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Abstract

The robotics research community envisions a future in which autonomous mobile robots

play an important role in a multitude of real world applications such as personal health

care, autonomous driving, planetary exploration as well as search and rescue operations.

Recent advances in the field of intelligent and autonomous mobile robots have brought

this dream closer, however, significant research challenges still remain in the domain of

perception. The presence of an effective and robust perception pipeline is an essential

requirement for the development of an autonomous mobile robot as it contributes towards

a wide variety of robotic applications such as navigation, localization and exploration.

This thesis contributes in the domain of perception by proposing novel approaches in the

areas of environment representation, simultaneous localization and mapping (SLAM) and

loop closure detection/place recognition. The subdomain titled environment representation

provides the basis for creating a map of the environment by defining the geometric primitive

(such as points, lines or a cubic grid) used to approximate the environment. In contrast,

the subdomain of SLAM devises the algorithm that allows the robot to create maps in

an online, incremental manner based on the geometric primitive chosen for environment

representation. The final aspect of loop closure/place recognition supplies the tools for

recognizing previously visited locations thereby maintaining the consistency and accuracy

of the map over time by reducing the error accumulated by the SLAM algorithm. Hence,

the above highlighted aspects within the domain of perception provide mobile robots with

the capability of generating accurate and consistent maps of the environment in an online,

incremental manner.

This thesis contributes in the domain of environment representation by presenting an

approach that is capable of approximating the environment using a variable resolution grid.

This variable resolution grid is stored in a hierarchy of axis-aligned rectangular cuboids,

which is generated and adapted in an online, incremental fashion. The proposed approach

is flexible in the sense that it allows the user to define the maximum number of children per

node within the tree structure thereby effecting important characteristics such as insertion,

access times as well as the number of nodes required to represent the variable resolution

grid. In addition, the number of grid cells required to approximate the environment are

substantially fewer in comparison to a fixed resolution grid.

Given an environment representation mechanism, another challenging aspect of the per-

ception pipeline is the development of an algorithm that allows the robot to estimate its

own pose as well as to generate an detailed map of the environment in an online, incremen-

tal manner. Hence in context of SLAM, this thesis proposes an approach that augments

geometric models of the environment with a measure of surface reflectivity based on the

intensity observations of the laser scanner. To acquire this measure of surface reflectivity

a generic and simplistic calibration mechanism is presented. Furthermore, this reflectivity

measure is used for simultaneously estimating the robot pose as well as acquiring a re-

flectivity map, i.e. occupancy grid augmented with surface reflectivity information of the

environment.

An important sub-component of the SLAM algorithm is the loop closure/place recog-

nition mechanism. This thesis contributes towards different aspects of appearance based

loop closure detection/place recognition problem i.e. vocabulary generation mechanisms

as well as identifying the influence of active (laser) and passive (cameras) sensors, projec-

tion models and descriptors in the performance of the algorithm. In context of vocabulary
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generation, an online, incremental mechanism for binary vocabulary generation is pre-

sented that allows appearance based loop closure detection at a high recall rate with 100%

precision in comparison to the state-of-the-art algorithms. In addition, this thesis evalu-

ates the role of different types of sensor modalities, projection models and descriptors for

place recognition and furthermore highlights their advantages under challenging lighting

conditions.

In summary, this thesis contributes in the areas of environment representation, SLAM

and appearance based loop closure detection/place recognition within the domain of per-

ception that allow robots to generate accurate maps of the environment in an online, incre-

mental manner. An extensive experimental evaluation is carried out for each contribution

to highlight its characteristics as well as advantages in comparison to the state-of-the-art.

Zusammenfassung

Die Forschung in der Robotik zeigt uns eine Zukunft, in der autonome Roboter im Alltag

eine wichtige Rolle spielen. Beispiele dafür sind der Einsatz von Robotern in der Pflege-

industrie, dem autonomen Fahren, der Planetenerkundung und für Such- und Bergungs-

arbeiten. Neuste Fortschritte im Bereich der intelligenten und mobilen Robotik bringen

uns diesem Zukunftstraum einen Schritt näher. Allerdings stellen sich noch bedeutende

Herausforderungen im Bereich der Wahrnehmung. Eine effektive und zuverlässige Wahr-

nehmung der Umgebung ist eine grundlegende Voraussetzung für die Entwicklung eines

mobilen Roboters, da eine Vielzahl von Anwendungen - wie die Navigation, Lokalisierung

und Exploration - davon abhängt. Diese Dissertation bereichert das Forschungsgebiet der

Wahrnehmung durch neue Ansätze in den Bereichen Umgebungsmodellierung, Simultane

Lokalisierung und Kartierung (SLAM), sowie Schleifenschluss (Loop Closure) bzw. Orts-

wiedererkennung (Place Recognition). Die Umgebungsmodellierung stellt die Grundlage

für das Erstellen einer Karte dar. Dabei wird die Umgebung zumeist durch geometri-

sche Primitive - wie zum Beispiel Punkte, Linien oder kubische Grids - approximiert. Der

Teilbereich SLAM beschäftigt sich dagegen mit den Algorithmen, welche es einem mobi-

len Roboter ermöglichen eine Karte aus den jeweils gewählten geometrischen Primitiven

online und inkrementell aufzubauen. Der zuletzt genannte Bereich Schleifenschluss bzw.

Ortswiedererkennung befasst sich mit dem Wiedererkennen von zuvor besuchten Stellen.

Dadurch wird die Einheitlichkeit und Genauigkeit der Karten über den gesamten Zeitbe-

reich aufrecht gehalten und eventuell auftretende Fehler der SLAM Funktion reduziert.

Folglich ermöglicht eine Kombination der drei oben genannten Bereiche es einem mobilen

Roboter eine genaue und einheitliche Karte der Umgebung online und inkrementell zu

erstellen.

Diese Dissertation erweitert den Stand der Forschung im Bereich der Umgebungsmo-

dellierung um eine Möglichkeit die Umgebung mit Hilfe eines Grids zu approximieren,

dessen Rasterauflösung variabel ist. Dieser variable Grid ist hierarchisch aus axial zuein-

ander ausgerichteten Quadern aufgebaut. Der Grid wird online generiert und zur Laufzeit

inkrementell angepasst. Die Flexibilität des Ansatzes ist gewährleistet, indem der Benut-

zer selbst die maximale Anzahl an Kindknoten innerhalb der Baumstruktur wählen kann.

Diese beeinflusst direkt die Zeiten, die nötige sind, um auf einen Knoten zuzugreifen bzw.

einen neunen Knoten einzufügen. Außerdem bestimmt sie die Anzahl der Knoten, die dazu
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nötig sind die Umgebung darzustellen. Diese ist bei dem variablen Grid erheblich geringer

als bei einem Grid mit konstanter Auflösung.

Für den Fall, dass schon ein Mechanismus zur Umgebungsmodellierung existiert, stellt

sich eine neue Herausforderung für einen mobilen Roboter: das Schätzen seiner eigenen

Position und das inkrementelle Erstellen einer detaillierten Karte der Umgebung zur Lauf-

zeit. Diese Arbeit ergänzt die Forschung im Bereich SLAM durch einen Ansatz, der die

Umgebung nicht nur mit geometrisch Modellen abbildet, sondern zusätzlich das Reflexi-

onsvermögen der Oberflächen in der Umgebung mit einbezieht. Das Reflexionsvermögen

basiert dabei auf den Intensitätsmessungen eines Laserscanners. Innerhalb dieser Arbeit

wird eine generische und einfache Kalibrierungsmethode vorgestellte, die es ermöglicht

das Reflexionsvermögen zu erfassen. Zudem wird gezeigt, wie die Messung des Reflexions-

vermögens verwendet werden kann, um gleichzeitig die Position eines Roboters zu schätzen

sowie eine auf dem Reflexionsvermögen basierende Karte aufzubauen. Diese Karte ent-

spricht einem Besetzungsgitter, das zusätzlich Informationen über das Reflexionsvermögen

der Oberflächen enthält.

Eine weitere, wichtige Maßnahme, die den SLAM Algorithmus verbessert, ist der Einsatz

von Methoden für das Wiedererkennen zuvor besuchter Orte. Diese Dissertation erweitert

bisherige Methoden durch folgende Aspekte: einen Ansatz zur Erzeugung von Vokabeln;

und eine Untersuchung der Einflüsse von aktiven Sensoren (Laser), passiven Sensoren (Ka-

meras), Projektionsmodellen und Deskriptoren auf die Performance des Algorithmus. Eine

online laufende Methode zur Erzeugung eines binären Vokabulars wird vorgestellt, welche

– im Gegensatz zu bisherigen Methoden – eine Detektion von Schleifenschlüssen mit einer

100% Genauigkeit (Precision) bei hoher Trefferquote (Recall) ermöglicht. Darüberhinaus

wird in dieser Dissertation die Rolle von unterschiedlichen Sensor-Modalitäten, Projekti-

onsmodellen und Deskriptoren für die Ortswiedererkennung evaluiert und deren jeweiligen

Vorteile bei schwierigen Lichtverhältnissen herausgearbeitet.

Zusammenfassend lässt sich sagen, dass diese Dissertation die bisherige Wahrnehmungs-

forschung in den Bereichen Umgebungsmodellierung, SLAM und Detektion von Schleifen-

schlüssen bzw. Ortswiedererkennung erweitert. Dadurch wird es einem Roboter ermöglicht

eine genaue Karte der Umgebung in einer inkrementellen und online lauffähigen Weise

zu erstellen. Alle neuen Ansätze wurden umfangreich experimentell evaluiert, um deren

Eigenschaften und deren Vorteile gegenüber bisherigen Ansätzen aufzuzeigen.
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1 Introduction

The last few decades have seen a significant amount of research in the field of Robotics,

specifically intelligent and autonomous mobile robots [25, 97, 167, 183]. The main rea-

son for this surge in interest has been the expected utility and application of the robotics

technology in the domain of personal human health care, autonomous driving, search

and rescue operations in disaster scenarios as well as space exploration. The focus of

research within these domains differ depending on the application scenario e.g. in con-

text of personal/assistive robots, the focal point of the research work is on social accep-

tance [11, 23, 34] of robots in human populated environments. In addition, the research

within the robotics community has also focused on providing robots with robust percep-

tion, navigation and long term autonomy capabilities [5, 96, 209] to allow them to operate

in dynamic, real world urban scenarios. One specific application of this is the Interactive

Urban Robot (IURO), which aims to fill knowledge gaps via human interaction as shown in

Figure 1.1 and furthermore utilize this information for achieving its goal of autonomously

navigating to a certain point within the city without any map of the environment. An-

other interesting application of outdoor urban robotics is autonomous driving in which

the Google self-driving car [1] is a well known example. In addition, different automotive

companies such as BMW, Mercedes, Bosch, Uber and Tesla have also been investing heav-

ily in research and development of driving assistance systems and fully autonomous cars.

Another application of robotics technology that can have a major impact in the near future

is search and rescue robots for natural disasters [91, 128, 130, 131]. A recent example of

this is the Fukushima Daiichi nuclear disaster, where the main purpose of using robots

was to reduce the risk of additional human casualties. In addition, autonomous robots

are playing an important role in helping humans explore the frontiers of space such as the

NASA Mars rover [67, 173] which is being used for planetary exploration. The examples

highlighted above provide a brief glimpse into the recent research and development efforts

in different applications of intelligent and autonomous mobile robots.

The application scenarios for mobile robots are quite diverse, however the core func-

tionalities required to impart autonomous behaviour are the same across all applications.

These functionalities include the capacity of perceiving the environment, planning and

furthermore performing an action based on the state of the environment. The basic

perception-planning-action cycle is shown in Figure 1.2(a). A typical mobile robot can

have a wide range of sensors e.g. sonars, laser scanners, cameras etc. that allow it to

sense the current state of the environment and furthermore it can use different perception

algorithms to extract meaningful information from these sensor observations. This thesis

focuses on different aspects in the domain of perception, such as environment represen-

tation, Simultaneous Localization and Mapping (SLAM) and loop closure detection/place

recognition, as shown in Figure 1.2(b) using a Wenn diagram, that allow robots to generate

consistent and accurate maps of the environment .
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1 Introduction

(a) Interactive Urban Robot (IURO) (b) IURO interacting with pedestrians

Fig. 1.1: Equipping mobile robots with capabilities and functionalities that allow them to op-
erate in real world outdoor urban environments.

Environment

Perception

Planning

Action

(a) Perception-Planning-Action cycle

Perception

Environment
Representation

Simultaneous
Localization
and Mapping

Loop closure/Place
recognition

(b) Perception

Fig. 1.2: a) The commonly used perception-planning-action cycle in the field of Robotics. b)
The focus of this thesis i.e. environment representation, SLAM and Loop closure
detection/place recognition highlighted as a Wenn diagram. The above mentioned
research aspects are important for generating accurate and consistent maps of the
environment, which is an essential requirement for a large number of applications in
context of intelligent and autonomous mobile robots.

1.1 Problem Definitions & Challenges

An accurate metric or topological map of the environment is an essential requirement

for a wide variety of robotic applications. The process through which a robot generates

a consistent and accurate map of the environment requires certain questions need to be

asked of which the following few are discussed in this thesis:

• Which geometric primitive should be used by the robot to internally approximate

the environment?
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• How can a mobile robot generate an detailed map of the environment based on

sensor observations in an online, incremental fashion given a geometric primitive for

environment representation?

• How should the robot maintain consistency of the map after revisiting a location?

The questions highlighted above inquire about the underlying concepts discussed in

this thesis. The first questions is linked to the environment representation and inquires

about the geometric primitive that should be used by a robot to approximate the complex

external environment. The second question builds upon the first question by inquiring

that given a specific mechanism for environment representation, how can the robot build

an accurate and consistent map in an online, incremental manner. The algorithm that

allows a robot to estimate its own pose as well as build an map of the environment is

titled Simultaneous Localization and Mapping (SLAM) or Self Localization and Mapping

and it has been the subject of intense research within the field of robotics in the last few

decades. The final question builds upon the first two questions and focuses on maintaining

the consistency of a map over time during SLAM. One specific aspect of maintaining map

consistency is titled the loop closure problem in which the robot needs to determine if it is

revisiting a location and furthermore use this information to reduce the uncertainty over

its pose.

In summary, this thesis focuses on the following aspects in the domain of perception:

• Environment representation

• Simultaneous Localization and Mapping (SLAM)

• Place recognition/Loop closure detection

as shown in Figure 1.2(b), which are tightly coupled during the map creation process and

play a fundamental role in providing robots the capability of generating accurate maps

in an online, incremental fashion. The following subsections present an overview of the

highlighted aspects.

1.1.1 Environment Representation

The environment representation mechanism is effectively a geometric primitive that allows

the robot to generate an approximation of the external environment using sensor obser-

vations. In the computer graphics and robotics community different mechanisms have

been proposed and used in literature e.g. point, surface or grid based representations.

Figure 1.3(b) shows a point cloud representation in which each point represents a sample

from the actual surface generated by the sensor. Figure 1.3(c) shows a grid based environ-

ment representation i.e. occupancy grids, which stores an occupancy probability for each

grid cell. In addition, there exists landmark-based maps which (typically) approximate

the environment using point landmarks. Figure 1.3(a) shows a landmark-based map in

which the point landmarks are shown as yellow dots and correspond to the natural (tree

trunks) and artificial landmarks (reflectors) detected in the environment whereas the robot

trajectory is shown as a yellow line. The most commonly used geometric primitives for

approximating the environment can be categorized as follows:
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(a) Feature-based map with point land-
marks [61, 81] overlayed on an image

(b) Height colored point cloud representation

(c) Grid based representation (10 cm grid cell size) using the Rtree occu-
pancy grid [89, 211] with color information

Fig. 1.3: a,b,c) Commonly used environment representations (point landmarks, pointcloud or
grid based) for generating a map of the environment

• Point based representation (Point clouds and Landmark based maps)

• Surface based representation (Planes, Triangular meshes)

• 2D/3D grid based volumetric representation

The categorization above is performed to simplify the discussion, however in literature

there exists no clear division due to cross coupling between primitives as one environment

representation can be extracted from the others. In general, different algorithms allow

extraction of a surface representation from a grid e.g. marching cubes [103] or point

clouds [8, 85]. In addition there exists no standard naming convention as in robotics
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literature landmark (typically point based approximation) as well as line, plane based

maps are also titled feature based maps.

Point based Representation

The most commonly used point based approximations are landmark and point cloud based

representations for generating maps of the environment. Landmark based representa-

tions [81, 121] extract static, distinguishable and repeatable point observations from the

robot sensor to be able to estimate the robot pose using SLAM as shown in Figure 1.3(a).

In some cases these landmarks correspond to artificial markers (beacons or surfaces with

high reflectivity) [62] which are manually placed in the environments. In contrast, point

clouds 1.3(b) are an accumulation of 2D/3D points that represent samples from the object

surface obtained from the sensor. Point cloud based representations have recently become

quite popular with the advent of the Kinect, Velodyne sensors and are quite frequently

used within robotic applications such as object detection, tracking and semantic labeling.

Surface based Representation

In contrast to point based representations, another approach to represent the environment

is to fit lines or planes to the sensor observations leading to line [154, 207] or plane based

environment maps [148, 196]. These approaches are parametric in nature as they use a

specific model to represent the environment. In addition, there also exists approaches that

take advantage of the orthogonality assumption in structured indoor environment (Man-

hattan world assumption) to place constraints between these fitted models in order to

generate consistent maps of the environment [140]. Another technique that is quite pop-

ular in computer graphics/vision community [53, 54, 117] and has recently been adopted

by the robotics community is the usage of triangular meshes for approximating the envi-

ronment [113].

Grid based Representation

The most commonly used mechanism within the robotics community for generating maps

of environment are grid based representations which discretize the environment into cells

and generate a metric model of the environment. In principle, the grid can be used to store

any attribute of the surface. In the domain of robotics, the most commonly used attribute

is the occupancy probability which defines the probability of a specific grid cell being

occupied or free and these grids are titled occupancy grids. In addition, there exists other

approaches [136, 197] such as the truncated signed distance or the Normal distribution

based representation. The truncated signed distance function (TSDF) is a signed value

defining the distance of the cell to the closest surface. In contrast, the Normal distribution

transform (NDT) [111] approximates the point distribution in each cell using a Normal

distribution and has been used in a variety of robotic tasks such scan matching, occupancy

mapping and loop closure detection.

The particular choice of an environment representation is dependent on the application,

operating conditions (environment structure) as well as the sensor set available to the

robot. In general, occupancy grids are the most commonly used representation as they are
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based on a probabilistic framework, which provides a principled mechanism for dealing with

sensor noise and multi sensor fusion. The environment representation provides the basic

tools for development of a map which is required in a multitude of robotic applications

and essential for the development of an intelligent and autonomous mobile robot.

(a) 2D Grid based representation [64] (b) 3D Grid based representation (only occupied regions)

Fig. 1.4: Grid based environment representations. a) 2D occupancy grid of the publicly avail-
able Intel dataset b) 3D occupancy grid augmented with color information

1.1.2 Simultaneous Localization and Mapping

Once an environment representation mechanism based on a geometric primitive has been

chosen, the next step is to develop an approach that allows the mobile robot to generate

a consistent, accurate map of the environment in an online, incremental manner. In the

domain of robotics, such an approach or algorithm is commonly known as Simultaneous

Localization and Mapping or Self Localization and Mapping (SLAM). The last few decades

have seen a significant amount of research in the domain of SLAM, that allows a robot to

simultaneously estimate its own pose as well as generate a map of the environment [58,

64, 81, 91, 121]. Figure 1.3(a) and Figure 1.4(a) shows a landmark and a 2D occupancy

grid based map generated using a SLAM algorithm.

Within the robotics research community, the SLAM problem is termed as the chicken

and egg problem because a good pose estimate is essential for determining an accurate

map and vice versa. A robust solution to the SLAM problem is considered as the holy

grail in the mobile robotics community as it allows a robot to autonomously generate a

map of the environment which is essential in a wide variety of robotic applications [39].

An important characteristic common to the majority of SLAM algorithms in literature

is their reliance on a probabilistic framework to deal with uncertainties i.e. noise in the

applied control input (motion update) and the sensor observations. In general, SLAM

approaches can be classified into two different categories i.e. filtering or smoothing algo-

rithms. Typical filtering based SLAM approaches are based on landmark or grid based

environment representation and commonly use the extended Kalman [62, 99] or particle

filter [58, 121] to estimate the robot pose as well as the landmark positions. Recently,

smoothing based SLAM approaches have become quite popular as they allow a principled
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mechanism for incorporating loop closure constraints thereby considering previous states in

the estimation process which are forgotten in a filtering based approach due to restrictive

assumptions. The majority of smoothing approaches rely on a graph based representation

and furthermore used nonlinear optimization techniques for estimating the complete robot

trajectory [57, 81, 95]. In literature, graph based SLAM approaches are composed of two

main components: the front-end and the back-end. The front-end deals with raw sensor

data to estimate the robot pose and generates a graph that defines the robot trajectory

by incrementally adding constraints between consecutive robot poses. In addition, the

front-end also generates loop closure constraints i.e. when the robot returns to previously

visited location after a long time interval. Given the consecutive robot pose as well as

the loop closure constraints, the back-end estimates the posterior distribution over the

complete robot trajectory.

As mentioned earlier, a key component of the SLAM front-end is the transformation

estimation process between consecutive robot poses. In literature there exist simple in-

cremental pose estimation techniques titled scan matching approaches which are sufficient

for generating a map of the environment in specific cases when the robot does not en-

counter loop closure constraints and the mapped environment is small as discussed in

different papers [72, 90]. The most commonly used approach for scan matching is the

typical Iterative Closest Point (ICP) [9] algorithm. Different variants of the standard ICP

algorithm [142, 157] have been proposed in literature that improve upon different aspects

of the original algorithm such as computational complexity by performing nearest neigh-

bor assignment using a Kdtree [56, 142]. In [107] different outlier rejection mechanisms for

correspondence estimation are presented whereas the approach in [24] proposes a differ-

ent metric, i.e the point to plane metric, for estimating the transformation between point

clouds. In the category of point to point metric, there exist approaches that operate in a

different coordinate system such as polar coordinates leading to polar scan matching [37].

Another variant of the standard ICP is the Iterative Closest Lines (ICL) [102] algorithm

that matches lines between consecutive scans to estimate the robot pose. In addition to the

techniques mentioned above that operate on a point cloud or features, certain approaches

formulate the pose estimation process on a grid based environment representation. An

example of this is the Hector SLAM approach [90] that frames the pose estimation process

over an occupancy grids and furthermore uses the Gauss-Newton optimization to align

the laser scanner observations with an already created map. The proposed approach is

capable of using gradient based methods in a nonlinear optimization by performing bilin-

ear interpolation on the occupancy grid. In contrast, the Normal Distribution Transform

(NDT) [10, 110, 111] stores a Normal distribution defining the point distribution in each

grid cell and furthermore frames the pose estimation process using Newton’s optimization.

In addition to the characteristics of the SLAM algorithm, another aspect is related to

the environment representation used by the algorithm. A large amount of research work

in SLAM focuses on feature based scan matching [148] or SLAM [39, 50, 120, 122, 195]. In

mobile robotics community feature based SLAM mainly consists of point based [39, 72, 120,

122] or surface based environment representations [50, 148, 148, 195]. Another approach is

to utilize a grid based environment representation among which the most commonly used

approach is the occupancy grid [58, 59, 90]. In addition, there exist alternatives such as the
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Normal Distribution Transform [10, 110, 111] or the signed distance function (SDF) [32]

which has recently been made popular by the Kinect fusion [136] and Kintinous [197]

approach.

A large amount of research work has focused on different characteristics of the SLAM

algorithm i.e. the pose estimation problem as well as the mapping process using different

environment representations. The development of a robust SLAM algorithm is essential

for creating a consistent and accurate environment map. In addition, these maps are

an essential requirement for the development of the wide range of functionalities for an

intelligent and autonomous robotic system.

1.1.3 Place Recognition/Loop Closure Detection

A key component of the SLAM algorithm is the place recognition/loop closure mechanism

that allows the robot to maintain a consistent map of the environment over time after a

robot revisits a location. The objective of the place recognition/loop closure mechanism is

to determine if a specific sensor observation (an image or point cloud) has been previously

observed in a metric map or a database using a similarity metric. The place recognition

problem originates from the field of computer vision specifically in the domain of content

based image retrieval from databases [60, 170]. A specific instance of the place recognition

problem titled the loop closure problem is commonly discussed in robotics literature. Loop

closure is considered as a sub-problem of place recognition due to the presence of additional

constraints such as the temporal consistency constraint over sensor observations or the

presence of odometry (motion estimates). A robust solution to the loop closure problem

in the field of robotics is an essential requirement for maintaining the consistency and

accuracy of the geometric or topological map over time. Figure 1.5 shows a simple example

in context of laser based SLAM, which is equally applicable for other sensor modalities as

well, in which a robot is unable to determine if it has returned to a previous location and

therefore the accumulated error in the pose estimates leads to an inconsistent map.

Fig. 1.5: The inability of the algorithm in detecting the loop closure constraint in context of
laser based SLAM leads to an inconsistent metric map of the environment.

The problem of loop closure has been addressed in literature from different perspectives

depending on the type of sensor modalities used by the robot. Typically, laser based loop
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closure mechanisms rely on geometric information [16, 55, 175, 176, 208], whereas in the

last decade with the advent of information rich sensors such as cameras and high-end

terrestrial laser scanners as well as the increase in computational power, the research focus

has shifted towards appearance based mechanisms [3, 31, 116, 118] or approaches that

combine metric and appearance information [69, 149, 214]. Appearance based mechanisms

can be roughly classified into local and global descriptor based approaches. Local descriptor

based approaches extract highly discriminative keypoints in an image and furthermore

generate a compressed description of the region around those keypoints. Furthermore,

these descriptors are typically used in a bag of words approach [3, 31, 49, 52, 141, 213] to

detect loop closures or recognize places. In contrast, global [118, 127, 168, 179] descriptors

summarize the complete image in order to recognize similar locations. An aspect common

to both approaches is the requirement of a suitable metric to quantify the similarity between

images. In the domain of loop closure, most approaches take advantage of the temporal

consistency over sensor observations as the robot traverses the environment. The removal of

the temporal consistency constraint, odometry, and GPS information transforms the loop

closure problem into the standard place recognition problem addressed within the computer

vision community in which images corresponding to the query image are retrieved from a

database based on a similarity metric.

The main challenges being faced by loop closure/place recognition algorithms in real

world robotic applications can be classified as intrinsic or extrinsic. Extrinsic challenges

occur due to variations in the structure of the environment. The main extrinsic challenge

for place recognition algorithms operating operating under challenging lighting conditions

with passive sensors (such as cameras) in typical outdoor scenarios is the change in the

environment appearance due to variations in ambient lighting (transition from day to night

time). Even during different times of the day, shadows can cause a change in the envi-

ronment appearance and pose challenges for place recognition algorithms [108, 115, 118].

In contrast to the extrinsic challenges mentioned above, intrinsic challenges correspond

to deficiency of prior information available to the algorithm such as the lack of motion

estimates (odometry) or the unavailability of GPS. In addition, intrinsic challenges might

also include the deficiency of prior training data for generating a visual vocabulary which

is typically the case in online robotic and computer vision applications as it is assumed

that no prior information is available about the environment. The extrinsic and intrinsic

aspects mentioned above form a substantial set of challenges faced by place recognition

algorithms in the field of robotics as well as computer vision. The development of a ro-

bust place recognition algorithm capable of addressing the above mentioned challenges is

essential for the development of a robust SLAM algorithm as well as developing consistent

maps of the environment over a long period of time.

1.2 Thesis Contributions

This thesis contributes in the domain of perception specifically environment representation,

SLAM and place recognition/loop closure detection. The above mentioned aspects play

a critical role in the development of an accurate and consistent map of the environment.

These maps are essential for different robotic applications such as navigation and explo-
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ration and play a fundamental role in the development of an intelligent and autonomous

robotic systems. The following subsections describe the contribution of this thesis in the

highlighted areas.

1.2.1 Environment Representation

A major contribution of this thesis is in the domain of grid based environment representa-

tion. This thesis presents an approach which is capable of approximating the environment

based on a variable resolution grid in an online, incremental manner. The following aspects

are important in defining a grid based environment representation

• Spatial decomposition

• Attribute used to represent the surface

The spatial decomposition defines the structural properties of the grid e.g. the resolu-

tion of cells and specific assumptions about their shape. In contrast, the second aspect

defined above corresponds to the attribute used to represent the surface e.g. occupancy

probabilities [41], Normal distribution [10, 110, 111] or the signed distance function [32].

This thesis contributes in the domain of environment representation by defining an

interplay between the spatial decomposition of the occupancy grid as well as the surface

attribute. In context of spatial decomposition this thesis proposes an approach that relaxes

the cubic grid cell assumption common to most occupancy grids to allow an approximation

of the environment using a variable resolution grid based on a hierarchy of axis aligned

rectangular cuboids (3D). The proposed approach allows the user to define the maximum

number of children per node within the hierarchy thereby influencing the height, width of

the tree and consequently effecting the insertion, access time as well as the number of nodes

required in the hierarchy to represent the environment. In context of the attribute used to

represent the surface, a simplistic fusion mechanism based on occupancy probabilities is

presented that merges neighboring grid cells to generate variable resolution grid cells. The

main motivation for using rectangular cuboids instead of cubes is the fact that they are

better capable of approximating typical indoor and outdoor urban environments consisting

of walls and flat surfaces.

In summary, the main contributions of this thesis in context of environment represen-

tation are as follow

• An approach capable of modeling the environment using a variable resolution grid

(Section 2.4 and 2.5.1)

• A simplistic fusion process that couples the surface attribute i.e. occupancy prob-

ability with the spatial decomposition leading to variable resolution representations

of the environment in an online, incremental fashion (Section 2.5.2)

• An extensive experimental evaluation highlighting the characteristics of the proposed

approach on a publicly available dataset (Section 2.6)
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1.2.2 Laser Intensities for SLAM

The majority of the research work carried out in the domain of SLAM focuses on using

sensor observations obtained from a laser scanner to generate a consistent and accurate

geometric representation of the environment. In addition to measuring the distance, a

typical laser scanner also quantifies the received optical power after reflection from the

object titled intensity. The important aspect of laser intensities is that they are dependent

on an intrinsic surface property i.e. surface reflectivity as well as other extrinsic parameters

such as distance and angle of incidence to the surface. Hence, it should be possible to model

the influence of extrinsic parameters in order to acquire a measure of surface reflectivity.

The main contribution of this thesis is a simplistic calibration mechanism for laser scan-

ners to acquire a pose-invariant measure of surface reflectivity. In addition, this measure

of surface reflectivity is used in a SLAM algorithm (Hector SLAM) to simultaneously esti-

mate the robot pose and acquire a reflectivity map of the environment. The capability of

acquiring a measure of surface reflectivity provides the possibility of using this information

in a variety of robotic application such as global localization, navigation and exploration.

Specifically speaking reflectivity maps can be useful in scenarios where geometric infor-

mation is ambiguous e.g. a symmetric corridor. It is important to define the scope of

the proposed approach within the SLAM literature. The approach proposed in this thesis

serves as a component of the SLAM front-end as it determines the constraints between

consecutive robot poses and furthermore generates a reflectivity map of the environment.

In summary, the contribution of this thesis in context of SLAM is mentioned below

• A simple calibration process for laser scanners to acquire a pose-invariant measure

of surface reflectivity (Section 3.3.2)

• An extension of the Hector SLAM algorithm that relies on a measure of surface

reflectivity for simultaneously estimating the robot pose and acquiring a reflectivity

map of the environment (Section 3.4)

• An extensive experimental evaluation of the proposed calibration approach and the

Hector SLAM extension (Section 3.5)

1.2.3 Place recognition/Loop closure detection

The thesis contributes towards two different aspects of the loop closure/place recogni-

tion problem. Firstly, it focuses on the issue of vocabulary generation and proposes an

approach that is capable of generating a binary bag of words (BOW) vocabulary in an

online, incremental manner for online robotic applications. Secondly, this thesis evaluates

the advantages of using laser intensities for the place recognition problem under challeng-

ing lighting conditions. The following paragraphs provide a detailed perspective on the

contributions of this thesis.

The BOW approach is the most prevalent approach for loop closure detection/place

recognition and image retrieval in the robotics and computer vision community [141]. In

context of online robotic applications such as SLAM it is assumed that the robot has no

prior information about the environment, so it is considered desirable that the loop closure
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mechanism is capable of operating and in an online, incremental manner without requiring

any offline processing. This thesis contributes a simplistic mechanism for generating a

binary vocabulary in an online, incremental manner. Although online vocabulary genera-

tion mechanisms exist for real valued descriptors, however the typical Euclidean distance

as well as clustering mechanism e.g. Kmeans are no longer applicable in binary spaces.

The main advantage of using binary vocabularies based on binary descriptors is that in

comparison to real valued descriptors they are less expensive in terms of computation and

memory cost [100]. The proposed approach couples the vocabulary generation mechanism

with a simplistic similarity metric and temporal consistency constraint to show that it is

capable of generating high precision, recall in comparison to the state of the art.

In addition, this thesis evaluates the performance of different modalities under chal-

lenging lighting conditions as this is an essential stepping stone for long term autonomy in

outdoor urban environments. The majority of the research work in this domain focuses on

using passive sensors i.e. cameras to propose algorithms that are capable of dealing with

ambient lighting conditions. In contrast this thesis focuses on active sensors i.e. laser scan-

ners and specifically the usage of laser intensities for appearance based loop closure/place

recognition. The main advantage of active sensors is their invariance to external lighting

conditions. Hence, the contribution of this thesis is to highlight the advantage and applica-

bility of laser intensities for appearance based place recognition under challenging lighting

conditions in comparison to images from camera’s (passive sensor) and laser scanner based

geometry information.

In summary, the main contribution of this thesis in context of loop closure/place recog-

nition are

• An online, incremental mechanism for binary vocabulary generation for loop closure

detection (Section 4.4)

• To highlight the applicability and advantages of laser intensities for place recognition

under challenging lighting conditions in comparison to other forms of sensor data such

as images from camera’s (passive sensor) or geometry information from laser scanner

(Section 4.5)

• An extensive experimental evaluation highlighting the advantages of the proposed bi-

nary vocabulary generation mechanism and laser intensities in the loop closure/place

recognition pipeline on real world datasets (Section 4.6)

1.3 Outline of Thesis

The outline of this thesis follows the steps required in the perception pipeline to build

a consistent and accurate map of the environment i.e. the environment representation,

SLAM and finally loop closure/place recognition detection. The above mentioned aspects

are tightly coupled during the map creation process. The environment representation pro-

vides the basis for map generation by defining the geometric primitive used to approximate

the environment. The domain of SLAM uses the geometric primitive chosen for environ-

ment representation and couples it with the pose estimation process to allow the robot
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to incrementally generate the map based on sensor observations. Finally, the loop closure

detection/place recognition algorithm provides the capability of maintaining the consis-

tency of the map over time by associating previously visited locations and reducing the

drift accumulated by the SLAM algorithm due to motion and sensor uncertainty.

Chapter 2 focuses on environment representations and presents the details of the pro-

posed variable resolution occupancy grid based on a hierarchy of axis aligned rectangular

cuboids. This chapter highlights the key characteristics of the proposed approach using

different sensor models and presents an extensive experimental evaluation in comparison

to the state-of-the-art Octomap approach on a publicly available dataset. Finally, the

conclusion and future work is highlighted for the proposed approach.

Chapter 3 proposes an approach that uses laser intensities in context of Simultaneous

Localization and Mapping (SLAM) to acquire a reflectivity map of the environment. The

chapter begins by explaining a simple calibration process for acquiring a pose-invariant

measure of surface reflectivity. This measure is furthermore used in an extension of Hector

SLAM that allows the robot to simultaneously estimate its own pose as well as acquire a

geometric occupancy grid model of the environment augmented with surface reflectivity

information i.e. reflectivity map. An extensive evaluation is carried out to highlight the

pose estimation accuracy of the proposed approach as well as the advantage of generating

reflectivity maps of the environment using different laser scanners.

Chapter 4 discusses two different aspects of the loop closure/place recognition problem:

firstly a simplistic online, incremental mechanism for binary vocabularies generation. An

extensive experimental evaluation in terms of precision-recall on publicly available dataset

is carried out to highlight the advantages of the proposed binary vocabulary generation

approach in comparison to the state-of-the-art. Secondly this chapter highlights the ap-

plicability and advantages of laser intensities for loop closure/place recognition algorithms

under adverse lighting conditions. An extensive experimental evaluation using different

modalities, projection models and descriptor characteristics is carried out to highlight the

relevance of laser intensities for place recognition.

Chapter 5 summarizes the contribution of this thesis and furthermore highlights possible

future research directions.
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Summary and Contribution: This chapter presents a contribution in

the domain of grid based mapping by proposing a spatial decomposition

approach that is capable of modeling the environment using a variable res-

olution grid. This grid is stored in a hierarchy of axis-aligned rectangular

cuboids that can be adapted in an online, incremental manner. Hence,

the proposed spatial decomposition relaxes the cubic grid cell assumption

common to a majority of grid based environment representations to allow

axis-aligned rectangular cuboids. Furthermore, an extension of the stan-

dard occupancy grid is presented that couples the spatial decomposition

with the attribute used for surface representation i.e. occupancy proba-

bility. This coupling is performed by adding a fusion process based on

occupancy probabilities that adapts the resolution of the grid cells in an

online, incremental manner, thereby generating variable resolution grid

based environment approximations. An extensive experimental evaluation

is carried out on a publicly available dataset using different sensor models

to highlight the characteristics of the proposed approach.

2.1 Introduction

An accurate environment map is an essential requirement for a large number of robotic ap-

plications such as navigation and exploration. In order to build a map of the environment,

an autonomous agent requires a mechanism to approximate the complex external environ-

ment observed through its sensors. This mechanism titled the environment representation

is essentially a geometric primitive, which is used to generate a model of the environment

based on sensor observations. Hence, the environment representation can be considered as

the core foundation required to build a map. Typical examples of environment representa-

tions include point based approximations i.e. point clouds, landmark-based maps [62, 121]

or grid based approximations [41, 73, 136, 181, 197]. Generally landmark-based maps rep-

resent the environment using point landmarks [62, 121] which are used by the robot for

pose estimation. In contrast, point clouds and grid based approximations lead to metric

maps that capture the complete area or volume. Figure 2.1(a) shows a landmark-based

map of the environment, which is composed of nodes that represent the robot positions in

the environment and the edges corresponds to the distances between robot poses as well

as landmarks detected in the environment. In contrast, Figure 2.1(b) and 2.1(c) show a

point cloud and grid based metric environment representation. In principle, each envi-

ronment representation has its own advantages/disadvantages and the preference of one

representation over the other is dependent on a variety of factors, which include the specific

application being considered as well as computational and memory constraints.
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(a) Landmark-based representation (b) Point cloud based representation

(c) Grid based representation

Fig. 2.1: Different types of environment representations. a) A landmark-based map in which
static, distinguishable, repeatable point observations (li) are used to represent the
environment. b) Point cloud based representation in which each point is a sample
from the surface of the object. c) An occupancy grid based representation augmented
with color information.

This chapter focuses on grid based environment mapping. A typical grid based repre-

sentation has different characteristics which define its nature such as

• Spatial decomposition

• Attribute used for representing the surface

In the field of robotics the most commonly used spatial decomposition is a fixed resolu-

tion grid with cubic grid cells. In addition to the spatial decomposition, another aspect of

15



2 Environment Representation

the grid is the attribute used to store information about the surface e.g. occupancy prob-

ability, Normal distribution or the signed distance function. Grid based representations

using occupancy probabilities are titled occupancy grids and assigns to each cell a binary

random variable that defines the probability of it being occupied. This occupancy proba-

bility can furthermore be thresholded to obtain different occupancy states such as occupied

(high occupancy probability), free (low occupancy probability) and unknown cells (no sen-

sor observations). Occupancy grids are among the most commonly used approaches for

navigation [41, 129, 182], exploration [17, 174, 203] as well as multi-sensor fusion [94, 114]

in the domain of robotics. The main reason for the popularity of occupancy grids is their

probabilistic nature, which provides a principled mechanism for dealing with multisensor

fusion as well as sensor noise.

Multiresolution Grid CellsFixed Resolution Grid Cells

Occupied cells Free cells

Fig. 2.2: Comparison of a fixed and a variable resolution grid representation. The variable
resolution grid representation requires fewer number of grid cells in contrast to a
fixed resolution representation.

In contrast to occupancy grids, the signed distance function (SDF) or truncated signed

distance function (TSDF) stores a signed value in each grid cell that defines the distance to

the surface thereby simplifying the process of surface extraction. In principle, the signed

distance function originated from the computer graphics community [32], however it has

become popular in the field of robotics with the advent of Kinect fusion [136, 197]. This

chapter focuses on occupancy grids and presents a coupling of the spatial decomposition

and occupancy probabilities (i.e. attribute used to represent the surface) which allows

approximation of the environment using a variable resolution grid. This reason for focusing

on occupancy grids is due to their popularity and wide spread usage in the field of mobile

robotics.

During the last few decades the majority of the research work in the field of robotic

mapping has focused on generating 2D grid based environment representations [183, 184].

Although 2D maps are sufficient in planar environments, however this assumption does

not hold in a variety of indoor and outdoor environments. Recently, with the advent of

higher computational power as well as advances in sensor technology such as the Kinect or

Velodyne, the focus in the robotics research community has shifted towards large scale 3D

mapping. The majority of occupancy grid based approaches in literature constitute of fixed

resolution cubic grid cells. Figure 2.2 shows a fixed resolution representation in comparison
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to a variable resolution grid in a simplified 2D example. Intuitively speaking, this leads

to a reduction in the number of required grid cells without any loss of information in

the environment representation. Additionally, it allows faster access times as less number

of grid cells need to be accessed to reconstruct the environment in contrast to a fixed

resolution representation. If the structure (occupied regions) of the actual 3D world is

composed of planar axis-aligned surfaces whereas free space does not have any definite

shape, the question arises if there is any advantage in relaxing the assumption of 3D

representation based on cubes (inherent to most occupancy grids) to allow axis-aligned

rectangular cuboids. The objective of this chapter is to propose a variable resolution grid

based environment representation and highlight its characteristics as well as advantages.

2.2 Related Work

2D occupancy grids [41, 125, 181] are considered as the de facto standard for mobile

robotic mapping. Although 2D maps are sufficient in planar environments, however this

assumption does not hold in a variety of indoor and outdoor environments. To deal with

such scenarios different approaches have been proposed in literature such as 2.5D occupancy

grids. A typical example of 2.5D occupancy grid is an elevation map [68] which stores a

height value for each cell on a 2D grid. In [191], an extension titled multi-level surface

maps has been proposed which allows storage of multiple heights per cell. In general 2.5D

occupancy grids are useful for mapping, localization and navigation, however they are

unable to model the explicit shape of the environment. In [38], an extension of multi level

surface maps titled Multi Volume Occupancy Grids (MVOG) is presented which generates

3D maps by storing positive readings (observations corresponding to objects) as well as

negative reading (free space readings) in vertical volumes over a 2D occupancy grid.

The recent advances in the domain of sensor technology has shifted the focus of the

robotics research community from 2D towards 3D environment representations. Grid based

or volumetric representations (specifically occupancy grids) and raw point clouds are the

most commonly used approaches for 3D environment representations. There also exists

surface based representations that extract triangular meshes or fit planes to the point

cloud, however these approaches do not explicitly model free or unknown regions which is

essential for a variety of mobile robot applications. Similarly, point cloud representation

do not model free or unknown regions and also do not allow probabilistic data fusion from

multiple sensors. One possible approach to model the environments using 3D grids is to

use a dense 3D array [124, 156], however this approach is quite memory expensive due to

the presence of large amount of free space in typical indoor/outdoor environments thereby

limiting their usability [38, 73] for large scale mapping. In contrast, hash table based 3D

representations are also used due to the amortized constant lookup time. In the field of 3D

robotic mapping, MROL [161] is an approach that uses voxel lists to store occupied cells

using hash tables with the keys being the closest integer grid indexes. In [160], a counting

bloom filter with different hashing functions is proposed to stored occupied grid cells and

the authors claim that the lookups operations can be performed within 10% of the time

required for dense 3D arrays.

In contrast to the approaches mentioned above, a tree based representation for modeling
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a grid is also a commonly used approach within the robotics and computer vision com-

munity. Typical examples of such structures include Quadtrees for 2D [79, 202, 205] and

Octrees for 3D mapping. A large amount of research has been carried out on the usage of

Octrees for 3D mapping [43, 45, 147, 150]. Recently, a fully probabilistic 3D occupancy grid

using octrees titled Octomap has been proposed which allows multiresolution 3D environ-

ment representations [73, 200]. In computer graphics literature there exists an extension

of the Octree structure titled N3 tree which allows each dimension to be divided by any

arbitrary number N [28, 98]. The authors in [40] presents an Nd-tree based formulation

which allows to split any d dimensional space by an arbitrary number N . The Nd tree

based approach adapts the resolution of the grid in an online, incremental manner based

on sensor observations. In [10, 111], the authors present an approach that stores the point

distribution in each grid cell using a Normal distribution. The proposed approach uses the

point distribution in each cell to estimate the robot pose using an optimization based on

the Normal distribution transform (NDT). Recently, the 3D NDT (Normal Distribution

Transform) [111] has been applied in the context of occupancy mapping titled NDT-OM

(Occupancy Mapping) [162, 163] as well as localization in dynamic environments [193].

2.3 Contribution

This thesis contributes in the domain of grid based mapping by proposing a spatial de-

composition approach that that is capable of modeling an environment using a variable

resolution grid. This capability relaxes the fixed resolution cubic grid cell assumption

common to most occupancy grids. The proposed approach stores the variable resolution

environment approximation in the Rtree data structure [63, 133] which is composed of a

hierarchy of axis-aligned rectangular cuboids. The approach presented in this chapter al-

lows online, incremental generation and adaptation of the grid as well as the tree hierarchy

based on sensor observations, which is desirable for robotic applications. In addition, the

proposed approach allows the possibility of defining the maximum number of children per

node in the hierarchy thereby influencing the height and width of the tree and indirectly

affecting the insertion and access times of the grid cells. An extensive evaluation is car-

ried out in this chapter to highlight the advantages of the proposed spatial decomposition

approach. The main characteristics of the proposed spatial decomposition approach are

• Incremental : Allows incremental generation and update of the grid structure and

the hierarchy based on sensor observations

• Flexible: Provides the flexibility of selecting the maximum number of children per

node

• Multiresolution grid cells : Capable of modeling a variable resolution grid

In addition to the spatial decomposition approach, this chapter presents an extension of

the standard occupancy grid by proposing a fusion process which incrementally adapts the

resolution of the grid cells based on occupancy probabilities. Hence, this fusion process

couples the spatial decomposition with the attribute used to represent the surface i.e.
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occupancy probability. An evaluation of the proposed approach is carried out on a large

scale outdoor urban dataset to highlight its characteristics and advantages in comparison

to the state of the art Octomap approach.

In summary, the main contributions of this thesis in context of environment represen-

tation are as follow

• An approach capable of modeling the environment using a variable resolution grid

(Section 2.4 and 2.5.1)

• A simplistic fusion process that couples the surface attribute i.e. occupancy prob-

ability with the spatial decomposition leading to variable resolution representations

of the environment in an online, incremental fashion (Section 2.5.2)

• An extensive experimental evaluation highlighting the characteristics of the proposed

approach on a publicly available dataset (Section 2.6)

2.4 Rtree Data Structure

This section provides a brief overview of the Rtree datastructure [63, 133, 211], which forms

the basis of the variable resolution occupancy grid proposed in this chapter. The Rtree

structure [63] is a spatial indexing method proposed by Antonin Guttman and developed

for applications within the database community. The structure is composed of a hierarchy

of minimum bounding axis aligned rectangles (MBR), or minimum bounding axis aligned

rectangular cuboids (MBRC) for 3D, as shown in Figure 2.3. The Rtree nodes are labeled

on the upper right corners with R, L to denote root and leaf nodes respectively. Inner

nodes are not shown in the Figure 2.3, however as the hierarchy expands, inner nodes are

added as well. The root and inner nodes contain the MBR of the rectangles or rectangular

cuboids (3D) stored in the leaf nodes. As shown in Figure 2.3, it is possible that the

MBR in the Rtree hierarchy overlap. The Rtree of order (d,M) has the following basic

characteristics [63], [133]:

• A leaf node can store a maximum of M entries and a minimum of d, where d ≤
M
2

. The ith entry in the leaf node contains the tuple (Ri oi). Ri represents the

minimum and maximum bound of the 2D rectangle or 3D rectangular cuboid whereas

oi represents an attribute of this bounding rectangle e.g. occupancy probability or

signed distance function etc. As the Rtree is height balanced, all leaf nodes are at

the same height.

• An inner node contains a maximum of M and a minimum of d entries. Each entry

consists of a MBR and a pointer to its child node.

• The root node can have a minimum of two entries unless it is a leaf node.

The following subsection explains the set of operations that can be performed on the

hierarchy as well as the characteristics of the Rtree structure. In addition, an example for

a simplistic 2D case is provided to highlight the Rtree hierarchy construction process.

19



2 Environment Representation
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(a) An example of the Rtree data structure, which is composed of a hierar-
chy of axis aligned rectangles (2D)
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(b) An example of the Rtree hierarchy with overlapping MBR nodes

Fig. 2.3: An example construction of the Rtree hierarchy with maximum 2 children per node

2.4.1 Operations on the Rtree hierarchy

The Rtree structure allows operations such as

• Search

• Insertion

• Deletion

of rectangles or rectangular cuboids in its hierarchy. The rest of this section highlights

the details of these operations.

Search

A search can be carried out in the Rtree hierarchy using a wide variety of criterion such

as overlap, containment, intersection etc. Given a query rectangle and a criterion e.g.

overlap, overlap tests can be carried out throughout the hierarchy starting from the root

node and traversing onwards. The MBR or MBRC that do not overlap with the query

rectangle are pruned out in the search process. If the MBR or MBRC of the inner nodes

overlap, it is possible that multiple subtrees, i.e. child nodes, might need to be traversed.

The search process is carried out till all overlapping entries in the leaf nodes have been

tested to find if any rectangle or RC satisfies the search criterion.
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Insertion

The Rtree structure hierarchy generation process is based on the insertion operation. A

rectangle is inserted into the Rtree hierarchy using the least expansion principle in which

the Rtree hierarchy is traversed by choosing an entry in the node whose MBR requires

minimum expansion. In case of ties the rectangle with the smaller area is chosen. This

traversal continues until a leaf node is reached, in which that rectangle is inserted. During

the insertion process if the number of entries/elements in a node exceed the maximum

number M , the node overflows and has to be split. An ideal splitting algorithm would

distribute the entries of a splitting node between two nodes in a way that the corresponding

MBR/MBRC of the entries in the parent nodes would have no overlapping area thereby

reducing the chance that both these nodes will be traversed during a subsequent search. In

literature there exist different splitting strategies such as linear, quadratic, exhaustive [63]

or Rstar [7]. In this thesis the quadratic splitting algorithm is used as it provides a

reasonable trade off between the computational complexity of exhaustive search and the

worse quality of splits in case of the linear splitting algorithm. The following subsection

provides details about the quadratic splitting algorithm.

Quadratic Splitting

The quadratic splitting algorithm [63] distributes the entries of a node between two nodes

using the area of the rectangles or MBR as a criterion. The quadratic splitting algorithm

consists of two important aspects, firstly the process to choose the seeds i.e. the pair of

rectangles/RC/MBR/MBRC which form the first entry of the two nodes. Secondly, the

process of incrementally assigning the rest of the rectangles/RC/MBR/MBRC to those

nodes.

The quadratic splitting algorithm chooses the seeds by iterating over all pair of rectan-

gles/RC/MBR/MBRC and calculates their individual area e.g. aRi
, aRj

and their compo-

sition aRij
and then calculates the metric J(aRi

, aRj
) = aRij

− aRi
− aRj

. The algorithm

chooses the pair which leads to the largest value of the metric J(aRi
, aRj

). The basic idea

behind this approach is that this pair would be the most wasteful in terms of the area

covered by the MBR, if they are placed in the same node.

Given the seed, the next step is to determine the next rectangle/RC/MBR/MBRC to

assign to one of the nodes. For each remaining rectangle/RC/MBR/MBRC the algorithm

calculates the increase in area of the covering rectangle/RC/MBR/MBRC for the assign-

ment nodes and furthermore takes the difference between them. Finally, the algorithm

chooses the rectangle/RC/MBR/MBRC which has the maximum difference as it has a

tendency to join one node rather than the other. This process is carried out till all the

rectangles/RC have been assigned.

Deletion

Another important operation on the Rtree hierarchy is deletion of a specific entry. The

removal of a specific entry in a node requires propagation of the changes throughout the

Rtree hierarchy. The objective of this propagation is to resize the affected MBR/MBRC

to tightly cover the rectangles/RC in the leaf nodes after the removal process. During this

process if the number of entries in a node become less the minimum number of entries
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d, that specific node is deleted and all the rectangles/RC are re-inserted into the Rtree

hierarchy. If any node overflows during this re-insertion the node is split using the quadratic

splitting algorithm as explained above.

2.4.2 Characteristics of the Rtree structure and Hierarchy

Construction

This subsection explains the Rtree hierarchy construction process using a simple 2D ex-

ample. As discussed in the previous section, the most important operation in the Rtree

hierarchy construction is the rectangle insertion process. A rectangle is inserted into the

Rtree structure through the process of least expansion. If the number of entries in a node

exceeds M during the insertion process, the node has to be split. An exemplary Rtree

structure is shown in Figure 2.3(b) assuming that each node can have a maximum of 2

entries (M = 2). The Rtree structure initially consists of a single node when rectangles A

and B are inserted. Furthermore, if rectangles C and D are added the node splits increas-

ing the height of the structure and forms overlapping MBR (E and F), as shown in Figure

2.3(b). The important aspect is that the MBR of the inner nodes in the Rtree structure

can overlap. As a consequence of overlaps within the tree hierarchy multiple subtrees,

i.e. child nodes, might need to be searched during a spatial query or search process. The

maximum number of entries allowed per node M is another important factor in the hier-

archy construction process. For a fixed number of leaf nodes increasing M generates tree

structures containing fewer inner nodes but creates more overlaps. Consider the scenario

shown in Figure 2.3 in which the assumption of 2 entries per node is considered. If the

maximum number of entries per node is increased from 2 to 4, one node is required in the

hierarchy to represent all the rectangles thereby reducing the number of nodes required for

representation. The focus of this chapter is on 3D mapping, hence the term rectangular

cuboids (RC) will be used for entries in the leaf nodes and MBRC for the entries within

inner and root nodes.

2.5 Rtree Occupancy Grid

This section is divided into two subsections. The first subsection deals with the description

of the occupancy grid based on the Rtree data structure whereas the second describes the

adaptation of the grid cell resolution.

2.5.1 Occupancy Grid Formulation

The Rtree occupancy grid is probabilistic in nature and models the occupancy of its grid

cells based on sensor observations. The proposed approach utilizes a specific sensor model

to incrementally generate the grid structure and update the tree hierarchy composed of

axis aligned rectangular cuboids. This chapter focuses on two different sensor models

specifically the beam-based as well as the beam-end point model, whose characteristics are

discussed in the following section. Depending on the sensor model, grid cells are either

initialized and updated at the beam end points or also along the path followed by the
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beam. Figure 2.4 shows the grid cell initialization process for the beam-based sensor model

in context of the Rtree based occupancy grid in comparison to the standard occupancy

grid whose grid structure is predefined. Initially all grid cells i.e. entries in a leaf node of

the Rtree occupancy grid are of cubic volume based on the chosen resolution of the grid,

axis aligned and do not overlap. However, the inner nodes MBRC can overlap as discussed

in the previous section.

Standard Occupancy Grid Update Rtree Occupancy Grid Update

y

x

y

x

Fig. 2.4: The cell initialization process for the Rtree based Occupancy grid in context of the
beam based sensor model. The standard occupancy grid has a predefined structure
in which cubic grid cells are initialized with 0.5 occupancy probability in a fixed
region. In contrast, the Rtree based occupancy grid incrementally generates the grid
structure as sensor observations are obtained. The robot is shown as a solid grey
block.

Let ẑt represent the sensor observation, where the subscript denotes the time index.

Consider a grid Gt = {g1, g2, . . . , gn} at time t consisting of n cubic or variable resolution

grid cells gi, i = 1, . . . , n. The notation used in this section is valid for cubic and variable

resolution representations. Initially, the occupancy grid is composed of cubic grid cells,

however as sensor observations are obtained the adaptation of grid cell resolution takes

place (see Section 2.5.2) based on occupancy probabilities leading to variable resolution

cells. The occupancy probability of any entry in the leaf node gi representing the ith

grid cell can be derived from the posterior distribution over the cells given all the sensor

observations ẑ1:t and robot poses ζ1:t

P (g1, g2, . . . , gn|ẑ1:t, ζ1:t).

A common assumption in the standard occupancy grid to reduce the dimensionality and

computational complexity of the problem is to calculate the occupancy probability of a

cell independently of other grid cells

P (g1, g2, . . . , gn|ẑ1:t, ζ1:t) =
n∏
i=1

P (gi|ẑ1:t, ζ1:t).

Furthermore, by transforming the observations based on the pose estimates into the global
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frame of reference we can omit the pose information

n∏
i=1

P (gi|ẑ1:t, ζ1:t) =
n∏
i=1

P (gi|z1:t),

where z1:t represents the transformed observations in the global frame of reference. By using

the Bayes rule and incorporating the Markov assumption in the first term of the numerator,

i.e. the current observation zt is conditionally independent of previous observations z1:t−1
given the robot pose, each grid cell probability can be written as

P (gi|z1:t) =
P (zt|gi)P (gi|z1:t−1)

P (zt|z1:t−1)
. (2.1)

Similarly, the first term of the numerator in (2.1) can be written as

P (zt|gi) =
P (gi|zt)P (zt)

P (gi)
. (2.2)

By substituting (2.2) into (2.1),

P (gi|z1:t) =
P (gi|zt)P (zt)P (gi|z1:t−1)

P (gi)P (zt|z1:t−1)
, (2.3)

the equation defining the occupancy probability of cell gi is derived. The probability that

the cell gi is free can then be similarly calculated as

1− P (gi|z1:t) =
(1− P (gi|zt))P (zt)(1− P (gi|z1:t−1))

(1− P (gi))P (zt|z1:t−1)
. (2.4)

Dividing (2.3) by (2.4) gives the odds,

P (gi|z1:t)
1− P (gi|z1:t)

=
P (gi|zt)P (gi|z1:t−1)(1− P (gi))

(1− P (gi|zt))(1− P (gi|z1:t−1))P (gi)
, (2.5)

which can be simplified by simple algebraic manipulation as

P (gi|z1:t) = (1− P (gi|z1:t))
[

P (gi|zt)P (gi|z1:t−1)(1− P (gi))

(1− P (gi|zt))(1− P (gi|z1:t−1))P (gi)

]
,

P (gi|z1:t)
[
1 +

P (gi|zt)P (gi|z1:t−1)(1− P (gi))

(1− P (gi|zt))(1− P (gi|z1:t−1))P (gi)

]
=

P (gi|zt)P (gi|z1:t−1)(1− P (gi))

(1− P (gi|zt))(1− P (gi|z1:t−1))P (gi)
,
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P (gi|z1:t)
[

(1− P (gi|zt))(1− P (gi|z1:t−1))P (gi) + P (gi|zt)P (gi|z1:t−1)(1− P (gi))

(1− P (gi|zt))(1− P (gi|z1:t−1))P (gi)

]
=

P (gi|zt)P (gi|z1:t−1)(1− P (gi))

(1− P (gi|zt))(1− P (gi|z1:t−1))P (gi)
.

Shifting the left hand side terms to the right gives

P (gi|z1:t) =
P (gi|zt)P (gi|z1:t−1)(1− P (gi))

(1− P (gi|zt))(1− P (gi|z1:t−1))P (gi) + P (gi|zt)P (gi|z1:t−1)(1− P (gi))
,

and inverting the right hand side gives

P (gi|z1:t) =

[
P (gi|zt)P (gi|z1:t−1)(1− P (gi)) + (1− P (gi|zt))(1− P (gi|z1:t−1))P (gi)

P (gi|zt)P (gi|z1:t−1)(1− P (gi))

]−1
,

that can be easily transformed into [73, 125, 200]

P (gi|z1:t) =

[
1 +

1− P (gi|zt)
P (gi|zt)

1− P (gi|z1:t−1)
P (gi|z1:t−1)

P (gi)

1− P (gi)

]−1
, (2.6)

which is a commonly used inverse sensor model in robotic mapping. P (gi|z1:t) represents

the occupancy probability of the ith grid cell given all observations. P (gi) represents the

occupancy probability of a grid cell prior to any observations. P (gi|zt) and P (gi|z1:t−1)
represent the probability given the most current observation zt and observations since the

beginning of time until time t − 1 respectively. Eq (2.5) can be also be converted to log

odds form to simplify the computation as it reduces the occupancy update to a simple

addition operation

l(gi|z1:t) = l(gi|zt) + l(gi|z1:t−1)− lo, (2.7)

where l(gi) = log
[ P (gi)

1− P (gi)

]
is the log-odds form whereas lo represents the prior which is

the same for every cell. In literature [73, 200], occupancy grids use a probability clamping

threshold to prevent each cell of being over confident about its state. Following the same

pattern, the Rtree based occupancy grid defines a minimum and maximum probability (or

log-odds) threshold µmin, µmax respectively after which a grid cell is no longer updated.

The following subsection provides details about the inverse sensor models considered in

this chapter as well as their properties.

Inverse Sensor Models

The proposed Rtree based occupancy grid is a generic approach to model a grid, hence it

can be used with a wide range of inverse sensor models which define different update rules.

The term P (gi|zt) in (2.6) or l(gi|zt) in (2.7) determine how these updates are carried out.

In the domain of the robotics, the following inverse sensor models are commonly used

• Beam-based model

• Beam-end point model
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Beam-based Model:

The beam-based approach models the physical properties of a beam, hence it considers the

complete path traversed by the beam along with the beam end point which corresponds to

an object/surface detected by the sensor. To be more specific a beam based model traces

a ray through the grid [2, 18] and updates the end point as being occupied and the path

of the beam as free space. Mathematically the above mentioned update is written as

P (gi|zt) =


Pocc if beam is reflected within volume

Pfree if beam traversed volume

,

where the terms Pocc and Pfree are dependent on the sensor properties. Figure 2.4 shows

an example of the grid cell update process for a beam-based sensor model.

Beam-end point Model:

As beam-based models tend to consider the complete path of the beam, they can be com-

putationally expensive. To reduce computational cost, an alternative approach can be to

ignore the path of the beam. Hence, beam-end point models tend to update the end points

of the beam while ignoring the complete path traversed by the beam. Mathematically this

update is written as

P (gi|zt) = Pocc if beam is reflected within volume.

Figure 2.5 shows the difference in update between the beam based and the beam-end

point sensor model.

Beam-based sensor model Beam-end point sensor model

Rtree Occupancy Grid Update

y

x

y

x

Fig. 2.5: Comparison of the beam-based and the beam-end point sensor model. The robot
position is depicted as a solid square.

2.5.2 Resolution Adaptation Process

The previous section focused on the creation, update process of the Rtree occupancy grid

whereas this section describes the incremental resolution adaptation within the grid using

the fusion process based on occupancy probabilities. The adaptation of the cell resolution

is the process of reducing the number of cells required to represent the environment. Given
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a grid Gt = {g1, g2, . . . , gn} at time index t consisting of n cubic or variable resolutions

grid cells, the objective of the resolution adaptation process is to generate a grid Gt+1 =

{ḡ1, ḡ2, . . . , ḡm} (the bar indicating a modification of cell size) where m � n by allowing

the cells to fuse. This section focuses on the resolution adaptation process of the cells

given the sensor models defined in the previous section i.e. beam-based or beam-end point

based sensor model.

Cell Sampling

y

x

Cell Fusion

y

x

Fig. 2.6: (Best viewed in color) The cell sampling and fusion process for the beam-based
sensor model. In context of the beam-end point sensor model, only the end points
are allowed to expand and fuse. (a) The process of sampling cells along the beam
path to allow fusion in the occupancy grid. The randomly sampled cells are shown
with blue dashes and the corresponding cells of the grid are shown with a pattern of
red dashes. (b) The cell expansion process for two cases i.e. cube and a rectangular
cuboid, shown in (a). The search direction is defined by the cell width vector wi.
The first preference is shown with green dashes followed by the second preference
shown in beige. If all sides of the cell are the same i.e. the cubic cell closest to the
robot, a fixed search direction is employed (first along the x axis and then along the
y axis). In case of the rectangular cuboid, the expansion is biased given the larger
side of the cuboid, as shown in the figure.

Beam-based Sensor Model

The grid cell resolution adaptation process consists of two basic steps, firstly selection

of the cells that are allowed to expand and furthermore the expansion, fusion process

with neighborhood cells. The cell selection, expansion and fusion process are explained in

detail in the following subsections.

Cell Selection

An important aspect within the fusion process is the selection of the cell gi which is

allowed to expand and fuse with its neighbourhood cells. In context of beam-based sensor

model it is possible to allow all grid cells at the beam end point and along the beam

path (given the sensor observations) to fuse. However, this strategy causes a substantial

increase in the computational cost, thus a different strategy is adopted. Consider the

sensor observation zt = {z1t , z2t , . . . , znt } where zit represents the ith observation among the

n point observations from a laser scanner at time index t. The occupancy grid updates
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Fuse(gi)

Input: gi // cell gi to be expanded
Outcome: ḡi = (R̄i P (ḡi|z1:t)) or

fusion not possible
Procedure:
1 Determine the width vector wi of gi;
2 If (all elements of wi of gi are equal)

3 S̄i = {S̄xi , S̄
y
i , S̄

z
i , S̄

−x
i , S̄

−y
i , S̄

−z
i };

4 //first expand along x, then y etc.
5 else
6 Re-arrange S̄i based on wi;
7 for-all j (j ≤ |S̄i|) // |S̄i| is the number

of elements in S̄i
8 R̄i = Ri +j S̄i;
9 ∀k such that Rk is contained in R̄i

10 If ((P (gi|z1:t) and P (gk|z1:t)) ≤ µmin
or (P (gi|z1:t) and P (gk|z1:t)) ≥ µmax )

11 Fuse cells to form ḡi;
12 Remove gi and gk from the grid;
13 Fuse(ḡi); // recursive call

return;
14 end for;
15 return;

Fig. 2.7: The pseudocode describing the fusion process of the grid cells of the occupancy grid

the cell corresponding to the beam end point of the observation zit and all cells that lie

along the beam path. Given all beam end point observations (zit, i = 1, . . . , n) a set

T = {g1, . . . , gp} composed of grid cells can be generated by randomly sampling cells

along the beam path based on the beam length and always considering the beam end

point. Figure 2.6 (left image) shows an illustration of the cell selection and the generation

process of the set T .

Cell Expansion and Fusion:

The grid cells within the set T obtained from the cell selection process are allowed to

expand and fuse with the neighbourhood cells. The pseudocode of the expansion and

fusion process for any grid cell gi in the set T is shown in Figure 2.7 and explained in detail

here. The fusion process shown in Figure 2.7 is carried out after every sensor observation.

As mentioned in Section 2.4 each grid cell gi (or each entry in the leaf node) contains the

following

gi =
(
Ri P (gi|z1:t)

)
,

where Ri =
[
rmin
i rmax

i

]T
and P (gi) represents the occupancy probability. In the context

of Rtree based occupancy grid, rmin
i =

[
xmin
i ymin

i zmin
i

]
and rmax

i =
[
xmax
i ymax

i zmax
i

]
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2.5 Rtree Occupancy Grid

represents the minimum and maximum bounds of the axis aligned rectangular cuboid in

the global frame of reference. Given rmin
i and rmax

i , the width vector wi =
[
wxi wyi wzi

]
can be easily extracted. The expansion process of the cell gi in the Rtree based occupancy

grid is defined (line 8 of Figure 2.7) as

R̄i = Ri +j S̄i,

for any specific search direction index j, where S̄i represents the search direction set. To

explain the notation consider that S̄i = {S̄xi , S̄
y
i , S̄

z
i , S̄

−x
i , S̄

−y
i , S̄

−z
i }, which states that the

ith grid cell should try to expand along the x axis, then along the y axis etc. The index j

in jS̄i represents the jth element of the set S̄i, hence the index j = 1 would correspond to

Sxi in the above example. The search direction set for any specific cell gi is chosen based

on the width vector wi. If all sides of the axis aligned rectangular cuboid are equal, a fixed

set of search directions (line 2-3 of Figure 2.7) is chosen otherwise it is biased based on the

larger side of the rectangular cuboid (line 6 of Figure 2.7), as shown in Figure 2.6. The

exact form of the search direction S̄
x
i is defined below

S̄
x
i =

[
03×3 03×3
03×3 Wx

i

] [
03×1
σx
i

]
(2.8)

where 0m×n represents a zero matrix of m rows, n columns and Wx
i is a 3 × 3 matrix

defined as

Wx
i =

[
wi

02×3

]
,

and σx
i is a 3 × 1 unit vector (scaled based on width of rectangular cuboid) along the

x dimension of the global reference frame. The basic operation being performed in (2.8)

is the modification of the maximal x bound of the axis aligned rectangular cuboid. In a

similar manner other search directions such as S̄
y
i , S̄

z
i , S̄

−x
i etc. can be defined by replacing

Wx
i , σ

x
i and manipulating the structure of matrices (to change the maximum or minimum

bound of the rectangular cuboid). Given the expanded cell R̄i (line 8 of Figure 2.7) based

on the search direction, fusion with neighbouring cells gk is allowed if (line 9 of Figure 2.7)

∀k such that Rk is contained in R̄i, (2.9)

any of the following two conditions is satisfied (line 10 of Figure 2.7)

∀k : P (gk|z1:t) ≤ µmin and P (gi|z1:t) ≤ µmin, (2.10)

or

∀k : P (gk|z1:t) ≥ µmax and P (gi|z1:t) ≥ µmax. (2.11)

Equation (2.9) simply states that all rectangular cuboids Rk should be contained in

the expanded rectangular cuboid R̄i, whereas (2.10) and (2.11) state that the occupancy

probability of each cell gk should be below µmin or above µmax if the occupancy probability

of cell gi is below µmin or above µmax respectively. The objective of the constraints (2.10)

and (2.11) is to limit the fusion to only those cells which have a high probability of being
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(a) Initial state of the Rtree based occupancy grid

g4
b2

ḡ2

g1b1

b1 b2
R

g1 ḡ2 g4
L L

(b) Final state after the fusion process

Fig. 2.8: An example scenario depicting the hierarchy adaptation of the Rtree occupancy grid
based on the fusion process (colors have been added to aid visualization of the tree
hierarchy). gi represents the grid cells in the hierarchy and b1, b2 represent the MBR.
The following assumptions are made for the example scenario shown above: Firstly
the probability of only cell g2 and g3 is above µmax and the cell g2 is chosen for
expansion and tries to expand in the direction of cell g3. Secondly, the value of M is
assumed to be 2 (as in Figure 2.3) a) The initial state of the hierarchy of the Rtree
occupancy grid. b) The final state of the hierarchy after removal of expanding cell gi
(i = 2), gk (k = 3) and insertion of the fused grid cell ḡ2 (where R2, R3 is contained
in R̄2).

occupied or free and are no longer being updated as they are beyond the clamping thresh-

olds (µmin, µmax). If the conditions stated above are satisfied the cells are fused to form

ḡi = (R̄i P (ḡi|z1:t)). Additionally, cell gi and cells gk (∀k such that Rk is contained in R̄i)

are removed from the grid. The probability of the fused cell is taken as an average probabil-

ity of cells gk (∀k such that Rk is contained in R̄i) that are contained in it (all occupancy

probabilities are above µmax or below µmin based on (2.10) or (2.11)). The fusion function

is called recursively (line 13 of Figure 2.7) after merging the cells to form ḡi. In case fusion

is not possible (line 15 of Figure 2.7), the algorithm returns without any modification in

the cell size. This fusion process continues for all the elements of the set T . The description

mentioned above focuses on the fusion of grid cells i.e. leaf nodes of the Rtree occupancy

grid, however, the incremental adaptation process also causes a change in the tree hier-

archy after every successful fusion. Figure 2.8 shows an example scenario depicting the

hierarchy adaptation due to the incremental fusion process. Once a specific number of

neighbouring cells gk (∀k such that Rk is contained in R̄i) along with the expanding cell

gi have been chosen for fusion, they are first removed from the tree hierarchy (line 12 of

Figure 2.7) which causes a change in the size of MBRC being propagated up the hierarchy

till the root. Additionally, a node might underflow (the number of entries might fall below

d, see Section 2.4) during this removal process; hence that specific node is removed and all

entries in that node are reinserted into the hierarchy based on the least expansion principle

(see Section 2.4). After the cells have been removed, the fused grid cell ḡi is also inserted

into the hierarchy based on the least expansion principle.

Beam-end point Sensor Model

The following subsections provide details in the modification of the cell expansion and

fusion process for beam-end point model in comparison to the beam-based sensor model.
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2.5 Rtree Occupancy Grid

Cell Selection:

The grid cell corresponding to the beam-end point is always selected and allowed to expand,

fuse with neighboring cells. Hence given the ith sensor observation at time t, i.e. zit, the

corresponding cell gi is selected and the set T is only composed of the beam end point

observation.

Cell Expansion and Fusion:

Given the selected cells, the cell expansion and fusion process is a simplified version of the

pseudocode in Figure 2.7 in which the condition on line 10 is modified to

if P (gi|z1:t) and P (gk|z1:t) ≥ µmax

and the condition for the free cells stated in (2.10) is ignored. The hierarchy adaptation

and the cell insertion and deletion process is carried out in the same manner as shown

graphically in Figure 2.8 and discussed in the beam-based sensor model.

2.5.3 Recursion

After the adaptation process, the new sensor observation zt+1 is used to update the oc-

cupancy values of the current grid Gt+1 (Section 2.5.1) followed by another resolution

adaptation or fusion step (Section 2.5.2). This recursive formulation of occupancy update

and cell fusion continues for all sensor observations obtained by the robot. The search di-

rection strategy shown in Figure 2.7 is chosen as it leads to the best results on the Freiburg

campus dataset1 which is used for evaluation in the experimental section. In principle the

success of a specific search strategy for fusion is dependent on the structure of the envi-

ronment which is unknown prior to the mapping process. In the worst case scenario if

no fusion takes place in occupied and free regions (which is highly unlikely as free space

does not have any definite shape and can be fused) the number of grid cells required by

the Rtree based adaptive occupancy grid and the standard occupancy grid are the same

(as the Rtree based adaptive occupancy grid initially contains cubic grid cells). The in-

cremental fusion process presented in this paper is not restricted to any specific search

strategy, rather it can be changed as per requirements or based on any prior information

available about the environment. In the proposed approach µmin and µmax are set to very

low and high occupancy probabilities respectively to ensure that stable regions of the oc-

cupancy grid are fused given a static world assumption. In addition, the fused regions of

the Rtree based adaptive occupancy grid are constrained to be axis aligned. However, this

axis aligned constraint is inherent to virtually all grid based representations as they are

composed of axis aligned cubes.

1Courtesy of B. Steder and R Kümmerle, available at http://ais.informatik.uni-
freiburg.de/projects/datasets/octomap/

31



2 Environment Representation

20 30 40 50 60 70 80
10

3

10
4

10
5

10
6

10
7 Number of cubes/cuboids in the hierarchy

Grid Resolution (cm)

N
u

m
b

e
r 

o
f 

c
u

b
e

s
/c

u
b

o
id

s

 

 

Rtree M=16
Rtree M=32
Rtree M=64
Octomap

wc

Octomap
pruned

(a) Number of required cubes (by Octomap) and
cuboids (proposed approach) in the tree hierarchy
(Semilog plot)

20 30 40 50 60 70 80
10

5

10
6

10
7

10
8

10
9

Grid Resolution (cm)

N
u

m
b

e
r 

o
f 

G
ri
d

 C
e

lls

 

 

Rtree M=16
Rtree M=32
Rtree M=64
Octomap

wc

Octomap
pruned

Full grid

(b) Number of grid cells (Semilog plot)

20 30 40 50 60 70 80
10

−4

10
−3

10
−2

10
−1 Average insertion time per point

Grid Resolution (cm)

In
s
e

rt
io

n
 t

im
e

 (
m

ill
i 
s
e

c
)

 

 

Rtree M=16

Rtree M=32

Rtree M=64

Octomap

(c) Average insertion time per point (Semilog plot)

20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4
Access time for all occupied cells

Grid Resolution (cm)

A
c
c
e

s
s
 t

im
e

 (
s
e

c
)

 

 

Rtree M=16
Rtree M=32
Rtree M=64
Octomap

pruned

(d) Access time for occupied cells only, given the
complete tree hierarchy consisting of occupied and
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Fig. 2.9: Results on all 81 scans of the Freiburg campus dataset using the beam-based sensor
model. (a) The number of cubes and cuboids required by Octomap and the Rtree
based adaptive occupancy grid in the tree hierarchy (not including the leaves nodes).
An increase in parameter M causes the Rtree to effectively reduce the number of
cuboids required for representation in the hierarchy. (b) The number of grid cells as
a function of the grid resolution shown as a semilog plot. The grid cells (leaf nodes)
required by the Rtree based adaptive occupancy grid is less than Octomap due to
the incremental fusion process which leads to axis aligned rectangular cuboids. (c)
The average insertion time (per point) of the Octomap and the Rtree based adaptive
occupancy grid. (d) Access times for occupied grid cells only given the entire hierarchy
consisting of free and occupied grid cells.

2.6 Experimental Evaluation

This section presents an experimental evaluation of the proposed approach for different

inverse sensor models discussed in section 2.5.1. In addition, this section also highlights

the influence of the maximum number of entries per node, i.e. M , on the Rtree hier-

archy construction process. The proposed adaptive occupancy grid is compared to the

Octomap [73, 200] (version 1.6.1) approach on the Freiburg campus dataset. The impor-

32



2.6 Experimental Evaluation

tant aspects such as occupancy thresholds i.e. µmin = 0.12, µmax = 0.97 and inverse sensor

models parameters i.e. Pocc = 0.7, Pfree = 0.4 are the same as mentioned in [73] and were

fixed for all experiments discussed in this section. The evaluation is based on the insertion,

access time as well as the number of grid cells required for 3D representation. The insertion

time is defined as the time required to insert all laser scans into the grid. In context of the

Rtree based adaptive occupancy grid it also includes the time taken by the fusion process

of the grid cells. The access time of Octomap and the Rtree based adaptive occupancy

grid corresponds to the time taken to access only the occupied grid cells given the entire

hierarchy after all scans have been inserted. The graph2tree tool (provided along with Oc-

tomap implementation) is used to determine the number of inner, leaf nodes and insertion

time of Octomap. The access time of Octomap is determined by using the iterator based

access method (on the pruned Octomap) after all scans were inserted. The evaluation is

performed on a single core of an Intel i5-2500K, 3.3 GHz processor with 16 GB RAM.

2.6.1 Beam based Model

Figure 2.9 shows the results of the evaluation on all 81 scans of the Freiburg campus dataset

based on the insertion, access time as well as the number of grid cells required by both

approaches. Figure 2.9(a) shows the number of cuboids required in the tree hierarchy by

the Rtree based occupancy grid in comparison to the cubes required by Octomap. In case of

the Rtree occupancy grid, the evaluation is shown for different branching factors M whereas

the Octomap evaluation is shown for two cases i.e. without compression (wc) and pruned.

In contrast, Figure 2.9(b) shows the number grid cells required by both approaches. It

can be seen through the above mentioned figures that the Rtree based adaptive occupancy

grid requires fewer grid cells as well as cuboids in the tree hierarchy in comparison to

the cubes and grid cells of the Octomap approach. Focusing on cubes/cuboids required

in the tree hierarchy first, two main reasons can be attributed to this, firstly Octomap

(based on Octrees) has a pre-defined hierarchy consisting of cubes with the number of

children per node fixed to 8. In contrast, the nodes in the Rtree based occupancy grid can

contain an arbitrary maximum number of children (M) which can effectively reduce the

number of nodes required (as discussed in Section 2.4). Secondly, the MBRC in the Rtree

based adaptive occupancy grid hierarchy can overlap and are not constrained to be cubic.

Considering the number of grid cells required for representation as shown in Figure 2.9(b),

the comparison between pruned Octomap and the Rtree based adaptive occupancy grid is

interesting. The Octomap approach uses the µmin and µmax threshold to prune out regions

of the Octree hierarchy (nodes and leaves) to achieve compression whereas the Rtree based

adaptive occupancy grid approach uses these parameters for fusion of entries in the leaf

nodes only. The reduction in the number of grid cells required to represent the environment

by the Rtree based adaptive occupancy grid in contrast to pruned Octomap is 28.51% at

a 20 cm resolution grid. The amount of grid cells required by the full 3D grid, or standard

occupancy grid, as shown in Figure 2.9(b) is calculated based on [73]
x× y × z

r3
, where x, y

and z is the minimal bounding box in each dimension (292 × 167 × 28 m for the Freiburg

campus dataset) and r represents the resolution of the grid in meters. It is important to

specify here that for a fixed grid resolution the maximum number of entries per node M
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does not influence the number of grid cells required for representing the environment nor

the fusion process. A comparison with the maximum likelihood compression of Octomap

is not performed in this chapter as it involves thresholding (either occupied or free) all the

nodes of the Octree. Due to its lossy nature, this thresholding process might lead to an

inaccurate environment representation. In addition, the occupancy probability is essential

for the Rtree based adaptive occupancy grid as the entire resolution adaptation process is

based on it. Consequently, this would prevent probabilistic fusion of grid cells in case the

robot receives additional sensor observations.

Figure 2.9(c) shows the normalized insertion time per point of the Rtree based adaptive

occupancy grid and Octomap. The Rtree based adaptive occupancy grid is slower than

Octomap due to multiple reasons. The Rtree based adaptive occupancy grid incrementally

generates the tree hierarchy based on node splitting and least expansion as observations are

obtained whereas Octomap has a predefined hierarchy consisting of cubes. Additionally,

due to the fusion process the tree hierarchy of the Rtree based adaptive occupancy grid

needs to be regularly updated. The variation in grid cells (entries in the leaf nodes)

is propagated up the hierarchy leading to a change in the MBRC of the inner branches.

Finally, the overlaps between the MBRC of the inner branches in the Rtree based occupancy

grid can also slow down the query/search process. An increase in parameter M increases

the tree width as well as the insertion time because of increased overlaps between MBRC.

Figure 2.9(d) shows the time required to access all the occupied cells in the grid given

the entire hierarchy composed of occupied and free grid cells. It can be seen that the

Rtree based adaptive occupancy grid is capable of accessing the occupied cells faster than

Octomap. An increase in parameter M also reduces the number of nodes required in

the Rtree hierarchy and causes the access time of occupied cells to decrease as can be

seen in Figure 2.9(d). Figure 2.11 shows examples of the axis aligned rectangular cuboids

generated by the Rtree based adaptive occupancy grid for the occupied regions on the

Freiburg campus dataset. The fused free space regions are not shown in the figure for the

ease of visualization.

2.6.2 Beam end-point Model

This subsection presents the results of the evaluation of the Rtree occupancy grid and

the Octomap approach using the beam-end point sensor model discussed in Section 2.5.1.

Figure 2.10 shows the results for the Rtree based occupancy grid and the Octomap approach

using the same evaluation metrics used in the beam-based sensor model. It can be seen

that the overall trend and conclusion are the same for the beam-based and the beam-end

point sensor model. Figure 2.10(a) shows that the Rtree based occupancy grid requires

less number of inner nodes in the hierarchy to represent the grid in comparison to the

Octomap approach. In addition by comparing Figure 2.10(a) and Figure 2.9(a), it can be

seen that the magnitude of inner nodes required for the beam-end point based model is

less than the beam-based sensor model. The reason for this being that the beam-end point

based model does not model free space. Figure 2.10(b) shows the number of grid cells

required by both approaches. It can be seen that due to the cubic grid cell assumption

the Octomap compression, i.e. pruned vs without compression, does not work well for the

beam-end point model. This essentially highlights that the compression results visible in
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Fig. 2.10: Results on the Freiburg campus dataset using the beam-end point sensor model.
(a) The number of cubes and cuboids required by Octomap and the Rtree based
adaptive occupancy grid in the tree hierarchy (not including the leaves nodes). (b)
The number of grid cells as a function of the grid resolution shown as a semilog
plot. (c) The average insertion time (per point) of the Octomap and the Rtree
based adaptive occupancy grid. (d) Access times for occupied grid cells.

Figure 2.9(b) for Octomap are mainly due to fusion in free space regions as it does not

have a definite shape. It can also be seen that the number of grid cells required by the

Rtree based occupancy grid is less than the Octomap approach as occupied regions can be

effectively approximated by rectangular cuboids. In addition by comparing Figure 2.10(b)

with Figure 2.9(b), a huge reduction is observed in the magnitude of grid cells required to

represent the environment as the beam-end approach only models the occupied regions. As

stated in the previous subsection and visible in the results of this section in Figure 2.10(c),

the insertion time for the Rtree occupancy grid is worse than the Octomap approach due

to the incremental construction, update of the hierarchy as well as the presence of overlaps

between cuboids of inner nodes within the hierarchy. Similar to the beam-based sensor

model, it can be seen in Figure 2.10(d), that the access times of the Rtree based occupancy

grid are better than the Octomap approach.
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(a) Visualization of fused occupied grid cells (b) Visualization of fused occupied
grid cells

Fig. 2.11: Visualization of fused occupied grid cells on the Freiburg campus dataset (colors
have been assigned for the ease of visualization).

2.7 Conclusion and Future Work

This chapter proposes an approach which is capable of modeling the environment using

a variable resolution grid. The variable resolution grid is stored in a hierarchy of axis-

aligned rectangular cuboids, which is generated incrementally and adapted based on sensor

observations. In addition, the presented approach is quite flexible as it allows the user to

define the maximum number of entries per node thereby influencing its performance in

terms of the number of nodes required in the hierarchy for representation as well as the

insertion and access times. An extensive evaluation is carried out of the proposed approach

in comparison to the state-of-the-art Octomap approach on a publicly available dataset.

The evaluation shows that the proposed approach requires less number of grid cells to

approximate the environment and furthermore allows faster access times of the occupied

regions in the grid.

Future work includes an evaluation of the proposed approach in modeling dynamic

environments. The scope of this thesis has been limited to static environments, however

the proposed fusion process is easily extendable to environments containing dynamics.

This extension is possible by splitting the fused cells of the dynamic region based on

the chosen resolution of the grid, if the occupancy probability goes above or below the

clamping threshold. Additionally, future work also includes an evaluation of different

search strategies for the grid cell fusion process of the Rtree based adaptive occupancy

grid.
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Summary and Contribution: This chapter contributes in the domain

of SLAM by proposing an approach that is capable of acquiring surface

reflectivity characteristics from laser scanner observations for robot pose

estimation and mapping. Hence this chapter discusses a simple calibra-

tion approach to acquire a pose-invariant measure of surface reflectivity

from laser scanner observations. Furthermore, this reflectivity measure

is embedded in an extension of the Hector SLAM algorithm which utilizes

this information for pose estimation as well as acquiring a reflectivity

map of the environment i.e. occupancy grid map augmented with surface

reflectivity characteristics. An extensive experimental evaluation is car-

ried out to highlight the advantages as well as attributes of the calibration

approach and the proposed extension of the Hector SLAM algorithm.

3.1 Introduction

The research work in the field of Simultaneous Localization and Mapping (SLAM) [59,

82, 90] has provided robots the capability of simultaneously estimating their own pose and

acquiring an accurate topological/metric map of the environment. The previous chapter

of this thesis focused on the aspect of environment representation, which provides the

foundation for creating a map by defining the geometric primitive used for approximating

the environment. In contrast this chapter focuses on SLAM, which couples the geometric

primitive used for environment representation with the robot pose estimation process to

allow online, incremental map generation of the environment based on sensor observations.

An accurate map of the environment is essential requirement for a variety of robotic tasks

such as global localization, navigation and exploration. SLAM has been an active research

area in the field of robotics due to its application in the domain of autonomous driving,

personal assistive robots etc. The SLAM algorithm consists of two core components:

firstly the pose estimation and secondly the map creation process. A good pose estimate

is required to generate an accurate map and at the same time an accurate map is essential

for accurate pose estimation, hence SLAM is typically titled the chicken-and-egg problem.

The initial research focus of the robotics community within the domain of SLAM was on

the development of filtering algorithms such as the extended Kalman filter (EKF) [39, 171].

The research community has focused on different aspects of EKF SLAM i.e. computational

complexity [39, 151] as well as the consistency of the algorithm [4, 80]. The complexity of

the EKF is O(n2) due to the covariance matrix update where n is the number of landmarks

in the map. The EKF has been successfully applied for small scale environments, however

the quadratic complexity limits its usage for environments containing a large number of

features. To deal with this complexity different approaches have been proposed that rely on
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map update in local regions [62, 180]. Recently, the extended information filter [185, 194]

has been proposed which takes advantage of the sparseness of the information matrix (i.e.

inverse of the covariance matrix) to deal with the above mentioned issue. In addition,

a divide and conquer mechanism [151] been proposed that has linear complexity in the

number of landmarks in the map. The research community has also focused on the aspect

of inaccuracies caused by the linearization of the EKF leading to the usage of the unscented

Kalman filter (UKF) [112]. Another aspect of intense focus within the SLAM community

has been to relax the Gaussian assumption associated with Kalman filters, as the mobile

robot kinematics are nonlinear leading to non Gaussian distributions. To resolve this issue,

particle filter [59, 122, 123] based approaches have been proposed that try to explicitly

model the distribution using samples. The interest in the application of particle filters

for SLAM has mainly been driven by the increase in computational power in the last few

decades.

In contrast to the usage of filtering algorithms i.e. EKF, UKF or the particle filters,

recently the research work in the robotics community has focused on the usage of smoothing

algorithms for SLAM [36, 81, 82]. Along similar lines, different graph optimization based

SLAM approaches have also been proposed [95, 186]. The majority of this work is inspired

by the research on (sparse) bundle adjustment in the domain of computer vision and

photogrammetry [66, 93, 105, 192]. In graph SLAM literature, the entire framework is

typically divided into two components: the front-end and the back-end. The front-end deals

with the raw sensor data and generates the graph structure by defining the node positions

as well as edge constraints between nodes. These edge constraints can define two different

cases: firstly the motion between consecutive robot poses and secondly the case when the

robot returns to a previously visited location (loop closure constraints). The back-end takes

these constraints and estimates the posterior distribution over the robot poses. In addition

in context of SLAM, there also exist scan matching based approaches [37, 119, 143, 145],

which can be sufficiently accurate for small scale mapping. Typical examples of such scan

matching algorithms include iterative closest point (ICP) [157, 166], Normal distribution

transform (NDT) [10, 109] as well as Hector SLAM [90]. These approaches typically

estimate the transformation between consecutive robot poses either by simple scan to scan

or scan to map matching technique.

The majority of the research work in the domain of SLAM focuses on using laser scanner

observations to generate an accurate geometric model of the environment. In addition to

measuring the distance to an object, a typical laser scanner also quantifies the remission

values, i.e. received optical power, after reflection from the surface. This remission value is

termed as intensity and depends (among other parameters) on an intrinsic surface property

(surface reflectivity) as well as extrinsic parameters such as distance to the surface and

angle of incidence with respect to the surface normal. Hence theoretically speaking given a

model that defines the influence of the extrinsic parameters, it is possible to acquire a pose-

invariant measure of surface reflectivity which can serve as additional information in a wide

variety of robotic applications. This chapter presents a simple data-driven model of laser

intensities through which a pose-invariant measure of surface reflectivity can be acquired.

In addition, this measure is used in an extension of the Hector SLAM [90] algorithm which

employs it for robot pose estimation and furthermore augments geometric models of the
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environment with surface reflectivity characteristics. It is important to highlight the scope

of the proposed approach within the SLAM framework. The proposed approach can serve

as part of the front-end of SLAM algorithms that estimates the transformation (using

surface reflectivity) between consecutive robot poses (edge constraints) and furthermore

acquires a geometric model (occupancy grid) of the environment augmented with surface

reflectivity characteristics. In principle, any graph SLAM back-end [57, 81, 82] can be

coupled with the proposed approach as SLAM back-ends are considered to be sensor ag-

nostic. The capability of acquiring a geometric model augmented with surface reflectivity

characteristics provides the possibility of using this information in the context of global

localization [35, 165] and loop closure [137, 149, 189, 213, 214]. To explain this briefly in a

simplistic scenario, consider a robot that traverses an infinitely long corridor as shown in

Figure 3.1. In this context if the robot pose estimation is based only on metric informa-

tion, the uncertainty along the principle direction of the corridor is unbounded as shown

in Figure 3.1(a). However, if the corridor contains surfaces of different reflectivity and the

pose estimation algorithm uses this information then the robot pose can be determined

accurately as shown in Figure 3.1(b). The emphasis of this chapter is on the development

of a data-driven model of intensities and its usage in the SLAM front-end.

y

x

(a) Pose estimation using metric information

y

x

(b) Pose estimation with additional reflectivity in-
formation

Fig. 3.1: Comparison of uncertainty for pose estimation (without odometry estimates) with
and without reflectivity information.

3.2 Related Work & Contribution

In the last few decades a large amount of research work has been carried out in the field

of SLAM [59, 81, 82, 90] in which a robot generates a geometric model of its environment

based on laser scanner observations. In contrast, the research work on the applications of

laser intensities in the domain of SLAM and to a certain extent in the field of robotics

is rather insignificant. In [61, 132], the authors use retro-reflective markers as artificial

beacons due to their significant difference in surface reflectivity to identify landmarks

for SLAM. The most relevant research work with respect to this chapter of the thesis

is presented in [204] in which an iterative closest point (ICP) [9] variant is presented

that uses intensities to determine point correspondences between consecutive scans for

transformation estimation. The above mentioned approach makes the assumption that
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the robot pose does not change significantly thereby ignoring the influence of extrinsic

parameters (distance to the surface and angle of incidence to the surface normal). In

contrast to the approach mentioned above, this chapter focuses on developing a data-driven

approach to model the influence of extrinsic parameters on laser intensities to acquire a

pose-invariant measure of surface reflectivity. These reflectivity characteristics are stored

in a reflectivity map (occupancy grid augmented with reflectivity characteristics) for which

the pose-invariance property is important as the same surface might be observed by the

robot from different poses. In addition, the reflectivity characteristics are also used for

pose estimation by matching the current scan (equipped with intensities) with an already

acquired reflectivity map. In this specific case the robot position can change significantly

(depending on the map update rate).

In contrast to the field of SLAM, laser intensities have been used for localization [101]

and visual odometry [116]. A brief comparison of the proposed approach with those in the

above mentioned domains is carried out to highlight the differences. In [101], the authors

propose an approach based on particle filters that use intensities to localize an autonomous

car in a highway scenario within an apriori known map. The approach uses lane marking

for localization which are highly reflective in nature in comparison to asphalt to aid driving

thereby not requiring any extrinsic parameter correction. In contrast, this chapter focuses

on an approach that explicitly models the influence of distance and angle of incidence

on intensities. The work presented in [116] proposes an appearance based mechanisms

(detecting SIFT/SURF features on a planar projection of 3D intensity point cloud) for

LIDAR sensors to perform visual odometry. It is important to highlight that in context

of visual odometry the focus is on pose estimation based on consecutive images (during

which the pose does not change significantly) without constructing a map. As the pose of

the robot does not change significantly between consecutive images, the effect of distance

and angle of incidence can be ignored to a large extent (in the paper the authors model the

effect of distance, however they ignore the influence of angle of incidence). In addition, the

appearance based mechanisms (SIFT and SURF features) are not directly applicable to

the 2D Hokuyo/SICK Lidars used in this chapter. In addition, laser intensities have also

been used for human detection [22], terrain classification [199] and object tracking [47, 65].

The main contributions of this chapter are highlighted below:

• A simple data-driven approach to model laser intensities for different scanners (Sec-

tion 3.3.2)

• An extension of Hector SLAM capable of acquiring geometric models augmented

with surface reflectivity characteristics (Section 3.4)

• An evaluation of the proposed data-driven approach and Hector SLAM extension

(Section 3.5)

3.3 Modeling Laser Intensities

This section is divided into two main subsections. The first subsection focuses on the

motivation of developing a data-driven approach to model laser intensities whereas the
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second subsection discusses the details of this data-driven approach.

3.3.1 Motivation for a Data-driven Approach

This subsection discusses the intensity characteristics of the most commonly used scanners

in the field of robotics namely Hokuyo UTM-30LX and SICK LMS 291-S051. To identify

the extrinsic parameters which influence the intensity characteristics, it is essential to

consider the LIDAR equation which is commonly used in the field of remote sensing [75,

152]. The LIDAR equation given the lambertian reflector assumption defines the relation

between the received optical power Prec and extrinsic parameters

Irec ∝ Prec ∝
% cos(α)

r2
, (3.1)

where % represents the surface reflectivity, r represents the distance (radial coordi-

nate/distance) to the surface and α corresponds to the angle of incidence with respect to

the surface normal. The proportionality between Prec and extrinsic parameters exists due

to presence of additional constant parameters such as

Prec =
Pemitd

2
apt% cos(α)τsys

4r2
,

the emitted power Pemit, system transmission factors τsys, aperture diameter dapt etc. [44,

71]. Irec represents the intensity increment, which is obtained after post-processing of the

received optical power Prec by the laser scanner. The intensity increment is assumed to be

proportional to the received optical power. Eq (3.1) defines the parameters which influence

intensities, hence the distance r and the angle of incidence α are the extrinsic factors that

need to be considered during the modeling phase. In contrast, % is an intrinsic surface

property; which is useful for differentiating surfaces with different reflectivity properties.

Although (3.1) contains all the extrinsic parameters that influence intensities, it is a crude

approximation and does not consistently (over the complete domain of distance and angle

of incidence) explain the empirical data for high-end terrestrial scanners [13, 44] as well as

the laser scanners investigated in this thesis. To explain this briefly, consider the inverse

square distance relationship in (3.1). Figure 3.2(a) and 3.2(b) shows the variation of the

intensity increment Irec for the Hokuyo and SICK scanner as a function of distance r

(with a fixed angle of incidence α ≈ 0◦) given the same surface (fixed %) i.e. standard

white printing paper. It can be seen that the inverse square distance relationship breaks

down at close distances because Irec starts decreasing instead of increasing. This effect

has also been observed for high powered terrestrial laser scanners [13, 44] and has been

termed the near distance effect. In photogrammetry and remote sensing literature this

effect has been attributed to the defocusing of the receiver optics [44] (causing Prec to

decrease and consequently Irec to decrease) for certain terrestrial laser scanners such as

1Intensities for the SICK LMS 291-S05 scanner were acquired by configuring the scanner to the un-
documented measuring mode 13 (0Dh). The subcommand 2Bh can be used to request distance and
intensity to which the scanner responds with the response F5h [51].
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(a) Intensity increment Irec as a function of the
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(b) Intensity increment Irec as a function of dis-
tance r (radial coordinate/distance) for the SICK
scanner
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(d) Normalized intensity as function of angle of in-
cidence α for different fixed distances r in case of
the SICK

Fig. 3.2: Intensity characteristics of the Hokuyo UTM-30LX and the SICK LMS 291-S05 scan-
ner as a function of distance r in meters (radial coordinate/distance) and angle of
incidence α in degrees with standard white printing paper as the surface that is being
measured. a-b) The characteristics of the Hokuyo and the SICK scanner as func-
tion of distance r with a fixed angle of incidence to the surface normal (α ≈ 0◦).
Both scanner exhibit a decrease in intensity increment Irec at close distances which is
termed as the near distance effect [44]. The intensity characteristics are shown upto
a distance of 19 meters as all the evaluations performed in this thesis were carried
out indoors (18-20 m being the distance between the furthest surfaces). c-d) The
variation in intensity as function of α given that the surface is observed at a fixed
distance r in case of the Hokuyo and SICK scanner. The influence of the distance
r is removed by normalizing the intensity, i.e. dividing the intensity increment with
the value corresponding to α = 0◦, for a fixed distance r. Hence, the normalized
intensity lies in the [0 1] interval. It is important to highlight that the angle of
incidence is calculated by taking the dot product between the laser beam direction
and the surface normal. The surface normal is the eigenvector corresponding to the
smallest eigenvalue of the covariance matrix which is estimated by considering the
neighbourhood around a certain point [158]. As the estimation of the surface normal
degrades with point cloud density, the intensity characteristics could only be acquired
upto α ≤ 80◦ for small distances and α ≤ 60◦ at large distances.
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the Z+F2 scanner. In principle, this effect is largely dependent on the intrinsic design

and internal processing performed by the laser scanner (Riegl3 scanners exhibit different

intensity characteristics at near distances [13]), the details of which are not readily provided

by companies making it difficult to ascribe a specific reason in case of the Hokuyo and SICK

scanner. Similarly, in our evaluation the variation of normalized intensity as a function of

α (after removal of the influence of r - see caption of Figure 3.2) also does not follow the

cosα model as shown in Figure 3.2(c) and 3.2(d). This inconsistency is generally attributed

to the assumption that the surface should exhibit lambertian reflectance which is rarely

the case. The highlighted inconsistency as well as the scarcity of system-based-models,

due to lack of information from laser companies about the internal processing and intrinsic

design, is the main motivation for developing a data-driven approach to model intensities.

The objective of this model is to quantify the variation of intensity as a function of r and

α to acquire a pose-invariant measure of surface reflectivity. Two different strategies can

be adopted to develop a simple data-driven model, firstly assuming that the variation in

intensity due to r and α can be modeled independently

Irec ∝ Prec ∝ %f(r)f(α), (3.2)

where f(r) and f(α) are the estimated data-driven functions defining the effect on inten-

sities. In contrast, the second strategy is to develop a model

Irec ∝ Prec ∝ %f(r, α), (3.3)

where f(r, α) jointly models the variation in intensities due to r and α. Figure 3.2(c)

and 3.2(d) helps in assessing the plausibility of the assumptions in (3.2) and (3.3). If

the assumption in (3.2) is true, the variation in the normalized intensity (effectively the

removal of the influence due to r) should be the same at different r, however Figure 3.2(c)

and 3.2(d) shows that this assumption does not hold for the Hokuyo and the SICK scanner

at α ≥ 20◦ for different r. Given the trend in Figure 3.2(c) and 3.2(d), this thesis focuses

on a data-driven approach to model intensities using (3.3).

3.3.2 Proposed Calibration Approach

This section defines a simple data-driven approach to model laser intensities and acquire a

measure of surface reflectivity. Given a material with a known reflectivity coefficient %, it

is possible to calibrate and determine the function f(r, α) in (3.3). In case of unavailability

of a surface with known reflectivity it is possible to acquire a relative measure of surface

reflectivity. In this thesis the second option is considered due to its simplicity and appli-

cability even in case of absence of standard materials with known reflectivity. Hence, the

calibration process requires a reference surface (standard white printing paper) for which

the intensities are measured as

Iref ∝ Pref ∝ %reff(r, α). (3.4)

2http://www.zf-laser.com/
3http://www.riegl.com/
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Eq. (3.3) defines the intensity increment Irec for a specific surface with reflectivity % being

currently observed at a specific r and α whereas (3.4) defines the intensity increment Iref
for the reference surface at the same r and α. Hence, (3.3) and (3.4) can be used to acquire

a relative measure of surface reflectivity as

Irec
Iref
∝ Prec

Pref

∝ %f(r, α)

%reff(r, α)
=

%

%ref
= %̄. (3.5)

(a) Approximated intensity increment Iref ∝
%reff(r, α) for Hokuyo UTM30-LX

(b) Approximated intensity increment Iref ∝
%reff(r, α) for SICK LMS 291-S05

Fig. 3.3: The approximated intensity increment Iref ∝ %reff(r, α) surface of the Hokuyo and the
SICK scanner obtained by using a scattered interpolant. This surface is furthermore
sampled using a fine grid over r and α to generate a Lookup table (LUT) based
model. As mentioned earlier the intensity characteristics are collected upto a distance
of 18-20 m as all the evaluations were carried out indoors (for indoor scenarios this
calibration is sufficient). If required the proposed approach can be applied in the
same manner to acquire intensity characteristics over a wider r and α domain.

The relative measure %̄ defines the reflectivity of the measured surface with respect to

the reference surface (white paper). It is important to specify that this model assumes that

the function f(r, α) varies in the same manner for all surfaces, hence ignoring any coupling

of the function f with %. In the experimental evaluation carried out in indoor environ-

ments (see Section 3.5) this assumption yielded good results. The proposed approach, i.e.

using the function f(r, α), is a data-driven formulation in contrast to the standard cosα

and inverse squared distance model. An important aspect of the proposed model is the

approximation of Iref. This approximation is performed by collecting observations of the

reference surface at different r and α. Since it is not possible to acquire values at every

r and α, a scattered interpolant (with linear interpolation) is used to approximate the

values between given observations. This approximated surface obtained for the Hokuyo

and SICK scanner is shown in Figure 3.3. This surface is furthermore sampled using a fine

grid over r and α to generate a lookup table (LUT) based model. The main advantage of

this LUT based model is that it can be computed offline and during online operation it

requires simple array indexing thereby reducing computational cost.
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3.4 Extension of Hector SLAM

This section focuses on using the relative reflectivity measure acquired in the previous

section in an extension of the Hector SLAM [90] algorithm in which a robot acquires a

geometric model augmented with a measure of surface reflectivity. The first subsection

explains the occupancy grid structure whereas the second subsection focuses on the trans-

formation estimation process based on the surface reflectivity measure by matching the

current scan at time index t with an already acquired reflectivity map until time t− 1.

3.4.1 Occupancy and Reflectivity Grid Structure

Let G = {g1, . . . , gp} represent the regular grid structure which stores two attributes,

firstly the occupancy probability P (gi) and the surface reflectivity characteristics R(gi)

observed for the ith grid cell gi. Let zt =
{
{st1, %̄t1}, . . . {stn, %̄tn}

}
be the observation of

the scanner at time index t consisting of n cartesian coordinates and surface reflectivity

measures (obtained from the LUT based model correction). The notation sti = [sti,x, s
t
i,y]

corresponds to the world coordinate scan end points. The occupancy probability of a

grid cell is calculated using the standard recursive occupancy update equation defined

in (2.6) [73, 89, 211]

P (gi|z1:t) =

[
1 +

1− P (gi|zt)
P (gi|zt)

1− P (gi|z1:t−1)
P (gi|z1:t−1)

P (gi)

1− P (gi)

]−1
.

The equation above can be converted to the log odds form to simplify the computation. In

addition to the occupancy probability, the grid structure also stores the relative reflectivity

characteristics of the surface (acquired from the LUT based model) for the ith cell gi. In the

ideal case the reflectivity measure would be invariant to the robot pose thereby yielding a

constant value for a specific surface, however a violation of the assumption in Section 3.3.2

or inaccurate surface normal estimation can cause reflectivity characteristics to vary. The

reflectivity measure of each grid cell is calculated using a simple incremental averaging

mechanism

Rm(gi|zt) = Rm(gi|zt−1) +
i%̄tj −Rm(gi|zt−1)

ngi
,

where Rm(gi|zt) represents the incremental mean of all the surface reflectivity observations

till time index t. i%̄tj represents the jth reflectivity measure in the sensor observation zt for

the ith grid cell gi and ngi represents the total number sensor observations for gi. The left

superscript of the reflectivity measure %̄ is not mentioned explicitly unless necessary for

clarification.

Due to the discrete nature of the grid a bilinear interpolation scheme is adopted to

allow subgrid accuracy as done in the original Hector SLAM paper [90]. However, the

proposed approach interpolates the relative surface reflectivity measure rather than the

occupancy probabilities and additionally frames the transformation estimation problem

over this measure as discussed in the next subsection. Given a continuous coordinate P ,

the reflectivity characteristic R(P ) is approximated by using the four closest grid cells
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coordinates (assuming the indices to be (i, j, k, l) with xi = xk, xj = xl, yi = yj and

yk = yl. x∗, y∗ are the metric coordinates of cell g∗ in the geometric map) as

R(P ) ≈ y − yi
yk − yi

(
x− xi
xj − xi

Rm(gi) +
xj − x
xj − xi

Rm(gj)

)

+
yk − y
yk − yi

(
x− xi
xj − xi

Rm(gk) +
xj − x
xj − xi

Rm(gl)

)
.

Similarly the gradient ∇R(P ) =
(
∂
∂x
R(P ), ∂

∂y
R(P )

)
is approximated as in [90] by replacing

the occupancy probabilities with the reflectivity measure

∂R(P )

∂x
≈ y − yi
yk − yi

(
Rm(gl)−Rm(gk)

)
+
yk − y
yk − yi

(
Rm(gj)−Rm(gi)

)
,

∂R(P )

∂y
≈ x− xi
xj − xi

(
Rm(gl)−Rm(gj)

)
+
xj − x
xj − xi

(
Rm(gk)−Rm(gi)

)
.

3.4.2 Scan Matching

This section explains the robot pose estimation process for aligning new sensor observations

with an existing reflectivity map. The proposed Hector SLAM extension formulates the

estimation of the robot pose ζ =
[
tx, ty, θ

]
as the minimization of the cost function

ζ∗ = arg min
ζ

n∑
i=1

[
%̄ti −R(Si(ζ))

]2
, (3.6)

where %̄ti represents the reflectivity measure of the ith beam end point in the sensor obser-

vation zt and R(Si(ζ)) corresponds to the reflectivity measure in the map based on the

transformed beam end point coordinates Si(ζ) as

Si(ζ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)(
sti,x
sti,y

)
+

(
tx
ty

)
. (3.7)

Given an initial pose estimate of the robot, the objective is to find ∆ζ which minimizes

the error
n∑
i=1

[
%̄ti −R(Si(ζ + ∆ζ))

]2
→ 0. (3.8)

Using the first order Taylor series expansion of R(Si(ζ + ∆ζ)) the expression becomes

n∑
i=1

[
%̄ti −R(Si(ζ))−∇R(Si(ζ))

∂Si(ζ)

∂ζ
∆ζ
]2
→ 0.
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Taking the partial derivative w.r.t ∆ζ and setting it to zero

2
n∑
i=1

[
−∇R(Si(ζ))

∂Si(ζ)

∂ζ

]T[
%̄ti −R(Si(ζ))−∇R(Si(ζ))

∂Si(ζ)

∂ζ
∆ζ
]

= 0,

n∑
i=1

[
∇R(Si(ζ))

∂Si(ζ)

∂ζ

]T[
%̄ti −R(Si(ζ))−∇R(Si(ζ))

∂Si(ζ)

∂ζ
∆ζ
]

= 0.

By rearranging the terms, the above equation can be written as

n∑
i=1

[
∇R(Si(ζ))

∂Si(ζ)

∂ζ

]T[
∇R(Si(ζ))

∂Si(ζ)

∂ζ
∆ζ
]

=
n∑
i=1

[
∇R(Si(ζ))

∂Si(ζ)

∂ζ

]T[
%̄ti−R(Si(ζ))

]
.

(3.9)

Solving (3.9) for ∆ζ yields the Gauss-Newton equation

∆ζ =
n∑
i=1

H−1
[
∇R(Si(ζ))

∂Si(ζ)

∂ζ

]T [
%̄ti −R(Si(ζ))

]
,

where H corresponds to the hessian matrix which is calculated as

H =

[
∇R(Si(ζ))

∂Si(ζ)

∂ζ

]T[
∇R(Si(ζ))

∂Si(ζ)

∂ζ

]
.

The term ∂
∂ζ
Si(ζ) can be easily calculated from (3.7) as

∂Si(ζ)

∂ζ
=

(
1 0 − sin(θ)sti,x − cos(θ)sti,y
0 1 cos(θ)sti,x − sin(θ)sti,y

)
.

In addition, the proposed extension of Hector SLAM takes advantage of the multi-

resolution map as in [90] to escape local minima. An advantage of framing the pose

estimation problem on gradient based methods is that the pose uncertainty can be directly

computed from the inverse of the hessian matrix H as

K = σ2H−1

where K is the approximated covariance matrix and σ is a factor dependent on the sensor

properties. This uncertainty can furthermore be used by SLAM back-ends [81, 82] to

estimate the posterior distribution over the complete pose graph.

3.5 Experimental Evaluation

This section presents a quantitative evaluation of the proposed approach. The first sub-

section focuses on highlighting the importance of the LUT model by showing the effect of

ignoring the influence of extrinsic parameters whereas the second subsection presents an
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evaluation of the proposed Hector SLAM extension.

3.5.1 Evaluation of the LUT Model

To highlight the advantage of the proposed approach it is important to consider alternative

models that ignore the influence of extrinsic parameters (r and α). The following subsection

gives a brief description of the alternative models considered in this thesis for comparison

with the proposed approach.

Alternative Models

Given the extrinsic parameters (r and α) two different possibilities can be considered,

firstly a model which ignores the effect of both r and α and directly uses the intensity

increment Irec. From here on in, this model is titled the raw model.

The second possibility is to model the influence of r, however systematically ignore the

influence of α. Hence, this model corrects the intensity increment Irec based on f(r) which

is generated by fitting a polynomial

f(r) =
n+1∑
i=1

pir
n+1−i,

to the intensity increment curve shown in Figure 3.2(a) and 3.2(b). Normalizing the

intensity increment Irec by the reference (white paper) polynomial curve f(r) corrects the

sensor observation based on r, however ignores the influence of α. This model is titled the

range model for further reference.

Quantitative Evaluation

To highlight the importance of extrinsic parameter correction (r and α) and the ability

of the LUT in differentiating between surfaces of different reflectivities, a quantitative

evaluation is performed in comparison to the alternative models. To acquire data for

this quantitative evaluation, the laser scanner is mounted in a push-broom configuration

(scanning vertically while the robot moves horizontally) thereby acquiring 3D models of the

environment as shown in Figure 3.8.

From the point cloud data, different samples (36000 point observations in total) were

collected from the 3 different surfaces marked in Figure 3.8(a). The points sampled from

surface 1 correspond to different extrinsic parameters (r and α) whereas the sampled points

of surface 2 and 3 exhibit significant variation in α only. Figure 3.4 shows the histograms

after applying different models (raw, range and LUT based model) for the Hokuyo and

SICK scanner. Considering the Hokuyo scanner first (see Figure 3.4(a), 3.4(b) and 3.4(c)),

it can be seen in Figure 3.4(a) that the raw intensity histograms of surface 2 and 3 exhibit

overlap whereas the histogram of surface 1 is multimodal. Applying the range model, it

can be seen in Figure 3.4(b) that the histogram of surface 1 exhibits bimodality due to

α variation whereas the histograms of surface 2 and 3 still overlap. Figure 3.4(c) shows

the proposed approach (LUT based model correction) in which the histogram of surface
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(a) Raw model for Hokuyo
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(b) Range model based correct-
ion for Hokuyo
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(c) LUT based model correction for
Hokuyo
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(d) Raw model for SICK
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(e) Range model based correct-
ion for SICK
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(f) LUT based model correction for
SICK

Fig. 3.4: The histogram of intensities (with and without any correction) for different samples
acquired from three different surfaces (see Figure 3.8(a)). The samples acquired
from Surface 1 differ in r and α whereas the samples of surface 2 and 3 only vary
in α. a,b) The histogram of intensities for the raw and the range model (see Sec-
tion 3.5.1). The histograms corresponding to the raw and range correction model
exhibit multimodality for surface 1 (due to r and α variation respectively) whereas
surface 2 and 3 overlap. c) In contrast the proposed LUT based model (%̄) shows
unimodal histograms for all three surface, hence it is capable of identifying that these
surfaces have different reflectivity characteristics. d,e) The histogram of intensities
for the raw and range correction model for the SICK scanner. It can be seen that the
histogram of surface 2 and 3 overlap. f) The LUT based model is capable removing
the overlap between the histograms of surface 2 and 3 and makes all three histograms
identifiable as surfaces of different reflectivity characteristics.

1 becomes unimodal whereas the overlap between the histograms of surface 2 and 3 has

been effectively removed.

Figure 3.4(d), 3.4(e) and 3.4(f) show the same scenario in context of the SICK scanner.

The first aspect to notice is that the variation in the intensity due to r and α is not as

significant as in the case of the Hokuyo (see Figure 3.2). The histograms of surface 1

and 2 are separable even without extrinsic parameter correction whereas an overlap exists

between the histograms of surface 2 and 3 due to variation in α. The range model shown

in Figure 3.4(e) does not provide any significant advantage, however the LUT based model

correction is capable of removing the overlap between the histograms of surface 2 and 3.

Hence, the evaluation of this section shows that extrinsic parameter correction is essential

in context of identifying surfaces of different reflectivity characteristics.
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3 Laser Intensities for SLAM

(a) Occupancy grid augmented with
surface reflectivity characteristics
(HSV map)

(b) Correspondance be-
tween reflectivity (HSV)
map and actual surface

Fig. 3.5: a) Occupancy grid augmented with surface reflectivity characteristics (HSV colormap)
acquired by the proposed extension of Hector SLAM. b) A zoomed in section of the
occupancy grid of Figure 3.5(a) with the correspondences shown with the actual
surface using arrows. The laser scanner is mounted at a height of approximately
70 cm from the ground. The corridor section visible in the color image is also
observable in Figure 3.8(a).

(a) Hector SLAM (b) Intensity based Hector SLAM

Fig. 3.6: A specific scenario highlighting the advantage of intensity based Hector SLAM over
standard Hector SLAM. The field of view (FOV) of the scanner based on the minimum
and maximum angle is [−1.047 1.047] radians. The dimensions of the room are
approximately 8.5m × 5.5m. a) Hector SLAM failed to create a consistent map as
it could not find sufficient geometric features for pose estimation while turning at
two different corners. b) Intensity based Hector SLAM succeeded in generating a
consistent map as it additionally utilizes surface reflectivity for pose estimation.

3.5.2 Evaluation of the Hector SLAM (front-end) Extension

This subsection evaluates the proposed Hector SLAM extension. To present a concise eval-

uation and avoid repetition of similar conclusions/figures this section presents the results

using the Hokuyo scanner, however the conclusions are valid for the SICK scanner as well.

Figure 3.5(a) shows the reflectivity map of the corridor at the Chair of Automatic Con-

trol Engineering (shown with a HSV colormap) whereas Figure 3.5(b) shows one specific

section of the occupancy grid marked with arrows to highlight the correspondence with

the actual surface. In addition, Figure 3.6(a) and Figure 3.6(b) highlight the advantage of
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3.5 Experimental Evaluation

(a) Robot trajectory in compari-
son to groundtruth

(b) Translation error over time (c) Orientation error over time

Fig. 3.7: a) Comparison of the trajectory estimated by the robot using the proposed extension
of Hector SLAM with groundtruth (from the Qualisys MOCAP system). b,c) A plot
of the translation and orientation errors [19] showing that the proposed approach is
capable of estimating the robot pose accurately.

intensity based Hector SLAM over standard Hector SLAM. In this specific scenario Hector

SLAM failed to create a consistent metric map as it could not find sufficient geometric

features for pose estimation while turning at two different corners. In contrast, intensity

based Hector SLAM succeeded as it relied on surface reflectivity characteristics. In ad-

dition to the qualitative results in Figures 3.5 and 3.6, a quantitative evaluation of the

proposed Hector SLAM extension is carried out using the MOCAP (motion capture) data

acquired from the Qualisys system4 which is capable of measuring the robot position with

millimeter accuracy. Figure 3.7(a) shows the visualization of the ground truth trajectory

(Qualisys system) as well as the robot positions obtained from the Hector SLAM exten-

sion. It is important to specify that qualisys motion capture system requires coverage (via

external cameras) over the complete region where the robot has to be tracked, hence the

evaluation of the motion could not be carried out in a large area. Figure 3.5(a) and 3.7(a)

show that the proposed relative reflectivity measure can be used effectively to estimate the

robot pose. In addition, a quantitative evaluation of the error for the proposed approach

is performed using the metric defined in [19]

ε(δ) =
1

N

∑
ij

(δij 	 δ∗ij)2,

where δij corresponds to the difference between consecutive robot poses at time index i,

j and δ∗ij corresponds to the ground truth variation in the pose. This δij difference is

split into the translation and the orientation error which is shown separately as a function

of time in Figure 3.7(b) and 3.7(c) as in [19]. Figure 3.7(b) and 3.7(c) show that the

magnitude of the delta translation and orientation error of the proposed approach is quite

low. Hence, the evaluation of this section highlights that the proposed approach is capable

of estimating the robot pose accurately as well as acquiring a geometric model augmented

with surface reflectivity characteristics.

4http://www.qualisys.com/
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3 Laser Intensities for SLAM

3.6 Conclusion and Futurework

The domain of SLAM allows a robot to create a map in an online, incremental manner by

coupling the pose estimation process with any given form of environment representation.

The aspect of environment representation, specifically variable resolution grid based envi-

ronment representation, was the focus of the previous chapter of this thesis. This chapter

contributes in the domain of SLAM by discussing a data-driven approach to model laser

intensities and identifies its role for pose estimation and grid based environment represen-

tation. The main purpose of modeling laser intensities is that they are dependent on the

surface reflectivity (intrinsic parameter) as well as additional extrinsic parameters such as

distance and angle of incidence to the surface. Thus by modeling the influence of extrinsic

parameters, it is possible to acquire a measure of surface reflectivity which can be added as

additional information in the map of the environment. An evaluation of the proposed data-

driven approach is carried out in indoor environments to highlight the effects of ignoring

the influence of extrinsic parameters when acquiring a measure of surface reflectivity from

laser intensities. In addition, an extension of Hector SLAM is presented which uses this

reflectivity measure for pose estimation and environment representation thereby acquiring

a reflectivity map of the environment in an online, incremental fashion. The experimental

evaluation highlights that the proposed extension possess the capability of acquiring an

accurate robot pose estimate as well as a reflectivity map which can be useful for a wide

variety of robotic applications.

Future work includes an evaluation of the relative reflectivity measure in outdoor urban

environments under challenging weather conditions i.e. rain or snow. It will also be

interesting to look into scenarios where the intensity based Hector SLAM approach can

fail i.e. cases in which the normal vector estimation is inaccurate for a majority of the

sensor observations due to low point density. In such cases it would be beneficial to combine

surface attributes (reflectivity/color) with metric information along the lines of [74, 78].
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3.6 Conclusion and Futurework

(a) Visualization of surface reflectivity characteristics in gray scale
after the LUT based model correction for the Hokuyo scanner

(b) Visualization of surface reflectiv-
ity characteristics in gray scale after
the LUT based model correction for
the SICK scanner

(c) Visualization of surface reflectivity characteristics for a corridor scene

(d) Visualization of surface reflectivity characteristics for a corridor scene

(e) Visualization of Kuka lab

Fig. 3.8: a-c) Visualization of surface reflectivity characteristics in gray scale image after the
LUT based model correction (%̄) with an additional linear scaling step to enhance
contrast. A substantial region of the intensity point cloud shown in a) is also visible in
the color image of Figure 3.5(b). It is important to highlight that the white horizontal
region visible in a,c) across different surfaces is present due to specular reflection (in
contrast to the standard diffuse reflection). This specular reflection occurs due to
shiny and smooth surfaces as a significant amount of the emitted power is reflected
back from the surface causing the receiver to register a maximum reading.
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4 Appearance based Place Recognition/Loop
Closure Detection

Summary and Contribution: This chapter focuses on the aspect of vi-

sual appearance based place recognition/loop closure detection in the field

of mobile robotics. The contribution of this chapter is twofolds: firstly the

proposal of an online, incremental mechanism for binary vocabulary gen-

eration in the domain of loop closure detection. The second contribution

is to evaluate the advantage of laser intensities for place recognition un-

der challenging lighting conditions using different features and projection

models. An extensive experimental evaluation is carried out to highlight

the advantage of the proposed binary vocabulary generation mechanism

as well as the usage of laser intensities for place recognition.

4.1 Introduction

The problem of place recognition plays an important role in different fields such as com-

puter vision and robotics. The previous chapter of this thesis focused on the domain of

SLAM, which allows a robot to generate a map in an online, incremental manner. This

chapter focuses on the aspect of loop closure/place recognition problem within SLAM that

allows a robot to maintain the consistency of the map over time by recognizing previ-

ously visited places and thereby reducing the error accumulated in the robot poses (see

Figure 4.1(a) which highlights the error in the absence of a loop closure/place recognition

algorithm). The most generic form of the place recognition problem can be found in the

computer vision community in which (typically) given an observed image and unordered

samples of images from discrete locations i.e. a database of images, the objective is to find

a correspondence between the observed image and the database using a specific similarity

metric. In the field of robotics, the place recognition problem plays a vital role in the

domain of SLAM, localization and consequently navigation. The problem of place recogni-

tion with an additional temporal consistency constraint over sensor observations is titled

the loop closure problem [3, 137, 138] in SLAM. The loop closure detection mechanism

is a component of the graph SLAM front-end that generates edge constraints between

nodes once the robot returns to a previously visited location. An effective performance

of the loop closure detection mechanism is important for SLAM as a single incorrect loop

closure constraint (edge constraint) can produce an inconsistent map. The importance of

an accurate loop closure detection mechanism is further enhanced by the fact that most

SLAM back-ends do not filter the generated edge constraints for consistency and leave this

up to the front-end. To develop truly autonomous robots that are capable of generating

consistent maps, loop closure mechanisms should work at 100% precision while maintain-

ing high recall rate. Figure 4.1(a) shows a simple scenario in which a robot returns to a
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4.1 Introduction

previously visited location, however due to its inability to close the loop it generates an

inconsistent map. The groundtruth map consists of a corridor with all corners at right

angles to each other. In SLAM, loop closure detection is required only once to correct

the map, however this is just a functional requirement and there is no constraint on the

loop closure mechanism to stop recognizing places as the robot traverses previously visited

locations in the map.

(a) (b)

Fig. 4.1: a) Loop closure detection failure causes an inconsistent map. The actual map is a
corridor in which all corners are at right angles to each other. b) Global localization
using particle filters (particles shown as red arrows). The amount of particles required
increases significantly with an increase in the area mapped by the robot. A robust
place recognition algorithm can resolve this problem and reduce complexity.

(a) (b)

Fig. 4.2: a) An illustration of a localization algorithm that has converged at time instance t.
b) The robot (shown as a black box) is kidnapped at the next time instance t + 1
and teleported to a different location. Most localization algorithms try to solve the
global localization problem again as shown in Figure 4.1(b).

In context of robotic localization an interesting manifestation of the place recognition

problem occurs during the initialization phase (global localization) [35] of the algorithm.

In the initialization phase the localization algorithm does not have any prior distribution

on the robot pose. In case there is no possible mechanism to determine a distribution over

the robot pose the localization problem becomes quite challenging. A common solution to

this problem is to use a particle filter to specify a uniform distribution over robot poses in
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4 Appearance based Place Recognition/Loop Closure Detection

the entire map, however this can be computationally expensive as shown in Figure 4.1(b).

In principle this problem can be solved by extracting discriminative features from passive

sensors (cameras) and use them to resolve the ambiguity. The example discussed above

highlights the importance of developing robust place recognition algorithms that are capa-

ble of reducing ambiguity and providing an initial distribution over the robot position in

the map. Another interesting case in context of localization is the kidnapped robot prob-

lem [42, 46] in which a robot is teleported to another location as shown in Figure 4.2. It

is important to highlight the difference between loop closure, localization, global localiza-

tion and the kidnapped robot problem. The difference between the localization and loop

closure problem is quite subtle. In context of localization there is an implicit assumption

that all observations are generated from a previously observed map whereas in the loop

closure problem the map is incrementally being updated and the algorithm has to decide

if an observation is generated from the prior observed map or if it is a new observation.

In case of localization (with odometry) the initial robot pose is (generally) assumed to be

known and the uncertainty is always bounded by the accuracy of the odometry estimates

at all times. In context of the global localization problem there is unbounded uncertainty

at time t = 0 (initially) which is reduced as sensor observations are obtained and eventu-

ally becomes bounded by the accuracy of the odometry estimates. In the kidnapped robot

problem there is a possibility of unbounded uncertainty at all times t as the robot might

be kidnapped at every (or any) time instance. Although the kidnapped robot problem

is an imaginary construct (in reality a scenario in which a robot having a certain mass

is kidnapped is not very likely), however it serves as an important benchmark to assess

the reliability and robustness of a place recognition algorithm. In addition, the kidnapped

robot problem has the effect of removing the prior over the robot position (possibly at every

time instance) therefore transforming the problem into a generic form typically addressed

within the computer vision community in which images/point clouds are retrieved from

databases using a similarity metric. The discussion above provides a brief glimpse of the

importance of place recognition in the domain of robotics as well as computer vision. The

following paragraph describes a generic place recognition pipeline as well as it’s important

constituents.

Input Data Data preprocessing Scene description

Similarity calculation &
Hypotheses generation

Final precision-recall

Descriptor extrac-
tion and merging

Vocabulary update/search

Fig. 4.3: The generic pipeline showing the set of operations performed on the input data for
loop closure/place recognition.

Figure 4.3 shows a typical place recognition pipeline and its components. The input to

the pipeline is the sensor data which can be a set of images/point clouds acquired from
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a camera or a laser scanner. This input data is further pre-processed e.g. converting

color images to gray scale, downsampling images or point cloud or using the point cloud

to generate images using different projection models (planar, equirectangular). The next

component is the scene description block which summarizes the image using visual features

(local or global) and updates/searches the vocabulary based on the new sensor observa-

tion. Furthermore this vocabulary is used to calculate the similarity between the current

input and previous sensor data stored in the vocabulary. This similarity value is used to

extract place recognition hypotheses, which can be used to determine the final candidate

given certain constraints (such as temporal consistency). Furthermore, the pipeline can

be evaluated in terms of its performance by using the output candidate to determine the

precision-recall of the algorithm.

In the last few decades, a large amount of research has been carried out in the domain of

place recognition. Although significant progress has been made however the state-of-the-

art still faces challenges in real world scenarios. These challenges can be classified into two

categories specifically extrinsic or intrinsic. Extrinsic challenges occur due to variations in

the structure of the environment. The main extrinsic challenge for place recognition algo-

rithms operating in typical outdoor scenarios with passive sensors (such as cameras) is the

change in the environment appearance due to variations in ambient lighting. Even during

different times of the day, shadows can cause a change in the environment appearance and

pose challenges for place recognition algorithms [27]. In contrast to the extrinsic challenges

mentioned above, intrinsic challenges correspond to the lack of information or capabilities

that influence the operation of the place recognition algorithm. Examples of intrinsic chal-

lenges include deficiency of prior information available to the algorithm such as the lack of

motion estimates (odometry) or the unavailability of GPS. In addition intrinsic challenges

might also include the deficiency of prior training data for generating a visual vocabulary,

which is typically the case in online robotic and computer vision applications. The ex-

trinsic and intrinsic aspects mentioned above form a substantial set of challenges faced by

place recognition algorithms in the field of robotics as well as computer vision. Although

solutions to the place recognition problem have improved over time, however they still lack

essential characteristics for robust operation in outdoor urban environments. Given the

magnitude of issues highlighted above, an ideal set of characteristics of a place recognition

algorithm are described below:

1. Capability of operating under adverse lighting conditions

2. Capacity of functioning in an online, incremental manner in case of unavailability of

prior training data for vocabulary generation

3. Capacity of operating in the absence of odometry, GPS or temporal consistency

constraints over sensor observations

4. Capability of generating high precision-recall

It is important to point out that the term capacity is used above to emphasize that

these characteristics might not be a strict necessity depending on the application scenario

in the field of robotics or computer vision. The first characteristic is essential to allow
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(a) (b)

Fig. 4.4: An exemplary illustration of the temporal consistency assumption over sensor obser-
vations using a topological representation in which robot positions are represented
by nodes with the integer inside the nodes representing the temporal sequence (1
represents t1) (an observation is also associated with each node). The topological
graph in black shows the first robot visit and the topological graph in gray represents
the revisit. a) Due to the temporal consistency constraint the environment is visited
in the same temporal sequence as during the first visit. b) The removal of temporal
consistency allows the revisit to be performed by the robot in a random order, hence
the robot can effectively jump or be kidnapped to another place in the state space.
The removal of the temporal consistency constraint serves as a useful mechanism to
assess the robustness and reliability of the place recognition algorithm. It is assumed
that a proper mechanism for topological map generation exists i.e. nodes are ini-
tializated after a fixed distance based on sensor characteristics or a keyframe (node)
selection method exists, hence addition of nodes (between existing nodes) creates
redundancy.

operation in outdoor urban environments as it involves dealing with the variations in am-

bient lighting conditions. In general, the second aspect should be part of an ideal place

recognition algorithm as it might not always be possible to have access to a large prior

training dataset under varying lighting conditions for generating a visual vocabulary. The

above mentioned scenario occurs specifically in the context of online robotic and computer

vision applications. The third characteristic of an ideal place recognition algorithm is the

capacity to function properly in case of unavailability of odometry, GPS or any tempo-

ral consistency constraint over observations. The removal of odometry, GPS or temporal

consistency constraint over sensor observations serves as an effective test to determine if

a place recognition algorithm can recover from the kidnapped robot problem. In general,

most place recognition algorithms in robotic applications make an implicit assumption

that the robot follows a certain trajectory and the sensor observations are in a tempo-

ral sequence corresponding to this trajectory. The removal of this temporal consistency

constraint means that the algorithm can be presented with a random permutation of the

temporal observations and it will still be able recognize similar places. Figure 4.4 shows

an example to explain the scenario described above. As mentioned earlier, the removal

of the temporal consistency constraint to address the kidnapped robot problem serves as

a useful mechanism to assess the robustness and reliability of a place recognition algo-

rithm. Another perspective of viewing the removal of temporal consistency constraint is
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to consider the generic place recognition problem in the domain of computer vision with

the objective of retrieving similar images/point clouds from a database. The final aspect

of the above mentioned characteristics is an essential requirement for all place recognition

algorithms i.e. to generate high precision and recall as it highlights the reliability of the

algorithm. The fulfillment of the above mentioned characteristics is a major challenge for

place recognition algorithms.

Fig. 4.5: The received optical power is dependent on an intrinsic surface property % as well as
extrinsic parameters such as distance r and the angle of incidence α to the surface
normal.

This chapter is divided into two main parts. The first part of this chapter (see Sec-

tion 4.4) focuses in the domain of loop closure and addresses the 2nd and 4th attribute of

the ideal characteristics of a place recognition algorithm. An approach is presented that

generates a binary vocabulary in an online, incremental fashion while maintaining high

recall at 100% precision in comparison to the state-of-the-art. The proposed approach

takes advantage of the temporal consistency constraint over sensor observations to gener-

ate loop closure candidates using visual appearance without requiring odometry or GPS

information.

The second part of this chapter (see Section 4.5) addresses the place recognition from a

general perspective and investigates the usage of laser intensities for place recognition given

different pre-processing as well as scene description mechanisms. In contrast to passive

sensors, laser scanners are capable of providing an intensity measure (back scattered energy

from the surface) in addition to range data. Consider the LIDAR equation [44, 75, 153]

based on the lambertian reflector assumption

Prec ∝
% cos(α)

r2
,

The equation states that the back scattered energy is dependent on an intrinsic property

of the environment (surface reflectivity) and varies with distance as well as the angle of

incidence to the surface. It is possible to calibrate the laser scanner and model the influence

of the distance and angle of incidence to acquire a measure of surface reflectivity. Hence, the

main advantage of using laser intensities is that they are invariant to ambient light sources

and depend on an intrinsic property of the environment surface. An extensive evaluation
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of the proposed pipeline is carried out on a challenging outdoor urban environment in

context of the kidnapped robot problem, i.e. without temporal consistency constraint,

GPS or odometry information, to highlight the importance of laser intensities for place

recognition.

4.2 Related Work

In this section the related work is assessed in terms of the ideal characteristics defined for

a place recognition algorithm in Section 4.1. The approaches proposed in the literature are

categorized based on the sensor type (active (laser) or passive (camera)), the description of

the environment generated by them as well as the requirement of prior training data. The

description of the environment generated by a place recognition algorithm can be based

on local or global/holistic descriptors. Local descriptors use different distinct keypoints

and the local neighbourhood around those keypoints to generate a compressed descrip-

tion/representation of the environment (such as SIFT [106] or SURF [6] for images and

Fast point feature histograms (FPFH) [159], Normal aligned radial features (NARF) [177],

Unique signatures of histograms for surface and texture description (SHOT) [188] for point

clouds). In contrast global descriptors, such as GIST [144] or HOG [33], use the entire im-

age to generate a holistic description of the environment.

Majority of the research work carried out in the field of place recognition/loop clo-

sure [3, 30, 49, 70, 84, 149, 206, 213, 214] has been based on passive (camera) sensors using

local descriptors to generate a BOW (Bag of Words) representation to recognize places.

Bag of words [29, 141, 169] is a structure that has been adopted from the field of language

processing and information retrieval that allows the representation of an image as a vec-

tor by defining the presence or absence of a visual word. The visual words are obtained

by clustering descriptors obtained from images after the features extraction process. The

literature on appearance based place recognition can be divided into two categories based

on the vocabulary generation process: i) Offline and ii) Online, incremental approaches.

Among the approaches discussed above [30, 49, 70, 149] require an offline vocabulary

generation phase using prior training data whereas [3, 83, 84, 206, 213, 214] generate a

vocabulary incrementally without the need of training data. In [31], the authors’ propose

a probabilistic framework which incorporates co-occurrence probabilities between visual

words using a Chow Liu tree [26] in an offline vocabulary generation process to perform

appearance based loop closure detection. The approach can be considered as the de-facto

standard for loop closure detection due to its robustness. In [92], the authors’ present an

approach that performs loop closure detection and visual odometry using a vocabulary tree

generated offline to produce real time visual maps.In [3], a probabilistic frame work is pre-

sented that combines a vocabulary of SIFT features and color histograms for loop closure

detection. The features are extracted from a single image and a geometric consistency test

based on epipolar constraints is performed to validate loop closure hypotheses. In [83, 84],

an approach is presented that incrementally generates a vocabulary using SIFT features

matched over a sliding window of images. Recently an approach for place recognition us-

ing binary bag of words has been presented in [49]. It uses an offline vocabulary learning

phase to generate a vocabulary tree consisting of binary visual words. Furthermore, it
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uses temporal and geometric consistency tests to filter loop closure candidates. In contrast

to local descriptor based approaches mentioned above, a different spectrum of approaches

rely on global/holistic representations [127, 168, 179] for place recognition while operating

under favourable illumination conditions. In [127, 168] the authors use the holistic GIST

descriptor [144, 190], whereas [179] computes a BRIEF descriptor [21] in a holistic manner

on a downsampled image for place recognition.

A different line of research, using passive sensors, focuses on place recognition/loop clo-

sure under challenging lighting conditions using local and global descriptors. The approach

presented in [76] uses local descriptor co-occurrence statistics under different conditions

(morning, evening and night) to generate a vocabulary of visual words. In [77] an approach

is presented that learns stable and discriminative local descriptors under different lighting

conditions. The approach presented in [118] uses SAD (sum of absolute difference) on a

subsampled version of the entire image (thus falls into the category of global/holistic de-

scriptors). Furthermore, it applies a local contrast enhancement and additionally makes a

simplistic constant velocity assumption between the matching scenes to determine visually

similar places. The contrast enhancement between neighbouring images and the constant

velocity assumption implicitly encodes the temporal consistency constraint. Additionally

the approach performs pre-processing (cropping) on images to reduce the field of view of

all images. The approach presented in [134, 135] is capable of recognizing places under

seasonal changes by generating a data association graph with a fixed number of edges

that encodes the vehicle speed and explicitly defines a temporal consistency constraint.

To recognize similar places, a minimum cost flow is calculated on this data association

graph. In [178] an approach is presented that first predicts the seasonal changes and then

uses a standard place recognition approach to determine if a place has been visited before.

Another interesting line of approach with passive sensors is illumination invariant imag-

ing [108, 115] which removes the effect of sunlight and shadows from images by modeling

the camera characteristics.

In contrast to passive sensors, the research in the domain of global place recognition

using active sensors (LIDAR) in 3D outdoor urban environments has not been addressed

that frequently. In [15, 16, 208] different approaches for keypoint selection and descriptor

generation on point cloud data are presented for place recognition using local submaps

within the Atlas framework [14]. Another focus within this domain has been to use range

data to generate vocabularies or learn classifiers in an offline learning phase using prior

training data. In [176], an approach based on NARF descriptors [177] is presented that

generates a vocabulary from range images using prior training data to recognize places.

In [55] features are extracted from laser range data and an ada-boost binary classifier

is trained offline for place recognition. In addition to measuring the distance a typical

LIDAR additionally measures the back scattered energy from the surface which is termed

as intensity. In [101], 2D intensity maps are used for fine-scale localization whereas the

global localization problem is approximately solved by relying on a differential GPS (D-

GPS). The work presented in [146] uses a fusion of multiple features e.g. surface normal,

reflectivity as well as SURF features extracted from images in a mutual information based

approach for place recognition.
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4.3 Motivation & Contribution

This chapter contributes towards two different aspects of the place recognition problem.

Firstly, in the domain of loop closure by proposing an online, incremental binary vocabulary

generation mechanism. Hence the first contribution focuses on the second characteristic,

i.e. online, incremental binary vocabulary generation using local descriptors, of an ideal

place recognition/loop closure algorithm defined in Section 4.1. The main advantage of

using binary descriptors to generate a binary vocabulary is that they offer similar per-

formance to real valued descriptors (such as SIFT and SURF) at reduced storage and

computational costs [100]. A large amount of literature mentioned in the field of loop clo-

sure focuses on offline generation of visual vocabularies, hence are not suitable for online

robotic applications. Although online vocabulary generation [3, 52] mechanisms such as

incremental K-means exist, however, they are not well suited for binary spaces as they rely

on the Euclidean distance metric and assume real valued descriptors which can be aver-

aged [126]. In contrast, this chapter presents a simple approach for online, incremental

binary vocabulary generation for loop closure detection. The incremental binary vocabu-

lary generation process is based on feature tracking between consecutive frames thereby

making it robot pose invariant and ideal for detecting loop closures in real world scenar-

ios. Evaluation of the proposed incremental vocabulary generation process coupled with a

simple similarity function and a temporal consistency constraint shows that it is capable

of generating higher precision and recall in comparison to the state of the art on publicly

available datasets.

The second contribution of this chapter lies within the domain of place recognition prob-

lem specifically in identifying the role of laser intensities for determining similar locations

under challenging lighting conditions. The main advantage of using laser intensities is that

they are invariant to ambient light sources and depend on an intrinsic property of the

environment surface. Hence, the objective is to highlight the advantages and applicability

of laser intensities for place recognition in contrast to other forms of sensor data such as

images from camera or geometry information from laser scanners. To the authors’ best

knowledge the role of laser intensities for place recognition under challenging lighting con-

ditions i.e. recognizing the same place during day and night time has not been addressed in

literature. A generic pipeline for place recognition is presented that uses laser intensities to

deal with ambient lighting conditions and does not require prior training data, odometry,

GPS or temporal consistency constraints over sensor observations.

In summary, the main contributions of this chapter of the thesis are

• An online, incremental approach for generating a binary vocabulary for loop closure

detection (Section 4.4)

• To highlight the advantages and applicability of laser intensities for place recognition

under challenging lighting conditions in comparison to other forms of sensor data i.e.

images from cameras or geometry information from laser scanners (Section 4.5)

• An extensive evaluation of the proposed vocabulary generation mechanism and the

place recognition pipeline using laser intensities (Section 4.6)
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4.4 Appearance based Loop Closure Detection using

Passive Sensors

This section describes a simple approach for appearance based loop closure detection us-

ing a binary vocabulary which is generated in an online, incremental fashion by tracking

features between consecutive images. In literature, the loop closure detection mechanism

is part of the front-end of the graph SLAM [57, 82, 186] which deals with the raw sensor

data and generates edge constraints between nodes once the robot returns to a previously

visited location. An effective performance of the loop closure detection mechanism is im-

portant for SLAM as an incorrect edge constraint can produce an inconsistent map. To

develop truly autonomous robots that are capable of generating consistent maps, loop

closure mechanisms should work at 100% precision while maintaining high recall.

It

It+1

Data preprocessing Scene description

Similarity calculation &
Hypotheses generation

Final precision-recall
Temporal

Consistency

Descriptor extrac-
tion and merging

Vocabulary update/search

Fig. 4.6: The loop closure pipeline adapted from the generic pipeline shown in Figure 4.3.

The basic pipeline of operations performed on the images for detecting loop closures

is shown in Figure 4.6. This pipeline is an adapted version of the generic pipeline shown

in Figure 4.3 by enforcing temporal constraints on the sequence of input sensor observa-

tions as well as the output just before the final precision-recall calculation. The proposed

approach takes advantage of the temporal consistency by matching features across con-

secutive images to acquire robot pose-invariant features. These features are then used

to generate a binary vocabulary in an online, incremental manner without requiring any

prior training data. The main contribution of this subsection is the online, incremental

binary vocabulary generation mechanism which is a subcomponent of the scene description

block. The proposed vocabulary generation mechanism is used to generate a hypotheses

set of loop closures using a simple similarity function. This hypotheses set undergoes a

consistency check by imposing a temporal consistency constraint over a larger horizon.

The following subsections explain each component of the loop closure detection pipeline

and the operations performed on the input data within those components.

4.4.1 Data Pre-processing

The loop closure detection pipeline operates over a consecutive pair of images. The data

pre-processing step mainly performs RGB to gray scale conversion of the images received

by the pipeline. These images are then passed onto the scene description component of

the pipeline.
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Fig. 4.7: Descriptor extraction and matching mechanism between consecutive images to obtain
view point invariant features. dit represents the ith descriptor extracted at time index
t.

4.4.2 Scene Description

The scene description operates on the pre-processed images by extracting descriptors,

merging (clustering) them and furthermore updates the vocabulary. In context of the

loop closure pipeline discussed in this subsection, the scene description block only uses

local descriptors i.e. local binary descriptors for vocabulary generation. The following

subsections provides details on the different operations performed by each subcomponent of

the scene description block i.e. descriptor extraction, merging (clustering) and vocabulary

update.

Descriptor Extraction

The main steps carried out by this subcomponent of the pipeline is to match descrip-

tors between consecutive images and extract view point invariant features. The proposed

approach proposed uses BRISK (Binary Robust Invariant Scalable Keypoint) features,

because they are scale and rotation invariant and offer similar performance to SIFT and

SURF at reduced storage and computational costs [100].

The majority of the approaches [3, 31, 49] in appearance based loop closure rely on fea-

tures extracted from a single image. In contrast, the proposed approach relies on matching

features across consecutive images in a similar manner to [83, 214] and as shown in Fig-

ure 4.7. The purpose of matching descriptors across consecutive images (during which the

robot undergoes slight variation in its pose) is to determine the most likely descriptors that

will be observed in case the robot returns to the same location with a different pose. To

match binary descriptors a metric has to be defined to measure similarity. In the proposed

approach the Hamming distance is used which is defined as

H(dt,dt+1) =

p∑
i=1

(dt[i] Y dt+1[i]),
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where Y represents the exclusive OR’ operator and p is the dimension of the descriptor

vectors. The index i represents the ith dimension of the p dimensional descriptor vector.

H(∗, ∗) represents the Hamming distance whereas dt, dt+1 are the p dimensional descriptor

vectors extracted from image It, It+1 respectively at any keypoint with t representing the

time index. In effect, the descriptor matching process is an ‘exclusive OR’ between the bits

of the descriptor vectors and a count of set bits along the entire descriptor dimension. Two

descriptors matched across subsequent images are considered a good match if the Hamming

distance between them is below the matching threshold δ whereas all descriptors which do

not satisfy this threshold are discarded. The centroid of the matched descriptors is taken

as their representative. The centroid d̄[i] of the ith dimension of the binary descriptor

vector at any time index is calculated as below

∀i ≤ p, d̄[i] = centroid(d1[i], d2[i], ..., dk[i])

=


0 if

∑k
j=1(d

j[i]) <
k

2

1 if
∑k

j=1(d
j[i]) ≥ k

2

, (4.1)

where the notation dj[i] represents the ith dimension of the jth descriptor vector and k

represents the total number of descriptors whose centroid is being calculated. Equation 4.1

calculates the centroid for any arbitrary number of inputs k, however, in the proposed

approach the centroid is calculated for descriptors matched during consecutive time indices

as shown in Figure 4.7 and stored in D̄t at time index t.

Merging Descriptors

After the descriptor extraction process the next step involves merging descriptors with

the objective of removing multiple instances of similar descriptors, as it might be the case

that the image contains repetitive patterns. Let D̄t = [d̄
1
t , d̄

2
t , ..., d̄

m
t ]T (T and m denote

the transpose and the total number of descriptors respectively) represent the centroid of

descriptors matched between consecutive images It and It+1. A descriptor after the merging

process is termed as a visual word. The algorithm starts by matching a descriptor with all

other descriptors in the set D̄t. Descriptors are merged and replaced by their respective

centroid in a greedy manner if the distance between them is below the matching threshold

δ. This process continues until no further merging can take place. The psuedocode of the

merging algorithm is shown in Figure 4.8. The descriptors after the merging are step are

called visual words. The visual words obtained after merging, denoted D̂t, are then used

by the vocabulary to determine previous time instances when the same visual word was

observed as well as the vocabulary update process.

Assignment of the BOW Index

The visual words D̂t obtained after merging/clustering are compared with the visual words

present in the vocabulary denoted Vt−1 (see Figure 4.10). This operation is performed to
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Merge(D̄t)

Input: D̄t = [d̄
1
t , d̄

2
t , ..., d̄

m
t ]T

// Descriptors from feature extraction
Output: D̂t // Visual words

Procedure:
1 Initialize number of visual words to m;

// |D̄t| represents the number of descriptors
for-all (i ≤ |D̄t|)

for-all (j = i+ 1 till j ≤ |D̄t|)
if (H(d̄

i
t, d̄

j
t ) < δ)

2 d̂
i

t = centroid(d̄
i
t, d̄

j
t );

3 d̄
i
t = d̂

i

t; //update descriptor for next iteration of j

4 D̄t– d̄
j
t ; // remove d̄

j
t from D̄t

5 decrement m;

6 D̂t ←− d̂
i

t; //copy/overwrite ith index in D̂t

endif;
if merging not possible for iteration i

7 D̂t ←− d̄
i
t;

Fig. 4.8: The pseudocode of merging descriptors to remove multiple instances of binary de-
scriptors in the same image

determine the number of the new and old visual words in D̂t. This step is essential for

the next block, i.e. similarity calculation and loop closure candidate selection process, to

function properly. The matching threshold δ is used to match the descriptors in D̂t with

the visual words in the vocabulary to determine the indices of the old visual words. The

indices of all the old visual words are stored in the set S. The pseudocode of the above

mentioned process is shown in Figure 4.9. An important point to mention here is that the

vocabulary index t− 1 is used here because the update based on the visual words detected

in It occurs at the end of pipeline, hence after the similarity as well as the loop closure

hypotheses calculations. Initially, at time t = 0 the vocabulary is empty, hence all visual

words are initialized as new and stored in V−1.

Vocabulary Structure

This subsection given an overview on the vocabulary structure used by the loop closure

pipeline. The vocabulary is the most important component the loop closure pipeline.

Besides storage of binary visual words in matrix Vt−1, the vocabulary also contains:

• Occurrence frequency of all binary visual words

• Inverted index for generating loop closure hypotheses

The occurrence frequency denoted Ft−1 = [f 1
t−1, f

2
t−1, ..., f

n
t−1] contains the number of

times a specific visual word is observed in the images till time t−1. The term n represents
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Assign-BOW-Index(D̂t, Vt−1)

Input: D̂t // visual words
Vt−1 // visual words in vocabulary

at time index t− 1
Output: S //set of indices of old visual words

found in D̂t

Nnew // number of new visual words

Procedure:
for-all (i ≤ |D̂t|)

word found = false;
for-all (j ≤ |Vt−1|)

if (H(d̂
i

t, v
j
t−1) < δ)

S ←− j; // store visual word index
word found = true;
break;

endif;
if (∼ word found)

increment Nnew;
endif;

Fig. 4.9: The pseudocode of assigning merged descriptors a BOW index

the total number of visual words present in the vocabulary. The vocabulary also maintains

an inverted index to generate loop closure hypotheses based on visual words detected in

It. In the proposed approach the inverted index is stored as a sparse binary matrix which

describes the presence or absence of a visual word in all images till time index t − 1 as

shown in Figure 4.10.

4.4.3 Similarity Calculation and Loop closure Hypotheses

This subsection focuses on the similarity calculation and the hypotheses generation process

for loop closure detection.

Loop Closure Hypotheses

Given the set S generated by the previous component of the pipeline, the loop closure

hypotheses set can be generated by using the inverted index. As shown in Figure 4.10,

given the indices of the old visual words detected in It and stored in the set S, their

occurrence frequency and presence in previous images can be easily extracted. A temporal

constraint threshold β (where β > 0) is used to prevent the algorithm from generating

loop closure hypotheses with images observed close to the current time index. Hence, loop

closure hypotheses are constrained to lie within the time index ti = 0 and tL. ti = 0

represents the initial time index when the loop closure algorithm started and tL = t − β,

where t represents the current time index.
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1 0

10

10

3

1 0

10

Fig. 4.10: An overview of the three main components of the vocabulary. The vocabulary
consists of the binary visual words stored (row wise) in Vt−1 (n × p matrix), the
occurrence frequency of each visual word and an inverted index. The inverted index
is stored as a sparse binary matrix representing the absence or presence of visual
words in all images till time index t − 1. Given the indices of the old visual words
stored in S generated during the assignment of bag of word index, it is possible to
determine past images containing the same visual words as shown above.

Similarity Calculation

Let L = {Ii, ..., Ij} (where i ≥ 0 and j ≤ tL) represent the set of loop closure hypotheses

generated from the inverted index and U represents the set of common visual words be-

tween loop closure hypothesis image Ii and currently observed image It. The similarity of

hypothesis Ii with the current image It is calculated as

S(Ii, It) =

∑
∀m≤|U |(f

m
t−1)

−1|U |∑
∀m≤|U |(f

m
t−1)

−1|U |+
∑
∀k≤|T |(f

k
t−1)

−1|T |+Nnew

,

where T consists of indices of visual words (extracted from the inverted index) present in

Ii but not found in It. The notation |T | and |U | represents the cardinality of the set. f jt−1
represents the occurrence frequency of the jth visual word in the vocabulary. Nnew is the

number of new words detected in It. The above mentioned similarity metric S is a modified

version of the jaccard index. The normalized similarity of the loop closure candidates is

calculated as

Ŝ(Ii, It) =
S(Ii, It)∑
∀I∈L S(I, It)

,

where L as defined earlier is the entire hypotheses set. The final loop closure candidate is

chosen as one that leads to the maximum value of the normalized similarity function.

arg max
∀I∈L
Ŝ(I, It).

To prevent the algorithm from generating loop closure candidates based on a single

hypothesis a constraint is placed that |L| > 1.
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Fig. 4.11: (Best visualized in color) Given the accepted loop closure at time index t−1 (shown
in blue), the loop closure at time index t is constrained to lie in t− k till t− k + β
(shown in green). The loop closure with image Ij (shown in red) is rejected as it
does not satisfy the temporal constraint.

Temporal Consistency

The loop closure candidate chosen in the last step of the pipeline goes through a simple

temporal consistency test. The temporal consistency test is based on the time index of

the previously observed loop closure. Consider a scenario in which a robot at time index

t− 1 returns to a location which was previously visited at time index t− k where k > β.

The temporal consistency test states that after the loop closure event between It−1 and

It−k, all future loop closure events detected in the interval of t and t + β are constrained

to lie between t− k and t− k+ β. In Figure 4.11, it can be seen that due to the temporal

consistency constraint given the loop closure event at time index t − 1, the loop closure

event between It and Ij is rejected (shown in red) whereas the loop closure event in the

interval of t− k till t− k+ β (shown in green) is accepted. In case the robot return to the

same location multiple times in the past, the temporal consistency test has to be extended

to all such time intervals.

Vocabulary Update

Once the similarity calculation and the loop closure hypothesis generation has been com-

pleted, the vocabulary is updated by expanding the vocabulary size based on the number

of new visual words detected in It. Additionally, the occurrence frequency of all the old

visual words has to be updated and for all the new visual words it has to be initialized to

1. Finally, the inverted index is updated based on the visual words detected in the current

time index. After the vocabulary update, the loop closure mechanism waits for the next

input image and then performs all the steps of the pipeline again from the beginning.

4.4.4 Precision-recall Calculation

The evaluation of the loop closure pipeline is performed using precision-recall curves. The

precision of the algorithm is defined as the ratio of correct recognized places among the

total number of loop closure events determined by the algorithm. The recall is the ratio
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of the number of correct detections with respect to the ground truth loop closure events.

4.5 Place Recognition using Passive and Active Sensors

The previous section discussed different aspects of the loop closure pipeline using passive

sensors (images from cameras) with a focus on online, incremental binary vocabulary gen-

eration with temporal consistency constraints. This section addresses the place recognition

pipeline from a general perspective and evaluates the discriminative abilities of different

forms of sensor data (images from camera or intensities/geometry information from laser

scanners) for place recognition without requiring any temporal consistency constraints,

GPS or odometry. Figure 4.3 shows the generic pipeline and the set of operations per-

formed on the input data such as point clouds, camera or range images. As shown in

Figure 4.3, an initial preprocessing step (generating specific projections or downsampling)

is performed on the input data depending on the overall objective of the pipeline as dis-

cussed in Section 4.5.1. After the preprocessing the description of the scene is calculated

(shown as the scene description block in Figure 4.3) based on local or global descriptors.

Given a specific similarity function, it is possible to calculate the similarity between dif-

ferent scenes and generate a square symmetric similarity matrix. This similarity matrix is

then used to generate the hypotheses of places that look similar to each other as well as

the final precision-recall curve. The rest of the section gives a detailed description of each

component of the pipeline.

4.5.1 Data Pre-processing

The basic operations being carried out in the data preprocessing block is dependent on

the type of sensor data being fed into the place recognition pipeline. If the input is 3D

point clouds then the most common preprocessing step is to filter and downsample them to

reduce computational cost. In contrast if the input is camera images then the standard pre-

processing stage includes image resizing or conversion to gray scale. It is also possible to

generate these images from point cloud data using specific projections (equirectangular or

rectilinear). The advantage of generating a projection of the point cloud is that the problem

that is initially posed over a 3D space is reduced to a 2D representation. Two different

projections are considered in this chapter, specifically equirectangular and rectilinear/cubic

projection. The main advantage of the equirectangular projection is the 360◦ field of view

(panoramic image) which can be beneficial for place recognition algorithms. In contrast,

the rectilinear/cubic projection has a limited field of view, however the advantage of this

projection is that straight lines in the environment remain straight after the projection

(almost all local and global descriptors are developed, optimized and evaluated for this

specific projection). In addition, the rectilinear/cubic projection can be directly extracted

from the equirectangular projection given the observer orientation [155, 172, 201]. The

rectilinear/cubic projection is used to generate planar intensity images from laser scanner

data to evaluate the performance of the place recognition algorithms in comparison to

camera images. The notation Ii is used to represent an image (given any input type

and projection model i.e. range or intensity image with equirectangular or rectilinear
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projection) generated by the projection of the ith point cloud. The projection is highlighted

by the upper right superscript i.e Ieqrecti , Irecti to represent equirectangular or rectilinear

projection respectively. In addition, the image type is specified by the upper left superscript

such as rIi,
iIi to define range and intensity images given any projection. Similarly, camera

images, i.e. color images converted to gray scale images during pre-processing, are specified

by the upper left superscript cI. The following subsections provide details about the

projection models.

(a) (b)

Fig. 4.12: (a) Laser scanner observation of the jth point in the ith point cloud Pi. (b) Equirect-
angular intensity image obtained after projecting the point cloud. The azimuth and
elevation of the jth point is denoted by ηj and λj respectively.

(a) (b)

Fig. 4.13: (a) The process of range image generation in which the range value is accumulated
in the relevant elevation, azimuth bin. Furthermore, this range image is normalized
by the maximum range (as represented by r̄j in the figure) to generate a matrix of
floating point values between 0 and 1. b) (Best visualized in color) An example of
the generated range image visualized with a HSV colormap.

Equirectangular Projection

The main advantage of the equirectangular projection is that it generates a panoramic

image of the environment as shown in Figure 4.12. The equirectangular projection takes

the azimuth and elevation of each point defined in spherical coordinates and interprets

them as rows and columns of a matrix. Given the row, column index of the matrix the

range or intensity value is accumulated in that specific bin leading to range or an intensity

image. The pseudo-code for generating an equirectangular projection from a point cloud

is defined in Appendix A.1.
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Rectilinear/Cubic Projection

In contrast to the equirectangular projection, the rectilinear/cubic projection model is used

to generate planar intensity images which are compared with camera images in terms of

discriminative capabilities for place recognition using the same pipeline. The rectilinear

projection can be obtained from the equirectangular projection as shown graphically in

Figure 4.14. The pseudo-code for generating this projection is shown in Appendix A.2.

(a) (b)

Fig. 4.14: a) An abstract representation of mapping the equirectangular coordinates to the
rectilinear image coordinates. b) Front rectilinear projection corresponding to the
image shown in Figure 4.12(b).

3D Point Cloud Pre-processing

In contrast to the previous subsections in which a projection of the point cloud is used to

generate an image, it is also possible to utilize the point cloud directly for place recognition.

A Bag of Words (BOW) approach similar to subsection 4.4.2 is presented which uses local

descriptors extracted from point clouds. The main preprocessing step performed on the

3D point cloud is downsampling it with a voxel grid to effectively reduce the computational

cost. The grid resolution used to downsample the point cloud is denoted by ψ (the notation

has been defined here for further reference during the experimental evaluation).

4.5.2 Scene description and Similarity calculation

The scene description and similarity calculation block shown in Figure 4.3 form the core

components of the place recognition pipeline. Figure 4.15 shows the components of the

scene description block in the pipeline. As mentioned earlier that the place recognition lit-

erature has been dominated by two sets of approaches: mainly using local or global/holistic

descriptors. The set of operations performed in the scene description and similarity cal-

culation block differ for both approaches. The following subsection focuses on the scene

description and similarity calculation block for local descriptors whereas the subsequent

subsection focuses on the same components for global/holistic descriptors.
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Scene Description Similarity
calculation

Descriptor
extraction

Vocabulary
generation

Fig. 4.15: The components of the scene description block in the pipeline. It is important to
specify that the subcomponents of the scene description block (descriptor extraction
and vocabulary generation) differ in the set of operations performed depending on
the descriptor type (local or global descriptors).

Cluster descriptors

 Visual words Inverted Index

Vocabulary 

Vocabulary
generation

Fig. 4.16: The processes involved in the vocabulary generation block shown in Figure 4.15
for local descriptors. The visual words are stored row wise in the matrix V. The
inverted index is binary matrix which is used as a look up table to determine which
visual words occurred in a specific image/point cloud Oi.

Local Descriptor based Vocabulary Generation (BOW approach) and Similarity
Calculation

This section explains the bag of words approach using local descriptors for place recog-

nition. The vocabulary generation process involves extracting descriptors (descriptor ex-

traction block in Figure 4.15) from the input data which can be laser scanner images i.e.

intensity (iI)/range (rI), camera images (cI) or 3D point clouds (P). Let Oi be a generic

notation to represent an image Ii or point cloud Pi. SIFT [106] features have been used

for the BOW place recognition pipeline with images as input. In context of BOW place

recognition using 3D point clouds (based on local descriptors), the SHOT [188] descrip-

tor has been used due to its robustness and repeatability [164]. Given the descriptors

extracted from an image/point cloud Oi, they can be used to incrementally generate a

visual vocabulary. The vocabulary generation process is similar to the mechanism defined

in Section 4.4.2 such that it uses a fixed distance δ to generate visual words in an incre-

mental manner without any prior training data. As the vocabulary generation process is

formulated over real valued descriptors (SIFT), the distance δ defines a ball (Bδ) in the

Euclidean space around the descriptor. It is also possible to apply a similar formulation for

binary descriptors such as BRIEF [21] and BRISK [100] using the hamming distance (in

hamming space) to define δ as done in Section 4.4.2. The main processes involved in the

vocabulary generation process include an initial clustering phase followed by a vocabulary
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update step. The purpose of clustering descriptors separately for all images/point clouds

at the initial stage is to remove multiple instances of similar descriptors as it might be

possible that they contain repetitive environment structure (e.g. multiple windows with

same structure on a building). After the clustering process the vocabulary update process

is carried out. The main components of the vocabulary includes a matrix of visual words V

(stored row wise) and an inverted index which helps to determine which visual words were

observed in different images/point clouds. The update process of the vocabulary involves

determining the presence of a specific visual word and to accordingly update the inverted

index. The basic components of the vocabulary are shown in Figure 4.16. Given a specific

state of the vocabulary at any time instance the similarity function is used to determine

which places look similar to each other. A detailed description of the above mentioned

steps is provided below:

• Clustering:

The objective of the clustering process is to remove multiple instance of similar descriptors

that exist in the image/point cloud as it might contain repetitive patterns. Let Di =

{d1
i , . . . ,d

T
i } be the set of descriptors extracted from an image (intensity, range images

from laser scanner or camera images)/point cloud Oi. Given the descriptors, a symmetric

distance matrix (T ×T ) is calculated which constitutes the Euclidean distance between all

the descriptors. Given the symmetric distance matrix, all descriptors with distance less

than δ are merged into a single descriptor by averaging those descriptors. This process

is continued until no further merging can take place. The descriptors after the merging

process are denoted visual words. Let D̂i = {d1
i , . . . ,d

M
i } denote the final set of visual

words obtained after merging descriptors from the image/point cloud Oi where M ≤ T .

• Assignment of Visual Words:

The basic structure of the vocabulary used in this pipeline is shown in Figure 4.16. The

components are the visual words V and an inverted index (a binary matrix) used as a

look up table to determine which visual words were observed in each image/point cloud in

previous time steps. Given the visual words D̂i obtained in the clustering step, the next

step is to compare them with the visual words in the vocabulary V using the distance δ to

determine which words have already been observed and those that are new as discussed in

Section 4.4.2 [213]. In case a visual word has already been observed before, it is updated

by averaging it with the matched visual word present in the vocabulary and updating the

inverted index. In contrast if a visual word is not present in the vocabulary, a new visual

word is added to the visual vocabulary V and the inverted index expanded accordingly.

• Similarity Calculation:

This subsection focuses on the similarity calculation block shown in Figure 4.15. Given

the vocabulary components defined above, it is possible to calculate the similarity between

different images/point clouds at any instance. In the proposed approach a variant of the

term frequency- inverse document frequency (tf-idf) is used as a similarity function as it

has been used extensively in literature for place recognition [3, 141, 169]. Let Oi, Oj
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represent the images/point clouds whose similarity is to be evaluated. Let q represent the

set of indices (within the vocabulary) of all the visual words present in the image/point

cloud Oi and Oj. Let set k represent the set of indices of the common visual words between

the images/point clouds with k[l] representing the lth element of the set and the notation

|k| representing the cardinality of the set. Let nq[l] represent the number of images/point

clouds which contain the visual word present at q[l] index in the vocabulary (extracted

from the inverted index) whereas N represent the total number of images/point clouds

in the vocabulary. Given the above mentioned information, the similarity Slocal between

images/point clouds Oi and Oj is calculated as

Slocal(Oi,Oj) =

l≤|q|∑
l=1

tf(q, k)× idf(N, nq[l]), (4.2)

Slocal(Oi,Oj) =

l≤|q|∑
l=1

1(q[l] ∈ k)× log
N

nq[l]
, (4.3)

where the first term (tf(q, k) in Equation 4.2) is called the term frequency which is used

as a binary weighting term (due to its simplicity). In simple words the weighting factor

is an indicator function for all the common visual words between the image/point cloud

Oi and Oj. The inverse document frequency (idf(N, nq[l]) in Equation 4.2) is modeled as

a logarithmic function of the ratio of the total number of images/point clouds and the

number of images/point clouds which contain the common visual words. The objective

of the inverse document frequency term is to down weight all commonly occurring visual

words. Hence, using the equations described above the similarity between images/point

clouds can easily be calculated.

Holistic/Global Descriptor Representations and Similarity Calculation

This subsection discusses the scene description and similarity calculation block shown in

Figure 4.15 for global/holistic descriptors such as GIST and HOG (Histogram of Oriented

Gradients [33]). In context of global/holistic representations the main operational compo-

nent of the scene description block is the descriptor extraction process as the vocabulary

generation block only stores the descriptors of the images for evaluating the similarity.

The following paragraphs provide details on the descriptor extraction and the similarity

calculation process for global descriptors.

• HOG based Holistic Image Representation:

In literature HOG descriptors have been successfully applied for people detection [33] and

human action recognition [187]. The most common application involves training a linear

SVM (requiring prior training data) to detect a person in an image or alternatively to

classify an action being performed by the person.

In the proposed approach the HOG descriptor is calculated directly on the image Ii and

used as a global descriptor to represent the image without any requirement of a classifier.

The basic steps involved in the calculation are similar to the original HOG descriptor. To
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calculate the HOG descriptor the image is divided into cells which are then aggregated

into larger spatial blocks. The gradient computations are performed on the entire image

and a histogram is generated for each cell. The cells are aggregated into blocks which are

normalized. The normalized descriptors for all the blocks are then concatenated into one

global descriptor for the entire image. The basic steps involved in the calculation of the

global HOG descriptor used are described below:

• Pre-processing with a Gaussian filter of a spatial window size σ

• Gradient computation over image Ii

• Spatial and Orientation binning within cells of size L

• Normalization of histograms using L2 norm for all cells in a block

• Concatenating features of all blocks to form the global descriptor

The first step is the smoothing process using a Gaussian filter with a spatial window size

σ. The smoothed image is then used to compute the simple 1-D centered gradient ([-1 0

1]) as

ei(x) = Ii(x+ 1, y)− Ii(x− 1, y),

ei(y) = Ii(x, y + 1)− Ii(x, y − 1),

where ei(x) and ei(y) corresponds to the horizontal and vertical gradients at position

(x, y) of the image Ii. Given the gradients, the orientation (θ) and the magnitude (γ)

can be easily calculated as θi(x, y) = atan(ei(y)/ei(x)) and γi(x, y) =
√
ei(x)2 + ei(y)2

respectively. The calculated orientation is then accumulated in its orientation histogram

bin with a weighting factor defined by the magnitude. The histograms of all cells within

a block are appended and normalized using L2 norm. Finally the histograms of all blocks

are concatenated to form the global descriptor denoted di for the image Ii. The global

descriptor described above is used to determine the similarity between different images

based on the similarity function defined later in this section.

• GIST based Holistic Image Representation:

The concept of capturing the gist of a scene is a generic concept that has been studied

extensively in human visual perception and computer vision. The basic idea behind deter-

mining the gist of a image is to capture its essence. One such approach has been presented

in [144] which has found application in place recognition as discussed in Section 4.2. A brief

overview is provided here for clarity, for further details see [144]. The approach introduces

the concept of a spatial envelope which defines the shape of the scene. The authors define

different properties of the spatial envelope such as degree of naturalness, openness, rough-

ness, expansion and ruggedness and discuss that they are sufficient to distinguish between

natural landscapes and man made scenes (urban environments). The spatial envelope is

estimated by considering the spatial distribution of spectral information (spectogram) in

the image. Furthermore it is shown that the spectogram varies significantly for different

categories (such as natural landscapes and man made scenes), hence it is possible to dis-

tinguish between them. The proposed place recognition pipeline uses the Gabor GIST
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method explained in [144, 190]1. The above mentioned approach divides the image into

a grid of a specific resolution depending on the number of blocks ϕ provided as an input.

For each block the local regions of the image are convolved with Gabor gist filters tuned

for different scales Ω and orientations per scale χ (symbols are defined here for the eval-

uation in the experimental section). The mean response of the filter for each window is

concatenated into a descriptor denoted di for image Ii. Given the descriptor it is possible

to estimate the similarity between images.

• Similarity Function for Global Descriptors:

Given the HOG or GIST global descriptors for any pair of images, the next step is to

calculate the similarity between them using the similarity calculation block shown in Fig-

ure 4.15. The similarity Sglobal between two images Ii and Ij (given any image type and

projection model) with their HOG or GIST descriptor abbreviated as di and dj is defined

as:

Sglobal(Ii, Ij) =
dTi dj√

(dTi di)(d
T
j dj)

,

which is effectively the cosine distance and a commonly used metric for measuring similarity

between descriptors [135, 139, 198].

4.5.3 Precision-Recall Calculation

Given the similarity function for local and global descriptors it is possible to generate

a square symmetric similarity matrix which defines the similarity score between all the

images. It is important to specify that if no assumption is made about the structure of

this square symmetric similarity matrix, it is equivalent to the notion of removing any

temporal consistency constraint on the sensor observations or prior information about the

robot position. The above mentioned square similarity matrix is thresholded to generate

the hypotheses of places which look similar to each other. The true and false positives are

extracted from these hypotheses based on the groundtruth and then used to calculate the

precision-recall of the algorithm.

4.6 Experimental Evaluation

The experimental evaluation is divided into two subsections. The first section focuses on

the evaluation of the loop closure approach proposed in Section 4.4 using passive sensors.

The second subsection focuses on the evaluation of the generic place recognition pipeline

explained in Section 4.5 as well as highlighting the advantages of using laser intensities for

place recognition.

1http://people.csail.mit.edu/torralba/code/spatialenvelope/
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4.6.1 Loop Closure using Passive Sensors

This section evaluates the performance of the proposed loop closure approach on different

publicly available datasets, as shown in Table 4.1, by comparing it to state of the art

methods such as FAB-MAP 2.0 [31] and the approach proposed by Gálvez-López [49] .

For all dataset evaluations mentioned in this section the descriptor dimension p is 512 and

the temporal constraint threshold β is set to 10. All experiments were performed on an

Intel i5-2500K 3.3 GHz processor with 16 GB RAM.

Tab. 4.1: Details about the Datasets used in Evaluation

Dataset Description Camera position Image size # Im-
ages

Malaga6L [12] Outdoor, slightly dynamic Frontal 1024 x 768 3474
City Centre [30] Outdoor, urban, dynamic Lateral 640 x480 1237

Methodology

The correctness of the results for Malaga6L and City centre datasets is established by

using the ground truth information and script used by the authors in [49] as a black box,

hence without any modification in the parameters. The script determines the precision and

recall of the algorithm given the ground truth information. The precision of an algorithm

is defined as the ratio of correct loop closures to the total number of detected loop closures.

The recall is the ratio of the number of correct detections to the ground truth loop closure

events. The ground truth information (used in [49]) contains a manually created list of

loop closures. ‘The list is composed of time intervals, where each entry in the list encodes

a query time interval associated with a matching interval’.
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Fig. 4.17: (a) Precision recall curves of the proposed approach (b) Vocabulary size as a function
of time for different datasets
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Tab. 4.2: Results of Magala6L and City Centre dataset

Dataset Approach Precision (%) Recall (%)
Gálvez-López [49] 100 74.75

Malag6L FAB-MAP 2.0 [31] 100 68.52
IBuILD 100 78.13

Gálvez-López [49] 100 30.61
City Centre FABMAP 2.0 [31] 100 38.77

IBuILD 100 38.92

CityCentre

(a) Detected loop closures on City Centre dataset

Malaga6L

(b) Detected loop closures on Malaga6L dataset

Fig. 4.18: Loop closures detected (marked in red) by the proposed approach on the map of
City Centre and Malaga6L dataset

Results for City Centre and Malaga6L Dataset

Figure 4.17(a) shows the precision and recall of the proposed approach for different δ

thresholds on the above mentioned datasets. The maximum possible recall rate with 100%

precision is mentioned in Table 4.2. The results mentioned in Table 4.2 (for FABMAP 2.0

and the approach proposed by Gálvez-López) have been taken from [49] as the same script

and groundtruth has been used for evaluation. It can be seen that the proposed approach

is capable of producing higher recall with 100% precision in comparison to other methods.

Figure 4.17(b) shows the evolution of the vocabulary size for the precision and recall

highlighted in Table 4.2. Figure 4.18 shows the loop closures detected by the approach in

red on the City centre and Malaga6L trajectory. Since Malaga6L is the largest dataset

(containing 3474 images) used in this paper, the execution time of the entire pipeline

is mentioned in milliseconds in Table 4.3. The computation time of the entire pipeline is

around 50 millisecond on average per image. Figure 4.19 shows example images of the loop

closures detected by the proposed approach on the City Centre and Malaga6L dataset.

4.6.2 Place Recognition using Active and Passive sensors

The objective of the experimental evaluation in this subsection is to highlight the impor-

tance of laser intensities for place recognition algorithms in comparison to other forms of

input data such as camera images or depth information from laser scanners. The evaluation
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Tab. 4.3: Average execution time (Milli Sec) for a single image on Malaga6L dataset
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is carried out using different formats of input data such as images or point clouds given

different projection models and scene descriptions under challenging lighting conditions.

To evaluate the place recognition pipeline a point cloud dataset is acquired in a stop-scan-

go manner near TUM campus in Munich due to lack of publicly available datasets with

laser intensities in outdoor urban environments. The first part of the dataset was acquired

during day time at different locations near the TUM (Technische Universität München)
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Fig. 4.19: An example of loop closure detected by the proposed approach on the City Centre
and Malaga6L dataset.

campus using the Z+F 5010C scanner. In the second run those locations were revisited

during the night time after period of 3 months. The dataset consists of 86 scans covering

an overall area of 0.3 km2 with each scan containing on average 20 Million points over a

range of 150 meters.

The point clouds acquired in the dataset do not follow a temporal sequence (to evaluate

the performance of the algorithm in context of the kidnapped robot problem), hence the

robot position jumps to different locations near the TUM campus in Munich. Figure 4.20

shows different instances of the places visited around the TUM campus. To perform a

comparison with passive sensors (cameras), images were also acquired at the same locations

under the same lighting conditions with a Canon EOS 5D camera with a long exposure

time as shown in Figure 4.21.

The precision-recall of the place recognition algorithm is determined based on the

groundtruth, which is generated by manually inspecting the point clouds and consider-

ing them to be the same places if the distance between the locations is less than 5 meters.

To evaluate and compare the precision-recall curves, two main criterion have been chosen,

specifically the maximum achievable recall/precision generated by the algorithm at 100%

precision/recall respectively. The above mentioned regions of the precision-recall curve are

critical for place recognition algorithms because higher recall at 100% precision means that

the algorithm is capable of generating a larger number of true positives without any false

positives. In contrast high precision at 100% recall means that the algorithm is capable of

recognizing all similar places albeit with a certain amount of false positives.

This subsection is further divided into three main parts. The first part focuses on high-

lighting the importance of intensities by comparing the performance of the place recog-

nition algorithms (based on local or global descriptors described) using intensity images

in comparison to range images acquired from laser scanners. The second part compares

the performance of the place recognition approaches using intensity images in contrast to

camera images (passive sensor) whereas the final part highlights the importance of using

laser intensities for point cloud based place recognition using the BOW approach. All three

parts of this subsection highlight important aspects/properties of the scene description and
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.20: a,c,e) Equirectangular intensity images of point clouds acquired during the day time.
b,d,f) Intensity images of point clouds acquired during the night time. The long
term dynamics such as parked cars moving away are visible in the images.

projection models in context of place recognition. It is important to specify that the same

pipeline and parameter values are used to compare the precision-recall curves of different

place recognition approaches (based on local or global descriptors) when intensity/range

images from laser scanners or camera images are used as input (unless otherwise specified).

Comparison of Place Recognition Approaches using Equirectangular Range and
Intensity Images

This part of the subsection evaluates the performance of place recognition pipeline based

on local and global descriptors (described in Section 4.5) when equirectangular intensity

and range images are used as input. To perform a fair comparison, the precision-recall

curves of the place recognition algorithms are compared for the same parameters values.

• Local Descriptors (BOW approach)
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(a) Equirectangular intensity image of
point cloud acquired during day time

(b) Front rectilinear pro-
jection extracted from Fig-
ure 4.21(a)

(c) Camera image acquired
during day time at the same
location as in Figure 4.21(a)

(d) Equirectangular intensity image of
point cloud acquired during night time at
the same location as in Figure 4.21(a)

(e) Front rectilinear projec-
tion extracted from Fig-
ure 4.21(d)

(f) Camera image acquired
during night time at the
same location as in Fig-
ure 4.21(d)

(g) Equirectangular intensity image of
point cloud acquired during day time

(h) Front rectilinear pro-
jection extracted from Fig-
ure 4.21(g)

(i) Camera image acquired
during day time at the same
location as in Figure 4.21(g)

(j) Equirectangular intensity image of
point cloud acquired during night time at
the same location as in Figure 4.21(g)

(k) Front rectilinear pro-
jection extracted from Fig-
ure 4.21(j)

(l) Camera image acquired
during night time at the
same location as in Fig-
ure 4.21(j)

Fig. 4.21: a-d), g-j) Equirectangular intensity image of the same location during day and night
time. b-e), h-k) Front rectilinear projection extracted from a-d, g-j respectively. c-
f), i-l) Camera images at the same location as in a-d, g-j under similar lighting
conditions.

The evaluation performed in this part of the subsection compares the performance of the

BOW place recognition approach defined in Section 4.5.2 using range (rIeqrect) and intensity
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(iIeqrect) images as input. Figure 4.22 shows the precision-recall curves for different δ

values for the BOW place recognition approach. It can be seen that given any δ threshold,

the BOW place recognition algorithm performs better using intensity images as input in

comparison to range images. The intensity based BOW approach is capable of generating

higher recall at 100% precision and vice versa than its counterpart. The main reason for the

improvement in the performance of the place recognition algorithm is due to the capacity

of laser intensities as an intrinsic surface property to differentiate or find similarity between

different environment scenes. In contrast, the range information can be ambiguous for local

descriptors as many scenes in the Munich campus dataset have a similar structure.
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(a) BOW using range images
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(b) BOW using intensity images

Fig. 4.22: a) The precision-recall curve of the BOW approach using range (rIeqrect) images
for different δ values. b) The precision-recall curve of the BOW approach using
intensity (iIeqrect) images for the same parameters as shown in Figure 4.22(a). It
can be seen that using intensity images as input improves the precision-recall of the
place recognition algorithm significantly.

• Global Descriptors (HOG and GIST):

Figure 4.23 and Figure 4.24 show the precision-recall curves for the GIST and HOG based

place recognition approach using intensity and range images as input for the same parame-

ter values. It is important to highlight here that the evaluation for GIST and HOG (using

range and intensity images) was carried out for a large set of parameter values of which

only a subset is being shown here. In all evaluations it is found that using intensity images

as input improves the performance of the place recognition approach. It can be seen in

the above mentioned figures that for all set of parameters (χ for GIST and L for HOG)

the place recognition algorithm using intensity images as input generates higher recall at

100% precision in comparison to range images.

An important aspect to highlight here is that the global descriptor based place recogni-

tion algorithms (GIST and HOG) never achieve high precision at 100% recall in comparison

to the evaluation of the BOW approach shown in Figure 4.22. The reason due to which

this happens is because the Munich campus dataset contains scans of the same location

in which the observer orientation is changed by 180◦ as shown in Figure 4.25(a) and Fig-

ure 4.25(b). The global/holistic descriptors summarize an image by generating a global
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(a) GIST based place recognition using range im-
ages
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(b) GIST based place recognition using intensity
images

Fig. 4.23: a) The precision-recall curve of the GIST based place recognition approach using
range (rIeqrect) images given different orientations per scale χ with a fixed number
of blocks and scales i.e. ϕ and Ω respectively. b) The precision-recall curve of the
GIST based place recognition approach using intensity (iIeqrect) images as input for
the same set of parameters as shown in Figure 4.23(a). It can be seen that using
intensity images improves the maximum achievable recall of the place recognition
approach at 100% precision. It is important to highlight that the above mentioned
evaluation was performed for a large number of parameter values (χ, ϕ and Ω) of
which a very small subset is shown here for conciseness. In all evaluations it is found
that using intensity images as input to the GIST based place recognition approach
improves performance in comparison to range images.

representation which is processed in a predefined order (such as accumulating histograms

for each cell in an image and appending them to form a vector in case of HOG) which

makes them sensitive to the observer orientation even though equirectangular projections

provide a 360◦ field of view.

Comparison of Place Recognition Approaches using Camera Images and Laser
Scanner Intensity Images

This part of the subsection compares the performance of the place recognition algorithms

based on local and global descriptors using laser scanner intensity and camera images

as input. It is important to specify that the color images from the camera were passed

through the same pipeline as shown in Figure 4.3 with the data preprocessing block only

converting the color image to an 8 bit grayscale image (the intensity image is also a 8 bit

grayscale image). The equirectangular projection of the point cloud provides a panoramic

perspective whereas cameras have a limited field of view, hence a rectilinear projection is

calculated to perform a fair comparison. Figure 4.25 shows the equirectangular, rectilinear

projection as well as the camera images acquired at the same location.

As mentioned earlier, the Munich dataset contains scans in which the observer orienta-

tion was varied by 180◦ as shown in Figure 4.25(a) and 4.25(b). Unlike the equirectangular

projection which has a wide field of view (panorama), the camera has a limited field of

view which can cause the place recognition algorithm to not recognize the same location
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(a) HOG based place recognition using range im-
ages
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(b) HOG based place recognition using intensity
images

Fig. 4.24: a) The precision-recall curve of the HOG based place recognition approach using
range (rIeqrect) images for different cell size L with a fixed size of spatial support
σ for the Gaussian filter. b) The precision-recall curve of the HOG based place
recognition approach using intensity (iIeqrect) images for the same set of parameters
as shown in Figure 4.24(a). It can be seen that using intensity images improves the
maximum achievable recall of the place recognition approach at 100% precision.
It is important to highlight that the above mentioned evaluation was performed
for a large number of parameter values (L, and σ) of which a very small subset
is shown here for conciseness. In all evaluations it is found that using intensity
images as input to the HOG based place recognition approach improves performs
in comparison to range images.

as discussed in Figure 4.25. Hence, the experimental evaluation is carried out for two

different cases, firstly when the place recognition algorithm is provided only with the front

rectilinear image (with a limited field of view). In contrast, the second case considers

the scenario in which the place recognition algorithm is provided with the front and back

(corresponding to 180◦ observer yaw variation) rectilinear projection or camera images. A

true positive occurred in this evaluation if images from any of the observer orientations

was correctly recognized. The comparative evaluation of both cases mentioned above is

only shown for local descriptor based place recognition approach (for conciseness), however

the conclusion is valid for global descriptors as well.

• Local Descriptors (BOW approach):

In this part of the subsection, the performance of the BOW place recognition algorithm

is compared when camera (cI) and intensity (iIrect) images are used as input. Figure 4.26

shows the precision-recall curves of the BOW approach for different δ thresholds using

camera and intensity images as input for the two different cases (a-b and c-d) mentioned

above. Firstly it can be seen that formulating the BOW place recognition algorithm over

intensity images significantly improves the precision and recall of the algorithm for both

cases (Figure 4.26(b) in comparison to Figure 4.26(a) and Figure 4.26(d) in comparison to

Figure 4.26(c)). Secondly, it can be seen from the figures that the maximum achievable

recall by the algorithm at 100% precision increases in the second case (when front and back
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(a) Equirectangular intensity image of a
point cloud acquired during night time

(b) Equirectangular intensity image of a
point cloud acquired at the same location as
in Figure 4.25(a) with a 180◦ observer orien-
tation (yaw) variation

(c) Front rectilinear projection corre-
sponding to Figure 4.25(a)

(d) Front rectilinear projection corre-
sponding to Figure 4.25(b)

(e) Camera image at the same loca-
tion as shown in Figure 4.25(a)

(f) Camera image at the same loca-
tion (with the same orientation) as in
Figure 4.25(b)

Fig. 4.25: a-b) The Munich campus dataset contains scans in which the observer orientation
(yaw) is changed by 180◦ at the same location. Due to the limited field of view of
the rectilinear projection (c-d) and the camera (e-f), place recognition approaches
are unable to determine if the observer is at the same location.

rectilinear images are used) in comparison to the first case. It can be seen in Figure 4.26(b)

that the BOW approach using the front rectilinear intensity image does not generate

high precision at 100% recall due to the issue highlighted in Figure 4.25, however when

the place recognition algorithm is provided with the front and back rectilinear intensity

images the precision and recall of the algorithm improves by a significant margin as shown

in Figure 4.26(d). The BOW place recognition approach using camera images does not

perform well for the same parameters due to lack of feature repeatability under drastic

illumination conditions [48, 116].

87



4 Appearance based Place Recognition/Loop Closure Detection

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Precision and Recall curves for different δ values

δ =0.05

δ =0.1

δ =0.15

δ =0.2

(a) BOW approach using front camera image
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(b) BOW approach using front rectilinear intensity
image
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(c) BOW approach using front and back camera
images
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(d) BOW approach using front and back rectilinear
intensity images

Fig. 4.26: a-b) The performance of the BOW place recognition algorithm for the first case
when it uses only the front rectilinear projection or the front camera image c-d) The
second case when it uses both the front and back rectilinear projections or camera
images. It can been seen that the place recognition algorithm using intensity images
outperforms the same approach using camera images (compare Figure 4.26 b) with
a) and d) with c)).

• Global Descriptors (GIST and HOG):

Figure 4.27 and Figure 4.28 shows the precision-recall of the place recognition approach

based on GIST and HOG global descriptors respectively using camera (cI) and intensity

(iIrect) images as input. Both figures show that the place recognition approach using

intensity images is capable of generating higher precision at 100% recall and vice versa

in comparison to the approach that uses camera images as input for the same parameter

values. It can be seen that as the place recognition approach based on global descriptors is

provided with front and back intensity images (increasing the field of view and resolving the

orientation issue highlighted in Figure 4.25) they are capable of generating high precision

at 100% recall in contrast to the evaluation in Figure 4.23 and Figure 4.24. It is important

to highlight that for any set of parameters the place recognition pipeline using camera

images does not generate 100% recall at high precision. Although in context of GIST

descriptor based place recognition using camera images the algorithm generates higher

precision and recall in a small region of the curve in comparison to the approach based
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(a) GIST based place recognition using front and
back camera images
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(b) GIST based place recognition using front and
back rectilinear intensity images

Fig. 4.27: a-b) GIST based place recognition using camera (cI) and intensity (iIrect) images
respectively for different number of orientations per scale χ with other parameters
being the same. It can be seen that place recognition approach using intensity
images is capable of generating higher recall at 100% precision and vice versa in
comparison to its counterpart using camera images. It is important to highlight that
the above mentioned evaluation was performed for a large number of parameter
values (χ, ϕ and Ω) of which a very small subset is shown here for conciseness. In
all evaluations it is found that using intensity images as input to the GIST based
place recognition approach improves performance in comparison to camera images.
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(a) HOG based place recognition using front and
back camera images
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(b) HOG based place recognition using front and
back rectilinear intensity images

Fig. 4.28: a-b) HOG based place recognition using camera (cI) and intensity (iIrect) images for
different cell size L with other parameters being the same. It can be seen that the
place recognition using intensity images is capable of generating higher precision at
100% recall in comparison to its counterpart using camera images. It is important
to highlight that the above mentioned evaluation was performed for a large number
of parameter values (L, and σ) of which a very small subset is shown here for
conciseness. In all evaluations it is found that using intensity images as input to the
HOG based place recognition approach improves performs in comparison to camera
images.
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(a) 3D pointcloud without intensity textures at
ψ = 0.1
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(b) 3D pointcloud with intensity textures at ψ =
0.1
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(c) 3D pointcloud without intensity textures at
ψ = 0.5
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(d) 3D pointcloud with intensity textures at ψ =
0.5

Fig. 4.29: The performance of the BOW place recognition approach based on 3D point clouds
using SHOT descriptors with and without intensity textures. It can be seen that
for lower ψ (the grid cell size used to downsample the pointcloud) values (ψ =
0.1 m) the BOW place recognition algorithm using intensity textures is capable of
generating higher recall at 100% precision and vice versa. b-d) The decrease in
performance of the BOW place recognition algorithm is due to loss in information
about the environment geometry (due to downsampling).c-d) The precision-recall
performance gap of the BOW place recognition approach with and without intensity
textures also decreases due to loss in information about the environment geometry.

on intensity images, however at the most important parts of the precision recall curve

(maximum achievable recall at 100% precision or maximum achievable precision at 100%

recall) the intensity based place recognition performs better than its counterpart.

• Comparison of the Point Cloud based Place Recognition Approach with and

without Intensities

This part of the subsection focuses on evaluating the BOW place recognition approach

using descriptors extracted from the actual point cloud without using any projection. The

BOW approach uses SHOT descriptors as they have been shown to have higher repeata-

bility and discriminative capabilities in comparison to other descriptors [164].
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4.7 Discussion

The comparison performed in this subsection evaluates the performance of the 3D point

cloud based BOW place recognition approach with and without (only geometry) intensity

textures [164]. The process of descriptor extraction includes keypoint extraction from the

point cloud and furthermore calculation of the SHOT descriptor for each keypoint using

the neighbourhood defined by a radius of 5×ψ. Figure 4.29 shows the precision and recall

curves of the BOW approach using 3D descriptors for different downsampled pointclouds

(with and without intensity textures) using grid cell size ψ. Figure 4.29 highlights different

important aspects, firstly the performance of the place recognition algorithm based on

intensity textured point cloud is better (higher recall at 100% precision and vice versa)

than its counterpart (point cloud without texture) for ψ = 0.1 m. Secondly, it can be

seen that as the ψ value is increased the performance of the place recognition algorithm

decreases significantly due to loss in information about the environment geometry (due

to downsampling). In addition, it can also be seen that due to this downsampling the

precision-recall performance gap of the BOW place recognition approach with and without

intensity textures also decreases.

4.7 Discussion

This section highlights the different characteristics of the proposed binary vocabulary gen-

eration mechanism for loop closure detection as well as the proposed generic place recog-

nition pipeline.

4.7.1 Binary Bag of Words Vocabulary Generation for Loop Closure

Detection

The experimental evaluation of Section 4.6.1 raises two important issues about the pro-

posed approach: Firstly, the issue of scalability, i.e. handling large vocabularies and sec-

ondly the selection of an appropriate δ threshold.

Scalability

The scalability issue can be addressed by formulating an incremental version of the ‘vo-

cabulary tree’ [141] suitable for binary descriptors. The advantage of such an adaptation

would be to reduce the computational complexity (reducing it to logarithmic instead of

linear complexity) during the BOW assignment process discussed in Section 4.4.2 and allow

the approach to scale well for large scale datasets and vocabularies containing 1 million or

more words.

Distance threshold

Consider the second issue of selecting an appropriate δ (distance) threshold. The factors

that influence the δ threshold include the operating conditions i.e. lighting conditions as

current state of the art feature detectors are not completely invariant to such changes

and the amount of overlap present between images for feature tracking. In principle, a

simple mechanism can be used to estimate the δ threshold for a particular dataset. This
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mechanism requires matching descriptors (using a specific δ threshold) between a pair of

consecutive images and reducing the δ threshold until the false matches are eliminated. It

is important that this pair should be a true representative of the operating conditions and

expected overlap between images in that dataset.

4.7.2 Place Recognition using Passive and Active Sensors

The experimental evaluation in Section 4.6.2 highlights different aspect of the generic place

recognition pipeline which are discussed in detail in this subsection.

Active vs Passive sensors

The decision to formulate the place recognition problem using an active sensor (specifically

laser intensities) is due to its invariance to ambient lighting conditions and its dependence

on an intrinsic environment property (surface reflectivity). The advantage as shown in

Section 4.6.2 is that it is possible to use a visual vocabulary (based on local or global de-

scriptors) generated during day time to recognize the same places during night time without

any preprocessing. Hence, a visual vocabulary generated using laser intensities is compact

and allows better generalizability as it encodes the same location using similar features un-

der varying lighting conditions due to its invariance property. In contrast place recognition

approaches based on passive sensors require specific pre-processing or training data under

different environment appearances to handle such scenarios. In effect a visual vocabulary

generated from passive sensors using training data under different lighting conditions learns

to encode the same location with a diverse set of features (thereby generating a large vo-

cabulary). In addition, their exists no notion on the quantity and diversity (under different

lighting conditions) of training data that would be sufficient for the vocabulary generation

process (in context of passive sensors) to operate under all possible lighting conditions.

The above mentioned issue of feature repeatability and matching under adverse lighting

conditions in context of passive sensors has been discussed in literature [48, 116, 135].

Offline vs Online Vocabulary Generation

The decision of generating a visual vocabulary in an online, incremental manner (in context

of active sensors and the proposed approach) is due to its suitability for online robotic and

computer vision applications such as place recognition within SLAM or SFM (structure

from motion). An advantage of online, incremental vocabulary generation process is that

it removes the inconvenience of collecting a large training dataset for offline processing.

The basic idea behind the ideal characteristics discussed in Section 4.1 is that it is desirable

that a place recognition algorithm should have the capacity to function properly in case a

training dataset might not be available for vocabulary generation. In contrast if training

data is available a priori, it is always possible to leverage offline processing to generate a

visual vocabulary (using standard mechanisms such as Kmeans) and furthermore adapt it

in an online, incremental manner using the mechanism defined in Section 4.5.2.
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Image (Projection) vs 3D Point Cloud based Place Recognition

The proposed pipeline uses different formats of input data such as images (visual appear-

ance) or 3D point clouds (geometry with or without texture) for place recognition.

The main advantage of generating a projection of the point cloud is that it reduces

the dimensionality (3D to 2D) of the problem. In addition, it allows the ease of work-

ing with commonly used image processing and feature extraction techniques which have

been researched and tested extensively by the computer vision and robotics community.

In principle, the specific projection (equirectangular or rectilinear) being used also plays

a critical role in defining the field of view available to the place recognition algorithm as

discussed in Section 4.6.2. Generating a projection has its disadvantages as well because of

the variation in appearance due to changes in observer position/orientation. This variation

in appearance can be problematic for place recognition algorithms as local descriptors are

shift invariant to a certain degree whereas the performance of global descriptors degrades

significantly with view point changes. The main advantage of 3D point cloud descrip-

tors is their invariance (to a large extent) to the observer pose variation (translation and

rotation). In addition, the formulation of the place recognition problem over 3D point

clouds simplifies the estimation of the relative transform between the recognized places (in

contrast the projection leads to the loss of information about the environment geometry).

Given the descriptor correspondences and the keypoint locations (where the descriptors

were extracted), the relative transform between two point clouds can be extracted using

a closed form solution [104]. The limiting factor in the performance of 3D descriptors

is their sensitivity to the point cloud density as shown in Section 4.6.2 as well as noise.

In principle the decision to formulate the place recognition problem over images or point

clouds is a design choice that is highly dependent on the desired characteristics of the place

recognition algorithm.

Applicability of the Temporal Consistency Constraint over Sensor Observations,
Odometry and GPS

The objective of removing the temporal consistency contraint over sensor observations,

odometry and GPS is to highlight the discriminative abilities of intensities and its relia-

bility, robustness for global place recognition. Another perspective of viewing the above

mentioned aspect is to consider an generic application (outside the scope of robotics)

in which point clouds/images similar to a given target point cloud are retrieved from a

database based on a similarity metric.

In a typical robotics scenario it is always advisable to fuse information from multiple

sources to increase robustness, hence in context of real application the proposed pipeline

should always be used in conjunction with additional sensors (such as GPS, temporal con-

sistency as well as odometry). The incorporation of the temporal consistency constraint

within the proposed pipeline is quite simple. The temporal consistency constraint as pro-

posed in [118] can be applied by introducing a constant velocity model which limits the

search space of the place recognition hypotheses to a line in the symmetric similarity ma-

trix. In principle, the enforcement of the temporal consistency constraint makes the place

recognition problem simpler as it limits the search space for the next candidate in the place
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recognition hypotheses.

4.8 Conclusion

This section presents the main conclusions of the proposed binary vocabulary generation

mechanism as well as highlights the advantages and characteristics of the place recognition

pipeline based on laser intensities.

4.8.1 Binary Bag of Words Vocabulary Generation for Loop Closure

Detection

A subsection of this chapter focused on an online, incremental approach of binary visual

vocabulary generation for loop closure detection. The main purpose of focusing on binary

descriptor based vocabularies is because they require reduced computational and memory

complexity in comparison to real valued descriptors. The proposed binary vocabulary gen-

eration process is based on tracking features across consecutive images making it invariant

to the robot pose and ideal for detecting loop closures. In addition, a simple mechanism

for generating and updating the binary vocabulary is presented which is coupled with a

similarity function and temporal consistency constraints to generate loop closure candi-

dates. The proposed approach is evaluated on different publicly available datasets and it

has been shown that in comparison to the state of the art it is capable of generating higher

recall at 100% precision.

4.8.2 Place Recognition using Active and Passive Sensors

In addition to the loop closure detection pipeline with temporal constraints, this chapter

also addresses the problem of place recognition under challenging lighting conditions using

active and passive sensors. A generic pipeline for place recognition is presented which

can be adapted for different robotic and computer vision applications depending on the

desired set of characteristics i.e. the capability of operating under challenging lighting

conditions, requirement of any prior training data, odometery, GPS or any temporal con-

sistency contraints over sensor observations. The proposed place recognition pipeline is

evaluated on a dataset collected in the city of Munich near the TUM campus in which

different locations are visited during the day and later revisited during the night time.

The experimental evaluation shows that using intensity images as input in comparison to

types of input data, such as camera or range images, is beneficial for the place recognition

algorithms (operating with local or global descriptors) operating under challenging lighting

conditions. In addition, it shows that given the same place recognition pipeline (based on

local or global descriptors given the same parameter settings), intensities generate better

precision-recall curves in comparison to other types of input data. The results also under-

line the importance of using intensity textured point clouds for 3D point cloud based place

recognition. The evaluation also highlights certain design decisions in context of place

recognition algorithms such as the strong dependence of global descriptors on observer

orientation, the effect of the limited field of view of the rectilinear projection model as
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well as the decrease in performance due to downsampling of point clouds. In summary,

the proposed pipeline based on laser intensities is capable of generating high precision,

recall under adverse lighting conditions on a challenging dataset without any requirement

of prior training data, odometry, GPS or any temporal consistency constraints.
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5 Summary & Conclusions

This section presents a brief summary, conclusions and possible future research directions

in context of the main contributions of this thesis.

5.1 Summary

This thesis contributes in the domain of perception within the field of mobile robotics

by proposing techniques that allow robots to generate accurate maps of the environment.

An accurate map is an essential requirement for a wide variety of tasks such as robotic

navigation and exploration. This section provides a summary of the main contributions

made by this thesis in the areas of Environment representation, Simultaneous Localization

and Mapping (SLAM) and Loop closure/place recognition detection for consistent and

accurate environment mapping.

5.1.1 Environment representation

This thesis contributes in the domain of grid based environment representation by propos-

ing an approach which is capable of approximating the environment using a variable res-

olution grid. The proposed approach extends the standard occupancy grid by adding a

fusion process based on occupancy probabilities that couples the surface representation,

i.e. occupancy probabilities, with the spatial decomposition of the grid thereby generat-

ing variable resolution grid based environment representations. Furthermore, the variable

resolution grid is stored in a hierarchy of axis aligned rectangular cuboids that is incre-

mentally generated and adapted based on sensor observations. The main characteristics

of the proposed approach are

• Incremental : Allows incremental generation of the grid and the hierarchy based on

sensor observations

• Flexible: Provides the flexibility of selecting the maximum number of children per

node

• Multiresolution grid cells : Capable of modeling a variable resolution grid

In summary, the main contributions of this thesis in context of environment represen-

tation are as follow

• An approach capable of modeling the environment using a variable resolution grid

• A simplistic fusion process that couples the surface attribute i.e. occupancy prob-

ability with the spatial decomposition leading to variable resolution representations

of the environment in an online, incremental fashion
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• An extensive experimental evaluation highlighting the characteristics of the proposed

approach on a publicly available dataset

5.1.2 Laser Intensities for SLAM

This thesis contributes in the domain of SLAM by proposing a simple calibration process

that allows the robot to acquire a pose-invariant measure of surface reflectivity. A typical

laser scanner measures the distance to an object as well as quantifies the received optical

power after reflection from the object which is termed as the remission or intensity value.

The important aspect about intensities is that it is dependent on an intrinsic surface prop-

erty as well as extrinsic parameters such as distance and angle of incidence. This thesis

presents a simple calibration process that allows modeling of the extrinsic parameters to

acquire a pose-invariant measure of surface reflectivity. This surface reflectivity measure

is furthermore used to simultaneously estimate the robot pose as well as acquire a reflec-

tivity map, i.e. occupancy grid augmented with surface reflectivity information, of the

environment.

In summary, the main contributions of this thesis in the domain of SLAM are

• A simplistic calibration process to model extrinsic parameters for acquiring a pose

invariant measure of surface reflectivity for different laser scanners

• An extension of Hector SLAM capable of simultaneously estimating the robot pose

as well as generating a reflectivity map of the environment

• An extensive evaluation of the calibration process as well as the Hector SLAM ex-

tension

5.1.3 Place recognition/Loop closure detection

This thesis contributes towards two different aspects of the place recognition/loop closure

problem. The first aspect is related to an online, incremental binary vocabulary genera-

tion mechanism for loop closure detection using passive sensors. The main advantage of

generating binary vocabularies are that they are computationally and memory efficient in

comparison to vocabularies generated using real valued descriptors. The second aspect

focuses on highlighting the advantage of using laser intensities for place recognition under

challenging lighting conditions in comparison to other types of input data such as camera

images or geometry information from laser scanners. The main advantage of laser inten-

sities is that they are invariant to ambient lighting conditions and depend on an intrinsic

surface property i.e. surface reflectivity.

In summary, the main contributions of this thesis in the domain of place recognition/loop

closure detection are

• An online, incremental approach for binary vocabulary generation for loop closure

detection
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• To highlight the advantage of using laser intensities for place recognition under chal-

lenging lighting conditions in contrast to other types of input data such as camera

images or geometry information from laser scanners

• An extensive evaluation of the vocabulary generation mechanism and the character-

istics of laser intensities using different descriptors, projection models and similarity

functions

5.2 Conclusion & Outlook

This subsection provides an overview of the conclusions as well as the possible future

research directions in the domain of Environment representation, SLAM and Place recog-

nition/loop closure detection.

5.2.1 Environment representation

The main advantage of the proposed environment representation is that it is capable of

modeling the environment using a variable resolution grid which is stored in a hierarchy

of axis aligned rectangular cuboids. The proposed approach is flexible in the sense that

it allows the user to define the maximum number of children allowed per node for the

hierarchy thereby influencing its characteristics such as insertion, access time as well as the

number of grid cells required to represent the environment. The evaluation highlights that

the proposed approach in comparison to the state-of-the-art Octomap approach requires

less number of grid cells and provides faster access times. In addition, the number of

inner nodes required to represent the hierarchy is significantly less, however the proposed

approach requires higher insertion times as it incrementally generates the hierarchy based

on the sensor observations.

The fusion process proposed in this thesis assumes a static environment. Possible future

work includes an extension of the fusion process to operate in dynamic environments. In

principle this extension can be carried out by monitoring the occupancy values of the

fused grid cells and splitting them if these values fall below the fusion threshold. In

addition, another important research direction is to incorporate object level dynamics into

the environment representation. In such a scenario a classifier would be used to detect

objects in the point cloud and furthermore approximate them as a rectangular cuboid and

add them to the variable resolution grid. Incorporation of object level hypothesis into the

environment representation is an essential step towards semantic mapping and critical for

development of intelligent and autonomous robots.

5.2.2 Laser Intensities for SLAM

In context of laser based SLAM, a simple calibration process for extrinsic parameters is

proposed that allows the robot to acquire a measure of surface reflectivity. The impor-

tance of the proposed calibration process is shown by comparing it to other models which

systematically ignore the influence of extrinsic parameters. The results show that extrinsic

parameter calibration is essential to acquire a pose-invariant measure of surface reflectivity.
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In addition, this reflectivity measure is used in an extension of Hector SLAM in which a

robot simultaneously estimates its own pose as well as acquires a reflectivity map of the

environment. The proposed Hector SLAM extension has been shown to accurately esti-

mate the robot pose and can be useful in cases when geometry information is ambiguous.

The reflectivity maps generated by the proposed approach can be used in a wide variety

of robotic applications such as global localization, navigation as well as exploration.

The proposed Hector SLAM extension relies on a cost function based only on surface

reflectivity information, hence it would interesting to consider other cost functions that

combine reflectivity and occupancy information and evaluate their performance. In addi-

tion, the scenario in which the point density is low can be problematic for normal vector

estimation thereby causing problems for extrinsic parameter correction. Hence an interest-

ing future research direction would be to switch cost functions based on the point density

observed by the robot.

5.2.3 Place recognition/Loop closure Detection

This thesis evaluates and highlights the advantage of laser intensities for place recognition

under challenging lighting conditions and compares its performance with other types of

input data such as camera images or geometry information from laser scanners. The exper-

imental evaluation shows that using intensity images as input in comparison to other forms

of input data, i.e. camera or range images, is beneficial for place recognition algorithms

(based on local or global descriptors) operating under challenging lighting conditions. The

results also underline the importance of using intensity textured point clouds for 3D point

cloud based place recognition. The evaluation highlights certain design decisions in con-

text of place recognition algorithms such as the strong dependence of global descriptors

on observer orientation, the effect of the limited field of view of the rectilinear projection

model as well as the decrease in performance due to downsampling of point clouds. An

interesting future research direction would be to develop approaches that combine the ad-

vantage of local and global descriptors for place recognition. It will also be interesting to

combine different types of input data such as camera images or intensity information from

laser scanners to take advantage of their properties under different conditions.

In context of vocabulary generation mechanisms, the proposed loop closure detection

approach shows that it is possible to generate binary vocabularies in an online, incremental

manner. The proposed vocabulary generation mechanism coupled with a simple similarity

function and temporal consistency constraint is capable of generating high precision-recall

on real world datasets in comparison to the state-of-the-art loop closure detection al-

gorithms. A drawback of the proposed vocabulary generation mechanism is the linear

complexity in the update process. An interesting research direction would be to develop

an approach that allows generation of a binary vocabulary tree in an online, incremental

manner thereby reducing the vocabulary update complexity from linear to logarithmic in

the number of descriptors present in the vocabulary.
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A Image projection models

A.1 Equirectangular projection

Given the laser scanner observations in cartesian coordinates the first step is to convert

them to spherical coordinates defined by range, azimuth and elevation. The intensity,

azimuth and elevation of each point observation is used to generate an equirectangular

intensity image. It is possible to interpret the azimuth and elevation of the sensor observa-

tions as rows and columns of an image respectively and accumulate the intensity value to

form a gray scale image as shown in Figure A.1(a). An example of the panoramic grayscale

image generated via the above mentioned projection is shown in Figure A.1(b) whereas

Figure A.4 shows the pseudocode for generating it given a point cloud.

(a) (b)

Fig. A.1: (a) Laser scanner observation of the jth point in the ith point cloud Pi. (b) Equirect-
angular intensity image obtained after projecting the point cloud. The azimuth and
elevation of the jth point is denoted by ηj and λj respectively.

(a) (b)

Fig. A.2: (a) The process of range image generation in which the range value is accumulated
in the relevant elevation, azimuth bin. Furthermore, this range image is normalized
by the maximum range (as represented by r̄j in the figure) to generate a matrix of
floating point values between 0 and 1. b) (Best visualized in color) An example of
the generated range image visualized with a HSV colormap.
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A.2 Rectilinear/Cubic projection

Similarly, it is also possible to store the range information at a specific elevation, az-

imuth bin which leads to the generation of range images as shown in Figure A.2(a). The

accumulated range value is furthermore normalized by the maximum range generating a

matrix of floating point values between 0 and 1. Figure A.2(b) shows the visualization of

an equirectangular range image (in a HSV colormap) corresponding to the image shown

in Figure A.1(b).

A.2 Rectilinear/Cubic projection

The rectilinear/cubic projection is generated by considering a flat surface tangent to the

sphere with the observer viewing from the center. Hence, the main computation involved in

this projection is to determine the mapping between the equirectangular coordinates (az-

imuth and elevation) and the rectilinear image as shown in Figure A.3(a). As the equirect-

angular projection consists of a 360◦ panorama, it is possible to generate the rectilinear

projection corresponding to different observer orientations (facing forwards or backwards

etc. with respect to the principle direction in the equirectangular image). Figure A.3(b)

shows the front rectilinear intensity image extracted from the equirectangular image shown

in Figure A.1(b) whereas the rectilinear/cubic projection can be extracted for different ob-

server orientations with a predefined horizontal and vertical field of view (fov h, fov v in

Figure A.4). The cubic projection is a subset of the rectilinear projection in which the

horizontal and vertical field of view is set to 90 degrees (given the same image width and

height).

(a) (b)

Fig. A.3: a) An abstract representation of mapping the equirectangular coordinates to the
rectilinear image coordinates. b) Front rectilinear projection corresponding to the
image shown in Figure A.1(b).
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A Image projection models

equirect projection(Pi = {p1
i , . . . ,p

n
i },

width, height)
Input: Pi // ith point cloud

width // equirectangular image width
height // equirectangular image

height
Output: Ieqrecti // Equirectangular image

Procedure:
//calculate spherical coordinates for all
points

∀j rj =
√
pji (x)2 + pji (y)2 + pji (z)

2

//pji (x): x coordinate of the jth point in the
ith point cloud
∀j ηj = arctan 2(pji (y), pji (x))

∀j λj = arcsin(pji (z)/r
j)

//calculate azimuth, elevation resolution

res azimuth =
max(η)−min(η)

width

res elevation =
max(λ)−min(λ)

height

//convert indices to equirectangular coordi-
nates
η =

η

res azimuth

λ =
λ

res elevation

// assign intensity or range to equirectangular
coordinate
// pji (intensity) : intensity value of the point

∀j intensityIeqrecti (ηj , λj)← pji (intensity)
or

∀j rIeqrecti (ηj , λj)← rj

return Ieqrecti ;

rectilinear projection(Ieqrecti , fov h, fov v)
Input: Ieqrecti // Equirectangular image

fov v // Vertical field of view
fov h // Horizontal field of view

Output: Irecti // Front rectilinear image

Procedure:
//elevation (λ) lies between [−π

2
,
π

2
]

//azimuth (η) lies between [−π, π]

//calculate upper coordinate (cu) of rectilinear
image

cu = [tan(
fovh

2
), tan(

fovv
2

)]

//generate rectilinear image coordinates
C = [c1, . . . , cn]
// c1(x) = −cu(x), cn(x) = cu(x)
// Value of n depends on the size of rectilinear
image
// c1(y) = −cu(y), cn(y) = cu(y)
// ∀jcj(z) = 1

//get equirectangular coordinates from rectilin-
ear image coordinates
∀jλj = arctan(cj(y),

√
cj(x)2 + cj(z)2)

∀jηj = arccos(
−cj(z)√

cj(x)2 + cj(z)2
)

// map values to rectilinear image
Irecti ← Ieqrecti (η,λ)
return Irecti

Fig. A.4: (Left) Pseudocode for generating an equirectangular projection. In case the cor-
responding elevation (λ), azimuth (η) bin contains multiple observations then a
simplistic incremental averaging approach can improve the overall image quality –
(Right) Pseudocode for generating a rectilinear projection. The psuedocode shown
above calculates the front rectilinear image. The rectilinear images corresponding to
different observer orientations can be generated by multiplying the rectilinear image
coordinates C by the corresponding transformation matrix.
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