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Abstract

Random effects play a vital role in various physical phenomena and have to be addressed in the math-
ematical modeling and numerical simulations of such processes. In this contribution, the concepts
of random (ordinary) differential equations (RODEs) and stochastic (ordinary) differential equations
(SODEs) are reviewed. Details concerning the numerical solution of problems formulated via SODEs
and RODEs are summarised. In particular, key features of the averaged Euler and Heun as well as
K-RODE Taylor methods for RODEs are compared with numerical methods for SODEs such as the
Euler-Maruyama and the Milstein scheme. Finally, the studied RODE and SODE methods are applied
to one- and multi-dimensional examples, including the problem of ground-motion-induced excitations of
multi-storey buildings subject to the Kanai-Tajimi earthquake model. Being paradigms for additive white
noise driven systems, these applications illustrate on the one hand the applicability of the aforementioned
numerical methods on an extremely wide class of problems. On the other hand, the coupled oscillator struc-
ture of the earthquake induced motion of multi-storey buildings naturally gives rise to the development
of hybrid numerical schemes that combine averaged and deterministic schemes to fully exploit their benefits.
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I Introduction

Random ordinary differential equations (RODEs) and their numerics lived, up to now, mostly a
shadowy existence outshone by the more prominent white noise driven stochastic ordinary differ-
ential equations (SODEs) and Itô’s calculus, cf. [20], p. 9. Nevertheless, their conceptually easier
formalism, their natural modeling capacity of real processes, and their immediate applicability to
additive white noise driven systems as well as new algorithms with high convergence rates seem
to justify a closer look at random ordinary differential equations.

Motivated by the excellent algorithmic introductions to the numerics of stochastic ordinary
differential equations [14, 20, 26] as well as the outstanding works on numerical methods for
random differential equations [13, 24], the purpose of this article is four-fold: first, to give a concise
one-paper survey of the existing methods, useful for applied mathematicians and computer
scientists; second, to compare key features of the corresponding methods for random as well as
stochastic differential equations; and third, to apply these methods to a realistic problem and
compare the results.

In view of this, we state and compare the averaged Euler and Heun as well as K-RODE Taylor
methods for random (ordinary) differential equations with the Euler-Maruyama and the Milstein
schemes for stochastic (ordinary) differential equations.

These numerical methods are applied to a problem beyond the mathematical toy box of one-
dimensionality, namely the ground-motion induced excitation of multi-storey buildings subject
to the Kanai-Tajimi earthquake model, cf. [21, 22, 34]. Here, the Doss-Sussmann/ Imkeller-
Schmalfuss correspondence, cf. [8, 16, 33], allows us to transform the stochastic differential
equation given by this model into its path-wise equivalent random differential equation and apply
all above mentioned numerical methods to this case.

Interestingly enough, there are well-established additive white noise models in finance, like
the continuous Vasicek model, the extended Vasicek model, the Hull-White model, the Black-
Karasinski model or the Black-Derman-Toy model for interest rates, cf. [3], among others, that
can be treated the same way and are, thus, accessible for the much easier theory of RODEs and
their numerical schemes that have the same order of convergence as expected from corresponding
deterministic schemes and have thus a slight advantage over the usual schemes for SODEs, as we
will see later.

Our article is structured as follows: In Sec. II, we recall the theory of random and stochastic
differential equations together with a small outline of their mathematical foundations as well as
the Doss-Sussmann/ Imkeller-Schmalfuss correspondence. Moreover, as a direct application of the
Doss-Sussmann/ Imkeller-Schmalfuss correspondence, we introduce a mathematical ansatz for
ground-motion induced excitation of multi-storey buildings subject to the Kanai-Tajimi earthquake
model.

In Sec. III, explicit numerical schemes for random differential equations are discussed together
with their properties of strong convergence. In particular, the averaged Euler and averaged Heun
as well as K-RODE Taylor methods are studied and applied to the problem of simulating ground-
motion-induced excitation of multi-storey buildings. These buildings are modeled in the sense of
wire-frame structures that obey damped oscillation equations. In this context, a method common
in the engineering literature—called Frequency Response Analysis—is discussed and compared to
the convergence results obtained for the averaged Euler scheme. Moreover, the special structure
of a ground-motion excited multi-storey building as a system of coupled oscillators allows the
discussion of hybrid random/ deterministic methods that compute the ground motion excitation
with the aid of the averaged Euler method and then use this for the computation of the movement
of the building with the aid of a (deterministic) Euler method. Here, the application of this hybrid
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approach works due to the smoothing properties of the Kanai-Tajimi earthquake model.
Section IV briefly covers the corresponding explicit numerical schemes for stochastic differential

equations together with their properties of strong convergence. The methods explicitly discussed
are just the Euler-Mayurama and the Milstein scheme to have a consistent basis of comparison with
the low order RODE methods studied in Sec. III. For higher-order schemes we refer to the literature,
in particular to [23] and [26]. We extend our method for the evaluation of multiple Ornstein-
Uhlenbeck integrals to the computation of multiple Wiener-integrals. Again, the aforementioned
SODE methods are applied to the problem of simulating ground-motion induced excitation of
multi-storey buildings and their performance is compared to their RODE counterparts.

Finally, in Sec. V, we give a short summary and outlook on further interesting topics of research
that can be founded on this article.

II Random and Stochastic Ordinary Differential Equations and
Their Path-Wise Solutions

In order to be self-contained, we start with a short overview of the mathematical foundations
before we recall the mathematical theorems that account for path-wise existence and uniqueness
of random ordinary differential equations and stochastic ordinary differential equations, further
details can be found in [4] and [29]. For fixed realisations of their driving stochastic process,
RODEs can be considered as deterministic ordinary differential equations. Nevertheless, due to
the nature of the Wiener process, SODEs must be considered in a mean-square sense such that
the notion of “path-wise” has, strictly speaking, different interpretations for these two types of
differential equations. On the other hand, from a topological point of view, the Doss-Sussmann/
Imkeller-Schmalfuss correspondence establishes a realisation-wise conjugacy between RODEs and
SDOEs that will be applied to transfer the famous Kanai-Tajimi earthquake model from an SODE
to an RODE and, thus, make it accessible to a comparison for both approaches.

II.1 Mathematical Foundations

Let us first recall the definition of Hölder and Lipschitz continuity as well as that of Ck,α-functions,
cf. for instance [1], p. 40:

Definition 1 (Hölder and Lipschitz Continuity/ Ck,α-functions). Let (X, ‖ · ‖X), (Y, ‖ · ‖Y) be normed
spaces and 0 < α ≤ 1. A function f : X → Y is called globally Hölder continuous of order α if there is a
positive constant C such that

‖ f (x) − f (y)‖Y ≤ C‖x − y‖α
X ∀ x, y ∈ X . (II.1)

f is called locally Hölder continuous of order α if it satisfies the condition (II.1) on every bounded subset
of X. f is called globally (locally) Lipschitz continuous if it is globally (locally) Hölder continuous of
order α = 1. f is called a Ck,α-function if it is k times continuously differentiable and the k-th derivative is
locally Hölder continuous of order α for some k ∈ N.

From the illustrative point of view, white noise wt is a signal (or process), named in analogy
to white light, with equal energy over all frequency bands. Mathematically, white noise wt is
characterised by the following properties:

Definition 2. A white noise process (wt)t∈R+
0

has vanishing mean, i.e., E(wt) = 0, and its auto-
correlation is δ-distributed, i.e., E(wtws) = δ(t − s).
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Figure 1: 2 sample paths of the white noise process together with its mean (thin black) (a) and 200
sample paths of the Wiener process together with its mean (thick black) and variance (thick blue)
(b).

Formally, the Wiener process Wt is the “integral” of wt:

Wt =
∫ t

0
wsds or dWt = wtdt .

Again, we define it properly by its characteristic properties:

Definition 3. The Wiener process (Wt)t∈R+
0

is characterised by the following three properties:

1. W0 = 0 (with probability 1),

2. Wt has independent increments, i.e., for 0 = t0 < t1 < t2 < · · · < tn < ∞ the differences Wt1 −Wt0 ,
Wt2 − Wt1 , . . . , Wtn − Wtn−1 are (mutually) independent, and

3. the increments are normally distributed, i.e., Wt −Ws ∼ N (0, t− s) for 0 ≤ s < t, where N (0, t− s)
denotes the normal distribution with expectation 0 and variance t − s.

Figure 1 gives some illustrative sample paths of the white noise process and the Wiener process.
In particular the properties E(wt), E(Wt) and Var(Wt) are clearly visible.

Historically, the Wiener process was the first interpretation of Brown’s experiment: in 1827
the Scottish botanist Robert Brown (21.12.1773–10.06.1858) observed that microscopic particles
suspended in liquid make very strange and highly irregular movements. Nearly one hundred
years later, in 1923 Norbert Wiener (26.11.1894–18.03.1964) gave the first acknowledged and concise
definition of a mathematical model for Brown’s experiment. For some very nice derivations of the
mathematical modeling for the motion of a Brownian particle we refer to [2], p. 101, and [6].

White noise and the Wiener process are examples of stochastic processes.

Definition 4. Let (Ω,A, P) be a probability space1, (Rn,B(Rn)) the n-dimensional Euclidean space
endowed with the Borel-σ-algebra, and I = [t0, T] ⊆ R+

0 . At a fixed time τ ∈ I, a random variable Xτ(ω)
of Rn is a map Xτ : Ω → Rn which is A−B(Rn) measurable.

• A stochastic process Xt is a collection {Xτ(ω) : τ ∈ I} of random elements in Rn.

1 I.e., A is a σ-algebra on the nonempty set Ω, and P is a probability measure on the measurable space (Ω,A).
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• For each ω ∈ Ω, the map I 3 t 7→ Xt(ω) is called a sample path, trajectory or realisation of Xt.

Concerning stochastic processes (Xt)t∈R+
0

, we often suppress the notation as a series of time
points and only write Xt instead, or X(t) if there is no confusion with deterministic functions.

II.2 Random Ordinary Differential Equations (RODEs)

Our main source for the set-up and discussion of random differential equations will be [4]. We
denote by Sd the set of all d-dimensional random-vectors. Let X : I × Ω → Rm be an Rm-valued
stochastic process with continuous sample paths, and f : Rd × I × Ω → Rd be a continuous
function.

Definition 5. A random (ordinary) differential equation (short: random differential equation) on Rd,

dXt

dt
= f (Xt(·), t, ω) , Xt(·) ∈ Rd , (II.2)

is a non-autonomous ordinary differential equation

ẋ =
dx
dt

= Fω(x, t) , x := Xt(ω) ∈ Rd (II.3)

for almost all ω ∈ Ω. Again, for notational simplicity, we often suppress the argument ω if no ambiguities
result.

A stochastic process Xt defined on the interval I is called path-wise solution of the random differential
equation (II.2) if almost all realisations of Xt on I are solutions of the non-autonomous deterministic
ordinary differential equation (II.3).

Let t0 ∈ I and let X0 ∈ Sd such that Xt0=̂X0. Then, Xt is called path-wise solution of (II.2) with
respect to the initial condition (X0, t0).

The path-wise solution of (II.2) with respect to the initial condition (X0, t0) is called unique on I if
for an arbitrary pair Xt and X∗

t of path-wise solutions with respect to the initial condition (X0, t0) the
following holds true:

Xt
I
= X∗

t .

Reformulating this definition, we have that we associate a deterministic (ordinary) differential
equation to any realisation ω ∈ Ω. The solutions of these deterministic differential equations are
the realisations of a stochastic process, which is the path-wise solution of the random differential
equation (II.2).

Thus, in order to show the existence of path-wise solutions one first plays this issue back to
the theory of deterministic (ordinary) differential equations and shows that (II.3) has a solution on
an ω-independent interval I ⊂ R+

0 for almost all ω ∈ Ω.

Theorem 1. Let the following three prerequisites be satisfied:

1. The functions f (x, t, ω) are A-measurable for all (x, t) ∈ Rd × I.

2. f (x, t, ω) is continuous on Rd × I for almost all ω ∈ Ω.

3. For almost all ω ∈ Ω there is a real continuous function L(t, ω) on I such that

‖ f (x1, t, ω)− f (x2, t, ω)‖ ≤ L(t, ω)‖x1 − x2‖ ,

where t ∈ I and x1, x2 ∈ Rd.
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Then, for any initial condition (X0, t0) ∈ Sd there exists a unique path-wise solution on I of the random
differential equation (II.2).

Proof. The proof is given in [4], Theorem 1.4, p. 18.

Next, we state the technically more advanced concept of white-noise-driven stochastic differen-
tial equations.

II.3 Stochastic Ordinary Differential Equations (SODEs)

Combining a deterministic part (the drift) and a white-noise driven part (the diffusion) leads to a
stochastic differential equation:

dXt = a(Xt, t)︸ ︷︷ ︸
drift

dt + b(Xt, t)︸ ︷︷ ︸
diffusion

dWt .

As for ordinary differential equations, this notation is equivalent to the integral representation of
the solution process Xt

Xt = X0 +
∫ t

t0

a(Xs, s)ds +
∫ t

t0

b(Xs, s)dWs (II.4)

with initial value Xt0 = X0 at the initial time t0, where the identity holds almost surely. The first
integral on the right hand side of (II.4) is well defined as a usual Riemann or Lebesgue integral,
whereas the integral with respect to the Wiener process has to be properly interpreted2. This was
first achieved by Kiyoshi Itô (07.09.1915–10.11.2008).

In the case of ordinary differential equations, the simplest existence and uniqueness theorem
assumes that the right-hand-side coefficient function a(x, t) satisfies a Lipschitz condition in x
and is bounded with respect to t for some x (growth condition). Similar restrictions on the drift
and diffusion part ensure the existence and uniqueness of the solution of a stochastic differential
equation:

Theorem 2. Let a(x, t) = (a1(x, t), . . . , an(x, t))T , B(x, t) = (Bij(x, t))i,j=1,...,n be measurable on Rn ×
[0, T] and satisfy the uniform Lipschitz-condition

|a(x1, t)− a(x2, t)| ≤ K∗|x1 − x2| , |B(x1, t)− B(x2, t)| ≤ K∗|x1 − x2|

and the growth restriction

|a(x, t)| ≤ K(1 + |x|) , |B(x, t)| ≤ K(1 + |x|) ,

for all x, x1, x2 ∈ Rn, t ∈ [0, T], with positive constants K∗, K. Let X0 be constant. Then there exists a
path-wise unique solution of

dXt = a(Xt, t)dt + B(Xt, t)dWt , (II.5)

X(0) = X0 , (II.6)

on the space-time cylinder (x, t) ∈ Rn × [0, T], where Wt denotes the n-dimensional Wiener process.
2 Riemann(-Stieltjes) integrals

∫ t
t0

f (s)dg(s) of a function f against another function g are defined only for functions g
with bounded variation, see the Theorem of Banach-Steinhaus (cf. [31]). Unfortunately, the Wiener process is of unbounded
variation.
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Figure 2: Five sample paths of Ẋt = −Xt + sin(Wt(ω)) computed by the the averaged Euler
schema for RODEs with step size 1/1024 (a) and the corresponding SODE computed by stochastic
Euler-Mayurama schema (b). The results are indistinguishable up to truncation precision.

Proof. The proof is given in [9], pp. 98.

For stochastic differential equations, the notion of path-wise uniqueness means that if X1(t) and
X2(t) are two solutions of (II.5), (II.6), then

P (X1(t) = X2(t) for all t ∈ [0, T]) = 1 ,

i.e., there may only be a subset Ω̃ ⊂ Ω of vanishing measure such that X1(t̃)(ω̃) 6= X2(t̃)(ω̃) for
ω̃ ∈ Ω̃ at a time t̃ ∈ [0, T].

II.4 The Doss-Sussmann/ Imkeller-Schmalfuss Correspondence

Random differential equations with Wiener processes can be re-written as stochastic differential
equations, so that results for the one type of equations can be applied to the other and vice versa,
cf. [20], pp. 10.

Example 1. (From an RODE to an SODE, cf. [20], p. 10.) The scalar random differential equation
Ẋt = −Xt + sin(Wt(ω)) can be re-written as the following two-dimensional stochastic differential equation

d
(

Xt
Yt

)
=

(
−Xt + sin(Yt)

0

)
dt +

(
0
1

)
dWt .

Figure 2 displays sample paths of this equation that are computed via the averaged Euler scheme for random
ordinary differential equations 2(a) and via the stochastic Euler-Mayurama scheme for stochastic ordinary
differential equations 2(b).

Following [20], pp. 10, we observe that any (finite-dimensional) stochastic differential equation
can be transformed to a random differential equation: In the case of commutative noise, this
is a famous result obtained by Halim Doss and Hector J. Sussmann (see [8], [33]), which was
generalised in 1998 to all stochastic differential equations by Peter Imkeller and Björn Schmallfuss
(cf. [16]). This Doss/ Sussmann & Imkeller/ Schmalfuss correspondence is easily illustrated for a scalar
stochastic differential equation with additive noise.

Example 2. (From a SODE to a RODE, cf. [20], pp. 10.) The scalar stochastic differential equation

dXt = f (Xt)dt + dWt
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is equivalent to the random differential equation

Żt = f (Zt + Ot) + Ot ,

where Zt := Xt − Ot and Ot is the stationary Ornstein-Uhlenbeck process satisfying the stochastic
differential equation dOt = −Otdt + dWt. Note, the Ornstein-Uhlenbeck process is a Gaussian process,
and thus it is already uniquely determined by its first two moments.

Important and meaningful examples of well-recognised models where this correspondence can
be applied are the continuous Vasicek model, the extended Vasicek model, the Hull-White model,
the Black-Karasinski model, or the Black-Derman-Toy model for short-term interest rates (cf. [3]),
or the Kanai-Tajimi model for earthquake-induced ground motion excitations.

II.5 Simulating Ground-Motion-Induced Excitation of Multi-Storey Build-
ings

Kanai [21], [22] and Tajimi [34] introduced a now commonly used model for earthquake induced
ground excitations which is based on the following observations, see [28], pp. 78.

For most earthquake engineering purposes, the earth can be considered as a stratified
half-plane, with generally lighter material in an upper layer than the one below. If
the source of an earthquake is reasonable deep, then as seismic waves propagate to
the ground surface, their direction of propagation is almost vertically upward, as can
be explained by Snell’s law of refraction. As a first approximation, we may take into
account only the uppermost layer between the ground surface and the nearest bedrock
and treat the wave propagation in this layer as being one-dimensional and vertical.
In the Kanai-Tajimi model, this layer is further approximated by a single-degree of
freedom linear system, [28], p. 80.

The Kanai-Tajimi model displays the characteristic properties of real earthquakes for high
frequencies quite well, despite its inaccuracies at low frequencies as [30], pp. 19, points out. To
improve the Kanai-Tajimi model with respect to a better resolution of the low frequencies, Clough
and Penzien suggested in [7] to take the Kanai-Tajimi response as the input of a second linear filter.
Both, the Kanai-Tajimi model and the Clough-Penzien model lead to quasi-stationary ground
motion excitations, whereas real earthquakes are reported to be non-stationary. In more advanced
seismic discussions, envelope functions are combined with stationary models or non-stationarity
is introduced by time-dependent additional functions in the Kanai-Tajimi or the Clough-Penzien
model, cf. [18, 28, 32, 35]. Since the Kanai-Tajimi model represents a relatively simple but still
decently sophisticated approach to realistic stochastic excitations and propagations for our purpose
of applying different numerical schemes, we use it in this contribution and summarise its notation
in the following paragraph.

Following [30], pp. 18, the stochastic differential equation formulation for the ground motion
excitation üg(t) in the sense of the Kanai-Tajimi model is given as

üg = ẍg + ξt = −2ζgωg ẋg − ω2
gxg ,

where xg is the solution of a zero-mean Gaussian white noise ξt driven stochastic oscillator

ẍg + 2ζgωg ẋg + ω2
gxg = −ξt , xg(0) = ẋg(0) = 0 . (II.7)
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Figure 3: In (a) 2 simulation runs of the SDE Kanai-Tajimi model are displayed in the x-y-plane
with initial condition (x0, y0) = (0, 0). These are taken to display the acceleration üg(t) over the
time axis in (b).

Here, ζg and ωg are model parameters reflecting the local geological site conditions. For instance,
in [15] the use of ζg = 0.64 and ωg = 15.56 [rad/sec] is recommended for firm soil conditions in a
frequency range from f = 2.1 [rad/sec] to f = 21 [rad/sec].

Applying the Doss-Sussmann/ Imkeller-Schmalfuss correspondence allows us to transform
the stochastic differential equation (II.7), written as a first-order system,

d
(

x
y

)
=

(
−y

−2ζgωgy + ω2
gx

)
dt +

(
0
1

)
dWt ,

into the path-wise equivalent random differential equation(
ż1
ż2

)
=

(
−(z2 + Ot)

−2ζgωg(z2 + Ot) + ω2
gz1 + Ot

)
, (II.8)

where Ot is the usual Ornstein-Uhlenbeck process.
Figure 3 shows sample paths of the Kanai-Tajimi model and the excitations they induce on the

Earth’s surface.

II.6 The Wire-Frame Model of a Multi-Storey Building

In the spirit of [5], pp. 50, the forces acting on the mass on top of the weightless frame of a
building are the external force p(t) as well as the damping resisting force fD(t) and the elastic (or
inelastic/ rigid) resisting force fS(t) of the structure.

The external force p is taken to be positive in the direction of the x-axis. The displacement
u(t), the velocity u̇(t) and the acceleration ü(t) are also positive in the direction of the x-axis. The
damping ( fD) and elastic/inelastic ( fS) forces are acting in the opposite direction because they are
internal forces and resist the velocity and deformation respectively.

The resultant force along the x-axis is p − fD − fS and, finally, Newton’s second law of motion
gives

p − fS − fD = mü or mü + fD + fS = p . (II.9)

Now, we require to obtain the resisting forces fD and fS. In the case of a d-storey building
(d = 1, 2, . . . ), the forces Fj that act on a floor j can be split into those resulting from a component
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(a) (b)

Figure 4: Sketches of the building types we are considering: (a) “normal” 4-storey building and
(b) “L-shaped” 4-storey building.

that belongs to the floor above (Fj+1
j ) and one that belongs to the floor below it (Fj−1

j ), i.e.,

Fj = Fj−1
j + Fj+1

j ,

where we set Fd+1
d = 0, since there is no external force acting on the roof, and F0

1 equal to the forces
induced by the earthquake. This leads to the following form of the deformation and damping
forces where displacements are measured relative to the j-th floor: With some material dependent
positive real constants k j and k j+1 as well as cj and cj+1, the deformation force reads

f (j)
S = k j

(
uj − uj−1

)
+ k j+1

(
uj − uj+1

)
= −k juj−1 + (k j + k j+1)uj − k j+1uj+1 ,

and the damping force is

f (j)
D = cj

(
u̇j − u̇j−1

)
+ cj+1

(
u̇j − u̇j+1

)
= −cju̇j−1 + (cj + cj+1)u̇j − cj+1u̇j+1 .

For u := (u1, u2, . . . , ud)
T , the dimension-free equation of motion in matrix-vector notation has the

form
ü + Cu̇ + Ku = F(t) , (II.10)

with a time-dependent external force F corresponding to the earthquake excitation. The matrix K
has the structure

K =


k1 + k2 −k2
−k2 k2 + k3 −k3

−k3 k3 + k4 −k4
. . .

−kd +kd


and C is analogous. If required, masses are included into the model via diagonal matrices.

For illustration purposes, we apply the numerical schemes for RODEs and SODEs we are
about to discuss on two types of buildings as sketched in Fig. 4: a “normal” 4-storey building
and an “L-shaped” 4-storey building. Both of these structures will be considered subject to the
excitation induced by the Kanai-Tajimi model.

After this theoretical background, we are now going to describe the various numerical algo-
rithms, starting with explicit numerical schemes for random differential equations.

10
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III Explicit Numerical Schemes for Random Differential Equa-
tions

Following [13], we assume that the function f in (II.2) is infinitely often continuously differentiable
in Xt and ω, but the resulting right-hand side Fω(x, t) is usually only continuous (at most Hölder
continuous) and not differentiable in t [13, 24, 20]. This point can be illustrated with the use of the
previous Example 1. Consider the RODE given by

Ẋt = −Xt + sin(Wt(ω)), (III.1)

where Wt(ω) is a sample path of a Wiener process. It is known from the theory of RODEs [4] that
the solution of (III.1) is given by

Xt = e−tX0 + e−t
∫ t

t0

eτ sin (Wτ(ω))dτ. (III.2)

The sample paths of Wt(ω) are Hölder continuous but nowhere differentiable, so the solution
Xt is only once differentiable. This property directly affects the order of convergence of the
standard numerical schemes (e.g. Euler, Heun, Runge-Kutta), since the Taylor expansions needed
for their error analyses cannot be carried out. Let us turn our attention to this fact, which is
presented in detail in [13].

Consider the class of explicit one-step numerical schemes for Eq. (II.2) given by

xn+1 = xn + hnφ(hn, tn, xn), (III.3)

at discretised timesteps tn ∈ [t0, T] and step sizes hn = tn+1 − tn ∈ (0, h] for all n = 0, ..., N − 1.
In particular, for a fixed ω, let Fω(x, t) := f (x, t) in Eq. (II.2), where f is assumed to be locally
Lipschitz continuous in x (with |x(t)| ≤ R, R(w) = R > 0, for all t ∈ [t0, T]) with Lipschitz constant
LR. Denote B[0; R] := {x ∈ Rd : |x| ≤ R}. Furthermore, let MR = maxt∈[0,T],x∈B[0;R] | f (x, t)|. The
discretisation error of the schemes (III.3) will be given in terms of the moduli of continuity of f
and φ, defined as

ω f (h) := ω f (h; R, T) = sup
s,t∈[0,T]

0≤|s−t|≤h

sup
x∈B[0;R]

| f (t, x)− f (s, x)|, (III.4a)

ωφ(h) := ωφ(h; R, T) = sup
0≤hn≤h

sup
t∈[0,T]

x∈B[0;R]

|φ(hn, t, x)− φ(0, t, x)|. (III.4b)

Under these considerations, the following theorem holds.

Theorem 3. The global discretisation error of the numerical scheme III.3 satisfies the estimate

|xn − x(tn; t0, x0)| ≤
ω f (h) + ωφ(h) + LR MRh

LR
· eLRT . (III.5)

Proof. The proof is given in [13].

III.1 The Euler & Heun Schemes for RODEs

The simplest scheme is obtained by taking φ(h, t, x) = f (t, x), where (III.4b) gives ωφ(h) = 0. The
global discretisation error of this explicit Euler scheme is then given by

|xn − x(tn; t0, x0)| ≤
ω f (h) + LR MRh

LR
· eLRT = O(ω f (h)), (III.6)

11
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︷ ︸︸ ︷

δ
t
n

t
n+1

Figure 5: Visualisation of the subcycling for the averaging: in each time step of step size h, a
further subdivision using a (considerably) smaller step size δ = h/N has to be used.

the last step following from the Hölder continuity of f in t, Eq. (II.1). This result is to be compared
with the usual error estimate of Euler’s method for ODEs, which is of order h (cf. [12]). The error
estimate reflects the close relation between the order of the scheme and the order of the Hölder
continuity of f . Such result is illustrated in [20] for the RODE

dx
dt

= −x + ζt,

where ζt is a stochastic process, path-wise Hölder continuous of order 1
2 . The Euler scheme in this

case is of path-wise order 1
2 .

The authors in [13] have shown how to attain the upper bound |xn − x(tn; t0, x0)|= O(h) for a
family of RODEs with separable vector field, namely

dx
dt

= G(t) + g(t)H(x), (III.7)

where g : [0, T] → R has modulus of continuity ωg(δ) on [0, T], G : [0, T] → Rd has modulus
of continuity ωG(δ) on [0, T], and H : Rd → Rd is at least once continuously differentiable. The
method is called averaged Euler scheme, since the underlying idea is to substitute the function g by
its average

ḡ(1)h,δ (t) =
1
N

N−1

∑
j=0

g(t + jδ), (III.8)

at every interval [t, t + h] with a sampling step size δ = h/N (see Fig. 5).
Carrying out the same averaging procedure for the function G(t), one can rewrite (III.3) as

xn+1 =
1
N

N−1

∑
j=0

{xn + hG(tn + jδ) + hg(tn + jδ)H(xn)} (III.9)

= xn +
1
N

N−1

∑
j=0

hG(tn + jδ) +
H(xn)

N

N−1

∑
j=0

hg(tn + jδ) .

This averaged Euler scheme has a local discretisation error L(h; x, t) given by

L(h; x, t) = O(h(ωg(δ) + ωG(δ))),

which will be of order 2 if δ is chosen in such a way that max{ωg(δ), ωG(δ)} = O(h), thus
attaining a global error of order 1.

The Heun scheme is obtained in an analogous way, this time by defining

φ(h, t, x) =
1
2
{ f (x, t) + f (t + h, x + h f (x, t))}.

12
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Figure 6: Convergence plots for the averaged Euler scheme (a) and the averaged Heun scheme
(b) applied to Ẋt = −Xt + sin(Wt(ω)) (i.e. Eq. (III.1)). The order of strong convergence 1 for the
averaged Euler scheme and of order 2 for the averaged Heun scheme are clearly visible.

Since the modulus of continuity ωφ(h) satisfies ωφ(h) ≤ K1ω f (h) for some constant K1 depending
on T and R, the estimate (III.6) for the global discretisation error still holds.

The averaged Heun scheme for RODEs with separable right-hand side f follows the same
reasoning as above, but the function H is required to be two times continuously differentiable. We
now need the double-averaged function

ḡ(2)h,δ (t) =
2

N2

N−1

∑
i=0

i

∑
j=0

g(t + jδ) =
2

N2

N−1

∑
j=0

(N − j)g(t + jδ), (III.10)

in addition to the single-averaged function above. The resulting scheme is:

xn+1 = xn + hḠ(1)
h,δ (tn) +

h
2

ḡ(1)h,δ (tn)H(xn) (III.11)

+
h
2

ḡ(1)h,δ (tn)H
(

xn + hḠ(2)
h,δ (tn) + hḡ(2)h,δ (tn)H(xn)

)
.

The expression for the local discretisation error for the scheme (III.11) is given by

L(h; x, t) = O((h + h2)(ωg(δ) + ωG(δ)) + h3),

which will be of order 3 if δ is chosen such that max{ωg(δ), ωG(δ)} = O(h2). This ensures the
order 2 of the global discretisation error of the averaged Heun scheme.

Analogously to the illustration of the strong order of convergence 1 for the averaged Euler
scheme, Figure 6 (b) displays the convergence properties of the averaged Heun scheme applied to
Eq. (III.1). Since the Wiener process is Hölder continuous of exponent 1/2, we obtain ωG(h) =
O(h1/2) so δ = h2 for the averaged Euler scheme and δ = h4 for the averaged Heun scheme. This
aspect is discussed in more detail in Sec. III.5.

Figure 6 (a) displays the convergence properties of the averaged Euler scheme applied to
Eq. (III.1).

III.2 Numerical Results 1: Averaged Euler & Heun Schemes

As said, our aim is to study the performance of RODEs and SODEs for a ground motion excitation
of multi-storey buildings via the Kanai-Tajimi earthquake model.

13
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The system of equations for the Kanai-Tajimi model (II.8) has a separable right hand side
f (z, t) = G(t) + g(t)H(z), where z = (z1, z2) ∈ R2, with

G(t) = −Ot

(
1

2ζgωg − 1

)
, H(z) = −

(
z2

2ζgωgz2 − ω2
gz1

)
, g(t) = 1 . (III.12)

Therefore, an implementation of the Averaged Euler and Heun schemes is straightforward, once
a realisation of Ot is given. To this end, recall that the Ornstein-Uhlenbeck process satisfies
dOt = −Otdt + dWt, whose solution is given in explicit form as

Ot+∆t = µOt + σXn1, (III.13)

where µ := e−∆t, σ2
X := (1 − µ2)/2, and n1 denotes a sample value of a normally distributed

random variable N (0, 1), cf. [10]. In this way, Eq. (III.13) allows us to generate sample paths
for Ot. From the relation between the Ornstein-Uhlenbeck process and the Wiener process, we
conclude, as previously, that ωG(h) = O(h1/2), hence the sampling step size is δ = h2 for the
averaged Euler scheme and δ = h4 for the averaged Heun scheme in order to keep the full order
of the corresponding methods.

The linear rate of convergence of the Averaged Euler scheme applied to the Kanai-Tajimi model
is shown in Fig. ?? (a). In the engineering sciences such oscillation models are often simulated by
transferring the problem into the frequency domain. Let D0 denote the amplitude of the (Gaussian)
white noise ξt, x̂t denoting the Fourier Transform of a stochastic process xt. The application of the
Fourier Transform (FT) on a second order differential equation with constant coefficients c, d ∈ R

forced by white noise (like the Kanai-Tajimi model) leads to

ẍt + cẋt + dxt = ξt
FT−→ −ω2 x̂t + ciωx̂t + dx̂t = D0

and thus to
x̂t =

D0

−ω2 + ciω + d
.

The Inverse Fourier Transforms results in the solution process xt. In Fig. ?? (b) the rate of
convergence for this approach is plotted for decreasing time step sizes in the simulation of one
driving white noise ξt. Compared to the application of the averaged Euler scheme, this method has
a worse order of convergence of 0.5 as one would expect when dealing with stochastic differential
equations driven by white noise. On the other hand, due to the huge amount of analytic machinery
utilized, the Fourier method leads to a lower absolute error in this case.

This method is easily extended to coupled oscillator systems like our wire-frame buildings. As
said, this procedure is well-known in the engineering sciences and called “Frequency Response
Analysis”, cf. [5], pp. 851.

Instead of deepening this established method and providing a larger example, we focus on
RODE methods to simulate the effects on mechanical wire-frame structures. At this stage, we could
either perform a complete computation of the multi-storey building subject to the Kanai-Tajimi
excitation with the averaged Euler or Heun schemes as just discussed, or aim for a less expensive
alternative: We can argue that the excitation

üg = −2ζgωgz2 − ω2
gz1 ,

that drives the deterministic dynamics of the multi-storey building, is the sum of two functions.
These functions are the path-wise unique solution of

ż = G(t) + H(z) , z = (z1, z2)
T ,

14
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Figure 7: Convergence plots for the averaged Euler scheme (a) and the Freequency Response
Analysis (b) applied to the Kanai-Tajimi model.

as stated in Eq. (III.12) with a continuous right hand side. Thus, for any realisation of the underly-
ing continuous random driving process as computed in Eq. (III.13), z1 and z2 are continuously
differentiable. Hence, from the numerics point of view, we indeed apply a C1-function ü as excita-
tion for our multi-storey buildings. This justifies the use of (low-order) deterministic methods for
the final simulation aspects.

In particular, these observations naturally lead to a hybrid scheme consisting of the combination
of averaged schemes for the computation of the first transmissions of the stochastic effects through
the Kanai-Tajimi model and deterministic schemes for the computation of the oscillations that
occur in the single storeys of the building.

Fig. ?? shows one simulation run of different 4-storey buildings under stochastic ground-motion
excitation, i.e., Eq. (II.10) with a right-hand side given by the solution of the Kanai-Tajimi model
üg with parameters ζg = 0.64 and ωg = 15.56 [rad/sec]. (From a geological point of view, these
parameters model firm soil conditions.) The Kanai-Tajimi equation is solved with the Averaged
Euler scheme using h = 1/1024, and the system of equations (II.10) is solved using a deterministic
Euler scheme. There, the movement of four different 4-storey buildings under the same stochastic
excitation at times a) t = 0.5, b) t = 1.5, c) t = 2.5, and d) t = 3.5. Building 1 (leftmost) is a
“normal” 4-storey building with k1 = . . . = k4 = 25, c1 = . . . = c4 = 10. Building 2 has the same
parameters as building 1 except of c1 = . . . = c4 = 40. Building 3 has the same parameters as
building 1 but with a smaller value of k1 = 2.5. Building 4 (rightmost) is L-shaped with the same
parameters as building 1.

Of course, as we noted, the (deterministic) explicit Euler method is consistent with the C1

excitation ü we expose the ground floor of our building. To take full advantage of higher-order
deterministic schemes, on the other hand, a Ck, k ≥ 2 excitation would be preferable. For k = 2
such a ground excitation is gained by applying the Clough-Penzien earthquake model, cf. [7],
instead of the Kanai-Tajimi model. Interestingly, when inspecting the final results given in Fig. 9
we see that a smoothing of the initial irregular stochastic impacts occurs through the coupled
oscillator equations (i.e., a well known filtering phenomenon). Hence, for any additional oscillator
equation or storey of the building the smoothness of the driving excitation for the next storey
increases and the potential of higher-order (deterministic) methods begins thus to work in our
advantage.
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üg = -5.71
(a)

üg = 5.52
(b)

üg = 5.26
(c)

üg = -0.03
(d)

Figure 8: Movement of four different 4-storey buildings under the same stochastic excitation
at times a) t = 0.5, b) t = 1.5, c) t = 2.5, and d) t = 3.5. (See the text for more details on the
characteristics of the buildings.)
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III.3 Higher Order Schemes through Implicit Taylor-like Expansions

An alternative approach to obtain explicit schemes of type (III.3) exploits the smoothness of the
function f in (II.2) with respect to its variables Xt and ω. The resulting K-RODE Taylor schemes
were presented by Kloeden and Jentzen in 2007 ([24]; see also [20]), to which the reader is referred
for a more detailed discussion.

Let us consider again the initial value problem

dx
dt

= Fω(t, x) := f (ω(t), x), x(t0) = x0, (III.14)

for ω ∈ Ω.
We wish to carry out the Taylor expansion of the function f with respect to ω and x, for which

we consider the multi-index α = (α1, α2) ∈ N2
0. Its magnitude is given by |α| := α1 + α2, which

may take a weight γ ∈ (0, 1] such that |α|γ := γα1 + α2. Likewise, for each K ∈ R+ with K ≥ |α|γ,
define |α|Kλ := K − |α|λ. Also, let α! := α1!α2!. Finally, let fα := (∂1)

α1(∂2)
α2 f , with f0 = f .

The k-th order Taylor expansion of f is then given by

f (ω(s), x(s)) = ∑
|α|≤k

fα(ω̂, x̂)
α!

(∆ωs)
α1(∆xs)

α2 + Rk+1(s), (III.15)

with ∆ωs := ω(s)− ω̂, where ω̂ := ω(t̂), and ∆xs := x(s)− x̂, where x̂ := x(t̂) for some t̂ ∈ [t0, T).
The remainder Rk+1 in (III.15) is then given by

Rk+1(s) = ∑
|α|=k+1

1
α!

fα(ω̂ + ξωs ∆ωs, x̂ + ξxs ∆xs)(∆ωs)
α1(∆xs)

α2 , (III.16)

for some ξωs , ξxs ∈ [0, 1]. The Taylor expansion for f is then inserted into the integral form of the
solution of (III.14), namely

x(t) = x̂ +
∫ t

t̂
f (ω(s), x(s))ds, (III.17a)

= x̂ + ∑
|α|≤k

fα(ω̂, x̂)
α!

∫ t

t̂
(∆ωs)

α1(∆xs)
α2ds︸ ︷︷ ︸

=:Tα(t;t̂)

+
∫ t

t̂
Rk+1(s)ds, (III.17b)

= x̂ + ∑
|α|≤k

Tα(t; t̂) +
∫ t

t̂
Rk+1(s)ds. (III.17c)

Even though this expansion is implicit in x(t) (which appears after carrying out the integral inside
Tα(t; t̂)), one can build up explicit higher order schemes in a recursive manner. This is achieved
by approximating the ∆xs terms terms inside Tα using a scheme of one order lower. The way to
obtain such schemes is as follows. Let us truncate Eq. (III.17) by ignoring the remainder, and set
t → t̂ + h. We have

x(t̂ + h) ≈ x(t̂) + ∑
|α|≤k

fα(ω̂, x̂)
α!

∫ t̂+h

t̂
(∆ωs)

α1(∆xs)
α2ds. (III.18)

It is now possible to derive the corresponding numerical scheme of order K ∈ R+, given by the
approximated solution yK,h

n , defined for the sets of multi-indices defined by

AK := {α = (α1, α2) ∈ N2
0 : |α|θ = θα1 + α2 < K}. (III.19)
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The AK-RODE-Taylor scheme is then given by

yK,h
n+1 := yK,h

n + ∑
A

N(K)
α (tn+1, tn, yK,h

n ), (III.20)

where

N(K)
α (t̂ + h, t̂, ŷ) :=

1
α!

fα(ω̂, ŷ)
∫ t̂+h

t̂
(∆ωs)

α1

(
∆y

(|α|Kθ )
∆s (t̂, ŷ)

)α2

ds, (III.21a)

∆y(`)h (t̂, ŷ) := ∑
|α|θ<`

N(`)
α (t̂ + h, t̂, ŷ), (III.21b)

and ∆s = s − t̂. In the notation of Eq. (III.3), this family of schemes has the increment function

φ(K)(h, t̂, ŷ) :=
1
h ∑

A
N(K)

α (t̂ + h, t̂, ŷ). (III.22)

Eqs. (III.21a)–(III.21b) reflect the recursivity of the scheme (III.20), since the term ∆y
(|α|Kθ )
∆s is of

order |α|Kθ = K − |α|θ < K. The weight θ is taken to be the supremum of the Hölder coefficients of
the sample paths derived from the noise process of the RODE [20]. Therefore, two cases should be
distinguished:

A) The Hölder continuity holds for the supremum θ;

B) The Hölder continuity does not hold for the supremum θ.

This distinction allows to establish an expression for the local discretisation error of the AK-RODE-
Taylor schemes, defined at the initial step y(K,h)

1 (t̂, ŷ) as

L(K)
h (t̂, ŷ) := |x(t̂ + h, t̂, ŷ)− y(K,h)

1 (t̂, ŷ)|. (III.23)

Now, define R̃0 := 0 and, for K > 0,

R̃K := sup
0<L≤K

max
(h,t,x)∈

[0,1]×[t0,T]×[−R,R]

|φ(L)(h, t, x)|.

Finally, let

k = kK :=
⌊

K
θ

⌋
, RK := max{R̃K, ‖ f ‖k+1}.

Under these considerations, the following theorem holds.

Theorem 4. The local discretisation error for a RODE-Taylor scheme in case A satisfies∣∣∣L(K)
h (t̂, x̂)

∣∣∣ ≤ CKhK+1, (III.24)

for each 0 ≤ h ≤ 1, where
CK := (exp(‖ω‖θ + 2RK))

K+1.

In case B, it satisfies ∣∣∣L(K)
h (t̂, x̂)

∣∣∣ ≤ Cε
KhK+1−ε, (III.25)

for ε > 0 arbitrarily small, where

Cε
K := (exp(‖ω‖γε + 2RK))

K+1, γε := θ − ε

(k + 1)2 .
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Proof. The proof is given in [24].

Moreover, the RODE-Taylor schemes converge for each K > 0, and the global error behaves as
in the ODE case, i.e. it is one order lower than the local error (of order K for case A, and K − ε for
case B) [19], [24].

III.4 Numerical Results 2: K-RODE Taylor Schemes

Implementing higher order K-RODE Taylor schemes is a more demanding task, due to its inherent
recursiveness. Nevertheless, it turns out that the particular form of Eq. (II.8) simplifies the work,
such that, for moderate K, the explicit form of the scheme can be obtained. Take, for instance,
K = 1.0. The numerical scheme that results from Eq. (III.20) is

y1.0,h
n+1 = y1.0,h

n + h f (Ot, z) + f(1,0)(Ot, z)
∫ tn+1

tn
∆Osds,

which resembles the Euler method with an additional “correction” term. As a final example, one
can verify that, choosing K = 3.0 for our right-hand side f (Ot, z), the corresponding RODE Taylor
scheme yields

y(3),hn+1 = y(3),hn + h f + f(0,1) f
h2

2
+

h3

6
f 2
(0,1) f + f(1,0)

∫ tn+1

tn
∆Osds (III.26)

+ f(0,1) f(1,0)

∫ tn+1

tn

∫ s

tn
∆Ovdvds + f 2

(0,1) f(1,0)

∫ tn+1

tn

∫ s

tn

∫ v

tn
∆Owdwdvds,

where f(0,1)(Ot, z) corresponds to the Jacobian of f , since z ∈ R2. Figures 9(a)-(b) show the
resulting motion of two independent runs of the normal 4-storey building depicted in Fig. 4(a)
using the 3.0-RODE Taylor scheme for the Kanai-Tajimi model with a step size h = 1/32. The eight-
dimensional equation (II.10) (four positions and four velocities) was solved using a deterministic
Runge-Kutta 4 scheme, with all spring constants k1 = . . . = k4 = 15 and all damping constants
c1 = . . . = c4 = 5.
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Figure 9: A normal 4-storey building undergoes two different simulations of ground-motion
excitation. Depicted are the ground-motion acceleration üg and the resulting displacement of the
four stories of the building as functions of time.

Remark: Numerical Computation of Multiple Integrals in the RODE Taylor Scheme
In (III.26), multiple integrals of the form∫ tn+1

tn

∫ s

tn
∆Ovdvds and

∫ tn+1

tn

∫ s

tn

∫ v

tn
∆Owdwdvds

appear. For the numerical quadrature of these terms, a nested scheme of one-dimensional
quadrature rules could be used, but this approach can be overcome by reformulating the multiple
integrals as a single one to save computational costs.

For the sake of simplicity, we denote the integrand ∆Ov as f (v) in the following. It is easy to
show (see Appendix) that a (d + 1)-dimensional integration over a one-dimensional function f (z)
with particular integration limits relevant in our context can be transformed in the following way:∫ tn+1

tn

∫ xd

tn

∫ xd−1

tn
· · ·

∫ x1

tn
f (z)dzdx1 · · ·dxd =

∫ tn+1

tn

1
d!
(tn+1 − z)d f (z)dz. (III.27)

Numerically, we can approximate Eq. (III.27) with a low-order numerical scheme in the
remaining direction. A higher-order quadrature rule is not useful since the integrand involves
f , e.g. an Ornstein-Uhlenbeck process, which is only continuous in general. We tested Riemann
sums as well as trapezoidal sums. Both numerical integration schemes involve the same amount
of computational work and do not differ in the resulting approximation errors. For Riemann sums,
the numerical approximation has the following form,∫ tn+1

tn

1
d!
(tn+1 − z)d f (z)dz ≈ δ

m

∑
j=1

1
d!
(tn+1 − zj)

d f (zj) , (III.28)

where zj := tn + jδ, δ = h/m, and h = tn+1 − tn. Therefore, m has to be chosen large enough such
that the order of the numerical integral coincides with the order of the K-RODE Taylor scheme.
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This way, the multiple integrals are reduced to simple, one-dimensional integrals. This is useful
since K-RODE Taylor schemes require the evaluation of multi-dimensional integrals of powers of
the stochastic process (e.g. f (z) = (∆Oz)β).

III.5 Final Remarks on Explicit RODE Methods

The two families of schemes presented so far (averaged schemes and K-RODE Taylor schemes)
might appear very different in essence, but their numerical implementation reflects various simila-
rities. Indeed, both require a further subdivision of the chosen timestep h in order to perform the
averaging (Eqs.(III.8),(III.10)) or the evaluation of integrals (e.g. Eq. (III.26)), respectively (in the
end, such integrals may be interpreted as the mean value of the functions up to a multiplicative
constant). The choice of this smaller step size δ = h/N (resp. h/m) is as crucial to the order of the
scheme as the choice of h. In the examples we have presented, in order to achieve an absolute error
of order O(10−4), one could use an averaged Euler method with h = 10−4 and δ = 10−8, or an
averaged Heun scheme with h = 10−2 and δ = 10−8, or even more, a deterministic (non-averaged)
Euler scheme with h = 10−8 (since it will be of order O(h1/2)). Finally, a 3rd order RODE Taylor
scheme would require each integral from tn to tn+1 to be calculated with δ = h3 · h (order 3 plus
performing N such integrals). So, in the end, all four schemes would require the same degree
of refinement, namely, 10−8. The authors in [13] clarify that it is the ease of computation of the
averages (resp. Riemann sums) as well as the stability of the schemes that makes it preferable to
use higher order methods. Likewise, since higher order methods allow us to choose larger h steps,
one requires less evaluations of the right hand side vector field f and its derivatives.

Next, we study the key differences between these algorithms for the simulation of random
ordinary differential equations and their counterparts for stochastic ordinary differential equations

IV Explicit Numerical Schemes for Stochastic Differential Equa-
tions

The numerical theory and simulation of strong solutions of stochastic (ordinary) differential
equations is at a very mature level, see [26], [14]. Low order explicit schemes like the Euler-
Maruyama or the Milstein method simply belong to the standard tool repertoire of every researcher
in the field.

By the order of a numeric scheme we mean, in the context of SDEs, its strong order of
convergence as stated in [26], p. 323. Specifically, we say that a discrete time discretization Yδ with
maximum step size δ converges (strongly) to X with order γ at time T if there exists a positive
constant C, which does not depend on δ, and a δ0 > 0 such that

E
(∣∣∣Xt − Yδ(T)

∣∣∣) ≤ Cδγ ,

for each δ ∈ (0, δ0).

IV.1 The Euler-Maruyama & Milstein Schemes for Stochastic Differential
Equations

In situations where the paths of the stochastic differential equations are unique in the above
mentioned sense, it is illustrative to plot them numerically, as we do throughout this article.
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The simplest numerical procedure is the Euler-Maruyama schema or approximation; the stochastic
analogue of Euler’s method for deterministic ordinary differential equations.

Consider the one-dimensional stochastic process Xt = {Xt : t ∈ [t0, T]} satisfying the scalar Itô
stochastic differential equation

dXt = a(Xt, t)dt + b(Xt, t)dWt

on t0 ≤ t ≤ T with the initial condition Xt0 = X0. For a given equidistant discretisation3

t0 < t1 < · · · < tn < tn+1 < · · · < tN = T of the time interval [t0, T], the Euler-Maruyama
approximation is a continuous stochastic process Yt = {Y(t) : t ∈ [t0, T]} satisfying the iterative
scheme

Yn+1 = Yn + a(Yn, tn)∆t + b(Yn, tn)∆Wt , (IV.1)

for n = 0, 1, 2, . . . , N − 1, where Y0 = X0,

∆t = tn+1 − tn

is the length of the time discretisation subinterval [tn, tn+1] and

∆Wt = Wtn+1 − Wtn

is the N (0, ∆t)-distributed increment of the Wiener process on [tn, tn+1]. Yn is the evaluation of Yt
at the point tn, i.e., Yn = Y(tn).

This one-dimensional procedure can easily be extended to higher dimensions and hence be
applied to simulate the solutions of our multi-dimensional problems. Figure 10(a) shows the
convergence properties of the Euler-Maruyama scheme applied to Example 1 for t ∈ [0, 1]. As
discussed in [26], pp. 341, since the additive diffusive term b(Xt, t) = (0, 1)T does not depend on
Xt, the scheme achieves a strong order of 1.0 (instead of the usual 0.5). The appropriate measure
of error is given by

ε̂ =
1
N

N

∑
k=1

|XT,k − YT,k|,

i.e., the mean over N independent runs of the difference of the Euler-Maruyama scheme YT,k and
the exact solution XT,k at time t = T. Figure 10(a) was generated with h = 2−1, . . . , 2−10, running
N = 25 simulations for each time step.

In one dimension, the Euler-Maruyama approximation is easily extended to the Milstein scheme
by adding the term

1
2 b(x, t)bx(x, t)

(
(∆Wt)

2 − ∆t
)

which results in the iterative scheme

Yn+1 = Yn + a(Yn, tn)∆t + b(Yn, tn)∆Wt

+ 1
2 b(x, t)bx(x, t)

(
(∆Wt)

2 − ∆t
)

,

for n = 0, 1, 2, . . . , N − 1 and Y0 = X0. This one-dimensional procedure can easily be extended to
higher dimensions and in particular represents a (strong) order one of convergence method for
stochastic differential equations.

3 The choice of an equidistant discretisation leads to a simplification of the notation, but is by no means crucial for the
setup of the approximation methods discussed.
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Figure 10: Application of the Euler-Maruyama method to Example 1 with additive noise (a) and
application of the Euler-Maruyama as well as of the Milstein method to the geometric Brownian
motion with multiplicative noise (b).

Of course, Example 1 would not be a good test case for the Milstein scheme as, due to the very
nature of additive noise, Milstein and the Euler-Maruyama approximation would just be identical.
Therefore, Figure 10(b) displays the convergence results of the Milstein-approximation for the
famous geometric Brownian motion

dXt = aXtdt + bXtdWt .

and compares them to the convergence of the Euler-Maruyama approximation for the same
problem. Recall that the exact solution is given by

Xt = X0 exp
((

a − b2

2

)
t + bWt

)
. (IV.2)

For the simulation we choose the unstable case a = 2 and b = 1 where the paths of the geometric
Brownian motion tend to infinity instead of converging to zero, with X0 = 0.1. Again, 25
simulations were ran for each h = 2−1, . . . , 2−15.

Finally, Figure 11 shows, in analogy to Figure 9, the application of the Euler-Maruyama
approximation to an L-shaped 4-storey building.
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Figure 11: An L-shaped 4-storey building undergoes a simulation of ground-motion excitation
calculated with the Euler-Maruyama approximation, using ∆t = 0.005. The ground-motion
acceleration üg and the resulting displacement of the various stories of the building are visualised
as functions of time. An additional spring interaction among horizontal neighbours is considered.

IV.2 Multiple Wiener Integrals – Fourier Approach

In general, [26] is acknowledged as the standard reference for SODE numerical schemes. There,
higher-order Taylor methods are systematically developed. Apart from the increasing complexity
of these schemes, their traditional drawback is the evaluation of multiple Wiener integrals of the
type ∫ t

0

∫ s3

0

∫ s2

0
f (s1)ds1dW(2)

s2 dW(1)
s3 or

∫ t

0

∫ s3

0

∫ s2

0
f (s1)dW(3)

s1 dW(2)
s2 dW(1)

s3 ,

with an appropriate stochastic process f and independent scalar Wiener processes W(3)
s1 , W(2)

s2 and

W(1)
s3 .

Traditionally, the efficient numerical evaluation of such multiple stochastic integrals is chal-
lenging as we will see next, cf. [25] and [26], pp. 198, or [11]. Of course, a brute-force approach
is always possible though computationally expensive; therefore, a more clever approach is the
following one that utilizes the properties of Fourier series representations (cf. [26], pp. 198): Let
W(i)

t and W(j)
t with i 6= j be two independent Wiener processes. Then, the starting point for the

computation of, say,

I(i, j) =
∫ tn+1

tn

∫ s1

tn
dW(i)

s2 dW(j)
s1 (IV.3)

is the Brownian bridge process

W(i)
t − t

s
W(i)

s , for 0 ≤ t ≤ s := ∆t .
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The Fourier series associated to it reads as

W(i)
t − t

s
W(i)

s = 1
2 ai,0 +

∞

∑ k = 1
(

ai,k cos
(

2πkt
s

)
+ bi,k sin

(
2πkt

s

))
,

which is equivalent to

W(i)
t =

1
s

W(i)
s t + 1

2 ai,0 +
∞

∑
k=1

(
ai,k cos

(
2πkt

s

)
+ bi,k sin

(
2πkt

s

))
, (IV.4)

where ai,0 = −2 ∑∞
k=0 ai,k by setting t = 0 and the coefficients bi,j and ai,j are N (0, (2π2k2)s)-distributed

pairwise independent random variables.
As outlined in [25], this Fourier series can be used to successively derive a hierarchy of multiple

stochastic integrals. In particular, it can be shown by first integrating (IV.4) with respect to t over
[0, s] and then with respect to W(j)

t over [0, s], that the following relation is true:

I(i, j) = 1
2 W(i)

s W(j)
s − 1

2

(
aj,0W(i)

s − ai,0W(j)
s

)
+ sAi,j ,

where

Ai,j = π
s

∞

∑
k=1

k
(

ai,kbj,k − aj,kbi,k

)
.

A truncation method is required in order to computationally handle these infinite series. One
observes first, that

ξi := 1√
s W(i)

s , ξi,k :=
√

2
s πkai,k , ηi,k :=

√
2
s πkbi,k

are independent normally distributed random variables that can be conveniently sampled prior
to computation. Let p ∈ N denote a truncation index such that I(i, j) ≈ I(i, j)p, where the
approximation I(i, j)p of I(i, j) is given as

I(i, j)p = 1
2 sξiξ j −

√
s

2

(
ap

j,0ξi − ap
i,0ξ j

)
+ sAp

i,j ,

with

Ap
i,j = 1

2π

p

∑
k=1

1
k

(
ξi,kηj,k − ξ j,kηi,k

)
and ap

i,0 = −
√

2s
π

p

∑
k=1

1
k ξi,k .

The mean-square error of this approximation is discussed in [25], and in order to achieve, for
instance, a strong order of convergence one for the Milstein scheme with this approximation of
the multiple stochastic integrals [11] suggests that p should be chosen of order O(s−1). A method
to reduce the number p is proposed in [36].

A very efficient and pragmatic alternative to the extremely cumbersome Fourier series ansatz
for the simulation of multiple stochastic integrals in a higher-order scheme is to apply a lower-
order method, like the Euler-Mayurama scheme, on each sub-interval with a very fine step size, cf.
[23].

IV.3 Multiple Wiener Integrals – Multi-dimensional Approach

Following our considerations on multiple Ornstein-Uhlenbeck integrals (see Remark at the end of
Sec. III.4 and Appendix), multiple Wiener integrals of the form (IV.3) can also be formulated as
higher-dimensional integrals. The major difference is now the independence of the individual
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Figure 12: Interpreting the double integration in time over v and s (v, s ∈ [tn, tn+1]) as a 2D
spatial integration on a triangular domain. Along one axis direction, the orthogonal W always has
constant values (e.g., constant Wv but different Ws for the two blue vertices).

Wiener processes which does not allow for the analytical reduction of the multiplicity of integrals
into a polynomial factor in the integrand any more. In Fig. 12, this fact is visualised for two Wiener
processes W(s) and W(v): For integrating an overall coarse time step ∆tn := tn+1 − tn, the two red
locations contain identical values of W(s) in the integrand but different values of W(v), whereas
the blue locations differ in values for W(s) with identical values of W(v).

However, rewriting multiple Wiener integrals as multi-dimensional ones motivates another
approach: Applying quadrature rules in the higher-dimensional space as approximations and
reformulating those in a computationally efficient manner. Consider a discretisation of the multiple
Wiener integrals for the example (IV.3) of the form

I(i, j) =
∫ tn+1

tn

∫ s1

tn
f (v2)dW(i)

v2 dW(j)
v1 (IV.5)

≈
Mj

∑
j=1

 Mi

∑
i=1

f (vi)
(

W(i)
vi+1 − W(i)

vi

)
︸ ︷︷ ︸

=:∆iW

(
W(j)

vj+1 − W(j)
vj+1

)
︸ ︷︷ ︸

=:∆jW

, (IV.6)

where Mi and Mj represent the number of subintervals used for the discretisation of the two
axis i, j of the two different processes, respectively. For the sake of simplicity in the notation, we
assume identical subintervals (Mi ≡ Mj =: M) in the following. The mesh sizes for the midpoint
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rule are denoted by ∆iW and ∆jW, respectively. We rewrite the sums in (IV.6) as

I(i, j) ≈
M

∑
j=1

∆jW · [ f (v1) · ∆i=1W + f (v2) · ∆i=2W + . . . + f (vM) · ∆i=MW]

= f (v1) · ∆i=1W︸ ︷︷ ︸
=:A1

·∆j=1W + ( f (v1) · ∆i=1W + f (v2) · ∆i=2W)︸ ︷︷ ︸
=:A2

·∆j=2W

+ ( f (v1) · ∆i=1W + f (v2) · ∆i=2W + f (v3) · ∆i=3W)︸ ︷︷ ︸
=:A3

·∆j=3W + . . . (IV.7)

The key observation now is that the mesh sizes as factors of the summands in (IV.7) are constant
on axis-aligned straight lines in one of the two directions i and j, respectively (cf. Fig. 12). Hence,
a single computation of those mesh sizes is sufficient for the multi-dimensional integration;
combined with storing the intermediate sums in a variable throughout the calculations4, we only
need a single, one-dimensional loop of length M in order to compute the whole two-dimensional
quadrature rule on the triangle-shaped domain.

The mulit-dimensional approach directly translates to higher-order scenarios (in the sense of
higher multiplicity of the integrals) with analogue formulas.

The multi-dimensional approach has, from our point of view, three nice features. First, its
direct relation to classical quadrature schemes provides means to choose suitable mesh sizes
(i.e. suitable values for M) directly compared to a bit more cryptic representation of p in the usual
approach. Second, It is very straightforward to implement. Third, the computational costs—while
being in the same order of complexity—are lower since only additions and multiplications have
to be performed (no fractions or square roots etc.). For a huge number of evaluations such as
in a long-term or high-accuracy time integration (where a large number of coarse time steps
∆t := tn+1 − tn have to be calculated), these low costs may represent a non-negligible advantage.

V Résumé

Effective and efficient numerical methods for stochastic and random (ordinary) differential equa-
tions play an important role in the sciences, in engineering and computational finance.

Here, from an applied point of view the key features of the rather new methods for RODEs
are discussed with a focus on the averaged Euler and Heun as well as an implicit 3.0-RODE
Taylor method. Details for their successful implementation in multi-dimensional applications
were presented together with an outline of their advantages and drawbacks are given. Wherever
possible we compared them with the corresponding schemes for SODEs to highlight the links
between the underlying two types of noise driven differential equations.

Beyond this survey-like character, we studied the application of these RODE and SODE methods
on one- and multi-dimensional examples, in particular, the problem of ground-motion-induced
excitation of multi-storey buildings subject to the Kanai-Tajimi earthquake model. Moreover, we
discuss an efficient ansatz for the evaluation of multiple Ornstein-Uhlenbeck integrals as they
occur in higher-order RODE schemas and extend it to the efficient evaluation of multiple Wiener
integrals that are common in higher-order SODE methods.

4This variable will simply add Ai in the ith loop iteration to its former value.
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Appendix: Higher-dimensional integrals of one dimensional
functions

Using induction, it is easy to show that the following holds:∫ tn+1

tn

∫ xd

tn

∫ xd−1

tn
· · ·

∫ x1

tn
f (z)dzdx1 · · ·dxd =

∫ tn+1

tn

1
d!
(tn+1 − z)d f (z)dz . (V.1)

This formula is also known as the Cauchy formula for repeated integration.

Proof. The base case is formulated for d = 1, where changing the order of the integration
allows to formulate the double integral as a single one,∫ tn+1

tn

∫ s

tn
f (v)dvds =

∫ tn+1

tn

∫ tn+1

v
f (v)dsdv =

∫ tn+1

tn
(tn+1 − v) f (v)dv, (V.2)

since the integrand f does not depend on s.

To see that it holds for dimension d + 1, we use the induction assumption (V.1), evaluate it at
tn+1 = xd+1, and integrate both sides from tn to tn+1 w.r.t. xd+1. Hence,∫ tn+1

tn

∫ xd+1

tn

∫ xd

tn
· · ·

∫ x1

tn
f (z)dzdx1 · · ·dxddxd+1 = (V.3)∫ tn+1

tn

∫ xd+1

tn

1
d!
(xd+1 − z)d f (z)dzdxd+1 =∫ tn+1

tn

∫ tn+1

z

1
d!
(xd+1 − z)d f (z)dxd+1dz =

∫ tn+1

tn

[
1

(d + 1)!
(xd+1 − z)(d+1) f (z)

]tn+1

z
dz =∫ tn+1

tn

1
(d + 1)!

(tn+1 − z)(d+1) f (z)dz ,

which shows the assertion.

Note that the base case d = 1 as well as the case d = 2 can also be visualised by interpreting
the multiple integrals over the same axis (time) as a multiple integral in space on a restricted
domain.

In the case of the double integral for d = 1, the idea is quite obvious. Interpreting the two
integration variables v and s as axes in a 2D grid, one needs to integrate constant functions
over the domain as depicted in Fig. 13.

For the triple integral (d = 2), the same idea applies. Interpreting the triple integral in time as
a 3D spatial integral with dimensions s, v, and w, we have to restrict the integration domain
to a simplex (see Fig. 14). We integrate the cross sections on the (s, v)-planes first (i.e. getting
areas of triangles) and then integrate over w:∫ tn+1

tn

∫ s

tn

∫ v

tn
f (w)dwdvds =

∫ tn+1

tn

1
2
(tn+1 − w)2 f (w)dw .
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Figure 13: Interpreting the double integration in time over v and s as a 2D spatial integration on a
triangular domain: The function f (v) is constant w.r.t. s and is integrated over a domain (interval)
which decreases linearly with v.
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Figure 14: Interpreting the triple integration in time as a 3D spatial integration on a simplex
domain: Triangle areas have to be computed which depend decreasingly linearly on the innermost
variable w.
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