the domain is mapped to the neutral element of the codomain. A map between
groups is a group homomorphism if and only if it is a semigroup homomorphism.

A bijective homomorphism is called an isomorphism, and two structures having an isomor-
phism between them are called isomorphic, which is denoted by M ' N.

Isomorphisms between semigroups mean that all structure can be carried over from one semi-
group to another and likewise for monoids and groups. Even though it is not mentioned in the
definition, the neutral element of a group is mapped to the neutral element of another group
by any group homomorphism. This is because

φ(a) = φ(a ⊕ eM) = φ(a) ⊗ φ(eM)

for all a ∈ M where eM is the neutral element of M. We similarly get φ(a) = φ(eM) ⊗ φ(a) for
all a ∈ M and thus φ(eM) is a neutral element of the image of φ which is a subgroup of N. We
know that the neutral element of a group is unique and therefore φ(eM) = eN where eN is the
neutral element of N. The inverse elements are also carried over by group homomorphisms.
This is true because

φ(a) ⊗ φ(a−1) = φ(a ⊕ a−1) = φ(eM) = eN ⇒ φ(a)−1 = φ(a−1)

for all a ∈ M.

Isomorphic groups exhibit the same structure. In particular, finite isomorphic groups have
the same number of elements. We defined S n to be the symmetric group acting on {1, . . . , n},
because all symmetric groups acting on a set of size n ∈ N>0 are isomorphic. Symmetric
groups are in particular interesting since all groups are isomorphic to subgroups of symmetric
groups. This fact is known as Cayley’s Theorem as it was published first by Arthur Cayley in
1854 [Cay54].

Theorem 3.8 (Cayley’s Theorem [Cay54]) Let (G,⊕) be a group. (G,⊕) is isomorphic to a
subgroup of the symmetric group operating on the set G.

Proof For each a ∈ G we define the map

φa : G → G, b 7→ a ⊕ b

We consider the set H B {φa | a ∈ G}. (H, ◦) is a subgroup of the symmetric group operating
on the set G. The map

τ : G → H, a 7→ φa

is an isomorphism between (G,⊕) and (H, ◦).

17

Part II – Chapter 3: Groups, Rings, and Fields

3.2 Rings

Groups are the most basic structures we use, but for most applications we will have two differ-
ent operations on the same set of elements that work together. We usually call them addition
and multiplication. We will call a structure having two operations with some basic properties
a ring. A ring can be defined as an additive Abelian group and a monoid operating on the same
set of elements such that both operations are distributive.

Definition 3.9 Let (R,+, 0) be an Abelian group and (R, ·, 1) be a monoid with 0 , 1. We
call (R,+, 0, ·, 1) a ring if and only if + and · are distributive, i.e. for all a, b, c ∈ R we have

a · (b + c) = (a · b) + (a · c) and (b + c) · a = (b · a) + (c · a)

We call the operation + addition and · multiplication. The ring (R,+, 0, ·, 1) is called commu-
tative if and only if (R, ·, 1) is commutative.

As for semigroups, monoids, and groups we will usually omit the operations and neutral el-
ements in later sections when they are clear from context and call the set R a ring. The
operation · is also often omitted in equations and by writing two elements next to each other
we denote their product. Additionally, we usually omit brackets by computing multiplications
before additions. For instance, the distributive rules can be written as a(b + c) = ab + ac and
(b + c)a = ba + ca for all a, b, c ∈ R. For each element a ∈ R we will denote the additive
inverse element by −a and multiplicative inverse elements a−1 if existent.

Note that there are different definitions of rings in the literature. Some authors also allow the
multiplicative substructure to be a semigroup instead of a monoid and call the rings as defined
here “rings with unity”. On the other hand, authors defining rings as we do often refer to rings
without multiplicative identity element as pseudo-rings or rngs. The word rng is used because
the missing letter i of the word ring represents the missing multiplicative identity element.
Some authors also allow 1 = 0 which results in one additional ring, namely {0}. We do not
consider this as a ring to avoid some special cases without additional insight.

A typical example of a ring is the set of integers Z together with the usual addition and multi-
plication as the ring (Z,+, 0, ·, 1). More examples are collected in Table 3.10.

Even though only few conditions are contained in the definition of a ring, they do already
imply many theorems that we know from the example of the ring of integers mentioned above.
For instance we have 0 = 0 · a for all a ∈ R since

0 · a = (0 + 0) · a = 0 · a + 0 · a

and adding the additive inverse of 0 · a to this equation results in 0 = 0 · a. Similarly, we get
0 = a · 0 for all a ∈ R.

18

Section 3.2: Rings

set Z Q R { f : Q→ Q} 2Z 2{1,...,10} R2×2

addition + + + + (pointwise) + 4 + (pointwise)
multiplication · · · · (pointwise) · ∩ matrix mult.

additive identity 0 0 0 0 (pointwise) 0 ∅

(
0 0
0 0

)
mult. identity 1 1 1 1 (pointwise) - {1, . . . , 10}

(
1 0
0 1

)
pseudo-ring/rng X X X X X X X

ring X X X X - X X
commutative ring X X X X - X -

field - X X - - - -

Table 3.10: Some examples of rings and fields.

We can also show that we can move minus signs for general rings as we are used to from the
integers and have −(a · b) = (−a) · b for all a, b ∈ R. This holds because

(−a) · b + a · b = ((−a) + a) · b = 0 · b = 0

and therefore −(a · b) = (−a) · b. Again, we can similarly prove that −(a · b) = a · (−b) for all
a, b ∈ R.

Other properties of the ring of integers differ from general rings: As we have seen in the last
section, the multiplicative monoid contained in a ring does not need to be commutative like it
is for the ring of integers. An example of a non-commutative ring is contained in Table 3.10
that we want to generalize here: The set Rn×n of n × n matrices over some ring R for some
b ∈ N>0 together with pointwise addition and matrix multiplication is a ring. The additive
identity is the matrix filled with all zeros whereas the multiplicative identity is the identity
matrix filled with zeros but ones on the diagonal. The terms “zeros” and “ones” refer to the
base ring of the matrices in this context. This ring of matrices is never commutative for n > 1.
To see this consider the matrices with all entries being zero but the top-right or bottom-left
entry, respectively, being one. The products of these matrices in both orders are different. For
example with n = 3 we have0 0 1

0 0 0
0 0 0


0 0 0
0 0 0
1 0 0

 =

1 0 0
0 0 0
0 0 0

 but

0 0 0
0 0 0
1 0 0


0 0 1
0 0 0
0 0 0

 =

0 0 0
0 0 0
0 0 1


Despite the examples given above we will only deal with commutative rings in this thesis and
assume that all rings mentioned later on are commutative.

Another property of the ring of integers that may differ from general rings is the so-called
characteristic of the ring. In all rings we have that the sum of an element with its additive
inverse element is zero. There may be more pairs of elements having a sum of zero in general,
even though there are none for the ring of integers. We will call rings like the ring of integers
rings with characteristic zero.

19

Part II – Chapter 3: Groups, Rings, and Fields

Definition 3.11 Let (R,+, 0, ·, 1) be a ring. The characteristic of this ring, denoted by char(R),
is the smallest positive integer c ∈ N>0 such that

1 + 1 + · · · + 1︸ ︷︷ ︸
c times

= 0

If there is no such c ∈ N>0, the characteristic of (R,+, 0, ·, 1) is defined to be zero.

For an example of a ring with positive characteristic consider the ring (R,⊕, 0,⊗, 1) with the
set R = {0, 1, 2, 3, 4, 5} and a ⊕ b B (a + b) mod 6 and a ⊗ b B (a · b) mod 6 for all a, b ∈ R
where + and · denote the usual addition and multiplication of integers and x mod y denotes the
remainder of the integer division of x by y for all x, y ∈ Z. This ring is usually called Z/6Z and
has characteristic char(Z/6Z) = 6 since 1⊕1 = 2 , 0, 1⊕1⊕1 = 3 , 0, 1⊕1⊕1⊕1 = 4 , 0,
and 1⊕1⊕1⊕1⊕1 = 5 , 0, but 1⊕1⊕1⊕1⊕1⊕1 = 0. Positive characteristic introduces torsion
to rings and exposes interesting phenomenons. We will just consider rings with characteristic
zero in this thesis since those are the most natural ones.

We have seen above that we have a · 0 = 0 · a = 0 for all a ∈ R in all rings R. If the product of
two elements is zero it is not necessary that one of the elements is also zero in general, even
though this holds for the ring of integers.

Definition 3.12 Let R be a ring. An element a ∈ R is called left zero divisor of R if and only
if there is an element b ∈ R \ {0} with a · b = 0. Similarly, a ∈ R is called a right zero-divisor
if and only if there is a b ∈ R \ {0} with b · a = 0. a ∈ R is called a zero divisor if and only if it
is a left zero divisor or a right zero divisor.

A ring R having no zero divisors other than zero itself is called a domain. A commutative
domain is called integral domain.

We could also have defined that R is a domain if and only if for all a, b ∈ R with a · b = 0 we
have a = 0 or b = 0. To paraphrase it, the product of two non-zero elements is always non-
zero in domains. An example of a domain is the ring of integers. The ring Z/6Z introduced
above is no domain since in this ring we have 2 · 3 = 0. In general the ring Z/nZ is a domain
if and only if n ∈ N>0 is a prime. We will usually deal with domains in the following.

The definition of a homomorphism can also be extended to rings. We basically want to carry
over the structure on the additive group and the multiplicative monoid.

20

Section 3.2: Rings

Definition 3.13 Let (R,⊕, 0R,⊗, 1R) and (S ,�, 0S ,�, 1S) be rings. A map φ : R → S is a
ring homomorphism if and only if φ : (R,⊕, 0R) → (S ,�, 0S) is a group homomorphism and
φ : (R,⊗, 1R)→ (S ,�, 1S) is a monoid homomorphism. The kernel of the ring homomorphism
φ is the set

ker(φ) B {a ∈ R | φ(a) = 0S }

Recalling Definition 3.7 this means that φ should have the following properties:

a) φ(a ⊕ b) = φ(a) � φ(b) for all a, b ∈ R

b) φ(a ⊗ b) = φ(a) � φ(b) for all a, b ∈ R

c) φ(1R) = 1S

We have shown in the last section that this already implies φ(0R) = 0S and φ(−a) = −φ(a) for
all a ∈ R.

It is natural to also carry over the definition of substructures of groups to rings. Interestingly,
the existence of two operations allows for two different definitions of substructures of rings.
The more straight-forward one is to take a subgroup of the additive group and a submonoid of
the multiplicative monoid. We will call this substructure a subring.

Definition 3.14 Let (R,+, 0, ·, 1) be a ring and S be a subset of R. (S ,+, 0, ·, 1) is called
a subring of (R,+, 0, ·, 1) if and only if (S ,+, 0) is a subgroup of (R,+, 0) and (S , ·, 1) is a
submonoid of (R, ·, 1).

Inserting Definition 3.6 this means the following:

a) a + b ∈ S for all a, b ∈ S

b) a · b ∈ S for all a, b ∈ S

c) 1 ∈ S

We saw above that this implies 0 ∈ S and that the neutral elements of R and S need to be the
same for both operations. For example (Z,+, 0, ·, 1) is a subring of (Q,+, 0, ·, 1) which is itself
a subring of (R,+, 0, ·, 1).

The main structure we will consider in this thesis is another substructure of a ring, which
is called an ideal. We will deal with equations as ring elements and want to describe the
set of equations implied by some given set of equations. We need to adjust our definition

21

Part II – Chapter 3: Groups, Rings, and Fields

of the substructure of a ring from subrings to ideals to represent the set of implications of
some equations correctly. In particular, we can find new implied equations by adding two
equations that we know to hold or by multiplying two equations, but here it is enough that at
least one input equation holds to imply the output equation. Details on this construction will
be explained in Section 4.3.

In comparison to subrings as mentioned above, we will adjust property b) accordingly and
drop property c) since this would correspond to the equation 1 = 0 which can never hold
(remember that we required 1 , 0 for all rings).

Definition 3.15 Let (R,+, 0, ·, 1) be a ring and I be a non-empty subset of R. I is called a
right ideal of R if and only if a+b ∈ I for all a, b ∈ I and a ·b ∈ I for all a ∈ I, b ∈ R. Similarly,
we call I a left ideal of R if and only if a + b ∈ I for all a, b ∈ I and a · b ∈ I for all a ∈ R, b ∈ I.
If and only if I is both a left ideal and a right ideal of R we call it an ideal of R and denote this
by writing I E R.

Let a1, . . . , as ∈ R be some elements of the ring for some s ∈ N>0. The ideal generated by
a1, . . . , as is the smallest ideal that contains a1, . . . , as and is denoted by 〈a1, . . . , as〉.

Ideals can also be defined as the kernels of ring homomorphisms: A subset I ⊆ R of a ring
R is an ideal if and only if there is a ring S and a ring homomorphism φ : R → S such that
I = ker(φ). Similarly, one can define so-called normal subgroups as the kernels of group
homomorphisms.

For commutative rings all left ideals are also right ideals and vice versa. Thus, the definitions
of left ideals, right ideals, and ideals are equivalent for commutative rings. We will only
consider commutative rings in the remainder of this thesis.

One property that holds for all ideals I E R is that 0 ∈ I. To show this, we can take some
element a ∈ I, because I is non-empty by definition. We can now multiply a with the element
0 ∈ R and get a · 0 = 0 as seen above. On the other hand, this argument shows that the ideal
generated by 0 contains no element other than 0.

Another interesting element regarding ideal membership is 1. If we have 1 ∈ I we can prove
a ∈ I for any a ∈ R because a = a · 1. Thus, each ring R has at least two ideals: 〈0〉 = {0} and
〈1〉 = R.

Note that the smallest ideal that contains a1, . . . , an as used above is well-defined. This is
because one can easily verify that the intersection of two ideals is an ideal again: The inter-
section is not empty since zero is contained in all ideals and all other properties need to hold
for the intersection of ideals since they hold in both intersected ideals. Thus, the smallest ideal
containing a1, . . . , as can be uniquely determined as the intersection of all ideals containing
a1, . . . , as.

22

Section 3.2: Rings

It is also interesting to note that the set of generators of an ideal is not unique in general. For
some examples consider the ideals nZ B {. . . ,−3n,−2n,−n, 0, n, 2n, 3n, . . . } of the ring Z for
all n ∈ N0. All those ideals can be generated by one element only, namely nZ = 〈n〉 = 〈−n〉 for
all n ∈ N0. Ideals like that, which can be generated by one element only, are called principal
ideals. Rings with the property that all contained ideals are principal ideals are called principal
ideal rings. Z is an example of a principal ideal ring.

Another example in the ring { f : Q→ Q} as given in Table 3.10 is the ideal

{ f : Q→ Q | f (1) = 0}

This ideal can be generated by one element too, for instance by

f : Q→ Q, x 7→

0 if x = 1
1 else

When considering an ideal of equations that hold as suggested above, we will often say that
other elements are equal up to elements in the ideal because those are considered to be es-
sentially zero in our application. Formally speaking, we will work in the quotient ring of the
ideal.

Definition 3.16 Let (R,+, 0, ·, 1) be a ring and I E R be an ideal. We define an equivalence
relation ∼ on R by a ∼ b ⇔ a − b ∈ I for all a, b ∈ I. The set of equivalence classes R/∼ of
∼ is denoted by R/I. The equivalence class of an element a ∈ R is denoted by [a]∼ B [a]I B
{b ∈ R | a ∼ b}. (R/I, [0]I ,⊕, [1]I ,⊗) is itself a ring with

[a]I ⊕ [b]I B [a + b]I and [a]I ⊗ [b]I B [a · b]I

for all a, b ∈ R. The ring R/I is called the quotient ring of R modulo I.

For proofs showing that all constructions in the definition above are well-defined we refer to a
textbook [Bos09]. We did already see an example above when we considered the ring Z/6Z.
In our notation from above we have R = Z and I = 6Z = {. . . ,−12,−6, 0, 6, 12, . . . } for this
example.

For the example { f : Q → Q | f (1) = 0} E { f : Q → Q} that we also discussed above
the equivalence relation is f ∼ g ⇔ f (1) = g(1) for all f , g ∈ { f : Q → Q}. The product
of two equivalence classes [f]I and [g]I is the set of all functions h ∈ { f : Q → Q} with
h(1) = f (1)g(1) for all f , g ∈ { f : Q → Q} and similarly for sums. An equivalence class
is characterized by the value of the contained functions at 1. Therefore, the quotient ring is
isomorphic to Q. This example can also be stated in a more general way.

23

Part II – Chapter 3: Groups, Rings, and Fields

Example 3.17 Let R be a ring, let X be a set and let a ∈ X. We have

{ f : X → R}/{ f : X → R | f (a) = 0} ' R

Note that when speaking about generators of ideals it is not clear that there are always finite
generating sets of all ideals. Nevertheless, all ideals that we consider in this thesis are finitely
generated. This is true for all Noetherian rings. Those rings are named after the German
mathematician Emmy Noether.

Definition 3.18 A ring R is said to satisfy the ascending chain condition on ideals if and only
if for every infinite chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ . . . for some ideals I1, I2, I3, · · · E R there is
an s ∈ N>0 such that Is = It for all t ∈ N>0 with t ≥ s. Rings that satisfy the ascending chain
condition on ideals are called Noetherian rings.

We can show that the ascending chain condition on ideals directly implies that all ideals are
finitely generated.

Theorem 3.19 Let R be a Noetherian ring and let I E R be an ideal. There is a finite set of
generators of I, i.e. there is s ∈ N>0 and a1, . . . , as ∈ R such that I = 〈a1, . . . , as〉.

Proof The set M B I itself is a generating set of I. We reduce M, i.e. while there is an
element a ∈ M with 〈M〉 = 〈M \ {a}〉 we remove a from M. Note that the elements to remove
may not be unique. In case of several possibilities we remove an arbitrary element with the
given property.

If the remaining set M is finite we have shown that there is a finite generating set. Otherwise,
we can enumerate an infinite set of different a1, a2, a3, · · · ∈ M from the remaining set. The
ideals

〈a1〉 (〈a1, a2〉 (〈a1, a2, a3〉 (. . .

form an infinite ascending chain of ideals since M is reduced which contradicts the fact that R
is Noetherian.

In fact, the property of Noetherian rings that all ideals are finitely generated is an equivalent
definition of Noetherian rings. All rings that we will deal with in this thesis are Noetherian
as the rings of integers, rationals, reals, and the complex numbers are Noetherian rings. Also,
finite rings and all fields as defined in the next section are Noetherian. Additionally, we will see
that all polynomial rings and rings of formal power series over Noetherian rings are Noetherian
too.

24

Section 3.3: Fields

3.3 Fields

When defining rings in Definition 3.9 we only required the multiplicative substructure to be
a monoid instead of a group. This means that not every element of a ring needs to have a
multiplicative inverse element. Elements having a multiplicative inverse element, however,
are called units.

Definition 3.20 Let R be ring. An element a ∈ R is called a unit if it has a multiplicative
inverse element, i.e. there is b ∈ R with ab = ba = 1. The set of all units of a ring R is denoted
by R×.

The set of units is closed under multiplication, i.e. for all a, b ∈ R× we have ab ∈ R×. This
is because b−1a−1 is an inverse element of ab since (ab)(b−1a−1) = (b−1a−1)(ab) = 1. We
also always have 1 ∈ R× and −1 ∈ R× because 1 and -1 are both multiplicative inverses of
themselves: 1 ·1 = (−1) · (−1) = 1. Those properties show that R× is never empty and (R×, ·, 1)
is always a group. It is thus often called group of units.

The element 0 on the other hand is never contained in the group of units. This is, because for
all a ∈ R we have a · 0 = 0 · a = 0. The group of units is therefore always a subset of R \ {0}.
If the group of units is as large as it can possibly be we call R a field.

Definition 3.21 Let R be a commutative ring. If R× = R \ {0} we call R a field.

That means fields are commutative rings in which we can divide by all elements but 0. We
will usually denote fields by k as a shorthand for (k,+, 0, ·, 1).

Even though fields have many properties different from general rings, we can copy many
definitions from rings.

Definition 3.22 Let k and k′ be fields. A map φ : k → k′ is called a field homomorphism if
and only if φ is a ring homomorphism. k is a subfield of k′ if and only if k is a subring of k′.

Considering ideals of fields is not interesting since any ideal I E k of a field k that contains any
non-zero element a ∈ k \ {0} also contains aa−1 = 1 and therefore I = k. Thus, every field has
just the two ideals 〈0〉 = {0} and 〈1〉 = k.

Fields also have the nice property that they are domains and thus have no zero divisors.

25

Part II – Chapter 3: Groups, Rings, and Fields

Theorem 3.23 Let k be a field. k is a domain.

Proof Let a, b ∈ k with a · b = 0. We will show that a = 0 or b = 0 by assuming the opposite
and showing that this implies a contradiction. Thus, let a , 0 and b , 0. Since k is a field
there are inverse elements a−1, b−1 ∈ k for a and b. Using them, the following equation holds

1 = 1 · 1 = (a−1 · a) · (b · b−1) = a−1 · (a · b) · b−1 = a−1 · 0 · b−1 = 0

We know that 1 , 0 in every ring, so this equation is a contradiction to our assumption.

When we want to use properties of fields, but only have an integral domain, we can consider
the field of fractions of the ring. That is the smallest field containing the ring.

Definition 3.24 Let R be an integral domain. The field of fractions of R is the field(
Quot(R),+,

0
1
, ·,

1
1

)
where Quot(R) are the equivalence classes

Quot(R) B
{a

b
| a, b ∈ R

}
/ ∼

modulo the equivalence relation ∼ defined by

a
b
∼

c
d
⇔ ad = bc

and the operations are defined by[a
b

]
∼

+

[c
d

]
∼

B

[
ad + bc

bd

]
∼

and
[a
b

]
∼

·

[c
d

]
∼

B
[ac
bd

]
∼

for all a, b, c, d ∈ R. Quot(R) is also sometimes denoted by Frac(R).

For proofs that ∼ is an equivalence relation, the operations are well-defined, and that the field
of fractions is actually a field we refer to algebra textbooks [Bos09, vdWANB43, KM10].
To make notation easier, we usually just write a

b to denote the equivalence class
[

a
b

]
∼

for all
a, b ∈ R.

Rings that are no integral domains cannot be completed to fields because all fields are integral
domains. The field of fractions can be thought of as a construction similar to the rational num-
bers. In fact, we have Quot(Z) = Q. The elements a ∈ R are represented by the equivalence
class of a

1 ∈ Quot(R).

26

Section 3.3: Fields

There is much more theory on fields and in particular field extensions, but we will not intro-
duce more here as these topics are not needed for the main results of this thesis.

27

4 Polynomial Rings

4.1 Formal Power Series and Polynomials

In this section we will introduce the type rings we are using the most often in this thesis,
namely polynomial rings. To do so, we consider maps from some monoid which represents
the exponents, usually Nn

0 for some n ∈ N>0, to a commutative ring.

Definition 4.1 Let (M,+) be a monoid and R be a commutative ring. A formal power series
is a map f : M → R. We will denote the value of the map f evaluated at u ∈ M by fu. A
formal power series is called a polynomial if and only if it has a finite support, i.e. there are
only finitely many u ∈ M such that fu , 0.

For all u ∈ M we denote by xu the polynomial

xu : M → R, v 7→

1 if u = v
0 else

for all v ∈ M

Those elements are collected in the set MM B {xu | u ∈ M} and are called monomials. We
denote the set of formal power series by RM or R[[M]] and the set of polynomials by R(M) or
R[M]. We embed the elements of the ring R in the set of polynomials with the map

π : R→ R[M] ⊆ R[[M]], c 7→ π(c) where
(
π(c)

)
u
B

c if u = 0
0 else

for all u ∈ M, c ∈ R.

The embedding π : R → R[M] ⊆ R[[M]] will often be omitted in notation and should be
applied implicitly.

The construction of formal power series and polynomials may seem highhanded at first but is
useful, because both sets can be equipped with a ring structure too. Let f , g ∈ R[[M]]. We
define f + g ∈ R[[M]] and f · g ∈ R[[M]] to be formal power series with

(f + g)u B fu + gu

(f · g)u B
∑

v,w∈M
v+w=u

fvgw

for all u ∈ M. It is easy to see that if f and g are polynomials then f +g and f ·g are polynomials
too. Using the associativity, commutativity, and distributivity of the operations + and · on R

29

Part II – Chapter 4: Polynomial Rings

we can show that the new operations + and · on R[[M]] are associative, commutative, and
distributive too.

For the identity elements we will consider the embedding π(c) ∈ R[M] of elements c ∈ R. All
these π(c) have a support of size one and are thus polynomials. The additive and multiplicative
identity elements for the operations on R[[M]] and R[M] are π(0) = 0 and π(1) = x0, respec-
tively. Now we assembled a complete ring structure on R[[M]] and R[M] that will be the main
structures to investigate in this thesis.

Theorem 4.2 Let (M,+) be a monoid and R be a commutative ring. Together with the oper-
ations + and · as well as the embedding π as defined above the formal power series(

R[[M]],+, π(0), ·, π(1)
)

and polynomials (
R[M],+, π(0), ·, π(1)

)
are commutative rings. R[M] is referred to as a polynomial ring having the base ring R.

Note that we use the operator + for the operation on M, the additive operation on R and the
addition on R[[M]] and R[M]. Which operation to use is implied by the set the summands
belong to. Similarly, we use · for the multiplicative operation on R, R[[M]], and R[M].

The embedding π is also reflected in our notation for polynomials since we write

π(c) = cx0 = c

for all c ∈ R. This notation is justified since π is a ring homomorphism with

π(a) + π(b) = π(a + b) and π(a) · π(b) = π(a · b)

for all a, b ∈ R. We therefore get the same result no matter whether we understand a + b or
a · b as addition or multiplication, respectively, in R, R[[M]], or R[M].

We can also investigate the map of elements of M to monoids in R[M] with

τ : M → R[M] ⊆ R[[M]], v 7→ xv

τ : (M,+, 0) → (R[M], ·, 1) is a monoid homomorphism which has an additive notation in its
codomain and a multiplicative notation in its domain.

The definition of monomials is useful since monomials can be used to generate all other formal
power series and polynomials. To see this, let f ∈ R[[M]] be a formal power series. With the
operations above we can write

f =
∑
u∈M

π(fu) · xu =
∑
u∈M

fuxu

30

Section 4.2: Properties of Polynomial Rings

Splitting polynomials into sums of monomials multiplied by a constant factor each reveals the
vector space structure of polynomial rings as we will discuss in Section 4.4.

We will usually use (M,+, 0) = (Nn
0,+, 0) for some n ∈ N>0 where + denotes the component-

wise addition of integers. In that case we will write xi B xei where

ei B
(

0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i times

)
∈ Nn

0

is the vector that contains a one at the i-th position and zeros at all other positions and denote
R[[Nn

0]] by R[[x]] or R[[x1, . . . , xn]] and R[Nn
0] by R[x] or R [x1, . . . , xn]. We will always use

that monoid in later sections if not stated otherwise. In this case we can write polynomials and
formal power series f ∈ R[[x]] also as

f =
∑
u∈M

fu

 n∏
i=1

xui
i


We may also use other names for the indeterminates sometimes to avoid a clash of notation.

Polynomials with M = Nn
0 for n = 1 are called univariate if and only if n = 1 or multivariate

otherwise. The xi are the so-called indeterminates (also called variables or unknowns in the
literature). In the case of univariate polynomials we usually write x B x1 as there is only one
indeterminate. The summands f (u)xu are called terms of f while f (u) is called coefficient of f
and u is the exponent of the term. Terms having the coefficient zero and indeterminates having
the exponent zero are usually omitted in our notation. Note that this notation is only finite for
polynomials, formal power series may have infinitely many terms with non-zero coefficients.

4.2 Properties of Polynomial Rings

After having defined polynomial rings we will discuss some of their properties in this section.
We will focus on algorithms and complexity results in the main part of this thesis. For both
topics it is essential that the input is finite, otherwise our algorithms are not able to even read
all the input in finite time, and measuring running times and complexities would not be useful
in the traditional sense. We will thus focus on polynomials from here, even though some
results can also be stated for formal power series.

The structure of polynomial rings we have seen so far directly implies how to compute the
characteristic of R[M].

Theorem 4.3 Let R[M] be a polynomial ring over a commutative ring R for some monoid
M. We have char(R[M]) = char(R).

31

Part II – Chapter 4: Polynomial Rings

Proof The theorem is immediately clear with

π(1 + 1 + · · · + 1︸ ︷︷ ︸
c times

) = π(1) + π(1) + · · · + π(1)︸ ︷︷ ︸
c times

= 1 + 1 + · · · + 1︸ ︷︷ ︸
c times

for all c ∈ N>0.

We will now introduce the degree of polynomials which is among others a versatile tool for
proofs that algorithms terminate.

Definition 4.4 Let R be a commutative ring and (M,+, 0) be a monoid. Additionally, let
φ : M → N0 be a monoid homomorphism from (M,+, 0) to (N0,+, 0). The degree of a
monomial xu for some u ∈ M is

deg(xu) B φ(u)

The degree of a polynomial f ∈ R[M] is defined as

deg(f) B max
(
{φ(xu) | u ∈ M, fu , 0}

)
Since 0 ∈ R[M] has no terms we define deg(0) B −∞

We defined the degree function deg for monomials and general polynomials. Note that the
usage of the same function name is justified since for all u ∈ M we have

deg(xu) = max
(
{φ(u) | u ∈ M, fu , 0}

)
= φ(u)

We could also use a general monomial (N,+, 0) instead of (N0,+, 0), but we will not need a
generalization of this definition. In the general case we would just need an ordering ≤ on this
monomial which is compatible with the monoid operation, i.e. for all a, b ∈ N we have either
a ≤ b or b ≤ a, we have a ≤ b and b ≤ a if and only if a = b, and we also have a ≤ a + b and
b ≤ a + b.

As given in Definition 4.4 we will always consider (N0,+, 0) as a monomial for grading. The
ordering on this monomial is given by the natural ordering on the non-negative integers and
fulfills all given conditions. When dealing with infinite values we set −∞ < a < ∞ for all
a ∈ N0. As mentioned above if not stated otherwise we will use (M,+, 0) = (Nn

0,+, 0) for
some n ∈ N>0. In this case we will use the map

φ : Nn
0 → N0, (a1, . . . , an) 7→

n∑
i=1

ai

for all a1, . . . , an ∈ N0 for the definition of the degree which is indeed a monoid homomor-
phism. Many properties of the degree would also hold for other monoids or φ, but we will
restrict ourselves to this case.

32

Section 4.2: Properties of Polynomial Rings

In Definition 4.4 we set deg(0) B −∞. This means that deg maps polynomials not only to
integers but to the extended ring (Z ∪ {∞,−∞},+, 0, ·,−1) where the operations not including
∞ or −∞ work as usual and

a +∞ B ∞ + a B ∞, a + (−∞) B (−∞) + a B −∞

while

a · ∞ B ∞ · a B


∞ if a > 0
0 if a = 0
−∞ if a < 0

and

a · (−∞) B (−∞) · a B


−∞ if a > 0
0 if a = 0
∞ if a < 0

for all a ∈ Z.

The map deg : R[M] → Z ∪ {∞,−∞} is no ring homomorphism though. Nevertheless, the
degree allows for some bounds on the degree of sums and products of polynomials.

Theorem 4.5 Let f , g ∈ R[M] be polynomials with coefficients in some commutative ring
(R,+, 0, ·, 1) and exponents in some monoid (M,+, 0) for some integer n ∈ N>0. It holds that

deg(f + g) ≤ max
(

deg(f), deg(g)
)

deg(f g) ≤ deg(f) + deg(g)

Proof Recall that the degree was defined in Definition 4.4 as

deg(f) B max({φ(u) | u ∈ M, fu , 0})

Since the sum of two zero elements is zero again we know that

{u ∈ M | (f + g)u , 0} ⊆ {u ∈ M | fu , 0} ∪ {u ∈ M | gu , 0}

which implies

deg(f + g) = max
(
{φ(u) | u ∈ M, (f + g)u , 0}

)
≤max

(
{φ(u) | u ∈ M, fu , 0} ∪ {φ(u) | u ∈ M, gu , 0}

)
= max

(
max({φ(u) | u ∈ M, fu , 0}), max({φ(u) | u ∈ M, gu , 0})

)
= max

(
deg(f), deg(g)

)

33

Part II – Chapter 4: Polynomial Rings

and the first claim.

For the second claim we know that a coefficient of the term u ∈ M of f g can only be non-
zero if there is a decomposition of u into v,w ∈ M with u = v + w and fv , 0 as well as
gw , 0. This allows for a transformation using that the degree is a monoid homomorphism on
the monomials

deg(f g) = max
(
φ(u) | u ∈ M : (f g)u , 0}

)
≤ max

(
φ(u) | u ∈ M ∃v,w ∈ M : u = v + w, fv , 0, gw , 0}

)
= max

(
φ(v + w) | v,w ∈ M, fv , 0, gw , 0}

)
= max

(
φ(v) + φ(w) | v,w ∈ M, fv , 0, gw , 0}

)
≤ max

(
{φ(v) | v ∈ M, fv , 0}

)
+ max

(
{φ(w) | v ∈ M, gw , 0}

)
= deg(f) + deg(g)

which concludes the proof.

It is interesting to note that the first inequality is not an equation in general. For instance for
all f ∈ R[M] \ {0} we have

−∞ = deg(0) < deg(f)︸ ︷︷ ︸
≥0

+ deg(− f)︸ ︷︷ ︸
≥0

The second inequality is in fact an equation if R is a domain.

Another property of polynomial rings that we will often use, is that we can extend monoid
homomorphisms from the exponent monoid to the base ring to ring homomorphisms from the
polynomial ring to the base ring.

Theorem 4.6 (Substitution homomorphism) Let (R,+, 0, ·, 1) and (R′,+, 0, ·, 1) be commu-
tative rings, let µ : R → R′ be a ring homomorphism, let (M,+, 0) be a monoid and let
τ : (M,+, 0)→ (R′, ·, 1) be a monoid homomorphism. The map

ϕ : R[M]→ R′, f 7→
∑
u∈M

µ(fu)τ(u)

for all f ∈ R[M] is a ring homomorphism.

Proof As listed after Definition 3.13 we have to show the following to establish that ϕ is a
ring homomorphism:

34

Section 4.2: Properties of Polynomial Rings

a)

ϕ(f + g) =
∑
u∈M

µ
(
(f + g)u

)
τ(u)

=
∑
u∈M

µ(fu + gu)τ(u)

=
∑
u∈M

(
µ(fu) + µ(gu)

)
τ(u)

=
∑
u∈M

µ(fu)τ(u) +
∑
u∈M

µ(gu)τ(u)

= ϕ(f) + ϕ(g)

for all f , g ∈ R[M]

b)

ϕ(f g) =
∑
u∈M

µ
(
(f g)u

)
τ(u)

=
∑
u∈M

µ

 ∑
v,w∈M
v+w=u

fvgw

 τ(u)

=
∑
v∈M

∑
w∈M

µ(fv)µ(gw)τ(v + w)

=
∑
v∈M

∑
w∈M

µ(fv)τ(v)µ(gw)τ(w)

=

∑
v∈M

µ(fv)τ(v)

 ∑
w∈M

µ(gw)τ(w)


= ϕ(f)ϕ(g)

for all f , g ∈ R[M]

c) ϕ(1) = µ(1)τ(0) = 1 · 1 = 1

Note that all sums mentioned above are finite and therefore well-defined.

Example 4.7 We usually consider the so-called substitution homomorphisms. In this case
we take a polynomial ring R [x1, . . . , xn] over some commutative ring R, a tuple a ∈ Rn and
R′ B R. We define the map µ to be the identity map, and let τ be the monoid homomorphism

35

Part II – Chapter 4: Polynomial Rings

induced by τ(ei) B ai for all i ∈ {1, . . . , n}, namely τ(u) = au1
1 au2

2 . . . aun
n . The map

ϕa : R [x1, . . . , xn]→ R, f 7→
∑
u∈Nn

0

fuau1
1 au2

2 . . . aun
n

for all f ∈ R [x1, . . . , xn] is called the substitution homomorphism ϕa and we often write
f (a) B ϕa(f). A tuple a ∈ Rn with f (a) = 0 is called a root of f .

Note that this notation shall not be confused with the fact, that we formally defined f to be
a map from Nn

0 to R whereas the notation implies a map from Rn to R. The map ϕa can be
thought of as replacing the xi in the notation of f by the ai for all i ∈ {1, . . . , n}.

We will often use the substitution homomorphism in the following sections. One particular
application of it is the definition of algebraically closed fields.

Definition 4.8 Let k be a field. We say that k is an algebraically closed field if and only if for
every polynomial f ∈ k[x] with deg(f) > 0 there is an a ∈ k such that f (a) = 0.

The most prominent example of an algebraically closed field is the field of complex numbers
C. Note that the fields of rational numbersQ and real numbersR are not algebraically closed as
for instance the polynomial x2

1+1 has no root over those fields. In particular, over algebraically
closed fields we can factor each univariate polynomial into a product where every factor has at
most degree 1. For details on algebraically closed fields we refer to algebra textbooks [Bos09,
vdWANB43, KM10].

4.3 Polynomial Ideals

In Section 4.1 we discussed polynomial rings and in Section 3.2 we saw that we can define
ideals as substructures of rings. In this section we will combine both. Ideals of polynomial
rings are called polynomial ideals. They are the main subject of interest in this thesis. We will
therefore motivate their importance and find some of their properties in this section. For proofs
that are not stated in this section we again refer to a computer algebra textbook [CLO07].

There are countless real-world problems that can be modeled mathematically by polynomial
equations. An easy example is a typical physics textbook problem like this one:

You throw a ball straight up into the air. Your arms are at x meters height and you
throw the ball with an initial speed of v meters per second. How long does it take
the ball to be at height y? All effects of friction can be ignored in this problem.

36

Section 4.3: Polynomial Ideals

This problem can be modeled by the polynomial equation

y = x + vt − 0.5 · gt2

where t is the time elapsed in seconds and g is the gravitational acceleration at the surface of
the Earth g ≈ 9.81 in meters per square seconds. Examples for more complicated problems
can be found in Section 1.1 and there are countless more real-world problems that can be
modeled by polynomial equations.

In all these problems we want to find solutions of systems of equations or just some properties
of the equations. We will discuss what solutions of systems of polynomial equations formally
are in detail in Section 4.5. For this section, it means that we apply a substitution homomor-
phism on the equations that inserts our actual values for the symbols and want the results on
both sides of the equation to be the same.

The first step for solving these problems is to reshape the equations such that the right-hand
side of them is always zero. To do so, we take a polynomial equation f = g for some f , g ∈
R [x1, . . . , xn] and consider the equivalent equation f − g = 0 instead. We will speak about the
equation f ∈ R [x1, . . . , xn] when we actually mean the equation f = 0.

It is important to note that some given equations imply other equations, that are automatically
true if the given equations are fulfilled. For instance, consider the polynomials f = x1 + 1, g =

x1+x2
2 ∈ R[x1, x2]. If we have f (a) = 0 and g(a) = 0 we always also have 2a1+2 = (2 f)(a) = 0

and 2a1 + a2
2 + 1 = (f + g)(a) = 0 for a ∈ R2. This holds in general: If we have f (a) = 0 and

g(a) = 0 for some polynomials f , g ∈ R [x1, . . . , xn], n ∈ N>0, a ∈ Rn, and c ∈ R we also have
(c f)(a) = 0 and (f + g)(a) = 0. Note that this is exactly the definition of an ideal contained in
the polynomial ring R [x1, . . . , xn] as seen in Definition 3.15.

Using other words this means that given some equations f1, . . . , fs ∈ R [x1, . . . , xn] for some
s ∈ N>0 the ideal 〈 f1, . . . , fs〉 E R [x1, . . . , xn] is the set of equations that is already implied
by the given equations. If we are given f1, . . . , fs the other equations in 〈 f1, . . . , fs〉 are given
implicitly too. That is why we usually consider the ideal generated by the given equations.

It is important to note here again that generators of ideals are generally not unique. For ex-
ample the equations above f = x1 + 1, g = x1 + x2

2 ∈ R[x1, x2] imply the same ideal as the
equations f = x1 + 1, h = x2

2 − 1 ∈ R[x1, x2] since g = f + h ∈ 〈 f , h〉 and h = g− f ∈ 〈 f , g〉 and
thus 〈 f , g〉 = 〈 f , h〉.

This motivation also explains why subrings are not the right structure here. Using subrings
we could only multiply equations that hold by other equations that hold instead of arbitrary
ones and we would miss some equations that hold. Nevertheless, an ideal does not necessarily
contain all equations implied by the ideal’s generators. As an easy example consider the ideal
I =

〈
x2

〉
E Q[x]. The equation x2 = 0 is only fulfilled if and only if x = 0, but we still

have x < I. We will discuss how to include all equations that are fulfilled implicitly in the
Section 4.5 and Section 8.1.

37

Part II – Chapter 4: Polynomial Rings

For another example we refer to the system of polynomials describing conformations of cy-
clohexane as explained in Section 1.1. After extending the determinants and reshaping the
formulas we get the following polynomial ideal: 〈9x1x2x3 + 9x1x2

3 + 9x2x2
3 + 15x1x2−51x1x3−

51x2x3 −66x2
3 −110x1 −110x2 + 253x3 + 605, 3x1x2

2 + 3x2
2x3 −3x1x2

3 −3x2x2
3 −22x1x2 −22x2

2 +

22x1x3 + 22x2
3 + 121x2 − 121x3, 3x2

1x2 + 3x2
1x3 − 3x1x2

3 − 3x2x2
3 − 22x2

1 − 22x1x2 + 22x2x3 +

22x2
3 + 121x1 − 121x3, 81x1x3

3 + 81x2x3
3 − 891x1x2

3 − 891x2x2
3 − 594x3

3 − 720x1x2 + 1683x1x3 +

1683x2x3 +5670x2
3 +4455x1 +4455x2−6774x3−31790, 81x2

2x2
3−594x2

2x3−594x2x2
3 +225x2

2 +

3492x2x3 + 225x2
3 + 750x2 + 750x3−14575, 81x2

1x2
3 −594x2

1x3−594x1x2
3 + 225x2

1 + 3492x1x3 +

225x2
3 + 750x1 + 750x3 − 14575〉 EQ[x1, x2, x3, x4]. The set of generators given here is even a

Gröbner Basis as defined in Section 5.2.

We know that for all ideals its elements can be generated by adding elements contained in the
ideal or multiplying an element of the ideal with another element. Substituting the operations
that resulted in an element until we reach a generator of the ideal results in the following
theorem.

Theorem 4.9 Let R be a commutative ring, s ∈ N>0, and f1, . . . , fs ∈ R. The ideal generated
by f1, . . . , fs is the set

〈 f1, . . . , fs〉 =

 s∑
i=1

figi | g1, . . . , gs ∈ R



For polynomial ideals we can restrict this theorem to linear combinations with monomials
instead of polynomials which makes some proofs easier.

Theorem 4.10 Let R be a commutative ring, n, s ∈ N>0, and f1, . . . , fs ∈ R [x1, . . . , xn]. The
ideal generated by f1, . . . , fs is the set

〈 f1, . . . , fs〉 =

{ r∑
j=1

c jm j fi j | r ∈ N>0, i1, . . . , ir ∈ {1, . . . , n} ,

m1, . . . ,mr ∈ Mx1,...,xn , c1, . . . , cr ∈ R
}

Proof The direction “⊇” is immediately clear from the definition of a polynomial ideal (Defi-
nition 3.15). For the other direction “⊆” let f ∈ 〈 f1, . . . , fs〉ER [x1, . . . , xn]. With Theorem 4.9
we know that there are g1, . . . , gs ∈ R [x1, . . . , xn] with f =

∑n
i=1 figi. Because all polynomi-

als have finite support, there are k1, . . . , ks ∈ N>0, monomials mi,1, . . . ,mi,ki ∈ R [x1, . . . , xn],

38

Section 4.4: Modules, Vector Spaces, and Algebras

and coefficients ci,1, . . . , ci,ki ∈ R with gi =
∑ki

j=1 ci, jmi, j for all i ∈ {1, . . . , s}. Summing those
equations up we get

f =

s∑
i=1

ki∑
j=1

ci, jmi, j fi

which has the same form as given in the claim.

This theorem implies that we can restrict ourselves to monomials as coefficients in the linear
combinations if we allow that generators appear several times in the linear equation.

When we do computations with polynomial ideals they will usually be given by a finite set
of generators, because computers only have a finite amount of memory. This can be justified
by the Hilbert Basis Theorem named after the German mathematician David Hilbert who
presented it in 1890 [Hil90].

Theorem 4.11 (Hilbert Basis Theorem [Hil90]) Let R be a Noetherian ring. The polynomial
ring R[x1] is Noetherian.

We can apply this theorem multiple times to prove the same theorem on multivariate polyno-
mial rings.

Corollary 4.12 Let R be a Noetherian ring and n ∈ N>0. The polynomial ring R [x1, . . . , xn]
is Noetherian.

With Theorem 3.19 this implies that all polynomial ideals over polynomial rings with Noethe-
rian coefficient fields are finitely generated. Thus, we can always assume that polynomial
ideals are given by a finite generating set. We will use the Hilbert Basis Theorem without
further reference in this thesis.

A relevant special case is that polynomial ideals generated by monomials can also be generated
by a finite set of monomials. This theorem is known as Dickson’s Lemma named after the
the American mathematician Leonard E. Dickson [Dic13]. Polynomial ideals generated by
monomials are discussed more in detail in Section 9.2.

4.4 Modules, Vector Spaces, and Algebras

In the main part of this thesis we will deal with polynomial equations with arbitrary degree
and number of variables. Limiting the degree of the equations or the number of variables to

39

Part II – Chapter 4: Polynomial Rings

one makes solving the corresponding systems of equations considerably easier. We will need
this special case for improved algorithms for toric ideals as discussed in Chapter 10. In this
section we will discuss linear equations, i.e. equations with degree at most 1, whereas we will
discuss univariate polynomials, i.e. equations involving one variable only, in Section 5.1. For
proofs that we omit during this section we refer to linear algebra textbooks [Fis13, Lan87].

Polynomial ideals of linear polynomials can be considered as subspaces of a vector space. We
will define the notion of vector spaces first to state this formally. As vector spaces are an easy
special case of modules we will define modules too, even though we will only deal with vector
spaces in the remainder of this thesis.

Definition 4.13 Let R be a ring and let (M,+, 0) be an Abelian group together with an oper-
ation · : R × M → M. (M,+, 0, ·) is called an R-module if and only if

a) 1 · v = v for all v ∈ M where 1 is the multiplicative neutral element of R

b) a · (b · v) = (a · b) · v for all a, b ∈ R and v ∈ M

c) a · (u + v) = a · u + a · v and (a + b) · v = a · v + b · v for all a, b ∈ R and u, v ∈ M

In the case that R is a field we call the field k B R, the set V B M, and (V,+, 0, ·) is called a
k-vector space. The elements of a vector space are called vectors.

Note that we used the operator signs + and · for the operations of the ring R and the field k.
Which operation to use is always clear from the sets the operands belong to. We will also
write V for the R-module (V,+, 0, ·) or the k-vector space (V,+, 0, ·) if the operations are clear
from context.

The most common examples of modules are the Z-modules Zn, Qn, Rn, and Cn, whereas
common vector spaces are the Q-vector spaces Qn, Rn, and Cn, the R-vector spaces Rn, and Cn

and the C-vector space Cn for n ∈ N>0 each with pointwise addition and scalar multiplication
as operations. Also, all polynomial rings R [x1, . . . , xn] over a ring R for some n ∈ N>0 are
R-modules. To see this we use the usual addition of polynomials for the map

+ : R [x1, . . . , xn] × R [x1, . . . , xn]→ R [x1, . . . , xn]

and the usual multiplication of polynomials for

· : R × R [x1, . . . , xn]→ R [x1, . . . , xn]

where we understand elements of R as polynomials of degree zero (or degree −∞ for 0 ∈ R).
The axioms from Definition 4.13 can easily be verified from the properties of polynomial

40

Section 4.4: Modules, Vector Spaces, and Algebras

rings. We can also restrict ourselves to the set of polynomials of degree at most one and we
still get an R-module

{ f ∈ R [x1, . . . , xn] | deg(f) ≤ 1}

with the same operations as above for the R-module R [x1, . . . , xn]. We will see another way
of embedding the structure of a module into the set of polynomials during the discussion of
toric ideals in Chapter 10.

As we are most interested in polynomial ideals, we need to embed an equivalent structure to
polynomial ideals into modules. We will see that submodules correspond to polynomial ideals
in the linear case.

Definition 4.14 Let (M,+, 0) be an R-module over a ring R and let N ⊆ M such that (N,+, 0)
is a subgroup of (M,+, 0) and a · v ∈ N for all a ∈ R, v ∈ N. The R-module (N,+, 0) is called
a submodule of (M,+, 0). In the case that k B R is a field we call (M,+, 0) a linear subspace
of the k-vector space (N,+, 0).

Note that all submodules of an R-module M over a ring R are R-modules themselves and
likewise all linear subspaces of k-vector spaces over a field k are vector spaces themselves.

Returning to the R-module R [x1, . . . , xn] for n ∈ N>0 we can show that each polynomial ideal
I E R [x1, . . . , xn] in the ring R [x1, . . . , xn] is also a submodule of the R-module R [x1, . . . , xn].
This implication does not hold in the other direction since for instance

{ f ∈ R [x1, . . . , xn] | deg(f) ≤ 1}

is a submodule of the R-module R [x1, . . . , xn], but not an ideal of the ring R [x1, . . . , xn].

All vector spaces and their linear subspaces can be characterized by their bases. We will now
switch from general modules to vector spaces since modules do not need to have bases in
general while all vector spaces have bases.

Definition 4.15 Let k be a field, let V be a k-vector space, and let B ⊆ V be a subset. B is
called linearly independent if and only if for all cb ∈ V for each b ∈ B with {cb | b ∈ B} , {0}
we have ∑

b∈B

cb · b , 0

The set span ({B}) spanned by B is the smallest linear subspace of V that contains B. A set
B ⊆ V is called a generating set of V if and only if span ({B}) = V . B is called a basis of V if
and only if B is linearly independent and a generating set of V .

41

Part II – Chapter 4: Polynomial Rings

As mentioned above modules may not have bases. For instance consider the Z-modules Z/nZ
for n ∈ N>0 as defined in Definition 3.16 with the usual addition and multiplication modulo
n. Those modules do not have bases as all non-empty subsets of B ⊆ Z/nZ are linearly
dependent which can be shown by choosing the coefficients cb = n for all b ∈ B which implies∑

b∈B cb · b = 0 not matter what B is.

All vector spaces, however, have a basis and their size is unique. It was proven that this
theorem is equivalent to the axiom of choice by James D. Halpern in 1966 [Hal66].

Theorem 4.16 (Dimension Theorem for Vector Spaces) Let k be a field and V be a k-vector
space. V has at least one basis. All bases of V have the same cardinality. Their cardinality is
called the dimension of the vector space V and denoted by dim(V).

For example the k-vector space k [x1, . . . , xn] over a field k for some n ∈ N>0 has a basis
consisting of all monomials contained in k [x1, . . . , xn]. There are infinitely many monomials
in k [x1, . . . , xn], therefore the vector space is infinite-dimensional. The k-vector space

{ f ∈ k [x1, . . . , xn] | deg(f) ≤ 1}

also has a basis consisting of all monomials contained in it, but in this case the basis is
{1, x1, x2, . . . , xn}. Thus, the dimension

dim({ f ∈ k [x1, . . . , xn] | deg(f) ≤ 1})

is n + 1.

We will discuss solving systems of equations in the k-vector space

{ f ∈ k [x1, . . . , xn] | deg(f) ≤ 1}

in Section 5.1 and will now introduce the Elimination Theorem needed there. Since the prod-
uct of two linear polynomials is not linear in general it does not make sense to speak about
polynomial ideals in this case. We drop the property of polynomial ideals I that for all f ∈ I
and g ∈ k [x1, . . . , xn] we have f g ∈ I and replace it by a similar property that does not in-
crease the degree of the polynomials: for all f ∈ I and g ∈ k we have f g ∈ I. Leaving all other
properties the same we just changed the definition from an ideal to a linear subspace. Thus, in
the case of linear equations our system of equations is modeled by a linear subspace of

{ f ∈ k [x1, . . . , xn] | deg(f) ≤ 1}

instead of a polynomial ideal of k [x1, . . . , xn].

The first step in solving such a system of equations is eliminating an indeterminate. Suppose
we are given f1, . . . , fs ∈ k [x1, . . . , xn] for some n, s ∈ N>0 with deg(fi) ≤ 1 for all i ∈
{1, . . . , s}. The linear subspace spanned by those polynomials is

span ({ f1, . . . , fs}) ⊆ { f ∈ k [x1, . . . , xn] | deg(f) ≤ 1}

42

Section 4.4: Modules, Vector Spaces, and Algebras

Eliminating indeterminate xn means computing

span ({ f1, . . . , fs}) ∩ { f ∈ k [x1, . . . , xn−1] | deg(f) ≤ 1}

which is a linear subspace of

{ f ∈ k [x1, . . . , xn] | deg(f) ≤ 1}

again. The following theorem tells how to find a generating set of that space.

Theorem 4.17 Let f1, . . . , fs ∈ k [x1, . . . , xn] be polynomials over a field k for some n, s ∈ N>0

with deg(fi) ≤ 1 for all i ∈ {1, . . . , s}. Let ai ∈ k be the coefficient of the term xn in fi for all
i ∈ {1, . . . , s}. Without loss of generality we assume that there is a t ∈ N0 such that ai = 0 if
and only if i ≤ t. Furthermore, let

M B { fi | i ∈ {1, . . . , s} , i ≤ t} ∪ {at+1 fi − ai ft+1 | i ∈ {1, . . . , s} , i ≥ t + 2}

We have
span ({ f1, . . . , fs}) ∩ { f ∈ k [x1, . . . , xn−1] | deg(f) ≤ 1} = span(M)

Proof For all polynomials f ∈ M we obviously have

f ∈ span ({ f1, . . . , fs}) ∩ { f ∈ k [x1, . . . , xn−1] | deg(f) ≤ 1}

which implies the direction “⊇” of the proof. For the other direction let

f ∈ span ({ f1, . . . , fs}) ∩ { f ∈ k [x1, . . . , xn−1] | deg(f) ≤ 1}

The containment f ∈ span ({ f1, . . . , fs}) means there are c1, . . . , cs ∈ k with f =
∑s

i=1 ci fi and

f ∈ { f ∈ k [x1, . . . , xn−1] | deg(f) ≤ 1}

implies
∑s

i=1 ciai = 0. Putting this together we get

f =

s∑
i=1

ci fi

=

s∑
i=1

ci fi −
1

at+1

 s∑
i=1

ciai

 ft+1

=

s∑
i=1

ci fi −
1

at+1

 s∑
i=t+1

ciai

 ft+1

=

t∑
i=1

ci fi +

s∑
i=t+2

ci

at+1
(at+1 fi − ai ft+1) ∈ span(M)

43

Part II – Chapter 4: Polynomial Rings

The polynomial ft+1 is called pivot of this reduction. The pivot together with the elements of
M generate the original linear subspace:

span ({ ft+1} ∪ M) = span ({ f1, . . . , fs})

We can eliminate one indeterminate after another from a linear subspace using Theorem 4.17.
If we collect the pivots from each elimination of an indeterminate we get a special set of
generators of the linear subspace, the so-called row-echelon form of span ({ f1, . . . , fs}). The
row-echelon form can be used to find solutions of the system of linear equations. We discuss
this algorithm in Section 7.2. These findings can also be used for general vector spaces.

Another structure that we will use in Chapter 10 are algebras over commutative rings. Alge-
bras are modules that allow for an additional multiplicative operation.

Definition 4.18 Let R be a commutative ring, (M,+, 0, ·) be an R-module and let

� : M × M → M

be an operation. (M,+, 0, ·,�) is an R-algebra if and only if � is bilinear, i.e.

a) u � (v + w) = (u � v) + (u � w) and (u + v) � w = (u � w) + (v � w) for all u, v,w ∈ M

b) a · (u � v) = (a · u) � v = u � (a · v) for all a ∈ R and u, v ∈ M.

Again, we also call the set M an R-algebra if the operations are clear from context and we use
the same notion for all multiplicative operations if the operation to be used is clear from the
operands. The most important examples of R-algebras over a commutative ring R, that we use
in this thesis, are the polynomial rings R [x1, . . . , xn] for some n ∈ N>0 where

� : R [x1, . . . , xn] × R [x1, . . . , xn]→ R [x1, . . . , xn]

is the usual multiplication of polynomials.

For modules, vector spaces, and algebras we can also define homomorphisms between those
structures as we did for monoids, groups, rings, and fields. Those homomorphisms need to be
compatible with the respective operations on the structure.

Definition 4.19 Let R be a commutative ring and k be a field. A map φ : M → N between
two R-modules (M,⊕, 0M, ·) and (N,�, 0N ,×) is a module homomorphism if and only if

φ(u ⊕ v) = φ(u) � φ(v) and φ(a · u) = a × φ(u)

44

Section 4.5: Varieties and the Zariski topology

for all a ∈ R and u, v ∈ M. A map between two k-vector spaces is a vector space homomor-
phism or linear map if and only if it is a module homomorphism. A map φ : M → N between
two R-algebras (M,⊕, 0M, ·,⊗) and (N,�, 0n,×,�) is an algebra homomorphism or linear map
if and only if φ is a module homomorphism and additionally

φ(u ⊗ v) = φ(u) � φ(v)

for all u, v ∈ M.

There are many more interesting definitions and theorems involving modules, vector spaces,
and algebras that we do not need for this thesis. For instance, we can define associated algebras
by changing the base ring of an algebra. We refer to algebra textbooks for details on further
constructions [Fis13, Lan87, Bos09, vdWANB43].

4.5 Varieties and the Zariski topology

We did already discuss finding solutions of systems of polynomial equations in the last section
without formally defining what a solution is. We will discuss the structure of those sets in this
section.

Definition 4.20 Let I E R [x1, . . . , xn] be a polynomial ideal over a commutative ring R for
some n ∈ N>0. The variety of I is the set

V (I) B {(a1, . . . , an) ∈ Rn | f (a1, . . . , an) = 0 for all f ∈ I} ⊆ Rn

The notation f (a1, . . . , an) refers to the substitution homomorphism as defined in Example 4.7.
V (I) is the set of all points of Rn that is a solution of every equation contained in the polyno-
mial ideal I. Equivalently,V (I) is the set of all points of Rn that is a solution of every equation
contained in some set of generators of the polynomial ideal I. When speaking about solving
a given set of equations f1, . . . , fs ∈ R [x1, . . . , xn] for some s ∈ N>0 we usually mean finding
V (〈 f1, . . . , fs〉).

Vice versa, we could also define a polynomial ideal that is the largest ideal that has a given set
of points as solution.

45

Part II – Chapter 4: Polynomial Rings

x1

x2

V V (I (V))

Figure 4.23: A visualization of the set V ⊆ Q2 from Example 4.22.

Definition 4.21 Let R be a commutative ring, n ∈ N>0, and let V ⊆ Rn be a set of points. The
vanishing ideal of V is the polynomial ideal

I (V) B { f ∈ R [x1, . . . , xn] | f (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V} E R [x1, . . . , xn]

It is easy to verify that I (V) is indeed a polynomial ideal for all V ⊆ Rn. One could guess
that the maps V and I are inverses of each other, but we have neither I = I (V (I)) nor
V = V (I (V)) for polynomial ideals IER [x1, . . . , xn] and sets V ⊆ Rn in general. I = I (V (I))
only holds for radical ideals that are defined and discussed in Section 8.1. V = V (I (V)) only
holds for sets V that are closed under the so-called Zariski topology, that we will define below.

Example 4.22 For an example we consider the polynomial ring Q[x1, x2] and the set

V B {(a, 0) | a ∈ Q, a , 0} ⊆ Q2

The set V is the x1-axis excluding the point (0, 0). Since V contains infinitely many points we
see that all polynomials f ∈ I (V) E Q[x1, x2] must be multiples of x2. The polynomial ideal
of all those polynomials is generated by x2, thus I (V) = 〈x2〉. On the other hand, the solutions
of the polynomial x2 are all points with the second component being zero which implies

V (I (V)) = {(a, 0) | a ∈ Q}) V

It is interesting to note that it was indeed needed that V in this example was an infinite set, for
all finite sets V ⊆ Q2 we getV (I (V)) = V .

46

Section 4.5: Varieties and the Zariski topology

For all V ⊆ Rn we have V ⊆ V (I (V)), but the other direction does not need to be true. This
holds because

V (I (V)) =
{
a ∈ Rn | f (a) = 0 for all f ∈ {g ∈ R [x1, . . . , xn] | g(b) = 0 for all b ∈ V}

}
=

{
a ∈ Rn | f (a) = 0 for all f ∈ R [x1, . . . , xn] with f (b) = 0 for all b ∈ V

}
⊇ V

which clearly contains all points in V .

The sets V ⊆ Rn with V = V (I (V)) form a so-called topology.

Definition 4.24 Let X be a set and T ⊆ P(X) be a set of subsets of X. T is called a topology
on X if ∅ ∈ T , X ∈ T , unions of sets in T are also contained in T and intersections of finitely
many sets in T are also contained in T . Subsets of X contained in T are called open sets under
T . Subsets Y of X, whose complement X \ Y is contained in X, are called closed sets under T .

Topologies are probably best known in connection with manifolds and knot theory. This field
studies the properties of spaces under continuous transformations. One famous result states
that compact, connected surfaces can be continuously transformed into another if and only
if they have the same orientability, number of boundary components, and genus. This is for
instance the case for a cup and a torus. We will not use topologies in this thesis other than the
Zariski topology.

Theorem 4.25 Let R [x1, . . . , xn] be the polynomial ring over a commutative ring R for some
n ∈ N>0. The set {

V ⊆ Rn |Rn \ V = V
(
I (Rn \ V)

)}
⊆ P(Rn)

is a topology over Rn. It is called the Zariski topology in honor of the mathematician Oscar
Zariski.

We refer to a textbook for the proof that the Zariski topology is in fact a topology [CLO07].

The sets V ⊆ Rn with V = V (I (V)) are the sets closed under the Zariski topology. Those sets
are also the image of the map V, i.e. each set V ⊆ Rn, that is the variety of any polynomial
ideal, has the property V = V (I (V)). Thus, for sets V ⊆ Rn with V (V (I (V)) we know
that V is not the variety of any polynomial ideal I E R [x1, . . . , xn]. The set V (I (V)) is the
smallest super set of V that is a variety. It is called the closure of V under the Zariski topology.
In Example 4.22 we saw that the closure of {(a, 0) | a ∈ Q, a , 0} under the Zariski topology is
{(a, 0) | a ∈ Q}.

47

Part II – Chapter 4: Polynomial Rings

4.6 Operations on Polynomial Ideals

While working with polynomial ideals, we will use several operations that will be introduced
in this section. For a survey of operations on polynomial ideals and detailed proofs of all
statements in this section we refer to the Bachelor’s thesis of this author [Tom12]. We just
give a summary of the most important results here.

The easiest operation on a polynomial ideal is to add new elements to the ideal. The union
of polynomial ideals is no polynomial ideal in general, though. For an example consider the
polynomial ideals 〈x1〉 , 〈x2〉EQ[x1, x2]. We have x1, x2 ∈ 〈x1〉 ∪ 〈x2〉 but x1 + x2 < 〈x1〉 ∪ 〈x2〉.
Thus, we have to compute the ideal closure of the union.

Definition 4.26 Let I, J ER [x1, . . . , xn] be polynomial ideals over a ring R for some n ∈ N>0.
The sum of I and J is the set I + J B { f + g | f ∈ I, g ∈ J}.

I + J is a polynomial ideal itself and the smallest ideal containing I ∪ J. The sum of I and
J can be generated by the union of generators of I and J. As adding more polynomials to
a polynomial ideal shrinks the variety of the ideal we can compute the variety of the sum of
polynomial ideals as the intersection of the varieties of the original polynomial ideals.

Theorem 4.27 Let f1, . . . , fs, g1, . . . , gr E R [x1, . . . , xn] be polynomials over a ring R and let
I, J E R [x1, . . . , xn] be polynomial ideals for some n, r, s ∈ N>0. We have

〈 f1, . . . , fs〉 + 〈g1, . . . , gr〉 = 〈 f1, . . . , fs, g1, . . . , gr〉

and
V (I + J) = V (I) ∩V (J)

Another operation, that we will often need, is the intersection of polynomial ideals. In contrast
to the union of polynomial ideals the intersection of polynomial ideals contained in the same
polynomial ring is always a polynomial ideal again. To compute intersections of polynomial
ideals we need to define the special case of elimination ideals first.

Definition 4.28 Let I E R [x1, . . . , xn] be a polynomial ideal over a ring R for some n ∈ N>0.
The i-th elimination ideal of I is the set

I ∩ R [x1, . . . , xi] E R [x1, . . . , xi]

for every i ∈ {1, . . . , n}.

48

Section 4.6: Operations on Polynomial Ideals

All elimination ideals of polynomial ideals are polynomial ideals again. Note that

R [x1, . . . , xi] ⊆ R [x1, . . . , xn] and I ∩ R [x1, . . . , xi] ⊆ R [x1, . . . , xn]

are no polynomial ideals in general for i ∈ {1, . . . , n − 1}. Elimination ideals are generally
only polynomial ideals in the smaller polynomial ring R [x1, . . . , xi]. Nevertheless, we can
extend polynomial ideals J E R [x1, . . . , xi] to polynomial ideals in R [x1, . . . , xn] by taking
the smallest ideal in R [x1, . . . , xn] containing J. This extended ideal can be generated by the
images of mapping a set of generators of the ideal J E R [x1, . . . , xi] to R [x1, . . . , xn].

Computing a generating set of an elimination ideal is a computationally hard task in general.
We will discuss an algorithm to compute elimination ideal in Section 5.3 and analyze its
complexity in Section 7.2. For the remainder of this section we will use the computation of
elimination ideals as a black box algorithm.

The computation of the general case of intersections of polynomial ideals can be reduced to
elimination ideals. To do so, we will introduce a new indeterminate to our polynomial ring.

Theorem 4.29 Let f1, . . . , fs, g1, . . . , gr E R [x1, . . . , xn] be polynomials over a ring R and let
I, J E R [x1, . . . , xn] be polynomial ideals for some n, r, s ∈ N>0. For

K B 〈xn+1 f1, . . . , xn+1 fs, (1 − xn+1)g1, . . . , (1 − xn+1)gr〉 E R [x1, . . . , xn+1]

we have
〈 f1, . . . , fs〉 ∩ 〈g1, . . . , gr〉 = K ∩ R [x1, . . . , xn]

and
V (I ∩ J) = V (I) ∪V (J)

The variety of the intersection of polynomial ideals is the union of their varieties. This is,
because to get the intersection we remove all polynomials from one polynomial ideal that are
not contained in the other one and thus grow the variety to also include the points from the
other variety. Interestingly, there is also another operation on polynomial ideals where the
variety of the result is the union of the varieties of the original ideals.

Definition 4.30 Let I, J ER [x1, . . . , xn] be polynomial ideals over a ring R for some n ∈ N>0.
The product of I and J is the set

I · J B

 s∑
i=1

figi | f1, . . . , fs ∈ I, g1, . . . , gs ∈ J, s ∈ N>0



49

Part II – Chapter 4: Polynomial Rings

Note that we have to close the product under sums as it would not be a polynomial ideal
otherwise in general. Generators of the product of polynomial ideals are for instance the
pairwise products of the generators of the original ideals.

Theorem 4.31 Let f1, . . . , fs, g1, . . . , gr E R [x1, . . . , xn] be polynomials over a ring R and let
I, J E R [x1, . . . , xn] be polynomial ideals for some n, r, s ∈ N>0. We have

〈 f1, . . . , fs〉 · 〈g1, . . . , gr〉 =
〈

fig j | i ∈ {1, . . . , s} , j ∈ {1, . . . , r}
〉

and
V (I · J) = V (I) ∪V (J)

Since the product and intersection of polynomial ideals have the same variety we can exchange
both operations if we only need the variety of the result to be correct. This is for instance the
case for the radical word problem as defined in Section 7.1. This is useful, because the product
is much faster to compute than the intersection of polynomial ideals.

To motivate the next operation consider the ideal I B 〈x1(x2 − x3), f1, . . . , fs〉EQ[x1, x2, x3] for
some f1, . . . , fs ∈ Q[x1, x2, x3] and s ∈ N>0. Given a polynomial contained in I we can replace
x2 by x3 and vice versa to get another polynomial contained in I because x1(x2 − x3) ∈ I, but
only of there is an x1 contained in the same term as the x2 or x3 to replace. The x1 behaves
like a catalyst for the replacement of x2 by x3 or vice versa: It has to be present to execute the
replacement, but it is not touched during the replacement. Removing those catalysts is called
computing the quotient of a polynomial ideal.

Definition 4.32 Let I, J ER [x1, . . . , xn] be polynomial ideals over a ring R for some n ∈ N>0.
The quotient of I by J is the set

I : J B { f ∈ R [x1, . . . , xn] | f g ∈ I for all g ∈ J}

For a polynomial g ∈ R [x1, . . . , xn] we denote the quotient I : 〈g〉 by I : g.

The quotient of polynomial ideals as defined above is always a polynomial ideal again. The
computation of a generating set of the quotient is a computationally hard task as we will use
the computation of intersections of polynomial ideals as a subroutine. The first step of the
computation is to split the quotient into several subproblems for every generator of the divisor.

Theorem 4.33 Let I, J,KER [x1, . . . , xn] be polynomial ideals over a commutative ring R for
some n ∈ N>0. We have

I : (J + K) = (I : J) ∩ (I : K)

50

Section 4.6: Operations on Polynomial Ideals

In particular, this means for a polynomial ideal IER [x1, . . . , xn] over a ring R and polynomials
f1, . . . , fs ∈ R [x1, . . . , xn] for some n, s ∈ N>0 that

I : 〈 f1, . . . , fs〉 = I :

 s∑
i=1

〈 fi〉

 =

s⋂
i=1

I : fi

Thus, we only have to compute the quotient with principal ideals as divisor. This can also be
done using an algorithm to compute the intersection of polynomial ideals.

Theorem 4.34 Let I E R [x1, . . . , xn] be a polynomial ideal over a commutative ring R for
some n ∈ N>0 and let g ∈ R [x1, . . . , xn] be a polynomial. Let f1, . . . , fs ∈ R [x1, . . . , xn] for
some s ∈ N>0 such that 〈 f1, . . . , fs〉 = I ∩ 〈g〉. In this case, we have

I : f =
〈 f1

g
, . . . ,

fs

g

〉

Note that the fractions fi
g for i ∈ {1, . . . , s} are polynomials since fi is a multiple of g. Putting

those results together, this results in an algorithm to compute the quotient of two polynomial
ideals.

Algorithm 4.35 Compute the quotient of one polynomial ideal by another.
Input: f1, . . . , fs, g1, . . . , gr ∈ R [x1, . . . , xn] polynomials over a commutative ring R for some

n, r, s ∈ N>0

Output: a generating set of 〈 f1, . . . , fs〉 : 〈g1, . . . , gr〉

1: set I B 〈1〉 E R [x1, . . . , xn]
2: for i ∈ {1, . . . , r} do
3: compute polynomials h1, . . . , ht ∈ R [x1, . . . , xn] for some t ∈ N>0 such that

〈h1, . . . , ht〉 = 〈 f1, . . . , fs〉 ∩ 〈gi〉 using Theorem 4.29
4: set I B I ∩

〈
h1
gi
, . . . , ht

gi

〉
using Theorem 4.29

5: end for
6: return I

Note that the quotient eliminates only one of the “catalysts” mentioned when motivating quo-
tient of polynomial ideals. For example

〈
x3

1(x2 − x3)
〉

: 〈x1〉 =
〈
x2

1(x2 − x3)
〉
EQ[x1, x2, x3]. To

remove all occurrences of x1 in this example we have to compute the so-called saturation of
the two polynomial ideals.

51

Part II – Chapter 4: Polynomial Rings

Definition 4.36 Let I, J ER [x1, . . . , xn] be polynomial ideals over a ring R for some n ∈ N>0.
The saturation of I by J is the set

I : J∞ B { f ∈ R [x1, . . . , xn] | there is an m ∈ N>0 such that for all g ∈ Jm we have f g ∈ I}

For a polynomial g ∈ R [x1, . . . , xn] we denote the saturation I : 〈g〉∞ by I : g∞. The saturation
of a polynomial ideal I E R [x1, . . . , xn] is

I :

 n∏
i=1

xi

∞
A polynomial ideal is said to be saturated if and only if it is equal to its saturation.

Saturations of polynomial ideals can be computed by repeatedly computing quotients. A more
efficient computation is to split the saturation into saturations with principal ideals as we did
for quotients.

Theorem 4.37 Let I, J,KER [x1, . . . , xn] be polynomial ideals over a commutative ring R for
some n ∈ N>0. We have

I : (J + K)∞ = (I : J∞) ∩ (I : K∞)

To compute the saturation of a polynomial ideal by a principal ideal we can utilize a theorem
like Theorem 4.29 for computing the intersection of polynomial ideals.

Theorem 4.38 Let f1, . . . , fs, gER [x1, . . . , xn] be polynomials over a commutative ring R for
some n, s ∈ N>0. For

K B 〈 f1, . . . , fs, 1 − xn+1g〉 E R [x1, . . . , xn+1]

we have
〈 f1, . . . , fs〉 : g∞ = K ∩ R [x1, . . . , xn]

Together, this enables us to compute the saturation of two polynomial ideals.

52

Section 4.6: Operations on Polynomial Ideals

Algorithm 4.39 Compute the saturation of one polynomial ideal by another.
Input: f1, . . . , fs, g1, . . . , gr ∈ R [x1, . . . , xn] polynomials over a commutative ring R for some

n, r, s ∈ N>0

Output: a generating set of 〈 f1, . . . , fs〉 : 〈g1, . . . , gr〉
∞

1: set I B 〈1〉 E R [x1, . . . , xn]
2: for i ∈ {1, . . . , r} do
3: set K B 〈 f1, . . . , fs, 1 − xn+1g〉 E R [x1, . . . , xn+1]
4: compute polynomials h1, . . . , ht ∈ R [x1, . . . , xn] for some t ∈ N>0 such that

〈h1, . . . , ht〉 = K ∩ R [x1, . . . , xn]
5: set I B I ∩

〈
h1, . . . , ht

〉
using Theorem 4.29

6: end for
7: return I

The quotient and saturation of polynomial ideals can also be interpreted geometrically. By
computing the quotient by some ideal we remove the variety of this ideal from the variety of
the original polynomial ideal.

Theorem 4.40 Let I, J E R [x1, . . . , xn] be polynomial ideals over a commutative ring R for
some n ∈ N>0. We have

V (I : J) = V (I : J∞) = V (I) \ V (J)

whereV (I) \ V (J) denotes the Zariski closure ofV (I) \ V (J).

Note that the Zariski closure is crucial here since the set V (I) \ V (J) may not be a variety
otherwise. For an example consider I = 〈x2〉 E Q[x1, x2] and J = 〈x1, x2〉 E Q[x1, x2]. The set
V (I) \ V (J) is exactly the one described in Example 4.22 for an example of a set that is not
closed under the Zariski topology.

We will use the operations on polynomial ideals extensively in the following sections. In
particular in Section 11.1 we will use all those operations.

53

5 Gröbner Bases

5.1 The Univariate Case

In this section we are going to discuss computations on univariate polynomial ideals. The
techniques used when dealing with univariate polynomial ideals are similar to the case of
general polynomial ideals, but the computational complexity is much lower. That is what
makes univariate polynomial ideals interesting objects to study. For formal proofs of all the-
orems presented in this chapter we refer to the book by David Cox, John Little, and Donal
O’Shea [CLO07].

First of all, we will give a remark concerning the limits of computations on univariate poly-
nomial ideals. In contrast to the case of linear equations as discussed in Section 4.4, we are
not able to actually compute the variety of univariate polynomial ideals in general. The Abel-
Ruffini Theorem states that there are no general solution formulas for univariate polynomials
of degree 5 or higher [Abe26]. We will discuss this theorem in detail in Section 7.1.

We can still compute many properties of univariate polynomial ideals. Several properties can
be seen easily after computing a suitable generating set of the ideal. To do so we define the
greatest common divisor of polynomials.

Definition 5.1 Let R be a commutative ring and n ∈ N>0. A common divisor of polyno-
mials f , g ∈ R [x1, . . . , xn] is a polynomial h ∈ R [x1, . . . , xn] with the property that there are
polynomials f ′, g′ ∈ R [x1, . . . , xn] such that

h f ′ = f and hg′ = g′

A greatest common divisor of polynomials f , g ∈ R [x1, . . . , xn] denoted by gcd(f , g) is com-
mon divisor of f and g having maximal degree.

Note that greatest common divisors can only be unique up to invertible constants contained
in R×. If we have a ∈ R× and h ∈ R [x1, . . . , xn] is a greatest common divisor of f , g ∈
R [x1, . . . , xn] then ah is also a greatest common divisor of f and g. When we write gcd(f , g)
without further qualification we mean any greatest common divisor of f and g. There exists
always a greatest common divisor of two polynomials, because h = 1 is a common divisor of
every pair of polynomials.

In contrast to general polynomial rings univariate polynomial rings over fields always yield a
unique greatest common divisor up to constant factors.

55

Part II – Chapter 5: Gröbner Bases

Theorem 5.2 Let k be field, f , g ∈ k[x] be polynomials and let h1, h2 ∈ k[x] be greatest
common divisors of f and g. There is a c ∈ k[x]× = k such that ch1 = h2.

Equivalently, we could also say that if h ∈ k[x] is a greatest common divisor of f , g ∈ k[x] then
every other greatest common divisor of f and g is also a divisor of h. Integral domains having
one of the properties of k[x] presented above are also called unique factorization domains.

Similarly to the greatest common divisor we can also define the least common multiple, usu-
ally denoted by lcm(f , g), of polynomials f , g ∈ k[x] as a polynomial with smallest degree
that is a multiple of f and g. An analog version of Theorem 5.2 also applies for the least com-
mon multiple. The least common multiple can be computed easily from the greatest common
divisor as for all f , g ∈ k[x] we have gcd(f , g) lcm(f , g) = f g.

As the greatest common divisor of univariate polynomials is unique up to invertible factors, we
can safely use the greatest common divisor in contexts where invertible factors do not matter,
for instance when discussing generators of polynomial ideals. Let f , g ∈ k[x] be polynomials.
Because f and g are multiples of gcd(f , g), it is clear that

〈
gcd(f , g)

〉
⊆ 〈 f , g〉. In fact, both

ideals are the same since every sum of multiples of f and g is also a multiple of
〈
gcd(f , g)

〉
.

Theorem 5.3 Let k be a field and f , g ∈ k[x]. We have〈
gcd(f , g)

〉
⊆ 〈 f , g〉

This theorem can also be applied multiple times. For f1, . . . , fs ∈ k[x] and some s ∈ N>0 we
get

〈 f1, . . . , fs〉 =
〈

gcd
(
. . . gcd(gcd(f1, f2), f3), . . . , fs

)〉
E k[x]

We can apply this procedure to every univariate polynomial ideal as all of them are finitely
generated due to Hilbert’s Basis Theorem. This implies that every univariate polynomial ideal
is a principal ideal.

Corollary 5.4 Let k be a field. k[x] is a principal ideal domain.

To actually compute a greatest common divisor we can use the Euclidean algorithm named
after the ancient Greek mathematician Euclid of Alexandria presented in Algorithm 5.7. To
do so we need to define the leading term of a monomial.

56

Section 5.1: The Univariate Case

Definition 5.5 Let k be a field. The leading term of a univariate polynomial f ∈ k[x] is the
term of f with the highest degree and usually denoted by LT (f). The coefficient of the lead-
ing term is called the leading coefficient and denoted by LC (f) while the leading monomial
LM (f) is the leading term without its coefficient. A polynomial is called monic if and only if
its leading coefficient is 1.

Additionally, we need an algorithm to reduce polynomials, which is called polynomial divi-
sion. This procedure tries to add multiples of a polynomial to another one in a way that the
leading term of the polynomials cancel. Given two polynomials f , g ∈ k[x], the polynomial
division computes a polynomial r ∈ k[x] with minimal degree such that f is equivalent to r
modulo 〈g〉.

Algorithm 5.6 Polynomial division of univariate polynomials.
Input: f , g ∈ k[x] polynomials over a field k, g , 0
Output: h, r ∈ k[x] such that f = hg + r and deg(r) < deg(g)

1: set h B 0, r B f
2: while deg(r) ≥ deg(g) do
3: set t B LT(r)

LT(g)
4: set h B h + t, r B r − gt
5: end while
6: return h, r

Algorithm 5.6 returns r = 0 if and only if f is a multiple of g or equivalently f ∈ 〈g〉. We
call r the remainder of the division of f by g. Computing the remainder of f modulo g is also
referred to as reducing f modulo g. Computing the remainders of two polynomials iteratively
finally results in their greatest common divisor.

Algorithm 5.7 Euclidean algorithm: Compute the greatest common divisor of two univariate
polynomials.
Input: f , g ∈ k[x] polynomials over a field k
Output: gcd(f , g)

1: while g , 0 do
2: compute h, r ∈ k[x] such that f = hg + r and deg(r) < deg(g) using Algorithm 5.6
3: set f B g, g B r
4: end while
5: return f

The Euclidean algorithm and the polynomial division always finish after a finite amount of
steps and can be used together to compute greatest common divisors.

57

Part II – Chapter 5: Gröbner Bases

We now want to compute whether a univariate polynomial g ∈ k[x] is contained in a univariate
polynomial ideal I E k[x] over a field k. First, we will find an f ∈ k[x] such that I = 〈 f 〉. Such
a polynomial f can be found as explained above by computing greatest common divisors of
all generators of I. After computing the generator of I we still have to check whether g is a
multiple of f using polynomial division.

Algorithm 5.8 Compute whether a univariate polynomial is contained in a univariate polyno-
mial ideal.
Input: f1, . . . , fs, g ∈ k[x] polynomials over a field k for some s ∈ N>0

Output: whether g ∈ 〈 f1, . . . , fs〉 or g < 〈 f1, . . . , fs〉

1: set f B f1

2: for i ∈ {2, . . . , s} do
3: compute f B gcd(f , fi) using Algorithm 5.7
4: end for
5: compute h, r ∈ k[x] such that g = h f + r and deg(r) < deg(f) using Algorithm 5.6
6: if r = 0 then
7: return g ∈ 〈 f1, . . . , fs〉

8: else
9: return g < 〈 f1, . . . , fs〉

10: end if

5.2 Definition of Gröbner Bases

We will now discuss an algorithm, that computes whether a polynomial is contained in a
multivariate polynomial ideal like Algorithm 5.8 does for univariate polynomial ideals. There
are some new concepts that have to be introduced for multivariate polynomial ideals. First,
the leading term of a multivariate polynomial is not as easy to define as in the univariate
case. Second, multivariate polynomial rings are no principal ideal domains, which means that
we need another definition of the special basis of the polynomial ideal we compute. Third,
polynomial division does not work as well as in the principal ideal case if we have to divide
by several polynomials as their ordering can influence the result of the polynomial division.

All these issues were addressed by Bruno Buchberger who introduced Gröbner Bases in his
Ph.D. thesis in 1965 [Buc65]. Gröbner Bases are special generating sets of multivariate poly-
nomial ideals that are named after Buchberger’s advisor Wolfgang Gröbner. Buchberger also
presented an algorithm to compute Gröbner Bases and thus to compute whether a polynomial
is contained in a multivariate polynomial ideal. Similar concepts were also independently
introduced by Nikolai M. Gunther in 1913 [Gun41, RRRA03] and Fields medalist Heisuke
Hironaka in 1964 [Hir64].

We will now discuss how to resolve the three obstacles listed above. First, we have to find
a way to order monomials. For univariate monomials over a field k we said that a monomial

58

Section 5.2: Definition of Gröbner Bases

xa ∈ k[x] is larger than another monomial xb ∈ k[x] for some a, b ∈ N0 if and only if its
degree is higher, i.e. a ≥ b or xa is a multiple of xb. For multivariate polynomials, it is not
immediately clear which monomial should be larger than another in general. For instance
x1 ∈ Q[x1, x2] and x2 ∈ Q[x1, x2] have the property that none of them is a multiple of the
other one. We can order those monomials in an arbitrary way, but we still want multiples of
monomials to be larger than the original monomials.

Definition 5.9 Let R be a ring and n ∈ N>0. A monomial ordering or term ordering � on
R [x1, . . . , xn] is an ordering of the monomials of R [x1, . . . , xn] such that

a) � is a total ordering, i.e. for each two monomials xu, xv ∈ R [x1, . . . , xn] given by some
u, v ∈ Nn

0 we have xu � xv or xu � xv, and the relations xu � xv and xu � xv together
imply u = v

b) xu+w � xv+w for each u, v,w ∈ Nn
0 with xu � xv

c) � is a well-ordering, i.e. for every set M of monomials contained in R [x1, . . . , xn] there
is xu ∈ M for some u ∈ Nn

0 with xu � xv for all v ∈ Nn
0 with xv ∈ M

Even though we included the ring R in the definition, the term ordering is independent of
the coefficient ring. All term orderings are also term orderings on any polynomial ring over
another arbitrary coefficient ring. Given a term ordering we can use the leading term, leading
monomial, and leading coefficient as in the univariate case.

The definition of term orderings allows for multiple term orderings on multivariate polynomial
rings. All possible term orderings were classified by Lorenzo Robbiano in 1985 [Rob85].
Though there are infinitely many term orderings on a polynomial ring in general, there are
some term orderings that are used most frequently.

Example 5.10 Let R be a ring and n ∈ N>0. The following are term orderings on
R [x1, . . . , xn].

a) The lexicographic term ordering �lex has xu �lex xv if and only if u = v or the left-most
non-zero entry of u − v ∈ Zn is positive for all u, v ∈ Nn

0.

b) The reverse lexicographic term ordering �revlex has xu �revlex xv if and only if u = v or
the right-most non-zero entry of u − v ∈ Zn is negative for all u, v ∈ Nn

0.

c) The graded lexicographic term ordering �grlex has xu �grlex xv if and only if deg(u) >
deg(v) or deg(u) = deg(v) and xu �lex xv for all u, v ∈ Nn

0.

d) The graded reverse lexicographic term ordering �grevlex has xu �grevlex xv if and only if
deg(u) > deg(v) or deg(u) = deg(v) and xu �revlex xv for all u, v ∈ Nn

0.

59

Part II – Chapter 5: Gröbner Bases

All the term orderings above have x1 � x2 � · · · � xn, but the ordering of the indeterminates
may be changed. While all complexity results presented in this thesis hold for all term order-
ings, experiments suggest that in practice the graded reverse lexicographic term ordering often
results in the fastest running times of several algorithms.

All term orderings mentioned above coincide on a univariate polynomial ring in the ordering
1 � x � x2 � x3 In fact, this is the only term ordering on a univariate polynomial ring,
which is why we did not have to worry about the term ordering in the univariate case.

If we fix a term ordering we can also execute the polynomial division presented in Algo-
rithm 5.6 for multivariate polynomials. Note that multivariate polynomial rings are no princi-
pal ideal domains in general. Thus, we have to divide by several polynomials simultaneously.

Algorithm 5.11 Polynomial division of multivariate polynomials
Input: f , g1, . . . , gs ∈ k [x1, . . . , xn] polynomials over a field k for some n, s ∈ N>0 with gi , 0

for all i ∈ {1, . . . , s} and a term ordering � on k [x1, . . . , xn]
Output: h1, . . . , hs, r ∈ k[x] such that f = h1g1 + · · · + hsgs + r and no term of r is divisible

by LM (gi) for all i ∈ {1, . . . , s}
1: set h1 B 0, . . . , hs B 0, r B 0
2: set p B f
3: while p , 0 do
4: set nodivisor B true
5: for i ∈ {1, . . . , s} do
6: if LM (p) is a multiple of LM (gi) then
7: set t B LT(p)

LT(gi)
8: set hi B hi + t, p B p − git
9: set nodivisor B false

10: end if
11: end for
12: if nodivisor then
13: set r B r + LT (p)
14: set p B p − LT (p)
15: end if
16: end while
17: return h1, . . . , hs, r

Note that Algorithm 5.11 returns exactly the same as Algorithm 5.6 does when invoked on a
univariate polynomial ring with s = 1. The remainder r of a polynomial f modulo g1, . . . , gs

is also called its normal form and usually denoted by f
g1,...,gs .

In contrast to Algorithm 5.6 on the other hand, Algorithm 5.11 does not have the property that
r = 0 if and only if f ∈ 〈g1, . . . , gs〉. The following example by David Cox, John Little, and
Donal O’Shea shows that the result of multivariate polynomial division depends on the order

60

Section 5.2: Definition of Gröbner Bases

of the divisors [CLO07].

Example 5.12 ([CLO07]) Let f B x1x2
2 − x1 ∈ Q[x1, x2] and consider the lexicographic

term ordering �lex on Q[x1, x2] with x1 �lex x2. Dividing f by x1x2 + 1 and x2
2 − 1 using

Algorithm 5.11 results in

x1x2
2 − x1︸ ︷︷ ︸

f

= x2︸︷︷︸
h1

(x1x2 + 1)︸ ︷︷ ︸
g1

+ 0︸︷︷︸
h2

(x2
2 − 1)︸ ︷︷ ︸

g2

+ (−x1 − x2)︸ ︷︷ ︸
r

while exchanging the divisors results in

x1x2
2 − x1︸ ︷︷ ︸

f

= x1︸︷︷︸
h1

(x2
2 − 1)︸ ︷︷ ︸

g1

+ 0︸︷︷︸
h2

(x1x2 + 1)︸ ︷︷ ︸
g2

+ 0︸︷︷︸
r

This is a huge problem for computations using multivariate polynomial division. The remain-
der of a polynomial modulo the generators of a polynomial ideal should be unique to allow for
membership tests. It turns out, that the remainders are only ambiguous for some generating set
and there is always a generating set with unique remainders. Those generating sets are called
Gröbner Bases.

Definition 5.13 Let k be a field, f1, . . . , fs ∈ k [x1, . . . , xn] be polynomials for some n, s ∈ N>0,
and let � be a term ordering on k [x1, . . . , xn]. { f1, . . . , fs} is said to be a Gröbner Basis of
〈 f1, . . . , fs〉Ek [x1, . . . , xn] with respect to � if and only if for all g ∈ k [x1, . . . , xn] the remainder
of g modulo f1, . . . , fs in any order computed by Algorithm 5.11 using � is r = 0 if and only
if g ∈ 〈 f1, . . . , fs〉.

This definition makes one usage of Gröbner Bases immediately clear, but it is more common
in the literature to define Gröbner Bases with the help of the ideal of leading terms. Both
definitions are equivalent.

Theorem 5.14 Let k be a field, f1, . . . , fs ∈ k [x1, . . . , xn] be polynomials for some n, s ∈ N>0,
and let � be a term ordering on k [x1, . . . , xn]. The ideal of leading terms of the polynomial
ideal 〈 f1, . . . , fs〉 E k [x1, . . . , xn] is the ideal

LT ({ f1, . . . , fs}) B LT (〈 f1, . . . , fs〉) B
〈

LT (f) | f ∈ 〈 f1, . . . , fs〉
〉

{ f1, . . . , fs} is a Gröbner Basis of 〈 f1, . . . , fs〉 E k [x1, . . . , xn] with respect to � if and only if〈
LT (f1) , . . . ,LT (fs)

〉
= LT (I)

61

Part II – Chapter 5: Gröbner Bases

Every time we refer to the leading term of a polynomial, we mean the leading term of that
polynomial with respect to the term ordering �. Theorem 5.14 states that a generating set
of a polynomial ideal is a Gröbner Basis if and only if the leading term of every polynomial
contained in the polynomial ideal is a multiple of the leading term of one of the genera-
tors. Subsequently, when reducing a polynomial contained in the polynomial ideal modulo a
Gröbner Basis we always find a generator such that the if-statement in line 6 of Algorithm 5.11
is fulfilled.

Note that Gröbner Bases as defined here are not unique. For instance, we could add additional
polynomials contained in the polynomial ideal to every Gröbner Basis and the result would
still be a valid Gröbner Basis. Also, we could multiply generators by constants or reduce
generators modulo other generators to get other Gröbner Bases. To remove those generators,
that are not needed or ambiguous, we define minimal and reduced Gröbner Bases.

Definition 5.15 Let I E k [x1, . . . , xn] be a polynomial ideal over a field k for some n ∈ N>0

and let G ⊆ k [x1, . . . , xn] be a Gröbner Basis of I with respect to some term ordering � on
k [x1, . . . , xn]. G is a minimal Gröbner Basis of I with respect to � if and only if

a) LC (f) = 1 for every f ∈ G

b) LT (G) , LT (G \ { f }) for every f ∈ G

G is a reduced Gröbner Basis of I with respect to � if and only if it is a minimal Gröbner Basis
and for all f , g ∈ G no monomial of f is a multiple of LM (g).

Interestingly, it turns out that it is already enough to remove unnecessary generators, scale
all generators to the same leading coefficient, and reduce all generators modulo the other
generators to make Gröbner Bases unique.

Theorem 5.16 Let I E k [x1, . . . , xn] be a polynomial ideal over a field k for some n ∈ N>0

and let � be a term ordering on k [x1, . . . , xn]. The reduced Gröbner Basis of I with respect to
� is unique.

The computation of a reduced Gröbner Basis from any other Gröbner Basis is straight-forward
from the definition.

62

Section 5.3: Buchberger’s Algorithm

Algorithm 5.17 Compute a reduced Gröbner Basis from any Gröbner Basis
Input: f1, . . . , fs ∈ k [x1, . . . , xn] polynomials over a field k for n, s ∈ N>0 and a term ordering
� on k [x1, . . . , xn] such that { f1, . . . , fs} ⊆ k [x1, . . . , xn] is a Gröbner Basis of 〈 f1, . . . , fs〉E
k [x1, . . . , xn] with respect to �

Output: the reduced Gröbner Basis of 〈 f1, . . . , fs〉 E k [x1, . . . , xn] with respect to �
1: set G B ∅
2: for i ∈ {1, . . . , s} do
3: compute the remainder r1 ∈ k [x1, . . . , xn] of LM (fi) modulo LT (G) with respect to �

using Algorithm 5.11
4: if r1 , 0 then
5: compute the remainder r2 ∈ k [x1, . . . , xn] of fi modulo G with respect to � using

Algorithm 5.11
6: set G B G ∪

{
r2

LC(r2)

}
7: end if
8: end for
9: return G

There are also other algorithms to transform Gröbner Bases. Algorithms to change the term or-
dering of a Gröbner Basis, for instance, include the FGLM algorithm by Jean-Charles Faugère
et al. [FGLM93] and the Gröbner walk.

5.3 Buchberger’s Algorithm

Bruno Buchberger also presented an algorithm to compute Gröbner Bases in his Ph.D. the-
sis [Buc65]. As we saw in Theorem 5.14, we need the leading monomials of a Gröbner Basis
to generate the full ideal of leading terms of the polynomial ideal. To generate new leading
monomials of the generators, it is therefore useful to combine them in a way that the existing
leading terms cancel and new leading terms are generated. This is done by the computation of
so-called subtraction polynomials or short s-polynomials.

Definition 5.18 Let f , g ∈ k [x1, . . . , xn] be polynomials over a field k for some n ∈ N>0 and
let � be a term ordering on k [x1, . . . , xn]. The s-polynomial of f and g is the polynomial

spol (f , g) B
lcm(LM (f) ,LM (g)) f

LT (f)
−

lcm(LM (f) ,LM (g))g
LT (g)

s-polynomials also appear while reducing polynomials. Note that the multivariate polynomial
division as presented in Algorithm 5.11 just repeatedly computes s-polynomials. If the leading

63

Part II – Chapter 5: Gröbner Bases

term of f is a multiple of the leading term of g, as it is in the situation of this algorithm, we
get

spol (f , g) =
f

LC (f)
−

LM (f) g
LT (g)

which are exactly the formulas computed in Algorithm 5.11.

Buchberger’s Criterion implies that computing s-polynomials and reducing them modulo the
existing generators is everything that needs to be done to compute a Gröbner Basis.

Theorem 5.19 (Buchberger’s Criterion [Buc65]) Let f1, . . . , fs ∈ k [x1, . . . , xn] be polyno-
mials over a field k for some n, s ∈ N>0 and let � be a term ordering on k [x1, . . . , xn].
{ f1, . . . , fs} is a Gröbner Basis of 〈 f1, . . . , fs〉 E k [x1, . . . , xn] with respect to � if and only
if for all i, j ∈ {1, . . . , s} with i , j the remainder of spol

(
fi, f j

)
modulo { f1, . . . , fs} in any

order with respect to � computed using Algorithm 5.11 is 0.

With Buchberger’s Criterion we can immediately state an algorithm to compute a Gröbner
Basis of a polynomial ideal.

Algorithm 5.20 Buchberger’s Algorithm: Compute a Gröbner Basis of a polynomial ideal
Input: f1, . . . , fs ∈ k [x1, . . . , xn] polynomials over a field k for n, s ∈ N>0, a term ordering �

on k [x1, . . . , xn]
Output: a Gröbner Basis of 〈 f1, . . . , fs〉 E k [x1, . . . , xn] with respect to �

1: set G B { f1, . . . , fs}, G′ B ∅
2: while G , G′ do
3: set G′ B G
4: for f , g ∈ G′ do
5: compute the remainder r ∈ k [x1, . . . , xn] of spol (f , g) modulo G with respect to �

using Algorithm 5.11
6: if r , 0 then
7: set G B G ∪ {r}
8: end if
9: end for

10: end while
11: return G

We will discuss the time and space complexity of Buchberger’s Algorithm and other algo-
rithms to compute Gröbner Bases in Section 7.2 in detail.

Gröbner Bases are useful for solving the membership problem of polynomial ideals as shown
above, but they can also be used to solve many other computational problems on polynomial

64

Section 5.3: Buchberger’s Algorithm

ideals. In Section 4.6 we discussed operations on polynomial ideals and in particular elimi-
nation ideals as defined in Definition 4.28. Elimination ideals can be computed as Gröbner
Bases of polynomial ideals with respect to so-called elimination orderings as term orderings.

Theorem 5.21 (Elimination Theorem) Let I E k [x1, . . . , xn] be a polynomial ideal over a
field k for some n ∈ N>0. Let G ⊆ k [x1, . . . , xn] be a Gröbner Basis of I with respect to the
lexicographic term ordering �lex with x1 �lex x2 �lex · · · �lex xn. For every s ∈ {1, . . . , n − 1}
the s-th elimination ideal I ∩ k [x1, . . . , xs] of I is generated by G ∩ k [x1, . . . , xs].

With the help of the Elimination Theorem and Buchberger’s Algorithm we can compute in par-
ticular intersections of polynomial ideals as explained in Theorem 4.29, quotients of polyno-
mial ideals as explained in Algorithm 4.35, and saturations of polynomial ideals as explained
in Algorithm 4.39.

65

Part III

Complexity Results

6 The Computational Model 69
6.1 Historical Introduction . 69

6.2 Turing Machines . 70

6.3 Non-Determinism . 76

6.4 Complexity Classes and Reductions . 78

7 Known Complexity Results for Polynomial Ideals 83
7.1 Problems in Algorithmic Computer Algebra 83

7.2 General Gröbner Bases . 85

7.3 Polynomial Ideals with Low Dimension . 89

6 The Computational Model

6.1 Historical Introduction

In this chapter we will define the computational model that we use for the complexity analysis
of all algorithms. When we think about computational models in practice there are numerous
approaches from data centers, computers with various hardware, calculators, devices like an
abacus, or even human brains that use neurons and DNA. Yet we will see that it is believed that
all those ways of computing have similar computational power and there is an easy theoretical
computational model, that we can use in proofs, which is mathematically equivalent to all
ways of computing in nature.

For computations on large problems it is essential to execute those computations in a timely
manner and without making errors. Humans experience problems with both of those prop-
erties. The creation of mechanical or electronic computation devices was therefore a huge
breakthrough in the history of computation.

One of the first notable mechanical computation machines was invented by Charles Babbage.
In 1822 he proposed to build the Difference Engine, a device for computing large tables of
values of polynomial functions. Even though Babbage was never able to complete a phys-
ical realization of this machine, it was constructed in the 1990s to prove that his ideas and
concepts actually work. Charles Babbage abandoned the project of the Difference Engine to
describe the so-called Analytical Engine in 1837. This machine was never constructed too.
Nevertheless, it was a milestone in the history of computation as the Analytical Engine is
the first general-purpose computation device. The description of the steps, that the machine
should execute, i.e. the algorithm itself, is not hardwired into the design of the device as for
all known machines before, but rather part of the input. Thus, the Analytical Engine was in
theory able to solve a wide range of problems instead of just computing one specific problem,
like for instance the Difference Engine.

There was still no mechanical general-purpose computation device available in 1936, but in
this year two theoretical computational models were introduced. Alonzo Church introduced
the λ-calculus [Chu36] and Alan M. Turing proposed the Turing Machine [Tur37b]. It was
shown that both computational models are mathematically equivalent [Tur37a], but – as even
Church acknowledged – the Turing Machine to be the better representation of the computa-
tional model, it became the standard theoretical model of computation.

Both models are important because it has been proposed that every physically realizable com-
putation device can be simulated by a Turing Machine. This claim is known as the (weak)
Church-Turing thesis [Kle43] and generally believed to be true. The more powerful strong
Church-Turing thesis states that every physically realizable computation device can be effi-

69

Part III – Chapter 6: The Computational Model

ciently simulated by a Turing Machine. Efficiently simulated in this context means, that there
is at most polynomial overhead, i.e. for every physically realizable computation device there
is a constant c ∈ N>0 such that every computation on this device with t ∈ N>0 steps can be
simulated on a Turing Machine in at most tc steps. There is some debate whether the strong
Church-Turing thesis is true, in particular in the light of models like quantum computers.
There is currently no known way to efficiently simulate a quantum computer using a Turing
Machine, but there are also no known physical realizations of quantum computers.

Turing later constructed mechanical devices to crack codes encrypted with the “Enigma” ci-
pher during World War II. However, those were also tailored for a single purpose. During and
after the war the first electronic computation devices were constructed. John von Neumann
was one of the most well-known pioneers in this field and introduced the “von Neumann ar-
chitecture” in 1945, which is the design principle of computers until today [vN93].

The power and technology of computers has evolved drastically since then, but the underlying
principles are still similar today. In the next section we will introduce a definition of Turing
Machines and some generalizations of the model.

We will not give proofs of all statements in this chapter and refer to the textbook by Sanjeev
Arora and Boaz Barak for the proofs and further details [AB09].

6.2 Turing Machines

There are many equivalent definitions of Turing Machines. We will state the one with the
shortest definition here. This definition requires only one tape, which is used for input and
output as well as a work tape. The following definition is not the most convenient to use but
formally it can be stated very easily.

Definition 6.1 A deterministic Turing Machine M is a tuple (Γ,Q, q0, q1, δ) where Γ is a finite
set of tape symbols, also called the alphabet of M, Q is a set of states, q0 ∈ Q is the initial
state of M, q1 ∈ Q is the halting state of M, and δ : Q× Γ→ Q× Γ× {L,N,R} is the transition
function of M.

The Turing Machine has a tape consisting of cells. Each cell of the tape can be filled with
exactly one symbol from the set Γ. The cells are indexed by the set N0, i.e. the tape is one-
dimensional, finite on one side and infinite on the other side. We assume that the tape starts
with cell zero at the left and indices are growing to the right. Each Turing Machine also has a
head for reading and writing, which points to one cell of the tape.

70

Section 6.2: Turing Machines

A configuration of a Turing Machine consists of its current state, the contents of the tape, and
the position of the head. Initially, a Turing Machine M is in the initial state q0, has some input
as the content of the tape and the head points to cell 0. We usually assume that the input is
finite and that the remainder of the tape is filled with a blank symbol � ∈ Γ. To execute it,
the Turing Machine takes steps and transitions to another configuration in each step. For each
step it looks up δ(q, γ) where q is the current state of the machine and γ is the symbol at the
cell the head currently points to. The triple δ(q, γ) defines the next state, a symbol to write
in the cell the head currently points to, and a direction to move the head to afterwards: L for
one cell to the left, N for no movement, and R for one cell to the right. The head is never
allowed to leave the tape, i.e. to go to the left when it is at cell 0. All other contents of the
tape stay the same. Now the machine is in a new configuration and ready to execute the next
step. The execution stops when the machine reaches the halting state q1. The content of the
tape after the machine stops is the output of the computation. The position of the head when
the machine stops is discarded. The time, that a computation needs, is the number of steps the
Turing Machine executes before it stops. The space, that a computation needs, is the number
of total cells read or written by the head on the tape during that computation.

To allow a formal discussion, we denote the contents of the tape as strings over the alphabet Γ

ignoring the (infinitely many) blank symbols on the right. The set Γn contains all strings of n
characters over Γ for some n ∈ N0 and we define Γ∗ B

⋃
i∈N0

Γi as the set of all strings of finite
length over Γ. The empty word, which contains no symbols, is usually denoted by ε and thus
we have Γ0 = {ε} for all sets Γ. The elements of Γ∗ are also called words over the alphabet Γ.
The operation Γ∗ is called the Kleene star named after the American mathematician Stephen
Kleene. We can also understand the set of finite words Γ∗ over an alphabet Γ as a monoid with
concatenation as the operation and ε as the neutral element. The construction of the Kleene
star can also be generalized to other monoids.

Example 6.2 As an example we construct a Turing Machine, that decides whether a number
is divisible by 3. The alphabet is Γ = {0, 1,�} and the input is given as a binary encoded
number on the tape where the least significant bit is in cell zero. The remainder of the tape
is filled with blank symbols �. We use that a binary number is divisible by 3 if and only if
its alternating digit sum is divisible by 3. The machine will first compute the alternating digit
sum modulo 3 while erasing the input and then print 1 if the input was divisible by 3 and 0
else. The set of states Q = {q0, q1, . . . , q7} is described in Table 6.3, the transition function δ is
defined in Table 6.4 and an example run for the input 53 is given in Table 6.5. The succession
of the states can also be drawn as a graph as shown in Figure 6.6

Note that this Turing Machine does not print its output in the first cell of the tape, but in some
other cell depending on the length of the input to make the description easier. The machine
can easily be extended to write the output in the leftmost cell.

71

Part III – Chapter 6: The Computational Model

state description
q0 initial state, redirects to state q2

q1 halting state
q2 even number of digits, alternating digit sum has remainder 0 modulo 3
q3 even number of digits, alternating digit sum has remainder 1 modulo 3
q4 even number of digits, alternating digit sum has remainder 2 modulo 3
q5 odd number of digits, alternating digit sum has remainder 0 modulo 3
q6 odd number of digits, alternating digit sum has remainder 1 modulo 3
q7 odd number of digits, alternating digit sum has remainder 2 modulo 3

Table 6.3: The states of a Turing Machine to decide whether a number is divisible by 3.

Q Γ Q Γ {L,N,R}
q0 0 q2 0 N
q0 1 q2 1 N
q2 0 q5 � R
q2 1 q6 � R
q2 � q1 1 N
q3 0 q6 � R
q3 1 q7 � R
q3 � q1 0 N
q4 0 q7 � R
q4 1 q5 � R
q4 � q1 0 N
q5 0 q2 � R
q5 1 q4 � R
q5 � q1 1 N
q6 0 q3 � R
q6 1 q2 � R
q6 � q1 0 N
q7 0 q4 � R
q7 1 q3 � R
q7 � q1 0 N

Table 6.4: The transition function of a Turing Machine to decide whether a number is divisible by 3.
The left two columns specify the input of δ : Q×Γ→ Q×Γ× {L,N,R} while the right three
columns specify the output. Only inputs that appear during the computation of a valid input
are listed here.

72

Section 6.2: Turing Machines

state head position tape content
q0 0 1, 0, 1, 0, 1, 1,�,�, . . .
q2 0 1, 0, 1, 0, 1, 1,�,�, . . .
q6 1 �, 0, 1, 0, 1, 1,�,�, . . .
q3 2 �,�, 1, 0, 1, 1,�,�, . . .
q7 3 �,�,�, 0, 1, 1,�,�, . . .
q4 4 �,�,�,�, 1, 1,�,�, . . .
q5 5 �,�,�,�,�, 1,�,�, . . .
q4 6 �,�,�,�,�,�,�,�, . . .
q1 6 �,�,�,�,�,�, 0,�, . . .

Table 6.5: The configurations of a Turing Machine during a sample run with input 53.

q0 q1

q2 q3 q4

q5 q6 q7

0/0

1/1

0
1

�/1

0
1

�/0

0
1 �/0

0
1

�/1

0
1

�/0

0
1 �/0

Figure 6.6: A visualization of the succession of states as given in Table 6.4. The symbols read are
denoted as labels of the edges. The symbols to write are given behind a slash if not the
blank symbol. The moving direction of the head is omitted to increase readability: The
first and last step do not move the head, all other steps move it to the right.

73

Part III – Chapter 6: The Computational Model

When dealing with Turing Machines with finite running time we want to quantify the running
time more precisely. Since the running time for most problems depends on the input size we
do not use constant numbers but functions to measure running times.

Definition 6.7 Let M be a Turing Machine and let s, t : N0 → N0 be functions. M is said to
run in time t and space s if and only if for every input of length n, i.e. with all cells but the first
n cells blank in the beginning, the execution of the machine terminates after at most t(n) steps
and uses at most s(n) cells of the tape during the whole computation. The length of an input
x ∈ {0, 1}∗ is the number of cells on the tape needed to describe this input and denoted by |x|.

We assume that the input is given in binary encoding, i.e. integers have an encoding size
logarithmic in the actual number. If there are several inputs they are given one after another
divided by some special tape symbol.

The machine explained above runs in time t : N0 → N0, n 7→ n + 2 and space s : N0 →

N0, n 7→ n + 1. Summands like “+1” or “+2” in those examples are only a minor influence
for large inputs, and in most applications only large inputs have critical running times. Thus,
we usually ignore small summands by speaking about the asymptotic running time or space
consumption. To do so, we use the Landau symbols named after Edmund Landau [Lan09]
which is also called Big O notation. This notation orders functions by their growth instead
of absolute values. For a formal definition of this notation we refer the reader to computer
science textbooks [AB09, Knu68]. Using this notation we can say that our Turing Machine
runs in time and space O(n) or linear time and space.

The Turing Machine from Example 6.2 is an example for solving a so-called decision problem.

Definition 6.8 A decision problem or language L is defined by a subset of the set of strings
{0, 1}∗ consisting of zeros and ones only. The decision problem entails, given a string x ∈
{0, 1}∗, to decide whether x ∈ L. A deterministic Turing Machine M is said to decide the
problem L if and only if it terminates after a finite number of steps for all inputs in x ∈ {0, 1}∗

and writes 1 to the output tape if x ∈ L and 0 if x < L. A decision problem L = {0, 1}∗ is called
decidable if and only if there is a Turing Machine deciding L. A problem L can be decided
deterministically in time t : N0 → N0 and space s : N0 → N0 if and only if there is a Turing
Machine M that decides L and runs in time t and space s.

For some problems the input is already given as a bit string, for instance the input of Exam-
ple 6.2. Other problems have to be encoded into a bit string first. We will always assume that
this is done in the following without explicitly mentioning it.

If there is a Turing Machine that computes the correct result for all inputs of a problem in
a finite number of steps we call this problem decidable. We will only deal with decidable

74

Section 6.2: Turing Machines

problems in this thesis, but it is interesting to note that there are undecidable problems. An
example of an undecidable problem is the halting problem, i.e. the problem to decide whether
for a given Turing Machine there is an input such that the execution of the Turing Machine on
this input takes an infinite number of steps. The existence of undecidable problems can also be
used to prove Kurt Gödel’s famous theorem that sound systems of axioms and inference rules
are not complete, i.e. cannot be used to prove all true mathematical statements [AB09, Göd31].

There are many similar definitions of Turing Machines to the one given in Definition 6.1.
A list of possible changes to the definition, that do not change the computational power of
the machines, follows, i.e. the same problems are decidable with each definition and each
definition can be simulated by any other definition with at most polynomial overhead.

a) The alphabet can be limited to Γ = {0, 1}.

b) Several heads can be allowed. During each step only one of the heads is allowed to write
and read.

c) The input can be given on a separate input tape and the output can be written to a
separate output tape. All other tapes are called work tapes.

d) The tape can be assumed to be infinite in both directions.

e) The machine can be allowed to use multiple work tapes instead of just one work tape.

f) Instead of a one-dimensional tape it is possible to allow two-dimensional tapes or tapes
of arbitrary finite dimensions.

g) It is possible to require that the Turing Machine moves the head only dependent on the
length of the input and independent of the actual input. Such a machine is called an
oblivious Turing Machine.

As explained above, Turing Machines are a theoretical model of computation and not meant to
be constructed as defined here. A construction of a Turing Machine is not even possible since
there are only finite tapes available in practice. Nevertheless, there are several real working
machines showcasing the definition of a Turing Machine like the one built by Mike Davey in
2010 shown in Figure 6.9 [Dav10]. In practice, other computation devices are used and the
strong Church-Turing thesis implies that their computational power is equivalent.

Turing Machines also have the same computational power as modern programming languages
like Java or C++. While simulating a Turing Machine in one of those languages efficiently is
an easy task, the efficient simulation of higher programming languages using Turing Machines
is very effortful, but still possible.

It is also important to note that Turing Machines are able to efficiently simulate themselves.
Each Turing Machine can be binary encoded by encoding the states and the transition func-

75

Part III – Chapter 6: The Computational Model

Figure 6.9: A construction of a Turing Machine (with finite tape) built by Mike Davey [Dav10].

tion. This encoding can also be defined in a way such that every bit string of zeros and ones
represents a Turing Machine.

Theorem 6.10 (universal Turing Machine) There is a so-called universal Turing Machine U,
that takes the binary encoding of a Turing Machine M and an input x, and prints the result of
M executed on input x within a number of steps that is polynomial in the number of steps, that
M would take when executed on input x.

This simulation can even be done with a logarithmic overhead only.

6.3 Non-Determinism

Some computations are very hard, but positive results can be verified easily. For instance, this
is the case when solving polynomial equations. Finding solutions is hard as we will see in
this thesis. On the other hand, the verification whether a given set of values for the indeter-
minates indeed fulfills the equations is computationally very easy by plugging the values into
the equations and checking that both sides of the equations result in the same number. We will
speak about problems like that in this subsection and adjust our definition of Turing Machines
accordingly.

To use a given solution we can think about Turing Machines that are able to take a hint or as
Turing Machines that just guess some solution and then try to verify it. Adding the ability to
guess to Definition 6.1 results in a non-deterministic Turing machine.

76

Section 6.3: Non-Determinism

Definition 6.11 A non-deterministic Turing Machine M is a tuple (Γ,Q, q0, q1, q2, δ1, δ2)
where Γ is a finite set of tape symbols, also called the alphabet of M, Q is a set of states,
q0 ∈ Q is the initial state of M, q1 ∈ Q is the halting state of M, q2 ∈ Q is the accepting state
of M, and δ1, δ2 : Q × Γ→ Q × Γ × {L,N,R} are the transition functions of M.

A non-deterministic Turing Machine works like a deterministic Turing machine, but it also
terminates the execution when it reaches the accepting state and in each step it randomly
chooses one of the transition functions δ1 and δ2 to apply. Since there are multiple possible
outputs of non-deterministic Turing Machines, depending on which transition function was
used at which step, we have to refine Definition 6.8 of a decision problem in this case.

Definition 6.12 A non-deterministic Turing Machine M is said to decide a decision problem
L if and only if for all input bit strings x ∈ {0, 1}∗

a) there is a choice of transition functions in each step such that M terminates after a finite
number of steps by reaching the accepting state if we have x ∈ L and

b) the machine stops for all possible choices of the transition functions in each step after a
finite number of steps without reaching the accepting state q2 if we have x < L.

A problem L can be non-deterministically decided in time t : N0 → N0 and space s : N0 → N0

if and only if there is a Turing Machine M that decides L and runs in time t and space s for all
choices of the transition functions in each step.

With this definition we can think about the non-deterministic choices of the transition function
to be guesses made by the Turing Machine. Another way is to regard those choices as a
certificate or witness given by an omniscient oracle.

Definition 6.13 A decision problem L ⊆ {0, 1}∗ is said to be verifiable in time t : N0 → N0

and space s : N0 → N0 with certificates of length p : N0 → N0 if and only if there is a
deterministic Turing Machine M such that

a) M runs in time t and space s and for all x ∈ {0, 1}∗ and

b) we have x ∈ L if and only if there is a certificate u ∈ {0, 1}p(|x|), also called witness, such
that M prints 1 given x and u as inputs.

If we map the non-deterministic choices of the transition function to the bits of the certificate
we can find that both definitions can decide the same languages.

77

Part III – Chapter 6: The Computational Model

Theorem 6.14 A decision problem L ⊆ {0, 1}∗ can be decided in polynomial time by a
non-deterministic Turing Machine if and only if it can be verified in polynomial time with
certificates of polynomial length.

The complexity class of all those decision problems is called NP as defined in the next section.
Both definitions given in Theorem 6.14 can be used to define NP.

6.4 Complexity Classes and Reductions

In this section we will formally define complexity classes using the running time of Turing
Machines as introduced above. Since there are numerous complexity classes we only define
the most common complexity classes needed in this thesis. For an exhaustive list we refer to
the “Complexity Zoo” [AKG+].

Definition 6.15 We define

a) DTIME(t) B {problems that can be decided deterministically in time c · t for some
c ∈ N>0} for all functions t : N0 → N0

b) P B
⋃

f∈Q[n] DTIME(f (n))

c) EXP B
⋃

f∈Q[n] DTIME
(
2 f (n)

)
d) NTIME(t) B {problems that can be decided non-deterministically in time c·t for some

c ∈ N>0} for all functions t : N0 → N0

e) NP B
⋃

f∈Q[n] NTIME(f (n))

f) NEXP B
⋃

f∈Q[n] NTIME
(
2 f (n)

)
g) coNTIME(t) B {problems whose complement can be decided non-deterministically

in time c · t for some c ∈ N>0} for all functions t : N0 → N0

h) coNP B
⋃

f∈Q[n] coNTIME(f (n))

i) coNEXP B
⋃

f∈Q[n] coNTIME
(
2 f (n)

)

78

Section 6.4: Complexity Classes and Reductions

j) DSPACE(s) B {problems that can be decided deterministically in space c · s for some
c ∈ N>0} for all functions s : N0 → N0

k) L B
⋃

f∈Q[n] DSPACE
(
f (log n)

)
l) PSPACE B

⋃
f∈Q[n] DSPACE(f (n))

m) EXPSPACE B
⋃

f∈Q[n] DSPACE
(
2 f (n)

)
n) NSPACE(s) B {problems that can be decided non-deterministically in space c · s for

some c ∈ N>0} for all functions s : N0 → N0

o) NL B
⋃

f∈Q[n] NSPACE
(
f (log n)

)
p) NPSPACE B

⋃
f∈Q[n] NSPACE(f (n))

By c · t for c ∈ N>0 and t : N0 → N0 we denote the function c · t : N0 → N0, x 7→ c · t(x).
Similarly, we define other functions like 2 f for f ∈ Q[n] as 2 f : Q → Q, x 7→ 2 f (x). We will
use similar notation without further reference.

There are many relations between the complexity classes defined above, but for many pairs of
complexity classes it is still unknown whether they are equivalent. For instance, we can order
deterministic time bounds and space bounds as given in the following theorem.

Theorem 6.16 Let s : N>0 → N>0 be a function. We have

DTIME(s) ⊆ DSPACE(s) ⊆ NSPACE(s) ⊆ DTIME
(
2O(s)

)

Proof The first relation DTIME(s) ⊆ DSPACE(s) is true because a deterministic Turing
Machine that works in s(|x|) steps for some input x ∈ {0, 1}∗ can only write in s(|x|) cells of
the tape as in each step a Turing Machine can only write in one cell. The second relation
DSPACE(s) ⊆ NSPACE(s) holds since non-deterministic Turing Machines are obviously
able to simulate deterministic Turing Machines by using the same transition function twice.

The third relation NSPACE(s) ⊆ DTIME
(
2O(s)

)
is fulfilled since a non-deterministic Turing

Machine M that uses at most space s can have at most 2O(s) configurations. Each cell of the
tape has only two possible values zero and one. The configuration can also differ by a constant
number of states of the machine and s positions of the head. All in all, this results in 2O(s)

possible configurations of M. A deterministic Turing Machine N can simulate M by finding a
path in the graph of configurations of M from the initial configuration to configurations with
an accepting state. This simulation can be done by a breadth-first search in time 2O(s) which

79

Part III – Chapter 6: The Computational Model

concludes the proof. For a detailed proof of this theorem we refer to the textbook by Sanjeev
Arora and Boaz Barak, Theorem 4.2 [AB09].

With this result we can order some of the complexity classes from Definition 6.15.

Corollary 6.17

L ⊆ NL ⊆ P ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ EXPSPACE

It is also known that the complexity classes characterized by deterministic time bounds and
the ones characterized by deterministic space bounds, mentioned above, are in fact different.
The Space Hierarchy Theorem and Time Hierarchy Theorem were proven by Juris Hartmanis,
Frederick C. Hennie, Phil M. Lewis, and Richard E. Stearns.

Theorem 6.18 (Time Hierarchy Theorem [HS65, HS66]) Let t, t′ : N0 → N0 be functions
with t′ ∈ o(t). We have

DTIME(t′) (DTIME(t)

Theorem 6.19 (Space Hierarchy Theorem [SHL65]) Let s, s′ : N0 → N0 be functions with
s′ ∈ o(s). We have

DSPACE(s′) (DSPACE(s)

Corollary 6.20
P (EXP, L (PSPACE (EXPSPACE

This implies that many relations in Corollary 6.17 are actual subsets and no equations. It
is still not known which of those relations are equations, for instance it is unknown whether
PSPACE and EXP are the same sets – and thus also whether PSPACE and NPSPACE as well
as NPSPACE and EXP are the same sets.

Another important open question is the relation of deterministic and non-deterministic com-
plexity classes. Most prominently, it is an open question whether P and NP are the same set. It
is widely believed that both sets are not equal, but until today there is no proof. This question

80

Section 6.4: Complexity Classes and Reductions

was first mentioned by Kurt Gödel in a letter to John von Neumann and was selected as one
of the seven Millennium Prize Problems whose solution’s author will be awarded one million
US-dollars by the Clay Mathematics Institute.

The membership of problems in complexity classes gives an upper bound on the complexity
of the problem. Nevertheless, there might be better algorithms than the known ones, that solve
problems even faster. For instance, a problem contained in EXP may still be contained in P
even if currently no algorithm is known that solves this problem in polynomial time. To give
lower bounds, we usually give reductions that state that a problem is at least as hard as another
problem, that is known to be hard.

Definition 6.21 (Karp reductions, NP-completeness) Let L, L′ ⊆ {0, 1}∗ be decision prob-
lems. L is polynomial-time reducible or Karp reducible to L′ if and only if there is a function
f : {0, 1}∗ → {0, 1}∗ that can be computed in polynomial time and for every x ∈ {0, 1}∗ we
have x ∈ L⇔ f (x) ∈ L′.

A decision problem L ⊆ {0, 1}∗ is said to be NP-hard if and only if every decision problem
contained in NP can be Karp reduced to it. A decision problem L ⊆ {0, 1}∗ is said to be
NP-complete if and only if it is contained in NP and NP-hard. Similarly, we define hard-
ness and completeness for more complexity classes, in particular coNP, PSPACE, EXP, and
EXPSPACE.

If a decision problem L ⊆ {0, 1}∗ can be Karp reduced to a decision problem L′ ⊆ {0, 1}∗ we
can think of L′ to be at least as hard as L, because to solve L we could solve problem instances
of L by translating them to problem instances of L′ and solving those problems. An NP-hard
decision problem is as hard as a decision problem contained in NP can be, since it can be used
to solve all decision problems contained in NP.

Note that there are other definitions of reductions for certain complexity classes. For instance,
complexity classes that are contained in P need less powerful reduction functions as otherwise
the reduction function is already able to solve the problem. Also, we can extend the definition
of a reduction to so-called Levin reductions or parsimonious reductions that also transform
the certificates together with the problem instances. We do not define more reductions here as
they are not needed for this thesis, but refer to textbooks for details [AB09].

81

7 Known Complexity Results for
Polynomial Ideals

7.1 Problems in Algorithmic Computer Algebra

Solving systems of polynomial equations is one of the most common problems in mathe-
matics. As we have seen in the previous chapters, the most common way to solve problems
mathematically is modeling properties of objects as polynomial equations. The varieties of
the resulting polynomial ideals themselves or properties of them need to be determined. These
problems turn out to be inherently hard, and it is a common technique to first compute Gröbner
Bases, which have properties that make solving the problems easier. In this section we will
collect interesting complexity problems, that will be solved later on. Parts of this chapter have
been submitted as part of an edited volume of the DFG priority project 1489 “Algorithmic and
Experimental Methods in Algebra, Geometry, and Number Theory” [MT16a].

For all problems we assume that polynomial ideals are given by a list of generators, while
polynomials are given as a list of exponents and their coefficients. All lists are separated by
a special character of the input alphabet. All exponents, coefficients, and other numbers are
encoded in the usual way using their binary representation.

The most immediate problem is to determine all solutions of a polynomial ideal.

Definition 7.1 The variety problem is given a polynomial ideal I ER [x1, . . . , xn] over a com-
mutative ring R for some n ∈ N>0 to compute the varietyV (I) ⊆ Rn.

Unfortunately, this problem cannot be solved in general. According to the Abel-Ruffini The-
orem – named after the mathematicians Niels Abel and Paolo Ruffini – solutions of poly-
nomial equations cannot even be expressed in general using simple formulas involving roots
only [Abe26], even if n = 1.

Theorem 7.2 (Abel-Ruffini Theorem [Abe26]) Let k be a field with char(k) = 0 and d ∈ N>0

with d ≥ 5. There is a polynomial f ∈ k[x1] with deg(f) = d and y ∈ k with f (y) = 0 such that
y is not algebraic, i.e. it cannot be expressed in radicals.

While there are closed formulas for finding the zeros of univariate polynomials of degree up
to 4, univariate polynomials of degree 5 or higher may have solutions not expressible using

83

Part III – Chapter 7: Known Complexity Results for Polynomial Ideals

roots and the usual field operations. Thus, there is no hope of finding algorithms that compute
closed solutions of the even more general variety problem of polynomial ideals.

One way to deal with this obstacle is to try to find interesting polynomials that reveal some
information about the variety contained in the polynomial ideal. For instance, if we can prove
for a polynomial ideal I E Q[x1, . . . , xn] for some n ∈ N>0 that x2

1 − 1 ∈ I, then we know that
every point in the variety V (I) has 1 or -1 as the first component. To prove such hypotheses
we need to solve the word problem for polynomial ideals.

Definition 7.3 (word problem) The word problem of polynomial ideals entails, given a poly-
nomial ideal I E R [x1, . . . , xn] over a commutative ring R for some n ∈ N>0 and a polynomial
f ∈ R [x1, . . . , xn], to compute whether f ∈ I or f < I.

In the case that the polynomial is contained in the polynomial ideal we can represent it as
a linear combination of the generators of the polynomial ideal with polynomial coefficients.
Finding those coefficients is called the representation problem.

Definition 7.4 (representation problem) The representation problem of polynomial ideals
entails, given polynomials f1, . . . , fs, g ∈ R [x1, . . . , xn] over a commutative ring R for some
n, s ∈ N>0, g ∈ 〈 f1, . . . , fs〉, to compute polynomials g1, . . . , gs ∈ R [x1, . . . , xn] with g =∑s

i=1 figi.

As we will see, the word problem for polynomial ideals is very hard to solve. Also, when
motivating the word problem we wanted to determine whether a certain polynomial holds
for all solutions of a given polynomial ideals. This does not imply that this polynomial is
contained in the polynomial ideal. Thus, the actual question in many applications is whether
f ∈ I (V (I)) for some polynomial ideal IER [x1, . . . , xn] and a polynomial f ∈ R [x1, . . . , xn].
We will see a modified version of the word problem in Definition 8.5 which is called the
radical word problem.

A special case of the word problem of polynomial ideals is the triviality problem of polynomial
ideals. For the triviality problem we check whether 1 ∈ I for some polynomial ideal I E
k [x1, . . . , xn] over a field k for some n ∈ N>0. This problem is particularly important since
1 ∈ I if and only if I = k [x1, . . . , xn] as discussed in Section 3.2.

Definition 7.5 (triviality problem) The triviality problem of polynomial ideals entails, given
a polynomial ideal I E k [x1, . . . , xn] over a field k for some n ∈ N>0, to compute whether 1 ∈ I.

84

Section 7.2: General Gröbner Bases

We can solve the word problem, the representation problem of polynomial ideals, and the
triviality problem of polynomial ideals using Gröbner Bases as seen in Section 5.2. Since
polynomial division modulo a Gröbner Basis as presented in Algorithm 5.11 is the way we
use to solve general word problems for polynomial ideals we need to find a Gröbner Basis
first.

Definition 7.6 (Gröbner Basis problem) The Gröbner Basis problem of polynomial ideals
entails, given a polynomial ideal IER [x1, . . . , xn] over a commutative ring R for some n ∈ N>0

and a term ordering �, to compute the reduced Gröbner Basis of I with respect to �.

There are many more interesting problems on polynomial ideals like the containment problem:
given two polynomial ideals I, J E R [x1, . . . , xn] compute whether I ⊆ J. We will concentrate
on word problems as they are the most important ones.

7.2 General Gröbner Bases

The special case of linear equations is well-understood. These systems can be transformed
to the row-echelon form as discussed in Theorem 4.17. This Algorithm is called Gaußian
elimination named after Carl Friedrich Gauß. Using the formulas from Theorem 4.17 we can
compute the row-echelon form in polynomial time. There are more detailed discussions of the
running time of the Gauß algorithm available in the literature [EGG+06].

In case of vector spaces of the integers the row-echelon form is called Hermite normal form.
The Hermite normal form can also be computed in polynomial time [SL96]. There is also a
specialized algorithm for this case called the LLL algorithm [LLL82, Bre11].

Theorem 7.7 Let f1, . . . , fs ∈ k [x1, . . . , xn] be linear polynomials over a field k for some
n, s ∈ N>0. The row-echelon form of

span ({ f1, . . . , fs}) ⊆ { f ∈ k [x1, . . . , xn] | deg(f) ≤ 1}

can be computed in P.

Several problems, like finding solutions of the system or the word problem, can be solved eas-
ily once the system is in row-echelon form. The word problem for linear systems of equations
can be solved using backwards substitution.

85

Part III – Chapter 7: Known Complexity Results for Polynomial Ideals

Theorem 7.8 Let f1, . . . , fs, g ∈ k [x1, . . . , xn] be linear polynomials over a field k for some
n, s ∈ N>0. The word problem to decide whether

g ∈ span ({ f1, . . . , fs}) or g < span ({ f1, . . . , fs})

can be decided in P.

Proof Let f ′1 , . . . , f ′s′ ∈ k [x1, . . . , xn] for some s′ ∈ N>0 be the generators of the Hermite
normal form of the subspace V B span ({ f1, . . . , fs}). We have seen in Theorem 7.7 that those
polynomials can be computed in P. To solve the word problem, we have to find the coefficients
c1, . . . , cs′ ∈ k of a linear combination g =

∑s′
i=1 ci f ′i if they exist. Each f ′i for i ∈ {1, . . . , s′}

was selected as the pivot to eliminate one indeterminate. Starting with the pivot containing
the most indeterminates, we can fix the coefficient ci of each polynomial f ′i for i ∈ {1, . . . , s′}
by comparing the coefficients in front of the indeterminate x j, that was eliminated by f ′i , for
some j ∈ {1, . . . , n}. The coefficients for all other pivots containing x j have already been fixed
before, so we can choose ci such that both sides of g =

∑s′
i=1 ci f ′i have the same coefficient in

front of x j. After fixing all coefficients c1, . . . , cs′ we can check whether indeed g =
∑s′

i=1 ci f ′i .
If this equation holds we have g ∈ span ({ f1, . . . , fs}), otherwise we have g < span ({ f1, . . . , fs}).
This Algorithm obviously runs in polynomial time.

We can find the actual variety of a set of linear equations similarly by going through the
generators of a row-echelon form of the linear subspace and fix the coordinates of all points
in the variety one-by-one. For a detailed proof we refer to a linear algebra textbook [Fis13,
Lan87].

Theorem 7.9 The variety problem for systems of linear equations over a polynomial ring
k [x1, . . . , xn] for some field k and some integer n ∈ N>0 can be solved in P.

The corresponding problems for non-linear systems of equations are inherently much harder.
Nevertheless, a normal form of these systems also exists, analogous to the row-echelon form
used above, that allows for easier computations of many problems, namely Gröbner Bases.
Note that the word problem for general polynomial ideals can be solved similarly to the linear
case: First we compute a basis of the system of equations with good properties and then reduce
our test polynomial with this basis. To employ this algorithm we need to compute a Gröbner
Basis instead of the row-echelon form.

When Gröbner Bases were introduced in 1965 by Bruno Buchberger in his PhD thesis [Buc65],
Buchberger also presented an algorithm for computing Gröbner bases using the so-called
Buchberger’s Criterion presented in Theorem 5.19. At first, it was only known that Buch-
berger’s Algorithm discussed in Algorithm 5.20 runs in finite time without having better space
or time bounds.

86

Section 7.2: General Gröbner Bases

The time and space requirements of algorithms computing Gröbner Bases heavily depend
on the degree of the polynomials involved. For this reason it is important to have degree
bounds. The first degree bounds were already given in 1926 by Grete Hermann [Her26] and
corrected by Abraham Seidenberg [Sei74] and Bodo Renschuch [Ren80]. These theorems
bound the degree of polynomials in the representation problem of polynomial ideals and are
double exponential in the number of indeterminates.

Theorem 7.10 ([Her26, Sei74, Ren80]) Let f1, . . . , fs, g ∈ k [x1, . . . , xn] be polynomials over
a field k with g ∈ 〈 f1, . . . , fs〉 for some n, s ∈ N>0. Let d ∈ N>0 such that deg(fi) ≤ d for all
i ∈ {1, . . . , s} and deg(g) ≤ d. There are g1, . . . , gs ∈ R [x1, . . . , xn] with

g =

s∑
i=1

figi and deg(gi) ≤ (2d)2n

for all i ∈ {1, . . . , s}.

Thomas W. Dubé [Dub90] presented another double exponential degree bound. He shows a
bound for the degree of generators of a Gröbner Basis.

Theorem 7.11 ([Dub90]) Let f1, . . . , fs ∈ R [x1, . . . , xn] be polynomials with deg(fi) ≤ d for
all i ∈ {1, . . . , s} over a ring R for some d, s ∈ N>0. Every reduced Gröbner Basis of 〈 f1, . . . , fs〉

consists of polynomials g1, . . . , gr ∈ R [x1, . . . , xn] for some r ∈ N>0 with

deg(gi) ≤ 2
(
d2

2
+ d

)2n−1

for all i ∈ {1, . . . , r}.

If a polynomial of double exponential degree in the number of indeterminates appears in the
Gröbner Basis of a polynomial ideal then saving that one polynomial using binary encodings
of the exponents already requires an exponential amount of space. Using the degree bound
found by Thomas W. Dubé, the authors Klaus Kühnle and Ernst W. Mayr showed in 1996
that Gröbner Bases can be computed using exponential space in the number of indetermi-
nates [KM96]. Thus, the word problem for polynomial ideals is contained in EXPSPACE.

The word problem for polynomial ideals does not require an algorithm to save an actual
Gröbner Basis in its memory, even though the best known algorithms do exactly that. Never-
theless, in 1982 Ernst W. Mayr and Albert R. Meyer proved a lower bound on the worst-case
space usage of each algorithm solving the word problem for polynomial ideals that is expo-
nential in the number of variables appearing in the equations [MM82].

87

Part III – Chapter 7: Known Complexity Results for Polynomial Ideals

Theorem 7.12 ([MM82]) There is a constant ε ∈ Q with ε > 0 such that any algorithm
which is able to decide the word problem for polynomial ideals contained in Q[x1, . . . , xn] for
some n ∈ N>0 requires space exceeding 2εn on infinitely many instances of this problem with
different sizes.

Their result was slightly improved in 1991 by Chee K. Yap who changed the constant in the
exponent [Yap91]. Thus, the lower and upper bounds for the word problem for polynomial
ideals coincide and the problem is proven to be EXPSPACE-complete in the number of inde-
terminates.

Theorem 7.13 The word problem for general polynomial ideals is EXPSPACE-complete.

Gröbner Bases can be used to solve the word problem on polynomial ideals. Given a Gröbner
Basis we just need to reduce the test polynomial on this Gröbner Basis. The test polynomial is
contained in the original polynomial ideal if and only if it reduces to zero modulo the Gröbner
Basis. Thus, the Gröbner Basis problem of polynomial ideals is as hard as the word problem
of polynomial ideals and the word problem for polynomial ideals can also be solved using
exponential space in the number of indeterminates.

Corollary 7.14 The Gröbner Basis problem for general polynomial ideals is EXPSPACE-
complete.

Regardless of these complexity bounds on worst case examples there are algorithms that com-
pute Gröbner Bases very efficiently in practice. The aforementioned complexity bounds imply
that there are inputs for every algorithm such that the space complexity grows exponentially.
For instance the F4 and F5 algorithms by Jean-Charles Faugère solve most problems appearing
in practice in an efficient way [Fau99, Fau02].

The lower bound on the space requirement of the word problem for polynomial ideals also
implies a lower bound on the function in the degree bound by Grete Hermann. Assume that
the bound given in Theorem 7.10 was deg(gi) ≤ h(n, d) for all i ∈ {1, . . . , s} for some function
h : N>0 × N>0 → N>0. The number of terms of each gi would be at most O(h(n, d)n) and
therefore the space required to save some configuration of the gi using binary encodings of the
exponents would be O(h(n, d)). Thus, we could solve the word problem in space O(h(n, d))
which implies that the bound in Theorem 7.10 is sharp.

88

Section 7.3: Polynomial Ideals with Low Dimension

Corollary 7.15 There is a constant ε ∈ Q with ε > 0 such that there are infinitely many
problems consisting of

• polynomials f1, . . . , fs, g ∈ k [x1, . . . , xn] over a field k with g ∈ 〈 f1, . . . , fs〉 for some
n, s ∈ N>0

• d ∈ N>0 with deg(fi) ≤ d for all i ∈ {1, . . . , s} and deg(g) ≤ d

such that there are only g1, . . . , gs ∈ R [x1, . . . , xn] with

g =

s∑
i=1

figi

that have deg(gi) > 2εn for some i ∈ {1, . . . , s}.

There are several surveys on further complexity results for the computation of Gröbner Bases,
for instance the one presented by Ernst W. Mayr [May97].

7.3 Polynomial Ideals with Low Dimension

Since the computation of Gröbner Bases is that important and hard it is a natural question
to ask whether there are special subclasses of polynomial ideals, that allow for faster com-
putations of them. One class of polynomial ideals, that allows easier computations of their
Gröbner Bases, is the set of so-called zero-dimensional polynomial ideals. Other interesting
subclasses of polynomial ideals will be discussed in the following chapters. To discuss this
class of polynomial ideals, we need to define the dimension of a polynomial ideal.

Definition 7.16 Let I E R [x1, . . . , xn] be a polynomial ring over a commutative ring R for
some n ∈ N>0. The dimension dim(I) of I is the maximum size of a set of indeterminates
X ⊆ {x1, . . . , xn} such that no leading monomial in LM (I) consists of these indeterminates
only.

Equivalently, we can define the dimension of a polynomial ideal I as the size of the biggest
set of indeterminates that is unrelated modulo the polynomial ideal I. This means, that zero-
dimensional ideals have many relations between their indeterminates and that there even is
a relation for each indeterminate on its own. This additional structure may be used to find
improved degree bounds.

89

Part III – Chapter 7: Known Complexity Results for Polynomial Ideals

In 1983 Jean-Charles Faugère et al. presented an algorithm that is much faster in practice
for zero-dimensional polynomial ideals than Buchberger’s Algorithm [FGLM93]. It was
also proven, that there is a single-exponential bound on the degree of Gröbner Basis ele-
ments for zero-dimensional polynomial ideals by Dickenstein et al. which enables better algo-
rithms [DFGS91].

Theorem 7.17 ([DFGS91]) Let f1, . . . , fs ∈ k [x1, . . . , xn] be polynomials with deg(fi) ≤ d
for all i ∈ {1, . . . , s} over a field k for d, n, s ∈ N>0 such that 〈 f1, . . . , fs〉 has dimension zero
and let g ∈ 〈 f1, . . . , fs〉 be a polynomial. There are polynomials

g1, . . . , gs ∈ k [x1, . . . , xn]

such that g =
∑s

i=1 figi and

deg(figi) ≤ nd2n + dn + d + deg(f)

for all i ∈ {1, . . . , s}.

Since the special case of zero-dimensional polynomial ideals is much easier than the general
problem one could expect polynomial ideals with low dimension to allow for better algorithms
too.

All degree bounds given above are dependent on the number of indeterminates, as this turned
out to be a very significant parameter of polynomial ideals to describe their inherent com-
plexity. The following bound does not use the number of indeterminates as a parameter, but
the degree of the polynomial ideal, which may result in better bounds for special subsets of
polynomial ideals.

Using a new degree bound by Matthias Kratzer [Kra08], the authors Ernst W. Mayr and
Stephan Ritscher were able to find an algorithm to compute Gröbner Bases, whose space
is bounded exponentially in the dimension of the polynomial ideal [MR11].

Theorem 7.18 ([MR11]) Let f1, . . . , fs ∈ k [x1, . . . , xn] be polynomials with deg(fi) ≤ d for
all i ∈ {1, . . . , s} over an infinite field k for d, n, s ∈ N>0. Let m ∈ N0 be the dimension
of 〈 f1, . . . , fs〉. Every reduced Gröbner Basis of 〈 f1, . . . , fs〉 with respect to an admissible
monomial ordering consists of polynomials g1, . . . , gr ∈ R [x1, . . . , xn] for some r ∈ N>0 with

deg(gi) ≤ 2
(
1
2

(
d2(n−m)2

+ d
))2m

for all i ∈ {1, . . . , r}.

90

Section 7.3: Polynomial Ideals with Low Dimension

This theorem is proven using an algorithm based on a cone decomposition of the space of
polynomials. The construction of this decomposition is based on a similar decomposition
presented by Thomas W. Dubé [Dub90].

Mayr and Ritscher also presented an incremental version of their algorithm, that does not
use degree bounds. The space bound of this algorithm uses the degree of the actual prob-
lem instance instead of a worst-case instance. Therefore, the algorithm does not require the
knowledge of any a priori degree bounds.

Both findings improved the known space bounds for polynomial ideals with low degree in
comparison to the general bounds. Later, they also proved a matching lower bound [MR13],
which finished the complexity analysis of computing Gröbner Bases depending on the degree
of the polynomial ideal.

91

Part IV

Subclasses of Polynomial Ideals

8 Radical Ideals 95
8.1 Roots of Polynomials . 95

8.2 Degree Bounds for Radical Ideals . 98

8.3 Computation of Radical Ideals . 102

9 Binomial Ideals 107
9.1 Definition and Properties of Binomial Ideals 107

9.2 Between Monomial Ideals and General Polynomial Ideals 112

10 Toric Ideals 115
10.1 Definition of Toric Ideals . 115

10.2 The Word Problem of Toric Ideals . 117

11 Cellular Decomposition 123
11.1 Cellular Decomposition . 123

11.2 The Radical Word Problem for Binomial Ideals 126

11.3 Modeling Binomial Ideals Using Pure Binomials 129

8 Radical Ideals

8.1 Roots of Polynomials

As we have seen in Chapter 7, the complexity of many problems of polynomial ideals is very
high. In the following chapters we will explore subclasses of polynomial ideals and discuss
specialized algorithms that may allow for better results on these subclasses. We will start with
radical ideals in this chapter.

In Section 4.5 we have defined varieties and vanishing ideals. We have seen there, that not
for all sets V ⊆ Rn for some ring R and n ∈ N>0 we have V = V (I (V)). We identified the
sets with this property as the sets closed under the Zariski topology. It is a natural question
whether we also have I = I (V (I)) for all polynomial ideals I E R [x1, . . . , xn]. We will see,
that this is only the case for radical ideals which will be discussed in this chapter.

For an easy example of a polynomial ideal without the property given above, consider the
polynomial ideal I B

〈
x2

〉
⊆ Q[x]. We clearly have V (I) = {0} as zero is the only number

whose square is zero. To compute I (V (I)) we have to find all polynomials contained in
Q[x] that vanish at 0. The generator x2 clearly does this, but there are more polynomial
with that property: All polynomials that are a multiple of x vanish at zero. Thus, we have
I (V (I)) = 〈x〉. The polynomial ideal 〈x〉 is a proper superset of

〈
x2

〉
as for instance x is not

contained in
〈
x2

〉
. Another interesting example over a multivariate polynomial ring is

I B
〈
x2

1 − x1x2, x2
2 − x1x2

〉
E Q[x1, x2]

For this ideal we have V (I) = {(a, a) | a ∈ Q} and thus I (V (I)) = 〈x1 − x2〉. It is interesting
to note that the square of the generator of I (V (I)) is contained in I again as

(x1 − x2)2 = x2
1 − 2x1x2 + x2

2 = (x2
1 − x1x2) + (x2

2 − x1x2)

It turns out that this is true for all polynomial ideals which motivates the definition of the
radical of a polynomial ideal.

Definition 8.1 Let R be a ring. For each polynomial ideal I E R we define the radical of I to
be √

I B { f ∈ R | f s ∈ I for some s ∈ N>0}

If I =
√

I we call I a radical ideal.

95

Part IV – Chapter 8: Radical Ideals

We collect some easy properties of the radical first.

Theorem 8.2 Let R be an integral domain and I E R be an ideal. We have

I ⊆
√

I ⊆ I (V (I))

and
√

I E R is also an ideal.

Proof The containment relation I ⊆
√

I is clear since in the definition
√

I B { f ∈ R | f s ∈ I for some s ∈ N>0}

we can always choose s = 1. This also implies that
√

I is not empty, since – by definition –
I is not the empty set. For the relation

√
I ⊆ I (V (I)) assume that f ∈

√
I. Therefore, there

is an s ∈ N>0 such that f s ∈ I. For each y ∈ V (I) we have that f s(y) = 0 by the definition of
the variety. If f (y) , 0 we have f s−1(y) = 0, because f (y) f s−1(y) = 0 and R is a domain. We
can repeat this argument with decrementing exponent until we finally get f (y) = 0 and thus√

I ⊆ I (V (I)).

According to the definition of ideals in Definition 3.15, we have to prove two more properties.
First, if f ∈

√
I and g ∈ R there is some s ∈ N>0 with f s ∈ I which implies (f g)s = (g f)s =

gs f s ∈ I and thus f g, g f ∈
√

I. Second, if f , g ∈
√

I there are s, t ∈ N>0 with f s, gt ∈ I which
implies

(f + g)s+t =

s+t∑
i=0

(
s + t

i

)
f igs+t−i ∈ I

and thus f + g ∈
√

I.

Over certain coefficient rings we actually have
√

I = I (V (I)), but this is not as easy to prove.
This relation was discovered by the German mathematician David Hilbert in 1893 [Hil93] and
is called “Hilbert’s Nullstellensatz” in honor of him.

Theorem 8.3 (Hilbert’s Nullstellensatz [Hil93]) Let k be an algebraically closed field, let
n ∈ N>0, and let I E k [x1, . . . , xn] be a polynomial ideal. We have

√
I = I (V (I))

The Nullstellensatz allows for computations on I (V (I)) without actually computing V (I).
This is an important, fundamental finding since the Abel-Ruffini Theorem presented in Theo-
rem 7.2 implies that there is no way to expressV (I) explicitly in general. On the other hand,

96

Section 8.1: Roots of Polynomials

√
I can be defined and symbolically computed without problems. Thus, Hilbert’s Nullstellen-

satz enables us to compute I (V (I)) itself and to compute whether polynomials are contained
in I (V (I)).

A proof of Hilbert’s Nullstellensatz can be done using an interesting technique called the
Rabinowitsch trick. This technique was presented first in a 13-line paper in 1930 [Rab30].
The author’s name Rabinowitsch is a pseudonym of the American mathematician George Yuri
Rainich, who was born with the name Rabinowitsch in Russia and later emigrated to the
United States of America. There is an interesting anecdote about his pseudonym that can be
found in the editor’s end notes of The American Mathematical Monthly [Pal04a, Pal04b]. To
use his proof technique, we need the so-called Weak Nullstellensatz which is proven in many
algebra textbooks [CLO07].

Theorem 8.4 (Weak Nullstellensatz) Let I E k [x1, . . . , xn] be a polynomial ideal over an
algebraically closed field k for some n ∈ N>0. IfV (I) = ∅ then we have I = k [x1, . . . , xn].

Proof (of Theorem 8.3) The direction ⊆ was already shown in Theorem 8.2. For the other
direction let f ∈ I (V (I)) E k [x1, . . . , xn]. We will show that f ∈

√
I.

Let f1, . . . , fs ∈ k [x1, . . . , xn] be polynomials such that 〈 f1, . . . , fs〉 = I for some s ∈ N>0. Such
polynomials exist due to the Hilbert Basis Theorem presented in Theorem 4.11. We consider
the polynomial ideal

J B 〈 f1, . . . , fs, 1 − xn+1 f 〉 E k [x1, . . . , xn+1]

in one additional indeterminate.

We will now show that V (J) = ∅. If there was (a, b) ∈ V (J) for some a ∈ kn, b ∈ k we also
had a ∈ V (I). This would imply f (a) = 0 since f ∈ I (V (I)) and therefore

(1 − xn+1 f)(a, b) = 1 − b · 0 = 1

which is a contradiction to (a, b) ∈ V (J). Thus, the varietyV (J) is empty and together with
the Weak Nullstellensatz from Theorem 8.4 we get J = k [x1, . . . , xn+1].

If J is the complete polynomial ring we in particular have 1 ∈ J and thus there are polynomials
g1, . . . , gs+1 ∈ k [x1, . . . , xn+1] such that

1 =

s∑
i=1

gi fi + gs+1 (1 − xn+1 f)

If f = 0 the claim f ∈
√

I is obvious, otherwise we pass over to the field of fractions and
substitute xn+1 by 1

f . Doing so we get

1 =

s∑
i=1

gi

(
x1, . . . , xn,

1
f

)
fi (x1, . . . , xn) ∈ Quot(k [x1, . . . , xn])

97

Part IV – Chapter 8: Radical Ideals

where we indicated the indeterminates of each polynomial for clarity. Note that the term with
coefficient gs+1 cancels. Let e ∈ N>0 be the highest exponent of xn+1 appearing in any of the
original g1, . . . , gs ∈ k [x1, . . . , xn+1]. After multiplying the equation with f e we get

f e =

s∑
i=1

hi fi ∈ k [x1, . . . , xn]

for some h1, . . . , hs ∈ k [x1, . . . , xn]. As the right-hand side of this equation is contained in I,
we also get f e ∈ I and thus f ∈

√
I, which concludes the proof.

We will use the Rabinowitsch trick in the next section to prove some degree bounds on radical
polynomial ideals.

8.2 Degree Bounds for Radical Ideals

In this section we will discuss word problems for radicals of polynomial ideals, their com-
plexity, and why those problems are important. When motivating the word problem in Defi-
nition 7.3, we wanted to find whether a certain polynomial holds for all solutions of a given
polynomial ideals. This does not imply, that this polynomial is contained in the polynomial
ideal. Instead, Hilbert’s Nullstellensatz shows that over algebraically closed fields we have to
check whether the polynomial is contained in the radical of the polynomial ideal. Therefore,
we could relax the word problem to include more polynomials.

Definition 8.5 (radical word problem) The radical word problem of polynomial ideals is,
given a polynomial ideal I E R [x1, . . . , xn] over a commutative ring R for some n ∈ N>0 and a
polynomial f ∈ R [x1, . . . , xn], to compute whether f ∈

√
I or f <

√
I.

We can also split up the radical word problem into two subproblems: finding I (V (I)) and
then solving the word problem on I (V (I)). The first part of this computation is called the
radical problem.

Definition 8.6 (radical problem) The radical problem of polynomial ideals is, given a poly-
nomial ideal I E R [x1, . . . , xn] over a commutative ring R for some n ∈ N>0, to compute a
generating set of the polynomial ideal

√
I.

The radical word problem for polynomial ideals seems more complicated than the correspond-
ing word problem since no basis of the radical ideal is given. Surprisingly, the radical word

98

Section 8.2: Degree Bounds for Radical Ideals

problem is in general easier to solve than the word problem for polynomial ideals. Recall
that for general polynomial ideals the word problem is EXPSPACE-complete and the degrees
appearing in the representation problem are in the worst case double exponential. It turns out
that the same degree bound for radical ideals is only single exponential.

In 1987 W. Dale Brownawell showed a degree bound on the coefficients appearing in the
representation problem of the constant polynomial 1 [Bro87].

Theorem 8.7 ([Bro87]) Let k be a field with char(k) = 0 and let f1, . . . , fs ∈ k [x1, . . . , xn]
be polynomials with V (〈 f1, . . . , fs〉) = ∅ for some n, s ∈ N>0. Furthermore, let d ∈ N>0

with deg(fi) ≤ d for all i ∈ {1, . . . , s} and µ B min(n, s) ∈ N>0. There are polynomials
g1, . . . , gs ∈ k [x1, . . . , xn] with

1 =

s∑
i=1

gi fi and deg(gi) ≤ µndµ + µd

for all i ∈ {1, . . . , s}.

Degree bounds on the representation problem of one can be used to find bounds for radical
ideals using the Rabinowitsch trick. We can use the bound given above to find a bound for each
polynomial contained in the radical of a polynomial ideal on the exponent of the polynomial
such that it is contained in the original polynomial ideal.

Corollary 8.8 ([Bro87]) Let k be a field with char(k) = 0 and let f1, . . . , fs, g ∈ k [x1, . . . , xn]
be polynomials with g ∈

√
〈 f1, . . . , fs〉 for some n, s ∈ N>0. Additionally, let d ∈ N0 with

deg(fi) ≤ d for all i ∈ {1, . . . , s} and µ B min(n, s) ∈ N>0. For

e B (µ + 1)(n + 1)(d + 1)µ+1 + (µ + 1)(d + 1) ∈ N>0

we have ge ∈ I and there are h1, . . . , hs ∈ k [x1, . . . , xn] for some s ∈ N>0 with

ge =

s∑
i=1

hi fi

and
deg(hi) ≤ e(d + 1) =

(
(µ + 1)(n + 1)(d + 1)µ+1 + (µ + 1)(d + 1)

)
(d + 1)

for all i ∈ {1, . . . , s}.

99

Part IV – Chapter 8: Radical Ideals

Proof We will use the same notation as in the proof of Hilbert’s Nullstellensatz in Theo-
rem 8.3. In that proof we showed that there are g1, . . . , gs+1 ∈ k [x1, . . . , xn+1] with

1 =

s∑
i=1

gi fi + gs1 (1 − xn+1 f)

With Theorem 8.7 we can choose those polynomials in a way such that deg(gi) ≤ e for all
i ∈ {1, . . . , s + 1}. After passing to the field of fractions and substituting xn+1 by 1

f we get

1 =

s∑
i=1

gi

(
x1, . . . , xn,

1
f

)
fi (x1, . . . , xn) ∈ Quot(k [x1, . . . , xn])

as explained in the proof of Theorem 8.3. Multiplying this equation by ge results in the equa-
tion to be shown.

János Kollár improved the bound by Brownawell one year later [Kol88]. His proof also works
if char(k) > 0, but requires the additional constraint that n ≥ 3. This constraint is no obstacle
for us since we can always add new indeterminates that are not used.

Theorem 8.9 ([Kol88]) Let k be a field and let f1, . . . , fs ∈ k [x1, . . . , xn] be polynomials with
V (〈 f1, . . . , fs〉) = ∅ for some n, s ∈ N>0 with di B deg(fi) ∈ N0 for all i ∈ {1, . . . , s}. Without
loss of generality we assume that d1 ≤ d2 ≤ · · · ≤ ds. There are g1, . . . , gs ∈ k [x1, . . . , xn] with

1 =

s∑
i=1

gi fi and deg(gi) ≤ max(3, ds)
min(n,s)−1∏

i=1

max(3, di)

for all i ∈ {1, . . . , s}.

Again using the Rabinowitsch trick similarly as above we can find bounds on the representa-
tion problem for radical ideals.

Corollary 8.10 ([Kol88]) Let k be a field and let f1, . . . , fs, g ∈ k [x1, . . . , xn] be polynomials
with g ∈

√
〈 f1, . . . , fs〉 for some n, s ∈ N>0 with di B deg(fi) ∈ N0 for all i ∈ {1, . . . , s}.

Without loss of generality we assume that d1 ≤ d2 ≤ · · · ≤ ds. For

e B max(3, ds)
min(n,s)−1∏

i=1

max(3, di) ∈ N>0

we have ge ∈ I and there are h1, . . . , hs ∈ k [x1, . . . , xn] for some s ∈ N>0 with

ge =

s∑
i=1

hi fi

100

Section 8.2: Degree Bounds for Radical Ideals

and

deg(hi) ≤ e(deg(g) + 1) =

max(3, ds)
min(n,s)−1∏

i=1

max(3, di)

 (deg(g) + 1)

for all i ∈ {1, . . . , s}.

Those bounds have been simplified and slightly improved for small degrees by Martı́n Sombra
in 1999 [Som99].

Theorem 8.11 ([Som99]) Let k be a field and let f1, . . . , fs ∈ k [x1, . . . , xn] be polynomials
with V (〈 f1, . . . , fs〉) = ∅ for some n, s ∈ N>0 with di B deg(fi) ∈ N0 for all i ∈ {1, . . . , s}.
Without loss of generality we assume that d1 ≤ d2 ≤ · · · ≤ ds. There are polynomials
g1, . . . , gs ∈ k [x1, . . . , xn] with

1 =

s∑
i=1

gi fi and deg(gi) ≤ 2ds

min(n,s)−1∏
i=1

di

for all i ∈ {1, . . . , s}.

Corollary 8.12 ([Som99]) Let k be a field and let f1, . . . , fs, g ∈ k [x1, . . . , xn] be polynomials
with g ∈

√
〈 f1, . . . , fs〉 for some n, s ∈ N>0 with di B deg(fi) ∈ N0 for all i ∈ {1, . . . , s}.

Without loss of generality we assume that d1 ≤ d2 ≤ · · · ≤ ds. For

e B 2ds

min(n,s)−1∏
i=1

di ∈ N>0

we have ge ∈ I and there are h1, . . . , hs ∈ k [x1, . . . , xn] for some s ∈ N>0 with

ge =

s∑
i=1

hi fi

and

deg(hi) ≤ e(deg(g) + 1) =

2ds

min(n,s)−1∏
i=1

di

 (deg(g) + 1)

for all i ∈ {1, . . . , s}.

As for the word problem for general polynomial ideals we can deduce a complexity bound
on the radical word problem from these degree bounds. As the degrees have only exponential
size we can save the coefficients in polynomial space. Thus, we can also check all possible

101

Part IV – Chapter 8: Radical Ideals

coefficients in polynomial space. We will see an example that the degree bounds given above
are asymptotically tight in Section 14.2.

Theorem 8.13 Let k be a field. The radical word problem of polynomial ideals contained in
the polynomial ring k [x1, . . . , xn] for n ∈ N>0 is contained in PSPACE.

We can also use the degree bounds given above to solve the triviality problem of polynomial
ideals as presented in Definition 7.5. As we have single exponential bounds on the degree of
coefficients appearing in the representation of 1, we can check them all in polynomial space.

Theorem 8.14 Let k be a field. The triviality word problem of polynomial ideals contained
in the polynomial ring k [x1, . . . , xn] for n ∈ N>0 is contained in PSPACE.

Hilbert’s Nullstellensatz together with the degree bounds given above is also called effective
Nullstellensatz as it enables an exhaustive search for solving the radical word problem.

8.3 Computation of Radical Ideals

With the results above we also need at least polynomial space to solve the radical problem of
polynomial ideals as this problem is more general than the radical word problem. The best
known algorithm for solving the radical problem still takes exponential space. To find such an
algorithm we consider a theorem presented by Abraham Seidenberg in 1974 [Sei74].

Theorem 8.15 (Seidenberg’s Theorem [Sei74]) Let k be a perfect field, n, s ∈ N>0, and
let I E k [x1, . . . , xn] be a polynomial ideal with dim(I) = 0. For all i ∈ {1, . . . , n} let gi ∈

k [x1, . . . , xn] be the square-free part of the generator of I ∩ k[xi]. Then we have
√

I = I + 〈g1, . . . , gn〉

A perfect field k in this context is a field such that every irreducible polynomial over k, i.e.
every non-constant polynomial over k, that cannot be factored into the product of two non-
constant polynomials, has distinct roots. In particular all finite fields, all algebraically closed

102

Section 8.3: Computation of Radical Ideals

fields, and all fields with char(k) = 0 are perfect. Thus, almost all fields that appear in usual
applications are perfect.

It is important to note that for all i ∈ {1, . . . , n} the ideal I ∩ k[xi] is non-zero, univariate and
therefore a principal ideal, because dim(I) = 0. Thus, we can speak of “the” generator of
I ∩ k[xi]. A square-free polynomial is a polynomial that is not a multiple of the square of a
polynomial with degree greater than zero. Naturally, the square-free part of a polynomial is
defined to be a square-free divisor of that polynomial with maximum degree. The square-free
part of a polynomial has at most the degree of the polynomial itself.

Computing the square-free part of a univariate polynomial is computationally easy and can be
done using Algorithm 8.16.

Algorithm 8.16 Compute the square-free part of a univariate polynomial.

Input: a polynomial f ∈ k[x] over a field k and a0, . . . , ar ∈ k with f =
∑r

i=0 aixi for some
r ∈ N0

Output: the square-free part of f
1: compute the formal derivative f ′ of f as f ′ B

∑r−1
i=0 (i + 1)ai+1ri

2: compute g B gcd(f , f ′) using the Euclidean Algorithm as presented in Algorithm 5.7
3: return f

g

Since the Euclidean Algorithm has a linear running time in the input size the total running
time of Algorithm 8.16 is also linear in the input size. The algorithm is true since factors
appearing multiple times in a factorization of f would also appear as a divisor of the formal
derivative f ′. By dividing through the common divisors of f and f ′ we guarantee that the
result is square-free.

We can now give an algorithm to compute the radical of a zero-dimensional polynomial ideal
over a perfect field.

Algorithm 8.17 Compute the radical of a zero-dimensional polynomial ideal.
Input: f1, . . . , fs ∈ k [x1, . . . , xn] polynomials over a perfect field k for some n, s ∈ N0 such

that dim(〈 f1, . . . , fs〉) = 0
Output:

√
f1, . . . , fs

1: for i ∈ {1, . . . , n} do
2: compute a generator hi ∈ k[xi] of 〈 f1, . . . , fs〉 ∩ k[xi] using Theorem 5.21 and Algo-

rithm 5.20
3: compute the square-free part gi ∈ k[xi] of hi using Algorithm 8.16
4: end for
5: return 〈 f1, . . . , fs, g1, . . . , gn〉

The condition dim(I) = 0 can be removed from Theorem 8.15 to make the theorem more

103

Part IV – Chapter 8: Radical Ideals

general. If dim(I) > 0 there is a maximally independent set of dim(I) indeterminates xi mod-
ulo I. Without loss of generality let those indeterminates be x1, . . . , xdim(I). We can consider
those indeterminates as part of the coefficients. In particular we can apply Theorem 8.15 to
I E k′[xdim(I)+1, . . . , xn] where k′ B k(x1, . . . , xdim(I)) is the quotient field of the polynomial ring
k[x1, . . . , xdim(I)]. This theorem is applicable because if k has characteristic zero then k and
k′ are perfect. The ideal I E k′[xdim(I)+1, . . . , xn] is zero-dimensional even if I had a positive
dimension and thus we can use Theorem 8.15 and Algorithm 8.17.

When moving the resulting ideal back to k [x1, . . . , xn] it is not enough to just contract the gen-
erators of the radical ideal in k(Y)[{x1, . . . , xn} \Y] to k [x1, . . . , xn] by removing denominators.
For instance,

〈
x2

〉
E C(x) is the full quotient field and therefore radical, but

〈
x2

〉
E C[x] is not

radical. Also, extending ideals to a bigger polynomial ring and contracting them back to the
original ring may add new elements instead of returning to the same ideal again. For another
example consider 〈x1x2〉 E C[x1, x2]. This ideal does not contain x2, but extending the ideal
to C(x1)[x2] and contracting it back to C[x1, x2] adds the monomial x2 to the ideal since in
C(x1)[x2] we can multiply by x−1

1 .

We present the generalized algorithm here and refer to the book by Becker and Weispfen-
ning for a proof of the algorithm and instructions on how to implement its steps [BWK93,
Chapter 8].

Algorithm 8.18 Compute the radical of a polynomial ideal.
Input: f1, . . . , fs ∈ k [x1, . . . , xn] polynomials over a perfect field k for some n, s ∈ N0

Output:
√

f1, . . . , fs

1: if 1 ∈ 〈 f1, . . . , fs〉 then
2: return 〈1〉
3: else
4: compute a maximally independent set Y of the indeterminates {x1, . . . , xn} mod-

ulo 〈 f1, . . . , fs〉

5: compute the radical I of 〈 f1, . . . , fs〉 E k(Y)[{x1, . . . , xn} \ Y] using Algorithm 8.17
6: compute the contraction J of I to k [x1, . . . , xn] by multiplying each generator by the

least common multiple of the denominators in its coefficients and saturating the result-
ing ideal at the least common multiple of the coefficients of all leading terms of the
generators using Algorithm 4.39

7: compute the radical K of 〈 f1, . . . , fs〉 : J∞ E k [x1, . . . , xn] by using Algorithm 4.39 and
a recursive call

8: return J ∩ K
9: end if

The computation of the ideal operations is done using Gröbner Bases. Therefore, Algo-
rithm 8.18 still takes at least exponential space and double exponential time in the worst case.

Santiago Laplagne presented an optimized version of this algorithm in 2006 [Lap06]. His Al-

104

Section 8.3: Computation of Radical Ideals

gorithm avoids components that are not needed and therefore is much faster for many practical
examples. The worst case bounds of Laplagne’s Algorithm are still double exponential.

Theorem 8.19 ([Lap06]) There is an algorithm that computes the generators of the radical
of a polynomial ideals I E k [x1, . . . , xn] over a perfect field k for some n ∈ N>0 given by a set
of generators f1, . . . , fs ∈ k [x1, . . . , xn] for some s ∈ N>0 with I = 〈 f1, . . . , fs〉 and deg(fi) ≤ d
for all i ∈ {1, . . . , s} for some d ∈ N>0 in time

(sd)2n(cn)+n−1

for a constant c ∈ N>0.

There are many more algorithms for computing radicals of polynomial ideals, but all known
algorithms have a double exponential worst case running time in contrast to the radical word
problem that can be solved in single exponential running time. We will see a specialized
algorithm for computing radicals of binomial ideals in Section 11.1 and we will present a new
algorithm for commutative Thue systems in Section 14.3.

All these algorithms are designed for polynomial ideals over fields with characteristic 0. There
are also algorithms for polynomial ideals over fields with positive characteristic, for instance
by Gregor Kemper [Kem02] and Ryutaroh Matsumoto [Mat01].

105

9 Binomial Ideals

9.1 Definition and Properties of Binomial Ideals

In this section we will introduce a subclass of polynomial ideals, that has more structure
than general polynomial ideals, but still carries the same inherent complexity. This makes
binomial ideals interesting objects to study. Also, binomial ideals occur in applications with
commutative semigroups, commutative algebra, and algebraic statistics. In particular, we will
discuss the relation between binomial ideals and term replacement systems in Section 12.2.

We will define binomials and binomial ideals first. Binomial ideals were examined in a paper
of David Eisenbud and Bernd Sturmfels in a fundamental paper from 1996 [ES96].

Theorem 9.1 A binomial is a polynomial having at most two terms. A pure binomial is a
polynomial having exactly two terms and coefficients 1 and -1, respectively. A polynomial
ideal is called a binomial ideal or pure binomial ideal if there is a generating set of this ideal
consisting only of binomials or pure binomials, respectively.

Note that we used only the requirement, that there is a generating set consisting of binomials
only, to define binomial ideals. This means that binomial ideals can contain non-binomials
and can also be generated by non-binomials in general. That is because sums and products of
binomials are no binomials anymore in general.

Example 9.2 For instance, the polynomial ring Q[x1, x2] contains just one polynomial ideal
that consists of binomials only, namely 〈0〉 = {0}, and no polynomial ideal that consists of
pure binomials only. Also, the polynomial ideal

I =
〈
x1x5

2 − x3
1x2

2 − 6x4
2, 2x4

2 − 2x2
1x2 − 3x1

〉
E Q[x1, x2]

does not seem to be a binomial ideal at first sight. Nevertheless, we also have

I =
〈
x2

1x2 + 2x1, 2x4
2 + x1, 4x1x3

2 − x3
1, x

4
1 + 8x1x2

2

〉
which proves that I is in fact a binomial ideal. The second set is in fact a Gröbner Basis of I
with respect to a lexicographic term ordering.

We saw in this example, that – given a set of generators – one cannot directly see whether a
polynomial ideal is a binomial ideal. Thus, we need an algorithm to test whether a polynomial

107

Part IV – Chapter 9: Binomial Ideals

ideal is a binomial ideal. We will see that we can read of whether a polynomial ideal is a
binomial ideal from a reduced Gröbner Basis of the polynomial ideal. To prove this, we first
state an observation about binomials and Buchberger’s Algorithm.

Theorem 9.3 Let f , g ∈ k [x1, . . . , xn] be binomials over a field k for some n ∈ N>0. For every
term ordering � on k [x1, . . . , xn] we have that spol (f , g) is a binomial again. If f and g are
pure binomials spol (f , g), is a pure binomial too, for every term ordering � on k [x1, . . . , xn].

With this theorem we can prove that reduced Gröbner Bases of a binomial ideal consist of
binomials only.

Theorem 9.4 Let I E k [x1, . . . , xn] be a binomial ideal over a coefficient field k for some
n ∈ N>0 and let � be a term ordering on k [x1, . . . , xn]. The reduced Gröbner Basis of I with
respect to � consists of binomials only. Furthermore, if I is a pure binomial ideal the reduced
Gröbner Basis of I with respect to � consists of pure binomials only.

Proof For the first part of the theorem let I E k [x1, . . . , xn] be a binomial ideal. From the
definition of binomial ideals we know that there is a generating set of I consisting of bino-
mials only. Using Buchberger’s algorithm as presented in Algorithm 5.20, we can compute a
reduced Gröbner Basis of I by adding s-polynomials of polynomials in the generating set and
removing elements. With Theorem 9.3 we know that this generating set needs to consist of
binomials only too. From Theorem 5.16 we know that the reduced Gröbner Basis of I with
respect to � is unique, which proves the claim of the theorem.

The case of pure binomial ideals follows similarly.

Checking whether a polynomial ideal is a binomial ideal can therefore be done by computing a
reduced Gröbner Basis with respect to some arbitrary term ordering and then checking whether
all polynomials in the resulting generating set are binomials as given in Algorithm 9.5. While
the second part is computationally trivial, we saw in Section 7.2 that the computation of a
Gröbner Basis is an EXPSPACE-complete problem. Nevertheless, this is the fastest known
algorithm for checking whether a polynomial ideal is a binomial ideal.

In particular, we can compute elimination ideals using Gröbner Bases. The generators of an
elimination ideal are just a subset of the generators of a Gröbner Basis and the Gröbner Basis
of a binomial ideal consists of binomials only according to Theorem 9.4. Thus, all elimination
ideals of binomial ideals are binomial ideals, again.

108

Section 9.1: Definition and Properties of Binomial Ideals

Algorithm 9.5 Check whether a polynomial ideal is a (pure) binomial ideal.
Input: f1, . . . , fs ∈ k [x1, . . . , xn] polynomials over a field k for some n, s ∈ N>0

Output: whether 〈 f1, . . . , fs〉 is a (pure) binomial ideal
1: choose an arbitrary term ordering � on k [x1, . . . , xn]
2: compute a reduced Gröbner Basis g1, . . . , gt ∈ k [x1, . . . , xn] of 〈 f1, . . . , fs〉 with respect to
� for some t ∈ N>0 using Algorithm 5.20 and Algorithm 5.17

3: for each i ∈ {1, . . . , t} do
4: if gi is not a (pure) binomial then
5: return 〈 f1, . . . , fs〉 is not a (pure) binomial ideal
6: end if
7: end for
8: return 〈 f1, . . . , fs〉 is a (pure) binomial ideal

Corollary 9.6 Let IEk [x1, . . . , xn] be a polynomial ideal over a field k for some n ∈ N>0. All
elimination ideals of I are binomial ideals. If I is a pure binomial ideal all elimination ideals
of I are pure binomial ideals.

For the following algorithms we want to use properties of the binomial generators. Since
computing a reduced Gröbner Basis dominates the complexity of most following algorithms
we will usually assume the binomial ideals are already given by some binomial generators,
which is also often the case in practical applications.

Since pure binomial ideals are a restricted subclass of polynomial ideals one could hope that
the complexity of problems of pure binomial ideals is lower than the one of the correspond-
ing problems of general polynomial ideals. This is not the case as the worst case example
presented in [MM82] is actually a pure binomial ideal.

Theorem 9.7 The word problem and the Gröbner Basis problems for binomial ideals and
pure binomial ideals are EXPSPACE-complete.

Even though binomial ideals carry the same inherent complexity as general polynomial ideals
they have more structure. The normal form of a monomial modulo a binomial ideal is a
monomial again, because we can find the normal form by reducing modulo a reduced Gröbner
Basis. Those Gröbner Bases consist of binomials only as seen in Theorem 9.4 and reducing a
monomial modulo a binomial results in a monomial again. Thus, we can partition the set of
monomials into equivalence classes of monomials having the same normal form such that this
normal form is also contained in the equivalence class. A visualization of those equivalence
classes can be found in Figure 9.8.

109

Part IV – Chapter 9: Binomial Ideals

x0
1

x0
2

x1
1

x1
2

x2
1

x2
2

x3
1

x3
2

x4
1

x4
2

x5
1

x5
2

x6
1

x6
2

x7
1

x7
2

x8
1

x8
2

x9
1

x9
2

· · ·

...

Figure 9.8: The equivalence classes of monomials modulo I =
〈
x4

1 − x3
1x2, x1x4

2 − x6
2

〉
. Monomials are

represented by points. Two of them are in the same equivalence class if they are connected
by a line or both are in an area with gray background color.

110

Section 9.1: Definition and Properties of Binomial Ideals

We can use this partitioning of the monomials into equivalence classes to find which poly-
nomials are contained in a binomial ideal. We will frequently use the following theorem in
Section 13.2.

Theorem 9.9 Let I B 〈 f1, . . . , fs〉ER [x1, . . . , xn] be a pure binomial ideal over a field k with
char(k) = 0 for some n, s ∈ N>0 and pure binomials f1, . . . , fs ∈ R [x1, . . . , xn]. Furthermore,
let g ∈ R [x1, . . . , xn] be a polynomial with

g =

r∑
i=1

aixui

for some r ∈ N>0 and a1, . . . , ar ∈ R, u1, . . . , ur ∈ N
n
0.

g is contained in I if and only if the sum of the coefficients of all monomials of g having the
same normal form modulo I is zero, i.e. for all β ∈ Nn

0 we have that∑
i∈{1,...,r}
xui

I
=xβ

ai = 0

Proof For the direction “⇐” assume that the coefficients of the monomials of g with the
same normal form sum up to zero. The definition of the normal form implies that for each
monomial of g we can add some polynomial contained in I to g such that the monomial is
replaced by its normal form modulo the pure binomial ideal, which is again a monomial. Let
g′ ∈ I E R [x1, . . . , xn] be the sum of these polynomials. Since all coefficients belonging to the
same normal form sum up to zero this implies that g + g′ = 0. Because g′ ∈ I it follows that
g ∈ I too.

For the other direction “⇒” consider the generators fi of I. They have the property, that the
coefficients of their monomials with the same normal form sum up to zero. This is, because
both their monomials need to have the same normal form which is implied by fi ∈ I and the
coefficients 1 and -1 sum up to zero. For each polynomial with this property the product of this
polynomial with a monomial also has that property. This can be seen since the coefficients do
not change and monomials with the same normal form also have the same normal form after
multiplying them with another monomial. Moreover, the sum of two polynomials with this
property obviously also has this property. Since g ∈ I can be expressed as the sum of products
of the fi with monomials, g needs to have this property too.

It is also interesting to see that binomial ideals are only closed under some operations on
polynomial ideals. Using the theorems from Section 4.6 we can easily see that the sum of
binomial ideals is a binomial ideal again, while intersections and products of binomial ideals

111

Part IV – Chapter 9: Binomial Ideals

are not binomial in general. Elimination ideals of binomial ideals are binomial again as seen
in Corollary 9.6 and we can compute saturations and quotients of polynomial ideals using
elimination ideals. Thus, quotients and saturations of binomial ideals and monomials are
binomial ideals again. David Eisenbud and Bernd Sturmfels showed that radicals of binomial
ideals are also binomial ideals [ES96]. All closure results mentioned in this paragraph also
hold for pure binomial ideals.

9.2 Between Monomial Ideals and General Polynomial
Ideals

In the last section we saw that the restriction to polynomial ideals, that can be generated by
polynomials with at most two terms, does not change the complexity of the most important
problems of polynomial ideals, but adds more structure. It is a natural question why we
chose polynomials with at most two terms. We will discuss in this section that the restriction
to polynomials with one term only results in much easier problems, but the restriction to
polynomials with at most three or more terms does not add more structure to our polynomial
ideals. This underlines that binomial ideals are interesting objects to study as they exactly
incorporate the aspects of additional structure but still the full complexity.

We will first discuss polynomial ideals generated by monomials.

Theorem 9.10 A polynomial ideal is called a monomial ideal if there is a generating set of
this ideal consisting of monomials only.

As for binomial ideals we will assume that monomial ideals are given by a generating set
consisting of monomials only to allow the discussion of running times of algorithms. The
s-polynomial of any two monomials vanishes, which results in a very easy structure. The
following statements are simplified versions of the results on binomial ideals from the last
section.

Theorem 9.11 The s-polynomial of two monomials with respect to any term order is always
0. Thus, every generating set of a monomial ideal, that consists of monomials only, is a
Gröbner Basis with respect to any term ordering. Any reduced Gröbner Basis of a monomial
ideal consists of monomials only.

The normal form of a monomial modulo a monomial ideal is either the monomial itself or
0. Reducing a polynomial with more terms modulo a Gröbner Basis of a monomial ideal
therefore boils down to removing all terms whose monomial is a multiple of an element of the
Gröbner Basis.

112

Section 9.2: Between Monomial Ideals and General Polynomial Ideals

Theorem 9.12 Let m1, . . . ,ms ∈ M{x1,...,xn} be monomials over a field k for some n, s ∈ N>0

and let f ∈ k [x1, . . . , xn] be a polynomial. f is contained in 〈m1, . . . ,ms〉 if and only if all
terms of f are a multiple of some (possibly different) mi for some i ∈ {1, . . . , s}.

Thus, we see that the most important problems for monomial ideals have polynomial com-
plexity.

Theorem 9.13 For monomial ideals given by a generating set consisting of monomials only
the Gröbner Basis problem and the word problem with arbitrary test polynomials are contained
in P.

Polynomials with more terms, on the other hand, do not have more structure than general
polynomial ideals. We could define trinomials and trinomial ideals similarly to monomials
and monomial ideals or binomials and binomial ideals, respectively. There are no definitions
of trinomials and trinomial ideals in the literature though, because we can simulate all poly-
nomials using trinomials. For this simulation we need the following construction.

Theorem 9.14 Let k be a field and n, s ∈ N>0 be integers. Furthermore, let t1, . . . , ts ∈ N>0,
ci, j ∈ k and mi, j ∈ k [x1, . . . , xn] be monomials for all i ∈ {1, . . . , s} and j ∈ {1, . . . , ti}. For

M =
{
yi, j − ci, jmi, j − yi, j+1 | i ∈ {1, . . . , s} , j ∈ {1, . . . , ti}

}
∪

{
yi,1 | i ∈ {1, . . . , s}

}
∪

{
yi,ti+1 | i ∈ {1, . . . , s}

}
we have

〈M〉 ∩ k [x1, . . . , xn] =
〈 t1∑

j=1

c1, jm1, j, . . . ,

ts∑
j=1

cs, jms, j

〉
where yi, j are new indeterminates for i ∈ {1, . . . , s} and j ∈ {1, . . . , ti + 1}.

Proof Notice that for all i ∈ {1, . . . , s} we have

yi1 −

ti∑
i=1

(yi, j − ci, jmi, j − yi, j+1) − yi,ti+1 =

ti∑
i=1

ci, jmi, j

This immediately shows the relation “⊇”. The other direction “⊆” holds because we are not
able to build polynomials containing only the variables x1, . . . , xn using the generators in M
without adding up multiples of the equation above.

113

Part IV – Chapter 9: Binomial Ideals

The interesting observation about Theorem 9.14 is that 〈M〉 is what we would call a trinomial
ideal while the right side 〈 t1∑

j=1

c1, jm1, j, . . . ,

ts∑
j=1

cs, jms, j

〉
of the equation is some arbitrary polynomial ideal. This implies that we can add some new
indeterminates and then reformulate our polynomial ideal as a trinomial ideal. Thus, trinomial
ideals have a similar structure as general polynomial ideals, since all polynomial ideals can be
transformed via new indeterminates to trinomial ideals.

114

10 Toric Ideals

10.1 Definition of Toric Ideals

In this section we will discuss a subclass of polynomial ideals that is a restriction of pure
binomial ideals: toric ideals. Even though their definition is even more restrictive than the one
of pure binomial ideals, toric ideals appear in many applications, for example in the cellular
decomposition presented in Section 11.1. On the other hand, their specialized structure allows
for more efficient algorithms on them. We will see for instance that the word problem of toric
ideals can be decided in polynomial time. For detailed proofs of the theorems presented in
this section we refer to the Master’s thesis of this author [Tom15b].

Toric ideals appear that often in practice, because they can be defined as kernels of linear maps
as defined in Definition 4.19.

Definition 10.1 Let k be a field, x1, . . . , xn and y1, . . . ys be indeterminates, and m1, . . . ,mn be
monomials contained in k(y1, . . . , ys), the quotient field of k[y1, . . . , ys], for n, s ∈ N>0. Let φ
be the k-algebra homomorphism

φ : k[x1, . . . , xn]→ k(y1, . . . , ys)

defined by
φ(x1) = m1, . . . , φ(xn) = mn.

The toric ideal associated to m1, . . . ,mn is the ideal ker(φ) = { f ∈ k [x1, . . . , xn] | φ(f) = 0}.

In Section 4.6 we discussed how to saturate a polynomial ideal. Saturating a polynomial
ideal means that whenever there is a polynomial contained in the ideal, which has common
indeterminates in all terms, we can remove those indeterminates and still get a polynomial
contained in the ideal. The definition of toric ideals directly implies that toric ideals are satu-
rated since φ(xi f) = 0 implies 0 = φ(xi f) = miφ(f) and thus φ(f) = 0 for all i ∈ {1, . . . , n} and
f ∈ k [x1, . . . , xn].

Now consider a toric ideal I E k[x1, . . . , xn] associated to the monomials

m1, . . . ,mn ∈ k(y1, . . . , ys)

for some n, s ∈ N>0. We can write I in the following way with new indeterminates z1, . . . , zs

115

Part IV – Chapter 10: Toric Ideals

which represent y−1
1 , . . . , y

−1
s :

ker(φ) =

in k[x1,...,xn,y±1
1 ,...,y±1

s]︷ ︸︸ ︷〈
x1 − yu1 , . . . , xn − yun

〉
∩ k[x1, . . . , xn]

=
〈
x1 − yu+

1 zu−1 , . . . , xn − yu+
n zu−n , 1 − y1z1, . . . , 1 − yszs

〉︸ ︷︷ ︸
in k[x1,...,xr ,y1,...,ys,z1,...,zs]

∩ k[x1, . . . , xn]

where the i-th entries of w+ and w− are defined as

w+
i B

wi if wi > 0
0 else

and w−i B

−wi if wi < 0
0 else

for all i ∈ {1, . . . , n} and w ∈ Zn. As discussed in Corollary 9.6 in Section 9.1, elimination
ideals of pure binomial ideals are once more pure binomial ideals. Elimination ideals can be
computed as a subset of a Gröbner Basis as presented in the Elimination Theorem in Theo-
rem 5.21 and the s-polynomials of pure binomials are pure binomials once again. Thus, all
toric ideals are pure binomial ideals.

It turns out that all saturated pure binomial ideals are in fact toric ideals and thus toric ideals
can be equivalently defined as saturated pure binomial ideals.

Theorem 10.2 Let k be a field and n ∈ N>0. I E k [x1, . . . , xn] is a toric ideal if and only if it
is a saturated pure binomial ideal.

We will now see that toric ideals have another useful property. Namely, toric ideals are always
prime ideals and thus radical ideals. To discuss this we need to introduce prime ideals first.

Definition 10.3 Let R be a commutative ring and I E R be an ideal of R. I is a prime ideal if
and only if for all a, b ∈ R with ab ∈ I we have a ∈ I or b ∈ I.

Toric ideals are always prime ideals, which is easy to see from the definition of toric ideals.
Suppose we have polynomials f , g ∈ k [x1, . . . , xn] over a field k for some n ∈ N>0 and a
k-algebra homomorphism φ : k[x1, . . . , xn] → k(y1, . . . , ys) as given in Definition 10.1. If
φ(f g) = 0 we can transform this to φ(f)φ(g) = 0 since φ is a k-algebra homomorphism.
Because the field k is a domain, this is equivalent to φ(f) = 0 or φ(g) = 0, which means
f ∈ ker(φ) or g ∈ ker(φ). As proven by David Eisenbud and Bernd Sturmfels [ES96], pure
binomial prime ideals and toric ideals are actually the same.

116

Section 10.2: The Word Problem of Toric Ideals

Theorem 10.4 ([ES96]) Let k be a field with characteristic zero and n ∈ N>0. IEk [x1, . . . , xn]
is a toric ideal if and only if it is a pure binomial prime ideal.

Prime Ideals are in particular interesting in this context, because all prime ideals are radical
ideals.

Theorem 10.5 Let R be a ring and I E R be a prime ideal. I is a radical ideal.

Proof Let a ∈ R be an element such that there is an s ∈ N>0 with as ∈ I. We have to show
that a ∈ I. Without loss of generality we can assume that there is r ∈ N>0 with s = 2r. If
s is no power of 2 we can increase it to the next power of 2. Since I is a prime ideal and
a2r−1

a2r−1
= a2r

∈ I we know that a2r−1
∈ I. Similarly, we can iteratively prove a2r−2

∈ I,
a2r−3

∈ I, . . . , a20
= a ∈ I.

Corollary 10.6 Let I E k [x1, . . . , xn] be a toric ideal over a field k with characteristic zero for
some n ∈ N>0. I is radical.

Thus, the word problem and the radical word problem of toric ideals are the same problems.
Also, the radical problem of toric ideals is trivial since all toric ideals are already radical.

10.2 The Word Problem of Toric Ideals

The computational complexity of the word problem for toric ideals is much lower than for
general polynomial ideals. This is interesting, because as we have seen toric ideals are just
saturated pure binomial ideals, and the word problem for binomial ideals is EXPSPACE-
complete like the word problem for general polynomial ideals.

To understand why it is so important for the running time, that the ideal is saturated, we will
classify the set of saturated pure binomials contained in a polynomial ring.

Theorem 10.7 Let k be a field and n ∈ N>0. The map

φ : { f ∈ k [x1, . . . , xn] | f saturated pure binomial} → Zn,

xu − xv 7→ v − u

117

Part IV – Chapter 10: Toric Ideals

for all u, v ∈ Nn
0 is a bijection with inverse map

ϕ : Zn → { f ∈ k [x1, . . . , xn] | f saturated pure binomial},

w 7→ xw− − xw+

for all w ∈ Zn.

Proof It is easy to check that both maps are well-defined because w+,w− ∈ Nn
0 for all w ∈ Zn.

We also obviously have ϕ(φ(xu − xv)) = xu − xv and φ(ϕ(w)) = w for all u, v ∈ Nn
0 and w ∈ Zn.

Note that φ can also be used to map non-saturated pure binomials. The value of φ for some
pure binomial is the same as the one of the saturated form of the pure binomial in that case.

With this bijection we can execute the computation of the word problem for toric ideals on Zn

and use the tools available for this Z-vector space. To do so, we first have to establish that we
can replace all non-saturated pure binomials by their saturated forms in the word problem for
toric ideals.

Theorem 10.8 Let I E k [x1, . . . , xn] be a toric ideal over a field k for some n ∈ N>0 and let
u, v ∈ Nn

0. We have
xu − xv ∈ I ⇔ x(v−u)− − x(v−u)+

∈ I

Proof From Theorem 10.4 we know that I is a saturated pure binomial ideal. The theorem
holds because x(v−u)− − x(v−u)+

is the saturated form of xu − xv.

The last two theorems state, that we can translate the word problem of toric ideals in terms of
a Z-vector space, which makes solving the problem much easier.

Theorem 10.9 Let g, f1, . . . , fs ∈ k [x1, . . . , xn] be pure binomials over a field k for some
n, s ∈ N>0 such that 〈 f1, . . . , fs〉 E k [x1, . . . , xn] is a toric ideal. Using the notation from
Theorem 10.7, we consider the Z-vector space span ({φ(f1), . . . , φ(fs)}) ⊆ Zn and have

g ∈ 〈 f1, . . . , fs〉 ⇔ φ(g) ∈ span ({φ(f1), . . . , φ(fs)})

Proof We will just give the main idea of the proof here. For a detailed proof we refer to the
Master’s thesis of this author [Tom15b].

118

Section 10.2: The Word Problem of Toric Ideals

It is important to note that the s-polynomial of pure polynomials is easy to compute in terms
of the corresponding exponent vectors. Let h1, h2 ∈ k [x1, . . . , xn] be toric ideals. It is easy to
verify that φ(spol (h1, h2)) = ±

(
φ(h1)−φ(h2)

)
. As seen in Section 5.3, we can compute whether

g ∈ 〈 f1, . . . , fs〉 by computing s-polynomials of pure binomials numerous times. With s-
polynomials we can compute a Gröbner Basis of 〈 f1, . . . , fs〉Ek [x1, . . . , xn] and all reductions.
As s-polynomials of pure binomials can be computed as differences of the exponent vectors,
all exponent vectors appearing during the reduction of g modulo 〈 f1, . . . , fs〉 are equivalent
modulo span ({φ(f1), . . . , φ(fs)}). Conversely, all sums and differences of exponent vectors can
be executed in terms of s-polynomial computations. As 0 ∈ span ({φ(f1), . . . , φ(fs)}) we can
reduce g to zero if and only if φ(g) ∈ span ({φ(f1), . . . , φ(fs)}), which is exactly the claim.

In other words, computing an s-polynomial of a pure binomial f = xa − xb ∈ k [x1, . . . , xn]
with xu − xv ∈ k [x1, . . . , xn] for some a, b, u, v ∈ Nn

0 replaces f with a pure binomial where in
the leading term of f we replaced xu by xv. We may also multiply f by some monomial, but
this can be ignored since we discuss toric ideals, i.e. saturated ideals. We now want to apply
several generators of the toric ideal to f and reduce it to 0, which means finding coefficients
c1, . . . , cs ∈ Z such that b − a =

∑s
i=1 ciφ(fi). That is, we want to solve a linear system of

integer equations and thus reduced our membership problem of toric ideals to a membership
problem of linear equations.

This result is important since we can use tools for vector spaces to solve the word prob-
lem on the Z-vector space span ({φ(f1), . . . , φ(fs)}) ⊆ Zn. We can use algorithms like the
Gaussian algorithm explained in Section 4.4. Over Z-vector spaces the row-echelon form
is called Hermite normal form and can be computed by the Gaussian algorithm or the so-
called LLL algorithm introduced by Arjen K. Lenstra, Hendrik W. Lenstra and László Lovász
in 1982 [LLL82, Bre11]. As discussed in Section 7.2, both algorithms run in polynomial
time [EGG+06].

Corollary 10.10 Let g, f1, . . . , fs ∈ k [x1, . . . , xn] be pure binomials over a field k for some
n, s ∈ N>0 such that 〈 f1, . . . , fs〉 E k [x1, . . . , xn] is a toric ideal. There is an algorithm that
decides whether g ∈ 〈 f1, . . . , fs〉 in polynomial time.

An overview of the complexities of word problems for different types of polynomial ideals
discussed in this thesis can be found in Figure 10.11.

We can also adapt the proof of Theorem 10.9 slightly to discuss the triviality problem of toric
ideals. The s-polynomial of two pure binomials is always a pure binomial or zero. Thus, we
can never reduce one to zero modulo a set of pure binomials. A toric ideal could therefore
only be trivial if and only if one of the given generators is already a monomial, in particular
x0 = 1, which is easy to check.

119

Part IV – Chapter 10: Toric Ideals

toric ideals
P

Corollary 10.10

pure binomial ideals
EXPSPACE

Theorem 9.7

radical binomial ideals
coNP

Corollary 11.13

radical pure binomial ideals
coNP

Theorem 11.8

binomial ideals
EXPSPACE

Theorem 9.7

radical ideals
PSPACE

Theorem 8.13

polynomial ideals
EXPSPACE
Theorem 7.13

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

Figure 10.11: The complexity of the word problem for different classes of polynomial ideals.

120

Section 10.2: The Word Problem of Toric Ideals

Corollary 10.12 Let k be a field. The triviality problem for toric ideals I E k [x1, . . . , xn] for
some n ∈ N>0 can be solved in polynomial time.

121

11 Cellular Decomposition

11.1 Cellular Decomposition

The paper [ES96] also introduced a tool for binomial ideals called cellular decomposition, that
we will use to analyze the complexity of the radical word problem of binomial ideals.

The main idea of cellular decomposition is to decompose the affine space into so-called cells.

Definition 11.1 Let k be a field and n ∈ N>0. For each ∆ ⊆ {x1, . . . , xn} the ∆-cell of
k [x1, . . . , xn] is the set

k∆ B
{
a ∈ kn | ai , 0⇔ xi ∈ ∆ for all i ∈ {1, . . . , n}

}
⊆ kn

For each ideal I E k [x1, . . . , xn] and each set ∆ ⊆ {x1, . . . , xn} we define

V∆ (I) B V (I) ∩ k∆

There are 2n different cells, which is an exponential number in the number of indeterminates.
Visualizations of some samples of cells are shown in Figure 11.2 and Figure 11.3.

Cells have the property, that different cells are disjoint and all cells together span the full affine
space. Thus, we call the following formula the cellular decomposition of kn

kn =
⋃

∆⊆{x1,...,xn}

k∆

Likewise, we can partition the variety of any polynomial ideal I E k [x1, . . . , xn] into cells

V (I) =
⋃

∆⊆{x1,...,xn}

V∆ (I)

Those cells can also be used to define the cellular decomposition of polynomial ideals instead
of their varieties.

123

Part IV – Chapter 11: Cellular Decomposition

x1

x2

x3

x1

x2

x3

Figure 11.2: A visualization of the cell Q{x1} ⊆

Q3.
Figure 11.3: A visualization of the cell Q{x2,x3} ⊆

Q3.

Theorem 11.4 (cellular decomposition [ES96]) Let IEk [x1, . . . , xn] be a pure binomial ideal
over an algebraically closed field k with characteristic zero for some n ∈ N>0. We have

√
I =

⋂
∆⊆{x1,...,xn}

I∆ :

∏
xi∈∆

xi


∞

+ 〈{xi | xi < ∆}〉


where I∆ is the image of I under the ring homomorphism defined by

1 7→ 1, xi 7→

xi if xi ∈ ∆

0 else

for all ∆ ⊆ {x1, . . . , xn}. The ideals I∆ :
(∏

xi∈∆
xi

)∞
+ 〈{xi | xi < ∆}〉 for some ∆ ⊆ {x1, . . . , xn}

are called cell ideals of I.

Proof Consider the cellular decomposition of the variety of I.

V (I) =
⋃

∆⊆{x1,...,xn}

V∆ (I)

124

Section 11.1: Cellular Decomposition

Taking the vanishing ideal of both sides results in

I (V (I)) = I

 ⋃
∆⊆{x1,...,xn}

V∆ (I)


On the left-hand side we can apply Hilbert’s Nullstellensatz from Theorem 8.3 to find that the
vanishing ideal is the radical of I. On the right-hand side we can exchange the order of the
computation of the vanishing ideal with the other operations as discussed in Section 4.6. This
results in

√
I =

⋂
∆⊆{x1,...,xn}

I (V∆ (I))

=
⋂

∆⊆{x1,...,xn}

I
((
V (I) \ {a ∈ kn | ai = 0, xi ∈ ∆ for some i ∈ {1, . . . , n}}

)
∩ {a ∈ kn | ai = 0 for all i ∈ {1, . . . , n} with xi < ∆}

)
=

⋂
∆⊆{x1,...,xn}

((
I (V (I)) : I ({a ∈ kn | ai = 0, xi ∈ ∆ for some i ∈ {1, . . . , n}})∞

)
+ I ({a ∈ kn | ai = 0 for all i ∈ {1, . . . , n} with xi < ∆})

)
=

⋂
∆⊆{x1,...,xn}

√
I :

∏
x∈∆

x

∞ + 〈x | x < ∆〉

=
⋂

∆⊆{x1,...,xn}

√√
I :

∏
x∈∆

x

∞ + 〈x | x < ∆〉

As all indeterminates not contained in ∆ are added to the ideals of each cell either way, we can
also remove them from the left ideal to obtain

√
I =

⋂
∆⊆{x1,...,xn}

√√
I∆ :

∏
x∈∆

x

∞ + 〈x | x < ∆〉

Note that until here we did not use that I is a pure binomial ideal, so the above equation still
holds for all polynomial ideals. If I is a pure binomial ideal, the ideal I∆ : (

∏
x∈∆ x)∞ is a

saturated pure binomial ideal and thus a toric ideal by Theorem 10.4. In case the replacement
of I by I∆ results in a monomial, the saturation is the full ideal 〈1〉 = k [x1, . . . , xn] which is also
toric. With Theorem 10.6 we know that therefore I∆ : (

∏
x∈∆ x)∞ is radical as the characteristic

of k is assumed to be 0. Thus, we can omit computing the radical on the right-hand side of the
equation, which results in the formula to be proven.

The cellular decomposition of pure binomial ideals is useful, because we are able to remove
the radical operation from the cellular ideals in the last step of the proof. This allows for
computations on the radical of a pure binomial ideal without having to compute any radical.

125

Part IV – Chapter 11: Cellular Decomposition

In return, the number of cell ideals is exponential in the number of indeterminates. David
Eisenbud and Bernd Sturmfels also proved that Theorem 11.4 works for general binomial
ideals (which may have coefficients).

Note that the intersection of binomial ideals is not a binomial ideal in general though. Thus,
when computing the radical of a binomial ideal using cellular decomposition, some interme-
diate results are no binomial ideal in general. Eberhard Becker, Rudolf Grobe, and Michael
Niermann showed that nevertheless the intersection operations can be computed in an order
such that all intermediate results are binomial ideals [BGN97].

11.2 The Radical Word Problem for Binomial Ideals

The cellular decomposition allows for better algorithms to solve the radical word problem of
binomial ideals, but not for the computation of the complete radical of binomial ideals. The
problem is that to compute the radical of a pure binomial ideal using cellular decomposition,
we need to compute the intersection of an exponential number of polynomial ideals, that are
not necessarily toric ideals. The ideals

I∆ :

∏
x∈∆

x

∞

appearing in the cellular decomposition are toric for a pure binomial ideal IEk [x1, . . . , xn] over
a field k for some n ∈ N>0 and ∆ ⊆ {x1, . . . , xn}, but the addition of the non-cell indeterminates
makes the cell ideal

I∆ :

∏
xi∈∆

xi


∞

+ 〈{xi | xi < ∆}〉

a non-toric polynomial ideal in general. Cell ideals are still binomial ideals, but there are no
known better complexity bounds for the computation of the intersection of binomial ideals in
comparison to the computation of the intersection of general polynomial ideals.

An important part of the intersection of toric ideals on the other hand is that they can be
computed in polynomial time using Theorem 10.9. With this theorem, we just need to compute
the intersection of Z-vector spaces to describe all saturated pure binomial in the intersection
of two toric ideals. Computing the intersection of Z-vector spaces can be done for instance
using the Zassenhaus Algorithm. This Algorithm is named after the German mathematician
Hans J. Zassenhaus, even though there is no known formal publication by him presenting the
algorithm. The Zassenhaus Algorithm needs an implementation of the Gauß algorithm and
together both algorithms run in polynomial time [Fis13, Lan87]. Note that the intersection of
toric ideals is not a toric ideal in general though.

126

Section 11.2: The Radical Word Problem for Binomial Ideals

Theorem 11.5 There is an algorithm that computes a generating set of a toric ideal containing
exactly those pure binomials contained in the intersection of two toric ideals I, JEk [x1, . . . , xn]
over a field k for some n ∈ N>0 in time polynomial in n and the encoding size of I and J.

The radical word problem of pure binomial ideals on the other hand can be solved much more
efficiently using cellular decomposition instead of computing a Gröbner Basis and then reduc-
ing the test polynomial modulo that basis. We will now show that the radical word problem
for binomial ideals can be solved in coNP, which is much more efficient than EXPSPACE in
the general case. To do so, we need to give a certificate, which makes it easy to verify that a
binomial is not contained in the radical of a binomial ideal.

Theorem 11.6 There is an algorithm, that computes whether some given pure binomial f ∈
k [x1, . . . , xn] over a field k for some n ∈ N>0 is contained in the radical of a pure binomial
ideal I E k [x1, . . . , xn] in coNP.

Proof With the cellular decomposition presented in Theorem 11.4 we know that f ∈
√

I if
and only if for all ∆ ⊆ {x1, . . . , xn} we have

f ∈ I∆ :

∏
xi∈∆

xi


∞

+ 〈{xi | xi < ∆}〉

Negating this statement results in f <
√

I if and only if there is ∆ ⊆ {x1, . . . , xn} such that

f < I∆ :

∏
xi∈∆

xi


∞

+ 〈{xi | xi < ∆}〉

Thus, a certificate for f <
√

I is such an ∆ ⊆ {x1, . . . , xn} with

f < I∆ :

∏
xi∈∆

xi


∞

+ 〈{xi | xi < ∆}〉

The certificate clearly has at most polynomial size.

It remains to show that the certificate can be verified in polynomial time, i.e. we can decide
in polynomial time whether f ∈ I∆ :

(∏
xi∈∆

xi

)∞
+ 〈{xi | xi < ∆}〉. To do so we make a case

distinction:

a) All terms of f involve indeterminates not contained in ∆: In this case we clearly have
f ∈ I∆ :

(∏
xi∈∆

xi

)∞
+ 〈{xi | xi < ∆}〉.

127

Part IV – Chapter 11: Cellular Decomposition

b) Exactly one term of f does only contain indeterminates from ∆: In this case we have
that f ∈ I∆ :

(∏
xi∈∆

xi

)∞
+ 〈{xi | xi < ∆}〉 if and only if I∆ : (

∏
x∈∆ x)∞ = 〈1〉 since

I∆ : (
∏

x∈∆ x)∞ is saturated. The triviality problem of polynomial ideals can be solved in
polynomial time as discussed in Corollary 10.12.

c) Exactly two terms of f only contain indeterminates from ∆: In this case we can use
Corollary 10.10 to solve the word problem of toric ideals in polynomial time.

All cases can be verified in polynomial time, which concludes the proof.

This certificate can also be slightly extended to solve the problem for general polynomials
f ∈ k [x1, . . . , xn] instead of only pure binomials.

Theorem 11.7 There is an algorithm that computes whether a polynomial f ∈ k [x1, . . . , xn]
over a field k for some n ∈ N>0 is contained in the radical of some given pure binomial ideal
I E k [x1, . . . , xn] in coNP.

Proof We use the criterion given in Theorem 9.9 to extend our certificate from Theorem 11.6.
The certificate now also contains one monomial such that the sum of the coefficients of mono-
mials equivalent to the given one modulo the cell ideal is not 0. Such a monomial has to exist
if and only if f is not contained in the cell ideal as proven in Theorem 9.9. Let

f =

r∑
i=1

aixui

for some r ∈ N>0, a1, . . . , ar ∈ R, and u1, . . . , ur ∈ N
n
0. The full certificate consists of a

∆ ⊆ {x1, . . . , xn} and v ∈ Nn
0 such that ∑

i∈{1,...,r}

xui
I∆:(∏

xi∈∆
xi)∞+〈{xi | xi<∆}〉=xv

ai , 0

Again, this certificate has polynomial size in the input length.

We now need to show that we can verify the certificate in polynomial time. Observe that we
have

xui
I∆:(∏xi∈∆ xi)∞+〈{xi | xi<∆}〉

= xv

if and only if

xui − xv ∈ I∆ :

∏
xi∈∆

xi


∞

+ 〈{xi | xi < ∆}〉

Using Corollary 10.10 we can now select the coefficients to sum up in polynomial time. The
summation and comparison to 0 can also clearly be done in polynomial time.

128

Section 11.3: Modeling Binomial Ideals Using Pure Binomials

In the Master’s thesis of this author we proved that there are matching lower bounds for the
radical word problem of binomial ideals by reducing the TAUTOLOGY problem to the rad-
ical word problem of pure binomial ideals [Tom15b]. Together, this proves that the radical
word problem for pure binomial ideals is coNP-complete.

Theorem 11.8 ([Tom15b]) Let k be a field. The radical word problem of pure binomial ideals
I E k [x1, . . . , xn] for n ∈ N>0 is coNP-complete.

11.3 Modeling Binomial Ideals Using Pure Binomials

We will now show that the results from the previous section also hold for non-pure binomial
ideals. The proof, that the radical word problem of pure binomial ideals is contained in coNP,
has only one step that cannot be carried out with non-pure binomials: Solving the word prob-
lem of the saturated cell ideals in polynomial time by mapping the ideal to a Z-vector space.
An adjusted construction, that takes coefficients into account, will be presented here.

The first step to solve the word problem of toric ideals is to translate the pure binomials to a
Z-vector space. We can do a similar construction for saturated binomial ideals.

Theorem 11.9 Let k be a field, n ∈ N>0, and � be a term ordering on k [x1, . . . , xn]. The map

φ : { f ∈ k [x1, . . . , xn] | f saturated monic binomial} → k × {w ∈ Zn | xw+ � xw−},

xu − axv 7→ (a, v − u)

for all a ∈ k and u, v ∈ Nn
0 is a bijection with inverse map

ϕ : k × {w ∈ Zn | xw+ � xw−} → { f ∈ k [x1, . . . , xn] | f saturated monic binomial},

(a,w) 7→

xw− − axw+

if xw− � xw+

xw+

− a−1xw− else

for all a ∈ k and w ∈ Zn with xw+ � xw−.

Proof As for toric ideals it is easy to check that both maps are well-defined and that we have
ϕ(φ(xu − axv)) = xu − axv and φ(ϕ((a,w))) = (a,w) for all u, v ∈ Nn

0 with xu � xv, a ∈ k and
w ∈ {w ∈ Zn | xw+ � xw−}.

129

Part IV – Chapter 11: Cellular Decomposition

We use monic binomials only since all binomials can be made monic by dividing by their
leading coefficients. As binomials, that differ only in a constant factor, can be considered
equal for ideal membership we can map all binomials to their monic form and thus we get the
generalized map

φ : { f ∈ k [x1, . . . , xn] | f binomial} → k × Zn,

axu − bxv 7→

(
b
a
, v − u

)
for all a, b ∈ k and u, v ∈ Nn

0. Similarly, we can extend ϕ to

ϕ : k × Z→ { f ∈ k [x1, . . . , xn] | f saturated monic binomial},

(a,w) 7→

xw− − axw+

if xw− � xw+

xw+

− a−1xw− else

as multiplying by -1 just corresponds to exchanging the terms of a binomial.

We regard k × Zn as a Z-vector space with the operations

(a, u) + (b, v) B (ab, u + v)

and
c · (a, u) B (a, u) + · · · + (a, u)︸ ︷︷ ︸

c times

= (ac, cu)

for all c ∈ Z, a, b ∈ k, and u, v ∈ Zn. The sum operation is set up in such a way such that the
computation of s-polynomials corresponds to the sum in the vector space.

Theorem 11.10 Let a1, a2 ∈ k, u1, u2, v1, v2 ∈ Z
n, and � be a term ordering on k [x1, . . . , xn]

with u1 � v1 and u2 � v2 for some field k and n ∈ N>0. We have

φ
(
spol

(
xu1 − a1xv1 , xu2 − a2xv2

))
= ±

(
φ(xu1 − a1xv1) − φ(xu2 − a2xv2)

)

Proof We have

spol
(
xu1 − a1xv1 , xu2 − a2xv2

)
= −a1xv1+(u2−u1)+ + a2xv2+(u2−u1)−

which is mapped to ±
(

a1
a2
, (v1−u1)−(v2−u2)

)
by φ. The sign depends on the order of xv1+(u2−u1)+

and xv2+(u2−u1)− with respect to �. The inner part of the right-hand side evaluates to

φ(xu1 − a1xv1) − φ(xu2 − a2xv2) = (a1, v1 − u1) − (a2, v2 − u2) =

(
a1

a2
, (v1 − u1) − (v2 − u2)

)
which concludes the proof.

130

Section 11.3: Modeling Binomial Ideals Using Pure Binomials

For this computation we basically replaced the exponent monoid of the polynomial ring
k [x1, . . . , xn] = k[Nn

0] by the monoid (k×Nn
0,+, (1, 0, . . . , 0)) where (a, u) + (b, v) B (ab, u + v)

for all a, b ∈ k, and u, v ∈ Zn. The coefficients are encoded into a new indeterminate and the
summation of the exponents of this new indeterminate is modified. Alternatively, we could
also have mapped the coefficients to logarithms in the exponent and leave the operation un-
touched. This approach has the disadvantage that we have to save real numbers in case of a
rational base field and that a logarithm may not exist over all fields.

Encoding the coefficients into a new indeterminate may also be useful for other applications.
To do so in general, one still has to identify all possible coefficients with the corresponding
powers of the new indeterminate. If the new indeterminate is called z we formally carry out
the computations in R[k × Nn

0]/ 〈a − za | a ∈ k〉.

We can now use the exact same reasoning from Theorem 10.9 and Corollary 10.10 to show
that the word problem for saturated binomial ideals is solvable in polynomial time.

Corollary 11.11 Let g, f1, . . . , fs ∈ k [x1, . . . , xn] be binomials over a field k for some n, s ∈
N>0 such that 〈 f1, . . . , fs〉 E k [x1, . . . , xn] is a saturated ideal. We consider the Z-vector space
span ({φ(f1), . . . , φ(fs)}) ⊆ k × Zn using the notation from Theorem 11.9 with the operations

(a, u) + (b, v) B (ab, u + v)

and
c · (a, u) B (a, u) + · · · + (a, u)︸ ︷︷ ︸

c times

= (ac, cu)

for all c ∈ Z, a, b ∈ k, and u, v ∈ Zn and have

g ∈ 〈 f1, . . . , fs〉 ⇔ φ(g) ∈ span ({φ(f1), . . . , φ(fs)})

Corollary 11.12 Let g, f1, . . . , fs ∈ k [x1, . . . , xn] be binomials in a polynomial ring over the
field k for some n, s ∈ N>0 such that 〈 f1, . . . , fs〉 E k [x1, . . . , xn] is a saturated binomial ideal.
There is an algorithm that decides whether g ∈ 〈 f1, . . . , fs〉 in polynomial time.

Using cellular decomposition and the certificates discussed in Section 11.1 we finally get the
following corollary.

Corollary 11.13 Let k be a field. The radical word problem of non-pure binomial ideals
I E k [x1, . . . , xn] for n ∈ N>0 is coNP-complete.

131

Part IV – Chapter 11: Cellular Decomposition

All proofs may be carried out analogously to the case of pure binomial ideals by simply re-
placing the Z-vector space to generalize the results from Section 11.2.

132

Part V

Radicals of Commutative Thue Systems

12 Term Replacement Systems 135
12.1 Grammars and Term Replacement Systems 135

12.2 Thue Systems . 138

13 Radicals of Term Replacement Systems 143
13.1 Algorithms for Computing the Radical of Pure Binomial Ideals 143

13.2 Proof of the Algorithm . 146

13.3 Experimental Degree Bounds . 149

13.4 A Formal Degree Bound . 153

13.5 Radicals of Commutative Thue Systems . 155

14 Degree Bounds for Radical Ideals 159
14.1 Upper Bounds . 159

14.2 Lower Bounds . 160

14.3 Degree Bounds for Radicals of Commutative Thue Systems 164

14.4 Adjustments of the Closure Operation . 166

12 Term Replacement Systems

12.1 Grammars and Term Replacement Systems

Term replacement systems are a common construction in theoretical computer science. The
idea of these systems is to describe instances of problems by some words and to describe
when different instances of the problem have the same solution. This is done by defining that
two words are equivalent if and only if they can be transformed into each other by applying a
sequence of certain given basic operations. These basic operations are usually set up in a way
such that it is easy to prove, that they transform problem instances to other problem instances
with the same solution. Applying multiple of these basic operations allows for easily verifiable
proofs that two problem instances have the same solution. We can state this concept formally
by defining a term replacement system.

Definition 12.1 A term replacement system, formal grammar, or just grammar is a tuple
G = (N,Σ,P, S) where N is a set of nonterminal symbols, Σ is a set of terminal symbols, P is
a finite set of productions of the form α → β for some α, β ∈ (N ∪ Σ)∗, and S ∈ N is the start
symbol.

When N, Σ, and S are clear from context we also call P the term replacement system instead
of G = (N,Σ,P, S). To shorten notation we will usually write Γ B N ∪ Σ. To avoid confusion
we usually denote terminal symbols by digits or lowercase letters and nonterminal symbols by
uppercase letters.

The descriptions of the problem instances consist of the terminal symbols Σ. The nonterminal
symbols N are used as helper symbols for the productions. The start symbol S is used to
define which problem instances should be accepted by our term replacement system. The
productions P are the basic operations to transform problem descriptions into other ones with
the same solution.

We can use the productions P to derive words from each other and define an equivalence
relation between them.

Definition 12.2 A word α ∈ Γ∗ derives a word β ∈ Γ∗ in one step modulo a term replacement
system G = (N,Σ,P, S) – denoted by α ⇒1,G β or α ⇒1,P β – if and only if there are
α′, β′, γ, δ, ∈ Γ∗ with α = γα′δ, β = γβ′δ, and α′ → β′ ∈ P.

135

Part V – Chapter 12: Term Replacement Systems

For i ∈ N>0 with i ≥ 2 a word α ∈ Γ∗ derives a word β ∈ Γ∗ in i steps modulo G – denoted by
α ⇒i,G β or α ⇒i,P β – if and only if there is a γ ∈ Γ∗ such that α ⇒1,G γ and γ ⇒i−1,G β. To
make the definition complete, we say that a word α ∈ Γ∗ derives a word β ∈ Γ∗ in zero steps
modulo G – denoted by α⇒0,G β or α⇒0,P β – if and only if α = β.

A word α ∈ Γ∗ derives a word β ∈ Γ∗ modulo G – denoted by α ⇒G β or α ⇒P β – if and
only if there is an i ∈ N0 such that α ⇒i,G β. Two words α, β ∈ Γ∗ are equivalent modulo G –
denoted by α ≡G β or α ≡ Pβ – if and only if α⇒G β and β⇒G α.

A problem instance α ∈ Σ∗ is considered to be accepted by the grammar G if it can be derived
from the start symbol S . The language accepted by a grammar G = (N,Σ,P, S) is the set

{α ∈ Σ∗ | S ⇒G α} ⊆ Σ∗

As an example consider the set M of all positive integers, that leave a remainder of 5 modulo 8.
Each integer is described by its binary representation without leading zeros. Thus, we have
Σ = {0, 1}. The grammar G = (N,Σ,P, S) with N = {S ,T } and

P = {S → 101, S → T101,T → T0,T → T1,T → 1}

accepts exactly the set M. The binary representation of integers contained in M is character-
ized by the fact that it starts with 1 and ends with 101. This is enforced by the only productions
S → 101 and S → T101 of the start symbol S where the symbol T represents a word that
starts with 1. The other productions allow the derivation of an arbitrary word starting with 1
from T . This makes all integers from M derivable from S . For instance 101101 is accepted
by G because

S ⇒1,G T101⇒1,G T1101⇒1,G T01101⇒1,G 101101

which implies S ⇒4,G 101101 and S ⇒G 101101.

To decide whether a word α ∈ Σ∗ is accepted by a grammar G, we can construct a Turing
Machine that systematically tries all possible sequences of productions starting at S and stops
if the word created by those productions is α. This Turing Machine would accept all words
contained in G in a finite amount of time. For words, that are not created in G, the machines
runs infinitely long. One can show that this is essentially the only way to decide whether
a word is accepted by a general term replacement system using a deterministic Turing Ma-
chine [DSW94].

A decision problem L ⊆ {0, 1}∗, for which there is a Turing Machine, that given a word
contained in L accepts after a finite amount of time and given a word not contained in L
rejects after a finite amount of time or runs infinitely long, is called a semi-decidable problem
and the Turing Machine is said to recognize the problem. Recall that we required a Turing
Machine that decides a language L ⊆ {0, 1}∗ to stop after a finite amount of time for all inputs,

136

Section 12.1: Grammars and Term Replacement Systems

type-3 languages, regular grammars

type-2 languages, context-free grammars

type-1 languages, context-sensitive grammars

decidable problems

type-0 languages, general grammars, semi-decidable problems

Figure 12.3: A visualization of the Chomsky Hierarchy. When grammars are denoted in the diagram
we refer to the languages accepted by them.

while Turing Machines semi-deciding L may run infinitely long on inputs not contained in L.
Thus, the set of decision problems that are accepted by a term replacement system is called
the set of recursively enumerable or semi-decidable problems and is denoted by RE.

The semi-decidable problems are also called type-0 languages in the Chomsky hierarchy. This
hierarchy is named after the American linguist Noam Chomsky and describes different types
of term replacement systems [Cho56]. A visualization of the levels of the Chomsky Hierarchy
can be found in Figure 12.3.

Type-1 languages or context-sensitive grammars are described by grammars that replace only
one symbol at a time, where that symbol also needs to be nonterminal. A language is context-
sensitive if and only if it is is accepted by a term replacement system where all productions
have the form αTβ → αγβ for some α, β, γ ∈ Γ∗ and T ∈ N. These grammars are called
context-sensitive, because it is only allowed to replace T by γ in the presence of the context of
α and β. The languages accepted by context-sensitive grammars can be decided by determin-
istic Turing Machines by starting at a word and exploring all possible productions backwards.
Thus, the type-1 languages are decidable [DSW94].

Type-2 languages are accepted by so-called context-free grammars. They are a special case
of context-sensitive grammars whose productions are not allowed to depend on the context.
Instead of the context-sensitive productions αTβ → αγβ for some α, β, γ ∈ Γ∗ and T ∈ N,
for context-free grammars all productions must have the form T → γ for some γ ∈ Γ∗ and
T ∈ N, i.e. α = β = ε. The languages accepted by context-free grammars can be recognized
by so-called non-deterministic pushdown automatons.

Another important special case of formal grammars are the regular grammars which accept
the type-3 languages. These grammars are defined by productions of the form T → a, T →
aU, or T → ε for some T,U ∈ N and a ∈ Σ. The languages accepted by these grammars
can be recognized by restricted Turing Machines, that are not allowed to write to the work

137

Part V – Chapter 12: Term Replacement Systems

tapes and cannot move their head to the left. Turing Machines with this restriction are also
called finite-state machines. For instance, the language of all positive integers that have a
remainder 5 modulo 8 as discussed above is a regular language, because there is a regular
grammar accepting this language.

12.2 Thue Systems

The productions as used above are also sometimes called semi-Thue productions in honor
of the Norwegian mathematician Axel Thue. He introduced the theory of term replacement
systems already in 1910 [Thu10, Thu14], but his work was not widely recognized until much
later. This was mainly due to the publication in German language with a generic title in a
small journal [Tho10]. Term replacement systems are therefore also called semi-Thue sys-
tems. When discussing semi-Thue systems, we generally assume that all symbols are terminal
symbols, i.e. N = ∅. Also, if not stated otherwise, we assume the starting symbol to be the
empty word S = ε. Thus, a semi-Thue system is usually completely characterized by its set
of productions P. The set of terminal symbols Σ is implicitly known as the set of all symbols
appearing in the productions. As in the last section we will therefore call P the semi-Thue
system.

We will see in this section that commutative Thue systems are equivalent to pure binomial
ideals as defined in Chapter 9. To achieve this, we will define commutative Thue systems first.

Definition 12.4 Let P be a semi-Thue system. P is a Thue system if and only if for each
production α→ β ∈ P for some α, β ∈ Γ∗ we also have β⇒P α. P is commutative if and only
if for all a, b ∈ Γ we have ab ≡P ba.

When defining Thue systems we usually denote the productions as α ≡ β for some α, β ∈ Γ∗

which means α → β and β → α. For commutative Thue system we can add the productions
a ≡ b for all a, b ∈ Γ to P without changing the commutative Thue system. Those productions
are usually omitted and should implicitly be included when speaking about commutative Thue
systems.

We will now map each commutative Thue system to a pure binomial ideal to establish an
equivalence between commutative Thue systems and pure binomial ideals.

Definition 12.5 Let Σ = {σ1, . . . , σn} be a finite set with n ∈ N0 and let

P =
{
αi ≡ βi | i ∈ {1, . . . , s}

}

138

Section 12.2: Thue Systems

be a commutative Thue system for s ∈ N>0 and αi, βi ∈ Σ∗ for i ∈ {1, . . . , s}. Let Φ : Σ∗ → Nn
0

be the Parikh mapping, i.e. the i-th entry of Φ(γ) is the number of occurrences of σi in γ for
all γ ∈ Σ∗ and i ∈ {1, . . . , n}. For each ring R we define the polynomial ideal

IR(P) B
〈
xΦ(αi) − xΦ(βi) | i ∈ {1, . . . , s}

〉
E R [x1, . . . , xn]

For each commutative Thue system P and for each ring R the polynomial ideal IR(P) is obvi-
ously generated by pure binomials and therefore a pure binomial ideal. For each pure binomial
ideal I E R [x1, . . . , xn] for some ring R and n ∈ N>0 we can also find a commutative Thue sys-
tem P over the set of terminal symbols Σ = {x1, . . . , xn}. This is achieved by computing a
generating set of I, that consists of pure binomials only, and for each generator xu − xv ∈ I for
some u, v ∈ Nn

0 we add the equivalence xu ≡ xv to P, where the monomials are understood as
words over Σ. For this commutative Thue system we obviously get the same set of generators
when we compute IR(P). Thus, we have maps in both directions between the set of pure
binomials over R [x1, . . . , xn] and the set of commutative Thue systems over Σ = {x1, . . . , xn},
that are inverse to each other.

We will now see that we can translate the pure binomials contained in the polynomial ring
to equivalences of the corresponding commutative Thue system without losing information
about their containment in the pure binomial ideal or commutative Thue system, respectively.

Theorem 12.6 ([MM82]) For all commutative Thue Systems P we have

xΦ(γ) − xΦ(δ) ∈ IZ(P)⇔ xΦ(γ) − xΦ(δ) ∈ IQ(P)⇔ γ ≡P δ

for all γ, δ ∈ Σ∗.

Proof We will show three implications to prove this theorem. First,

xΦ(γ) − xΦ(δ) ∈ IZ(P)⇒ xΦ(γ) − xΦ(δ) ∈ IQ(P)

obviously holds.

Now assume that we have xΦ(γ) − xΦ(δ) ∈ IQ(P). Without loss of generality let

IQ(P) =
〈
xa1 − xb1 , . . . , xas − xbs

〉
E Q[x1, . . . , xn]

for some a1, . . . , as, b1, . . . , bs ∈ N
n
0 for n B |Γ| and some s ∈ N>0. with Theorem 4.10 there

are i1, . . . , it ∈ {1, . . . , s} for some t ∈ N>0 and m1, . . . ,mt ∈ MQ[x1,...,xn], c′1, . . . , c
′
t ∈ Q such that

xΦ(γ) − xΦ(δ) =

t∑
j=1

c′jm j(xai j − xbi j)

139

Part V – Chapter 12: Term Replacement Systems

By clearing denominators and switching the order of some ai and bi we can assume that there
are d, c1, . . . , ct ∈ N>0 with

dxΦ(γ) − dxΦ(δ) =

t∑
j=1

c jm j(xai j − xbi j)

Since xΦ(γ) appears on the left-hand side of this equations it also has to appear on the right-
hand side. Without loss of generality assume that xΦ(γ) = m1xai1 . We can subtract xΦ(γ) from
the equation and get

m1xbi1 + (d − 1)xΦ(γ) − dxΦ(δ) =

t∑
j=1

c jm j(xai j − xbi j) − m1(xai1 − xbi1)

In terms of the commutative Thue system, we have that γ = m1Φ
−1(ai1) ≡P m1Φ

−1(bi1).
Repeating this argument with m1xbi1 finally leads to xΦ(δ) as the coefficients on the right-hand
side shrink in every step. In terms of the commutative Thue system P we get an equivalence
of γ and δ. We have just shown xΦ(γ) − xΦ(δ) ∈ IQ(P)⇒ γ ≡P δ.

Now we show the last missing implication γ ≡P δ⇒ xΦ(γ)− xΦ(δ) ∈ IZ(P). Let P be generated
by P = {αi ≡ βi | i ∈ {1, . . . , s}} for some s ∈ N>0. γ ≡P δ means that there is a chain of
derivations

γ = ε1αi1 ≡P ε1βi1 = ε2αi2 ≡P ε2βi2 = · · · = εtβit = δ

for some t ∈ N>0, ε1, . . . , εt ∈ Γ∗, and i1, . . . , it ∈ {1, . . . , s}. This implies

xΦ(γ) − xΦ(δ) =

t∑
j=1

xΦ(εi)
(
xΦ(αi) − xΦ(βi)

)
∈ IZ(P)

which concludes the proof.

This means that commutative Thue systems and pure binomial ideals over the integers or
rationals are basically the same. This equivalence is a powerful tool since it allows to use
techniques from term replacement systems for pure binomial ideals and vice versa. The result
from Theorem 7.13, that the word problem for polynomial ideals is EXPSPACE-complete,
was also done by translating a term replacement system to a pure binomial ideal [MM82].

All operations we discussed in Section 4.6, that are closed under pure binomial ideals, can be
transferred to commutative Thue systems. We can map commutative Thue systems to pure
binomial ideals, execute the operations, and then translate the resulting pure binomial ideals
back to commutative Thue systems. This works for instance for sums, radicals, and quotients
as well as saturations with monomials.

Many operations can also be interpreted in terms of commutative Thue systems. The sum of
two commutative Thue systems is a system that allows for productions from both systems.

140

Section 12.2: Thue Systems

The saturation of a commutative Thue system is a system where αβ ≡P αγ implies β ≡P γ for
all α, β, γ ∈ Γ∗. Only radicals have no immediate interpretation in terms of commutative Thue
systems yet, but we will introduce one in the subsequent chapters.

141

13 Radicals of Term Replacement
Systems

13.1 Algorithms for Computing the Radical of Pure
Binomial Ideals

In this section we will present a new algorithm to compute radicals of commutative Thue
systems. We will develop this algorithm in terms of pure binomial ideals since they are equiv-
alent as seen in Theorem 12.6. We will make sure that our algorithm just uses binomials as
intermediate steps since Theorem 12.6 allows for the mapping of pure binomials only.

The definition of radical ideals as presented in Definition 8.1 yields an idea of an algorithm to
compute the radical of a polynomial ideal.

Algorithm 13.1 Compute the radical of a polynomial ideal using roots.
Input: f1, . . . , fs ∈ R [x1, . . . , xn] polynomials over a Noetherian ring R for some n, s ∈ N>0

Output:
√
〈 f1, . . . , fs〉

1: I B 〈 f1, . . . , fs〉

2: while there are g ∈ R[x1, . . . , xn] and r ∈ N>0 such that gr ∈ I and g < I do
3: I B I + 〈g〉
4: end while
5: return I

Note that finding the polynomial g in Algorithm 13.1 is still a non-constructive step. All other
steps can be carried out using Gröbner Basis techniques as presented earlier. There could be
an infinite amount of polynomials to be added to the ideal when computing the radical ideal,
but Algorithm 13.1 still terminates after a finite time.

Theorem 13.2 Algorithm 13.1 terminates after a finite number of steps for all inputs.

Proof Consider the polynomial ideals that the variable I contains during the execution time of
the algorithm in order. The chain of ideals is clearly growing since we just add new generators
to our ideal. As R is Noetherian, we know that R [x1, . . . , xn] is Noetherian too. Thus, at
some point the algorithm will not enlarge the ideal anymore, since we only add polynomials
to the ideal if they were not contained in the ideal yet. This means that the algorithm needs to
terminate once the variable I does not change anymore.

143

Part V – Chapter 13: Radicals of Term Replacement Systems

Likewise, Algorithms 13.3, 13.4, and 13.7 that will be presented in this section terminate after
a finite amount of time for every input.

For pure binomial ideals we know that the radical is still a pure binomial ideal as discussed in
Chapter 9 [ES96]. Therefore, it is enough to find roots that are pure binomials only and we
can simplify our algorithm.

Algorithm 13.3 Compute the radical of a pure binomial ideal using roots.
Input: f1, . . . , fs ∈ R [x1, . . . , xn] pure binomials over a Noetherian ring R for some n, s ∈ N>0

Output:
√
〈 f1, . . . , fs〉

1: I B 〈 f1, . . . , fs〉

2: while there is a pure binomial g ∈ R[x1, . . . , xn] and r ∈ N>0 such that gr ∈ I and g < I do
3: I B I + 〈g〉
4: end while
5: return I

We note that Algorithm 13.3 would still hold for non-pure binomial ideals if g is also chosen
as a possibly non-pure binomial.

Algorithm 13.3 still involves polynomials gr that are possibly no pure binomials. Therefore,
this algorithm cannot be used when dealing with term replacement systems since we only have
a map from pure binomials to productions. Other polynomials do not have known matching
objects in the context of term replacement systems.

Another way to simplify Algorithm 13.1 is to limit the order of the root. Considering square
roots is already enough to compute the radical ideal.

Algorithm 13.4 Compute the radical of a polynomial ideal using square roots.
Input: f1, . . . , fs ∈ R [x1, . . . , xn] polynomials over a Noetherian ring R for some n, s ∈ N>0

Output:
√
〈 f1, . . . , fs〉

1: I B 〈 f1, . . . , fs〉

2: while there is g ∈ R[x1, . . . , xn] such that g2 ∈ I and g < I do
3: I B I + 〈g〉
4: end while
5: return I

Theorem 13.5 Algorithm 13.4 is correct.

Proof Algorithm 13.4 obviously returns a subset of Algorithm 13.1, given the same input,
since Algorithm 13.1 may always choose r = 2. Since both algorithms should compute the

144

Section 13.1: Algorithms for Computing the Radical of Pure Binomial Ideals

same ideal we only need to prove that all polynomials computed by Algorithm 13.1 will also
be computed by Algorithm 13.4.

Let g ∈ R[x1, . . . , xn] and r ∈ N>0 be chosen in the loop of Algorithm 13.1. Let t ∈ N>0

be the smallest positive integer with 2t ≥ r. This implies g2t
∈ I since g2t

is a multiple of
gr. Algorithm 13.4 may now add g2t−1

to I if it is not already contained since its square is
also contained in I. Similarly, it will add g2t−2

, g2t−3
, . . . , g20

= g to I. This means that all
polynomials added to I by Algorithm 13.1 will also eventually be added by Algorithm 13.4.

Although the square of a pure binomial is not a pure binomial, we can check whether it is
contained in a pure binomial ideal using pure binomials only.

Theorem 13.6 Let n ∈ N>0, α, β ∈ Nn
0 and I E k [x1, . . . , xn] be a pure binomial ideal over a

field k with char(k) = 0. Then we have(
xα − xβ

)2
∈ I ⇔ x2α − xα+β ∈ I and x2β − xα+β ∈ I

Proof The direction “⇐” clearly holds by adding both polynomials.

For the other direction “⇒” we consider the normal forms of the three monomials x2α, xα+β,
and x2β modulo I. As shown in Theorem 9.9, the three terms can be partitioned into sets such
that all monomials of terms in a set have the same normal form and their coefficients sum up
to zero because the sum of the terms is contained in I. Since no coefficient of the terms is zero
none of them can be in a singleton set, thus all of them have to be in the same set. In particular
all three monomials need to have the same normal form. This directly implies the claim.

Thus, the combination of Algorithm 13.3 and Algorithm 13.4 considering only squares of pure
binomials could be executed using pure binomials only.

Algorithm 13.7 Compute the radical of a pure binomial ideal using square roots.
Input: f1, . . . , fs ∈ k [x1, . . . , xn] pure binomials over a field k for some n, s ∈ N>0,
Output:

√
〈 f1, . . . , fs〉

1: I B 〈 f1, . . . , fs〉

2: while there are α, β ∈ Nn
0 such that x2α − xα+β ∈ I, x2β − xα+β ∈ I, and xα − xβ < I do

3: I B I +
〈
xα − xβ

〉
4: end while
5: return I

145

Part V – Chapter 13: Radicals of Term Replacement Systems

The proof of Algorithm 13.4 cannot be adopted to prove Algorithm 13.7 from Algorithm 13.3
since the intermediate results may not be pure binomials. Thus, the proof is more involved.

13.2 Proof of the Algorithm

We will need the following theorem for the proof, that gives an insight into how the equiva-
lence classes of monomials relate in a pure binomial ideal.

Theorem 13.8 Let I E k [x1, . . . , xn] be a pure binomial ideal over a field k with n, r ∈ N>0

and γ, δ ∈ Nn
0 such that g B xγ − xδ ∈ R [x1, . . . , xn] is a pure binomial with gr ∈ I and not

all monomials of gr have the same normal form modulo I. Then there is t ∈ N>0 with t > r
such that the set of normal forms of monomials of gt is smaller than the set of normal forms
of monomials of gr, i.e.∣∣∣∣∣{x jγx(t− j)δ

I
| j ∈ {1, . . . , t}

}∣∣∣∣∣ < ∣∣∣∣∣{x jγx(r− j)δ
I
| j ∈ {1, . . . , r}

}∣∣∣∣∣
Proof To make notation easier we define maps

νi : {0, . . . , i} → R [x1, . . . , xn]

j 7→ x jγx(i− j)δ

for all i ∈ N>0 and

µ : N>0 → N>0

i 7→
∣∣∣∣∣{νi(j)

I
| j ∈ {0, . . . , i}

}∣∣∣∣∣
With these maps the conjecture reads that if µ(r) > 1 there is t ∈ N>0 with t > r and µ(t) < µ(r).
We will think about νt(0), . . . , νt(t) as the t-th level of monomials, where monomials having
the same normal form modulo I form equivalence classes.

For i, j ∈ {0, . . . , r} we know that if νr(i)
I

= νr(j)
I

then also νr+1(i)
I

= νr+1(j)
I
, since we just

multiplied both monomials by xδ before taking the normal form. This means that the r + 1-th
level of monomials is a copy of the r-th level with an additional monomial νr+1(r + 1) and
possibly more relations, which means fewer equivalence classes. Theorem 9.9 implies that
νr+1(r + 1)

I
= νr+1(k)

I
for some other k ∈ {1, . . . , r}, since the coefficient (−1)r+1 of the term

νr+1(r + 1) is not zero. Together this shows that µ(r + 1) ≤ µ(r).

This argument can be used multiple times to prove that µ(t) ≤ µ(r) for all t ∈ N>0 with t > r,
and it remains to show that there is t ∈ N>0 with t > r such that equality is not possible.

146

Section 13.2: Proof of the Algorithm

ν8(0) ν8(1) ν8(2) ν8(3) ν8(4) ν8(5) ν8(6) ν8(7) ν8(8)

ν9(0) ν9(1) ν9(2) ν9(3) ν9(4) ν9(5) ν9(6) ν9(7) ν9(8) ν9(9)

Figure 13.9: A sketch for the proof of Theorem 13.8 with r = 8, µ(8) = 2, µ(9) = 1, p = 4, and q = 7.
The orange line is assumed to not be contained in the pure binomial ideal.

We assume the opposite, namely µ(t) = µ(r) for all t ∈ N>0 with t > r, and will infer a
contradiction.

We claim that if νr(p)
I

= νr(q)
I

for some p, q ∈ {0, . . . , r − 1} it is also true that νr(p + 1)
I

=

νr(q + 1)
I
. Recall that for i, j ∈ {0, . . . , r} the equation νr(i)

I
= νr(j)

I
implied νr+1(i)

I
= νr+1(j)

I
,

which was already enough to prove µ(r + 1) ≤ µ(r), since the r + 1-th level of the equivalences
between monomials is an exact copy of the r-th level except for the additional νr+1(r + 1). If
νr(p + 1)

I
, νr(q + 1)

I
the equation νr+1(p + 1)

I
= νr+1(q + 1)

I
was not already contained in

the relations we used for this argument. But multiplying the monomials νr(p) and νr(q) by
xγ and taking the normal form implies exactly that equation νr+1(p + 1)

I
= νr+1(q + 1)

I
which

would therefore merge two equivalence classes. Therefore, we would get µ(r + 1) < µ(r)
which is a contradiction to our assumption. A visualization of this argument can be found in
Figure 13.9. Similarly, one can prove that if νr(p)

I
= νr(q)

I
for some p, q ∈ {1, . . . , r} we also

have νr(p − 1)
I

= νr(q − 1)
I
.

Let m ∈ N>0 be the smallest positive integer such that there is i ∈ {0, . . . , r − m} with νr(i)
I

=

νr(i + m)
I
. We will show that this means for i, j ∈ {0, . . . , r} that νr(i)

I
= νr(j)

I
if and only if m

is a divisor of i − j, i.e. m | i − j.

Without loss of generality assume i ≤ j. For the direction “⇐” we need to shift the relation
that realizes the distance m several times as described above to establish equality between
νr(i)

I
, νr(i + m)

I
, . . . νr(j)

I
. For the other direction “⇒” note that a relation, that has length

m′ ∈ N>0 with m - m′, can be combined by shifting with the relation of length m to a relation
of length gcd(m,m′) < m, which is a contradiction to the fact that m is the length of a shortest
relation. Note that m > 1 since we required µ(r) > 1 and we have m = µ(r).

By multiplying the monomials by xγ or xδ we get the same structure for all higher levels: For
all t ∈ N>0 with t > r and i, j ∈ {0, . . . , t} we have νt(i)

I
= νt(j)

I
if and only if m | i − j. The

integer m may not be smaller for higher levels since we assumed µ(t) = µ(r) for all t ∈ N>0

with t > r. A visualization of this structure is displayed in Figure 13.10.

Now let t ∈ N>0 be the smallest prime with t > r. Because νt(1) has the non-zero coefficient
−t, Theorem 9.9 implies that it may not be in a singleton equivalence class which means m < t.

147

Part V – Chapter 13: Radicals of Term Replacement Systems

ν7(0) ν7(1) ν7(2) ν7(3) ν7(4) ν7(5) ν7(6) ν7(7)

ν8(0) ν8(1) ν8(2) ν8(3) ν8(4) ν8(5) ν8(6) ν8(7) ν8(8)

Figure 13.10: An example of the structure of equivalence relations as used in the proof of Theorem 13.8
with r = 7 and m = 3.

Earlier on we showed m > 1, so we know that m ∈ {2, . . . , t − 1}. In particular, this means that
for the prime t we have m - t, which is equivalent to νt(0)

I
, νt(t)

I
.

All coefficients (−1)i
(

t
i

)
of the monomials νt(i) for i ∈ {1, . . . , t − 1} are multiples of t since t is

prime. Thus, the sum of the coefficients of terms of gt having the same normal form as νt(0)
is one plus a multiple of t which is obviously not zero. This is a contradiction to Theorem 9.9
and therefore our assumption µ(t) = µ(r) was wrong. With the arguments above this proves
µ(t) < µ(r) as it was required to show.

This theorem in particular implies that the number of equivalence classes of powers of pure
binomial ideals shrinks with growing exponents and reaches one eventually.

Corollary 13.11 Let g ∈ k [x1, . . . , xn] be a pure binomial over a field k with n ∈ N>0 and
γ, δ ∈ Nn

0 such that g = xγ − xδ and let r ∈ N>0 with gr ∈ I. There is a t ∈ N>0, t ≥ r such that
all terms of gt are equivalent modulo I.

Proof Theorem 13.8 states that if µ(r) , 1 we can find t1 ∈ N>0 with t1 > r such that
µ(t1) < µ(r). If µ(t1) is still not equal to one we can find t2 ∈ N>0 with t2 > t1 such that
µ(t2) < µ(t1) using Theorem 13.8 again. Using this theorem multiple times we can finally
conclude that there is t ∈ N>0 with t ≥ r such that µ(t) = 1.

We are now ready to prove that Algorithm 13.7 is correct.

Theorem 13.12 Algorithm 13.7 is correct.

Proof We will use the notation of the functions ν and µ from the proof of Theorem 13.8 in
this proof too.

Together with Theorem 13.6 it is immediately clear that every binomial computed by Al-
gorithm 13.7 will also be computed by Algorithm 13.3 when setting r = 2. Therefore, we

148

Section 13.3: Experimental Degree Bounds

only need to show that every binomial added to I by Algorithm 13.3 will also be added by
Algorithm 13.7, similar to the proof of Algorithm 13.4 in Theorem 13.5.

Let g ∈ R[x1, . . . , xn] be a pure binomial with γ, δ ∈ Nn
0 such that g = xγ − xδ and r ∈ N>0 such

that gr ∈ I and f < I as chosen in the loop of Algorithm 13.3. Corollary 13.11 states that there
is t ∈ N>0 with t ≥ r such that µ(t) = 1. Let s ∈ N>0 be the smallest positive integer such that
2s ≥ t ≥ r. With the arguments above we also have g2s

∈ I and µ(2s) = 1.

We will now describe how Algorithm 13.7 adds g to I. First, we will see how g2s−1
is added

to I. Let i ∈
{
0, . . . , 2s−1 − 1

}
. Algorithm 13.7 can choose α B iγ +

(
2s−1 − i

)
δ and β B

(i + 1) γ +
(
2s−1 − i − 1

)
δ. This is allowed since

x2α − xα+β = x2iγ+(2s−2i)δ −x(2i+1)γ+(2s−2i−1)δ ∈ I and

x2β − xα+β = x(2i+2)γ+(2s−2i−2)δ −x(2i+1)γ+(2s−2i−1)δ ∈ I

which is true because all monomials of g2s
have the same normal form modulo I. Therefore,

Algorithm 13.7 can add
xα − xβ = ν2s−1(i) − ν2s−1(i + 1)

to I if it is not already contained. After these operations for all i ∈ {0, . . . , 2s − 1} we have that
all monomials of g2s−1

have the same normal form modulo I. This argument can be repeated
to show that g2s−2

, g2s−3
, . . . , g20

= g will also be included in I.

We passed to bigger exponents several times in this proof. Therefore, it is interesting to find a
bound for the maximum exponent of binomials that need to be considered.

13.3 Experimental Degree Bounds

We note that we did not observe huge changes in the degree in practice. The crucial step is
to find t ∈ N>0 with t ≥ r and µ(t) = 1 given a binomial g ∈ R [x1, . . . , xn] with gr ∈ I and
g < I. We only observed examples where t ∈ {r, r + 1} was sufficient. This is because with
gr ∈ I and Theorem 13.6, we need to find a partition of the monomials νr(i) for i ∈ {0, . . . , r}
into sets such that the sum of the coefficients of the elements of each set is zero. Note that we
only need to consider the combinatorics of the coefficients (−1)i

(
r
i

)
, which are independent of

the properties of the polynomial ring like the number of indeterminates.

In particular, such partitions may occur if they are symmetric. We say that a partition is
symmetric if r is odd and for all i ∈

{
0, . . . , r−1

2

}
the monomials νr(i) and νr(r − i) are in

the same set or if r is even and all monomials are in the same set. The coefficients of such
pairs of monomials sum up to zero which directly implies the conditions of Theorem 13.6.
The partition, where all monomials are in the same set, is always an example of a symmetric
partition.

149

Part V – Chapter 13: Radicals of Term Replacement Systems

ν5(0)
(1)

ν5(1)
(-5)

ν5(2)
(10)

ν5(3)
(-10)

ν5(4)
(5)

ν5(5)
(-1)

ν5(0)
(1)

ν5(1)
(-5)

ν5(2)
(10)

ν5(3)
(-10)

ν5(4)
(5)

ν5(5)
(-1)

ν5(0)
(1)

ν5(1)
(-5)

ν5(2)
(10)

ν5(3)
(-10)

ν5(4)
(5)

ν5(5)
(-1)

ν5(0)
(1)

ν5(1)
(-5)

ν5(2)
(10)

ν5(3)
(-10)

ν5(4)
(5)

ν5(5)
(-1)

ν5(0)
(1)

ν5(1)
(-5)

ν5(2)
(10)

ν5(3)
(-10)

ν5(4)
(5)

ν5(5)
(-1)

Figure 13.13: All examples found by the algorithm given in Listing A1.2 for r = 5. The coefficients of
the monomials are given below in brackets.

150

Section 13.3: Experimental Degree Bounds

ν7(0) ν7(1) ν7(2) ν7(3) ν7(4) ν7(5) ν7(6) ν7(7)

ν8(0) ν8(1) ν8(2) ν8(3) ν8(4) ν8(5) ν8(6) ν8(7) ν8(8)

Figure 13.15: A sketch for the proof of Theorem 13.14 with r = 7.

For symmetric partitions we can prove that all monomials at the next level already have the
same normal form modulo I.

Theorem 13.14 Let IEk [x1, . . . , xn] be a pure binomial ideal over a field k, n ∈ N>0, r ∈ N>0

odd, and γ, δ ∈ Nn
0 such that g B xγ − xδ ∈ R [x1, . . . , xn] is a pure binomial with gr ∈ I. For

all i ∈ {0, . . . , r} let
xiγ+(r−i)δ

I
= x(r−i)γ+iδ

I

Then all monomials of gr+1 have the same normal form modulo I.

Proof We will use the notation of the functions ν and µ from the proof of Theorem 13.8 in
this proof again. Using this notation we claim that if νr(i)

I
= νr(r − i)

I
for all i ∈ {0, . . . , r}

then µ(r + 1) = 1.

Multiplying the monomials in the equations given above by xγ results in νr+1(i)
I

= νr+1(r − i)
I

for all i ∈ {0, . . . , r} and multiplying them by xδ results in νr+1(i + 1)
I

= νr+1(r − i + 1)
I

for all
i ∈ {0, . . . , r}. A visualization of these relations can be found in Figure 13.15.

With these relations we have

νr+1(0)
I

= νr+1(r)
I

= νr+1(2)
I

= νr+1(r − 2)
I

= · · · = νr+1

(
r + 1

2

)I

and

νr+1(r + 1)
I

= νr+1(1)
I

= νr+1(r − 1)
I

= νr+1(3)
I

= · · · = νr+1

(
r + 1

2

)I

which directly shows µ(r + 1) = 1.

We tried to compute non-symmetric partitions for small r with the brute-force approach in
Listing A1.2 written in C++ that can be found in Section A.2 in the appendix.

151

Part V – Chapter 13: Radicals of Term Replacement Systems

We ran the code for r ≤ 13, but we only found few non-symmetric partitions. The output of
the code is shown in Listing 13.16 and Listing 13.17. The majority of the partitions found are
symmetric. Thus, we omitted printing them for r > 6.

Listing 13.16: Output of the algorithm at Listing A1.2 for argument 6.

1 checking level 1

2 0 0 (symmetric)

3 checking level 2

4 0 0 0 (symmetric)

5 checking level 3

6 0 0 0 0 (symmetric)

7 0 1 1 0 (symmetric)

8 checking level 4

9 0 0 0 0 0 (symmetric)

10 checking level 5

11 0 0 0 0 0 0 (symmetric)

12 0 0 1 1 0 0 (symmetric)

13 0 1 0 0 1 0 (symmetric)

14 0 1 1 1 1 0 (symmetric)

15 0 1 2 2 1 0 (symmetric)

16 checking level 6

17 0 0 0 0 0 0 0 (symmetric)

Listing 13.17: Output of the algorithm at Listing A1.2 for argument 13. Symmetric partitions are
omitted.

1 checking level 1

2 checking level 2

3 checking level 3

4 checking level 4

5 checking level 5

6 checking level 6

7 checking level 7

8 checking level 8

9 0 0 1 1 0 0 1 0 0

10 0 0 1 0 0 1 1 0 0

11 checking level 9

12 checking level 10

13 checking level 11

14 checking level 12

15 checking level 13

16 0 0 0 1 1 0 0 1 1 0 0 0 0 0

17 0 0 0 0 0 1 1 0 0 1 1 0 0 0

18 0 0 0 2 2 1 1 2 2 1 1 0 0 0

19 0 0 1 1 1 0 0 1 1 0 0 1 0 0

20 0 0 1 2 2 0 0 2 2 0 0 1 0 0

21 0 0 1 0 0 1 1 0 0 1 1 1 0 0

152

Section 13.4: A Formal Degree Bound

22 0 0 1 2 2 1 1 2 2 1 1 1 0 0

23 0 0 1 0 0 2 2 0 0 2 2 1 0 0

24 0 0 1 1 1 2 2 1 1 2 2 1 0 0

25 0 0 1 3 3 2 2 3 3 2 2 1 0 0

26 0 1 0 1 1 0 0 1 1 0 0 0 1 0

27 0 1 0 2 2 0 0 2 2 0 0 0 1 0

28 0 1 0 0 0 1 1 0 0 1 1 0 1 0

29 0 1 0 2 2 1 1 2 2 1 1 0 1 0

30 0 1 0 0 0 2 2 0 0 2 2 0 1 0

31 0 1 0 1 1 2 2 1 1 2 2 0 1 0

32 0 1 0 3 3 2 2 3 3 2 2 0 1 0

33 0 1 1 1 1 0 0 1 1 0 0 1 1 0

34 0 1 1 2 2 0 0 2 2 0 0 1 1 0

35 0 1 1 0 0 1 1 0 0 1 1 1 1 0

36 0 1 1 2 2 1 1 2 2 1 1 1 1 0

37 0 1 1 0 0 2 2 0 0 2 2 1 1 0

38 0 1 1 1 1 2 2 1 1 2 2 1 1 0

39 0 1 1 3 3 2 2 3 3 2 2 1 1 0

40 0 1 2 1 1 0 0 1 1 0 0 2 1 0

41 0 1 2 2 2 0 0 2 2 0 0 2 1 0

42 0 1 2 3 3 0 0 3 3 0 0 2 1 0

43 0 1 2 0 0 1 1 0 0 1 1 2 1 0

44 0 1 2 2 2 1 1 2 2 1 1 2 1 0

45 0 1 2 3 3 1 1 3 3 1 1 2 1 0

46 0 1 2 0 0 2 2 0 0 2 2 2 1 0

47 0 1 2 1 1 2 2 1 1 2 2 2 1 0

48 0 1 2 3 3 2 2 3 3 2 2 2 1 0

49 0 1 2 0 0 3 3 0 0 3 3 2 1 0

50 0 1 2 1 1 3 3 1 1 3 3 2 1 0

51 0 1 2 2 2 3 3 2 2 3 3 2 1 0

52 0 1 2 4 4 3 3 4 4 3 3 2 1 0

The first non-symmetric partitions are found at r = 8. These partitions are visualized in Fig-
ure 13.18. Other non-symmetric partitions exist for r = 13. For all non-symmetric partitions
we found, that in the next level the normal forms of all monomials are the same. This means
that we do not know any examples where binomials need to be considered in Algorithm 13.7
that have substantially bigger degree than in Algorithm 13.3.

13.4 A Formal Degree Bound

We will now show a general bound for the maximum degree that needs to be considered for
Algorithm 13.7.

153

Part V – Chapter 13: Radicals of Term Replacement Systems

ν8(0)
(1)

ν8(1)
(-8)

ν8(2)
(28)

ν8(3)
(-56)

ν8(4)
(70)

ν8(5)
(-56)

ν8(6)
(28)

ν8(7)
(-8)

ν8(8)
(1)

ν8(0)
(1)

ν8(1)
(-8)

ν8(2)
(28)

ν8(3)
(-56)

ν8(4)
(70)

ν8(5)
(-56)

ν8(6)
(28)

ν8(7)
(-8)

ν8(8)
(1)

Figure 13.18: Both non-symmetric examples found by the algorithm given in Listing A1.2 for r = 8.
The coefficients of the monomials are given below in brackets.

Theorem 13.19 Let k be a field, n, s ∈ N>0 and f1, . . . , fs ∈ k [x1, . . . , xn] be pure binomials
with d B max

(
deg(f1), . . . , deg(fs)

)
∈ N>0. Let g ∈

√
〈 f1, . . . , fs〉 be a pure binomial. All

terms of gt with
t B 2dn

(
log 2dn + log log 2dn

)
∈ N>0

have the same normal form modulo 〈 f1, . . . , fs〉.

Proof Since g ∈
√
〈 f1, . . . , fs〉 ⊆ k [x1, . . . , xn] there is r ∈ N>0 with gr ∈ 〈 f1, . . . , fs〉 and we

assume that r is the smallest positive integer with this property, that is at least 3.

We discussed degree bounds in Section 8.2. The bounds mentioned there show that

r ≤ dn

for all g ∈
√
〈 f1, . . . , fs〉 [Bro87, Kol88, Som99]. All degree bounds from this section were

shown for general polynomial ideals and not only for pure binomial ideals.

Let t′ ∈ N>0 be chosen as in the proof of Corollary 13.11 as the (r − 1)-th prime bigger than r.
Jacques Hadamard and Charles Jean de La Vallée Poussin independently proved the famous
Prime Number Theorem in 1896 [Had96, dLVP96]. For this theorem let π(m) be the number
of primes in the set {1, . . . ,m}. The Prime Number Theorem states that

π(m) ∈ Θ

(
m

log m

)

In particular we have that the m-th prime is smaller than

m log m + m log log m

for m ≥ 6 [BS96]. The 2r-th prime is obviously at least the (r − 1)-th prime greater than r, so
we can compute

t′ < 2r
(
log 2r + log log 2r

)

154

Section 13.5: Radicals of Commutative Thue Systems

There are also better bounds for this theorem like

π(m) <
m

log m

(
1 +

1
log m

+
2.51

log2 m

)
for m ≥ 355991 given by Pierre Dusart in 1998 [Dus98]. Since we are only interested in the
asymptotic behavior we will state easier results that are asymptotically the same.

Putting the bounds for t′ and r together we get

t′ < 2dn
(

log 2dn + log log 2dn
)

= t

Corollary 13.11 implies that all terms of gt′ are equivalent modulo 〈 f1, . . . , fs〉 and with t′ < t
this proves the claim.

We can now apply this degree bound to Algorithm 13.7 to find the maximum degree the
algorithm needs to consider.

Corollary 13.20 Let k be a field, n, s ∈ N>0 and f1, . . . , fs ∈ k [x1, . . . , xn] be pure binomials
with d B max

(
deg(f1), . . . , deg(fs)

)
∈ N>0. Algorithm 13.7 adds every pure binomial g ∈√

〈 f1, . . . , fs〉 if it considers binomials with degree up to

2dn
(

log 2dn + log log 2dn
)

deg(g) + 1

Proof Let g ∈
√
〈 f1, . . . , fs〉 be a pure binomial as chosen by Algorithm 13.7 and let t be

chosen as in Theorem 13.19. We have proven for Theorem 13.12 that Algorithm 13.7 only
needs to consider levels up to 2t which means polynomials of degree up to 2t deg(g).

The factor 2 can be removed by not going up to the next power of 2 first and halving the degree
multiple times, but instead using the algorithm to halve the degree if possible and otherwise
add one. This would result in a bound for the degree of the polynomials to be considered of
t deg(g) + 1.

Inserting the definition of t from Theorem 13.19 shows the claim.

13.5 Radicals of Commutative Thue Systems

With the equivalence of commutative Thue systems and pure binomial ideals established in
Section 12.2, the proof in Theorem 13.12 of Algorithm 13.7 and the degree bound from The-
orem 13.19, we are now able to define radicals of commutative Thue systems, which we will
do in this section.

155

Part V – Chapter 13: Radicals of Term Replacement Systems

We saw that commutative Thue systems are an important tool for proofs on pure binomial
ideals. For instance the proof in [MM82] uses the equivalence of both constructions. There are
numerous open questions on degree bounds of polynomial ideals and in particular on radical
ideals. Unfortunately, the definition of radical ideals on polynomial ideals involves powers
of polynomials, which are no pure binomials in general, even if the initial polynomial was a
pure binomial. As binomials with more than two terms have no equivalent object in terms
of commutative Thue systems it, was not possible to define radicals of commutative Thue
systems before. Algorithm 13.7 involves pure binomials only, thus we can define radicals of
commutative Thue systems now.

As this definition contains some order of commutative Thue systems by size we first need to
tell when a commutative Thue system contains another one.

Definition 13.21 Let P and Q be commutative Thue systems over an alphabet Σ. P is con-
tained in Q or smaller than Q if and only if for all α, β ∈ Σ∗ with α ≡P β we also have α ≡Q β.

Now we are finally able to define radicals of commutative Thue systems.

Definition 13.22 Let P be a commutative Thue system over an alphabet Σ. P is radical if
and only if for all α, β ∈ Σ∗ with α2 ≡P αβ and β2 ≡P αβ we have α ≡P β. The radical

√
P

of the commutative Thue system P is the smallest commutative Thue System Q that is radical
and contains P.

We will see that the radical of a commutative Thue system, i.e. the smallest radical commu-
tative Thue system containing another one, is well-defined in the following theorem, because
the pure binomial ideal corresponding to a commutative Thue system is unique.

Theorem 13.23 Let P be a commutative Thue system over an alphabet Σ. We have

IQ

(√
P
)

=

√
IQ (P)

and
IZ

(√
P
)

=
√
IZ (P)

Proof In the definition of radicals of commutative Thue systems we required that α2 ≡P αβ
and β2 ≡P αβ implies α ≡P β for all α, β ∈ Σ∗. As the equivalent implications on pure binomial
ideals x2u − xu+v ∈ IQ(P) and x2v − xu+v ∈ IQ(P) implies xu − xv ∈ IQ(P) for all u, v ∈ N|Σ|0 and
x2u − xu+v ∈ IZ(P) and x2v − xu+v ∈ IZ(P) implies xu − xv ∈ IZ(P) for all u, v ∈ N|Σ|0 also hold
for radical ideals, as shown in Theorem 13.6, the direction “⊆” of both claims must hold.

156

Section 13.5: Radicals of Commutative Thue Systems

Algorithm 13.7 and its proof in Theorem 13.12 show that this implication is already enough
to compute the radical of a pure binomial ideal which proves the other direction “⊇” of both
claims.

We can also directly translate Algorithm 13.7 to commutative Thue systems to find an algo-
rithm that computes radicals of commutative Thue systems.

Algorithm 13.24 Compute the radical of a commutative Thue system using a non-constructive
step.
Input: an alphabet Σ and α1, . . . , αs, β1, . . . , βs ∈ Σ∗ for some s ∈ N>0

Output: the radical of the commutative Thue system generated by the equivalences{
αi ≡ βi | i ∈ {1, . . . , s}

}
1: let P be the commutative Thue system generated by the equivalences{

αi ≡ βi | i ∈ {1, . . . , s}
}

2: while there are α, β ∈ Σ∗ such that α2 ≡P αβ, β2 ≡P αβ, but α .P β do
3: add α ≡ β to P
4: end while
5: return P

Note that during Algorithm 13.24 we always want P to be a valid commutative Thue system.
In particular Step 3 of Algorithm 13.24 means adding α ≡ β to the set of generators of P.
This implies that in general more equivalences are added to P, because we can add symbols
to both sides of an equivalence and substitute other equivalences on one of the sides to obtain
new equivalences contained in P.

The algorithm would actually also compute the exact same result if we just added α ≡ β in
Step 3 and omitted all consequences of that equivalence because those consequences would
be added to P later on in the loop in Step 2. The problem is that the set of equivalences in a
commutative Thue system is infinite in general while the set of generators is always finite. We
always want to run our algorithms in finite time, because otherwise we are not able to execute
them and measuring time and space complexities would not make sense. Thus, we need to
work on generators of P to make the algorithm finish in a finite amount of time. Working
on generators on the other hand makes the checks in Step 2 harder. In this line we have to
solve three word problems on commutative Thue systems which is an EXPSPACE-complete
problem as seen in Theorem 9.7.

Also, Algorithm 13.24 is still a non-constructive algorithm. The loop in Step 2 requires to find
α, β ∈ Σ∗ subject to some constraints without giving an explicit way to find these words. To
make the algorithm constructive we will give a list of all equivalences that possibly need to be

157

Part V – Chapter 13: Radicals of Term Replacement Systems

added to P and check them all in a suitable order. To do so, we need some degree bounds on
the generators of the radical as our degree bound from Theorem 13.19 involves that degree.

In Section 14.3 we present a constructive version of the algorithm, analyze its time and space
bounds, and present an improved version of it.

158

14 Degree Bounds for Radical Ideals

14.1 Upper Bounds

The degree bounds in Theorem 13.19 depend on the degrees of the elements in a basis of
the radical of a polynomial ideal. In this chapter we will collect lower and upper complexity
bounds for the degree of generators of radical ideals.

For the upper bound we will consider an algorithm to actually compute the radical ideal. Such
an algorithm was presented for zero-dimensional polynomial ideals in Algorithm 8.17. This
algorithm enables us to read off degree bounds of the results.

To do so, we just need a bound for the size of the elements added to the basis of I, but since
these are just elements of an elimination ideal of I we can use the degree bound found by
Thomas W. Dubé presented in Theorem 7.11 [Dub90]. This was already done before, for
instance in Johannes Mittmann’s Diploma thesis [Mit08].

Theorem 14.1 Let IEk [x1, . . . , xn] be a polynomial ideal over a perfect field k with dim(I) =

0, n ∈ N>0, and let the degree of all generators of some generating set of I be at most d ∈ N>0.
There is a generating set of

√
I such that the degrees of all its generators are at most

2
(
d2

2
+ d

)2n−1

Proof With Theorem 8.15 we know that there is a generating set of
√

I such that all its
generators are either the given generators of I or the square-free forms of the generators of
some elimination ideals of I. The former have a degree that is bounded by d as required,
whereas the latter have a degree bounded by

2
(
d2

2
+ d

)2n−1

which is implied by the bound of Thomas W. Dubé presented in Theorem 7.11 [Dub90] and
the fact that the degree of the square-free part of a polynomial is at most the degree of the
original polynomial.

We generalized Algorithm 8.17 for polynomial ideals with higher dimension in Chapter 8. The
degree bound presented above can be transferred to polynomial ideals with higher dimensions
by analyzing Algorithm 8.18 which was done by Santiago Laplagne [Lap06].

159

Part V – Chapter 14: Degree Bounds for Radical Ideals

Theorem 14.2 ([Lap06]) Let I E k [x1, . . . , xn] be a polynomial ideal over a perfect field
k, n ∈ N>0, and let the degree of all generators of some generating set of I consisting of s
polynomials be at most d ∈ N>0. There is a generating set of

√
I such that the degrees of all

its generators are at most
(sd)2cn2+n−1

for some universal constant c ∈ N>0.

For binomial ideals a similar double exponential bound can be deduced by considering the
cellular decomposition

√
I =

⋂
∆⊆{x1,...,xn}

I∆ :

∏
xi∈∆

xi


∞

+ 〈{xi | xi < ∆}〉


of I. As seen in Algorithm 4.35 the quotients can be computed using an elimination ideal
each and the intersection of all ideals can be computed by exactly one elimination ideal using
Lagrange polynomials. Using Dubé’s bound we see that the degrees of the generators of
the I∆ :

(∏
xi∈∆

xi

)∞
+ 〈{xi | xi < ∆}〉 are double exponential in d. The intersection results in a

degree double-exponential in something double-exponential in d, which is double-exponential
in d again.

14.2 Lower Bounds

On the other hand, we can construct ideals having a Gröbner Basis with elements having
exponents, that are exponential in the encoding size of a given generating set, with a simple
construction. Let s ∈ N>0 and consider the ideal

Is B
〈
x1 − x2

2, x2 − x2
3, . . . , xs−1 − x2

s

〉
E k [x1, . . . , xs]

over a field k with char(k) = 0 and a lexicographic term ordering with x1 � x2 � · · · � xs. A
pure binomial of the form xi− xc

j for some i, j ∈ {1, . . . , s}, c ∈ N0 is contained in Is if and only
if i ≤ j and c = 2 j−i. In particular we have

x j − x2s− j

s ∈ Is

for all j ∈ {1, . . . , s − 1}. These elements form also a Gröbner Basis of Is with respect to the
lexicographic term order defined above. The reduced Gröbner Basis of Is is the set{

x j − x2s− j

s | j ∈ {1, . . . , s − 1}
}

or {0} for s = 1, which can easily be checked using for instance Buchberger’s Criterion.

160

Section 14.2: Lower Bounds

The exponent of x1 − x2s−1

s is clearly exponential in the encoding size of the generating set of
Is, which is linear in s. It is also worth mentioning that this example is even a pure binomial
ideal. An implementation of this example can be found in Listing 14.3.

Listing 14.3: An implementation of In using Macaulay2 [GS].

1 expGBIdeal = s -> (

2 R = QQ[x_1..x_s, MonomialOrder => Lex];

3 ideal for i from 2 to s list x_iˆ2-x_(i-1)

4)

This example has a rather easy form, but there are more complicated pure binomial ideals that
even have Gröbner Bases with elements having double exponential degree in the encoding
size of the generating set [MM82]. The advantage of this example is its simple structure and
the fact, that the ideal is radical and saturated.

Theorem 14.4 Let s ∈ N>0 and

Is B
〈
x1 − x2

2, x2 − x2
3, . . . , xs−1 − x2

s

〉
E R [x1, . . . , xs]

be a pure binomial ideal over a ring R. The ideal Is is radical and saturated, i.e.

Is =
√

Is = Is :

 s∏
i=1

xi

∞

Proof For s = 1 we have Is = {0} and the claim is obvious for this case. Thus we can assume
s ≥ 2.

Is is a pure binomial ideal and therefore we can use the cellular decomposition introduced in
Section 11.1 √

Is =
⋂

∆⊆{x1,...,xs}

(Is

)
∆

:

∏
xi∈∆

xi


∞

+ 〈{xi | xi < ∆}〉


The cell for ∆ = {x1, . . . , xn} is the saturation of Is. Therefore, together with the fact that Is is
contained in its radical, we know that

Is ⊆
√

Is ⊆ Is :

 s∏
i=1

xi

∞
and it remains to show that the saturation of Is is contained in Is.

To show this, we need to characterize the polynomials contained in Is. As we have seen
above, the reduced Gröbner Basis of Is with respect to a lexicographic term ordering � with

161

Part V – Chapter 14: Degree Bounds for Radical Ideals

x1 � x2 � · · · � xs is {
x j − x2s− j

s | j ∈ {1, . . . , s − 1}
}

Reducing polynomials using this Gröbner Basis exchanges all variables to xs, namely it re-
places terms xu for u ∈ Ns

0 by

xuIs
= xt

s

where t =
∑s

i=1 2s−iui.

When we reduce a polynomial f ∈ R [x1, . . . , xs] using this Gröbner Basis, we exchange all
indeterminates to xs and then check whether the remaining terms sum up to zero. We are not
able to reduce terms containing the indeterminate xs only since

LM (Is)︸ ︷︷ ︸
〈x1,x2,...,xs−1〉

∩ R[xs] = {0}

but all other indeterminates are removed. Thus, a polynomial f ∈ R is contained in Is if and
only if the coefficients of all its monomials that reduce to the same power of xs sum up to zero.
For some f ∈ R [x1, . . . , xs] and β ∈ Ns

0 this conditions holds for xβ f if and only if it holds for
f , because both polynomials have the same coefficients and the normal forms of monomials
of xβ f are the ones of f multiplied by

∑n
i=1 2s−iβi. This means xβ f ∈ Is ⇔ f ∈ Is and implies

Is = Is :

 s∏
i=1

xi

∞
which concludes the proof.

Together we get the following theorem.

Theorem 14.5 There is a family (Is)s∈N>0 of radical and saturated pure binomial ideals with
Is E R [x1, . . . , xn] and n = s for n, s ∈ N>0 and the maximum degree of the generators of Is

being 2 such that there is an element in the Gröbner Basis of Is with respect to a lexicographic
term ordering having degree 2s−1.

Now we want to combine several of the exponential chains presented above to get a pure
binomial ideal, where the Gröbner Basis of the radical has elements with exponents, that are
exponential in the encoding length of the input ideal. To do this, we take three such chains
x1, . . . , xs, y1, . . . , ys, and z1, . . . , zs with the corresponding pure binomials x1−x2

2, . . . , xs−1−x2
s ,

y1−y2
2, . . . , ys−1−y2

s , and z1−z2
2, . . . , zs−1−z2

s for s ∈ N>0. We take three additional indeterminates
o, a, and b. o serves as a connection of the chains with the pure binomials o − x1, o − y1, and
o − z1. a and b form the new element in the radical with the pure binomials xs − a2, ys − ab,

162

Section 14.2: Lower Bounds

o

x1, . . . , xs

y1, . . . , ys

z1, . . . , zs

a2

ab

b2

Figure 14.6: A visualization of Js. Clouds represent ideals as used in Theorem 14.4.

and zs − b2. All in all, we consider the ideal

Js B
〈
x1 − x2

2, . . . , xs−1 − x2
s , y1 − y2

2, . . . , ys−1 − y2
s ,

z1 − z2
2, . . . , zs−1 − z2

s , o − x1, o − y1, o − z1,

xs − a2, ys − ab, zs − b2
〉

E k[x0, . . . , xs, y0, . . . , ys, z0, . . . , zs, o, a, b]

over a field k with char(k) = 0 together with a lexicographical term ordering � with

x0 � · · · � xs � y0 � · · · � ys � z0 � · · · � zs � o � a � b

An implementation of these ideal can be found in Listing 14.7, a visualization in Figure 14.6.

Listing 14.7: An implementation of Js using Macaulay2 [GS].

1 expRadIdeal = s -> (

2 R := QQ[x_1..x_s, y_1..y_s, z_1..z_s, o, a, b, MonomialOrder =>

Lex];

3 L := (o-x_1, o-y_1, o-z_1, x_s-aˆ2, y_s-a*b, z_s-bˆ2);

4 for i from 2 to s do (

5 L = join(L, (x_iˆ2-x_(i-1), y_iˆ2-y_(i-1), z_iˆ2-z_(i-1)))

6);

7 ideal L

8);

Recall that with the findings above we have x1 − x2s−1

s , y1 − y2s−1

s , z1 − z2s−1

s ∈ Js. Together with
the additional relations for o, a, and b we get

o − x2s−1

s , o − y2s−1

s , o − z2s−1

s ∈ Js

and
x2s−1

s − a2s
, y2s−1

s − a2s−1
b2s−1

, z2s−1

s − b2s
∈ Js

163

Part V – Chapter 14: Degree Bounds for Radical Ideals

Thus we have
o − a2s

, o − a2s−1
b2s−1

, o − b2s
∈ Js

which implies

a2s
− 2a2s−1

b2s−1
+ b2s

=
(
a2s−1
− b2s−1)2

∈ Js

The chains x1, . . . , xs, y1, . . . , ys, and z1, . . . , zs are radical according to Theorem 14.4. The
new variables only introduce the binomial a2s−1

− b2s−1
and its multiples and sums with other

elements to the radical of Js. Thus, we have√
Js = Js +

〈
a2s−1
− b2s−1〉

The new binomial also needs to be included in a Gröbner Basis with respect to a monomial
term order with respect to x1 � x2 � · · · � xs � y1 � y2 � · · · � ys � z1 � z2 � · · · � zs � o �
a � b which implies the following theorem.

Theorem 14.8 There is a family (Js)s∈N>0 of pure binomial ideals with Js ER [x1, . . . , xn] and
n = 3(s + 1) for n, s ∈ N>0 and the maximum degree of the generators of Js being 2 such that
there is an element in the Gröbner Basis of

√
Js with respect to a lexicographic term order

having degree 2s−1.

The upper and lower bounds for the degree of generators of the radical of a polynomial ideal
presented here do not match. In the next section we will see that the upper bound implies that
our new algorithms computes the radical of a pure binomial ideal asymptotically as fast as the
fastest known algorithms. Thus, we conjecture that the lower bound can be improved to be
double exponential. A corresponding example is not known yet.

14.3 Degree Bounds for Radicals of Commutative Thue
Systems

We can now discuss the running time of Algorithm 13.24 and use the degree bounds from the
last sections. Recall that Step 2 of Algorithm 13.24 still requires us to choose some words
from Σ∗ without presenting a way to find them. Using the degree bound from Theorem 14.2
we can limit the number of words, that need to be checked, to a finite set. This makes our
algorithm constructive, i.e. we can indeed implement it. Also, a constructive version of the
algorithm allows for the computation of running time and space bounds.

164

Section 14.3: Degree Bounds for Radicals of Commutative Thue Systems

Algorithm 14.9 Compute the radical of a commutative Thue system using degree bounds.
Input: an alphabet Σ and α1, . . . , αs, β1, . . . , βs ∈ Σ∗ for some s ∈ N>0

Output:
√
P where P is the commutative Thue system generated by the equivalences{

αi ≡ βi | i ∈ {1, . . . , s}
}

1: let P be the commutative Thue system generated by the equivalences{
αi ≡ βi | i ∈ {1, . . . , s}

}
2:

m B 2dn
(

log 2dn + log log 2dn
)

(sd)2cn2+n−1
+ 1

where d is the maximum length of the words α1, . . . , αs, β1, . . . , βs ∈ Σ∗, n = |Σ|, and
c ∈ N>0 is some universal constant from Theorem 14.2

3: for each α, β ∈ Σ∗ with |α|, |β| ≤ m in descending order of |α| + |β| ∈ N0 do
4: if α2 ≡P αβ, β2 ≡P αβ, but α .P β then
5: add α ≡ β to P
6: end if
7: end for
8: return P

First of all we need to prove, that this algorithm indeed computes the radical of a commutative
Thue system.

Theorem 14.10 Algorithm 14.9 is correct.

Proof Algorithm 14.9 is almost the same as Algorithm 13.24, but checks all α, β ∈ Σ∗ up to
some degree bound. This bound is exactly the one from Theorem 14.2 inserted into the degree
bound from Corollary 13.20, which limits the degree of generators of radical polynomial ide-
als, and thus also the degree of radicals of commutative Thue systems. While Theorem 14.2
states that there is one set of generators achieving this degree bound, Algorithm 14.9 finds
all equivalences up to this bound, which therefore need to include the generating set from
Theorem 14.2.

Additionally, we need to make sure that in case that the checks in Step 4 of Algorithm 14.9
reject an equivalence at first, it will not happen that the same checks will accept the equivalence
later on when P is bigger. Since |α2| + |αβ| > |α| + |β| and |β2| + |αβ| > |α| + |β| for α , ε
and β , ε – else the equivalences are all identical – we have checked the equivalences used
in Step 4 before the one that we currently check. That is why we visit the equivalences in
descending order of |α| + |β| ∈ N0.

Now that we have a constructive algorithm, we can analyze its time and space consumption.

165

Part V – Chapter 14: Degree Bounds for Radical Ideals

Theorem 14.11 Algorithm 14.9 runs in EXPSPACE.

Proof To iterate through all values of α and β we only need to store the exponent vectors of
the words. Instead of saving these numbers themselves we can save a binary representation of
them. The encoding length of the exponents is therefore only

O(log(m)) = O(2n2
log(sd))

for each pair of words α, β ∈ Σ∗.

We still have to compute the result of a word problem in Step 4 of Algorithm 14.9. This
problem is EXPSPACE-complete as explained in Theorem 9.7.

The output itself can also be saved in exponential space, as we know that there are algorithms
to compute the radical of a polynomial ideal in exponential space. Note that it is required to
remove redundant equivalences from the generating set of P to achieve this space bound.

Thus, all parts discussed above and all other steps of the algorithm can be executed in expo-
nential space, which means that in total we can compute the radical of a pure binomial ideal
or commutative Thue system in exponential space.

EXPSPACE is also the best complexity class of known algorithms to compute the radical
of a polynomial ideal. Our algorithm matches this complexity class. For random examples
it is usually still much slower since it always tests all possible equivalences up to the worst
possible degree bound, which is not needed for all inputs. In contrast to other algorithms,
Algorithm 14.9 does not improve its speed on inputs that are not the worst case. Thus, our
algorithm is not faster than known algorithms in practice, but allows a computation with bino-
mial intermediate results and still has the same asymptotic running time and space bounds for
the worst case.

14.4 Adjustments of the Closure Operation

As explained in Section 14.2 above, the known lower and upper bounds of the degree of
generators of the radical given a polynomial ideal do not match. This means, that it is still
possible that this bound can be drastically improved. In case of an exponential bound we
would only require polynomial space to list all possible α, β ∈ Σ∗ in Algorithm 14.9.

While an improved degree bound for the generators would reduce the number of equivalences
to be checked, we can also try to make the check of each equivalence faster. The expensive
task here is to solve the word problems in Step 4 of Algorithm 14.9. We can adjust those word
problems to make the same commutative Thue system appear every time instead of different

166

Section 14.4: Adjustments of the Closure Operation

systems. This makes the algorithm run much faster in practice as the expensive step of solving
a word problem over a pure binomial ideal or commutative Thue system is to compute a
Gröbner Basis of the system. This Gröbner Basis can be reused if the commutative Thue
system always stays the same.

To do so, we relax the closure of commutative Thue systems to check, whether words are
equivalent, more easily. The problem here is that we need to make sure, that after relaxing
the closure conditions, we still work on finite generating sets and thus achieve finite running
times. The easiest way to relax the closure is to not compute a closure at all. We can just
save a list of equivalences added to P. The final result is still correct as the equivalences, that
result from substituting new equivalences into others, would be added by the loop in Step 5 of
Algorithm 14.12 later on either way. To check whether an equivalence is contained in P, we
check whether it was contained in the original P or whether it was added to M. Even though
the set of equivalences contained in a commutative Thue system is infinite in general, the
number of equivalences, that we check here, is finite due to the degree bound m. This makes
the objects we save finite, but we have to split the check whether an equivalence is contained
in the commutative Thue systems in two parts. First, checking whether the equivalence is
contained in P, which contains an infinite number of equivalences and is therefore given by a
set of generators, and second, checking whether the equivalence is contained in our set of new
equivalences.

The first part of this check is still an EXPSPACE-complete problem, but now we have to check
every time on the same commutative Thue system, which can save some computational effort.
We can now compute a Gröbner Basis of the system once and use it for all checks, that need to
be done, without calculating new Gröbner Bases. The second part of the check works in time
and space polynomial in the number of new equivalences added. The set of equivalences to be
added can be bigger than exponential space, so this approach does not improve the asymptotic
running time bounds. For instance consider a commutative Thue system that makes all words
equivalent: In this case we add O(m2) elements to the generating set.

167

Part V – Chapter 14: Degree Bounds for Radical Ideals

Algorithm 14.12 Compute the radical of a commutative Thue system using degree bounds, a
common Gröbner Basis, and a list of added equivalences.
Input: an alphabet Σ and α1, . . . , αs, β1, . . . , βs ∈ Σ∗ for some s ∈ N>0

Output: the radical of the commutative Thue system generated by the equivalences{
αi ≡ βi | i ∈ {1, . . . , s}

}
1: let P be the commutative Thue system generated by the equivalences{

αi ≡ βi | i ∈ {1, . . . , s}
}

2: choose a term ordering � on Q[Σ], compute a Gröbner Basis G of IQ(P) with respect to
� and use G for all further reductions modulo P

3: M B ∅
4:

m B 2dn
(

log 2dn + log log 2dn
)

(sd)2cn2+n−1
+ 1

where d is the maximum length of the words α1, . . . , αs, β1, . . . , βs ∈ Σ∗, n = |Σ|, and
c ∈ N>0 is some universal constant from Theorem 14.2

5: for each α, β ∈ Σ∗ with |α|, |β| ≤ m in descending order of |α| + |β| ∈ N0 do
6: if (α2 ≡P αβ or the equivalence is contained in M) and

(β2 ≡P αβ or the equivalence is contained in M) and
not (α ≡P β or the equivalence is contained in M)
then

7: add α ≡ β to M
8: end if
9: end for

10: return the commutative Thue system generated by {αi ≡ βi | i ∈ {1, . . . , s}} ∪ M

Note that this approach would not work for the non-constructive Algorithm 13.7. If we do not
take a closure after each equivalence we add to P we could possibly add an infinite amount
of equivalences to P. The proof of Theorem 13.2 does not work anymore in this case, as
there is no ascending chain condition of ideals without computing the closure as defined in
Definition 3.18. The algorithm could still find a generating set of the radical and terminate,
but this depends on the choices of words α, β ∈ Σ∗. While “good” choices make the algorithm
terminate after a finite amount of steps, “bad” choices make it run without terminating at all.

The huge list of new equivalences of the constructive Algorithm 14.12 can be compressed by
making the relaxation of the closure of commutative Thue systems a little more restrictive.
When we add an equivalence to P we will assume that just the equivalences with additional
symbols on both sides should also be included in P automatically. Substituting other equiv-
alences into one side will be ignored while adding equivalences to P during our algorithm.
In this case, to check whether an equivalence α ≡ β is contained in P, we just have to check

168

Section 14.4: Adjustments of the Closure Operation

whether it was contained in the original commutative Thue system or we are able remove
some common symbols on both sides of the equivalence and obtain another equivalence that
we added to P before.

Algorithm 14.13 Compute the radical of a commutative Thue system using degree bounds, a
common Gröbner Basis, and a compressed list of added equivalences.
Input: an alphabet Σ and α1, . . . , αs, β1, . . . , βs ∈ Σ∗ for some s ∈ N>0

Output: the radical of the commutative Thue system generated by the equivalences{
αi ≡ βi | i ∈ {1, . . . , s}

}
1: let P be the commutative Thue system generated by the equivalences{

αi ≡ βi | i ∈ {1, . . . , s}
}

2: choose a term ordering � on Q[Σ], compute a Gröbner Basis G of IQ(P) with respect to
� and use G for all further reductions modulo P

3: M B ∅
4:

m B 2dn
(

log 2dn + log log 2dn
)

(sd)2cn2+n−1
+ 1

where d is the maximum length of the words α1, . . . , αs, β1, . . . , βs ∈ Σ∗, n = |Σ|, and
c ∈ N>0 is some universal constant from Theorem 14.2

5: for each α, β ∈ Σ∗ with |α|, |β| ≤ m in descending order of |α| + |β| ∈ N0 do
6: if (α2 ≡P αβ or the equivalence is a multiple of an equivalence in M) and

(β2 ≡P αβ or the equivalence is a multiple of an equivalence in M) and
not (α ≡P β or the equivalence is a multiple of an equivalence in M)
then

7: remove all equivalences from M that can be achieved by adding the same set of
symbols to both sides of α ≡ β

8: add α ≡ β to M
9: end if

10: end for
11: return the commutative Thue system generated by {αi ≡ βi|i ∈ {1, . . . , s}} ∪ M

Algorithm 14.13 still does not run in EXPSPACE as the compressed list M may still be larger
in the worst case. Nevertheless, Algorithm 14.13 may improve the running time of actual
implementations of Algorithm 13.24 for certain kinds of practical inputs, because it is only
slow if the radical is much bigger than the original system.

Note that the relaxation of the closure of commutative Thue systems as presented above only
works, because we know that there is only a finite set of equivalences that can possibly be
needed as generators of the radical of the commutative Thue system. In general, the relaxation
to only include equivalences that add the same symbols to both side of a generator of a com-

169

Part V – Chapter 14: Degree Bounds for Radical Ideals

mutative Thue system results in infinite generating sets. For instance, the commutative Thue
system P over Σ = {0, 1} generated in the common definition by 0 ≡P 1 requires the infinite
set {

0i ≡P 1i | i ∈ N>0

}
as generators under this relaxed closure.

To summarize this section, Algorithm 13.24 is an algorithm for computing the radical of a pure
binomial ideal. All steps run in EXPSPACE which is the same complexity as the best known
algorithm for computing the radical of a polynomial ideal. As our algorithm involves pure
binomials only, we can use it to compute radicals of pure binomial ideals and commutative
Thue systems. There are various ways to improve the speed of this algorithm on many practical
inputs, but these improvements have a worse space complexity in the worst case.

170

Part VI

Conclusion

15 Conclusion

In this thesis we discussed the complexity of several problems of polynomial ideals and sub-
classes of polynomial ideals. The word problem for general polynomial ideals and binomial
ideals can only be solved using an exponential amount of space while radical ideals allow for
algorithms using polynomial space. We found new bounds on the complexity of the word
problem for radical binomial ideals whose complement can be solved in non-deterministic
polynomial time.

We also introduced a new algorithm to compute radicals of pure binomial ideals. Our algo-
rithm matches the running time of the best known algorithms to compute radicals of polyno-
mial ideals, but uses only pure binomials as intermediate results. This allows for the usage
of specialized data structures and enables us to transfer this algorithm to term replacement
systems. We analyzed the structure of radical binomial ideals and used our results to define
radicals of commutative Thue systems.

173

Part VII

Appendix

A Source Code 177
A.1 Cyclohexane . 177

A.2 Experimental Degree Bound . 178

Bibliography 181

List of Algorithms 189

List of Figures 189

List of Tables 191

List of Listings 191

Index 192

A Source Code

A.1 Cyclohexane

The following code is an implementation of the polynomial ideal modeling the conformations
of cyclohexane as described in Section 1.1. We used Macaulay 2 [GS] for this implementation.

Listing A1.1: Implementation of a polynomial ideal describing the conformations of cyclohexane.

1 R = QQ[x_1,x_2,x_3]

2 f_1 = det matrix {

3 {0, 3, 3, 3, 3, 3},

4 {3, 0, 3, 8, 3*x_1, 8},

5 {3, 3, 0, 3, 8, 3*x_2},

6 {3, 8, 3, 0, 3, 8},

7 {3, 3*x_1, 8, 3, 0, 3},

8 {3, 8, 3*x_2, 8, 3, 0}

9 } / 3ˆ6

10 f_2 = det matrix {

11 {0, 3, 3, 3, 3, 3},

12 {3, 0, 3, 8, 3*x_2, 8},

13 {3, 3, 0, 3, 8, 3*x_3},

14 {3, 8, 3, 0, 3, 8},

15 {3, 3*x_2, 8, 3, 0, 3},

16 {3, 8, 3*x_3, 8, 3, 0}

17 } / 3ˆ6

18 f_3 = det matrix {

19 {0, 3, 3, 3, 3, 3},

20 {3, 0, 3, 8, 3*x_3, 8},

21 {3, 3, 0, 3, 8, 3*x_1},

22 {3, 8, 3, 0, 3, 8},

23 {3, 3*x_3, 8, 3, 0, 3},

24 {3, 8, 3*x_1, 8, 3, 0}

25 } / 3ˆ6

26 f_4 = det matrix {

27 {0, 3, 3, 3, 3, 3, 3},

28 {3, 0, 3, 8, 3*x_1, 8, 3},

29 {3, 3, 0, 3, 8, 3*x_2, 8},

30 {3, 8, 3, 0, 3, 8, 3*x_3},

31 {3, 3*x_1, 8, 3, 0, 3, 8},

32 {3, 8, 3*x_2, 8, 3, 0, 3},

33 {3, 3, 8, 3*x_3, 8, 3, 0}

34 } / 3ˆ7

35 I = ideal(f_1, f_2, f_3, f_4)

177

Part VII – Chapter A: Source Code

36 tex gens gb I

37 --I == radical I

38 (3*x_1/11)*(3*x_3/11)*(3*x_3/11) % I

39
40 --points in the variety

41 for i from 1 to 4 list sub(f_i, {x_1 => 11/3, x_2 => 11/3, x_3 =>

11/3})

42 for i from 1 to 4 list sub(f_i, {x_1 => 25/9, x_2 => 11/3, x_3 =>

11/3})

43 for i from 1 to 4 list sub(f_i, {x_1 => 11/3, x_2 => 25/9, x_3 =>

11/3})

44 for i from 1 to 4 list sub(f_i, {x_1 => 11/3, x_2 => 11/3, x_3 =>

25/9})

45
46 --not contained in the variety

47 for i from 1 to 4 list sub(f_i, {x_1 => 11/3, x_2 => 11/3, x_3 =>

25/10})

A.2 Experimental Degree Bound

This code finds small examples for Theorem 13.8. It is written in C++.

Listing A1.2: Find small examples for powers of pure binomials in Theorem 13.8.

1 #include <cmath>

2 #include <iostream >

3 #include <sstream>

4 #include <vector>

5
6 using namespace std;

7
8 //precompute binomial coefficients

9 vector<vector<long long> > bc;

10 void init(int max_size) {

11 bc.resize(max_size + 1);

12 for(int i = 0; i <= max_size; i++) {

13 bc[i].resize(i + 1);

14 bc[i][0] = 1;

15 for(int j = 1; j < i; j++) bc[i][j] = bc[i-1][j-1] + bc[i-1][j];

16 bc[i][i] = 1;

17 }

18 }

19
20 //check a given partition

178

Section A.2: Experimental Degree Bound

21 //r is the level of the monomials , b is the bitmask of the partition

22 void check(int r, long long b) {

23 //sum everything up

24 vector<long long> sum ((r+1)/2, 0);

25 vector<int> equivalence_class (r+1, 0);

26 for(int k = 0; k <= r; k++) {

27 equivalence_class[k] = b % ((r+1)/2);

28 sum[equivalence_class[k]] += bc[r][k] * (k % 2 ? -1 : 1);

29 b /= (r+1)/2;

30 }

31
32 //only take lexicographically smallest versions of each partition

to make the

33 //output easier to read

34 int max_used = -1;

35 for(int k = r; k >= 0; k--) {

36 if(equivalence_class[k] > max_used) {

37 if(equivalence_class[k] == max_used + 1)

38 max_used = equivalence_class[k];

39 else

40 return;

41 }

42 }

43
44 //check sums

45 bool ok = true, symmetric = true;

46 for(int i = 0; i < (r+1)/2; i++) {

47 ok &= sum[i] == 0;

48 symmetric &= equivalence_class[i] == equivalence_class[r - i];

49 }

50 if(ok) {

51 for(int k = 0; k <= r; k++) cout << equivalence_class[k] << " ";

52 cout << (symmetric ? "(symmetric)" : "") << endl;

53 }

54 }

55
56 //check all partitions for a given level r

57 void check(int r) {

58 //find end value

59 long long end = 1, pow = 1;

60 for(int i = r; i >= 0; i--) {

61 end += pow * min((r+1)/2 - 1, i);

62 pow *= (r+1)/2;

63 }

64 if(r <= 2) end = 1;

65

179

Part VII – Chapter A: Source Code

66 //check all possible partitions

67 for(long long b = 0; b < end; b++) check(r, b);

68 }

69
70 //main function: check all r up to a given value

71 int main(int argc, char *argv[]) {

72 //check arguments

73 if(argc < 2) {

74 cout << "Usage: " << argv[0] << " max_r" << endl;

75 return 1;

76 }

77 stringstream convert(argv[1]);

78 int max_r;

79 if(!(convert >> max_r) || max_r <= 0) {

80 cout << "Error: argument max_r (value ’" << argv[1] << "’)

needs to be a positive integer" << endl;

81 return 1;

82 }

83
84 //initialize binomial coefficients

85 init(max_r);

86
87 //check all r up to max_r

88 for(int r = 1; r <= max_r; r++) {

89 cout << "checking level " << r << endl;

90 check(r);

91 }

92 return 0;

93 }

180

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[Abe26] Niels Henrik Abel. Démonstration de l’impossibilité de la résolution
algébrique des équations générales qui passent le quatrieme degré. Journal
für die reine und angewandte Mathematik, 1:65–96, 1826.

[AKG+] Scott Aaronson, Greg Kuperberg, Christopher Granade, Vincent Russo, and
contributors. Complexity Zoo. https://complexityzoo.uwaterloo.ca/.
Accessed: 2016-11-30.

[BGN97] Eberhard Becker, Rudolf Grobe, and Michael Niermann. Radicals of binomial
ideals. Journal of Pure and Applied Algebra, 117-118(0):41–79, 1997.

[Bos09] Siegfried Bosch. Algebra. Springer, Berlin, 7th edition, 2009.

[Bre11] Murray R. Bremner. Lattice basis reduction: an introduction to the LLL algo-
rithm and its applications. CRC Press, 2011.

[Bro87] W. Dale Brownawell. Bounds for the Degrees in the Nullstellensatz. The
Annals of Mathematics, 126(3):577, 1987.

[BS96] E. Bach and J.O. Shallit. Algorithmic Number Theory: Efficient algorithms.
Number v. 1 in Algorithmic Number Theory. MIT Press, 1996.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis,
Mathematical Institute, University of Innsbruck, Austria, 1965.

[BWK93] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner bases:
A computational approach to commutative algebra, volume 141 of Graduate
texts in mathematics. Springer-Verlag, New York, 1993.

[Cay54] Arthur Cayley. On the theory of groups as depending on the symbolic equation
θn = 1. Philosophical Magazine, 7(42):40–47, 1854.

[Cho56] Noah Chomsky. Three models for the description of language. IRE Transac-
tions on Information Theory, 2(3):113–124, September 1956.

[Chu36] Alonzo Church. An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics, 58(2):345–363, 1936.

181

https://complexityzoo.uwaterloo.ca/

Bibliography

[CLO07] David A. Cox, John B. Little, and Donal O’Shea. Ideals, varieties, and algo-
rithms: An introduction to computational algebraic geometry and commutative
algebra. Undergraduate texts in mathematics. Springer, New York, 3rd edition,
2007.

[Dav10] Mike Davey. A Turing Machine - In the Classic Style. http://www.

aturingmachine.com, 2010. Accessed: 2015-09-10.

[DFGS91] Alicia Dickenstein, Noa Fitchas, Marc Giusti, and Carmen Sessa. The mem-
bership problem for unmixed polynomial ideals is solvable in single exponen-
tial time. Discrete Applied Mathematics, 33(1):73 – 94, 1991.

[Dic13] Leonard Eugene Dickson. Finiteness of the odd perfect and primitive abun-
dant numbers with n distinct prime factors. American Journal of Mathematics,
35(4):413–422, 1913.

[dLVP96] Charles Jean de La Vallée Poussin. Recherches analytiques sur la théorie des
nombres premiers. Annales de la Sociéteé scientifique de Bruxelles, 20:183–
256, 1896.

[DSW94] Martin Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Complexity,
and Languages: Fundamentals of Theoretical Computer Science. Computer
science and applied mathematics. Academic Press, 1994.

[Dub90] Thomas W. Dubé. The structure of polynomial ideals and Gröbner bases. SIAM
Journal on Computing, 19(4):750–773, 1990.

[Dus98] Pierre Dusart. Autour de la fonction qui compte le nombre de nombres
premiers. PhD thesis, Laboratoire d’Arithmétique, de Calcul Formel et
d’Optimisation, Université de Limoges, 1998.

[EGG+06] Wayne Eberly, Mark Giesbrecht, Pascal Giorgi, Arne Storjohann, and Gilles
Villard. Solving sparse rational linear systems. In Proceedings of the 2006 In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC ’06,
pages 63–70, New York, NY, USA, 2006. ACM.

[ES96] David Eisenbud and Bernd Sturmfels. Binomial ideals. Duke Mathematical
Journal, 84(1):1–45, 07 1996.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing grbner bases
(f4). Journal of Pure and Applied Algebra, 139(13):61 – 88, 1999.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5). In International Symposium on Symbolic and
Algebraic Computation Symposium - ISSAC 2002, Villeneuve d’Ascq, France,

182

http://www.aturingmachine.com
http://www.aturingmachine.com

Bibliography

2002. Colloque avec actes et comité de lecture. internationale.

[FGLM93] Jean-Charles Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient compu-
tation of zero-dimensional gröbner bases by change of ordering. Journal of
Symbolic Computation, 16(4):329–344, 1993.

[Fis13] Gerd Fischer. Lineare Algebra: Eine Einführung für Studienanfänger. Grund-
kurs Mathematik. Springer Fachmedien Wiesbaden, 2013.

[Fis14] Gerd Fischer. Lineare Algebra. Grundkurs Mathematik. Springer Spektrum,
18th edition, 2014.

[Gau31] Carl Friedrich Gauß. Untersuchungen über die Eigenschaften der positiven
ternären quadratischen Formen von Ludwig August Seber. Göttingische
gelehrte Anzeigen, 1831.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1):173–
198, 1931.

[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay 2, a soft-
ware system for research in algebraic geometry. Available at
http://www.math.uiuc.edu/Macaulay2/.

[Gun41] Nikolai M. Gunther. Sur les modules des formes algébriques. Trav. Inst. Math.
Tbilissi [Trudy Tbiliss. Mat. Inst.], 9:97–206, 1941.

[Had96] Jacques Hadamard. Sur la distribution des zéros de la fonction ζ(s) et ses
conséquences arithmétiques. Bulletin de la Société Mathématique de France,
24:199–220, 1896.

[Hal66] James D. Halpern. Bases in vector spaces and the axiom of choice. Proceed-
ings of the American Mathematical Society, 17:670–673, 1966.

[Hal05] Thomas C. Hales. A proof of the Kepler conjecture. Ann. Math. (2),
162(3):1065–1185, 2005.

[Her26] Grete Hermann. Die Frage der endlich vielen Schritte in der Theorie der Poly-
nomideale. Mathematische Annalen, 95(1):736–788, 1926.

[Hil90] David Hilbert. Über die Theorie der algebraischen Formen. Mathematische
Annalen, 36(4):473–534, 1890.

[Hil93] David Hilbert. Über die vollen Invariantensysteme. Mathematische Annalen,
42(3):313–373, 1893.

183

http://www.math.uiuc.edu/Macaulay2/

Bibliography

[Hir64] Heisuke Hironaka. Resolution of singularities of an algebraic variety over a
field of characteristic zero: II. Annals of Mathematics, pages 205–326, 1964.

[HS65] Juris Hartmanis and Richard E. Stearns. On the computational complexity of
algorithms. Trans. Amer. Math. Soc., 117:285–306, 1965.

[HS66] Frederick C. Hennie and Richard E. Stearns. Two-Tape Simulation of Multi-
tape Turing Machines. J. ACM, 13(4):533–546, October 1966.

[Kem02] Gregor Kemper. The Calculation of Radical Ideals in Positive Characteristic.
Journal of Symbolic Computation, 34(3):229–238, 2002.

[Kle43] S. C. Kleene. Recursive predicates and quantifiers. Transactions of the Amer-
ican Mathematical Society, 53(1):41–73, 1943.

[KM96] Klaus Kühnle and Ernst W. Mayr. Exponential space computation of Gröbner
bases. In Proceedings of the 1996 international symposium on Symbolic and
algebraic computation - ISSAC ’96, pages 63–71. ACM Press, 1996.

[KM10] Christian Karpfinger and Kurt Meyberg. Algebra: Gruppen - Ringe - Körper.
Spektrum Akademischer Verlag, 2nd edition, 2010.

[Knu68] Donald E. Knuth. The Art of Computer Programming. Vol. 1: Fundamen-
tal Algorithms. Addison-Wesley Series in Computer Science and Information
Processing. Addison-Wesley, 1968.

[Kol88] János Kollár. Sharp effective Nullstellensatz. Journal of the American Mathe-
matical Society, 1(4):963, 1988.

[Kra08] Matthias Kratzer. Computing the dimension of a polynomial ideal and mem-
bership in low-dimensional ideals. Master’s thesis, TU München, Ocotober
2008.

[Lan09] Edmund Landau. Handbuch Der Lehre Von Der Verteilung Der Primzahlen.
Bd. 1. Scholarly Publishing Office, University of Michigan Library, 1909.

[Lan87] Serge Lang. Linear Algebra. Undergraduate texts in mathematics. Springer,
New York, 1987.

[Lap06] Santiago Laplagne. An algorithm for the computation of the radical of an
ideal. In Proceedings of the 2006 international symposium on Symbolic and
algebraic computation - ISSAC ’06, page 191. ACM Press, 2006.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261(4):515–
534, 1982.

184

Bibliography

[Mat01] Ryutaroh Matsumoto. Computing the Radical of an Ideal in Positive Charac-
teristic. Journal of Symbolic Computation, 32(3):263–271, 2001.

[May97] Ernst W. Mayr. Some complexity results for polynomial ideals. Journal of
Complexity, 13(3):303–325, 1997.

[Mit08] Johannes Mittmann. Computing the Radical of Binomial Ideals. Diploma
thesis, TU München, München, December 2008.

[MM82] Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems for
commutative semigroups and polynomial ideals. Advances in Mathematics,
46(3):305–329, 1982.

[MMN89] Herbert Melenk, Hans-Michael Möller, and Winfried Neun. Symbolic solu-
tion of large stationary chemical kinetics problems. IMPACT of Computing in
Science and Engineering, 1(2):138–167, 1989.

[MR11] Ernst W. Mayr and Stephan Ritscher. Space-efficient Gröbner basis compu-
tation without degree bounds. In Proceedings of the 36th International Sym-
posium on Symbolic and Algebraic Computation, ISSAC ’11, pages 257–264,
New York, NY, USA, 2011. ACM.

[MR13] Ernst W. Mayr and Stephan Ritscher. Dimension-dependent bounds for
Gröbner bases of polynomial ideals. Journal of Symbolic Computation, 49:78–
94, 2013. The International Symposium on Symbolic and Algebraic Compu-
tation.

[MT15] Ernst W. Mayr and Stefan Toman. The complexity of the membership problem
for radical binomial ideals. In N. N. Vassiliev, editor, International Confer-
ence Polynomial Computer Algebra ’2015, pages 61–64. Euler International
Mathematical Institute, VVM Publishing, 2015.

[MT16a] Ernst W. Mayr and Stefan Toman. Complexity of membership problems
of different types of polynomial ideals. Edited volume of the DFG priority
project 1489 “Algorithmic and Experimental Methods in Algebra, Geometry,
and Number Theory”, 2016. Submitted.

[MT16b] Ernst W. Mayr and Stefan Toman. Radicals of term replacement systems. An-
nual Conference of the DFG Priority Project SPP 1489, Kaiserslautern, Octo-
ber 2016.

[Pal04a] Bruce P. Palka. Editor’s Endnotes. The American Mathematical Monthly,
111(5):456–460, 2004.

[Pal04b] Bruce P. Palka. Editor’s Endnotes. The American Mathematical Monthly,

185

Bibliography

111(10):927–929, 2004.

[Rab30] Yuri Rabinowitsch. Zum Hilbertschen Nullstellensatz. Mathematische An-
nalen, 102(1):520, 1930.

[Ren80] Bodo Renschuch. Beiträge zur konstruktiven Theorie der Polynomide-
ale. XVII/1. Zur Hentzelt/Noether/Hermannschen Theorie der endlich vielen
Schritte. Wiss. Z. Pädagog. Hochsch. Karl Liebknecht Potsdam, 24(1):87–99,
1980.

[Rob85] Lorenzo Robbiano. Term orderings on the polynomial ring. In Bob F. Cavi-
ness, editor, EUROCAL ’85, volume 204, pages 513–517. Springer Berlin /

Heidelberg, 1985.

[RRRA03] Bodo Renschuch, Hartmut Roloff, Georgij G. Rasputin, and Michael Abram-
son. Contributions to constructive polynomial ideal theory XXIII: forgotten
works of Leningrad mathematician NM Gjunter on polynomial ideal theory.
ACM SIGSAM Bulletin, 37(2):35–48, 2003.

[Sei74] Abraham Seidenberg. Constructions in algebra. Trans. Amer. Math. Soc.,
197:273–313, 1974.

[SHL65] Richard E. Stearns, Juris Hartmanis, and Phil M. Lewis. Hierarchies of mem-
ory limited computations. In Proceedings of the 6th Annual Symposium on
Switching Circuit Theory and Logical Design (SWCT 1965), FOCS ’65, pages
179–190, Washington, DC, USA, 1965. IEEE Computer Society.

[SL96] Arne Storjohann and George Labahn. Asymptotically fast computation of her-
mite normal forms of integer matrices. In Proceedings of the 1996 Interna-
tional Symposium on Symbolic and Algebraic Computation, ISSAC ’96, pages
259–266, New York, NY, USA, 1996. ACM.

[Som99] Martı́n Sombra. A Sparse Effective Nullstellensatz. Advances in Applied Math-
ematics, 22(2):271 – 295, 1999.

[Tho10] Wolfgang Thomas. ”when nobody else dreamed of these things“ – Axel Thue
und die Termersetzung. Informatik-Spektrum, 33(5):504–508, 2010.

[Thu10] Axel Thue. Die Lösung eines Spezialfalles eines generellen logischen Prob-
lems. Skrifter udg. af Videnskabs-selskabet i Christiania. I, Math.-naturv.
klasse, 1910.

[Thu14] Axel Thue. Problem über Veränderungen von Zeichenreihen nach gegebenen
Regeln. Skrifter udg. af Videnskabs-selskabet i Christiania. I, Math.-naturv.
klasse, 1914.

186

Bibliography

[Tom12] Stefan Toman. Investigation of operations on binomial ideals. Bachelor’s the-
sis, TU München, September 2012.

[Tom15a] Stefan Toman. The complexity of the radical word problem for binomial ide-
als. Annual Conference of the DFG Priority Project SPP 1489, Osnabrück,
September 2015.

[Tom15b] Stefan Toman. The radical word problem for binomial ideals. Master’s thesis,
TU München, September 2015.

[Tur37a] Alan Mathison Turing. Computability and λ-definability. Journal of Symbolic
Logic, 2(4):153–163, 12 1937.

[Tur37b] Alan Mathison Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-
42(1):230–265, 1937.

[vdWANB43] Bartel L. van der Waerden, Emil Artin, Emmy Noether, and Theodore J. Benac.
Modern algebra. 1943.

[vN93] John von Neumann. First Draft of a Report on the EDVAC. IEEE Ann. Hist.
Comput., 15(4):27–75, October 1993.

[Yap91] Chee K. Yap. A new lower bound construction for commutative thue systems
with applications. Journal of Symbolic Computation, 12(1):1–27, 1991.

187

List of Algorithms

4.35 Compute the quotient of one polynomial ideal by another. 51
4.39 Compute the saturation of one polynomial ideal by another. 53

5.6 Polynomial division of univariate polynomials. 57
5.7 Euclidean algorithm: Compute the greatest common divisor of two univariate

polynomials. 57
5.8 Compute whether a univariate polynomial is contained in a univariate polyno-

mial ideal. 58
5.11 Polynomial division of multivariate polynomials 60
5.17 Compute a reduced Gröbner Basis from any Gröbner Basis 63
5.20 Buchberger’s Algorithm: Compute a Gröbner Basis of a polynomial ideal . . 64

8.16 Compute the square-free part of a univariate polynomial. 103
8.17 Compute the radical of a zero-dimensional polynomial ideal. 103
8.18 Compute the radical of a polynomial ideal. 104

9.5 Check whether a polynomial ideal is a (pure) binomial ideal. 109

13.1 Compute the radical of a polynomial ideal using roots. 143
13.3 Compute the radical of a pure binomial ideal using roots. 144
13.4 Compute the radical of a polynomial ideal using square roots. 144
13.7 Compute the radical of a pure binomial ideal using square roots. 145
13.24Compute the radical of a commutative Thue system using a non-constructive

step. 157

14.9 Compute the radical of a commutative Thue system using degree bounds. . . 165
14.12Compute the radical of a commutative Thue system using degree bounds, a

common Gröbner Basis, and a list of added equivalences. 168
14.13Compute the radical of a commutative Thue system using degree bounds, a

common Gröbner Basis, and a compressed list of added equivalences. 169

List of Figures

1.1 The line angle diagram of a cyclohexane molecule. 3
1.2 An extended line angle diagram of a cyclohexane molecule. 3

189

1.3 Ball-and-Stick model of a cyclohexane molecule in chair conformation. White
balls represent hydrogen atoms, black balls represent carbon atoms. Image by
Elisabeth Ackermann. 4

3.5 An example showing that the symmetric groups S n for n ∈ N>0, n ≥ 3 are
non-Abelian. 16

4.23 A visualization of the set V ⊆ Q2 from Example 4.22. 46

6.6 A visualization of the succession of states as given in Table 6.4. The symbols
read are denoted as labels of the edges. The symbols to write are given behind
a slash if not the blank symbol. The moving direction of the head is omitted
to increase readability: The first and last step do not move the head, all other
steps move it to the right. 73

6.9 A construction of a Turing Machine (with finite tape) built by Mike Davey [Dav10]. 76

9.8 The equivalence classes of monomials modulo I =
〈
x4

1 − x3
1x2, x1x4

2 − x6
2

〉
.

Monomials are represented by points. Two of them are in the same equiv-
alence class if they are connected by a line or both are in an area with gray
background color. 110

10.11The complexity of the word problem for different classes of polynomial ideals. 120

11.2 A visualization of the cell Q{x1} ⊆ Q
3. 124

11.3 A visualization of the cell Q{x2,x3} ⊆ Q
3. 124

12.3 A visualization of the Chomsky Hierarchy. When grammars are denoted in
the diagram we refer to the languages accepted by them. 137

13.9 A sketch for the proof of Theorem 13.8 with r = 8, µ(8) = 2, µ(9) = 1, p = 4,
and q = 7. The orange line is assumed to not be contained in the pure binomial
ideal. 147

13.10An example of the structure of equivalence relations as used in the proof of
Theorem 13.8 with r = 7 and m = 3. 148

13.13All examples found by the algorithm given in Listing A1.2 for r = 5. The
coefficients of the monomials are given below in brackets. 150

13.15A sketch for the proof of Theorem 13.14 with r = 7. 151
13.18Both non-symmetric examples found by the algorithm given in Listing A1.2

for r = 8. The coefficients of the monomials are given below in brackets. . . . 154

14.6 A visualization of Js. Clouds represent ideals as used in Theorem 14.4. 163

190

List of Tables

3.2 Some examples of semigroups, monoids, and groups. 14
3.10 Some examples of rings and fields. 19

6.3 The states of a Turing Machine to decide whether a number is divisible by 3. . 72
6.4 The transition function of a Turing Machine to decide whether a number is

divisible by 3. The left two columns specify the input of δ : Q × Γ → Q ×
Γ×{L,N,R} while the right three columns specify the output. Only inputs that
appear during the computation of a valid input are listed here. 72

6.5 The configurations of a Turing Machine during a sample run with input 53. . 73

List of Listings

13.16Output of the algorithm at Listing A1.2 for argument 6. 152
13.17Output of the algorithm at Listing A1.2 for argument 13. Symmetric partitions

are omitted. 152

14.3 An implementation of In using Macaulay2 [GS]. 161
14.7 An implementation of Js using Macaulay2 [GS]. 163

A1.1 Implementation of a polynomial ideal describing the conformations of cyclo-
hexane. 177

A1.2 Find small examples for powers of pure binomials in Theorem 13.8. 178

191

Index

λ-calculus, 69

Abel, Niels, 15, 83
Abel-Ruffini Theorem, 83
additive, 14
algebra, 44

homomorphism, 45
alphabet, 70
Analytical Engine, 69
Arora, Sanjeev, 70, 80
ascending chain condition, 24
associative, 13
asymptotic running time, 74

Babbage, Charles, 69
Barak, Boaz, 70, 80
base ring, 30
basis, 41
Becker, Eberhard, 126
Big O, 74
bilinear, 44
binomial, 107

pure, 107
binomial ideal, 107

pure, 107
Bosch, Siegfried, 13
breadth-first search, 79
Brownawell, W. Dale, 99
Buchberger, Bruno, 5, 58, 63, 86

carbon atom, 3
Cayley’s Theorem, 17
Cayley, Arthur, 17
cell, 123
cell ideal, 124
cellular decomposition, 123
certificate, 77
characteristic, 20
Chomsky Hierarchy, 137

Chomsky, Noam, 137
Church, Alonzo, 69
Church-Turing thesis

strong, 69, 75
weak, 69

close-packing of equal spheres, 3
closed set, 47
closure, 47
coefficient, 31
common divisor, 55
commutative, 15, 18, 138
computational model, 69
coNEXP, 78
configuration, 71
conformation, 4
coNP, 78
context-sensitive grammar, 137
coNTIME, 78
Cox, David, 55, 60
cyclohexane, 3

Davey, Mike, 75
de La Vallée Poussin, Charles Jean, 154
decidable, 74
decision problem, 74
degree, 32
derivation, 135
Dickson’s Lemma, 39
Dickson, Leonard E., 39
Difference Engine, 69
dimension, 42, 89
distributive, 18
domain, 20
Dress, Andreas, 5
DSPACE, 79
DTIME, 78
Dubé, Thomas W., 87, 91, 159
Dusart, Pierre, 155

193

Index

effective Nullstellensatz, 102
Eisenbud, David, 107, 112, 116, 126
elimination ideal, 48
elimination ordering, 65
empty word, 71
equivalence, 136
Euclid of Alexandria, 56
Euclidean algorithm, 56
EXP, 78
exponent, 31
EXPSPACE, 79

F4/F5 algorithm, 88
Faugère, Jean-Charles, 63, 88, 90
FGLM algorithm, 63
field, 25

algebraically closed, 36
homomorphism, 25
of fractions, 26
perfect, 102

finite, 13
finite-state machine, 138
Fischer, Gerd, 10
formal derivative, 103
formal grammar, 135
formal power series, 29
Frac, see field of fractions

Gauß, Carl Friedrich, 3, 85
Gaußian elimination, 85
gcd, 55
generating set, 41
grammar, 135

context-sensitive, 137
greatest common divisor, 55
Grobe, Rudolf, 126
group, 14

Abelian, 15
commutative, 15
finite, 13
homomorphism, 17
of units, 25

Gröbner Basis, 61
minimal, 62

reduced, 62
Gröbner Basis problem, 85
Gröbner walk, 63
Gröbner, Wolfgang, 5, 58
Gunther, Nikolai M., 58
Gödel, Kurt, 75, 81

Hadamard, Jacques, 154
Hales, Thomas, 3
Halpern, James D., 42
Hartmanis, Juris, 80
Hennie, Frederick C., 80
Hermann, Grete, 87
Hermite normal form, 85, 119
Hilbert Basis Theorem, 39
Hilbert’s Nullstellensatz, 96
Hilbert, David, 39, 96
Hironaka, Heisuke, 58
homomorphism, 17, 21, 25

ideal, 22
left, right, 22
principal ideal, 23

identity, 13
indeterminates, 31
integral domain, 20
inverse element, 14
isomorphism, 17

Karp reduction, 81
Karpfinger, Christian, 13
Kemper, Gregor, 105
Kepler Conjecture, 3
kernel, 21
Kleene star, 71
Kleene, Stephen, 71
Kollár, János, 100
Kratzer, Matthias, 90
Kühnle, Klaus, 87

L, 79
Landau symbols, 74
Landau, Edmund, 74
language, 74
Laplagne, Santiago, 104, 159

194

Index

LC, see leading coefficient
lcm, see least common multiple
leading coefficient, 57
leading monomial, 57
leading term, 57
least common multiple, 56
Lenstra, Arjen K., 119
Lenstra, Hendrik W., 119
Levin reduction, 81
Lewis, Phil M., 80
line angle diagram, 3
linear map

of algebras, 45
of vector spaces, 45

linear subspace, 41
linearly independent, 41
Little, John, 55, 60
LLL algorithm, 85, 119
LM, see leading monomial
Lovász, László, 119
LT, see leading term

Matsumoto, Ryutaroh, 105
Mayr, Ernst W., 6, 87, 89, 90
Melenk, Herbert, 5
Meyberg, Kurt, 13
Meyer, Albert R., 6, 87
Mittmann, Johannes, 159
module, 40

homomorphism, 44
monic, 57
monoid, 13

additive, 14
commutative, 15
finite, 13
homomorphism, 17
identity element, 13
multiplicative, 14

monomial, 29
monomial ideal, 112
monomial ordering, 59
multiplicative, 14
multivariate, 31
Möller, Hans-Michael, 5

Neun, Winfried, 5
neutral element, 13
NEXP, 78
Niermann, Michael, 126
NL, 79
Noether, Emmy, 24
non-determinism, 77
nonterminal symbol, 135
normal form, 60
NP, 78
NP-complete, 81
NP-hard, 81
NPSPACE, 79
NSPACE, 79
NTIME, 78

O’Shea, Donal, 55, 60
oblivious Turing Machine, 75
open set, 47
operation, 13

associative, 13
commutative, 15
distributive, 18

order, 13

P, 78
P vs NP, 80
packing, 3
Parikh mapping, 139
parsimonious reduction, 81
partition, 109
permutation, 15
pivot, 44
polynomial, 29

linear, 40
multivariate, 31
square-free part, 103
univariate, 31, 40

polynomial ideal, 36
binomial, 107
dimension, 89
of leading terms, 61
product, 49
pure binomial, 107

195

Index

quotient, 50
radical, 95
saturated, 52
saturation, 52
sum, 48
toric, 115
vanishing, 46

polynomial overhead, 70
polynomial ring, 30
prime ideal, 116
prime number theorem, 154
principal ideal, 23
principal ideal ring, 23
production, 135
PSPACE, 79
pure binomial, 107
pure binomial ideal, 107

quantum computer, 70
Quot, see field of fractions
quotient ring, 23

Rabinowitsch trick, 97
Rabinowitsch, Yuri, 97
radical ideal, 95
radical problem, 98
radical word problem, 98
Rainich, George Yuri, 97
RE, see recursively enumerable
recognize, 136
recursively enumerable, 137
reduction, 57, 81
Renschuch, Bodo, 87
representation problem, 84
ring, 18

characteristic, 20
commutative, 18
homomorphism, 21
ideal, 22
Noetherian, 24
polynomial ring, 30
pseudo-ring, 18
quotient, 23
subring, 21

with unity, 18
Ritscher, Stephan, 90
rng, 18
Robbiano, Lorenzo, 59
root, 36, 143

square root, 144
row-echelon form, 44
Ruffini, Paolo, 83
running time, 74

s-polynomial, 63
Seidenberg, Abraham, 87, 102
semi-decidable, 137
semi-Thue production, 138
semi-Thue system, 138
semigroup, 13

additive, 14
commutative, 15
finite, 13
homomorphism, 17
multiplicative, 14

set theory, 10
Sombra, Martı́n, 101
Space Hierarchy Theorem, 80
square root, 144
start symbol, 135
state, 70
Stearns, Richard E., 80
Sturmfels, Bernd, 107, 112, 116, 126
subfield, 25
subgroup, 16

normal, 22
submodule, 41
submonoid, 16
subring, 21
subsemigroup, 16
substitution homomorphism, 35, 36
support, 29
symbol, 70

nonterminal, 135
terminal, 135

symmetric group, 15

tape, 70

196

Index

input, output, work, 75
term, 31
term ordering, 59

graded lexicographic, 59
graded reverse lexicographic, 59
lexicographic, 59
reverse lexicographic, 59

term replacement system, 135
derivation, 135
equivalence, 136

terminal symbol, 135
tetrahedral angle, 4
Thue system, 138

radical, 156
Thue, Axel, 138
Time Hierarchy Theorem, 80
topology, 47
toric ideal, 115
transition function, 70
triviality problem, 84
Turing Machine, 70

configuration, 71
deterministic, 70
oblivious, 75
state, 70
tape, 70
transition function, 70
universal, 76

Turing machine, 69
non-deterministic, 77

Turing, Alan M., 69

unique factorization domain, 56
unit, 25
univariate, 31

valence, 3
van der Waerden, Bartel L., 13
vanishing ideal, 46
variety, 45
variety problem, 83
vector, 40
vector space, 40

basis, 41

dimension, 42
generating set, 41
homomorphism, 45
linear subspace, 41

von Neumann architecture, 70
von Neumann, John, 70, 81

Weak Nullstellensatz, 97
witness, 77
word, 71
word problem, 84
work tape, 75

Yap, Chee K., 88

Zariski topology, 47
Zariski, Oscar, 47
Zassenhaus Algorithm, 126
Zassenhaus, Hans J., 126
zero divisor, 20

left, right, 20

197

Index

198

	Acknowledgments
	Abstract
	Contents
	I Introduction
	1 Motivation
	1.1 An Example from Chemistry
	1.2 Summary of the Thesis

	2 About this Thesis
	2.1 Structure
	2.2 Fundamentals and Notation

	II Algebraic Foundations
	3 Groups, Rings, and Fields
	3.1 Groups
	3.2 Rings
	3.3 Fields

	4 Polynomial Rings
	4.1 Formal Power Series and Polynomials
	4.2 Properties of Polynomial Rings
	4.3 Polynomial Ideals
	4.4 Modules, Vector Spaces, and Algebras
	4.5 Varieties and the Zariski topology
	4.6 Operations on Polynomial Ideals

	5 Gröbner Bases
	5.1 The Univariate Case
	5.2 Definition of Gröbner Bases
	5.3 Buchberger's Algorithm

	III Complexity Results
	6 The Computational Model
	6.1 Historical Introduction
	6.2 Turing Machines
	6.3 Non-Determinism
	6.4 Complexity Classes and Reductions

	7 Known Complexity Results for Polynomial Ideals
	7.1 Problems in Algorithmic Computer Algebra
	7.2 General Gröbner Bases
	7.3 Polynomial Ideals with Low Dimension

	IV Subclasses of Polynomial Ideals
	8 Radical Ideals
	8.1 Roots of Polynomials
	8.2 Degree Bounds for Radical Ideals
	8.3 Computation of Radical Ideals

	9 Binomial Ideals
	9.1 Definition and Properties of Binomial Ideals
	9.2 Between Monomial Ideals and General Polynomial Ideals

	10 Toric Ideals
	10.1 Definition of Toric Ideals
	10.2 The Word Problem of Toric Ideals

	11 Cellular Decomposition
	11.1 Cellular Decomposition
	11.2 The Radical Word Problem for Binomial Ideals
	11.3 Modeling Binomial Ideals Using Pure Binomials

	V Radicals of Commutative Thue Systems
	12 Term Replacement Systems
	12.1 Grammars and Term Replacement Systems
	12.2 Thue Systems

	13 Radicals of Term Replacement Systems
	13.1 Algorithms for Computing the Radical of Pure Binomial Ideals
	13.2 Proof of the Algorithm
	13.3 Experimental Degree Bounds
	13.4 A Formal Degree Bound
	13.5 Radicals of Commutative Thue Systems

	14 Degree Bounds for Radical Ideals
	14.1 Upper Bounds
	14.2 Lower Bounds
	14.3 Degree Bounds for Radicals of Commutative Thue Systems
	14.4 Adjustments of the Closure Operation

	VI Conclusion
	15 Conclusion

	VII Appendix
	A Source Code
	A.1 Cyclohexane
	A.2 Experimental Degree Bound

	Bibliography
	List of Algorithms
	List of Figures
	List of Tables
	List of Listings
	Index

