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Abstract

Spectrally and spatially high-resolution gravity data are only available for specific regions on Earth. They

mainly stem from terrestrial, air-/shipborne gravimetry or altimetry measurements over the oceans. A global

gravity data coverage, vice versa, can only be achieved by satellite gravimetry missions taking lower spectral

and spatial resolutions into account. In order to extract the valuable information of high-resolution local data

sets in specific areas, a regional gravity modeling approach is established. The main challenge is hereby the

consistent spectral combination of the heterogeneous observations. For this purpose, the beneficial properties

of a multi-resolution representation (MRR) are used. The tool of MRR enables the composition of a signal

under investigation from several detail signals, which are related to specific spectral bands, and thus, can be

filled with information from various geodetic observation techniques referring to their spectral sensitivities.

The modeling approach is based on radial spherical basis functions (SBF). Due to their spatial localization

characteristics they are well-suited for regional gravity field representations. Further, in analogy to spherical

harmonics, they can be expanded in terms of Legendre series and allow to extract specific frequency bands of

the Earth’s gravity field by appropriate filtering. Both, their spectral and spatial localization characteristics are

used with benefit in this work. Various issues are investigated, as e. g. setting up a flexible parameter estimation

model, or balancing the minimum and maximum modeling resolution in order to exploit the signal content

of the measurements as optimally as possible. Different observation equations have to be formulated for the

diversity of gravitational functionals; a spectral classification of the measurement systems then establishes the

basis for a spectral combination and a MRR of the Earth’s gravity field.

Within simulation studies the stability and plausibility of the approach are rated and possible error sources

are identified. A variety of case studies verifies the method of variance component estimation for the

reasonable relative weighting of the observation groups. Combining real data at one single resolution level

yields accurate high-resolution regional gravity models; the enhanced approach on multiple levels enables

to further enrich those models with lower resolution signal from global satellite data (MRR composition).

The internal accuracy is evaluated by the corresponding covariance information, while a cross-validation and

comparisons with other regional and global models prove the external accuracy. Hereby, the MRR results

show the potential of regionally refining existing global models. Vice versa, the signal under investigation can

be spectrally decomposed as well (MRR decomposition), in order to detect data gaps or provide the ground

for further analysis, as e. g. studying geophysical phenomena in the Earth’s interior.
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Zusammenfassung

Schwerefelddaten mit sehr hohen spektralen und räumlichen Auflösungen stehen nur für bestimmte Regionen

der Erde zur Verfügung, da sie vor allem aus lokalen terrestrischen sowie Flug- und Schiffsgravimeter-

Messungen oder aus Altimetriebeobachtungen über den Ozeanen gewonnen werden. Eine globale Datenab-

deckung hingegen kann nur mittels Satellitengravimetrie und damit auf Kosten niedrigerer räumlicher und

spektraler Auflösungen realisiert werden. Um den hohen spektralen Informationsgehalt der regionalen Mes-

sungen gezielt in den jeweiligen Beobachtungsgebieten zu nutzen, wird ein regionaler Schwerefeldansatz

entwickelt, der insbesondere die Kombination der verschiedenartigen Schwerefelddaten begünstigen soll.

Dabei bilden die Datenheterogenität und die konsistente spektrale Kombination die größten Herausforderun-

gen. Die Realisierung gelingt mittels einer Multiresolutionsrepräsentation (MRR). Diese Methode ermöglicht

ein zu untersuchendes Signal aus einzelnen Detailsignalen zusammenzufügen, welche jeweils verschiedenen

Frequenzbändern zugeordnet sind und somit aus Daten von Beobachtungstechniken mit entsprechender spek-

traler Sensitivität gespeist werden können.

Für die regionale Schwerefeldmodellierung werden radiale, sphärische Basisfunktionen (SBF) verwendet, die

sich durch ihre lokalisierenden Eigenschaften besonders für räumlich begrenzte Repräsentationen von Schwe-

refeldstrukturen eignen. Sie basieren ebenso wie Kugelfunktionen auf Legendre Reihen und können durch

entsprechende Definition im Frequenzbereich als spektrale Filter fungieren. Diese Möglichkeit, sowohl in be-

stimmten räumlichen als auch in bestimmten spektralen Bereichen Schwerefeldinformationen zu extrahieren,

wird im Folgenden genutzt. Der Ansatz beinhaltet u. a. das Aufstellen eines flexiblen Modells zur Parame-

terschätzung oder die Abwägung der minimalen und maximalen spektralen Auflösung um den Signalgehalt

der Beobachtungen bestmöglichst auszuschöpfen. Aufgrund der Verschiedenartigkeit der Messdaten werden

diese zunächst gemäß ihrer spektralen Eigenschaften klassifiziert und dann unter Berücksichtigung der unter-

schiedlichen Schwerefeldfunktionale mittels Beobachtungsgleichungen beschrieben. Die Filtereigenschaften

der SBF ermöglichen schließlich die Datenkombination entsprechend der spektralen Klassifikation und die

Modellierung des Erdschwerefeldes in den verschiedenen Frequenzbereichen.

Anhand von Simulationsstudien werden zunächst die Stabilität und Plausibilität des regionalen Modellierungs-

ansatzes geprüft, beurteilt und mögliche Fehlerquellen aufgedeckt. Eine Vielzahl an Fallstudien mit realen

Daten verifiziert die relative Gewichtung der unterschiedlichen Beobachtungsgruppen mittels Varianzkom-

ponentenschätzung. Der MRR-Ansatz beinhaltet sodann nicht nur die Berechnung sehr hochaufgelöster

regionaler Schwerefelder aus lokalen Datensätzen, sondern insbesondere auch die Ergänzung der Modelle mit

niedriger aufgelöstem Signalgehalt aus den globalen Satellitenbeobachtungen (MRR-Komposition). Durch

konsistente Fehlerschätzung kann die interne Genauigkeit der Ergebnisse beurteilt werden, während Kreuz-

validierungen und Vergleiche zu existierenden regionalen und globalen Modellen die externe Genauigkeit

bewerten lassen. Die MRR-Ergebnisse zeigen hierbei das Potenzial, die globalen Schwerefeldmodelle in

entsprechenden Regionen mit zusätzlicher hochaufgelöster Information zu ergänzen oder umgekehrt, diese

spektral aufzuschlüsseln (MRR-Dekomposition), um Datenlücken zu identifizieren oder die Frequenzbereiche

für weiterführende Analysen, beispielsweise von geophysikalischen Phänomenen im Erdinneren, nutzbar zu

machen.



3

Contents

1 Introduction 7

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Review of different regional gravity modeling approaches . . . . . . . . . . . . . . . . . . . 9

Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Fundamentals 15

2.1 Spaces, dimensions and bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Coordinate and reference systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Geocentric, non-rotating reference system . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Geocentric, rotating coordinate systems . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Local coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Gravity as force and potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Physical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Resources for mathematical description . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Gravitational potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.4 Normal potential and gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.5 Disturbing potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Field transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Meissl scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Spherical derivatives of the (differential) gravitational potential in terms of SHs . . 32

2.5 Gravitational functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Gravitational potential difference . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2 Geoid undulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.3 Quasigeoid undulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.4 Gravity disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.5 Gravity anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.6 Deflection of the vertical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.7 Gravity gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Height definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Free-air reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Measurement systems, models and data 43

3.1 Measurement systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Terrestrial gravimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2 Ship- and airborne gravimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 Satellite altimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.4 GOCE satellite gradiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.5 GRACE satellite mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.6 CHAMP satellite mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.7 Swarm satellite mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.8 Satellite Laser Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Reference ellipsoids and normal potential models . . . . . . . . . . . . . . . . . . 61

3.2.2 Global SH gravity field models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.3 Regional model: GCG2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



4 Contents

3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Terrestrial data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 Shipborne data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Airborne data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.4 Altimetry data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.5 GOCE SGG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.6 GRACE level 2 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Spherical basis functions and multi-resolution representation 69

4.1 Series expansion in terms of SBFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 SBF: definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Relation to SHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Band limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Bandlimiting SBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Filtering by convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3 Truncation of series expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.4 Modeling errors and energy content . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.5 Gravitational functionals in terms of SBFs . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Multi-resolution representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Definition of spectral and spatial resolution . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2 Discretization of the frequency spectrum . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.3 Multi-resolution (de)composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.4 Types of bandlimiting SBFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.5 Spectral filtering by scaling and wavelet functions . . . . . . . . . . . . . . . . . . 88

5 Methodical settings, estimation model and spectral combination 93

5.1 Methodical settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.1 Computation grid and global rank deficiency . . . . . . . . . . . . . . . . . . . . . 94

5.1.2 Definition of regional target, observation and computation area . . . . . . . . . . . 96

5.1.3 Choice of area margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.4 Estimate of the regional rank deficiency . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.5 Choice of modeling resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.6 Choice of background model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Estimation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Gauß-Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.2 Extended Gauß-Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Spectral combination via MRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Analysis and choice of observation groups . . . . . . . . . . . . . . . . . . . . . . 109

5.3.2 Synthesis and spectral composition . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Results, Validation and Discussion 115

6.1 Single-level approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.1 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.2 Real data studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Spectral combination via MRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.1 MRR decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.2 MRR composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7 Summary and Outlook 163

Abbreviations and Nomenclature 171

List of Figures 177

List of Tables 179

Bibliography 181



Contents 5

Appendices 187

A Supplementary theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B Supplementary numerical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191





7

1 Introduction

In which direction does a river flow? – Where on Earth is the height ”zero“? – What can we use as reference?

If we try to explain the need of gravity field determination in our daily live, such questions may provide food for

thought: we use the Earth’s gravity field as reference for many practical applications. Precise height systems

e. g., deliver the basis for engineering or mapping a country. In order to relate all height measurements to

a so-called ”zero-height“, a global reference is indispensable – we therefore use gravity. Besides geodetic

applications, many neighboring disciplines – especially in geophysics – require gravitational information as

well, e. g. to model the Earth’s interior.

Due to density variations on the Earth’s surface, above in the atmosphere, and beneath in the interior, the

gravity varies in different regions: Mountains, glaciers, water storage on land, or underwater ridges in the

oceans, for instance, have diverse density features. Consequently, their heterogeneously distributed masses

cause different gravitational attractions, and turn the determination of the gravity field into a very complex

and demanding task.

Motivation

In this work, the main focus is on the determination of the gravitational force on the Earth’s surface, that varies

from point to point. The primary aim is determining regional gravity fields as comprehensively, effectively

and accurately as possible: The challenge is to develop a flexible regional approach combining any kind of

real gravity data in order to deliver medium- up to high-resolution gravity field models. Hereby the overall

motivation of setting up a ”regional“ approach – in contrast to a ”global“ one – directly results from the way

how to measure the Earth’s gravity field:

Why do we need regional in addition to global gravity field modeling? A variety of gravity measurement

techniques has been developed over the last centuries, which are completely different in their spectral and

spatial resolution, accuracy and geographical coverage. Each sensor type has its very specific advantages

and disadvantages: Satellites detect the gravity field globally and capture long wavelengths, but the spatial

resolution at the Earth’s surface is actually limited down to around 100 km due to the attenuation of the

gravity field with increasing altitude. In contrast, local measurement campaigns with terrestrial, air- or

shipborne gravimeters are able to detect much finer gravitational structures and deliver spatial resolutions of

less than a few kilometers. While satellite observations are the main data source for global gravity models,

higher-resolution observations are needed for regional refinements. Spherical Harmonic (SH) functions are

established as appropriate tool for global applications, but they capture the high-resolution information of

regional, heterogeneous data insufficiently. They suffer the loss of accuracy due to data gaps, different

data density and quality. Here, regional approaches come into play: As the high-resolution data sets are

available only in a very few parts on Earth, there is an urgent need of regional models, that approximate

their invaluable information. Spherical (radial) basis functions (SBF) have global support, but a localizing

character. They shall be used to capture spatially limited information and express it with high efficiency and

concentration. Being both spatially and spectrally as close as possible to the observations thus requires an

appropriate adaptation and set up of the functions. Figure 1.1 presents the general idea.

What are the challenges of (regional) gravity modeling approaches? Localizing Spherical Basis Function

(SBF)s seem to be an appropriate tool for regional gravity modeling, but there are a lot of open questions and

several challenges which have to be studied: After Newton, the Earth’s universal gravitation defines a global

gravity field, so that local data sets and regional models capture by nature only a finite part of the gravitational

signal, i. e. from the spatial point of view, functions with global support fit regionally limited data sets only
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Figure 1.1: General idea: Modeling regional gravitational structure (depending on mass distribution) – from real (terrestrial, air-

/shipborne, altimetry, GOCE, GRACE, ...) and pseudo (SH model) observations – in terms of SBFs (on top of a global SH model).

The light-blue colored background visualizes the parts which are included in the estimation model, realized in this work.

approximately, and edge effects appear. From the spectral point of view, the Earth’s gravitational potential is

a continuous quantity, which theoretically could be described by series expansion up to infinity. However, on

the one hand, for practical implementation series expansions have to be limited to a finite number of terms.

The cut of the infinite series expansion always provokes a truncation error; it has to be studied both in regional

and in global approaches. On the one hand, the spectral content, i. e. the captured gravitational information of

observations is also limited. According to these spectral restrictions, unknown series coefficients have to be

determined. Typically parameter estimation is used in geodetic applications (Koch, 1999). In mathematical

applications, as for instance presented by Michel (2013), numerical integration is favored. It enables the

direct computation of the coefficients based on a quadrature method (Driscoll and Healy, 1994). However,

estimating the unknown parameters in the overdetermined problem of regional gravity modeling has several

advantages for the task of this work: Error (co-)variances of the model parameters are estimated as well,

and thus, the accuracy and precision of the resulting models can be evaluated. Using the observations at

their original positions avoids additional error influences, e. g. from interpolation procedures, and enables the

combination of data with different resolutions, accuracies and distribution. However, some effort is required to

receive a stable solution: Especially inhomogeneously distributed observations due to data gaps and the need

of downward continuation processes for measurements obtained in different heights cause a bad condition of

the normal equation system. Therefore regularization schemes have to be implemented, e. g. by introduc-

ing prior information. In terms of regional modeling approaches using SBFs, the choice of an appropriate

regularization strategy is much more sensitive and less investigated than in global approaches. Above all,

the variety of basis functions (splines, wavelets, Slepians, Mascons, etc.) offers many positive features,

but the selection for different applications and requirements has to be taken very carefully. Open questions

append, as e. g. where to locate the functions (on a sphere, ellipsoid, on different layers inside the Earth,

etc.), on which kind of point grid (geographical, Reuter, icosahedra grid, etc.), and how to determine and

handle the related rank deficiency problems. The establishment of an appropriate adjustment model offers

several possibilities how to combine the inhomogeneous data sets, how to implement field transformations

of the observed gravity functionals and how to estimate the unknown series coefficients (e. g. by Variance

Component Estimation (VCE), Least Squares Collocation (LSC), etc.). All the selections influence each other

and have to be taken into account - as well as the model errors from the truncation of the series expansion,

from leakage problems, and edge effects.

→֒ The primary aim of this thesis is to investigate all those challenges and to develop a proper, stable and

efficient approach, that delivers accurate, high-resolution regional gravity field models.
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What are the benefits of a combination of multiple data sets via MRR? Within this approach, the spectral

content of the regional models shall be enhanced by combining the different high-, medium-, and low-resolution

data sets as optimally as possible. The long wavelengths of the gravity field and thus, large-scale structures of

the Earth, can only be observed by global satellite observation systems, while short wavelengths are mainly

detected with high accuracy by local observation systems. The idea is to combine the different data sets in

specific regions in such a way that their benefits contribute as much as possible to the gravity field models.

A spectral approach, introducing the resolution-depending gravity information of the different measurement

systems step-by-step to the regional model, shall deliver a Multi-Resolution Representation (MRR)1 of the

resulting gravity signal.

As visualized in Fig. 1.1, the combination model is set up by a global, low-pass filtered SH model (in

terms of prior information), and several regional, consecutively band-pass filtered SBF models (supplied by

different gravity data sets). Hereby, the observation techniques shall contribute information exactly in the

spectral domain of their highest sensitivity, in order to exploit their content and accuracy as optimally

as possible, but, as well, by means of reducing erroneous effects as efficiently as possible. The consistent

spectral composition of the low- and band-pass filtered gravity field representations can be guaranteed by an

appropriate mathematical approach based on a level-discretization of the frequency domain. Furthermore, the

connection of the so-called resolution levels could be realized by a pyramid algorithm, which is, however, not

part of this thesis. Vice versa, the resulting model can be decomposed by MRR, i. e. displayed at different

resolution levels. Viewing a gravitational signal under different resolutions enables to detect valuable

features of different spectral domains of our planet, such as groundwater storage, oil reserves or density layers

in the interior of the Earth.

Review of different regional gravity modeling approaches

While for global gravity field modeling, the use of SHs is well-established and physically proven, they are less

appropriate for high-resolution regional gravity field modeling. SHs are optimally localizing in the spectral

domain and due to their global character ideally suited for representing globally distributed data sets. However,

if high-resolution data sets are only available in certain geographical regions, the spectral information might

not be optimally caught: The leakage of high-resolution spectral information in unobserved areas has to be

taken into account which leads to a reduced accuracy of the modeled signal. To optimally exploit the content of

regional data sets, various regional modeling approaches have been proposed and further developed, especially

during the last two decades. They all have different advantages, challenges and are accordingly appropriate

for different applications. In the following, a short overview of the most established methods, their originating

idea and their main advantages is given. Table 1.1 lists and categorizes the specific features by means of the

exemplary implementation by one research group. The main differences result from the type of basis function

that is used:

Spherical basis functions and multi-resolution representation Within the set of basis functions, which

also includes SH functions, the regional gravity field community makes use of spherical, i. e. radial basis

functions. Freeden et al. (1998) (and many other publications from his working group) provide the fun-

damentals of this approach, e. g. further adapted by Schmidt et al. (2007). Altogether the functions are

based on Legendre polynomials and thus ensure the solution of the Laplace equation in a global case. In

contrast to SHs, the SBFs are isotropic and characterized by their localizing feature. For this reason they are

an appropriate tool for regional approaches to consider the heterogeneity of data sources (satellite, airborne,

terrestrial, etc.), resulting from a different frequency content, sampling geometry, and observation stochastic.

They are typically located on point grids and the related unknown coefficients which have to be estimated,

feature a geophysical meaning by representing the rough structure of the signal that has to be modeled in the

end. The choice of several specific parameters is justified by the findings of Bentel et al. (2013b) and Naeimi

(2013). Bentel et al. (2013a) studied various different radial basis functions for their application in regional

gravity modeling, based on the approach of Freeden et al. (1998) and Schmidt et al. (2007), using scaling or

wavelet functions. Those scale-discrete functions act as low- or band-pass filters and thus allow extracting

specific domains of the frequency spectrum; from the practical numerical side, they allow implementing fast

computation algorithms. Wavelets on the sphere have been studied in detail e. g. by Holschneider M. (1996);

Freeden et al. (1998); Klees and Haagmans (2000).

1In the literature also known as Multi-Scale Representation (MSR), e. g. Freeden (1999); Freeden and Michel (2001).
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Due to the different spectral content of complementary observations techniques, Haagmans et al. (2002) and

Schmidt et al. (2006) use the advantage of the scale-discretion and set up a MRR by combining a low-pass

filtered global geopotential model with band-pass filtered satellite gradiometer and regional high-pass filtered

gravity data. In view of a mathematical formulation as suggested by Freeden et al. (1998), the MRR decom-

poses the target function into several band-pass filtered detail signals, each related to a certain frequency band

and resolution level (e. g. Schmidt et al., 2007). Whereas Schmidt and Fabert (2008) applied the MRR in a

top-down scenario by using a pyramidal algorithm, Wittwer (2009) defines a MRR as a bottom-up approach.

Following the concept of adapting SBFs to the frequency content of the signal under investigation, prior

variances of the expected signal can be used to construct so-called spherical splines (Eicker, 2008; Eicker et

al., 2013). Those kernels allow a high fine-tuning to the signal characteristics and are strictly positive definite,

so that the problem is always uniquely solvable (Michel, 2013, p. 163). Further, the properties of the kernels

are independent of the chosen point grid on which they are defined, and thus can be placed very flexibly in

any region of interest.

Multipole wavelets In contrast to the previous discussed scale-discrete wavelet functions, Panet et al. (2006)

use Poisson multipole wavelets. The principle idea to create different scales, i. e. resolution-depending sen-

sitivities, is, to locate the sources at different depths (Holschneider et al., 2003). Hereby, the scale corresponds

to the distance of multipoles (which are based on series expansion in terms of Legendre polynomials) to the

Earth’s surface. Thus, multipoles can physically be interpreted as masses in the Earth’s interior. The main

advantages are their locality in phase which leads to quasi-diagonal matrices that are easy to invert, and their

definition in the whole space which supports especially the combination of heterogeneous data at different

altitudes (Panet et al., 2006). The research groups using multipole wavelets further distinguish between a set

of analysis coefficients defined either on a discrete sequence of scales, each containing a fix set of positions,

or on different scales and positions as well. The latter method enables a higher spatial flexibility but the

computation is much more time consuming.

Mascons The principle idea of simulating mass concentrations that cause differences in the gravitational

potential, is applied in the approach of Mascons by Rowlands et al. (2005). The region of interest is modeled

by a uniform layer of mass, e. g. a spherical cap or block, which is added to a mean field. Thus, the variations

between the mass elements are scaled by differential potential coefficients (Chao et al., 1987) which have to

be estimated. Each set of parameters is defined for a specific epoch so that the localization both in space

and time is the main advantage of this approach: On the computation side, correlations between regional

solutions decrease, and on the application side, regional mass variations and related gravity field changes

can be detected very well. As Mascons are optimally adapted to one observation technique, they are not

appropriate for combined gravity fields from heterogeneous observation data.

Slepian functions For an optimal concentration of a gravitational signal both in space (or time) and in the

spectral domain, Simons (2009) developed an approach using Slepian functions (Slepian and Pollak, 1961).

Those functions are defined within a geographical domain and within a certain frequency bandwidth. The

maximum spatial concentration of the strictly band-limited functions in a specific circular region can be found

by the maximum energy ratio to respective functions on the whole sphere. The Slepians thus are based on an

orthogonal set of SHs and the related unknown “concentrated” coefficients are obtained from the eigenvalue

equation of the maximum energy ratio.

Least Squares Collocation The statistical method of LSC has been developed in the 1970s and 1980s

(Krarup, 1969; Moritz, 1978; Koch, 1977). The aim is to find the most accurate approximation results on

the basis of the available noisy or noise-free data (Moritz, 1972), e. g. approximating stochastic variables

in a stochastic process or observed functionals of the Earth’s gravity field (Tscherning, 2015). Compared

with the previous mentioned approaches, the use of LSC for regional gravity modeling is the eldest and

most experienced. It combines filtering of the input data by removing erroneous noise, adjustment of the

unknown parameters, and prediction of a signal, i. e. computing a functional at any desired point. One of

the key advantages is, that it provides together with regional gravity field and geoid models from different

gravity data types, error information in the form of full covariance matrices. The covariances are assumed

to be known and describe the relation between observations and output quantities. For instance Pail et al.

(2009) and Arabelos and Tscherning (2010) adapted the approach for regional refinements of global gravity

models and Tscherning and Arabelos (2011) developed a powerful software package for regional gravity

field determination. Reguzzoni and Sansò (2012) discuss in detail a possible method for the combination of

high-resolution and satellite-only gravity field models.
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Table 1.1: Comparison of different regional gravity field modeling approaches and their specific features – based on the exemplary realization by research groups.

Approach SBFs

(Freeden et al., 1998)

Multipole wavelets

(Holschneider et al., 2003)

Mascons

(Chao et al., 1987)

Slepian functions

(Slepian and Pollak, 1961)

LSC

(Krarup, 1969)

Realization e. g. Scaling functions

by Schmidt et al. (2006),

Splines by Eicker et al. (2013)

e. g. Poisson wavelets

by Panet et al. (2006)

e. g. block Mascons

by Rowlands et al. (2005)

e. g. by Simons (2009) e. g. by Pail et al. (2009);

Tscherning and Arabelos

(2011)

Basis Legendre polynomials Legendre polynomials Legendre polynomials Legendre polynomials Legendre polynomials

Unknowns Scaling coefficients scales Mascon parameters: scale

factor on the set of differential

coefficients

eigenvalues coefficients of prediction

Location/ spatial

reference of unknowns

Reuter grid

(equidistributed grid points on

a sphere, on the Earth’s surface

or above)

Icosahedron

(hierarchical icosahedral

meshes on spheres with

different radii, in the Earth’s

interior)

geographical blocks (e. g.

4◦ × 4◦) on a sphere, on the

Earth’s surface, beneath or

above)

spherical area, defined by

center and radius, on the

Earth’s surface

input data

Adjustment model

and regularization

extended Gauß-Markov Model

(GMM), using VCE;

prior information from a global

SH model

geometric progression of

scales; forward modeling with

Gaussian probability (least

squares);

prior information by using a

generalized inverse

estimation of Mascon

parameters;

constraints between Mascons

that are close in space and time

estimating eigenvalues from the

maximum energy ratio between

spatially and spectrally

localizing and global functions;

inverse problems linear in the

data: truncated Slepian basis

(at Shannon number, i. e. sum

of eigenvalues)

least squares adjustment by

expressing the relation between

observations and output signal

through covariances

consideration of model

errors/

(in)completeness

error propagation including

signal (truncation error) and

noise

covariance matrix of data

noise; covariance matrix of

coefficients

correlations between the

Mascons w.r.t. signal

noise covariance direct computation of

covariances between

observations and output signal

Advantages and

disadvantages

(+) highly localizing,

(+) strict band limitation

possible,

(-) oscillations due to spatial

truncation

(+) defined in the whole space

(+) quasi-diagonal matrices

easy to invert,

(-) non-band limited,

non-compact support

(+) high localization both in

space and time (high resolution

models),

(+) direct gravity computation

(no truncation errors from any

conversion to SHs),

(-) prior information: strong

spatial constraints

(+) optimal spatial and spectral

concentration,

(+) reduced number of

functions,

(-) numerical instabilities due

to small eigenvalues

(+) full covariance information

directly provided

(+) flexible for combination of

any observation data

(-) large equation systems to

solve (depending on number of

observations)

Examples of prominent

(gravity field or

further) applications

height systems, detection of

data gaps, ...

3D analysis of the Earth’s

interior, lithosphere structure

studies, geoid models, ...

mass variations on land

(glacier), in the ocean, surface

water variations, ...

localized gravitational (mass

change) or geomagnetic

anomalies, ...

static, combined, regional

gravity field models, ...
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In Fig. 1.2, the basis functions are arranged w.r.t. their spectral

and spatial localization property. According to the uncertainty

principle a perfect localization both in the spectral and in the

spatial domain is not possible. While the SHs are optimally

localizing in the spectral domain, the Dirac function (visualized

as infinite small peak) is optimally localizing in the spatial

domain. Consequently, SHs are appropriate for representing

the signal of globally distributed data, while the Dirac function

would optimally represent the signal measured at a single point.

In order to represent the signal of geographically limited regions,

the above presented regional approaches (except the method of

LSC) use basis functions, which are all a compromise in-between

an optimal spatial and spectral localization (Freeden et al., 1998).
Figure 1.2: Schematic arrangement of basis

functions w.r.t. their spectral and spatial lo-

calization property.

Altogether, the resulting regional models are not able to resolve the low parts of the frequency spectrum from

spatially limited observation sets. In order to cover a broad range of the gravity field signal and to optimally

exploit the strengths of each approach, the chosen regional model e. g. can be placed on the top of a high

accurate global gravity model, usually based on global satellite observations modeled by SH basis functions.

Hereby, satellite-only combination models, such as the Gravity Observation COmbination (GOCO) series

(Pail et al., 2010) including data from Gravity Recovery And Climate Experiment (GRACE), from Gravity

field and steady-state Ocean Circulation Explorer (GOCE), and from other satellite-related data sources, are

distinguished, as well as combination models, such as Earth Gravitational Model 2008 (EGM2008) (Pavlis

et al., 2012) including terrestrial and altimetric gravity field data. The latter enhance the spatial resolution

apparently on a global scale, but in fact only in regions where a reasonable terrestrial data basis is available.

Research objectives

In this thesis a method of regional gravity field modeling is presented from the combination of various

observation techniques via MRR, that enables on the one hand to extract the maximum spectral content out

of each measurement system, and on the other hand to manage different observation positions, accuracies and

resolutions. Hereby, the focus is on a flexible approach for the combination of real data considering all their

specific features, by enhancing the approach of Spherical basis functions. This leads to the first research

objective, handled in this thesis:

1. Developing a regional modeling approach using SBFs

Why are SBFs appropriate functions for regional modeling? The main advantage of SBFs in contrast

to SHs is their highly localizing character. Both types of globally supporting basis functions are developed

in series expansion based on Legendre polynomials. As SHs are eigenfunctions of the Laplace operator

(Freeden et al., 1998, p. 36), they are the best choice for gravity field modeling approaches from data

with full global coverage. The resulting model of the gravitational potential satisfies the Laplace condition

and thus has a physical meaning. Further, the series expansion can be adapted very flexibly to any kind

of observation type, e. g. to various gravitational functionals or to measurements at different heights, by

applying field transformations. Thus, they are an excellent tool for the combination of different data sets.

Since SBFs and SHs can be related to each other, gravity field solutions in SHs can be transformed into

solutions in terms of SBFs and vice versa. Consequently, global gravity field modeling by SBFs makes

use of all positive (and negative) features of the well-established SH approach. However, for regional

application of SBFs, several additional challenges have to be considered, as e. g. the handling of rank

deficiencies, edge effects, truncation errors, etc.

What are the advantages of the SBF approach compared with other regional approaches? The task is,

to implement a regional modeling approach which manages the difficulties of SBFs and takes their benefits,

compared with and as an alternative to other regional approaches, especially in terms of combining different

data sets (see 2. objective). For this case, the spectral flexibility of the functions shall be exploited: acting
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as low- and band-pass filters they allow an adaptation to the spectral content of the observation data, as

exactly as it is known. Spatially, they can be adapted very flexibly to the observations as well, e. g. by

locating their origins anywhere within the appropriate area at the Earth’s surface, or along satellite tracks.

The resulting challenge is here, to balance the localization in spatial and spectral domain. As a strict band

limitation, i. e. an exact frequency cut, enables the spectral combination of different data sets at appropriate

resolution levels, a MRR can be applied to construct the output signal. This unique feature of the SBF

approach enables to realize the second objective of this work:

2. Combining different data sets via MRR as optimally as possible

What is the additional value of a combination? As the different measurement systems are sensitive in

different frequency domains, they deliver data with different spectral resolutions. In order to model the

gravitational signal as completely and as highly resolved as possible, the maximum information of the

observations shall be exploited.

Why is MRR an appropriate combination tool? A close to optimum spectral combination can be achieved

by MRR: the frequency domain is split into several resolution levels and the appropriate gravitational signal

is modeled from the data obtained by the measurement techniques which are sensitive in this bandwidth.

Adding the so-called detail signals in the end, delivers the full gravitational signal between the lowest and

the highest resolution of all contributing observations. Missing long wavelengths parts can be filled up

with information from global models. Thus, not only a high-resolution regional gravity model is obtained

containing as much spectral content as possible, but also information depending on the spectral resolution

can be derived from the single detail signals. Different geophysical processes have different spectral

sensitivities; potential relations could be derived from such a MRR of the gravitational signal.

Vice versa to the bottom-up approach, any final gravitational signal could be set up by a top-down

algorithm as well, starting with the highest-resolution data set and introducing step-by-step lower-resolution

observations. Schmidt et al. (2015) theoretically described such a pyramid algorithm by computing the

lower levels not only from new observations but also by using the information of the higher levels,

considering potential correlations. In this work the bottom-up approach is presented due to its much easier

implementation.

3. Enhancing the approach for the use of real data

What can we learn from simulation studies? Besides real input data, simulated data, e. g. functionals

computed from a global SH model, can be used to estimate gravitational signals. Comparing finally the

resulting output model with the input model completes the so-called ”closed-loop“ scenario. The aim is to

minimize the differences between in- and output. As the input data and comparison data relate to the same

origin, the differences answer two questions: (1) How accurately does the regional approach fit the real

data? (2) Are the chosen modeling parameters and settings appropriate? Simulating observations in

different heights or at different noise levels, approximates the characteristic of real data more and more and

enables to indicate the stability of the approach.

What are the challenges of real data? As in most cases the stochastic of real observations is just poorly

known, the objective of this work is to develop the approach at the same time as robust and flexible as

possible. Especially data gaps and missing knowledge of the exact frequency content of the measurements

are additional challenges that have to be considered.

Depending on the application, the selection of data sets and/or the choice of the region have to be made:

The availability, the height, the type, the accuracy, the spatial and the spectral resolution of the data are

important criteria, further, the type and resolution of appropriate prior information in order to close data

gaps, and finally the location and size of the area to be modeled – depending on the data coverage, edge

effects and desired spectral resolution of the resulting gravity signal. As the focus of this work lies on the

combination of various different measurement techniques, the regional gravity modeling approach shall

not be enhanced in the sense of finding the best model fit to each single data set, but in the sense of finding

an optimal fit in order to extract as much information as possible, i. e. to take benefit from all data sets.

All the challenges, mentioned in the last point, shall be studied and considered – together with the findings

from simulation studies – in order to reach the first two objectives. This leads to the overall topic of this thesis:

Enhanced regional gravity field modeling from the combination of real data via MRR.
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Outline

The thesis is structured in seven main Chapters (including the Introduction). Each Chapter is divided and

subdivided in several sections.

Chapter 2 The fundamentals are presented in Chapter 2. They contain both, the study of appropriate lit-

erature, but as well, based on appropriate literature, further development of relations which are relevant and

important for this work. In the first two sections, Sec. 2.1 and Sec. 2.2, the underlying spaces, dimensions,

bases, and coordinate systems are defined. They span the mathematical background. Section 2.3 introduces

the physical background. Gravity and gravitational potential are described under the modeling aspect, together

with their well-known representation in terms of SHs using Legendre functions. Hereby, new aspects are

derived, since the here presented regional gravity modeling approach is established on Legendre Polynomials.

Further, field transformations in Sec. 2.4 are studied in order to relate various gravitational functionals under

the aspect of their spectral sensitivity. A selection of gravity related quantities, obtained from first and second

order derivatives of the potential, is finally presented in Sec. 2.5. Relevant height definitions and reductions

complete this chapter.

Chapter 3 The different functionals stem from a variety of measurement systems. They are presented in

the first part, Sec. 3.1, of Chapter 3. In Sec. 3.2, a selection of existing models, computed from observables

of diverse measurement systems, are presented. In this thesis, global models serve as reference for regional

observation techniques, as reference for regional models according to Fig. 1.1, and for regularization pur-

poses. From comparisons of the here computed regional and other regional or global gravitational models, the

approach can either be validated, or different information can be identified. In Sec. 3.3 the specific data sets

used in this work, and their pre-processing are described. Since the aim is to extract as much information as

possible from the measurements, the observations shall be kept in their most original and less pre-processed

state.

Chapter 4 The fundamentals of the regional modeling approach are formulated in Chapter 4. It thus com-

prises the core of this work. In Sec. 4.1, the SBFs are introduced and related to SH basis functions. From

theoretical investigations of representing non-bandlimited functions, in Sec. 4.2, the transition to bandlimiting

SBFs is discussed. Spherical convolution and referring filtering characteristics are the key elements. Further,

the truncation of series expansions and corresponding errors are discussed. Finally, the SBFs are adapted

to various gravitational functionals. In the third part, Sec. 4.3, the principle of MRR is introduced. The

favorable filtering characteristics of SBFs are used for representing signals at different spectral resolutions.

The framework for the MRR is hereby an appropriate splitting of the frequency spectrum into resolution levels.

Chapter 5 Another key role in this work plays Chapter 5. In the first part, Sec. 5.1, several tools and settings

for establishing the enhanced regional gravity modeling approach are presented. Hereby, a kind of “recipe”

is given for a reasonable, well-balanced parametrization. Especially restricting investigations from global

gravity field representations to regional applications are discussed in detail. In the second part, in Sec. 5.2,

the estimation model is set up. It is subdivided into a single-level estimation method, computing gravitational

functionals from a combination of various observations in specified regions at one resolution level, and a

multi-level estimation method, presenting the spectral combination at different resolution levels within the

framework of a MRR.

Chapter 6 In Chapter 6, the enhanced regional modeling approach is applied to numerical studies. Besides

presenting the results, classified in a variety of different study cases, different methodical parametrization is

discussed. Hereby, the complexity increases with investigating a larger number of influencing factors. In

principle, two categories are distinguished: Section 6.1 investigates results from the single-level estimation

model, while Sec. 6.2 investigates results from the spectral combination model via MRR. First of all, within

simulation studies, the stability, consistency and efficiency of the approach shall be judged and verified. Based

on those findings, real data studies are discussed with the aims of computing high-resolution regional gravity

fields, and regionally refining existing global models. The beneficial peculiarities and the potential of the MRR

approach are compared with the single-level approach. Due to the large diversity, only a selection of results

can be studied. Within the different study cases, different error influences are identified and discussed in detail.

Chapter 7 The benefits, compromises, and weaknesses of the enhanced regional gravity modeling approach

are finally summarized in Chapter 7. With recommendations and ideas for further studies, this thesis closes.
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2 Fundamentals

The Earth’s gravitational potential V , resulting from attractions between masses, delivers together with the

centrifugal potential Z , resulting from the Earth’s rotation, the total gravity potential W= V + Z . From

any potential equipotential surfaces can be derived, i. e. surfaces with constant potential. According to this is

favorable property, the ”geoid“ is the most important equipotential surface in geodesy. Its according potential

W = W0 serves as mathematical description of the figure of the Earth (Hofmann-Wellenhof and Moritz, 2005,

p. 47), i. e. it is ideally suited for many geodetic applications, such as providing a reference for height systems.

The gravitational potential V is the fundamental quantity for all following considerations in this thesis due

to several reasons: From the mathematical point of view, this scalar potential satisfies the Laplace equation

and can be expressed as harmonic function outside the Earth’s attracting masses. Consequently, essential

advantages are inferred for modeling and measuring aspects: A variety of gravitational functionals, as e. g.

gravity gradients, gravity anomalies or geoid heights can be derived from the (differential) potential. As

mentioned, it further allows to quantify equipotential surfaces. Those unambiguous, well-observable surfaces

deliver the basis for detecting density, i. e. mass variations at the Earth’s surface.

The following sections give an overview of all gravity related quantities used in this work: Definitions,

derivations and relations shall be explained. Special emphasis is given on the way how to describe the

gravitational quantities by functional models for the global case. Hereby SHs are used as most popular basis

functions. The fundamental part of all basis functions regarded in this thesis are Legendre polynomials. They

and their derivatives are the key elements of the later adapted SBFs. Further, this chapter identifies common

features between SHs and SBFs. It is, thus, a mixture of reviewing relevant literature, but in equal measure

deriving new relations, which contribute to the basis for setting up the regional modeling approach in Chapters

4 and 5, the core of this work.

The chapter is structured as follows: First of all, the underlying spaces, dimensions, bases, and coordinate

systems are introduced, spanning the mathematical background. Second, gravity and gravitational potential

are introduced under the modeling aspect, together with their well-known representation in terms of SHs using

Legendre functions. From the modeling perspective, normal and disturbing potential are briefly introduced, as

well. The field transformations in the third part establish the relations between various gravitational functionals.

The Meissl scheme hereby provides a reasonable structure and is extended to the specific requirements in

this work. A selection of gravity related quantities, obtained from first and second order derivatives of the

potential, is finally presented in the fourth part. Some remarks on related height definitions and reductions

used in this work complete this chapter.

2.1 Spaces, dimensions and bases

In this work, all coordinate systems and functions are determined in relation to vector spaces and only real

valued functions are used. Table 2.1 gives an overview of the relevant spaces, examples for their basis and

elements used here. The structure of this section follows the table, starting with describing vectors in the

well-known Euclidean space, transferring the investigations to the description of functions/functionals on a

sphere, and finally describing elements in the exterior of a sphere, as well.

Vector space

The coordinate systems are defined in the metrical, three-dimensional Euclidean space R3 (e. g. Heinhold

and Riedmüller, 1971, pp. 79). It needs exactly three non-collinear basis vectors e ∈ R3 (here ei, i ∈ {1, 2, 3})
to span this vector space. Any element, e. g. the position vector x ∈ R3, is uniquely defined within R3 and
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Table 2.1: Overview of spaces, their basis vectors/functions, and exemplary elements.

space dimension basis vectors/functions elements

R
3 3 e x ... (position) vectors (e. g. expressed by

Cartesian, spherical or ellipsoidal coordinates)

L2(ΩR ) ∞ HR
l,m

... surface SHs, m = −l ...l f ... (harmonic) functions on ΩR

b ... SBFs Y[ Ṽ ] ... functionals on ΩR (at locations x ∈ ΩR)

H0,1, ...,∞(Ωext
R

), ∞ Hl,m ... solid SHs, f ... (harmonic) functions in Ωext
R

Ω
ext
R
= ΩR ∪Ωext b ... SBFs Y[ Ṽ ] ... functionals in Ωext

R
(at locations x ∈ Ωext

R
)

H0,1, ...,L (Ωext
R

) (L + 1)2 Hl,m ... solid SHs, f ... (harmonic) functions in Ωext
R

b ... SBFs Y[ Ṽ ] ... functionals in Ωext
R

(at locations x ∈ Ωext
R

)

can be expressed as linear combination of the three basis vectors, i. e.

x =

3∑

i=1

xi ei . (2.1)

Each component xi (coefficient, linear factor, respectively) can be interpreted as scaling factor of a projection

of x onto ei .

If the basis vectors are unit vectors and orthogonal to each other (e. g. e1 = (1, 0, 0)T , e2 = (0, 1, 0)T ,

e3 = (0, 0, 1)T ), they form an orthonormal basis, i. e.

〈

ei, e j
〉

R3
= eTi e j = δi, j , i, j ∈ {1, 2, 3} , δi, j =


0 for i , j

1 for i = j
(2.2)

‖e‖R3 =

√

〈e, e〉R3 = 1 . (2.3)

In Eq. (2.2) the inner or scalar product is applied on two vectors ei , e j ∈ R3; Eq. (2.3) presents the norm of

a vector e ∈ R3. In case of orthogonal basis vectors, the elements of the Euclidean space can be described,

for instance, by Cartesian coordinates (see Sec. 2.2.2).

Function space

A function f with a certain numerical function value f (x) at a location with position vector x, is defined in a

function space (Lanczos, 1997, p. 166), cf. Tab. 2.1.

... on a sphere: In contrast to the specific finite-dimensional space R3, functions are in the following defined

in the L2 normed vector space. On a sphereΩR with radius R and surface elements dωR the space is introduced

as L2(ΩR ). According to Eq. (2.1), each element, e. g. a function f ∈ L2(ΩR ) with x ∈ ΩR

f = f (x) =
∞∑

i=0

ci bi (x) , (2.4)

can be expressed by a set of an infinite number of basis functions bi and coefficients ci , i. e. a linear

combination of basis functions.2

If the scalar product of two basis functions exists, the L2 space, also denoted space of square integrable

functions, is a Hilbert space. The scalar product of two basis functions bi, bj (cf. Freeden et al. (1998),

pp. 57) and the norm of a basis function b read

〈

bi, bj

〉

L2 (ΩR )
=

∫

ΩR

bi (x)bj (x)dωR =:
〈

bi, bj

〉

ΩR

(2.5)

2In the following, the short form f (x) is used, for instance, for describing a function f = f (x) in the text, related to the literature. Basis functions b

can either be one-point functions with function values b(x) depending on x, or two-point functions with b = b(x, xq ), additionally depending on the

location of the function’s center with position vector xq .
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‖b‖L2 (ΩR ) =


∫

ΩR

|b(x) |2dωR



1
2

=: ‖b‖ΩR
< ∞ (2.6)

with x ∈ ΩR . For basis functions bi, bj ∈ L2(ΩR) spanning an orthonormal base, the scalar product (2.5)

becomes δi, j =


0 for i , j

1 for i = j
, i, j ∈ N0 . Referring to Freeden (1999), p. 39, 81, the spherical convolution

of a basis function b and an element f ∈ L2(ΩR) is defined as

( f ∗ b)ΩR
(x) =

∫

ΩR

f (x)b(x)dωR = 〈 f , b〉ΩR
. (2.7)

It is equivalent to the inner product of f and b, cf. Eq. (2.5). In the sequel of this thesis, basis functions which

are used for convolution, are denoted kernel functions or kernels.

... on and above a sphere: Functions which further shall describe properties of the exterior (ext) of a sphere

Ω
ext, i. e. Ωext

R
:= ΩR ∪Ωext, are defined in a space H0,1, ...,∞(Ωext

R
) (Schmidt et al., 2007). Compared to the

L2 space, in this expanded space the basis functions b ∈ H0,1, ...,∞(Ωext
R

) and their linear combinations cannot

be orthogonal.

2.2 Coordinate and reference systems

From the motivation of regional gravity field modeling it becomes clear, that the Earth’s gravity field is

a position-dependent quantity. But which coordinates are appropriate in order to express the gravitational

potential V (or any functional of it) at different locations? For either describing a physical phenomenon within

specific models, or for measuring specific quantities, various coordinate systems are indispensable and have

favorable characteristics. That is, depending on the geometrical, instrumental or practical problem, different

observation techniques rely on their own specific reference systems. In order to observe and describe the

dynamic system Earth from space, an inertial reference system is appropriate. Consequently, for gravity field

modeling from the combination of various heterogeneously defined observables and their approximation by

an appropriate model, transformation equations are needed. The most appropriate systems and their relations,

i. e. transformations, to each other are presented in the following sections.

(1) A geocentric non-rotating system, (2) geocentric rotating systems, mainly used for global gravity field

representations, and (3) local Earth- and satellite-bound coordinate systems, suitable for specific measurement

systems, are distinguished. All systems are defined in the three-dimensional Euclidean space R3.

2.2.1 Geocentric, non-rotating reference system

The fundamental system in which Newton’s physical laws hold, is a non-rotating, inertial reference system.

Such a system is for instance appropriate for describing the movement of Earth-observing spacecrafts, inde-

pendently of the Earth’s rotation.
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The satellite missions, from which data are used in this

work, relate to a right-handed system specified by the

epoch of Julian Date of 2000 (J2000): the origin OJ2000

is defined in the center of mass (geocenter), and the axes

XJ2000 intersection of mean ecliptic plane with the

mean equatorial plane at J2000 (counted

positively towards the vernal equinox),

ZJ2000 orthogonal to the mean equatorial plane at

J2000,

YJ2000 orthogonal to the XJ2000- and YJ2000-axes,

span a right-handed system (Cesare, 2008, p. 11).

The example of the J2000 inertial reference system

is shown in Figure 2.1. Within this system, a local

oriented reference system (LOCS) is displayed as well

(see Sec. 2.2.3). Figure 2.1: Inertial reference and local orbital coordinate

system, adapted from Cesare (2008). i means the inclina-

tion angle of the spacecraft orbit.

2.2.2 Geocentric, rotating coordinate systems

For describing phenomena on the Earth, rotating, Earth-bound coordinate systems are appropriate. In contrast

to non-rotating, inertial systems, they are non-inertial; apparent (or pseudo) forces apply, as e. g. the centrifugal

or the Coriolis force. In order to model gravitational functionals related to the Earth’s surface, the following

four Earth-bound, geocentric coordinate systems are most convenient.

Cartesian coordinate system

The fundamental terrestrial coordinate system is

defined by 3 rectangular axes X,Y, Z: They span a

three-dimensional, right-hand oriented Cartesian coor-

dinate system, see Fig. 2.2. (The local north-oriented

coordinate system (LNCS), also visualized in Fig. 2.2,

will be introduced in Sec. 2.2.3.) The XY Z-system

rotates with the Earth and regards all masses, i. e.

solid, fluid, and gaseous ones. The origin is defined in

the center of mass. The coordinates of the Cartesian

system are specified as

x along the X-axis (intersection of mean

equatorial plane and mean meridian plane

trough Greenwich),

y along the Y -axis (intersection of mean

equatorial plane and meridian plane

orthogonal to the plane through Greenwich),

z along the Z-axis (mean rotation axis).

The coordinates x, y, z are counted in metric values.

The location of any point P can be described by

P(x, y, z) = P(x) with x = [x, y, z]T ; the distance

ds between two points is defined by the square root of

ds2
= dx2

+ dy2
+ dz2.

Figure 2.2: Cartesian coordinate system with spherical coor-

dinates and local north-oriented coordinate system (LNCS),

adapted from Koop (1993, p. 183).
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Spherical coordinate system

As many geodetic problems, computations and applications are formulated and executed on a sphere, spherical

coordinates are introduced with

λ geocentric longitude (angle [0◦ · · · 360◦[, measured in equatorial plane, counted positively

east-wards from meridian plane through Greenwich)

ϕ geocentric latitude (angle [−90◦ · · · 90◦], measured in meridian plane, counted positively

north-wards from equatorial plane to the normal through the corresponding point on the sphere),

(ϑ co-latitude, respectively polar distance angle 90◦ − ϕ [0◦ · · · 180◦], measured in meridian plane,

counted positively south-wards from North to South pole), and

r radial distance from the geocenter (counted in metric units),

see Fig. 2.2. A point P(λ, ϕ, r) = P(x) then can be identified by its geocentric position vector

x = r · r = r · [ cos ϕ cos λ, cos ϕ sin λ, sin ϕ ]T = r · [x, y, z]T . (2.8)

Hereby r denotes the unit vector and r = |x | = R + h the radial distance of the point P with height h over the

sphere ΩR with radius R. The element of distance ds is now given as

ds2
= dr2

+ r2dϑ2
+ r2 sin2 ϑdλ2 , (2.9)

and the surface element dωR on the sphere ΩR (cf. Sec. 2.1) is defined as

dωR = R2 sin ϑdϑdλ . (2.10)

The spherical distance angle ψ between two surface points can be computed by

ψ = arccos
(

cos ϑ cos ϑq + sin ϑ sin ϑq cos(λq − λ)
)

(2.11)

(e. g. Torge, 2003, p. 60). The origin of the spherical coordinate system is located in the center of mass,

equivalently to the origin of the Cartesian system.

Transformation: Cartesian – spherical coordinates The transformation equations from Cartesian x, y, z
to spherical λ, ϕ, r coordinates yield

λ = arctan

(
y

x

)

,

ϕ = arctan *,
z

√

x2
+ y2

+- , (2.12)

r =
√

x2
+ y2

+ z2 .

Ellipsoidal coordinate system

While approximating the Earth as a sphere is practical or sufficient for many geodetic applications, some

require a more precise approximation: the geometrical figure of a rotating ellipsoid (ellipsoid of revolution,

spheroid) is used, e. g., for national position coordinates or for the normal gravitational potential, which is

described later in Sec. 2.3.4. The deviation from a sphere is expressed by the flattening f ′, depending on the

major and minor semi-axes a and b.
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f ′, b, and further ellipsoidal parameters, as the first

and second numerical eccentricities, e and e′, and the

normal radius N ′ of curvature read

f ′ =
a − b

a
(2.13)

b = a
(

1 − f ′
)

(2.14)

e =

√
a2 − b2

a
, e2
= f ′(2 − f ′) (2.15)

e′ =

√
a2 − b2

b
(2.16)

N ′ =
a2

√

1 − e2 sin2 β
(2.17)

(e. g. Torge, 2003, p. 83). According to Fig. 2.3,

the center of the rotating ellipsoid coincides with

the geocenter. The ellipsoidal coordinates of a point

P(λ, β, h′) outside the ellipsoid yield

λ ellipsoidal longitude (angle, equivalent to

spherical longitude λ)

β ellipsoidal latitude (angle, measured in

meridian plane, counted between equatorial

plane and ellipsoidal normal through the

corresponding point on the ellipsoid),

h′ height above ellipsoid (counted in metric

units along the ellipsoidal normal) .

Figure 2.3: Ellipsoidal parameters in a Y Z-Cartesian coor-

dinate system, adapted from Koop (1993, p. 183). Spherical

latitude ϕ, the axes XLNCS, ZLNCS and a reference point Q
at the ellipsoid are plotted, as well.

The point Q = Q(λ, β) in Fig. 2.3 is the according point on the ellipsoid with h′ = 0. The ellipsoidal normal,

denoted as unit vector n′ with

n′ = [cos β cos λ, cos β sin λ, sin β]T , (2.18)

is oriented outwards the body.

Transformation: ellipsoidal – Cartesian coordinates With the normal radius N ′ of the curvature from

Eq. (2.17), the transformation equations from ellipsoidal λ, β, h′ to Cartesian x, y, z coordinates become

x = (N + h′) cos β cos λ

y = (N + h′) cos β sin λ (2.19)

z =

(

b2

a2
N + h′

)

sin β .

While the Cartesian coordinates x, y, z can be simply computed from λ, β, h′, the inverse transformation

requires an iterative approach, e. g. (Hofmann-Wellenhof and Moritz, 2005, p. 195). A direct transformation

by means of an appropriate solution is presented in Bowring (1985).

Transformation: ellipsoidal – spherical coordinates Further, with e2 and N ′ from Eqs. (2.15) and (2.17),

the transformation equations from ellipsoidal λ, β, h′ to spherical λ, ϑ, r coordinates yield

λ = λ

ϑ = arctan

(

(N ′ + h′) cos β
(

N ′
(

1 − e2
)

+ h′
)

sin β

)

(2.20)

r =
√

((N ′ + h′) cos β)2
+

(

(N ′(1 − e2) + h′) sin β
)2
.
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Transformation: ellipsoidal heights The height difference dh′ of a Point P referenced to two slightly

different ellipsoids with semi major axes a1, a2 and flattening parameters f ′
1
, f ′

2
can be computed from

dh′ = a2 − a1 +

(

a1 f ′1 − a2 f ′2
)

sin2 β

> 0 for a1 < a2

< 0 for a1 > a2

. (2.21)

The transformation of the height h′
1

of P from the first ellipsoid (a1, f ′
1
) into the height h′

2
w.r.t. the second

ellipsoid (a2, f ′
2
) then yields

h′2 = h′1 − dh′ . (2.22)

2.2.3 Local coordinate systems

The geocentric Cartesian coordinate system is very appropriate in order to describe or observe functionals

of the Earth’s gravity field. However, especially for in situ measurements on Earth and from space, local

systems are more suitable. The most relevant local Earth-bound and orbital coordinate systems for this work

are described in the following, related to (Koop, 1993, Appendix A). The transformation of coordinates from

a geocentric, Earth-bound to a local Earth-bound system is described, as well.

Astronomical coordinate system

In order to relate all measurement-depending and Earth-bound reference systems to an universal one, an

astronomical system is introduced. It connects geometric with gravitational quantities of the Earth and is,

thus, of high importance: as mentioned, the gravity vector g is defined along the plumb line of the gravity

field. Its direction intersects all equipotential surfaces of the Earth’s gravity potential orthogonally and hence

denotes the direction of the plumb line. The components of g can be described by two astronomical angles

and the magnitude g. The system of equipotential surfaces and plumb lines spans the astronomical system.

The local astronomical coordinates, also known

as natural coordinates, with center at point P, are

described by

Λ astronomical (geographic) longitude (angle

[0◦ · · · 360◦[, measured in a plane through P,

parallel to the equatorial plane, counted

positively east-wards from a meridian plane

through P, parallel to the one through

Greenwich, to the meridian plane through P),

Φ astronomical (geographic) latitude (angle

[−90◦ · · · 90◦], measured in the meridian

plane through P, counted positively

north-wards and negative south-wards from

equatorial plane through P to the direction n

of the local plumb line),

W gravity potential,

see Fig. 2.4. Consequently, the unit vec-

tor along the plumb line is defined by n =

[cosΦ cosΛ, cosΦ sinΛ, sinΦ]T , and g points in op-

posite direction of the unit vector n = −g/g.

Figure 2.4: Local astronomical coordinates and gravity vec-

tor g, adapted from Vermeer M. (2016, p. 57).

Local north-oriented coordinate system

The Local North-Oriented Coordinate System (LNCS) is an Earth-bound, right-handed Cartesian system

with its origin OLNCS defined in an arbitrary point P in space, see Fig. 2.2. The orientation is given by the

coordinates xLNCS = [xLNCS, yLNCS, zLNCS]T along the corresponding axes:
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xLNCS along the XLNCS-axis, directed north,

yLNCS along the YLNCS-axis, directed west,

zLNCS along the ZLNCS-axis, parallel to the vector from the geocenter to the origin OLNCS, i. e. directed

away from the Earth.

Products of the GOCE mission are typically given the LNCS, see Sec. 3.1.4.

Transformation: Cartesian system – LNCS The transformation from the coordinates of a position vector

x in the Cartesian system to coordinates of the vector xLNCS in the LNCS yields


x
y

z

 =

− cos λ cos ϑ sin λ cos λ sin ϑ

− sin λ cos ϑ − cos λ sin λ sin ϑ

sin ϑ 0 cos ϑ




xLNCS

yLNCS

zLNCS + r

 . (2.23)

The rotation part is expressed by the angles λ,ϑ, acting also as spherical coordinates. The radial distance r
from the geocenter denotes the translation of the geocenter to the origin OLNCS.

Local orbital coordinate system

In contrast to the LNCS, the Local Orbital Coordinate System (LOCS) is an Earth-unbound coordinate system.

Satellite measurements are performed at observation points which are typically described within a spacecraft-

bound LOCS. Hereby, the origin OLOCS is defined in a reference point of the spacecraft, e. g. the center

of mass of a satellite, and the axes define the orientation of the coordinate system related to the movement

of the spacecraft along the orbit. It thus depends on the inclination angle i′ of the orbit w.r.t. an inertial

coordinate system. Figure 2.1 visualizes a LOCS w.r.t. the J2000-system. The coordinates of the right-handed,

orthogonal LOCS read

xLOCS along the XLOCS-axis, directed along track (in direction of the instantaneous orbital velocity vector

of the spacecraft),

yLOCS along the YLOCS-axis, directed cross track (orthogonal to XLOCS-axis),

zLOCS along the ZLOCS-axis, directed radially outwards.

Note: the expressions ”track“ and ”orbit“ are used here equivalently to describe the direction of the actual

movement of the spacecraft.

2.3 Gravity as force and potential

In this section, the Earth’s gravity potential field is described. Starting from the gravitational potential V
as fundamental quantity for this thesis, the first part gives a brief motivation and overview of the physical

background. In order to express the potential and related quantities mathematically, a short review on typically

used series expanded in terms of SHs, based on Legendre polynomials, is given in the second part. In the

third and fourth parts, those series expansions are used to describe the (differential) gravitational and normal

potential.

2.3.1 Physical background

The gravitational potential V depends on the attractions between mass elements of the Earth. The basis is

Newton’s law of gravitation, describing the force F with magnitude F between two arbitrary test bodies with

masses m1 and m2 and distance l = | l |: F = −G m1m2

l2
l/l, in an inertial system (cf. Sec. 2.2). Hereby the

gravitational force F acts mutually on both masses in opposite direction and decreases with increasing distance

l. G = 6.6742 × 10−11 m3 kg−1 s−2 is the gravitational constant (Hofmann-Wellenhof and Moritz, 2005, p. 3).

Considering the Earth as attracting mass with an infinite number of differential mass elements dm, the attraction

of an arbitrary point P(x) with unit mass can be formulated as scalar quantity, i. e. as gravitational potential

V = V (x) = G
∫

Earth

dm
l
= G

∫

Earth

ρ

l
dv , with lim

r→∞
V = 0 (2.24)
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(Torge, 2003, p. 44). Hereby, the mass elements dm are traced back to their density ρ per volume element

dv, so that after Eq. (2.24), V depends on the two parameters l and ρ = dm/dv. For their quantification, two

prominent principles apply: First, as neither the density nor the mass distribution inside the Earth are known,

V cannot be computed directly. However, the fundamental fact is used, that outside the attracting masses, the

gravitational potential is harmonic. It means that with ρ = 0, V is the solution of the Laplace equation

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0 (2.25)

(Hofmann-Wellenhof and Moritz, 2005, p. 7). In the following, each function f ∈ H0,1, ...,∞(Ωext
R

) (cf. Tab. 2.1)

that satisfies the Laplace equation, for instance V ∈ H0,1, ...,∞(Ωext
R

), is denoted as harmonic function.

Second, assuming the Earth’s total mass M concentrated in one point, the gravitational potential V of this point

mass then is proportional only to the inverse 1/l of the distance between the Earth’s center and the attracted unit

mass: V = GM/l. The product of gravitational constant G and the Earth’s total mass M is typically denoted as

standard gravitational parameter GM . It can be quantified with high numerical precision, whereas not the

single terms. (In this work, GM is treated as scaling factor; its value is defined as constant parameter of each

normal potential, see Sec. 2.3.4). Consequently, the reciprocal distance 1/l is the main unknown quantity

of the gravitational potential of a point mass, and the simplest harmonic function (Hofmann-Wellenhof and

Moritz, 2005, p. 8). It can be expanded in terms of Legendre polynomials, which are the basis of the regional

gravity modeling approach presented in this thesis, as well, see next Sec. 2.3.2. From the physical point

of view, describing V as harmonic function, i. e. as solution of the Laplace equation (2.25), delivers the

fundamental background.

Note: Inside the attracting masses, V satisfies the Poisson equation∇2V = −4πGρ. ∇2
= ∂2/∂x2

+∂
2/∂y2
+∂

2/∂z2

is the Laplace operator in Cartesian coordinates, cf. 2.2.2 (Hofmann-Wellenhof and Moritz, 2005, p. 7).

Until now, the gravitational potential V was described in a non-rotating system. However, for specifying the

total gravity potential W = V + Z , the dynamic process of Earth rotation has to be considered, as well. It

is quantified by the centrifugal potential Z . In contrast to the complex gravitational potential V , Z can be

determined much easier and is known with high accuracy .

For any point P(x) with Cartesian coordinates x, y, z, Z only depends on the distance
√

x2
+ y2 from the

Earth’s axis of rotation and its angular velocity ω:

Z = Z (x) =
1

2
ω2(x2

+ y
2) (2.26)

(Hofmann-Wellenhof and Moritz, 2005, p. 43).

The gradient of the total gravity potential W delivers the gravity vector gradW = g, also denoted as gravity

acceleration. It describes the change of the gravity potential and is defined as

g = gradW =

[
∂W
∂x

,
∂W
∂y

,
∂W
∂z

]T
. (2.27)

Its direction n, defined tangentially along the plumb line, intersects all equipotential surfaces of the Earth’s

gravity field, i. e. in the following called geopotential surfaces with

W = const. (2.28)

orthogonally. Therefore, it is often described by astronomical coordinates Λ,Φ (cf. Sec. 2.2.3).

The magnitude

g = |g | (2.29)

denotes the gravity g = gP in an arbitrary point P on an equipotential surface outside the Earth, i. e. on or above

the geoid with potential W0. This physical acceleration is typically given in the unit Gal (1 Gal = 1 cm/s2)

or mGal (1 mGal = 1 × 10−5 m/s2) in honor of Galileo Galilei (Hofmann-Wellenhof and Moritz, 2005, p. 45).

It can be measured by different techniques described in Sec. 3, and thus it is one of the most observed

gravitational quantities of near Earth observations, such as of terrestrial, air- and shipborne gravimetry. The

order of magnitude is around 9.8 m/s2 for the spherical Earth.
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2.3.2 Resources for mathematical description

In appropriate literature for global gravity field description, the potential is in general expanded in terms of SH

functions, based on Legendre polynomials. The basic ideas are summarized in the following, as the regional

approach in terms of SBFs, presented in this work, is also based on Legendre polynomials. However, the SBFs

distinguish from the SHs, and they are adapted and enhanced to reach the specific task of regional gravity

modeling.

Consequently, the following two sections do not only contain studies from the literature, but also further

relations and perspectives for the explicit aim of this thesis. First of all, the mathematics are formulated for

the global case of gravity modeling. They found the basis for the SBFs presented in Chapter 4. Based on

these fundamentals, Chapter 5 then presents all derivations and relations for regional modeling.

Legendre polynomials and functions

In order to describe the gravitational potential from Eq. (2.24) outside attracting masses, V can be expanded

in a series as a solution of the Laplace equation (2.25) in spherical coordinates λ, ϑ, r . Hereby, the reciprocal

distance 1/l between the attracting point Q(λq, ϑq, rq ) and the attracted point P(λ, ϑ, r) with r > rq , is

expressed by a series in terms of Legendre polynomials Pl (cosψ) (e. g. Sigl, 1973). The polynomial

Pl (t) =
1

2l l!

∂l

∂tl
(

t2 − 1
) l
, t ∈ [−1,+1] (2.30)

of degree l and argument t = cosψ, thus, only depends on the spherical distance angle ψ, according to

Eq. (2.11), with

cosψ = cos ϑ cos ϑq + sin ϑ sin ϑq cos(λq − λ) . (2.31)

Derivatives of Pl (t) w.r.t. the spherical co-latitude, i. e. t = cos ϑ, lead to associated Legendre functions

Pl,m (t), which further depend on order m. They can be composed, for instance, from the formula of Rodriguez

Pl,m (t) = (1 − t2)m/2
∂mPl (t)
∂tm

, (2.32)

(e. g. Hofmann-Wellenhof and Moritz, 2005, p. 16). To expand 1/l and thus the gravitational potential V in

terms of SH functions on a sphere with constant radius r = R, typically fully normalized Legendre functions

P̄l,m (cos ϑ) =

√

2(2l + 1)(l − m)!
(l + m)!(1 + δ0,m )

Pl,m (cos ϑ) with δ0,m =


1 for m = 0

0 for m , 0
(2.33)

are used (e. g. Hofmann-Wellenhof and Moritz, 2005). All further considerations relate to this fully normalized

version (2.33). The terms of m , 0 are denoted as associated Legendre functions, and the terms of m = 0 as

Legendre polynomials.

For computing the first and second order derivatives of V and W , i. e. the terms of Eqs. (2.25) and (2.27),

further the first and second order derivatives of the Legendre functions Pl,m (t) are needed. Subsequently,

those derivatives are applied for computing gravitational functionals derived from V (see Sec. 2.5). Appendix

A gives a comprehensive overview of the derivatives of the Legendre polynomials and functions w.r.t. the

argument t, and of the related derivatives w.r.t. λ, ϑ.

Spherical harmonics

It is well known, that series expansions in terms of SHs are an appropriate tool for describing quantities of

the Earth’s gravity field globally. The fundamentals are well-established in the literature (e. g. Hofmann-

Wellenhof and Moritz, 2005; Torge, 2003) and used by a broad community of global gravity field modeling

(e. g. Lemoine et al., 1997; Reigber et al., 2002; Flechtner, 2010; Pail et al., 2010; Pavlis et al., 2012; Pail et al.,

2013; Mayer-Gürr et al., 2015). A variety of resulting global gravity models is collected by the International

Centre for Global Earth Models (ICGEM) and can be found at http://icgem.gfz-potsdam.de/ICGEM/. The

SHs are briefly introduced in the following for several needs: First, in order to describe the gravitational

functionals (Secs. 2.3.3, 2.3.4, 2.3.5, 2.5) related to those fundamentals. Second, they are compared with
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SBFs (Sec. 4.1) in the overall group of basis functions in order to emphasize the benefits of SBFs for regional

applications. Third, global gravity fields modeled by SHs serve as additional information in the regional

approach presented in Sec. 5. The global SH models are presented in Sec. 3.2.2.

In Sec. 2.3.1, the gravitational potential V was introduced as harmonic function f ∈ H0,1, ...,∞(Ωext
R

), satisfying

the Laplace equation on and above the Earth’s surface. In order to describe any harmonic function f = f (x)
in this space, it can be represented by

f = f (x) =
∞∑

l=0

l∑

m=−l
Fl,m Hl,m (x) , x ∈ Ωext

R (2.34)

in terms of solid SH functions Hl,m = Hl,m (x). According to Tab. 2.1, the basis functions Hl,m span the space

H0,1, ...,∞(Ωext
R

). The dimension depends on degree l (l ∈ N0) and is computed by (l + 1)2. m (m = −l, . . . , l)
denotes the order per each degree l. x means the geocentric position vector of a point P(λ, ϑ, r) ∈ Ωext

R
, given

e. g. in spherical coordinates. Fl,m are the the SH coefficients or Stokes coefficients.

If harmonic functions are restricted to the sphere ΩR with r = R, the dependency on the radial distance

vanishes. Function values of surface SHs HR
l,m

are related to those of solid SHs Hl,m with

Hl,m (λ, ϑ, r) =

(

R
r

) l+1

HR
l,m (λ, ϑ, R) . (2.35)

Hereby, the term (R/r )l+1 represents the up-/downward continuation operator of a harmonic function. It is

discussed in detail in Sec. 2.4.1 and becomes one for r = R. The function values HR
l,m

(x) = HR
l,m

(λ, ϑ, R) of

surface SHs can be obtained from

HR
l,m (λ, ϑ, R) =

1

R
√

4π


P̄l,m (cos ϑ) cos(mλ) for m = 0, 1, 2, ..., l

P̄l, |m | (cos ϑ) sin( |m |λ) for m = −l, ...,−2,−1
x ∈ ΩR . (2.36)

They are expressed in terms of fully normalized Legendre functions P̄l,m , according to Eq. (2.33), and

represent the basis functions of the space L2(ΩR), cf. Tab. 2.1. If two surface SH functions HR
l,m

, HR
n,k

are

orthogonal to each other, the scalar product, as defined in Eq. (2.5), exists. It yields the orthogonality relation

〈HR
l,m, HR

n,k 〉ΩR
=

∫

ΩR

HR
l,m (x) HR

n,k (x)dωR = δl,nδm,k , (2.37)

with δl,n = 0 for l , n, and δl,n = 1 for l = n. dωR is the surface element according to Eq. (2.10).

Multiplying the function values of two surface SH functions HR
l,m

at different locations P(x), P(xq ) on ΩR ,

and accumulating them up to a specific degree l, leads to the addition theorem

2l + 1

4πR2
Pl (cosψ) =

l∑

m=−l
HR
l,m (x) HR

l,m (xq ) , (2.38)

which connects surface SH functions HR
l,m

with Legendre polynomials Pl , Eq. (2.30), depending on the

spherical distance t = cosψ between the two locations P(x), P(xq ).
If a harmonic function f = f (x) is given globally on the sphere ΩR , the SH coefficients Fl,m can then be

uniquely determined by

Fl,m = 〈 f , HR
l,m〉ΩR

=

∫

ΩR

f (x) HR
l,m (x) dωR (2.39)

from the inner product, as defined in Eq. (2.37) (Driscoll and Healy, 1994; Schmidt et al., 2007). Equation

(2.39) is denoted spherical Fourier transformation (e. g. Schmidt, 2001, p. 237). The coefficients Fl,m only

depend on degree l and order m and, thus, are not localizing in space. They can be practically obtained,

e. g., by solving the so-called first boundary-value problem (2.39) as described in Hofmann-Wellenhof and

Moritz (2005, pp. 27), or by estimating the parameters within a Gauß-Markov model following Schmidt (2001,

p. 241). With a set of appropriate coefficients Fl,m , linear combinations of surface and solid SHs can be
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constructed. Consequently, the linear combinations are linear solutions of the Laplace equation, and thus can

be used to describe any harmonic function f = f (λ, ϑ, r) ∈ Ωext
R

– i. e. as in our case gravity related quantities

– on or outside the sphere ΩR .

Figure 2.5: Relation between Legendre polynomials, Legendre functions, and SH functions.

Figure 2.5 schematically shows the dependency of a harmonic function f = f (x) = f (λ, ϑ, R) on Legendre

polynomials, cf. Eq. (2.30): as mentioned in Sec. 2.3.2, the mth derivative of Pl (t) w.r.t. the argument t
leads to (associated) Legendre functions Pl,m (t), cf. Eq. (2.32). Multiplying the fully normalized functions

P̄l,m with cos mλ or sin |m |λ and a scaling factor, results in surface SH functions HR
l,m

, cf. Eq. (2.36).

Vice versa, surface SHs of order m = 0 represent Legendre polynomials and are typically denoted as zonal

harmonics (Hofmann-Wellenhof and Moritz, 2005, p. 18). The dependency between Pl and Hl,m is described

by the addition theorem (2.38). Further, a linear combination of surface SHs can be used to describe any

arbitrary function f = f (λ, ϑ, R) on the sphere ΩR with a set of appropriate coefficients Fl,m , cf. Eq. (2.34).

Applying the upward continuation operator leads to solid SHs. Finally, any harmonic function f (λ, ϑ, r) can

be expanded in terms of solid SHs on and in the exterior of the sphere, i. e. in Ωext
R

.

2.3.3 Gravitational potential

The Earth’s gravitational potential V is harmonic outside attracting masses and hence can be expressed by

V = V (λ, ϑ, r) =
GM

R

∞∑

l=0

(

R
r

) l+1 l∑

m=0

[

Cl,m cos(mλ) + Sl,m sin(mλ)
]

P̄l,m (cos ϑ) (2.40)

at any location P(λ, ϑ, r) with r ≥ R. The series expansion represents a spectral decomposition of the

gravitational potential in terms of solid SHs, according to Eq. (2.34). Hereby, Hl,m , as described in Eq. (2.35),

is related to the surface SHs defined in Eq. (2.36). The degree-depending up- or downward continuation term

(R/r )l+1 assigns the gravitational potential V (λ, ϑ, r), r > R, to the potential V (λ, ϑ, R), r = R, at the Earth’s

surface. Referring to Newton’s theory, V decreases continuously with increasing radial distance outside the

attracting masses; thus, the potential to be modeled up to a spectral degree l is smoothed for r > R (r → ∞).

Cl,m and Sl,m are the (fully normalized) SH coefficients of degree l and order m, summarized and denoted as

Fl,m in Eq. (2.34). The cosine- and sine-terms yield

Fl,m = GM
√

4π


Cl,m

Sl,m
(2.41)
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and describe the amplitudes of the corresponding spectral parts of the decomposition. As mentioned above,

those unknowns can be unambiguously determined from gravitational boundary values at the Earth’s surface.

The zero-degree term (l = 0,m = 0) of the series (2.40) is connected with the scaling factor GM/R representing

the potential of a point mass. The first-degree terms (l = 1,m = −1, 0, 1) are related to the shift of the geocenter

from the origin of the underlying coordinate system. The coefficients F1,−1, F1,0, F1,1 describe the Cartesian

coordinates of the geocenter (Hofmann-Wellenhof and Moritz, 2005, p. 62). Setting the first-degree terms

equal to zero assumes the origin of the coordinate system to coincide with the geocenter. Most of the global

gravity field models are defined in such a way (see Sec. 3.2.2).

Rescaling of SH coefficients

The scaling factor GM/R depends on the product of gravitational constant G times mass M of the Earth, and

the radius R of the spherical Earth. In ellipsoidal parametrization, the axes defined in the equatorial plane

correspond to the radius R. If the scaling factor of the gravitational potential in the expression (2.40) changes,

the coefficients Cl,m , Sl,m change as well. The rescaling of the coefficients depends on the relative variation

between the previous and the ”new“ parameters. The rescaled coefficients Cnew
l,m

, Snew
l,m

yield

Cnew
l,m = Cl,m

(

1 + (GM − GMnew)/GMnew)

for m = 0

Cnew
l,m
= Cl,m (1 + (GM − GMnew)/GMnew) (1 + (R − Rnew)/Rnew)

Snew
l,m
= Sl,m (1 + (GM − GMnew)/GMnew) (1 + (R − Rnew)/Rnew)

 for m , 0 . (2.42)

2.3.4 Normal potential and gravity

Modeling the Earth’s gravitational potential is very sophisticated and there exists no method for its direct

measurement. Hence, the Earth’s figure is typically approximated first as sphere, or second as ellipsoid of

revolution, also called spheroid. The according potential of the ellipsoid is the normal potential U with

equipotential surfaces

U = const. , (2.43)

in the following denoted spheropotential surfaces in analogy to the geopotential surfaces defined in Eq. (2.28).

The key benefit is, that the mathematical description and handling of the potential becomes much easier

(Hofmann-Wellenhof and Moritz, 2005, p. 65). The remaining differences between the ellipsoidal ”normal“

and the ”actual“ gravity field are small and, thus, allow a more precise and simpler modeling compared with

the modeling of the potential V itself.

According to Eq. (2.40), the potential can be expanded in a series in terms of solid SHs up to a maximum

degree l = L

U = U (ϑ, r) =
GM0

R

L∑

l=0

(

R
r

) l+1

Cl,0 P̄l,0(cos ϑ) + Z , (2.44)

with some profitable simplifications: The dependencies of λ and m disappear due to the rotation symmetry

of the ellipsoid. Thus, only even zonal coefficients C0,0,C1,0,C2,0 . . . with m = 0 remain. The series (2.44)

converges very fast, so that for practical implementations, terms up to L = 10 are quite sufficient.

The normal potential U in Eq. (2.44) comprises, analogously to W , not only a gravitational, but also a

centrifugal component Z . Thus, the velocity of revolution of the ellipsoid can be set equal to the Earth’s

angular velocity ω. U can be fully described by four parameters:

GM0 product of gravitational constant G and total mass M0 of the Earth’s normal ellipsoid,

a major semi axis of the ellipsoid of revolution,

f ′ flattening of the ellipsoid of revolution, and

ω angular velocity of the ellipsoid of revolution.

Referring to the formulas of Moritz (2000), the even zonal harmonic coefficients Cl,0 in Eq. (2.44) are computed

from both geometric (ellipsoidal) constants b, e, and e′, derived from a and f ′ according to Eqs. (2.14) -
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(2.16), and physical constants, derived from the latter and the parameters GM0, ω. Physical constants are, for

instance, the values of normal gravity γa along the equator, and γb at the poles, i. e.

γa = GM0
1 − em − (eme′q b)/(6q)

ab
, (2.45)

γb = GM0
1 + (eme′q b)/(3q)

a2
, with (2.46)

em = (ωa)2 b
GM0

,

q =
1

2

(

1 +
3

e′2

)

arctan(e′) − 3

e′
.

By defining a parameter c = 1/3 (1 − 2eme′/(15q)), the coefficients Cl,0 up to degree L = 10 result in

C2,0 = −e2 c
√

5

C4,0 = (10c − 1)
e4

35

C6,0 = − (15c − 2)
e6

21
√

13
(2.47)

C8,0 = (20c − 3)
e8

33
√

17

C10,0 = − (25c − 4)
3e10

143
√

21
;

the coefficient C0,0 is equal to one.

Normal gravity

Along an equipotential surface of the ellipsoid with potential U = const. the normal gravity γ can be

computed. The horizontal (latitude and longitude) components of the gravity vector become zero due to the

rotational symmetry of the ellipsoid. The vertical component, normal to the equipotential surface, mainly

varies with the ellipsoidal latitude β. It can be derived, e. g. by the formula of Somigliana (1929), from

γ =
aγa cos2 β + bγb sin2 β
√

a2 cos2 β + b2 sin2 β
(2.48)

(Hofmann-Wellenhof and Moritz, 2005, p. 71) with γa , γb according to Eqs. (2.45), (2.46). For numerical

applications, the normal gravity is typically implemented by

γ = γa
1 + k sin2 β

√

1 − e2 sin2 β
with k =

bγb
aγa
− 1 , (2.49)

inserting e2 from Eq. (2.15) (Torge, 2003, p. 95).

The normal gravity is used for the computation of several func-

tionals of the gravitational potential. As in general, the Earth’s

surface does not coincide with the equipotential surface of a ref-

erence ellipsoid (potential U = U0), γ = γ0 has to be projected

in a certain height h′ above or below the ellipsoid, along the di-

rection n′ of the normal gravity vector, see Fig. 2.6. The normal

gravity γh′ at ellipsoidal height h′ can be obtained by expanding

Eq. (2.48) in terms of a Taylor series w.r.t. h′, i. e.

γh′ = γ0 +

(

∂γ

∂h′

)

h′ +
1

2

(

∂2γ

∂h′2

)

h′2 + · · · . (2.50) Figure 2.6: Normal gravity γ0 at a reference

ellipsoid and its projection γh′ at the Earth’s

surface.
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The first order term is typically approximated by relating the vertical gravity gradient to a mean curvature of

the ellipsoid after Bruns (1878) (Torge, 2003, p. 57). With mean values γ = 9.81 m/s2 and a = 6378.137 km,

the first derivative ∂γ/∂h′ results to approximately −3.086 µ m s−2/m (Torge, 2003, p. 98).

Vice versa this gradient is also applied for gravity reductions from the gravity in a certain height h′ down to

the normal gravity γ on the ellipsoid. Neglecting any masses, it is called free-air reduction, discussed in

Sec. 2.7. The second order term in Eq. (2.50) can be derived from a spherical approximation of γ. As it is

in the order of magnitude of 10−6 µ m s−2/m2 (Hofmann-Wellenhof and Moritz, 2005, p. 81), it is neglected in

the following.

Inserting ∂γ/∂h′ = −3.086 µ m s−2/m together with γ = γ0 from Eq. (2.49) in the expression (2.50), the normal

gravity γh′ in a certain ellipsoidal height h′ yields

γh′ = γa
1 + k sin2 β

√

1 − e2 sin2 β
− 0.3086 × 10−5 [mGal] h′ . (2.51)

2.3.5 Disturbing potential

The difference between the previously introduced normal potential U, Eq. (2.44), and the total gravity potential

W is called disturbing potential T = W −U. As the centrifugal component Z is contained in W = V + Z and

U to equal parts, and can be determined with high accuracy, the disturbing potential T describes the difference

of the gravitational components of both potentials W and U. It yields

W = V + Z

W = T +U (2.52)

V = T +U − Z

T = W −U = V −U + Z . (2.53)

The disturbing potential thus satisfies the Laplace equation ∇2T = 0 outside the attracting masses according

to Eq. (2.25), and further can be expanded in terms of SHs. Analogously to Eq. (2.40), T can be expressed at

any point P(λ, ϑ, r) in Ωext
R

by

T = T (λ, ϑ, r) =
GM

R

∞∑

l=0

(

R
r

) l+1 l∑

m=0

[

∆Cl,m cos(mλ) + ∆Sl,m sin(mλ)
]

P̄l,m (cos ϑ) . (2.54)

The difference coefficients ∆Cl,m and ∆Sl,m distinguish only in the low-degree zonal quantities Cl (typically

l ≤ 10) from the total coefficients Cl,m and Sl,m , summarized as Fl,m in Eq. (2.41), due to the representation

of U according to Eq. (2.44) (Torge, 2003, p. 196). The cosine- and sine-terms yield

∆Fl,m = GM
√

4π

∆Cl,m

∆Sl,m
. (2.55)

Consequently, in order to model the Earth’s gravity field, the disturbing potential T can be described w.r.t.

a normal potential U, Eq. (2.44). Two benefits result from this fact for regional gravity field modeling: (1)

All globally observed gravitational quantities can be reduced by a normal potential term to obtain disturbing

potential quantities, as the normal potential is mathematically easy to handle. The remaining differences

are small and can be considered as linear, i. e. they linearly depend on T or on derivatives of T (Hofmann-

Wellenhof and Moritz, 2005, p. 65). Modeling small quantities allows to represent more detailed gravitational

structures. (2) Spatially limited, Earth-bound measurement techniques, such as from terrestrial, ship- and

airborne platforms, already deliver themselves linearized functionals, e. g. gravity anomalies or disturbances.

They are introduced in Sec. 2.5 referring to the disturbing potential or its derivatives.

2.4 Field transformations

Developing and adapting a regional modeling approach for the use of real data is one of the main objectives

in this work. As the gravitational potential cannot be observed directly, different techniques established for
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determining a variety of gravitational functionals. In order to combine these observations, field transforma-

tions are indispensable.

In the sequel, ”horizontal“ and ”vertical“ transformations are distinguished, according to the so-called Meissl

scheme in Fig. 2.7. For geodetic applications, both the horizontal transformations from one functional to

another, as well as vertical transformations of a functional, observed or to be modeled in a certain altitude

to another altitude, denoted ”up-/ downward continuation“, have to be considered. The field transformations

apply two times in the modeling approach, see Fig. 2.9: (1) Different measurement systems observe various

functionals of the Earth’s gravity field in different heights. The input quantities, i. e. observables as well as

modeled quantities, have to be homogenized for their combination. The method, realized in a software called

”RegGRAV“ is presented in Sec. 5. (2) The aim is to compute any gravitational quantity in any height on or

above the Earth’s surface. Consequently, field transformations are essential for computing the output model.

The different transformations can be applied to gravitational quantities, which are, for instance, expanded in

a series of SHs according to Eq. (2.34), by using several operators. Referring to Keller (2003), most of the

functional relations are described by four operators, listed in Tab. 2.2.

Table 2.2: Field transformation operators.

operator description mathematical solution

X l+i
= (R/r )l+i up-/ downward continuation operator

(for the i-1th derivative after r),

Poisson’s integral (e. g. Hofmann-Wellenhof and

Moritz, 2005, pp. 28)

∂/∂r radial derivative operator (any

parameter w.r.t. r),

Green’s representation theorem, (Keller, 2003)

gl (r) = r/l+i gravity anomaly operator (to apply to

the (i − 1)th derivative),

Poisson’s integral (e. g. Hofmann-Wellenhof and

Moritz, 2005, pp. 99)

1/γ normal gravity operator Stokes (and Bruns) formula, (e. g. Hofmann-Wellenhof

and Moritz, 2005, pp. 102).

The first three operators depend on the radial distance r . They are applied in the Meissl scheme, cf. Fig. 2.7.

The scheme is adapted in the following and expanded by further operators in order to derive a variety of

gravitational quantities needed in this work. As mentioned above, the observed quantities relate either to the

gravitational, or to the disturbing potential. In order to apply the Meissl scheme and the field transformations

as flexibly as possible, an initial parameter is defined as (differential) gravitational potential Ṽ . It summarizes

Ṽ = V −U + Z = T disturbing potential,

Ṽ = V− Vback gravitational potential reduced by the gravitational potential of a background model,

Ṽ = V − 0 full gravitational potential.

Functionals derived from the (differential) gravitational potential are in the following denoted as Y[ Ṽ ]. The

most relevant operator is hereby the (partial) derivative ∂/∂r w.r.t. a certain radial distance r .

2.4.1 Meissl scheme

Rummel and van Gelderen (1995) adapted the Meissl scheme (Meissl, 1971a,b) for coupling gravitational

functionals depending on the radial distance r . It is appropriate for functionals related to T , stemming from

near-Earth observations, as e. g. from terrestrial, air- and shipborne gravimetry. However, in this work,

satellite data are used as well and they deliver information related to the gravitational potential V . Thus, a

more general scheme is developed for the functionals Y[ Ṽ ], see Fig. 2.7, based on the principles of Rummel

and van Gelderen (1995): The transitions (arrows) can be interpreted as eigenvalues λ̄l , i. e. integral relations

in the spatial domain. The SH coefficients Fl,m are the appropriate eigenfunctions.

... w.r.t. radial derivatives

Using the operators from Tab. 2.2, depending on radial distance r and degree l, the construction in Fig. 2.7

connects all vertical transformations of the initial (differential) gravitational potential Ṽ by the up-/downward
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continuation operator X l+i
= (R/r )l+i , and all horizontal transformations by the normal derivative (∂/∂r), and

the gravity anomaly (gl (r) = r/l+i) operators. Starting exemplarily from Ṽr , the (differential) gravitational

potential in any height (radial distance r > R), or from Ṽ at the surface of a sphere ΩR with constant radius

R, e. g. approximately the Earth’s surface (r = R), all quantities Y[ Ṽ ] related to the first derivatives ∂Ṽ/∂r ,
∂Ṽr/∂r , can be obtained. Examples for Ṽ = T are gravity anomalies or gravity disturbances. Pursuing in

horizontal direction, all quantities related to the second derivatives ∂2Ṽ/∂r2, ∂2Ṽr/∂r2, can be received (e. g.

vertical gravity gradients). The transformations based on the spherical approximation of Ṽ = V , Eq. (2.40),

or Ṽ = T , Eq. (2.54), thus only depend on degree l and radial distance r .

The normal gravity operator 1/γ further connects the disturbing potential T with (quasi)geoid undulations N
(ζ), according to Bruns formula, see Eq. (2.62). Naturally this transformation is only applied at the Earth’s

surface, computing the normal gravity γ = γ0 from Eq. (2.48) referring to a rotational ellipsoid with h = 0.

(It is neglected in Fig. 2.7.)

The black arrows in Fig. 2.7 symbolize decreasing spectral power in the high frequencies, i. e. a smoothing

of the quantities as well as of their noise in case of observables – here, in total, green displayed: from gravity

gradients ∂2Ṽ/∂r2 at the Earth’s surface to (differential) gravitational potential Ṽr in height h. After Rummel

and van Gelderen (1995), the Meissl scheme can be interpreted as follows: On the one hand, it provides a

kind of ”tool box“ in modeling approaches for deriving gravitational functionals from Ṽ . On the other hand,

it allows to propagate the signal and noise behavior of different observed gravity quantities Y[ Ṽ ] and their

relationships. At the Earth’s surface for instance, gravity anomalies (related to ∂Ṽ/∂r) have more power in

the high frequencies than the disturbing potential (or geoid undulations derived from Ṽ = T). The higher

the derivatives w.r.t. r of a functional, the finer are the gravitational structures which can be determined by

appropriate observation techniques, taking into account the measurement altitude.

By applying the scheme the other way round, inverse transformations amplify both signal and noise in the

upper part of the frequency spectrum (red arrow). This is important for the coupling of functionals in

different heights: All satellite measurements have to deal with increasing errors in downward continuation

applications. However, e. g. for the gravity gradient ∂2Ṽr/∂r2, the effect is partly compensated by the sequence

of horizontal operators, making satellite gradiometry a very attractive measurement technique for globally

gaining high-frequent gravitational information.

Figure 2.7: Modified Meissl scheme after Rummel and van Gelderen (1995), representing field transformations based on the

operators f l (r) of radial-depending quantities related to the (differential) gravitational potential Ṽ , observed or to be determined in

any height h > 0 above or at the Earth’s surface (h = 0). The black arrows symbolize the smoothing behavior of both signal and

noise (in case of observables) in high frequencies.
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... w.r.t. Cartesian xyz-derivatives

The Meissl scheme originally relates gravitational functionals depending on the radial derivatives of T . It is

further extended in this work by derivatives w.r.t. Cartesian xyz-coordinates, see Fig. 2.8, as the functional

tensor of gravity gradients typically refers to those.3 Hereby, the direction of the z-axis is assumed to point

in radial direction. Consequently, for the first and second derivatives ∂Ṽ/∂z, ∂2Ṽ/∂z2 at the Earth’s surface,

respectively ∂Ṽr/∂z, ∂2Ṽr/∂z2 above the surface, the same horizontal and vertical field transformation operators

yield as for radial derivatives. For derivatives w.r.t. x, y, as well as for mixed derivatives and their linear

combinations, the horizontal operators consist of several terms, cf. Fig. 2.8. An analogy to Fig. 2.7, the black

arrows indicate smoothing behavior in the high frequencies.

Figure 2.8: Modified Meissl scheme after Rummel and van Gelderen (1995), representing field transformations between (combined)

xyz-elements of the gravity tensor related to the (differential) gravitational potential Ṽ , and compared with the first- and second-order

derivatives w.r.t. r (bottom line) according to Fig. 2.7. Horizontal operators represent the singular values. The green color indicates

smoothing behavior in high frequencies from lower right to upper left, the red color amplification vice versa.

2.4.2 Spherical derivatives of the (differential) gravitational potential in terms of SHs

The gravitational potential V is the main quantity of the Earth’s gravity field; any gravitational functional

Y[ Ṽ ] can be derived from it or from the disturbing potential T . In this section, a variety of derived quantities

is expressed in terms of SHs to give a general overview. The basis functions then are replaced by SBFs in the

sequel of this thesis.

The common series expansion in terms of SHs for describing Ṽ = V was given in Eq. (2.40), Ṽ = T in Eq. (2.54)

respectively. As Ṽ depends on the spherical coordinates λ, ϑ, r , the series expansion can be split into several

parts (e. g. Hofmann-Wellenhof and Moritz, 2005, pp. 32): a scaling factor f0 =
GM/R, a first summation part

f l (r) depending on the radial distance r , and a second summation part f l,m (λ, ϑ) depending on spherical

longitude λ and co-latitude ϑ. For an arbitrary functional Y[ Ṽ ] it yields

Y[ Ṽ ] = f0

∞∑

l=0

f l (r)
l∑

m=0

F̃l,m f l,m (λ, ϑ) , (2.56)

by introducing (difference) SH coefficients F̃l,m =
{

Fl,m,∆Fl,m

}

according to Eqs. (2.41), (2.55). As men-

tioned above, the summation parts can be represented by diverse basis functions, i. e. for example by a linear
3The adaption to (mixed) derivatives w.r.t. λ, ϑ is neglected, because according quantities play a minor role.
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combination of solid SHs Hl,m (λ, ϑ, r), cf. Eq. (2.35), or later by a linear combination of SBFs.

The first summation part f l (r) contains the eigenvalues referring to the Meissl scheme 2.7. It expresses

field transformations in terms of the gravity anomaly operator gl (r) = gl , for r = R, and the up-/ downward

continuation operator X l+i from Tab. 2.2, each depending on degree l and the latter additionally on the (i−1)th

derivative w.r.t. r , i. e.

f l (r) = gl · X (r)l+i . (2.57)

Choosing SHs as basis functions, the second summation part f l,m (λ, ϑ) represents the λ, ϑ-depending terms

of surface SHs HR
l,m

, according to Eq. (2.36). This summation part is further split into the longitude-depending

sine f s,m and cosine fc,m functions, and the co-latitude depending Legendre function, cf. Eq. (2.32), or its

derivatives, cf. Eqs. (A.1), (A.2) in Appendix A, collected in fP,l,m , by

f l,m (λ, ϑ) =


fc,m (λ) fP,l,m (ϑ)

f s,m (λ) fP,l,m (ϑ)
. (2.58)

Table 2.3 lists the (differential) gravitational potential Ṽ , developed in terms of SHs, and all first and second

derivatives w.r.t. r, λ, ϑ according to the splitting of Eqs. (2.56) – (2.58). Such a decomposition of the series

expansion of a harmonic function, cf. Eq. (2.34), in its different dependencies allows an efficient and flexible

implementation in software routines and a flexible replacement of various basis functions.

Multiplying the expressions from Tab. 2.3 with appropriate gravity field operators presented in context with

the Meissl scheme enables to describe a large variety of gravitational functionals. This is shown in Sec. 2.5

in terms of SHs, and in Sec. 4.2.5 in terms of SBFs.

Table 2.3: Zero, first and second order derivatives of the (differential) gravitational potential Ṽ in terms of SHs w.r.t. spherical

coordinates r, λ, ϑ, according to Eqs. (2.56) – (2.58).

Y[ Ṽ ] f0

f l (r) f l,m (λ, ϑ)

gl X l+i i f s,m (λ) fc,m (λ) fP,l,m (ϑ)

Ṽ GM
R

1
(
R
r

) l+i
1 cos(mλ) sin(mλ) Pl,m (cos ϑ)

∂Ṽ
∂r

GM
R

− l+1
R

(
R
r

) l+i
2 cos(mλ) sin(mλ) Pl,m (cos ϑ)

∂Ṽ
∂λ

GM
R

1
(
R
r

) l+i
1 m cos(mλ) −m sin(mλ) Pl,m (cos ϑ)

∂Ṽ
∂ϑ

GM
R

1
(
R
r

) l+i
1 cos(mλ) sin(mλ) ∂Pl,m (cosϑ)

∂ϑ

∂2Ṽ
∂r2

GM
R

(l+1)(l+2)
R2

(
R
r

) l+i
3 cos(mλ) sin(mλ) Pl,m (cos ϑ)

∂2Ṽ
∂r∂λ

GM
R

− l+1
R

(
R
r

) l+i
2 m cos(mλ) −m sin(mλ) Pl,m (cos ϑ)

∂2Ṽ
∂r∂ϑ

GM
R

− l+1
R

(
R
r

) l+i
2 cos(mλ) sin(mλ) ∂Pl,m (cosϑ)

∂ϑ

∂2Ṽ
∂λ2

GM
R

1
(
R
r

) l+i
1 −m2 cos(mλ) −m2 sin(mλ) Pl,m (cos ϑ)

∂2Ṽ
∂ϑ∂λ

GM
R

1
(
R
r

) l+i
1 m cos(mλ) −m sin(mλ) ∂Pl,m (cosϑ)

∂ϑ

∂2Ṽ
∂ϑ2

GM
R

1
(
R
r

) l+i
1 cos(mλ) sin(mλ) ∂2Pl,m (cosϑ)

∂ϑ2

Spherical approximations

Expressing gravitational functionals in terms of basis functions, as e. g. SHs or radial SBFs, related to

spherical coordinates is very convenient from the modeling point of view. Due to the flattening of the Earth,

the quantities would be better approximated by ellipsoidal functions. However, the computational effort is

enormous compared with spherical approximations. The deviation between quantities, computed on a sphere
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or on a reference ellipsoid which is treated as a sphere, is maximal in the order of magnitude of only 3 × 10−3

(Hofmann-Wellenhof and Moritz, 2005, p. 96). This corresponds to the order of magnitude of the flattening.

The deviations between ellipsoidal or spherical derivatives of the gravitational potential, which are needed for

the computation of several functionals, are even smaller. Consequently, expanding series in terms of spherical

functions suffices for many applications.

For the regional gravity field modeling approach presented in this thesis, the computations are related to a

sphere with constant radius r = R, and the functionals are projected in the end to ellipsoidal (or any other)

coordinates. The following spherical approximations are applied, neglecting second (or higher) order terms

(e. g. Hofmann-Wellenhof and Moritz, 2005, pp. 96,97):

∂

∂h
=

∂

∂n′
≈ ∂

∂r
≈ ∂

∂n
, (2.59)

∂γ

∂h
≈ −2γ

R
. (2.60)

Equation (2.59) approximates the normal derivative operator w.r.t. ellipsoidal height h′ by the radial derivative

operator from Tab. 2.2. The normal vector n on a sphere with magnitude n has the same direction r as the

radius vector r ; and the normal n′ on an ellipsoid with the according vector n′ defined in Eq. (2.18) is the

direction of the ellipsoidal height h′. The latter Eq. (2.60) describes the vertical gradient of the normal gravity

γ w.r.t. ellipsoidal height h′, approximated by a term which only varies with the normal gravity γ. Depending

on the application, either the spherical approximation suffices, or it is applied for upward continuation of

gravity, i. e. for gravity reduction, discussed in Sec. 2.7.

Figure 2.9: Functionals and field transformations in the regional gravity modeling approach. The sensitivity to high frequencies is

color-shaded according to Fig. 2.7.

2.5 Gravitational functionals

Based on the field transformations from Sec. 2.4, various functionals Y[ Ṽ ] can be derived from the gravita-

tional and the disturbing potential. Figure 2.9 presents a variety of in- and output quantities which are used in

the studies of this work. The relations in terms of field transformations are described by the Meissl scheme, in

Figs. 2.7 and 2.8. The ”RegGRAV“ (Regional GRAVity modeling) logo in the middle symbolizes the regional

gravity field modeling approach, which is presented in Sec. 5. Parts of this thesis have been studied in the
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frame of the ”RegGRAV I and II“ projects4, where the logo was introduced.

The following sections introduce the observable input functionals, but now, on the one hand from the physical

perspective, and on the other hand from the modeling perspective. As mentioned, the gravitational potential V
is the fundamental quantity. Hence, the arrangement of the derived functionals follows the application of more

and more field transformation operators, which corresponds to increasing spectral power in high frequencies,

referring to Fig. 2.9. The selection of functionals can be supplemented by further (output) quantities, as e. g.

equivalent water heights (EWH), which are not part of this study. The corresponding measurement systems

are described in Sec. 3; the observation equations of the modeling approach are presented in Tab. 4.7.

According to Fig. 2.9, gravitational potential differences ∆V (Sec. 2.5.1) and gravity gradients Vab , a, b ∈
{x, y, z}, (Sec. 2.5.7) are functionalsY[ Ṽ ] =Y[ V ] of the gravitational potential; geoid heights N (Sec. 2.5.2),

quasigeoid heights ζ (Sec. 2.5.3), gravity disturbances δg (Sec. 2.5.4), gravity anomalies ∆g (Sec. 2.5.5), and

deflections of the vertical η, ξ (Sec. 2.5.6) relate to the disturbing potential, i. e. Y[ Ṽ ] =Y[T ], after reducing

V by a normal potential U.

For functionalsY[T ] are further distinguished: The approximation of the gravitational by a normal potential

allows to determine the differences between two equipotential surfaces, a spheropotential surface with poten-

tial U and a geopotential surface of the Earth’s gravity field, e. g. the geoid with potential W0. It is known

as Stokes theory. As in most cases, the Earth’s surface does not coincide with the geoid, another theory,

the Molodensky theory, has established. It considers the gravitational functionals as differences between the

Earth’s surface and the telluroid. Both theories are needed in this work, as different observation data relate

as well to the theories of Stokes and of Molodensky. They are briefly mentioned when describing the single

functionals. For more details see e. g. Hofmann-Wellenhof and Moritz (2005); a comprehensive overview is

given e. g. by Sánchez (2015).

2.5.1 Gravitational potential difference

Modeling the gravitational potential V of the Earth as accurately and highly resolving as possible, would in

theory require the direct measurement of V outside all attracting masses. As mentioned before, no observation

technique is able to realize this. However, the satellite mission GRACE, consisting of two spacecrafts, delivers

gravitational potential differences Y[ Ṽ ] = ∆V , i. e.

∆V = ∆V (xi, xii ) = V (xi ) − V (xii ) , (2.61)

obtained from highly accurate distance measurements between the satellites (i),(ii) at positions P(xi ) and

P(xii ). Several approaches have been established and realized in order to derive ∆V from the distance

measurements, as e. g. the acceleration or the energy balance approach. Details are explained in Sec. 3.1.5.

Expressing Y[ Ṽ ] = ∆V in terms of spherical relations according to (2.56), only the scaling factor f0 is

identical for V (xi ) and V (xii ). The summation parts f l (r) and f l,m (λ, ϑ) distinguish due to the different

positions P(xi ) and P(xii ) of the two satellites. Comparing the sensitivity to high frequencies with the one of

other gravitational quantities, it is relatively low and can be arranged referring to Ṽr within the Meissl scheme

2.7.

2.5.2 Geoid undulation

Equipotential surfaces of the Earth’s gravity field are suitable for height reference systems. The geoid for

instance, defined as geopotential surface W = W0 according to Eq. (2.28), coincides with the undisturbed,

continuously extended mean sea level of the oceans over the whole globe. The approximation of the geoid by

an ellipsoid with normal potential U and spheropotential surfaces defined in Eq. (2.43), is implicitly realized

by the low-degree terms of global gravity field models. A selection is presented in Sec. 3.2.

4Projects funded by the Centre for Geoinformation of the German Armed Forces (ZGeoBw), Euskirchen, Germany: Generation of a software application

for producing high precise regional gravity models as a height reference surface.
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According to Fig. 2.10, the metric difference between a reference

ellipsoid (with potential U0) and the geoid (with potential W0) can

be described by the geoid height or geoid undulation N . It is the

distance between a certain point P0 of the geoid and the – along

the ellipsoidal normal n′ – projected point Q0 onto the normal

potential surface with the same potential U = U0 = W0 (Hofmann-

Wellenhof and Moritz, 2005, p. 91). The Bruns formula

N =
T
γ

(2.62)

(e. g. Hofmann-Wellenhof and Moritz, 2005, p. 93) relates this

geometric distance N to the physical quantity T via the normal

gravity operator 1/γ, cf. Tab. 2.2.

Figure 2.10: Geoid undulation N following

Stokes theory.

Following the Stokes theory, assuming that there are no masses outside the geoid, the disturbing potential

T = T (P0) from Eq. (2.54) is computed at the geoid point P0, while the normal gravity γ = γ0(Q0) according

to Eq. (2.48), is computed at the ellipsoidal point Q0. The mathematical relations between the geometrical and

physical quantities are given in Appendix A. Modeling T (P0) in terms of SHs, the spherical relations Y[ Ṽ ]

= V from Tab. 2.3, and the spherical approximations ∂/∂r ≈ ∂/∂n′ from cf. Eq. (2.59) apply in Eq. (2.54).

Arranging geoid undulations Y[ Ṽ ] = N in the order of the Meissl scheme (Fig. 2.7) at the Earth’s surface,

this functional would be located along with Ṽ .

2.5.3 Quasigeoid undulation

As mentioned in Sec. 2.3.5, the disturbing potential satisfies the Laplace equation ∇2T = 0 outside attracting

masses. However the geoid, as described in Sec. 2.5.2, generally does not coincide with the Earth’s surface:

especially on land, the topography causes masses above or below the geoid. Consequently, the determination

of geoid heights from Eq. (2.62) following Stokes theory, requires the reduction of measured gravity quantities

at the Earth’s surface down to the geoid. One method applied in this work is presented in Sec. 2.7.

Following the Molodensky theory, another option is

the introduction of quasigeoid heights or quasigeoid

undulations

ζ =
T
γ
, (2.63)

applying Bruns formula according to Eq. (2.62), but

now considering a point P at the Earth’s surface. Pro-

jecting P from the Earth’s surface along the ellipsoid

normal n′ onto a surface with potential U = UQ = WP ,

results in the geometric distance ζ = PQ, see Fig. 2.11.

Physically, this quasigeoid undulation between the

geopotential surface with W = WP through a point P
at the Earth’s surface and the spheroidal surface with

U = UQ = WP is defined analogously to N . The

quantities in Eq. (2.63) are computed at geopotential

surface for T = T (P), and at the spheroidal surface for

γQ = γQ (Q), see Appendix A.

Figure 2.11: Quasigeoid undulation following Molodensky

w.r.t. the ellipsoid and analog w.r.t. the telluroid. Dashed

lines denote non-equipotential surfaces.

Geometrically, the projections of surface points P1, P2, ... with different potential values W1,W2, ... onto points

Q1,Q2, ... with the same normal potential values W1 = U1,W2 = U2, ... describe a new surface, denoted as

telluroid Σ, see Fig. 2.11. It is an artificial point-wise defined surface. Counting the metric distances ζ vice

versa, w.r.t. the ellipsoid (potential U = U0), results in the surface called quasigeoid. Over the ocean, it is

practically identical with the geoid (e. g. Hofmann-Wellenhof and Moritz, 2005, p. 299), due to the absence of

topographic masses.
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ForY[ Ṽ ] = ζ , the same spherical approximations and field transformations account as for N , discussed in the

previous section. Hence, the spectral power of quasigeoid undulations in high frequencies and the arrangement

in the Meissl scheme (Fig. 2.7) corresponds to the ones of geoid undulations.

2.5.4 Gravity disturbance

Physically, the gravity disturbance δg describes the

difference

δg = gP − γP (2.64)

between the magnitude gP of the gravity vector gP
along the plumb line n and the magnitude γP of the nor-

mal gravity vectorγP along the ellipsoidal normal n′, in

one and the same point P at the Earth’s surface follow-

ing Molodensky, see Fig. 2.12. The gravity disturbance

vector δg is oriented along n′ and expresses the gra-

dient of T : δg = [∂T/∂x, ∂T/∂y, ∂T/∂z]T = gradT . For

modeling purposes, its magnitude (2.64) is expressed

by

δg = − ∂T
∂h′

. (2.65)

Figure 2.12: Gravity disturbance following Molodensky

w.r.t. the Earth’s surface.

Note, within the physical relation according to Eq. (2.64) the direction of γ = γP is oriented inwards the

ellipsoid, while in Eq. (2.65) the ellipsoidal height h′ is counted positively outwards. According to the

Molodensky theory, the disturbing potential and the normal gravity are computed at the Earth’s surface with

T = T (P), γ = γP (P). In the spherical approximation according to Eq. (2.59) the gravity disturbance from

Eq. (2.65) becomes

δg = −∂T
∂r

. (2.66)

and the spherical relations Y[ Ṽ ] = ∂Ṽ/∂r = ∂T/∂r from Tab. 2.3 can be applied, neglecting the difference of

the directions of r and n′.
Following the Meissl scheme (Fig. 2.7), gravity disturbances δg contain more power in high frequencies than

T or N , as they relate to the first derivative of T . For instance, computing geoid undulations N from observed

gravity disturbances δg at the Earth’s surface consequently smooths the high-frequent signal contents. With

the advent of the Global Navigation Satellite System (GNSS) measurements, the determination of δg becomes

more and more prominent: GNSS delivers directly ellipsoidal coordinates λ, β, h of a point P, which enables

the computation of the normal gravity γP = γh (P) according to Eq. (2.50) of this point P at ellipsoidal height

h′.

2.5.5 Gravity anomaly

In contrast to gravity disturbances δg, the difference of the gravity vector gP at a point P at the Earth’s surface

with potential WP and the vector γQ at a point Q of a spheropotential surface U = UQ , see Fig. 2.13, is defined

as gravity anomaly vector ∆g = gP − γQ . The corresponding magnitude ∆g of the vector is denoted gravity

anomaly
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∆g = gP − γQ (2.67)

in the sense of Molodensky. It can be determined eas-

ily by measuring the magnitude g = g(P) of the total

gravity point-wise at the Earth’s surface, and reducing

it by appropriate normal gravity values γ = γQ (Q),
computed at the telluroid points Q by Eq. (2.48). Fol-

lowing Stokes, the gravity anomaly in a point P0 on

the geoid W0 is defined as difference g(P0) − γ0(Q0).
Vice versa to the projection of a point P0 onto a

point Q0, the normal gravity γ0(Q0) can be continued

from the reference ellipsoid to the geoid with increas-

ing height h′ in order to express the according value

γ(P0) = γ0(Q0) + ∂γ/∂h′ N .
Figure 2.13: Gravity anomaly following Molodensky w.r.t.

the Earth’s surface, and following Stokes w.r.t. the geoid.

Extending the relation from Eq. (2.65) by an up-/ downward continuation operator (depending on the surface

of the normal potential, if it is below or above the geoid), the gravity anomaly typically is expressed by

∆g = − ∂T
∂h′
+

∂γ

∂h′
N . (2.68)

With Bruns formula according to Eq. (2.62) and the spherical approximation ∂T/∂h ≈ ∂T/∂r (cf. Sec. 2.4.2),

the gravity anomaly yields

∆g = −∂T
∂r
− 2

R
T (2.69)

and the relation Y[ Ṽ ] = ∂Ṽ/∂r from Tab. 2.3 applies. The signal content in the high frequencies of ∆g is

equivalent to that of δg and can be related to other gravitational quantities by the Meissl scheme (Fig. 2.7).

The connection of gravity anomalies ∆g and geoid undulations N is given by the Stokes operator; the

connection to gravity disturbance δg by the fundamental equation of physical geodesy, which is for instance

used as boundary condition for the first boundary-value problem according to Eq. (2.41). The relations are

described in Appendix A. However, they are not applied in this work, as all quantities are directly derived

from the (differential) gravitational potential Ṽ .

2.5.6 Deflection of the vertical

As mentioned before, the gravity anomaly vector ∆g is defined by the difference between the gravity vector

gP pointing along the plumb line n at a point P at the Earth’s surface, and the normal gravity vector γQ

oriented along the ellipsoidal normal n′ in the projected point Q on the telluroid, following Molodensky. The

normal gravity vector γP in point P, as it is used for describing gravity disturbance vectors δg, points in the

same direction as γQ.

The difference in direction of both vectors ∆g and δg,

i. e. of the according unit vectors n and n′, is displayed

in Fig. 2.14 and denoted as deflection of the vertical.

The magnitude is expressed by a north-south (ξ) and

an east-west (η) component. Hence, physically they

express the direction of g, i. e. of the gradient gradW
of the potential field W , in longitude (north-south) and

latitude (east-west) direction with

ξ = − 1

γR
∂T
∂ϕ

η = − 1

γR cos ϕ

∂T
∂λ

, (2.70)

(Hofmann-Wellenhof and Moritz, 2005, p. 117).

Figure 2.14: Deflection of the vertical in north-south (ξ)

and east-west (η) direction, with n′ through Q following

Molodensky, and with n′ through P following Helmert.
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Geometrically, the quantities ξ, η describe the angle between the direction of the plumb line and the ellipsoidal

normal n′ in a point P, expressed by astronomical (Λ,Φ) and ellipsoidal (λ,β) coordinates, i. e.

ξ = Φ − β ,
η = (Λ − λ) cos β . (2.71)

Following Molodensky, the direction of n′ is defined through Q at the telluroid. Consequently, T = T (Q) and

γ = γQ (Q) have to be computed in Eq. (2.70) w.r.t. the according spheropotential surface (potential U = UQ ,

cf. Fig. 2.14). Another definition established for practical applications (Torge, 2003, p. 199): Helmert defined

n′ through P at the Earth’s surface. Hence, the curvature of the plumb line between telluroid and the Earth’s

surface (order of magnitude of a few 0.11′′) is neglected in favor of an easy determination of the direction of

n′. T = T (P) and γ = γP (P) relate to the according spheropotential surface through P (potential U = UP).

The quantities Y[ Ṽ ] = {η, ξ} are referred to the first derivatives of the disturbing potential T after ϕ and

λ. In modeling approaches, the Eqs. (2.70) are described by the spherical approximations ∂T/∂ϕ and ∂T/∂λ

from Tab. 2.3. η, ξ cannot be directly arranged in the Meissl scheme in Fig. 2.7: according to Fig. 2.3, the

functionals do not depend on the radial derivative, but on the operators f l,m (λ, ϑ).

2.5.7 Gravity gradients

While the three components of the gravity vector g describe the change of gravity potential W along the three

axes of a Cartesian coordinate system, gravity gradients Y[ Ṽ ] = (Vab ), a, b ∈ {x, y, z} quantify the change

of gravity (in the three-dimensional space R3), i. e.

∆V = (Vab ) =

(

∂2V
∂a∂b

)

, (2.72)

w.r.t. a Cartesian coordinate system. Physically they describe a Marussi tensor ∆V , referring to Antonio

Marussi (1908-1984), of nine elements

∆V = (Vab ) =


Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

 , (2.73)

containing all second-order derivatives of V . The gravity gradients are typically given in the unit Eötvös (1 E

= 1 × 10−9 s−2), named after the Hungarian physicist Loránd Eötvös (1848-1919).

Following Rummel and van Gelderen (1992), the two most important characteristics of the Gravity Gradient

(GG) tensor are: The gravitational potential V is harmonic (∇2V = 0) and irrotational (∇ × ∇V = 0) outside

the attracting masses. Consequently, the Laplace equation (2.25) can be written in Cartesian coordinates as

Vxx +Vyy +Vzz = 0, i. e. the trace of the gravity tensor (2.73) is zero, and each two of the diagonal elements are

linear dependent. Further, the tensor is symmetric with (Vab ) = (Vba ) so that Vxy = Vyx,Vxz = Vzx,Vyz = Vzy .

In total, five independent components remain.

Following Koop (e. g. 1993, p. 32), the elements can be expressed w.r.t. spherical coordinates λ, ϑ, r , i. e.

Vxx =
1

r
∂V
∂r
+

1

r2

∂2V

∂ϑ2
, (2.74)

Vxy =
1

r2 sin ϑ

∂2V
∂ϑ∂λ

− cos ϑ

r2 sin2 ϑ

∂V
∂λ

, (2.75)

Vxz =
1

r2

∂V
∂ϑ
− 1

r
∂2V
∂r∂ϑ

, (2.76)

Vyy =
1

r
∂V
∂r
+

1

r2 tan ϑ

∂V
∂ϑ
+

1

r2 sin2 ϑ

∂2V

∂λ2
, (2.77)

Vyz =
1

r2 sin ϑ

∂V
∂λ
− 1

r sin ϑ

∂V 2

∂r∂λ
, (2.78)

Vzz =
∂2V

∂r2
. (2.79)
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Modeling the components (Vab) in terms of SHs, the first- and second-order derivatives of Ṽ = V from Tab. 2.3

are inserted in the Eqs. (2.74) - (2.79). In spherical approximation it yields Vzz ≈ Vrr . According to the

Meissl scheme (Fig. 2.7), the amplification of high frequencies is exemplarily demonstrated for the component

Vrr . Although spaceborne observations, observed in a certain height r > R, contain less information at

small wavelengths, the effect of downward continuation (vertically arranged operator to the power of l + 3

in Fig. 2.7) is partly compensated for the second derivatives by the multiplication of several horizontally

arranged operators, as e. g. the gravity anomaly operator gl (r). Consequently, those differentiation operators

counteract the attenuation operator such that gravity gradients are especially profitable for the detection of

high frequencies (Rummel et al., 2002).

In analogy to the Meissl scheme in Fig. 2.7 referring to field transformations w.r.t. spherical coordinates, cf.

Tab. 2.3, a second scheme has been developed in Fig. 2.8 w.r.t. Cartesian coordinates, cf. Rummel and van

Gelderen (1995). Herein, exemplarily the relation of the zz-derivative, Eq. (2.79), is derived according to the

spectral power in high frequencies.

2.6 Height definitions

Related to the physically defined gravitational and normal potential, several geometric distances can be

specified. Geoid and quasigeoid heights are directly derived from the disturbing potential, and represent

gravitational functionals, as introduced in Eqs. (2.62), (2.63). They deliver the basis for establishing national

and international height systems and thus are the fundamental quantities for connecting gravity and geometry

of the Earth.

In order to assess the full range between a reference ellipsoid with normal potential U = U0, which can be

easily described by Eq. (2.44), and the Earth’s surface, which deviates in most cases from the geoid, the most

common height definitions are presented in the following.

Ellipsoidal heights h′ refer to the normal potential U = U0 and are counted along the ellipsoid normal n′,
see Fig. 2.15. They present the vertical component of ellipsoidal coordinates and can be directly derived from

GNSS measurements.

Geoid heights, as introduced in Eq. (2.62), describe

an geopotential surface (with potential W0) w.r.t. the

reference ellipsoid (with normal potential U0), and are

defined along n′. The distance between the geoid and a

point P at the Earth’s surface, counted along the local

plumb line n through P, is called orthometric height

Horth, see Fig. 2.15. The ellipsoidal height h′ thus can

be decomposed by

h′ = N + Horth , (2.80)

neglecting the curvature of n. For the determination

of Horth, the gravity g along the plumb line is needed;

the computation of N requires the reduction of masses

above the geoid. Both quantities cannot be derived

without geophysical assumptions.
Figure 2.15: Ellipsoidal, geoid and orthometric height.
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In order to avoid related uncertainties, many height

reference systems are related to quasigeoid and normal

heights Hnorm, i. e.

h′ = ζ + Hnorm , (2.81)

cf. Fig. 2.16. Quasigeoid heights ζ as described in

Eq. (2.63), refer to the ellipsoid or telluroid. Ac-

cordingly, the distance from the quasigeoid up to the

geopotential surface through P, or from the ellipsoid up

to the geopotential surface through the telluroid point

Q, along the ellipsoid normal n′, indicates the normal

height Hnorm.
Figure 2.16: Ellipsoidal, quasigeoid and normal height.

2.7 Free-air reduction

Following Stokes theory, all gravitational computations are related to the geoid, assuming no masses above,

if T is harmonic on this geopotential surface with potential W = W0, and the Laplace equation (2.25) is valid.

As in most cases the Earth’s surface does not coincide with the geoid, topographic masses have either to be

reduced or to be added, or the functionals have to be computed following Molodensky’s theory w.r.t. the

Earth’s surface. The different reduction methods, as e. g. free-air, Bouguer, or Prey (Hofmann-Wellenhof and

Moritz, 2005, pp. 134-148), mainly distinguish between topographic models, and most of them require an

estimated density of the masses above the geoid.

The free-air reduction hereby continues gravity g in any height Horth down to the geoid, assuming no masses

above it. It can be expressed by a Taylor expansion according to Eq. (2.50) (e. g. Hofmann-Wellenhof and

Moritz, 2005, p. 134). For most applications the linear term, and further the downward continuation along the

ellipsoidal normal n′ (instead of along the plumb line n) suffice. That is, the free-air gravity gradient

∂g

∂Horth

≈ ∂γ

∂h′
≈ −0.3086 mGal/m (2.82)

can be approximated by the normal gradient. This numerical estimate from Eq. (2.82) typically serves for

pre-processing of gravity measurements. In this work, it is applied for homogenization of diverse observation

data sets. The discussion of different gravity reductions is not part of the studies. The spherical approximation

of the normal gradient in Eq. (2.60) is mainly used for modeling purposes of gravitational functionals, e. g.

of the disturbing potential according to Eq. (2.69).
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The direct measurement of gravitational potential V is not possible. Instead, existing observation techniques

detect functionals Y[ Ṽ ] of the (differential) gravitational potential Ṽ . The Meissl scheme (Fig. 2.7) gives an

overview of the sensitivity to high frequencies of gravitational functionals derived from V or T , depending

on the radial distance r , and thus, the measurement height. The more field transformation operators f l (r) are

applied, the higher is the sensitivity to short wavelengths. The main aspects which have to be considered for

gravity observations are:

• Higher-order derivatives of Ṽ w.r.t. r are more sensitive than Ṽ itself, and gravitation decreases with

increasing distance, so that near Earth observables contain more information than the ones in a certain

height above.

• Satellite measurements deliver lower spectral and spatial resolutions than terrestrial, air-, or shipborne

measurements, but a good data coverage over the whole globe.

• However, vice versa, modeling gravitational functionals at the Earth’s surface from satellite data am-

plifies both signal and noise. The same effect appears for the modeling of lower-order derivatives from

higher-order observables.

Consequently, in order to observe the range of the gravitational frequency spectrum (1) as complete as possible,

(2) up to very high spectral and spatial resolution, (3) achieving a global coverage, (4) with reasonable technical

effort and expenses, and in order to obtain a selection of functionals for many applications, a variety of different

measurement systems is needed. The first part of this chapter gives an overview of this variety. Special focus

lies on the GOCE mission. In contrast to the traditional observation systems and in contrast to the CHAMP

and GRACE satellite missions, for the first time global three-dimensional gravity information was obtained.

The integration of this information in regional gravity field models is innovative; Technical benefits and

advantages are discussed in Sec. 3.1.4. In the second part, a selection of global and regional models is

presented, computed from observables of those measurement systems. The global models serve on the one

hand as reference for regional observation techniques, on the other hand as reference for regional models,

and – specific to the modeling approach presented in this thesis according to Fig. 1.1 – they deliver the

long-frequent spectral information of the regional models and fill data gaps. In the last part of this chapter,

the data sets and their pre-processing are described. Detailed information about the data sets is indispensable

for a well-balanced combination, in the sense of extracting and retrieving all their benefits. As the aim is,

to extract as much information as possible from the measurements, a very important principle is followed:

keeping the observations in their most original and less pre-processed state.

3.1 Measurement systems

The following sections give an overview of diverse existing measurement techniques and their observed func-

tionals. Advantages and difficulties figure out the challenges of gravity field determination. The systems which

are used in this work are discussed in detail. These are: the satellite missions GRACE and GOCE, satellite

altimetry, ship-/airborne, and terrestrial gravimetry. In Tab. 3.1 they are descriptively quantified according

to the four main criteria mentioned above. Measurement precision and observed and/or derived functionals

are given as well. Note, that altimetry is not explicitly developed for gravity field detection. However, the

observables are very well suited for deriving gravitational information. For the sake of completeness, further

gravity and gravity-related satellite missions which contribute mainly to global models, are briefly introduced

in the end.

From Tab. 3.1 it is obvious that the global satellite gravity missions GRACE and GOCE are suited to detect

the low frequency spectrum of the Earth’s gravity field. Hereby, the spectral range is relatively small. The

according spectral (and spatial) resolution is low, but, in contrast, the spatial coverage is very high, as well
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Table 3.1: Descriptive comparison of observation techniques, their measurement precision and derived functionals.

observation

techniques

GRACE GOCE Altimetry Shipborne

gravimetry

Airborne

gravimetry

Terrestrial

gravimetry

(1) range of

frequency

spectrum

small small wide medium medium wide

(2) spectral

resolution

low low medium medium high high

(3) spatial

coverage

global global semi-global regional regional regional

(point-wise)

(4) cost for

campaign

high high high medium medium low

measurement

precision

10 µm (range),

1 µm/s (range

rate)

10 × 10−12

m/s2/
√

Hz

3 cm, i. e.

0.3 m2/s2
1 mGal to

3 mGal

2 mGal 2 µGal to 3 µGal

(absolute),

0.01 mGal to

0.02 mGal

(relative)

observed / range, Vab SSH g g g (absolute),

pre-processed ∆V T ∆g, δg ∆g, δg ∆g, δg (relative),

functionals ξ, η

as the cost of the satellite missions. Altimetry derived gravity data cover a wide spectral range and deliver

medium (up to high) resolution information in the spectral domain. However, gravitational signal can only

be derived over the ocean. Near Earth observation techniques, such as ship- and airborne gravimetry, detect

medium up to high-resolution signal. The campaigns are spatially restricted to specific regions, but the costs

are much lower than for satellite missions. With in situ terrestrial observations, the highest spectral and spatial

resolutions can be achieved. The mixture of absolute and relative observation techniques allows a very flexible

and efficient application.

3.1.1 Terrestrial gravimetry

The obvious approach to measure the Earth’s gravity field is terrestrial gravimetry. During the last decades

various instruments have been developed based on different principles. Hereby, absolute and relative gravime-

ters are distinguished, determining gravity as sum of gravitational and centrifugal accelerations and gravity

differences.

Absolute gravimetry

The dynamic measurement of gravity is achieved by absolute gravimetry. It delivers directly the magnitude g

of the gravity vector with precision of 20 nm/s2 to 30 nm/s2 (2 µGal to 3 µGal), i. e. in the order of magnitude

of 2 × 10−9 to 3 × 10−9 (source: http://www.bkg.bund.de, 05/03/2016), but it requires a lot of technical

effort, is expensive, and thus only installed at a few stations in a country.

In the most established principle, the free fall of a proof mass in a vacuum tube is interferometrically

determined, i. e. the vertical location z of the proof mass is detected at time t during its free fall, assuming

the magnitude of gravity g = g(z) to be constant during the measurement period. Referring to Vermeer M.

(2016, pp. 182), the equation of motion of the proof mass yields

d2z

dt2
= g(z) , (3.1)

and the observation equation for one location z (start position and velocity z0, v0) results to

z = z0 + v0t +
1

2
gt2 . (3.2)

http://www.bkg.bund.de
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Repeating the measurement cycle several thousand times, the magnitude of gravity can be estimated with high

precision from the average, e. g. by least-squares adjustment, depending on the precision of the corresponding

time measurement. Typically, a prism serves as proof mass. Erroneous influences which have to be considered

and reduced stem from

• microseismic, instabilities of the ground (traffic, construction work, ...)

→ mostly compensated by damping with a superspring5,

• air pressure and temperature

→ mostly compensated by isolated vacuum tube,

• vertical gravity gradient dg/dh (gravity g not constant),

• magnetic field of the Earth ,

• instability of laser instrument and time measurement,

(Dietrich, 2003). Recently upcoming instruments, so-called atomic or quantum gravimeters, measure the fall

of atoms. Gravity g can be determined with higher precision, but at a much larger technical and financial

expense (Vermeer M., 2016, p. 184).

Relative gravimetry

More efficient, but less accurate is relative gravimetry: Modern spring gravimeters have sensitivities better

than 0.005 mGal, but the standard deviation of observations in exploration surveys is in the order of 0.01 mGal

to 0.02 mGal (source: https://www.britannica.com, 05/03/2016). The instruments enable to measure

gravity differences w.r.t. the absolute stations. In contrast to dynamic measurements, the motion of the proof

mass due to gravity g is constrained by a controlled force (Rummel, 1986). Hence, the observables are static.

A spring with its specific spring constant k and start length l0 balances the gravitational effect on the proof

mass m, which causes oscillation of the spring to an instantaneous length l. The equation of motion for a

vertical spring then reads

m

(

d2l

dt2
− g

)

= −k (l − l0) , (3.3)

(Vermeer M., 2016, p. 176) and the equilibrium holds for

mg = k (l − l0) . (3.4)

Consequently, the change dg of gravity is linear with the change dl of the spring length, according to

dg
dl
=

k
m
=

g

l − l0

(3.5)

(Torge, 2003, p. 162) and the sensitivity of a relative gravimeter yields

dl
dg
=

T2

4π2
. (3.6)

with oscillation period T = 2π
√
m/k. Vermeer M. (2016) gives a rough estimate: The gravity change of

1 mGal produces a lengthening of the spring by only 50 nm. Consequently highly sensitive instruments are

indispensable. So-called astatized gravimeters achieve an improvement of sensitivity by around 50, mainly

due to the changed geometry and a smaller parameter l0. For details see Vermeer M. (2016, pp. 177) or Torge

(2003, pp. 162).

As mentioned, relative instruments perform static gravity measurements and further are especially designed

for transportation. Therefore, special emphasis has to be given on the stability of the instrument and of the

measurement performance. Due to elastic and viscous material properties, the geometry of the instrument

changes and the measurements are systematically influenced. This instrumental drift has to be determined and

reduced from the observations (Torge, 2003, pp. 165). Further erroneous influences which have to be taken

into account, stem from

5actual length of the spring electronically extended to an operative length of around 100 m

https://www.britannica.com
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• air pressure and temperature

→ partly compensated by isolation,

• external magnetic fields

→ partly compensated by demagnetization in the interior,

• microseismic, instabilities of the ground (traffic, construction work, ...)

→ partly compensated by damping,

(Dietrich, 2003).

Network hierarchy

Terrestrial measurement campaigns are hierarchically organized. The ”International Gravity Standardization

Net 1971“ (IGSN71) is the global reference system and official gravity datum worldwide (Morelli et al., 1971).

It consists of 10 absolute and around 25 000 relative gravity measurements. The precision of the measurement

stations is better than 1 µm/s2. National reference systems are integrated in this global network.

The ”Deutsche Schweregrundnetz 1994“ (DSGN94) provides the German basis network with 32 stations

and a precision of 50 nm/s2 (Torge et al., 1999). Several nation-wide distributed locations serve as knot

points at which absolute gravity measurements are regularly repeated, twice a year, by the German Federal

Agency for Cartography and Geodesy (BKG), Frankfurt/Leipzig. It is refined by relative measurements of the

federal states, yielding the ”Deutsche Hauptschwerenetz 1996“ (DHSN96). Least-squares adjustment delivers

a standard deviation of 50 nm/s2 (source: http://www.bkg.bund.de, 05/03/2016). The advantages and

disadvantages of terrestrial gravimetry are listed in Tab. 3.2.

Table 3.2: Advantages vs. disadvantages in terrestrial gravimetry.

Advantages Disadvantages

extremely high spatial resolution not globally achievable

in situ measurements, choice of location very flexible topographic restrictions

coupling with height reference points possible (mountainous, polar, desert,... regions difficult to access)

standardization of national reference systems within the political restrictions

IGSN71 (data not publicly available)

repetition measurements at exactly the same locations time consuming

possible (point-wise system not practical for large areas)

relative measurements at low expenses absolute measurements very expensive

relative measurements require corresponding heights (with

adequate accuracy)

GNSS allows efficient (ellipsoidal) height measurement leveled (orthometric) heights very time consuming

→ delivering gravity disturbances δg, Eq. (2.64) → delivering gravity anomalies ∆g, Eq. (2.67)

3.1.2 Ship- and airborne gravimetry

Kinematic gravity measurements on board of a ship or an airplane are denoted as shipborne or airborne

gravimetry. The sea or aerial gravimeters follow the measurement principle of relative gravimetry (Forsberg

and Olesen, 2010), but distinguish from the terrestrial ones by an extremely powerful damping (Vermeer M.,

2016, p. 189). Typical sampling rates of 1 s to 10 s lead to quasi-continuous measurements along the profiles.

The instruments are installed on stabilized platforms in the vehicles, and thus inertial accelerations due to the

motion of the platform relatively to the geocentric system have to be taken into account (in analogy to the

inertial accelerations additionally to the gravitational acceleration, acting on the rotating Earth in an inertial

system, mentioned in Sec. 2.3.1). In general, the measurement consist of

• gravity g,

• inertial acceleration (non-gravitational acceleration).

http://www.bkg.bund.de
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Hereby, one gravity value g(t) is obtained from the observed gravitational acceleration Γ(t) and the geometric

acceleration a(t) of the platform at a specific time t. With the vector n of the local plumb line it yields

g = g(t) = Γ(t) − 〈a(t) · n〉 (3.7)

(Vermeer M., 2016, p. 189). The geometric acceleration a(t) is derived from the actual position x(t) of the

platform w.r.t. t by

a(t) =
d2x(t)

dt2
, (3.8)

measured by GNSS with high precision.

Denoting g
′ the obtained gravity measurement on a moving platform, the gravity g in the geocentric system is

extended by two terms, considering the horizontal component of inertial acceleration, due to (1) the Coriolis

force and (2) the centrifugal force, acting on the moving platform in (1) east-west and (2) north-south direction.

It yields

g =
GM

r2
− ω2r cos2 ϕ, (3.9)

g
′
=

GM

r2
− (ω +

v sin α

r cos ϕ
︸  ︷︷  ︸

(1)

)2 r cos2 ϕ − (
v cos α

r
︸  ︷︷  ︸

(2)

)2 r , (3.10)

v =

v sin α east-west

v cos α north-south
.

If the terms (1) and (2) in Eq. (3.10) become zero, g′ becomes g

according to Eq. (3.9). ω is the angular velocity of the Earth’s rota-

tion (which was introduced together with the centrifugal potential

Z in Eq. (2.26)), v the velocity vector (with magnitude v) of the

platform relatively to the Earth, and α the azimuth of the direction

of movement (Dietrich, 2003), according to Fig. 3.1. Reducing

those horizontal non-gravitational accelerations from g is called

Eötvös reduction δgEt . It results to

δgEt = g − g′ = 2ωv cos ϕ sin α +
v

2

r
. (3.11)

Figure 3.1: Eötvös effect on a platform in point

P with radial distance r = R (source: Torge,

2003, p. 170).

The vertical component of non-gravitational acceleration acts in the same direction as g. The separation from

g is very challenging. For shipborne gravimetry, damping, i. e. low-pass filtering, reduces high-frequent

effects and thus most of the vertical component. The horizontal component yields, according to Eq. (3.11)

with r ≈ R = 6371 km, approximately

δgEt = 40v cos ϕ sin α + 0.012v2µm/s2 (3.12)

(Torge, 2003, p. 170). The achievable precision of a sea gravimeter counts 1 mGal to 3 mGal (Dietrich, 2003,

p. 62).

A larger horizontal reduction, up to around 10 µm/s2, is applied to airborne gravimetry measurements,

especially as the velocity v of the aircraft is much higher than the one of ships or boats. The speed further

restricts the damping methods of aerial instruments, so that vertical non-gravitational accelerations cause

erroneous effects on the measurements. Additionally, the radial distance r varies with flight height and external

effects due to wind and air pressure influence airborne more than shipborne measurements. However, the

precision could be significantly improved during the last decades due to the advent of GNSS measurements.

Several antennas, installed on the aircraft, allow to monitor its motion with centimeter-accuracy. Typical

gravity results are at a Root-Mean-Square (RMS) level of 2 mGal (Forsberg et al., 2015).
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3.1.3 Satellite altimetry

Radar satellite altimetry primary serves as measurement technique for determining the Sea Surface Higth

(SSH). As this target quantity is very close to the geoid and the remaining small differences are well-studied,

it can be used vice versa for computing marine gravity field structures. The general measurement principle of

satellite altimetry, some specific missions and the derivation of geoid undulations and the disturbing potential

are explained in the following.

The observable of an altimeter instrument on board of a satellite is the travel time of a transmitted radar signal

to the surface of the ocean and back. Hence, the range between the position of the satellite along the orbit

and its ground track is derived along the ellipsoidal normal of the satellite’s reference ellipsoid. The relevant

quantities of the measurement concept are depicted in Fig. 3.2. Hereby the SSH results from the difference

between the ellipsoidal height h′ of the satellite and the observed range. Due to several hydrodynamic processes

which lead to mass changes in the ocean, as e. g. tides, eddies, air pressure or temperature variations, the

(mean) sea surface deviates from the geoid.

The difference is denoted Dynamic Ocean Topography (DOT) and

the amplitude varies between ±2 m (Bosch et al., 2013). Thus, in

order to receive geoid undulations from the SSH, information on

the instantaneous DOT is required. Along the altimeter profile the

geoid height N is obtained from

N = SSH − DOT . (3.13)

Consequently, gravity related quantities derived from satellite al-

timetry are restricted to the ocean and not globally available. Ac-

cording to the Bruns equation (2.62), N can be transformed into

disturbing potential by

T = γN = γ(SSH − DOT ) . (3.14)

Figure 3.2: Relevant quantities of the concept

of satellite altimetry.

Besides the reduction of diverse atmospheric and oceanic influences via the DOT, further erroneous effects

have to be considered. They stem from

• solar pressure or atmospheric drag, for instance, leading to orbital perturbation

→ registered by GNSS measurement of the actual position of the satellite,

• the roughness of the ocean, i. e. the significant wave height

→ considered by retracking algorithms analyzing the return pulse,

• tropospheric and ionospheric characteristics leading to propagation delay

→ partly compensated by on-board measurements or atmospheric models,

• instrumental instabilities

→ mostly corrected by in-flight calibration of the altimeter.

The resulting precision of SSH altimetry observations reaches on average 3 cm (Vermeer M., 2016, pp. 205).

The according precision of disturbing potential values T = γ(SSH − DOT ) yields around 0.3 m2/s2 by error

propagation from dT/dSSH · 3 cm = γ · 3 cm, with a mean value of γ = 9.81 m/s2 and by neglecting the

uncertainty of the DOT.

Altimeter missions

Table 3.3 shows a selection of past and current satellite altimetry missions. The primary mission goals reach

from detecting the marine gravity field (Geosat), over determining the sea surface topography (TOPEX/Poseidon),

until studying polar sea ice (Cryosat-2). Some of them distinguish during their lifetime several orbit phases:

classical (not explicitly mentioned), geodetic mission (gm), extended mission (em), e and f (specific for

ERS-1). They differ mainly in their mean orbit height. A lower height increases the measurement accuracy,

as the footprint, i. e. the reflecting surface of the conical beam, is smaller. Consequently, the arrival time

of the back-scattered radar signal, and thus the derived SSH , can be determined with higher accuracy. The

mean orbit height h′ of the altimeter satellite relates to a reference ellipsoid and hence is regulated by the
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magnitude a of the semi major axis. In Tab. 3.3 the missions and relating orbit phases are depicted, whose

data are most relevant for gravity field modeling according to their time span, mean height h′, and further

orbit parameters. For instance, the repeat cycle defines the temporal resolution, the according number of

revolutions increases the precision by averaging, the inclination defines the maximum latitude of the ground

tracks and thus the spatial coverage. A comprehensive overview can be found at the Open Altimeter Database

(OpenADB), ”openadb.dgfi.tum.de“. The parameters of the reference ellipsoids are presented in Sec. 3.2.

Table 3.3: Selection of altimeter missions and specific parameters, chronologically arranged w.r.t. the begin of their (first) orbit

phase. The mean height h′ is only given for finished missions.

Mission Agency Orbit

phase

Time period Semi major

axis a
Reference

ellipsoid

Mean

height h′
Mean cross-

track

distance

Geosat US Navy gm 1985-03-12 -

1990-01-31

7166.400 km GRS80 780 km 160 km

ERS-1 ESA6 e 1994-04-11 -

1994-09-29

7147.191 km WGS84 770 km 80 km

f 1994-09-29 -

1994-03-21

7147.191 km 770 km

TOPEX/

Poseidon

NASA7, CNES8 1992-09-25 -

2002-08-15

7714.428 km TOPEX 1336 km 315 km

em 2002-09-16 -

2005-10-08

7714.428 km 1336 km

Jason-1 NASA, CNES 2002-01-15 -

2009-01-26

7714.428 km TOPEX 1336 km 315 km

em 2009-02-10 -

2012-09-15

7714.428 km 1336 km

gm 2012-05-07 -

(ongoing)

7702.437 km (ongoing)

Envisat ESA 2002-05-14 -

2010-10-22

7142.000 km WGS84 784 km 80 km

em 2010-10-26 -

2012-04-08

7142.000 km 784 km

Jason-2 NASA, CNES,

NOAA9,

EUMETSAT10

2008-07-12 -

(ongoing)

7714.428 km TOPEX (ongoing) 315 km

Cryosat-2 ESA 2011-02-01 -

(ongoing)

7095.349 km WGS84 (ongoing) 8 km

Cross-calibration

The different altimeter missions, listed in Tab. 3.3 deliver heterogeneous SSH data sets as they refer, for

instance, to different time periods or show geographically correlated error patterns. Further, systematic errors,

as listed above, remain due to uncertainties in sensor calibration, drift terms or atmospheric reductions. As a

consequence, a radial offset directly affects the SSH (Bosch et al., 2014). The inconsistencies propagate onto

the disturbing potential T in Eq. (3.14), when subtracting DOT from SSH , according to Eq. (3.13), which

serves as input for gravity field modeling.

For consistency between the data from different altimeter systems, Bosch et al. (2014) set up a multi-mission

cross-calibration. The data sets have to be carefully harmonized in advance, e. g. by applying the same

geophysical (tidal, atmospheric, ...) reductions. In the analysis, single- and dual-satellite crossover differences

are globally estimated between contemporaneous altimeter systems. The differences mainly capture range
6European Space Agency
7National Aeronautics and Space Administration
8Centre national d’études spatiales
9National Oceanic and Atmospheric Administration

10European Organisation for the Exploitation of Meteorological Satellites
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biases. As a result, radial errors then are modeled for every single pass of each mission and applied to the

data. The latest version of cross-calibrated data is ”MMXO14“ (Multi-Mission Crossover Analysis, version

14).

Instantaneous DOT

In order to compute an instantaneous value DOTi at observation site P from the difference between the

measured SSHi and the according geoid undulation Ni , i. e.

DOTi = SSHi − Ni , (3.15)

cf. Eq. (3.13), spectral and spatial consistency is required for the quantities. As mentioned above, the

SSHi values feature high frequent variations and are observed along altimeter ground tracks, whereas Ni is

typically globally derived from a band-limited SH gravity field model and, thus, much smoother. Bosch et al.

(2013) present a profile approach computing instantaneous DOTi values for each observation site P along one

ground track by consistently filtering both quantities SSHi and Ni . They aim to keep as much high resolution

information as possible in the SSHi data. Hereby, cross-calibrated data are used.

3.1.4 GOCE satellite gradiometry

Gradiometry describes the method of measuring gravity gradi-

ents Vab , introduced in Eq. (2.72), with a torsion balance instru-

ment dating back to Eötvös. The basic idea is, that two proof

masses are fixed along an axis with a constant distance. If gravity

changes, i. e. GGs act on the proof masses along the connecting

line, a torque is produced and would lead to a rotation of the axis.

A fiber counterbalances this torque and thus, the force to constrain

the motion gives the measure of the GG for the restoring torque

(Koop, 1993, p. 4).

In Satellite Gravity Gradiometry (SGG), this principle is extended

to six proof masses, arranged in a three-dimensional setup, i. e.

with three orthogonal axes, each comprising two proof masses, see

Fig. 3.3. If the intersection point of all three axes is located in the

center of mass of a spacecraft, surrounding the Earth on a circular

orbit, gravitational and centrifugal acceleration would compensate

in this point. Proof masses shifted from this point on an equipo-

tential surface, are located on different plumb lines. In contrast,

proof masses shifted along one plumb line are situated on different

equipotential surfaces (Rummel, 1986). Consequently, the masses

experience a gravitational force which can be detected relatively

to the intersection point or relatively between two proof masses,

symmetrically arranged on one axis (Koop, 1993, p. 9).

Figure 3.3: Principle of satellite gravity gra-

diometry in a three-dimensional setup. Proof

masses on an equipotential surface are re-

lated to two different plumb lines, while proof

masses on one plumb line are related to differ-

ent equipotential surfaces.

Installing the proof masses in fix positions enables to measure the force needed to keep the masses in

their positions, thus the gravitational acceleration relatively to the intersection point of the axes. Such an

instrument is called accelerometer. This direct measurement of the second derivatives of the gravitational

potential is beneficial, as discussed in the frame of the Meissl scheme in Fig. 2.7.

The difference in gravitational acceleration between two fixed masses allows, on the one hand, to separate the

target quantity gravitational gradients from linear and angular acceleration. This is the essential aspect for

SGG in a rotating system. The instrument for measuring differential gravitational acceleration, differential

accelerometry respectively, is called gradiometer (e. g. Forward, 1974; Balmino et al., 1985; Rummel, 1986).

On the other hand, differential accelerometry partly eliminates external non-gravitational forces, as e. g. solar

pressure or atmospheric drag, as they act in the same manner on each accelerometer, assuming the instruments

to be exactly identically built and installed.
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GOCE satellite mission

Within the GOCE mission, the principle of SGG was established (Rummel, 2011). The satellite, launched in

March 2009 by European Space Agency (ESA), provided GG data from Nov 1, 2009 until Nov 11, 2013. The

motivation was to provide gravity observations in order to compute a global geoid model with unprecedented

accuracy for several applications, cf. Koop (1993, pp. 15-17), Cesare (2008, p. 10):

• Globally available geoid undulations N with adequate accuracy (at least 1 cm over a distance of 100 km

in terms of a series expansion in SHs) for the computation of orthometric heights Horth from ellipsoidal,

GNSS-derived heights h.

• Gravity anomalies at the Earth’s surface with an accuracy of at least 1 mGal over 100 km.

• Satellite orbit prediction and determination with cm-accuracy.

• Contribution to physical studies of the solid Earth for a better understanding of, e. g., density distribution,

mantle convection, lithosphere extent, core-mantle boundary in the Earth’s interior, from a combination

with altimetry, topography, bathymetry or seismic tomography data.

• Sea surface topography determination as deviation of the mean SSH (measured by altimetry) from the

equipotential geoid due to local (long-term) variations of temperature, salinity, atmospheric pressure,

currents, tides, etc.

In order to realize these objectives, two complementary measurement techniques were performed on board

of the satellite: [1] SGG and [2] Precise Orbit Determination (POD). While POD enables to reconstruct

low frequencies by satellite-to-satellite tracking with Global Positioning System (GPS) measurements and

by Satellite Laser Ranging (SLR), SGG provides resolutions in the medium spectral domain from gravity

gradiometry. Up to degree l ≈ 15, POD provides better performances, while SGG predominates the spectral

domain above, approximately up to degree 300 (Cesare, 2008, p. 10). The contribution of low-frequency

information is less important in the regional gravity modeling approach of this work. The long wavelengths

are caused by global phenomena of the Earth’s body and typically are represented by global SH models,

cf. Fig. 1.1. Consequently, this study restricts in the following to the SGG measurements. Before the

latter will be explained, GOCE specific coordinate systems and reference frames are introduced. Then, the

relevant instruments and observables of the sensor system are presented. Table 3.4 summarizes them and their

purposes. The measured and derived quantities are collected with letters (a) - (j) in order to give an overview

of their relations. In the last part, the measurement precision is discussed.

GOCE specific coordinate systems and gradiometer reference frame

In order to describe the three-dimensional measurement principle of GOCE, which was installed in the

spacecraft surrounding the rotating Earth, and finally to use the data for modeling the gravity field in selected

geographic regions, several coordinate systems and transformations are needed. Figure 3.4 depicts the most

relevant systems for the modeling approach presented in this work. They are explained in the sequel by

describing (1) the orbit of the spacecraft in a LOCS, (2) the measurements in a Gradiometer Reference Frame

(GRF), and (3) the products in a LNCS.

Local orbital coordinate system The instantaneous movement of the GOCE satellite along the orbit was

determined by the GOCE SST data (Bouman et al., 2009) and described in an Earth-unbound LOCS, as

introduced in Sec. 2.2.3. In Fig. 3.4, the LOCS is visualized w.r.t. the J2000 coordinate system. The origin

OLOCS is defined in the actual center of mass of the GOCE satellite; the direction of the Z-axis is nearly

oriented along the plumb lines of the Earth’s gravity field, i. e. the direction with largest signal amplitude.

However, due to orbit perturbations, such as atmospheric drag and radiation pressure, the ZLOCS-axis is not

exactly oriented along the radial direction r from the geocenter to the center of the satellite. Depending on

the inclination angle i′, the angular deflection counts maximally 0.26° (Cesare, 2008, p. 11). It is neglected

in the sequel of this work, cf. Eq. (2.79).
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Figure 3.4: Gradiometer Reference Frame and LOCS in the J2000 coordinate system, adapted from Gruber et al. (2014).

Gradiometer reference frame The accelerometer measurements are obtained in the GRF11. The three pairs

of each two accelerometers, i. e. three one-axis gradiometer, are installed on orthogonal axes spanning a

three-dimensional setup following the measurement principle of SGG as depicted in Fig. 3.3. The distance

between each two accelerometers, i. e. the length of each baseline, counts around 50 cm (Cesare, 2008, p. 13).

The baselines define the axes of the coordinate system of the measurement frame, i. e. the GRF. The origin

OGRF of this GOCE specific instrumental reference frame is located in the intersection point of the three

orthogonal axes, which coincide per definition with the physical beams of the measurement system. The axes

are approximately aligned to the LOCS with XLOCS ≈ XGRF, YLOCS ≈ −YGRF, and ZLOCS ≈ −ZGRF, cf. Fig. 3.4.

The coordinates yield

xGRF along the XGRF-axis (roll), directed along track (motion of the satellite),

yGRF along the YGRF-axis (pitch), directed cross track,

zGRF along the ZGRF-axis (yaw), directed towards the Earth.

Technical restrictions limit the exact accordance of the axes of GRF and LOCS, resulting in small angular

deviations, described by the roll, pitch and yaw angles of a few degrees. During the mission, the satellite and

the gradiometer were kept as good as possible aligned with the LORF by magnetic torquers (Bouman et al.,

2009). However, the ZGRF-axis neither coincides with the ZLOCS-axis, nor with the radial direction of the

plumb lines of the Earth’s gravity field. The small angular deflections are neglected in the sequel of this work.

Local north-oriented coordinate system The calibrated GOCE gravity gradients are provided in an Earth-

bound LNCS, in contrast to the Earth-unbound LOCS. The LNCS was introduced and displayed in Fig. 2.2

w.r.t. the Cartesian XYZ system. The origin OLNCS of the North-West-Up frame is located in the nominal

center of mass of the satellite; the YLNCS-axis is parallel to the normal vector of the geocentric meridian plane

of the satellite; the XLNCS-axis is parallel to the normal vector of the plane defined by YLNCS and ZLNCS and

forms a right-handed system. As mentioned above, the Earth-bound LNCS deviates from the Earth-unbound

LOCS by small angles.

11The Gradiometer Reference Frame (GRF) is the realization of the Gradiometer Reference System. In GOCE related literature the transformations are

typically described between ”reference frames“. As in this work, all considerations refer to systems, the GOCE specific GRF is interpreted as system as

well, but the typical notification ”GRF“ is kept.
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Transformations

In order to use GOCE satellite data for regional gravity field modeling, transformations between the compo-

nents, observed in the instrumental GRF, and according values in local Earth-bound systems are indispensable.

GRF – LNCS For the transformation of the GG tensor ∆VGRF, as introduced in Eq. (2.73), given in the

instrumental GRF, to the GG tensor ∆VLNCS, defined in the geographic LNCS, a three step matrix rotation is

implemented in the standard GOCE data processing software (Gruber et al., 2014). It contains (1) a rotation

by the matrix RJ2000
GRF

from the GRF to the inertial coordinate system J2000 according to Sec. 2.2, using inertial

attitude quaternions from GOCE, (2) a rotation by the matrix RXYZ
J2000

to an Earth-fixed geocentric Cartesian

XYZ system using the quaternions from GPS orbit determination, and (3) a rotation by the matrix RLNCS
XYZ

to the

LNCS using the relations from Eq. (2.23). The rotation matrix RLNCS
GRF

with components (ri j ), i, j ∈ {1, 2, 3},
is obtained by multiplying the three matrices, i. e.

RLNCS
GRF =

*.,

r11 r12 r13

r21 r22 r23

r31 r32 r33


+/- = RJ2000

GRF · RXYZ
J2000 · RLOCS

XYZ . (3.16)

Consequently, with Eq. (3.16), the transformation of the GG tensor from GRF to LNCS yields

∆VLNCS
= (RLNCS

GRF )T ∆VGRF RLNCS
GRF . (3.17)

GRF – LOCS The observations from star trackers allow to determine the difference of the orientation of

GRF and LOCS. A rotation matrix RLOCS
GRF

is set up in order to transform the GG tensor in the GRF into the

GG tensor in the LOCS. The matrix RLOCS
GRF

contains small rotation angles describing the orientation of the

GRF in the LOCS. According to Fuchs and Bouman (2011), the point wise rotation of the tensor ∆VGRF from

GRF to the tensor ∆VLOCS in the LOCS reads

∆VLOCS
= (RLOCS

GRF )T ∆VGRF
ab RLOCS

GRF . (3.18)

GOCE sensor system and measurements

In order to obtain valuable information of the Earth’s gravity field from SGG, the GOCE sensor system is

composed of several instruments. Hereby, a three axes gravity gradiometer is the core of the system. It

consists of six accelerometers, in Fig. 3.4 denoted with Ai , i ∈ {1, 2, ..., 6}. The accelerometer cages are

rigidly connected with the satellite, and the relative accelerations of the proof masses to the cages are detected.

Together with star sensor measurements, a variety of quantities is obtained. As described by Cesare (2008,

pp. 32-36), these quantities contain

(a) the diagonal and off-diagonal GGs, composing the tensor ∆VGRF according to Eq. (2.73),

(b) the positions of the centers of each accelerometer (i. e. of the proof masses) relatively to the center of

mass of the satellite,

(c) the angular rates (i. e. velocities) ωab and

(d) the angular accelerations ω̇ab , both describing centrifugal, linear and Coriolis accelerations of the proof

masses,

(e) internal accelerations of the accelerometer cage relatively to the satellite due to material and structure

characteristics (e. g. thermo-elastic deformations),

(f) linear accelerations δ of the center of mass of the satellite due to external non-gravitational forces (e. g.

atmospheric drag, solar radiation pressure),

(g) linear accelerations of the proof masses due to internal self-gravity effects inside the GOCE satellite,

(h) linear accelerations of the proof masses due to influences from the external magnetic field.
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On the one hand, by building the mean value of the two oppositely measured accelerations of one axis

(common-mode accelerations), information about the linear non-gravitational acceleration can be derived,

i. e. about the components of δ = [δX, δY , δZ ]T . Vice versa, the measurement of δ provides error estimates

of the GGs. On the other hand, by building the differential-mode accelerations according to Cesare (2008,

p. 35), the non-gravitational effects are partly eliminated, and the GGs (Vab) can be computed, coupled with

the centrifugal and angular accelerations of the center of mass of the satellite. The angular rates ωab are

derived from star sensor measurements and hence, disturbing self-gravity and magnetic field effects can be

estimated. Following the processing steps of Cesare (2008), the calibrated GGs (a) are separated from the

angular rates ωab (c) and accelerations ω̇ab (d) and the tensor ∆V can be set up. An improvement of the

processing steps is presented by Stummer et al. (2012).

Besides the technical restrictions which would constrain the coincidence of the axes of GRF and LOCS as

mentioned above, the actual orientation and shift of the gradiometer instrument differ in most cases from the

movement of the satellite due to the external forces. In order to partly compensate the linear accelerations

δ, a so-called ”drag-free“ system is installed. The angular differences between the orientation of GRF and

LOCS are controlled by magneto-torquers. Due to the dependency on the magnetic field, the z-axis is less

controlled close to the magnetic poles and the x-axis is less controlled close to the magnetic equator, as the

axes are aligned along the magnetic field lines (Fuchs and Bouman, 2011). Over the equator, maximum

angular deflection of 3.5° of the satellite w.r.t. the ZLOCS-axis is reached due to forces caused by the Earth’s

rotation. The effect is compensated by steering the satellite w.r.t. the LOCS (Gruber et al., 2014, p. 22).

Additional erroneous effects due to technical restrictions, as e. g. caused by (time-variable) misplacement

of the proof masses, misalignment of the axes, or shift of the origins, require an on-board calibration of the

gradiometer (Cesare, 2008, pp. 37-47). Different intermediate in-flight calibrations have been performed

during the satellite mission and are applied in terms of a calibration matrix to the common- and differential-

mode accelerations. Hence, further instruments are necessary in the GOCE satellite. Related to Gruber et al.

(2014), the most relevant components of the sensor system and their purposes are summarized in Tab. 3.4.

Table 3.4: GOCE sensor system.

sensor purpose quantity

gravity gradiometer [1] SGG

measuring GG tensor components (a) (Vab)

measuring angular accelerations (d) ω̇ab

determining common-mode accelerations (i)

determining linear non-gravitational accelerations (f) δ

star sensor measuring angular rates (c) ωab

measuring inertial angular orientation of the spacecraft (j)

magneto-torquers attaining angular control of the spacecraft from (d) and (j)

ion thrusters attaining drag control from (i)

cold gas thrusters calibrating the gradiometer on board during flight

GPS receiver [2] POD

measuring orbit trajectory

reconstructing long wavelengths of the gravity field

Laser retro reflector validating orbit by SLR

Measurement precision and bandwidth

The separation of GGs from angular rates and accelerations is the key benefit for achieving a high precision

GG tensor. Rummel (1986) gives an estimate for the SGG precision independent of a specific mission.

Following those requirements the GOCE gradiometer has been designed. Together with the accelerometer

precision, it delivers the most accurate measurements in the spectral range from 5 mHz to 100 mHz, specified

as Measurement BandWidth (MBW) (Cesare, 2008, p. 10). In the spectral domain below and above, the
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errors of the gradients increase reciprocal to the frequency (Rummel, 2011).12

Within the MBW, the technically restricted precision of an accelerometer counts 10 × 10−12 m/s2/
√

Hz (Gruber

et al., 2014, p. 15). Each accelerometer consists of two accurate and one less accurate axes. In the three-

dimensional setup they are arranged such that highest precision is achieved for the diagonal components of the

GG tensor Vab . Detailed information can be found in Cesare (2008). The four gradients Vxx , Vyy , Vzz , Vxz in

the GRF have high accuracy whereas the two gradients Vxy , Vyz are less accurate due to the arrangement of

the accelerometers (Rummel, 2011).

Fuchs and Bouman (2011) further study the effective MBW, where the signal-to-noise ratio of the GGs

defines the boundaries. Both, the upper and lower boundaries slightly vary for the four accurate gradients

and for geographic regions. Especially the Vyy component shows anomalous signal close to the magnetic

poles, possibly due to cross-track thermosphere winds which cannot be compensated by the drag-free system

(Bouman et al., 2014). On average, the lower boundary of the effective MBW, i. e. the maximum of the

integrated signal-to-noise ratio, is with 4 mHz slightly beneath the boundary of the specified MBW. For a

signal-to-noise ratio of one, the upper boundary yields around 30 mHz and thus is clearly beneath the upper

boundary of the specified MBW.

Products

As it is typical for satellite-derived data, the GOCE products are categorized in levels according to their degree

of pre-processing, cf. Tab. 3.5. Level 0 data are the raw observations without any pre-processing; level

1a data comprise time series of payload data with calibration data attached including satellite ancillary data

(Cesare, 2008, p. 31). After transformation in an appropriate reference system, calibration and conversion

into physical units, level 1b products are generated. In the case of GOCE, the level 2 products are the resulting

GGs (from [1] SGG, cf. Tab. 3.4) and the precise orbits (from [2] POD). A large variety is presented in Gruber

et al. (2014). The products, which are relevant for this work, are summarized and briefly described following

Tab. 3.5.

Table 3.5: GOCE products.

level measurement

technique

name input description

0 SGG, SST time-ordered raw data down-linked from the satellite

1a SGG, SST time series of payload data,

calibration data, satellite ancillary data

1b SGG EGG_NOM_1b internally calibrated GOCE GGs

1b SGG EGG_IAQ_1b GRF to J2000 inertial attitude quaternions

2 SST SST_PSO_2 reduced dynamic precise science orbit

2 SGG EGG_NOM_2 EGG_NOM_1b, externally calibrated GGs in GRF, daily,
EGG_IAQ_1b, corrected for temporal gravity field variations,
SST_PSO_2, validated against external gravity data,

outliers flagged

2 SGG EGG_TRF_2 EGG_NOM_2, externally calibrated GGs in LNCS, monthly,
EGG_IAQ_1b, obtained by direct point-wise rotation,
SST_PSO_2, less accurate gradients replaced by model information,
a priori SH model high-pass filtered and filled up with model information,

correction, validation and flagging according to
EGG_NOM_2

From level 1b to level 2 The product EGG_NOM_1b13 contains internally calibrated GOCE GGs. In order
to derive level 2 products, external calibration, temporal corrections, data screening and validation have to be

12The single error contributors have been listed and numbered by Cesare (2008, pp. 76,77).
13EGG-C European GOCE Gravity Consortium, NOMinal data, level 1b
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applied (Bouman et al., 2009). Therefore, inertial attitude quaternions (IAQ) from the product EGG_IAQ_1b
are needed, as well as precise orbit data (PSO) from SST_PSO_2. The resulting product EGG_NOM_2
contains a time series of GGs composing the tensor ∆VGRF in GRF. The temporal resolution yields 1 s and
corresponds to 8 km along-track spatial resolution (Gruber et al., 2014).

Level 2 As the instrumental GRF continuously rotates around its three axes w.r.t. an Earth-fixed system, it
seems reasonable to transform the observables from the GRF into such a geographical system. The transfor-
mation of the gravity tensor ∆VGRF in the GRF, to a tensor ∆VLNCS in the LNCS, can be performed by direct
point-wise rotation according to Eq. (3.17) using the matrix RLOCS

GRF
, cf. Eq. (3.16). The components (ri j ) are

derived from the star tracker measurements and the common-mode accelerations, and vary maximally by 2.2°,
2.0°, 7.6° for roll, pitch and yaw (Fuchs and Bouman, 2011). The components of the tensor ∆VLNCS, thus,
are linear combinations of the components of ∆VGRF; the small shift of the origin can be neglected. However,
the tensor transformation would significantly reduce the quality of the GGs. As mentioned in Sec. 3.1.4, the
two components Vxy and Vyz are less accurately determined. A rotation of the GG tensor from the GRF to a
geographical coordinate system would project the corresponding larger errors onto the four accurate compo-
nents. In analogy, the long wavelengths with increasing errors would leak into the MBW. Therefore, Fuchs and

Bouman (2011) suggested a substitution of the less accurate gradients and the low frequency part by model
gradients, e. g. from a GRACE-based SH model, expecting the GRACE data to contain more information
in this spectral domain than the GOCE measurements. The tensor with substituted components Vxy , Vyz ,
and long wavelengths, finally is rotated into the LOCS, provided in terms of the product EGG_TRF_214, see
Tab. 3.5.

Using level 2 GGs, Pail et al. (2011a) present three approaches of gravity field analysis and carve out the
impact of the GOCE mission in order to reach the mission goals listed at the beginning of this section. The
approaches distinguish in their processing philosophies: While in the direct (DIR) approach the SH coefficients
are estimated as parameters from a large normal equation system starting with an a priori gravity field model
and adding subsequently GOCE information, in the time-wise (TIM) approach a rigorous estimation only
based on GOCE data is applied, and in the space-wise (SPW) approach LSC is performed benefiting from
spatial correlations of the gravity field (Pail et al., 2011a). The resulting models may be denoted as level 3
products.

Resolution of gravity field recovery

In summary, from the aspects of SGG and instrumental manufacturing, GOCE enables a global gravity field
recovery down to a spatial resolution of around 70 km. Together with the orbit performances of the satellite
mission, GOCE SGG allows to detect the Earth’s gravity field with

• medium spectral and spatial resolution, related to the limits of the MBW, the sampling rate of 1 Hz, and
one orbit revolution of about 5400 s,

• nearly global coverage (inclination angle i′ = 96.5°, i. e. ground track coverage of ±83° latitude).

In terms of globally deriving geoid heights at a spatial resolution of 100 km from two month GOCE gravity
field models, the precision is given with 10 cm, and for gravity anomalies with 3 mGal (Pail et al., 2011a). The
first GOCE-only model, containing the full observation period is published by Brockmann et al. (2014). It is
based on the TIM-approach and provided up to SH degree l = 280, i. e. resolving spatial structures down to
around 70 km. At a spatial resolution of 100 km, the precision of geoid heights and gravity anomalies globally
averages 2.4 cm and 0.7 mGal. Thus, up to now, the previously mentioned mission goals are not yet reached
for geoid heights (1.0 cm), but even exceeded for gravity anomalies (1 mGal).

3.1.5 GRACE satellite mission

The GRACE mission is a project of National Aeronautics and Space Administration (NASA) and Deutsches
Zentrum für Luft- und Raumfahrt (DLR), planned by University of Texas Center for Space Research (UTCSR),

14EGG-C, Terrestrial Reference Frame, level 2
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GeoForschungsZentrum (GFZ) and Jet Propulsion Laboratory (JPL), and launched in March 2002 (Tapley et

al., 2004). The main objective is to detect temporal variations of the Earth’s gravity field especially in its
atmosphere and hydrosphere at monthly intervals or smaller. With an increasing temporal resolution, a lower
spatial resolution has to be taken into account.
The GRACE space segment consists of two identical satellites, surrounding the Earth in the same nominal
orbit, at an altitude of around 450 km, with a distance of around 220 km. The initial altitude of 500 km

decreases due to a natural decline.15 The low orbit enables high gravitational sensitivity, the inclination of
about 89° nearly global coverage, and the non sun-synchronous orbit separating periodic phenomena, as e. g.
atmospheric variations during day and night.

The measurement principle of low-
low Satellite-to-Satellite Tracking
(SST) is displayed in Fig. 3.5. Main
observable is the distance between
both satellites. It changes, because
their positions along the orbits are
influenced by the Earth’s gravity field.
If satellite 1 passes e. g. a region with
higher density, i. e. more mass and
thus larger gravitational acceleration
than in the surrounding area, it is
stronger attracted than satellite 2 (and
vice versa). The exact separation
distance between the satellites and
its rate of change are detected by a
microwave link in the K-band with
a wavelength of about 1.5 cm, at a
precision of about 10 µm and 1 µm/s,
respectively (Reigber et al., 2005).

Figure 3.5: GRACE measurement principle taken from Vermeer M. (2016),
p. 218. The larger gravitational acceleration of a satellite is displayed by a red
dashed vector, in contrast to the scenario without additional masses indicated
by a black acceleration vector. The mass distribution might be static in the
Earth’s interior or varying with time in the ocean and atmosphere. Solid red
arrows indicate the vertical components of time-dependent mass shifts, which
are detectable by GRACE.

Non-gravitational forces acting on the spacecraft, e. g. due to atmospheric drag, are detected by accelerometers
on board of the satellites, and subtracted at the data pre-processing stage. The actual positions of the satellites
are measured by GPS. This high-low SST allows to perform a POD. From the analysis of the kinematic orbits,
long-wavelength structures of the gravity field can be determined (Mayer-Gürr, 2006, p. 12).

Processing strategies

Different methods of gravity field recovery exist; among them, the

(a) dynamic method (Reigber et al., 2003a, 2005), applied by the three official processing centers GFZ
(Dahle et al., 2012), Center for Space Research (CSR) (Bettadpur, 2012), JPL (Watkins and Yuan,
2012), and by many others, as e. g. Luthcke et al. (2006); Bruinsma (2010),

(b) integral equation approach (Mayer-Gürr, 2006), applied at the IGG Bonn (Institut für Geodäsie und
Geoinformation der Universität Bonn), e. g. by Mayer-Gürr et al. (2007); Kurtenbach (2009),

(c) acceleration approach (Ditmar and van Eck van der Sluijs, 2004), applied e. g. by Chen et al. (2008);
Liu et al. (2010),

(d) energy balance approach (Jekeli, 1999), applied e. g. by Han et al. (2006); Shang et al. (2015),

(e) celestial mechanics approach (Beutler, 2010), applied e. g. by Meyer et al. (2012).

(a) Dynamic method In the dynamic method, the orbits of the two GRACE satellites 1 and 2 are numerically
integrated (Reigber et al., 2005). The linearized observation equations of both, the low-low SST between the
GRACE spacecraft, as well as the high-low SST to GPS satellites, are set up and may be solved, e. g. by least
15The actual altitude can be found on www.csr.utexas.edu/grace, 23/08/2016.

www.csr.utexas.edu/grace
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squares adjustment. Besides estimating the gravity field unknowns, i. e. the fully normalized SH coefficients
Sl,m , Cl,m complete to degree and order 150, orbit and instrument specific parameters are estimated as well.
The approach is applied by the three official GRACE processing centers GFZ in Potsdam, Germany, CSR in
Texas, USA, and JPL in California, USA. Release 05 is the latest version.

(b) Integral equation approach The integral equation approach is based on Newton’s equation of motion,
which is formulated as a boundary value problem for short arcs of the GRACE orbits and, thus, also denoted
short-arc method. The lengths of the arcs are chosen with approximately 30 min in order to avoid the
accumulation of modeling errors (Mayer-Gürr et al., 2010). Mayer-Gürr (2006) presents the fundamentals
of the integral equation approach using range observations between the GRACE satellites, depending on their
positions. The functional model can be set up for range rates or range accelerations, as well.

(c) Acceleration approach The acceleration approach as presented by Ditmar and van Eck van der Sluijs

(2004) uses the above mentioned range accelerations of the GRACE satellites. They are obtained from the
precise orbit data. The functional model is set up based on Newton’s second law, according to approach
(b). Weighted average accelerations are derived by numerical differentiation. Hereby a frequency-dependent
weighting allows to take into account the high-frequent noise in the orbit-derived accelerations stemming
from the double differentiation. From the in situ accelerations, finally gravity field parameters are derived in
a straightforward way (Liu et al., 2010).

(d) Energy balance approach The energy balance or energy integration approach follows the principle of
energy conservation of the kinematic and the potential energy between the GRACE satellites. Hereby the
energy equation expresses the relation between geopotential and satellite data in an inertial frame (Jekeli,
1999). In situ geopotential observables or differences are directly estimated at the satellite altitude, for each
satellite 1 and 2, or between both satellites, and then applied for gravity field modeling. The estimation
procedure benefits from the linear relationship between the observables and the gravity coefficients, analog
to approach (c). The observables have an explicit geophysical interpretation and can serve as intermediate
product between the satellite measurements and the derived gravity field models (Shang et al., 2015).

(e) Celestial mechanics approach The celestial mechanics approach is a comprehensive and flexible ap-
proach comprising different processing strategies; among them the solution types (a) and (b). A POD is
performed based on piecewise deterministic equations of motion of one or several satellites. The solution
types are chosen immediately prior to the combination of the satellite-, arc- and technique-specific normal
equation systems (Beutler, 2010). Meyer et al. (2012) set up an approach by numerically integrating the equa-
tions of motion of the GRACE satellites, comparing the resulting arcs with the kinematic positions obtained
from GPS, and to the K-band range data. The nonlinear least-squares estimation model delivers estimates of
orbit parameters and corrections. Among them are the coefficients of the gravity field.

Level 2 products

Depending on the degree of pre-processing, several GRACE products exist. Typically, calibrated and geolo-
cated level 1b products are the input data for the different processing strategies. From the obtained sets of
estimated SH coefficients, i. e. the level 2 products, the Earth’s gravitational potential V can be modeled, e. g.,
by a series expansion in terms of SHs according to Eq. (2.40). The resulting global models are available in
different spectral and spatial resolutions. Following the mission objectives, time series of monthly solutions
are the main products. Static gravity models are also generated from a long-term mean.
Within the ITG-Grace series, which is based on approach (b), version 03 is developed up to degree 180,
containing monthly solutions up to degree 40. Version 2010 contains even daily solutions up to degree 40,
corresponding to a spatial resolution of around 500 km. In contrast, the static version 2010s up to degree
180 allows to recover spatial structures with a resolution better than 200 km.16 The latest release is ITSG-
Grace2014 (static gravity field recovery up to degree 200, secular and annual variations up degree 100)
(Mayer-Gürr et al., 2014).

16Source: http://www.igg.uni-bonn.de/apmg/index.php?id=gravitationsfeldmodelle

http://www.igg.uni-bonn.de/apmg/index.php?id=gravitationsfeldmodelle
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The European Improved Gravity field of the Earth by New techniques (EIGEN) GRACE-only models 01S and
02S are based on approach (a) and published by GFZ.17 They are available up to degree 120 and 150, respec-
tively. The combination of GRACE with further satellite missions is, for instance, realized by EIGEN-6S4
(Foerste et al., 2015). It is the latest combined, satellite-only model, available up to degree 300, and including
GRACE information up to degree 120. Various other models exist. A comprehensive overview can be found
at http://icgem.gfz-potsdam.de/ICGEM/. Selected global models which are important for this work are
presented in Sec. 3.2.

The predominant disadvantage of all GRACE products is, that they contain meridional stripes and artifacts
due to the anisotropic observation geometry of the satellite mission (Dahle et al., 2015) and due to aliasing
errors, i. e. high-frequent gravity field variations, cannot be resolved in monthly products and result in the
well-known error stripe pattern. An appropriate smoothing of the solutions has to be applied, e. g. by a
spatial Gaussian filter, a stochastic Wiener-type filter, a filter designed by Swenson and Wahr (2006), or the
computation of temporal high resolution models, as e. g. daily solutions by Kalman filtering (Kurtenbach,
2009). Within this work, a similar smoothing of GRACE products is achieved by SBFs acting as low-pass
filters in the framework of a MRR, presented in Chapter 4.

3.1.6 CHAMP satellite mission

The GFZ satellite CHAllenging Minisatellite Payload (CHAMP) was launched in July 2000 and reentered the
atmosphere in September 2010. It was the first mission with the aim of active gravity field detection (Reigber

et al., 1996). The initial orbit height was around 450 km. Due to atmospheric drag it decreased to only around
350 km in the end. With an inclination of about 87°, almost global coverage was achieved.

The measurement principle of high-
low SST displayed in Fig. 3.6 is based
on two instruments on board of the
satellite – a GPS antenna and an ac-
celerometer. From GPS measure-
ments to at least four satellites (GPS-1,
-2, -3, -4), a POD is derived, i. e. the
position x(t) of the satellite in space
as a function of time t, is determined
with high precision. The second differ-
entiation w.r.t. t delivers the geometric
acceleration according to Eq. (3.8).
From the measurements of the ac-
celerometer, non-gravitational influ-
ences from solar pressure and atmo-
spheric drag are quantified and re-
duced.

Figure 3.6: CHAMP measurement principle taken from Vermeer M. (2016),
p. 218: The satellite contains an accelerometer (inside, not visible), a GPS
antenna, solar cells for electric power and a magnetometer beam for measuring
the Earth’s magnetic field.

The combination of both measurement principles was unique at this time and allowed to compute the differ-
ences between the true and the nominal orbit with a precision of approximately 1 cm each second.
The remaining gravitational accelerations (indicated by red vectors in Fig. 3.6) enable for instance detecting
Earth internal mass variations, and thus deriving global static geopotential models with unprecedented res-
olution (Vermeer M., 2016, p. 217). The EIGEN series established e. g., with EIGEN-1 up to degree 119
(Reigber et al., 2002), or EIGEN-2 up to degree 140 (Reigber et al., 2003b). Gerlach et al. (2003) study the
fundamentals of the energy balance approach (cf. GRACE processing strategy (d)) by means of real CHAMP
data for gravity field recovery. Schmidt et al. (2005a) use CHAMP disturbing potential data at satellite altitude
in order to study MRR applications in regional gravity field modeling. However, CHAMP data are not used
within this work.

17Source: http://op.gfz-potsdam.de/grace/results/

http://icgem.gfz-potsdam.de/ICGEM/
http://op.gfz-potsdam.de/grace/results/
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3.1.7 Swarm satellite mission

The satellite mission Swarm (Friis-Christensen et al., 2008) belongs to ESA’s
Earth Explorer Programme and was launched in November 2013. Main ob-
jective is the measurement of the Earth’s geomagnetic field and its temporal
evolution with high precision. Instruments are a vector field magnetometer,
an absolute scalar magnetometer, an electric field instrument, an accelerom-
eter, GPS receivers, startrackers and a laser retroreflector. The latter four
further allow to the recover the static and time-variable gravity field.
The Swarm mission consists of three identical satellites A, B, C. They are
”copies“ of the CHAMP satellite. The pair A+B surrounds the Earth side-
by-side, in near-polar, circular orbits with an inclination of 87.4°, an initial
altitude of 450 km, and an east-west separation of 1° to 1.5° longitude. Satel-
lite C is in a polar orbit of 530 km with an inclination of 86.8°. Due to
the orbital drift, satellite C is crossing the path of A+B at an angle of 90°

after three years, as displayed in Fig. 3.7. Hence, the constellation allows a
quasi-global coverage.

Figure 3.7: Swarm constellation;
source: http://www.swarm-

projektbuero.de.

For instance, Jäggi et al. (2016) use 1.5 years of Swarm GPS data for gravity field determination applying the
celestial mechanics approach (e), mentioned above under the GRACE processing strategies.

3.1.8 Satellite Laser Ranging

Precise and unambiguous range observations from stations on Earth to various passive geodetic satellites are
obtained by SLR. These accurate distance measurements enable to derive information about gravitational
forces acting on the satellite. Especially the long wavelengths parts of the Earth’s gravity field are detectable
(Klosko, 1998).
Restrictions on the spatial resolution result from the geographic distribution of the observing stations on Earth
and the high altitude of the satellites. Bloßfeld (2015) gives an overview of SLR satellites that are suited for
gravity field recovery. Their spherical shape simplifies the modeling of the non-gravitational forces and their
observation at optical wavelengths allows an accurate reduction of erroneous atmospheric influences, as e. g.
the refractive delay.
Since the launch of Starlette and LAGEOS-1 (Laser Geodynamics Satellite) and satellites in the mid 1970s
(at altitudes of 800 km and 5600 km), SLR data deliver valuable information and provide the foundation for a
significant advancement of gravity field models up to present. An example of a combined model is EIGEN-6s
(Shako et al., 2014), obtaining GRACE, GOCE and SLR data. The latter support the determination of Stokes
coefficients up to degree and order 30. Bloßfeld et al. (2015) present the SLR-only determination of low-degree
SH coefficients from a combination of various SLR satellites by VCE.
SLR data are indirectly included in this work in terms of their long-wavelength contribution to global models.
Typically, the SH coefficients of degree two are derived from SLR observations.

3.2 Models

In the context of regional gravity field modeling, it is reasonable to relate the approach and the output models
to a global reference.

• The earlier introduced normal potential can be well determined and easily modeled. Consequently, long
wavelengths parts are described by normal potential models, which serve as reference for all regional
measurements.

• Further, global satellite observations can be captured very well by global SH gravitational potential
models. The according low- and medium-frequency parts cannot be resolved by spatially limited
observations. Hence, referring to Fig. 1.1, the regional gravity modeling approach of this thesis
incorporates global SH gravitational potential models (briefly denoted as SH models in the following)
as so-called ”background models“. They also relate to a specific normal potential.

The underlying geometric reference ellipsoids, the global geophysical normal and gravitational potential
models used in this work, as well as an available regional model, are introduced now.

http://www.swarm-projektbuero.de.
http://www.swarm-projektbuero.de.
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3.2.1 Reference ellipsoids and normal potential models

As mentioned in Sec. 2.3.4, the normal potential U of a spheroid can be described by four parameters.
Various reference ellipsoids have been developed approximating either globally (e. g. GRS80, WGS84) or
regionally (e. g. Bessel in Europe, Hayford in USA, Krassowsky in Russia) the Earth’s body. For gravity field
modeling in terms of SBFs with global support, a global reference ellipsoid is reasonable. Table 3.6 lists the
most established reference ellipsoids and their parameters describing the related normal gravity field. The
referring normal potential models GRS80 and WGS84 can be developed as series expansions in terms of SHs
according to Eq. (2.44). Herein, the SH coefficients Cl,0 are computed from the four parameters as described
by Eqs. (2.47). Note, the TOPEX/Poseidon (TOPEX) ellipsoid is a pure geometric ellipsoid, specified by the
parameters a and f ′. It is derived from altimetry measurements of the TOPEX/Poseidon mission and mainly
serves as reference for the different altimetry missions.

Table 3.6: Reference ellipsoids and according parameters.

Reference ellipsoid GM semi major axis a inverse flattening 1/f’ angular velocity ω

GRS80 3 986 005 × 108 km3/s2 6 378 137.0 m 298.257 222 101 7.292 115 × 10−5 rad/s

WGS84 3 986 004.418 × 108 km3/s2 6 378 137.0 m 298.257 223 563 7.292 115 × 10−5 rad/s

TOPEX 6 378 136.3 m 298.257

The Geodetic Reference System 1980 (GRS80) (Moritz, 2000) is the official reference system of the Interna-
tional Union of Geodesy and Geophysics (IUGG). It replaced the previous Geodetic Reference System 1967
by more accurate values in 1979, and served as foundation for the more recent World Geodetic System 1984
(WGS84) (Hofmann-Wellenhof and Moritz, 2005, pp. 84). The latter is a conventional terrestrial reference
system and delivers the basis, e. g., for GPS. The referring ellipsoids of revolution have an about 70 cm larger
semi major axis than the TOPEX ellipsoid.
As different geometric or gravitational data sets relate to different reference ellipsoids or normal potential
models, transformations are indispensable. Height transformations relate to Eq. (2.22), while the rescaling of
the series expansion of a potential is performed by an according rescaling of the SH coefficients, cf. Eq. (2.42).
The formulas are applied in the pre-processing of the data in next sections.
In this work, GRS80 is chosen as reference for all regional gravity fields to be modeled. Consequently, all
measurements have to be transformed in this system and all numerical implementations are restricted to the
according values.

3.2.2 Global SH gravity field models

The global gravity field models addressed in this work relate on series expansions in terms of SHs. In literature,
they are usually described by expanding the gravitational potential V in the series according to Eq. (2.40)
starting from l = 0. The zero-degree term is set to one; setting the first-degree terms equal to zero, i. e.
assuming the origin of the global SH models coinciding with the geocenter, can be justified by deriving the
low-degree terms (l = 2, 3, 4, ... up to around l = 20) from analysis of satellite orbit perturbations (Vermeer

M., 2016, p. 46). A comprehensive set of models can be accessed from the International Centre for Global
Earth Models (ICGEM), GFZ Potsdam, through http://icgem.gfz-potsdam.de/ICGEM/.

EGM96 and EGM2008

With the Earth Gravitational Model 1996 (EGM96) researchers from The Ohio State University developed
one of the first well-approved global gravity field models. This combination model was published by Lemoine

et al. (1998) and is mainly based on gravimetric data collected by the American NIMA (National Imagery and
Mapping Agency) (Vermeer M., 2016, p. 46). The intensive investigations in global data collection enabled
to expand a series in terms of SHs, cf. Eq. (2.34), up to degree L = 360. It served for many decades as ref-
erence in various applications, such as referencing height systems on land, or determining the DOT over the sea.

http://icgem.gfz-potsdam.de/ICGEM/
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At the beginning of this millennium, the CHAMP and especially the GRACE satellite missions revolutionized
global gravity field determination by the ability of global gravity data collection. An enormous progress was
achieved in precise long wavelength gravitational modeling. The National Geospatial-Intelligence Agency
(NGA) developed a new release of EGM: EGM2008. This global SH model combines

• low- and medium-resolution GRACE data in terms of

• the global ITG-GRACE03s (static solution of ITG-GRACE2010, developed up to degree and order 180,
Mayer-Gürr et al. (2010)), with

• high-resolution terrestrial, airborne and altimetry data in terms of a global 5 arc-minute grid of gravity
anomalies, filled up with topography information in case of data gaps, as described by Pavlis et al.

(2012).

The SH series of EGM2008 is expanded up to degree 2190; complete gravitational information is contained
up to degree and order 2159, corresponding to a spatial resolution down to less than 10 km – in case of data
coverage. Up to present, this global gravity field model is unique in its high spectral and spatial resolution.

EIGEN-6C3stat

Based on the 4th Release of the GOCE direct approach (Pail et al., 2011a), the EIGEN-6C3stat was published
by Foerste et al. (2014) in 2014 as a new release of EIGEN-6C (Foerste et al., 2012). It is a static high
resolution global combined gravity field model, developed in SH expansion up to degree and order 1949. The
data which are used for the SH series expansion stem from

• SLR (LAGEOS-1/2, 25 years),

• GRACE (GRGS RL02 from degree 2 to 100, including 8 years, and GFZ RL05 from degree 55 to 180,
including 9 years from GPS-SST and K-band range-rate observations),

• GOCE (contributing up to degree 235 from 19 months SGG data)

• ground data (gridded global gravity anomalies from the DTU12 ocean geoid and the EGM2008 geoid).

Consequently, beyond degree 235, EIGEN-6C3stat is a reconstruction of the EGM2008 model.

GOCO03s and GOCO05s

The GOCO series presents global SH gravity models mainly from a combination of GRACE and GOCE data.
The satellite-only GOCO03s model (Mayer-Gürr et al., 2012) incorporates

• 7.5 years of GRACE and

• 18 months of GOCE data. Further data stem from

• CHAMP (8 years) and

• SLR (5 years).

The series expansion is developed up to degree and order 250. GRACE information is contained in the long
wavelengths from the SH model ITG-Grace2010s. The content in the medium wavelengths stems from GOCE
gradiometry applying the processing strategy of Pail et al. (2011b). Due to regularization, full signal content
is only ensured up to approximately degree 200.

The latest release GOGO05s (Mayer-Gürr et al., 2015) is given with a spectral resolution up to degree and
order 280 and contains significant information at least up to degree 200, i. e. it delivers a spatial resolution of
around 100 km. The combined model consists of

• GOCE gradiometry data from the complete mission (48 months),

• the ITSG-Grace2014s model from 10.5 months GRACE observations (Mayer-Gürr et al., 2014),

• SLR measurements, as well as data from
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• CHAMP, Swarm A+B+C, and the Earth observation satellites TerraSAR-X18 and TanDEM-X19.

GRACE contributes to low- and medium-resolution spectral content approximately up to degree 150, whereas
the significant GOCE information predominates from degree 120 on.

3.2.3 Regional model: GCG2011

The German Combined QuasiGeoid 2011 (GCG2011) is the official German height reference of the ”Arbeits-
gemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV)“ describing
quasigeoid heights, according to Eq. (2.63) w.r.t. the reference ellipsoid GRS80.

It is provided in terms of a 1′ longitude
times 1.5′ latitude geographic grid by BKG

(2011). The corresponding spatial reso-
lution yields about 1.8 km × 1.7 km; the
position coordinates refer to European Ter-
restrial Reference System 1989 (ETRS89)
(Boucher and Altamimi, 1992). The quasi-
geoid heights in Fig. 3.8 are given in
the ”Deutsches Haupthöhennetz (DHHN)
1992“ (Weber, 1994). The DHHN is the pri-
mary leveling network of Germany. The res-
olution counts 1 mm, the accuracy reaches
1 cm to 2 cm and varies depending on (1)
geographical structures and (2) data avail-
ability. Over the Alps, the values are less
accurate with 3 cm to 4 cm, and over the
North and Baltic Sea even worse with 4 cm

to 10 cm. The GCG2011 is obtained by aver-
aging two independent solutions from BKG
and IfE (Institut für Erdmessung der Leib-
nitz Universität Hannover). Whereas BKG
uses an adjustment approach based on point
masses, IfE applies integration and colloca-
tion. Based on a new release DHHN2016,
a new release GCG2016 is planned, as well
(AdV , 2014). Figure 3.8: German combined quasigeoid 2011; source: BKG (2011).

3.3 Data

In order to study the combination of real data in this work, appropriate terrestrial, ship-, airborne and altimetry
data sets are introduced. The values of the spatial resolutions serve as rough estimate for setting up the
approach in Sec. 5 at an appropriate resolution level.

3.3.1 Terrestrial data set

Different terrestrial gravity data sets are provided by the surveying offices of the according federal states
Schleswig-Holstein, Mecklenburg-West Pomerania, and Lower Saxony, in Northern Germany. They are
obtained from measurement campaigns during the past decade, amongst others in the frame of the project
”DHHN-Erneuerung 2006-2011“ by the German AdV. The DHHN contains gravity information at 250 points,
most of them recently installed and their positions determined by GNSS. Hereby, around 80 % of the leveling
lines of the previous network DHHN92 were re-measured by high-precision relative gravimetry and absolute
gravity values were observed at 100 points (source: www.bkg.bund.de). The data sets, displayed in yellow
18Latin ”Terra“ means Earth; the satellite carries on board an interferometric SAR (Synthetic Aperture Radar) instrument, operating in the X-band
19TerraSAR-X add-on for Digital Elevation Measurement
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Figure 3.9: Distribution of the observations in the test area Northern Germany (green bordered): satellite altimetry (dark green),
shipborne (red), airborne (orange), and terrestrial data (yellow). Thin black lines mark rivers and canals.

in Fig. 3.9, further encompass gravity measurements from the German gravity archive and from Deutsches
Geodätisches ForschungsInstitut (DGFI), department 1+2 (nowadays DGFI-TUM and Institut für angewandte
Geodäsie (IfAG), Frankfurt), taken in the 1950s.
The BKG homogenized the terrestrial data for the computation of the GCG2011 and provided a consistent data
set, in the following denoted as ”BKGterr“. It contains in total 31 703 gravity values g referenced to IGSN71,
at observation sites with ellipsoidal coordinates λ, β in the ETRS89 w.r.t. GRS80, and normal heights Hnorm,
as defined in Eq. (2.81), w.r.t. DHHN92.
The spatial resolution of the observation sites yields <1 km in Mecklenburg-West Pomerania and Schleswig-

Holstein. In Lower Saxony data gaps of several kilometers occur and lead to a worse spatial resolution. An
average point distance of 5 km is reached for the three federal states (Lieb et al., 2016).

Pre-processing

In order to make the data set usable for the regional gravity modeling approach, the absolute gravity values
g given at observation sites P (ellipsoidal coordinates λ, β) with potential WP , are transformed into gravity
anomalies ∆g (cf. Fig. 2.13) at the referring locations described by spherical coordinates λ, ϕ. The following
steps are performed for each observation point P:

(1) computing normal gravity γQ (Q) with UQ = WP at height Hnorm, cf. Eq. (2.51),
(2) subtracting γQ from gP in order to obtain gravity anomalies ∆g, cf. Eq. (2.67),
(3) transforming ellipsoidal to spherical coordinates (λ, β, Hnorm) → (λ, ϕ, r), cf. Eq. (2.20).

Note: the normal height Hnorm of an observation sites P (geopotential value WP) refers to the quasigeoid.
The distance along the ellipsoidal normal n′ can be counted from the reference ellipsoid up to the according
telluroid point Q with UQ = WP , as visualized in Fig. 2.16. Consequently, after coordinate transformation,
the spherical coordinates relate to telluroid points Q(λ, ϕ, r) and the values ∆g refer to reference ellipsoid
GRS80.

3.3.2 Shipborne data set

The terrestrial data set provided by BKG originally also contained off-shore data in the Baltic Sea. They
stem from a prototype of gravimetric shipborne measurements after A. Graf and were collected in the 1950s
(Neunhöfer et al., 1997). The federal state Mecklenburg-West Pomerania reprocessed the data at sea level.
BKG integrated the data within the GCG2011 model and provided the values g at observation sites P(λ, β, 0.0).
As the measurement technique of those off-shore data, their pre-processing, their corresponding spectral and
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spatial resolution, and the time epoch entirely differ from those of the terrestrial observations, they are separated
from the latter according to their height Hnorm, which was set to zero by BKG. Consequently, the values are
given on the quasigeoid, cf. Fig. 2.16. The spatial resolution of the generated data set ”BKGship“ averages
4 km. The measurement accuracy is assumed to be low due to the early period of shipborne gravimetry (Lieb

et al., 2016). Detailed information is not available.

Pre-processing

The pre-processing of the shipborne data at locations P(λ, β, Hnorm) with potential WP comprises:

(1) computing normal gravity γQ (Q) (with UQ = WP) at a height of 0.0 m, i. e. at the
reference ellipsoid,

cf. Eq. (2.51),

(2) subtracting γQ from gP resulting in gravity anomalies ∆g, cf. Eq. (2.67),
(3) transforming ellipsoidal to spherical coordinates (λ, β, 0.0) → (λ, ϕ, r), cf. Eq. (2.20).

The gravity anomalies ∆g at positions (λ, ϕ, r) refer to the reference ellipsoid GRS80.

3.3.3 Airborne data sets

The airborne gravity data stem from two flight campaigns, operated by Danish National Space Center (DNSC):
”BALGRACE06“ (BG06) over the Baltic Sea in 2006 and ”NORTHGRACE07_08“ (NG0708) over the North

Sea in 2007/2008. The gravity data, provided in terms of gravity disturbances δg, refer to the ISGN71.
Reference system of the according ellipsoidal coordinates λ, β of the observation sites along the flight tracks
is ETRS89 (reference ellipsoid GRS80); reference system of the according normal heights Hnorm at flight
altitude (around 30 m) is DHHN92.
Both data sets BG06 (6834 observations) and NG0708 (6063 observations) are pre-processed by DNSC and
compared with terrestrial and shipborne gravity data by BKG. Due to flight turbulence during the first cam-
paign in 2006, some observations show larger differences. Removing those outliers results in a reduced data
set BG06red (6677 observations).
Within the framework of homogenizing the measurements for their contribution to GCG2011, BKG did further
embracing evaluations. As a result, both data sets were reduced by a constant offset of −2.0 mGal (BG06),
and −0.6 mGal (NG0708), respectively.
The east-west oriented flight tracks in Fig. 3.9 are related to BG06, the north-south oriented flight tracks to
NG0708. The along- and cross-track spatial resolution averages 10 km (Lieb et al., 2016).

Pre-processing

Due to the comprehensive pre-processing of the airborne data by BKG and DNSC, only transforming the
ellipsoidal to spherical coordinates (λ, β, Hnorm) → (λ, ϕ, r), cf. Eq. (2.20), is necessary. The gravity
disturbance values δg given at normal heights Hnorm refer to telluroid points Q(λ, ϕ, r) w.r.t. GRS80.

3.3.4 Altimetry data

The altimetry data originate from satellite missions of different agencies as listed in Tab. 3.3. DGFI-TUM
provides a broad variety of data products at OpenADB ”openadb.dgfi.tum.de“, derived from the official level 2
GDRs (Geophysical Data Record). The instantaneous DOT values DOTi , according to Eq. (3.15) are obtained
from cross-calibrated range measurements, referring to 1 Hz SSH data from MMXO14. The geoid undulations
N are obtained from the SH model GOCO03s. All data are referenced to the ellipsoid ”TOPEX/Poseidon“,
cf. Tab. 3.6.
The sampling rate defines the along-track resolution of each satellite mission. 1 Hz data ensure a balanced
signal to noise ratio. It corresponds to about 7 km along-track spatial resolution at the Earth’s surface. The
cross-track resolution depends on the orbit configuration of each mission. Table 3.3 lists the corresponding
mean values. Due to the meridian convergence with increasing latitude, the spatial along- and cross-track
resolution of the altimeter missions further depends on the geographic region.
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Pre-processing

For each point P(λ, β, SSHi ) of the different altimetry data sets, the following pre-processing procedure is
applied:

(1) subtracting instantaneous DOTi values from SSHi data (resulting in geoid
undulations Ni),

cf. Eq. (3.13),

(2) transforming h′ from the TOPEX to the GRS80 reference ellipsoid:
h′(GRS80) = h′(TOPEX) − dh′,

cf. Eq. (2.22),

(3) computing normal gravity γ on the ellipsoid at h′ = 0 (γa and k w.r.t. GRS80), cf. Eq. (2.51),
(4) transforming ellipsoidal to spherical coordinates (λ, β, h′) → (λ, ϕ, r), cf. Eq. (2.20),
(5) computing disturbing potential T with Ni from (1) and γ from (3), cf. Eq. (3.14).

Consequently, a consistent data set of values T is obtained for each point P(λ, ϕ, r) w.r.t GRS80.

3.3.5 GOCE SGG data

The GOCE SGG data refer to the final release of Level 2 products ”EGG_NOM_2“, cf. Tab. 3.5, from March
06, 2014. They can be accessed from ESA through the GOCE Virtual Online Archive (VOA) http://eo-
virtual-archive1.esa.int and are provided in a time series (one day temporal coverage) from Nov 1,
2009 until Nov 11, 2013 along the GOCE orbit. The spatial resolution averages 8 km along track, derived
from 1 Hz spectral resolution.

The nominal data given in GRF are chosen, as a general aim of this work is, to keep all data in their
most original, untouched, non-preprocessed mode. Within the product ”EGG_TRF_2“, the tensor rotation
would transfer model information to the originally observed tensor elements (Fuchs and Bouman, 2011).
Consequently, the tensor rotation has to be applied vice versa in this study: the GOCE observation equations
(see next chapter, Tab. 4.7) of the estimation model, which is set up in Sec. 5.2, comprise a rotation of the
GGs from the Earth-bound LNCS into the GRF in order to keep most valid GOCE information.

Pre-processing

Due to errors in the long wavelengths and increasing errors in the high frequencies, GOCE measured gravity
gradients are band-pass filtered from 7.5 mHz to 100 mHz, following Fuchs and Bouman (2011). In order
to reduce the anomalous signal in the Vyy component close to the magnetic poles, the according values are
band-pass filtered from 15 mHz to 120 mHz. The signal below the MBW is replaced by model GGs derived
from the global SH model GOCO03s. The model is low-pass filtered with the complement of the band-pass
filter.
Outliers in the four accurate GGs are eliminated using a 3.5-sigma threshold of the along track standard
deviation w.r.t. GOCO03s. The less accurate components remain with the approximately 200 times higher
noise level.
The total observation period is split into three parts due to different accuracies and resolutions of the data:

11/2009 - 02/2010 less accurate data due to the erroneous on-board Central Processing Unit (CPU)-A
side (a switch to CPU-B side caused impacts on the error characteristics; the
residuals of Vzz , for instance, become around 1.5 times smaller (Bouman et al.,
2014)),

03/2010 - 07/2012 nominal phase at a mean altitude of 255 km,
08/2012 - 11/2013 lower orbit phase (higher sensitivity of the gradiometer due to a step-wise orbit

lowering, down to around 225 km).

Consequently, each of the three data sets contains observation sites P(λ, ϕ, r) in the GRF with the following
information:

Vxx,Vyy,Vzz,Vxy,Vxz,Vyz GGs in the GRF,
λ, ϕ, r spherical coordinates,
r11, r12, r13, r21, r22, r23, r31, r32, r33 components of the rotation matrix RLNCS

GRF
.

http://eo-virtual-archive1.esa.int
http://eo-virtual-archive1.esa.int
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3.3.6 GRACE level 2 data

GRACE measurements are not directly integrated in the regional gravity field modeling approach presented in
this work. Observation equations would have to be set up for GRACE measurements processed by one of the
strategies (a) - (e), presented in Sec. 3.1.5. However, those processed data are not publicly available. Thus,
instead, gravitational potential differences according to Eq. (2.61) are computed from level 2 SH products.
The GRACE release 05 data are available from April 2002 up to present in terms of monthly solutions from
GFZ (Dahle et al., 2012). The SH coefficients Cl,m , Sl,m are provided up to degree and order 90 at http://
icgem.gfz-potsdam.de/ICGEM/shms/monthly/gfz-rl05/ and refer to the normal potential parameters
a = 6 378 136.460 m, GM = 3 986 004.415 × 108 km3/s2.

Pre-processing

From those coefficients, gravitational potential values V (xi ) and V (xii ) are computed at positions xi =

(λi, ϕi, r i )T and xii = (λii, ϕii, r ii )T of the two GRACE satellites (i),(ii) along their orbits with a sampling
rate of 5 s. Gravitational potential differences ∆V then are obtained between each two neighboring positions:

(1) computing gravitational potential values V (xi ) and V (xii ) from SH coefficients
with corresponding normal potential values a, GM ,

cf. Eq. (2.40),

(2) computing gravitational potential differences ∆V (xi, xii ), cf. Eq. (2.61).

The time span from Nov 2009 until Nov 2012 is pre-processed, related to the availability of GOCE data, in order
to generate an overlapping time period. The GRACE data set contains the values ∆V (λi, ϕi, r i, λii, ϕii, r ii ).

Overview of pre-processed data sets

The pre-processed and homogenized data sets, witch will be used in the sequel of this work, are summarized
in Tab. 3.7.

Table 3.7: Overview of pre-processed data sets.

number type name functional Y[ Ṽ ] coordinates height normal potential

[1] terr BKGterr ∆g λ, ϕ, r Hnorm GRS80

[2] ship BKGship ∆g λ, ϕ, r Hnorm GRS80

[3] air BG06 δg λ, ϕ, r Hnorm GRS80
[4] air NG0708 δg λ, ϕ, r Hnorm GRS80

[5] alti ERS-1e T λ, ϕ, r h′ GRS80
[6] alti ERS-1f T λ, ϕ, r h′ GRS80
[7] alti TOPEX T λ, ϕ, r h′ GRS80
[8] alti Jason-1 T λ, ϕ, r h′ GRS80
[9] alti Envisat T λ, ϕ, r h′ GRS80
[10] alti Jason-2 T λ, ϕ, r h′ GRS80
[11] alti Cryosat T λ, ϕ, r h′ GRS80

[12] goce GOCE0911-1002 (Vab ) λ, ϕ, r
[13] goce GOCE1003-1207 (Vab ) λ, ϕ, r
[14] goce GOCE1208-1309 (Vab ) λ, ϕ, r

[15] grace GRACE0911-1211 ∆V λi, ϕi, r i, λii, ϕii, r ii )

http://icgem.gfz-potsdam.de/ICGEM/shms/monthly/gfz-rl05/
http://icgem.gfz-potsdam.de/ICGEM/shms/monthly/gfz-rl05/
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4 Spherical basis functions and multi-resolution

representation

In general, a basis function is an element of a basis for a function space. As introduced in Sec. 2.3.2, the
surface SH functions, Eq. (2.36), span for example the L2(ΩR) space defined on a sphere ΩR and form a
complete orthonormal basis. The solid SHs, Eq. (2.35), span the space H0,1, ...,∞(Ωext

R
) and are well suited for

globally describing the Earth’s gravity field, since ∇2Hl,m = 0.
The overall aim of setting up a modeling approach is to represent input data as optimally as possible: From
the spectral point of view, SH functions can be easily adapted to any frequency domain. However, in the
spatial domain they require data sets with nearly worldwide coverage due to their global nature. The era of
satellite gravimetry hereby provides suitable observations, but their spatial resolution reaches nowadays 70 km

to 80 km at the Earth’s surface. Much higher spatial resolutions are achieved by air-, shipborne or terrestrial
gravimetry, but the observations are typically only available in regionally limited areas.
Here radial SBFs come into play: although they are also global functions, they have a highly localizing
character in space (e. g. Freeden et al., 1998; Schmidt et al., 2007), and are a compromise between spatially
and spectrally localizing functions, as depicted in Fig. 1.2. SBFs are suited to reproduce the signal content of
(high-resolution) regional data sets. This makes them very attractive for regional gravity field modeling up
to very high spectral degrees. They may capture information from spatially limited measurements and fit the
regional data sets with high accuracy, while SHs are perfect spectrally localizing functions and appropriate to
reproduce information from global satellite observations.
Since SBFs belong to the same group of basis functions as SHs, based on series expansion in the spectral
domain in terms of Legendre polynomials, they share many positive features, as e. g. satisfying the Laplace
differential equation (2.25) outside the Earth. In the Introduction, Tab. 1.1 highlights the main properties of
other possible functions which are appropriate for regional gravity modeling as well. The beneficial choice
of SBFs amongst them is carved out in this section for the specific tasks of this thesis, discussing the main
characteristics of SBFs and further comparing them with the well-known and -established SHs.
Based on those findings, the single data sets from Chapter 3 could be fitted with high accuracy, if their
measurement resolution is exactly known. However, this is not the aim of this work. In contrast, for the
ambition of combining heterogeneous data sets, i. e.

• enhanced regional gravity modeling

• from real, heterogeneous data sets

• of different spatial distributions, spatial and spectral resolutions, and accuracies,

• which are often just approximately known,

a discretization of the frequency spectrum seems reasonable: several degrees l are collected in one resolution
level j, i. e. the frequency domain is split into several spectral bands. The levels enable to set up an approach
reacting flexibly on all the challenges. It is called multi-resolution method and is introduced and adapted to
the needs of this work in the third part of this chapter.

The chapter is structured as follows: first, in Sec. 4.1, the SBFs are introduced referring to SH basis functions,
and how to use them for theoretically representing non-bandlimited functions. Second, in Sec. 4.2, the
transition to bandlimiting SBFs is discussed including truncation of series expansion and corresponding
errors. Further, various gravitational functionals are formulated in terms of SBFs. In the third part, Sec. 4.3,
the idea of a MRR (de)composition is introduced. Therefore, the filtering characteristics of SBFs are applied
for representing signals within different spectral resolutions. Requirement is an appropriate splitting of the
frequency spectrum into resolution levels, defining the framework for MRR.
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4.1 Series expansion in terms of SBFs

Theoretically, any harmonic function f = f (x), x ∈ Ωext
R

, can be expressed by a linear combination, i. e. a
series expansion in terms of an infinite number of suitably weighted basis functions b′q = b′q (x) = b′(x, xq ),
with the weighting coefficients cq .20

4.1.1 SBF: definition and properties

In the spatial domain, a SBF b′(x, xq ) is expressed by the infinite series expansion over degree l

b′q = b′(x, xq ) =
∞∑

l=0

2l + 1

4πR2

(

R
r

) l+1

Bl Pl (r
T rq ) . (4.1)

Hereby, the basis functions b′q shall span the space H0,1, ...,∞(Ωext
R

) with x = r · r ∈Ωext
R

, according to Eq. (2.8),
denoting the geocentric position vector of any point P(λ, φ, r) = P(x) = P, and with xq ∈ ΩR denoting the
geocentric position vector of the point P(λq, ϕq, rq ) = P(xq ) = Pq , rq = R, and representing the center of the
basis function on the sphereΩR (Schmidt et al., 2007). Analogously to SHs, the SBF b′q is based on Legendre
polynomials Pl , Eq. (2.30), of degree l, and the definitions and features from Sec. 2.3.2 apply. This ensures
the validity of the Laplace differential equation. In contrast to the associated SHs HR

l,m
(x), Eq. (2.36), or

Hl,m (x), Eq. (2.35), which have global support and further depend on order m (cf. Fig. A.1 in Appendix A),
the SBFs are global two-point kernel functions, centered in Pq ∈ ΩR , radially symmetric and have spatially
localizing character, cf. Fig. 1.2. If both locations P, Pq ∈ ΩR , the SBF b(x, xq ) does not longer depend on
the radial distance r and becomes rotationally symmetric, i. e. isotropic (Narcowich and Ward, 1996). The
computation of function values b′(x, xq ) at locations P(x) depends on the spherical distance angle between
P(x) and P(xq ), respectively vector product of the referring unit vectors of x = r · r and xq = rq · rq , cf.
Eq. (2.8), i. e.

t = cosψq = rT rq . (4.2)

t is the argument of the Legendre polynomials according to Eq. (2.31). Bl are the Legendre coefficients. They
specify the spectral behavior of the SBF in the frequency domain and define the shape of the SBF in the spatial
domain. The derivation of expression (4.1), its embedding in the overall group of basis functions, and its
relation to SHs will be discussed in the following.

Legendre coefficients

Any SBF, cf. Eq. (4.1), can be used as low-, band- or high-pass filter. According to Freeden (1999), pp. 70,
two cases are distinguished: functions with (a) non-bandlimiting or (b) bandlimiting properties. In case
(a), an infinite number of coefficients Bl is different from zero, whereas in case (b) only a finite number of
coefficients Bl is different from zero, e. g. by setting the coefficients Bl = 0 for l > l ′ (Schmidt et al., 2005a).
The corresponding Hilbert spaces (a) H0,1, ...,∞(Ωext

R
), (b) H0,1, ...,l′ (Ωext

R
), cf. Tab. 2.1, then are of infinite or

finite dimension. However, in addition, a truncation of the series expansion at a certain degree L is always
necessary in practical implementations. In the sequel, four cases are distinguished: Figure 4.1 schematically
depicts the Legendre coefficients Bl ; according to this classification, Tab. 4.1 assigns the application of the
corresponding series expansions in this thesis.

• As SBFs are naturally infinite, i. e. the number of coefficients Bl is infinite as well, they are denoted
non-bandlimiting in case (a), and bandlimiting in case (b), if only a sequence of coefficients is different
from zero. The term (non-)bandlimiting is associated with an active property of the SBFs.

• In contrast, (non-)bandlimiting, but additionally truncated functions are denoted bandlimited, cases (c)
and (d), denoting a passive feature.

The upper row of Fig. 4.1 visualizes the two artificial cases: infinite series expansions for (a) a non-bandlimiting
SBF and (b) a bandlimiting SBF at degree l ′. The Legendre coefficients in the lower row belong to applicable
20Note, in the sequel, all basis functions expressed by an infinite series, i. e. l → ∞, are marked with an apostrophe, e. g. b′q , while those, expanded by a

finite series, are marked without apostrophe, i. e. bq .
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SBFs, truncated at degree L, i. e. finite series expansions (dashed lines in Fig. 4.1 c, d). The referring SBF of
case (c) is truncated at degree L, while the one of (d) is truncated and bandlimiting at degree L = l ′.

Figure 4.1: Legendre coefficients Bl of SBFs: (a) non-bandlimiting, (b) bandlimiting at degree l ′, (c) non-bandlimiting and truncated
(i. e. bandlimited) at degree L, (d) bandlimiting and truncated at degree L = l ′.

Table 4.1: Band limitation and truncation of series expansions and their application in this thesis.

case band limitation truncation application, e. g. Eq.

(a) no no SBF definition b′q (4.1)
Abel-Poisson kernel k ′q (4.3)

(b) yes: l ′ no bandlimiting SBF bq (4.5)
spherical convolution

(c) no yes: L practical issues

(d) yes: l ′ yes: L = l ′ transformation of SHs into SBFs by
bandlimited SBFs, (4.14), (4.15)
MRR (4.33)

Case (a) is, e. g., used for defining the Abel-Poisson kernel in the next section, case (b) for presenting the
general concept of spectral filtering by spherical convolution, and case (c) visualizes the truncation of a series
expansion in general. Case (d) is finally implemented and applied in the core of this work, i. e., the MRR in
Sec. 4.3 is set up by means of bandlimiting, truncated SBFs.

Spherical convolution with an Abel-Poisson kernel

In case of setting Bl = 1 for l ∈ N0, Eq. (4.1) defines the Abel-Poisson kernel b′(x, xq ) = k ′(x, xq ), i. e.

k ′q = k ′(x, xq ) =
∞∑

l=0

2l + 1

4πR2

(

R
r

) l+1

Pl (r
T rq ) (4.3)

with x ∈ Ωext
R

, xq ∈ ΩR . The convolution of a harmonic function f (x), x ∈ Ωext
R

on the sphere ΩR , as
introduced in Eq. (2.7), with the non-bandlimiting kernel k ′q from Eq. (4.3), yields

f (x) =
(

k ′q ∗ f
)

ΩR

(x) =
〈

f , k ′
〉

ΩR
. (4.4)

It results exactly in the function f (x) and is equivalent to the inner product, cf. Eq. (2.7). The ability of the
unique reproduction of a harmonic function f (x) is one of the essential characteristics of the Abel-Poisson
kernel. According to Freeden (1999), pp. 72, it belongs to the group of (reproducing) rational non-bandlimiting
kernels.
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Table 4.2: Relation of SHs and SBFs (right column) in the group of basis functions. Based on several fundamentals (left column),
the dependency is derived within five steps. The spherical convolution is the essential key.

4.1.2 Relation to SHs

As introduced in Sec. 2.3.2, SHs are well suited for global gravity field modeling. They belong to the overall
group of basis functions, as well as SBFs. The relation of both is derived in Tab. 4.2:

1. The harmonic function f (x), with x ∈ Ωext
R

, can be expressed in terms of SHs, according to the series
expansion (2.34). Hereby, Fl,m are the Stokes coefficients according to Eq. (2.39). Hl,m (x), x ∈ Ωext

R
,

cf. Eq. (2.35), are the solid SHs (dark-green bordered terms in Tab. 4.2); HR
l,m

(x), x ∈ ΩR , cf.
Eq. (2.36), are the surface SHs (light-green bordered terms).

2. For the coefficients Fl,m , Eq. (2.39) is inserted as inner product of the harmonic function f = f (xq ) and
the surface SH function HR

l,m
(xq ) according to Eq. (2.36), at location P(xq ) (red brackets in Tab. 4.2).

3. The addition theorem (2.38) of surface SHs is applied by depicting the appropriate terms (yellow
brackets).

4. The blue-marked series expansion in Tab. 4.2, represents the Abel-Poisson kernel k ′(x, xq ), cf. Eq. (4.3).

5. By definition from Eq. (2.7) (purple marked) and application in Eq. (4.4), the spherical convolution of
the function f (x) on ΩR shows the relation of SBFs to SHs (dark green).

The relation of SBFs and SHs is exemplarily derived for the Abel-Poisson kernel as one specific basis function.
The admission of equivalently replacing the latter by any other appropriate SBF is approved by the tool of
spherical convolution in Sec. 4.2.2. Consequently, the scheme in Fig. 2.5, which shows the foundation of SHs
on Legendre polynomials, can be extended to basis functions in general, see Fig. A.1 in Appendix A.



4.2. Band limitation 73

4.2 Band limitation

In order to practically implement the representation of a function by series expansion in terms of basis
functions, the series has to be limited to a finite number of terms, and consequently to a finite number of
coefficients and basis functions. According to Eq. (4.1), the basis function b′q itself is also expanded as a
series and has to be limited for numerical realization. This bandlimiting feature is of beneficial relevance: a
bandlimiting basis function may act as spectral filter. The spherical convolution with a bandlimiting kernel
in the spatial domain corresponds to filtering in the spectral domain. It is the essential tool for setting up the
MRR (Schmidt et al., 2007), presented in Sec. 4.3. Both, the band limitation of basis functions, and the band
limitation of the series for representing filtered functions, will be studied in the following.

4.2.1 Bandlimiting SBF

As mentioned before, a SBF, defined in Eq. (4.1), may act as a low-pass filter by setting a sequence of Legendre
coefficients Bl to zero, e. g. for an arbitrary high frequency domain of l > l ′, l ′ ∈ N. Case (b) in Fig. 4.3
applies. The corresponding bandlimiting SBF is denoted as bq = b(x, xq ) and the series expansion (4.1)
reduces to

bq = b(x, xq ) =
∞∑

l=0

2l + 1

4πR2

(

R
r

) l+1

Bl Pl (r
T rq ) with Bl = 0 for l > l ′ (4.5)

=

l′∑

l=0

2l + 1

4πR2

(

R
r

) l+1

Bl Pl (r
T rq ) . (4.6)

According to Tab. 2.1, these bandlimiting basis functions span the space H0,1, ...,l′ (Ωext
R

) of dimension (l ′+1)2.
In case of setting the Legendre coefficients Bl = 1 for l = 0, . . . , l ′, Eq. (4.6) defines the Shannon kernel,
in analogy to the non-bandlimiting Abel-Poisson kernel k ′q , cf. Eq. (4.3). A selection of different kernels is
presented in Sec. 4.3.4.

4.2.2 Filtering by convolution

In the spatial domain, the spherical convolution with any bandlimiting kernel bq , cf. Eq. (4.5), against a
function f (x), x ∈ ΩR , can be described by a linear combination of Q terms. The filtered function g then is
represented by

g = g(x) =
(

bq ∗ f
)

ΩR

(x) =
Q∑

q=1

dqb(x, xq ) . (4.7)

Following Tab. 4.3, this convolution (4.7) in the spatial domain, which results in the filtered function g, can
equivalently be expressed by the multiplication of coefficients of a series expansion in terms of SH functions
in the spectral domain. The SH coefficients Fl,m are multiplied with the bandlimiting Legendre coefficients
Bl and Gl,m are the resulting filtered SH coefficients, i. e.

Gl,m = BlFl,m . (4.8)

Hereby, Parseval’s identity corresponds to the Funk-Hecke formula (Schreiner, 1996). The four fundamental
steps in the left column of Tab. 4.3 are derived reversely to Tab. 4.2. Figure 4.2 visualizes the equivalence
of spatial and spectral filtering: (a) spherical convolution in the spatial domain and (b) multiplication in the
spectral domain. In case (b), the coefficients are schematically displayed according to Fig. 4.1. Since the
bandlimited function g from Eq. (4.7) further can be expressed by

g(x) =
l′∑

l=0

l∑

m=−l
Gl,m Hl,m (x) (4.9)

in terms of SH functions, cf. Tab. 4.3, the bandlimiting basis functions bq span the space H0, ...,l′ (Ωext
R

) with
dimension Nl′ = (l ′ + 1)2, cf. Tab. 2.1. Consequently, the number Q of terms of the series (4.7) follows the
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requirement that an admissible point system

SQ =
{
xq ∈ ΩR |q = 1, 2, ...,Q

}
(4.10)

is guaranteed. Following Freeden et al. (1998), pp. 80, and Schmidt et al. (2007), an admissible point system
on the sphere ΩR allows the unique determination of the coefficients Gl,m in Eq. (4.9). Hence, the point
system SQ , Eq. (4.10), is admissible for Q≥ Nl′; it is called fundamental, for Q = Nl′ . The latter case
practically never applies when dealing with real data. In the sequel, all point systems are required to be at
least admissible.

Figure 4.2: Filtering by (a) convolution of basis functions in the spatial domain, (b) multiplication of SH coefficients in the spectral
domain.

Table 4.3: Filtering of SH coefficients by multiplication with bandlimiting Legendre coefficients. The spherical convolution is the
essential key. The relation of bandlimiting SBFs and SHs, based on four fundamental steps (left column), is derived in analogy to
Tab. 4.2.
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Freeden et al. (1998) further show, that for different basis functions bq,1(x, xq ), bq,2(x, xq ), but both band-
limiting at degree l ′, i. e. spanning the same space H0, ...,l′ (Ωext

R
) or subspaces of H0, ...,l′ (Ωext

R
), the filtered

functions g1(x), g2(x), x ∈ Ωext
R

, can be expressed by the same set of coefficients dq , i. e.

g1(x) =
(

bq,1 ∗ f
)

ΩR

(x) =
Q∑

q=1

dqb1(x, xq )

g2(x) =
(

bq,2 ∗ f
)

ΩR

(x) =
Q∑

q=1

dqb2(x, xq ) (4.11)

The set of coefficients dq does not depend on the choice of the bandlimiting SBF. Several beneficial conclusions
follow from this fact:

• With a known set of coefficients dq , convolutions of the function f with different kernels bq,1, bq,2,
strictly bandlimiting at the same degree l ′, can be performed according to Eq. (4.11) (p. 225 Freeden,
1999).

• The function f can be filtered with different bandlimiting kernels bq,1, bq,2, ... and the resulting bandlim-
ited functions can be calculated by the according weighted sum of function values b1(x, xq ), b2(x, xq ), ....

• This advantageous property is used for defining and applying different low- and band-pass filters in
order to set up a MRR in Sec. 4.3.

4.2.3 Truncation of series expansions

Besides the truncation of the series expansion (4.7) at Q terms, the degree-l ′-depending basis function bq ,
Eq. (4.5) has to be limited, as well, i. e. truncated at a specific degree L. In the following, the truncation
of the previously introduced SHs (2.34) and SBFs (4.5) at a maximum degree L is considered by exposing
differences, dependencies, and the direct relation to the limitation of appropriate Q =: QL terms of the overall
series expansion (4.7). Figure 4.3 schematically connects the truncation at a maximum spectral degree L for
both types of basis functions with the limitation of QL components of the series expansions. Both restrictions,
truncation and band limitation, deliver the impact on the dimension of the spaces, spanned by the set of basis
functions. The adequate dimension is requirement for relating SHs and SBFs, according to Tab. 4.2. The
details are discussed in the following w.r.t. Fig. 4.3.

Figure 4.3: Dimension NL = (L + 1)2 (gray dashed) of the space H0,1, ...,L (Ωext
R

) spanned by QL basis functions (red bordered)
up to maximum degree L, in terms of (a) SHs (step width ∆ql = 2l + 1 per degree l), (b) SBFs (step width ∆ql = l + 1 per degree
l). Exemplarily, a number of 4 and 9 basis functions is indicated by black bullets spanning spaces of dimension (1 + 1)2 (yellow
bordered) and (2 + 1)2 (green bordered). The spectral domain l > L is blue shaded.
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... in terms of SHs

Truncating the series expansion (2.34) in terms of SHs at a certain maximum degree L, represents a function
g in the bandlimited spectral domain l = 0, 1, 2, ..., L, i. e.

g = g(x) =
L∑

l=0

l∑

m=−l
Gl,m Hl,m (x) =

L∑

l=0

l∑

m=−l

(

R
r

) l+1

Gl,m HR
l,m (x) , (4.12)

here with Gl,m = Fl,m . According to Tab. 2.1, the dimension NL of the space H0, ...,L(Ωext
R

) or H0, ...,L(ΩR),
spanned by solid or surface SHs Hl,m , HR

l,m
, yields

NL =

L∑

l=0

(2l + 1) = (L + 1)2 (4.13)

(p. 101 Michel, 2013). With increasing degree l (m = −l, . . . , 0, . . . , l), the number of SHs (respectively
coefficients Gl,m) augments with a step width of ∆ql = 2l + 1, ∆ql ∈ N. The dimension is illustrated as
dashed gray triangle in Fig. 4.3 a). For a number of QL = NL SH functions (red bordered) up to maximum
degree L, the point system SQ , Eq. (4.10), becomes fundamental. Exemplarily, the number of basis functions
spanning the corresponding spaces, are indicated as black bullets. It yields four basis functions spanning a
space of dimension N1 = (1 + 1)2 (yellow bordered), respectively nine for spanning a space of dimension
N2 = (2 + 1)2 (green bordered). Due to the truncation at degree L, the blue shaded part of the overall infinite
space in Fig. 4.3 is neglected and cannot be represented by Eq. (4.12). This omission error is handled in
Sec. 4.2.4.

... in terms of SBFs

In order to equivalently represent the function g, Eq. (4.12), by a series expansion in terms of SBFs, the
fundamental requirement is, that the sets of basis functions bq and HR

l,m
span the same space with dimension

NL = (L + 1)2. Truncating the series expansion (4.5) at maximum degree L yields

b(x, xq ) =
L∑

l=0

2l + 1

4πR2

(

R
r

) l+1

Bl Pl (r
T rq ) , (4.14)

and the function g is represented by a bandlimited series expansion in terms of QL = (L + 1)2 basis functions
through

g = g(x) =
QL∑

q=1

dq bq (x) =
QL∑

q=1

dq

L∑

l=0

2l + 1

4πR2

(

R
r

) l+1

Bl Pl (r
T rq ) . (4.15)

Hereby, the total global number QL of SBFs bq (x), respectively coefficients dq , depends on maximum degree
L (the number of degree-l-depending terms augments with a step width of ∆ql = l + 1). According to
Eq. (4.10), the point system SQ is admissible for Q ≥ QL and fundamental for Q = QL = NL . In Fig. 4.3 b),
the gray dashed rectangle specifies the dimension NL = dim H0, ...,L (ΩR ) and covers the same space as in
Fig. 4.3 a). For instance, by a number of 4 or 9 SBFs (black bullets), the space of the same dimension
N1 = (1 + 1)2 or N2 = (2 + 1)2 is spanned, as by SHs, cf. Fig. 4.3 a). The number QL of basis functions
spanning the space of dimension NL is red bordered. Consequently, the limitation of the series expansion
(4.15) to QL terms ensures the transformation from SHs into SBFs, which is presented in Tab. 4.2 for the
theoretical non-bandlimiting case. Respectively, the number of Legendre coefficients Bl in Eq. (4.14) is
limited as well, which is shown in Fig. 4.1, case (c). The effect of truncating a series expansion at degree
L = l ′ according to Eq. (4.14) can be compared with restricting the Legendre coefficients to Bl = 0 for l > l ′,
visualized in Fig. 4.1, case (d).
The basis functions bq are in the following denoted as scaling functions and the coefficients dq as scaling

coefficients, since their values are interpreted as scaling factors, defining the amplitude of a basis function in
the spatial domain.
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Summary: Band limitation and truncation

A summary of the different types of (non-)bandlimiting SBFs and the represented (non-)bandlimited, i. e.
(in-) finite functions is given in Tab. 4.4. Hereby, the spherical convolution is the essential tool in order to
describe the filtering. Band limitation is realized by truncation of the according series expansion at the same
degree l ′ = L.

• Infinite series expansion (green) of a non-bandlimited function f (green) in terms of a non-bandlimiting
SBF b′q (green), Eq. (4.1); convolution of k ′q , Eq. (4.3), as one specific SBF, against f yields the same
non-bandlimited function f (green), Eq. (4.4).

• Finite series expansion (blue) of a bandlimited function g (blue) in terms of a bandlimiting SBF bq
(blue), Eq. (4.6) – realized by an appropriate set of Legendre coefficients Bl ; convolution of bq against
f yields the filtered, i. e. bandlimited, function g (blue), Eq. (4.7). Different bandlimited functions
can be computed by different SBFs, but with one and the same set of coefficients dq (gray shaded),
Eq. (4.11).

• Finite series expansion (orange) of a truncated (and thus, bandlimited) function g (orange), Eq. (4.15)
in terms of a bandlimiting SBF bq (orange), Eq. (4.14) – realized by truncation.

Table 4.4: Representation of functions g ( f ) by series expansions in terms of (non-)bandlimiting SBFs bq (b′q, k ′q ).
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4.2.4 Modeling errors and energy content

On the one hand, band limitation and/or truncation enable(s) to filter specific parts of the frequency spectrum,
as explained above. On the other hand, truncation is necessary for all practical implementations, and thus,
provokes a certain truncation error. In the sequel, the filtered as well as the neglected parts of the frequency
spectrum shall be specified w.r.t. their energy content. The following terms are equivalently used:

physical meaning modeling procedure

function signal
representation model, data fit.

Referring to Jekeli (2012), three different types of modeling errors are distinguished: commission, omission
and aliasing errors. They are briefly introduced according to Fig. 4.4; a possibility of estimating the omission
error, resulting from the truncation of the series expansion (4.15), is explained based on the energy content of
a bandlimited signal g. Following Fig. 4.4 top-down, it yields:

• The naturally non-bandlimited signal f (green curve; top line) is detected by observations (black curve;
mid line) up to a specific maximum frequency Lobs, depending on the properties of the measurement
principle (e. g. resolution, data distribution). Additionally, errors (red-yellow curve; mid line) occur due
to the limited measurement accuracy, both from the instruments and from diverse external conditions
(e. g. climatic influences).

• Using the observations, the signal (purple curve; bottom line) is modeled in terms of bandlimiting SBFs
bq up to degree L ≤ Lobs (orange box). I. e. the maximum spectral resolution at degree Lobs of the
observations limits the maximum achievable resolution at degree L of the model. Usually, Lobs is not
exactly known when dealing with real data.

• The measurement error is separated into a spectral part of degree l ≤ L (red curve) and a spectral part
of degree l > L (yellow curve). The error of degree l ≤ L directly affects the estimated coefficients dq

of the modeled signal g (purple box), expanded by a series according to Eq. (4.15), and further into all
derived quantities. It is denoted commission error (red shaded). The variance σ2

l
per degree l of the

error is known as error degree variance and the variance of the coefficients as degree variance (Sansò

et al., 2012).

• The neglected high-frequent part (above degree L) of the non-bandlimited signal f , which is not captured
within the model g, is denoted omission error (blue shaded; bottom line). If Lobs > L, i. e. usually in
case of real data, the un-modeled signal is not independent of the commission error, as the neglected
observed signal of degree l > L affects especially the high-frequent part of the estimated coefficients.
Thus, the modeled signal g contains an additional aliasing error (yellow shaded). The effect is also
known as frequency folding.

Energy and omission error

As mentioned, due to neglecting the terms q > QL in Eq. (4.15), the naturally non-bandlimited signal f is not
represented in the high frequencies. The truncation of the linear combination (4.15) at QL according to the
truncation of the series expansion (4.14) at L, provokes the above discussed omission error for degrees larger
than L (green in Fig. 4.4). Hence, Eqs. (4.7) and (4.11) are only approximately valid.
The neglected non-stochastic high-frequency part, i. e. the omission error, can be rated by estimating its
influence on the determination of the coefficients dq . It is derived from the inverse power spectrum, i. e. the
neglected energy content of the bandlimited signal g. In Fig. 4.4, the omission error is blue shaded depending
on the spectral degree l > L, cf. as well Fig. 4.3.

SHs Referring to Schmidt et al. (2007), the norm, cf. Eq. (2.6), of a signal f can be interpreted as its energy
content or as global root-mean-square value. Modeling a gravitational signal, by the bandlimited signal g,
the latter contains less energy than the non-bandlimited signal f . In terms of SH basis functions, this loss
of energy, i. e. the omission error, can be estimated from Parseval’s identity. The relations are presented in
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Figure 4.4: Modeling errors.

Tab. A.1 in Appendix A in analogy to Tab. 4.2. By definition of the norm (2.6), the degree variances σ2
l
(g)

describe the power spectrum, i. e. the energy Eg , of the bandlimited signal g in the frequency domain up to
degree L (Tscherning and Rapp, 1974). It yields

Eg =

∫

ΩR

|g(x) |2dωR = ‖ g ‖2ΩR
=

L∑

l=0

σ2
l (g) =

L∑

l=0

l∑

m=−l

��Gl,m
��2 . (4.16)

Consequently, the neglected energy contained in the higher frequencies of degree l > L delivers an estimate for
the varianceσ2

om of the omission error. The latter results from the L2 norm of the difference of non-bandlimited
( f ) and bandlimited (g) signal, i. e.

σ2
om = ‖ f − g ‖2

ΩR
=

∞∑

l=L+1

σ2
l ( f ) . (4.17)

Hereby, the degree variances σ2
l
(g) describe the errors per degree l for all order values (Jekeli, 2012).

SBFs – global modeling As the global modeling of a signal f can be equivalently computed in terms of SHs
and SBFs according to Tab. 4.2, the total energy Eg of g in terms of SBFs is derived using the fundamental
relations of SHs according to Tab. 4.5, cf. Schmidt (2001), p. 151, Buße (2015).

Expressing the energy Eg of the signal g in terms of SBFs is comparable with computing the degree variances
σ2
l
(g) of g in terms of SHs. The variance σ2

om of the omission error then corresponds to the difference of the
energy E f of a non-bandlimited signal f and the energy Eg of the bandlimited signal g

σ2
om = ‖ f − g ‖2

ΩR
= E f − Eg , (4.18)

in analogy to Eq. (4.17).

SBFs – regional modeling Compared with SH functions which are optimally localizing in the frequency
domain, cf. Fig. 1.2, additional edge effects appear for spatially localizing SBFs when they are used for
regional modeling. All considerations up to now refer to a global modeling procedure, where SBFs and SHs
can be used equivalently. However, benefiting from the localizing character of SBFs in the regional approach
of this work, provokes further modeling errors due to the spatial restriction onto a certain geographical area. In
order to overcome the difficulties, many parameters have to be carefully chosen and adapted when using SBFs
in the modeling approach. As the total error budget of regional models consists – besides the omission error
– of a variety of further influences, special emphasis is given, e. g., to the selection of the truncation degree L
and number QL of SBFs within the region (see Sec. 5.1.5), a suitable computation grid (see Sec. 5.1.1), and
appropriate SBFs (see Sec. 4.3.4), in order to reduce erroneous effects. Further influences are discussed by
means of the numerical applications in Sec. 6. An overview of the remains is given in the end, in Tab. 7.1.
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Table 4.5: Energy of a bandlimited signal g in terms of SBFs.

4.2.5 Gravitational functionals in terms of SBFs

The splitting of Ṽ expressed by SHs in Eqs. (2.56) – (2.58) in its r, λ, ϑ-depending terms can be equivalently
applied to the series expansions in terms of SBFs. Formulating Eq. (4.15) more general, for any (differential)
gravitational potential or functional of it, it yields

Y[ Ṽ ] =

QL∑

q=1

dq b̃(x, xq )

=

QL∑

q=1

dq

L∑

l=0

f0(l) f l (r) Bl fP,l (λ, ϑ) . (4.19)

Hereby, the basis functions b(x, xq ) from Eq. (4.14) have to be adapted to the different quantities. The
degree l-depending terms of Ṽ and its first and second order derivatives are listed in Tab. 4.6, according to
Tab. 2.3. f0(l) represents the scaling factor, f l (r) comprises the up-/downward continuation operator X l+i

and corresponding derivatives w.r.t. r , summarized within gl (r) = gl for r = R, according to Tab. 2.2,
and fP,l (λ, ϑ) contains the Legendre polynomials Pl (rT , rq ) = Pl (cosψq ) and its first and second order
derivatives w.r.t. λ, ϑ. The argument, cf. Eq. (2.31), describes the cosine of the spherical distance angle
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ψq between a point P of interest with position vector x ∈ Ωext
R

and the center Pq of the basis function with
position vector xq ∈ ΩR .

Table 4.6: Zero, first and second order derivatives of the (differential) gravitational potential Ṽ in terms of SBFs w.r.t. spherical
coordinates r, λ, ϑ.

Y[ Ṽ ] f0(l)
f l (r)

fP,l (λ, ϑ)
gl X l+i i

Ṽ 2l+1
4πR2 1

(
R
r

) l+i
1 Pl (cosψq )

∂Ṽ
∂r

2l+1
4πR2 − l+1

R

(
R
r

) l+i
2 Pl (cosψq )

∂Ṽ
∂λ

2l+1
4πR2 1

(
R
r

) l+i
1

∂Pl (cosψq )
∂λ

∂Ṽ
∂ϑ

2l+1
4πR2 1

(
R
r

) l+i
1

∂Pl (cosψq )
∂ϑ

∂2Ṽ
∂r2

2l+1
4πR2

(l+1)(l+2)
R2

(
R
r

) l+i
3 Pl (cosψq )

∂2Ṽ
∂r∂λ

2l+1
4πR2 − l+1

R

(
R
r

) l+i
2

∂Pl (cosψq )
∂λ

∂2Ṽ
∂r∂ϑ

2l+1
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R

(
R
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) l+i
2

∂Pl (cosψq )
∂ϑ

∂2Ṽ
∂λ2

2l+1
4πR2 1

(
R
r

) l+i
1

∂2Pl (cosψq )
∂λ2

∂2Ṽ
∂ϑ∂λ

2l+1
4πR2 1

(
R
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) l+i
1

∂2Pl (cosψq )
∂ϑ∂λ

∂2Ṽ
∂ϑ2

2l+1
4πR2 1

(
R
r

) l+i
1

∂2Pl (cosψq )
∂ϑ2

The gravitational functionals Y[ Ṽ ], which are relevant within this work, stem from different observation
techniques, summarized in Tab. 3.7. In order to use them as input for regional gravity field modeling, as
schematically displayed in Fig. 2.9, observation equations have to be formulated. Inserting the expressions
from Tab. 4.6 in the corresponding equations of the functionals ∆V,V a,b,T,∆g, δg, derived in Sec. 2.5, yields
the adapted basis functions b̃(x, xq ), listed in Tab. 4.7. The observation equations are set up within the analysis
of the estimation models presented in Sec. 5.2. The relations from Tab. 4.7 further serve for computing output
quantities by setting up corresponding modeling equations in the synthesis.

4.3 Multi-resolution representation

In Chapter 3, various measurement techniques and data sets have been introduced. Further, in the first and
second part of this chapter, it was shown, that SBFs expanded by a series in terms of spectral degrees l, are
appropriate for modeling gravitational functionals. For enhanced regional gravity modeling in terms of SBFs,
the consistent combination of the heterogeneous data via MRR seems appropriate:

• The spatial coverage of the data varies from global (GRACE, GOCE), over ocean-wide (altimetry),
down to regionally limited (air-/shipborne, terrestrial). Further, especially terrestrial data sets show
internally heterogeneous spatial distribution and data gaps.

• The measurement techniques have different spectral resolutions, reaching from ”low“ and ”medium“
for satellite data, up to ”high“ for terrestrial data.

• Depending on the measurement instruments and on the operation of the measurement campaigns,
the accuracy of the data sets may differ a lot. Stemming from various sources, information on the
pre-processing procedures might be missing, as well.

Based on the definitions of spectral and spatial resolution, discussed in Secs. 4.3.1 and 4.3.2, a MRR approach
is set up and adapted to the challenges of this thesis in Sec. 4.3.3. Hereby, the main aims are to preserve as
much as possible valuable signal content in each data set and to reduce at the same time omission and aliasing
errors, cf. Fig. 4.4.
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Table 4.7: Selection of adapted basis functions b̃q = b̃(x, xq ) for formulating observation equations in the analysis of gravity
functionals Y[ Ṽ ], observed at locations x = xp , and for formulating modeling equations in the synthesis at different locations
x = xc . The vertical arrangement follows the spectral resolution of the observation techniques from low- up to high-resolution.

observation

technique
functional Y[ Ṽ ] adapted basis function b̃q

GRACE ∆V Eq. (2.61) b̃(xi, xii, xq ) =
∑L

l=0
2l+1
4πR2

[(
R
r i

) l+1
Bl Pl (cosψi

q ) −
(
R
r ii

) l+1
Bl Pl (cosψii

q )
]

GOCE Vxx Eq. (2.74) b̃(x, xq ) =
∑L

l=0
2l+1
4πR2

(
R
r

) l+1
Bl

(

−l+1
r2 Pl (cosψq ) + 1

r2

∂2Pl (cosψq )
∂ϑ2

)

Vxy Eq. (2.75) b̃(x, xq ) =
∑L

l=0
2l+1
4πR2

(
R
r

) l+1
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(

1
r2 sinϑ

∂Pl (cosψq )
∂ϑ

− cosϑ
r2 sin2 ϑ

∂Pl (cosψq )
∂λ

)

Vxz Eq. (2.76) b̃(x, xq ) =
∑L

l=0
2l+1
4πR2

(
R
r

) l+1
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(

1
r2

∂Pl (cosψq )
∂ϑ

+
l+1
r2

∂Pl (cosψq )
∂ϑ

)

Vyy Eq. (2.77) b̃(x, xq ) =
∑L

l=0
2l+1
4πR2

(
R
r

) l+1
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(

−l+1
r2 Pl (cosψq ) + 1

r2 tanϑ

∂Pl (cosψq )
∂ϑ

+
1

r2 sin2 ϑ

∂Pl (cosψq )
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)

Vyz Eq. (2.78) b̃(x, xq ) =
∑L

l=0
2l+1
4πR2
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) l+1
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1
r2 sinϑ

∂Pl (cosψq )
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+
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)

Vzz Eq. (2.79) b̃(x, xq ) =
∑L

l=0
2l+1
4πR2
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) l+1
Bl Pl (cosψq ) (l+1)(l+2)

r2

altimetry T Eq. (3.14) b̃(x, xq ) =
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l=0
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Bl Pl (cosψq )
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δg Eq. (2.66) b̃(x, xq ) =

∑L
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2l+1
4πR2

1−l
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(
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) l+1
Bl Pl (cosψq )

4.3.1 Definition of spectral and spatial resolution

The measurement techniques as introduced in Chapter 3, deliver heterogeneous gravitational functionals in
space and time, defining spatial and spectral measurement resolution. As the SBFs b̃(x, xq ) from Tab. 4.6,
based on Legendre Polynomials Pl (cosψq ), cf. Eq. (2.30), are centered in Pq ∈ ΩR , their spatial influence
depends on the spherical distance angle ψq between xq and the observation site P with x = xp . Hence,
the arrangement on the sphere ΩR is related to the spatial resolution of the observations. This aspect is be
discussed in Sec. 5.1.2.
The maximum degree L of the series expansion (4.14) indicates the modeling resolution of a signal both in
the frequency, and in the spatial domain. The corresponding spatial resolution ρL is given as

ρL =
πr
L

(4.20)

(Kern, 2003, p. 105), with r = R denoting the radius of the sphere ΩR . The spectral modeling resolution can
be analogously expressed by means of the wavelength λL , i. e.

λL =
2πr
L

or
λL

2
=

πr
L
= ρL (4.21)

(Gerlach, 2003, p. 51). According to the Nyquist theorem, a bandlimited signal with highest frequency fL
thus can only be reconstructed by a function with maximum wavelength λL/2. The referring maximum spatial
resolution ρmax,L reads

ρmax,L ≤
πr
L
, (4.22)

cf. Lieb et al. (2016).
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4.3.2 Discretization of the frequency spectrum

In order to consistently combine data from different observation techniques the frequency domain is discretized,
and the observation techniques accordingly classified w.r.t. their spectral resolution. Therefore, resolution
levels j ∈ N0 defining frequency bands and collecting a specific number of degree values, are introduced. The
upper boundary of each level j is classified by a level-depending maximum degree

l j =
⌈
o j − 1

⌉
, (4.23)

with base o ∈ R+, defining the bandwidth (in terms of degrees l) of each level (Schmidt et al., 2007). Typically
o = 2 is used (Freeden, 1999, p. 162), so that Eq. (4.23) becomes

l j = 2 j − 1 . (4.24)

The adaptation of the resolution levels by a base o , 2 increases the flexibility of the approach, see studies in
Schmidt et al. (2007). In this work, all further derivations are related to the frequency discretization with base
o = 2. The corresponding resolution levels

j =
⌊
log2

(

l j + 1
)⌋
. (4.25)

are appropriate for the classification and combination of the different observation techniques – both in space
and in frequency domain, compromising a balanced number of resolution levels: The higher the level, the
wider is the bandwidth in terms of degrees l, and the finer is the discretization of the spatial domain.
Three observation groups (high-, mid-, and low-resolution) are classified in the following, based on the
underlying measurement principles, which have been presented in detail in Chapter 3. Hereby, the maximum
spectral resolution of an observed signal, defines the maximum degree L of the series expansion (4.14). In
analogy to L, a maximum level J can be defined with upper spectral boundary lJ ≤ L.
Table 4.8 shows the classification of the different observation techniques w.r.t. resolution level j depending
on their spatial ρL (4.20) resolution. Referring to Eq. (4.22), ρmax, j is the corresponding maximum spatial
resolution for one level j

ρmax, j =
πR
l j
, (4.26)

with the mean radius R = 6 378 137 m of the sphere ΩR , representing the Earth’s surface.

Table 4.8: Extraction of the frequency domain which is split into several resolution levels j. Each level is related to a maximum
degree l j of a series expansion and a maximum spatial resolution ρmax, j . The different observation techniques are classified by their
resolution: low (satellite gravimetry data in yellow) – medium (altimetry in green) – high (air-/shipborne and terrestrial gravimetry
in orange).

4.3.3 Multi-resolution (de)composition

The gravitational structure of the Earth’s surface is detected by several observation types, as schematically
displayed in Fig. 1.1. The ”model“ component will be discussed in the sequel in more detail, using the
advantageous principle of MRR. Figure 4.5 gives a more detailed insight in the third part of Fig. 1.1. It
comprises



84 Chapter 4. Spherical basis functions and multi-resolution representation

(a) spectrally splitting the frequency domain into long-, medium-, short-wavelength parts by levels j,

(b) classifying data sets according to their low, medium, or high (spectral/spatial) resolution,

(c) applying SBFs as low- and band-pass filters by setting a specific, level-depending number of Legendre
coefficients different from zero,

(d) summing up the detail signals.

Following Fig. 4.5, those steps are explained by introducing the mathematical relations and specific settings of
the MRR (de)composition in this work, using Shannon functions. Main focus is on step (c). The methodical
implementation is presented in Sec. 5.3, and the numerical application to real data in Chapter 6.

Figure 4.5: Implementation and application of multi-resolution representation within the regional gravity modeling approach using
SBFs. The implementation of the spectral filtering (c) is visualized in spatial and spectral domain (light blue shaded) and is mainly
discussed in this section.

Figure 4.6: Spectral splitting of a non-bandlimited signal Z ′(x) (green) into a bandlimited, low-pass filtered signal ZJ (x) (purple)
and a high-pass filtered signal Z ′

<J
(blue) in the frame of a MRR up to maximum level J. ZJ (x) further is split into a low-resolution

component Z j′ (x) and several medium- and high-resolution detail signals G j .

In order to apply a multi-resolution representation, the frequency domain is split into several spectral bands, cf.
step (a) in Fig. 4.5. According to Lieb et al. (2016), this is done in terms of the level-depending fragmentation,
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presented in Tab. 5.5. By collecting several degrees l in one resolution level j, Eq. (4.25), a flexible spectral
modeling of any bandlimited signal g = Z (x) = ZJ (x) up to maximum resolution level J is feasible. In terms
of the above introduced Shannon kernel, the signal

ZJ (x)
︸︷︷︸

bandlimited,
low-/ band-pass filtered

signal

= Z ′(x)
︸︷︷︸

non-bandlimited
signal

− Z ′>J (x)
︸  ︷︷  ︸

high-pass filtered
signal

, (4.27)

contains full information up to the level-depending degree lJ . The neglected high-resolution part Z ′
>J

comprises the spectral domain of degree l > lJ (respectively of level j > J). The spectral splitting is
visualized in Fig. 4.6, referring to Fig. 4.4: The non-bandlimited signal f = Z ′(x) (green) is represented
by the sum of the bandlimited signal g = ZJ (x) (purple) up to maximum resolution level J, and the high-
resolution part Z ′

>J
(x) (blue). ZJ (x) further can be split into a low-resolution component Z j′ (x) (blue-red)

up to a minimum level j ′ (degree l j′), and several bandlimited detail signals, i. e. G j′+1(x) (yellow) up to
level j ′ + 1 (degree l j′+1), G j′+2(x) (green) up to level j ′ + 2 (degree l j′+2), . . ., up to GJ (x) (orange) up
to level J (degree lJ ). The colors refer to the classification of observation types in Fig. 5.5 according to
their spectral sensitivity and, thus, to their expected contribution to the detail signals G j (x) in Fig. 4.5. The
here presented approach comprises regionally modeling the spectral domain of degree l = l j′ + 1, . . . , lJ ; the
low-resolution part stems from an existing global SH model, which further is introduced as prior information
(pseudo observations, blue-red colored in Fig. 4.5).
In the sequel (see Sec. 4.3.5), the spectral splitting of a gravitational signal g(x) will be realized by band-pass
filtering in terms of SBFs, as indicated in Fig. 4.5 (c). Within the modeling procedure, then two strategies are
distinguished, cf. Fig. 4.7: the composition and the decomposition of ZJ (x) up to, or down from a maximum
level J.

Figure 4.7: Multi-resolution (de)composition as bottom-up (left) and top-down (right) approach.

MRR composition The composition (Fig. 4.7, left side) starts from a low-resolution signal Z j′ (x) containing
information up to level j ′ (in the following the minimum level j ′ of the MRR), adding a number of J− j ′

detail signals G j (x), each representing one after another frequency band, i. e. level j, up to the total
signal ZJ (x). This bottom-up approach enables to react flexibly on any kind of data set by combining
them in an optimal sense, i. e. introducing them level by level where they contain maximum spectral
information.

MRR decomposition The decomposition (Fig. 4.7, right side), vice versa, starts from the high-resolution
signal ZJ (x) and sequently splits it in J − j ′ single detail signals G j (x) down to the smoothed
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representation Z j′ (x), by means of levels j. This top-down approach allows to study a given signal in
different frequency domains.

The fundamental equation of a MRR (de)composition yields

ZJ (x) = Z j′ (x) +
J∑

j= j′+1

G j (x) . (4.28)

SBFs (4.5) are hereby suitable functions in order to extract specific frequency domains from both, measured
signals, cf. step (c) in Fig. 4.5, setting up the bottom-up composition, as well as from modeled signals applying
the top-down decomposition. The spherical convolution of a harmonic function f with a bandlimiting SBF,
cf. Eq. (4.7), representing a weighting operator (Driscoll and Healy, 1994), allows to filter a signal ZJ (x) in
the spectral domain (Schmidt et al., 2007). This property is of great importance for the MRR. The composition
is focused in this work for the spectral combination of real data; however, the decomposition is also applied to
resulting models in Sec. 6.2.

4.3.4 Types of bandlimiting SBFs

Among the basis functions in general, the SBFs themselves constitute a large range of different types. On the
one hand, the variety enables a high flexibility of establishing a regional gravity modeling approach, but on
the other hand, suitable types for appropriate need should be selected very carefully, as the choice has a large
influence on the modeled results. A numerical example is given in Sec. 6.1.1. Freeden (1999) presents e. g. a
large variety of SBFs; Bentel et al. (2013a) studied many properties for their applicability in regional gravity
modeling. Based on these findings, three examples with focus on their spectral and spatial characteristics are
presented in the following: Shannon, Blackman, Cubic Polynomial.

According to Fig. 1.2, a perfect localization of basis functions both
in the spatial and in the spectral domain is not possible. In Fig. 4.8,
the here presented SBFs, Shannon, Blackman and Cubic Polyno-
mial, are arranged relatively to each other w.r.t. their spectral and
spatial localization properties. They are all exactly bandlimiting,
but whereas the CuP function is more localizing in the spatial do-
main at the expense of losing information in the spectral domain,
the Shannon function is more localizing in the spectral domain
at the expense of scattering information in the spatial domain.
Blackman compromises spectral and spatial localization. For sev-
eral exemplarily chosen resolution levels j, the (a) Shannon, (b)
Blackman, and (c) Cubic Polynomial scaling functions and their
referring scaling coefficients (e), (f), (g), are shown in Fig. 4.9.

Figure 4.8: Schematic arrangement of SBFs
w.r.t. their spectral and spatial localization
property.

Shannon

The Shannon function represents the bandlimited version of the Abel-Poisson kernel, Eq. (4.3). The Legendre
coefficients Bl of the Shannon (Sha) SBF are defined as

Bl =

{

1 for l = 0, . . . , 2 j − 1

0 for l ≥ 2 j

}

=: φSha
l, j . (4.29)

The higher the level j, the sharper is the peak in the spatial domain, cf. Fig. 4.9 a), and the wider the frequency
spectrum of coefficients, cf. Fig. 4.10 d). The general features – independent of j – are:
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Figure 4.9: Different types of scaling functions in the spatial domain (one-dimensional w.r.t. spherical distance angle ψq ): (a)
Shannon, (b) Blackman, (c) Cubic Polynomial, and referring scaling coefficients (d), (e), (f) in the spectral domain, for several
exemplarily chosen resolution levels j.

spatial domain spectral domain

(+) sharp peak, but (+) step function, i. e.
(–) strong sidelobes (oscillations), exactly band limitation at highest degree

l j = 2 j − 1 of each level,
(–) less localization; (+) relation to SHs possible.

A for this work very relevant positive (+) feature of the Shannon function is the exact band limitation without
loosing any spectral information, i. e. representing an optimal low-pass filter in the frequency domain. This is
of particular importance for setting up a MRR in terms of SBFs, i. e. extracting specific frequency domains.
As presented in Tab. 4.2, SBFs and SHs can be related in case of setting Bl = 1, i. e. in case of Shannon
functions. However, the sharpness in the spectral domain causes sidelobes with large amplitudes, i. e. obvious
uncertainties in the spatial domain, a quite negative (–) aspect.

Blackman

In contrast to Shannon, the Blackman function acts as low-pass filter with a certain smoothing decay. The
Legendre coefficients Bl of the Blackman (Bla) SBF are defined as

Bl =


1 for l = 0, . . . , 2 j−1 − 1

Aj (l) for l = 2 j−1, . . . , 2 j − 1

0 for l ≥ 2 j

 =: φBla
l, j , (4.30)

The function is based on the Blackman window with

Al′ (l) =
21

50
− 1

2
cos

(

2πl
l ′ + 1

)

+

2

25
cos

(

4πl
l ′ + 1

)

,

which is often used in classical signal analysis (Schmidt et al., 2007). Figures 4.9 b) and e) show the
characteristics in the spectral and spatial domain. Compared with the features from Figs. 4.9 a) and d), it
yields:

spatial domain spectral domain

(+) less oscillations than Shannon and, thus, (+) exactly band limitation at degree l j , but
(+) more localization, i. e. (–) smoothing decay within spectral domain

more quasi-compact support; l = 2 j−1, . . . , 2 j − 1.

The decay behavior of the Legendre coefficients in the spectral domain yields a low-pass filtering SBF,
smoothing the high frequencies of the function to be represented. In spite of this unfavorable aspect, the big
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advantage is the significant reduction of oscillations in the spatial domain. The Blackman function is , thus,
a good compromise between a smoothing function in the spectral and an oscillating function in the spatial
domain.

Cubic Polynomial

An even stronger spectral smoothing behavior shows the Cubic Polynomial (CuP) function. The Legendre
coefficients Bl are defined as

Bl =


(

1 − 2− j l
)2 (

1 + 2− j+1l
)

for l = 0, ..., 2 j − 1

0 for l ≥ 2 j

 =: φCuP
l, j , (4.31)

The according characteristics in the spectral and spatial domain can be seen in Fig.s 4.9 c) and f). In comparison
to Figs. 4.9 a), b) and d), e) the main features are:

spatial domain spectral domain

(+) weak oscillations, (+) exactly bandlimiting at degree l j , but
(+) strongest localization, i. e. (–) strong smoothing decay

highest quasi-compact support at degrees l = 2, ..., 2 j − 1

The Legendre coefficients immediately decline for degree l > 1, independent of the bandlimiting degree
lJ . Consequently, the spectral information is strongly low-pass filtered. Although the oscillations almost
disappear in the spatial domain, the CuP function extracts much less spectral information compared with the
Blackman or Shannon SBF.

4.3.5 Spectral filtering by scaling and wavelet functions

Referring to the classification of data sets, i. e. real data and pseudo observations in terms of global SH
models, cf. step (b) in Fig. 4.5, the low-resolution signal Z j′ (x) is obtained from low-resolution data, while
the detail signals G j (x) are derived from medium- and high-resolution data.
Step (c), thus, has to comprise not only

• a spectral filtering component (for each single data set: discussed in this section), but also

• a transformation component (for each single data set: adapting SBFs to the different observed gravita-
tional functionals, applying the relations from Tab. 4.7), and

• a relative weighting component (for combining several heterogeneous data sets, i. e. selecting the data
at each level according to their spectral content by variance component estimation within the estimation
model, which is presented in Sec. 5.2).

Low-pass filtering

As summarized in Tab. 4.4, the spherical convolution of a non-bandlimiting function f with a bandlimiting
SBF b(x, xq ) acting as low-pass filter up to degree l ′ results in a low-pass filtered function g. In analogy to
Eq. (4.15), any bandlimited signal Z j (x) with spectral information up to level j, can be obtained from the
non-bandlimited signal Z ′ by

Z j = Z j (x) = (Φq, j ∗ Z ′)ΩR
(x) =

Q j∑

q=1

dq, jΦ j (x, xq ) . (4.32)

The low-pass filtering (spherical) scaling functions Φq, j , centered at positions xq ∈ ΩR , and depending on
level j, read

Φq, j = Φ j (x, xq ) =
l j∑

l=0

2l + 1

4πR2

(

R
r

) l+1

φl, j Pl (r
T rq ) , (4.33)
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cf. Eq. (4.14). The degree-l-depending Legendre coefficients become Bl = φl, j ∈
{
φSha
l, j
, φBla

l, j
, φCuP

l, j

}
(Schmidt

et al., 2007) and vanish for l > l j . At the upper boundary of each resolution level j, defined by the bandlimiting
spectral degree l ′ = l j according to Eq. (4.24), the Legendre coefficients φl, j decrease down to zero. Hereby,
the values characterize the spectral weights, i. e. they define a low-pass filter. As discussed in Sec. 4.3.4, the
Shannon type declines abruptly from one to zero at degree l j , while Blackman features a smoothing character
within the spectral domain l j−1, ..., l j , and Cubic Polynomials over the whole bandwidth. The maximum
degree l j further defines the number Q j of terms of the series expansion up to level j. In analogy to Eq. (4.10),

an admissible point system SQ j
=

{
xq ∈ ΩR |q = 1, 2, ...,Q j

}
has to be chosen by Q j ≥ (l j + 1)2 basis

functions Φ j (x, xq ) ∈ H0, ...,l j with dimension Nl j = (l j + 1)2, cf. Eq. (4.13). Corresponding to the series
expansion (4.15) of the bandlimited signal g, the series of Z j reads

Z j = Z j (x) =
Q j∑

q=1

dq, j Φ j (x, xq ) =
Q j∑

q=1

dq, j

L j∑

l=0

2l + 1

4πR2

(

R
r

) l+1

φl, j Pl (r
T rq ) , (4.34)

with L j = l j .

Band-pass filtering

Figure 4.10: Different types of wavelet functions in the spatial domain (one-dimensional w.r.t. spherical distance angle ψq ): (a)
Shannon, (b) Blackman, (c) Cubic Polynomial, and referring wavelet coefficients (d), (e), (f) in the spectral domain, for several
exemplarily chosen resolution levels j. Note, the colors in Fig. 4.9 refer to different levels.

In order to extract single frequency bands j, i. e. splitting Z j (x) in several detail signals G j (x), the SBFs are
applied as band-pass filters. Following Schmidt et al. (2007), band-pass filters are generated by subtracting
the Legendre coefficients of two low-pass filtering SBFs. For neighboring levels j and j − 1, the differential
Legendre coefficients yield

ψl, j = φl, j − φl, j−1 . (4.35)

In analogy to Fig. 4.9, the wavelet functions and their wavelet coefficients are presented in Fig. 4.10 for the
types (a, d) Shannon, (b, e) Blackman, and (c, f) Cubic Polynomial in the (a – c) spatial and (d – f) spectral
domain. Note, the colors of scaling and wavelet functions (respectively coefficients) refer to different levels
in both Figs. 4.9 and 4.10. The differences of Legendre coefficients, cf. Eq. (4.35), then read

ψSha
l, j = φ

Sha
l, j − φ

Sha
l, j−1 (4.36)

ψBla
l, j = φ

Bla
l, j − φ

Bla
l, j−1 (4.37)
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ψCuP
l, j = φ

CuP
l, j − φ

CuP
l, j−1 (4.38)

for the specific cases of Shannon, Blackman and Cubic Polynomial, cf. Eqs. (4.29) to (4.31). As discussed
above, the Shannon wavelet ranges in the spectral domain the full bandwidth l j−1 + 1, ..., l j of one resolution
level j without any smoothing behavior. Consequently, the frequency bands and, thus, the corresponding detail
signals G j , cf. Eq. (4.40), (1) do not overlap in the spectral domain, and (2) contain full spectral information.
These beneficial properties are used in this work for (de)composing the multi-resolution signals.
In contrast, the bandwidth which is extracted by a Blackman band-pass filter, cf. Fig. 4.10 b) and e), comprises
the spectral domain l j−2+1, ..., l j of two levels, i. e. j and j−1. The spectral weight, defined by the coefficients
(e), increases from l j−2 + 1 to l j−1, and decreases from l j−1 + 1 to l j . Each frequency band has an overlap
with the lower and the upper one. Hence, the referring detail signals are not independent of each other.
The coefficients of Cubic Polynomial wavelets, cf. Fig. 4.10 f), show the strongest smoothing behavior of the
three examples, with increasing spectral weights from l > 0 to l j−1, and decreasing values from l j−1 + 1 to l j .
All spectral bands overlap and the spectral information of the detail signals is not uniquely separated.
Inserting Eq. (4.35) in Eq. (4.33), results in the band-pass filtering (spherical) wavelet function

Ψq, j = Ψj (x, xq ) =
l j∑

l=0

2l + 1

4πR2

(

R
r

) l+1

ψl, j Pl (r
T rq ) . (4.39)

According to Eq. (4.32), the detail signal G j is obtained from the spherical convolution

G j = G j (x) = (Ψq, j ∗ Z ′)ΩR
(x) =

Q j∑

q=1

dq, jΨj (x, xq ) , (4.40)

and according to Eq. (4.34), the series expansion in terms of wavelet functions Ψq, j reads

G j = G j (x) =
Q j∑

q=1

dq, j

L j∑

l=0

2l + 1

4πR2

(

R
r

) l+1

ψl, j Pl (r
T rq ) . (4.41)

Hereby, the scaling coefficients dq, j from the series expansion (4.32), can be inserted in Eq. (4.41) referring
to the statement from Eq. (4.11). The number Q j of terms of the series expansion (4.40), expressing a
band-pass filtered detail signal G j in terms of wavelet functions, corresponds to the number of terms in the
series expansion (4.32), expressing a low-pass filtered signal Z j up to the same resolution level j in terms
of scaling functions. In both linear combinations (4.32), and (4.40), an identical admissible point system
SQ j
=

{
xq ∈ ΩR |q = 1, 2, ...,Q j

}
has to be chosen w.r.t. level j, and the same number Q j ≥ Nl j of scaling

coefficients dq, j has to be determined.
The number Q j−1 of the next lower level decreases by the power of 2, cf. Eq. (4.24). Freeden (1999),
pp. 219, show, that coefficients dq, j and dq, j−1 of neighboring levels depend linearly on each other, and can
be successively computed. This feature is of great importance for setting up a pyramid algorithm. The key
benefits are (1) the down-sampling of the number of scaling coefficients from level to level in a top-down
MRR, and thus the reduction of parameters to be estimated (saving numerical and time-intensive computational
expense), and (2) the connection of the detail signals by relating spectral and covariance information from
higher and lower levels. The pyramid algorithm is not part of this work. However, the principle of MRR is
presented and applied, delivering the fundamentals for connecting the resolutions levels in future work.

High-pass filtering

The naturally non-bandlimited signal Z ′ can be reproduced by spherical convolution

Z ′ = Z ′(x) =
(

k ′q ∗ Z ′
)

ΩR

(x) , (4.42)

according to Eq. (4.4), with the non-bandlimiting Abel-Poisson kernel k ′q , defined in Eq. (4.3). Z ′ is low-pass
filtered in Eq. (4.32) with scaling function Φq,J , Eq. (4.33), up to maximum level J. The high-resolution part
Z ′
>J

(x) from Eq. (4.27), comprising the spectral domain above level J, can be expressed by the difference

Z ′>J (x) = Z ′(x) − ZJ (x)
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=

(

k ′q ∗ Z ′
)

ΩR

(x) −
(

Φq,J ∗ Z ′
)

ΩR

(x)

=

(

(k ′q − Φq,J ) ∗ Z ′
)

ΩR

(x) . (4.43)

Factoring out identical terms of the difference k ′q − Φq,J yields the differential Legendre coefficients

φ′l,>J = 1 − φl,J (4.44)

(Schmidt et al., 2005b), since the Legendre coefficients of the Abel-Poisson kernel k ′q read Bl = 1, cf.
Sec. 4.1.1. For limJ→∞ φl,J = 1 (p. 155 Freeden, 1999), the coefficients φ′

l,>J
become zero. Inserting

Eq. (4.44) in Eq. (4.33) defines the high-pass filtering basis function

Φ
′
q,>J = Φ

′
>J (x, xq ) =

∞∑

l=lJ+1

2l + 1

4πR2

(

R
r

) l+1

(1 − φl,J ) Pl (r
T rq ) , (4.45)

and finally, inserting Eq. (4.45) in (4.43), describes

Z ′>J = Z ′>J (x) = (Φ′q,>J ∗ Z ′)ΩR
(x). (4.46)

As mentioned above, the Legendre coefficients act as
spectral weights and describe the magnitude of scal-
ing functions in the spectral domain. Hence, the ne-
glected signal content > J, expressed by Eq. (4.46),
corresponds to the omission error σ2

om according to
Eq. (4.18). In Sec. 4.2.4, the latter was derived
from the difference of energy content: For the non-
bandlimited signal Z ′ and the bandlimited signal Z , it
yields EZ ′ − EZ . Consequently, this difference refers
to the same spectral domain as the one of the omission
error, and the one described by the difference (1−φl, j )
from Eq. (4.44). Inserting φ′

l,>J
= Bl , for instance, in

Eq. (4.8), yields the set of high-pass filtered SH coeffi-
cients Gl,m . For a known set of SH coefficients Fl,m ,
the signal content > J, thus, can be expressed in terms
of SBFs following the relations from Tab. 4.3.
The composition of diverse spectral domains, extracted
by appropriate Legendre coefficients φl, j (4.29) –
(4.31), ψl, j (4.35), and φ′

l,>J
(4.44), is visualized in

Fig. 4.11 exemplarily for the Shannon kernel. φSha
l, j′

serve as low-, and ψSha
l, j′+1

, ψSha
l, j′+2

, . . ., ψSha
l,J

as band-
pass filtering Legendre coefficients, defining the scal-
ing Φl, j′ (4.33) and wavelet Ψl, j′+1, Ψl, j′+2, . . ., Ψl,J

(4.39) functions. According to Eq. (4.28), the summa-
tion of referring bandlimited signals Z j′ and G j yields
the signal ZJ , which is equivalently described by the
scaling function Φq,J with coefficients φSha

l,J
(lowest

row) in Fig. 4.11. The complementary high-pass filter-
ing functionΦ′

q,>J
, according to Eq. (4.45), is indicated

by the differential coefficients (1 − φSha
l,J

).

Figure 4.11: Legendre coefficients, exemplarily displayed
for the Shannon kernel, acting as low-, band-, and high-
pass filter in a MRR. The limit of the coefficients yields 1
(blue shaded) for infinite high spectral resolution.
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5 Methodical settings, estimation model and spectral

combination

The regional gravity modeling approach via radial basis functions enables an efficient combination of het-
erogeneous data in selected areas. Main criterion is the availability of high-resolution data. Within the
geographical choice, the spectral domain where observations contribute most information shall be exploited
as optimally as possible. As the different techniques provide various gravitational functionals, respective
observation equations have to be specified.
In the first part of this chapter, the chosen tools and settings of an enhanced regional gravity modeling approach
are presented by giving a kind of “recipe” for a reasonable parametrization. Hereby the relations, derived
from global gravity field representations in the previous Chapters 2 and 4, are used as fundamental base,
and adapted to the data from Chapter 3. Restricting those investigations to regional applications and related
difficulties are discussed in detail. In the second part, the estimation model is set up, computing gravitational
functionals from a combination of various observations in specified regions at one resolution level. The
spectral combination at different resolution levels is presented in the third part within the framework of a
MRR.

5.1 Methodical settings

Figure 5.1: Settings of the regional gravity modeling approach.

The settings of the regional gravity modeling approach, established and enhanced within this thesis, are
explained by means of Fig. 5.1, following the studies of Lieb et al. (2016). Input are the diverse observations,
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presented in Sec. 3.3 (here, in Northern Germany). The target area, i. e. the region of interest, is green
bordered in the upper left and in the middle of Fig. 5.1. Within this region, the gravity field shall be gained
by the regional modeling approach using SBFs (e. g. Blackman functions). They are located at points (red
crosses) of an appropriate computation grid, displayed in the middle of Fig. 5.1. Further, the target area is
selected corresponding to the spatially limited observations (exemplarily gray colored airborne tracks and
terrestrial observation sites). The aim is extracting most information from the data, i. e. fitting them as
optimally as possible at different resolution levels. A selection of resulting regional models ( j = 8, . . . , 11)
is shown in terms of gravity anomalies ∆g on the right side. Vice versa to selecting the target area w.r.t. the
spatial distribution of available observations, in practice, often the target area is predefined and appropriate
data sets have to be collected. This case could be motivated by applications, as e. g. deriving a national height
reference within the borderlines of a country.
In the sequel, after globally defining an appropriate computation grid in Sec. 5.1.1, all further methodical
settings (Secs. 5.1.2 - 5.1.6) refer explicitly to regional investigations and aim to set up the enhanced regional
gravity modeling approach, the core of this thesis.

5.1.1 Computation grid and global rank deficiency

The role of a computation grid (red-marked crosses in the middle part of Fig. 5.1) is to locate the SBFs. As
mentioned before, in contrast to SH functions, the two-point functions b(x, xq ), Eq. (4.14), are isotropic and
centered in points Pq , with xq ∈ ΩR . For instance, Freeden et al. (1998), pp. 171, defined several mathematical
grids; Eicker (2008), Wittwer (2009), Klees and Haagmanns (2008) discussed their applicability for locating
basis functions in regional gravity modeling.
The main aspects for the choice of the computation grid are

• type: irregular (signal-related) vs. regular, i. e. mathematically described (equidistributed, -angular,
Icosahedron, ...),

• admissibility w.r.t. Eq. (4.10),

• resolution: grid spacing (density of grid points), related to model resolution.

Reuter grid

In this work, a globally defined, regular grid, namely the Reuter grid (Reuter, 1982), is used. The points
are equidistributed on ΩR and, thus, allow a homogeneous coverage of the sphere. Cui and Freeden (1995)
investigated several equidistributed point grids on a sphere and conclude that none of the types takes an
exceptional role. Bentel et al. (2013b) showed, that the choice of different grid types influences resulting
regional gravity models only marginally, compared with the impact of other parameters, as e. g. the choice
of the basis functions. The number Nmax

L
of points is regulated by the control parameter γL , in this work

depending on maximum degree L, namely

Nmax
L
= 2 +

4

π
γ2
L . (5.1)

It yields an upper estimate of the number of grid points in the global (glob) case. Mathematical formulas for
generating the geographical distribution can be found e. g. in Freeden et al. (1998), pp. 171.

Global rank deficiency and admissibility

The total global number Qglob

L
≤ Nmax

L
of grid points equals the global number QL =: Qglob

L
of unknown

coefficients dq in the series expansion (4.15). On the one hand, the number of grid points follows mathematical
relations. On the other hand, the SBFs span the space H0, ...,L (Ωext

R
) of dimension NL = (L+1)2, cf. Eq. (4.13).

Two general questions arise and are answered in the following:

1. How to find a grid with appropriate number of points adopting as optimally as possible the dimension
of the space spanned by the basis functions?

2. How to minimize the potentially resulting global rank deficiencies?
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For Qglob

L
≥ NL the point system, cf. Eq. (4.10) becomes admissible. The number Qglob

L
usually exceeds

the dimension NL of the space H0, ...,L (ΩR ) (Lieb et al., 2016), since generating a computation grid with an

appropriate number Nglob

L
of points usually cannot be realized in practical applications. Consequently, there

exist Qglob

L
− (L + 1)2 linear dependencies among the basis functions. It yields the global rank deficiency

kglob

L
= Qglob

L
− (L + 1)2 . (5.2)

In order to minimize kglob

L
, to ensure an admissible point system, and to ensure covering the frequency domain

up to L, the total number Qglob

L
of coefficients, respectively Nglob

L
of Reuter grid points, is chosen in-between

(L + 1)2 ≤ Qglob

L
≤ Nmax

L , (5.3)

Grid spacing

Lieb et al. (2016) define the characteristic control parameter γL of the Reuter grid as a resolution-depending
parameter for the maximum degree L (highest spectral resolution, respectively). It yields

γ2
L = (L + 1)2 , (5.4)

for L ≥ 2, according to the dimension NL of the space H0, ...,L (ΩR). Hence, the total global number Nglob

L

of Reuter grid points approximates (and is ensured to be smaller than) the estimate Nmax
L

, cf. Eq. (5.1), and

an admissible point system is guaranteed. Table 5.1 lists Nglob

L
and Nmax

L
w.r.t. γL for different examples

of maximum spectral degree L. In Fig. 5.2 selected point distributions are plotted. With rising maximum
resolution L, the number and density of grid points increases. Consequently, by locating more and more SBFs
on the grid points, expanded in series which are accordingly increasing up to L, more and more details can be
modeled.

Table 5.1: Global number of Reuter grid points.

max. degree L control parameter γL total number Nglob

L
estimated number Nmax

L

2 9 12 13
4 25 30 33
8 81 98 105

16 289 358 368
32 1089 1379 1388
64 4225 5364 5381

128 16641 21126 21189
256 66949 83966 84098
280 78961 100394 100538

2048 4198401 5344564 5345572
2190 4800481 6111064 6112164

→֒ In the following, all investigations are transferred from global to regional settings.
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Figure 5.2: Global distribution of Reuter grid points w.r.t. different maximum degree values L. The total numbers Nglob

L
of grid

points are listed in Tab. 5.1.

5.1.2 Definition of regional target, observation and computation area

In contrast to global applications, several additional challenges
arise in the regional case – above all, the extension of the region
has to be defined, depending on the given observations. In the
here presented approach, three areas with different extensions are
distinguished, cf. Fig. 5.3:

1. computation area ∂ΩC ⊂ ΩR ,

2. observation area ∂ΩO ⊂ ∂ΩC ,

3. area of investigation ∂ΩI ⊂ ∂ΩO.

The computation area ∂ΩC ⊂ ΩR (red rectangle in Fig. 5.3)
serves for locating the basis functions b(x, xq ), Eq. (4.14), at the
grid points Pq . Therefore, the previously introduced Reuter grid
is used, cf. Sec. 5.1.1. The observation area ∂ΩO (gray rectangle)
is the area of given observations; the area of investigation ∂ΩI

(green rectangle) is the target area of the final output gravity model.

Figure 5.3: Different extensions of computa-
tion (∂ΩC ), observation (∂ΩO), and target
(∂ΩI ) area. Side lobes are indicated as black
circles, edge effects as colored rings around
exemplarily chosen positions (black crosses)
of SBFs.

The need of different extensions of the areas is studied, for instance, by Bentel et al. (2013b). On the one hand,
starting from the given observations, their spatial distribution has to be embedded in the computation area, in
order to fit the observations as optimally as possible by a regional model, i. e. the computation area is chosen to
be larger than the observation area with ∂ΩO ⊂ ∂ΩC . The reason results from restricting the global functions
b(x, xq ) to a specific region, which provokes side lobes, visualized in Fig. 5.3 by black circles. Globally, the
oscillations of SBFs, overlap and balance each other; hence, a global gravity field representation in terms of
SBFs and SHs is equivalent, cf. Tab. 4.3. Since regionally, the number of basis functions is reduced and
refers to ∂ΩC , the neglect of SBFs outside ∂ΩC causes modeling errors. (An estimate of the regional rank
deficiency is derived in Sec. 5.1.4.) The modeling errors are small due to the localizing character of SBFs
in the spatial domain. Depending on the type of SBF, the higher their spatial localization, the smaller their
side lobes, cf. Fig. 4.9 (a – c). However, especially the basis functions which are located at positions xq
(black crosses in Fig. 5.3) at the boundary of ∂ΩC , experience less overlap by neighboring SBFs, than the
ones which are completely surrounded by SBFs. The oscillations of the latter are more and more compensated
(decreasing number of black circles).
On the other hand, the corresponding coefficients dq can only be estimated properly if their locations are
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covered by observations in a certain surrounding zone of influence. Thus, missing observations lead to
insufficiently estimated coefficients and provoke edge effects, displayed in Fig. 5.3 by colored rings. Again,
the effects appear at positions along the borderline of the area, now ∂ΩO, where the coefficients are not
supported by observations, and decrease with more and more surrounding observations. Consequently, the
area of investigation has to be chosen ∂ΩI ⊂ ∂ΩO (Lieb et al., 2016).
The three areas are displayed, as well, in Fig. 5.1: the gray observation sites (here exemplarily airborne tracks
and terrestrial point stations) define the observation area of the input data; they cover except for some data gaps
the green-bordered smaller target area, which finally is modeled by placing scaling functions at the Reuter
grid points in the largest computation area (red crosses).

5.1.3 Choice of area margins

For a practicable implementation, the size of the resolution-depending margins are defined stepwise according
to the level-discretization of the frequency domain, cf. Eq. (4.25), and coupled with the choice of the basis
functions. From the selection of SBFs, exemplarily displayed in Fig. 4.9, the Shannon function (a) has the
strongest spatial oscillations due to its exact band limitation in the frequency domain, cf. Fig. 4.9 (a, d). The
side lobes depend on the spectral resolution and are amplified with increasing degree l ′ = l j , respectively level
j. However, in the same manner, the peak becomes sharper, i. e. the local support decreases, as visualized in
Fig. 5.5. Taking the latter aspect of resolution-depending side lobes into account, Lieb et al. (2016) define the
margins between the different areas for the maximum resolution level J according to Eq. (4.21), with l = 2J−1,
as

ηJ = ηJI,O = η
J
O,C =

180◦

2J−1 cos( |ϕ|max)
. (5.5)

Hereby, the width ηJ
O,C

of the margin between the observation area ∂ΩO and the computation area ∂ΩC equals

the width ηJ
I,O

of the margin between the target area ∂ΩI and the observation area ∂ΩO. Consequently, both,
the effects of the side lobes in Fig. 5.3 within the overhanging margin of ∂ΩC (red), as well as the artificial
edge effects within the margin of ∂ΩO (gray) are reduced within the resulting regional gravity model in ∂ΩI .
The extension ηJ of the margins further depends on the maximum absolute value |ϕ|max of the latitude of
∂ΩI . The reason is, that the margins are geographically defined with meridian convergence towards the poles,
while the Reuter grid points of ∂ΩC are equidistributed, cf. Fig. 5.2.
For a study area in Northern Germany, cf. Fig. 5.1, the extensions of the three areas are depicted in Fig 5.4.
With |ϕ|max = 55◦ and J = 11, the width counts η11 ≈ 0.3°. From the coverage of all available data sets,
(1) ∂ΩO is chosen, and (2) ∂ΩC and (3) ∂ΩI are adapted with equal margins. In Fig. 5.4, exemplarily
the observations from spatially limited available airborne, terrestrial and altimetry data sets are displayed by
gray-shaded tracks and dots within ∂ΩO. The extension of ∂ΩI is green bordered; ∂ΩC is visualized by
red crosses. For maximum degree of L = 2190, e. g., the regional number QL of Reuter grid points counts
QL = 2118 within this area.

5.1.4 Estimate of the regional rank deficiency

As mentioned above, a regional computation area ∂ΩC with a corresponding number of Reuter grid points
is obtained by extracting an appropriate geographical area from the globally (glob) defined Reuter grid with
Qglob

L
points. The number Qreg

L
of regionally (reg) enclosed grid points, thus, depends on the extension of ∂ΩC .

In analogy to the global rank deficiency kglob

L
, defined in Eq. (5.2), there exists a regional rank deficiency kreg

L
.

It can be estimated from the ratio A∂ΩC
/AΩR

of areas, and the ratio Qreg

L
/Qglob

L
of computation points, and is

assumed to be proportional to the global rank deficiency kglob

L
, i. e.

A∂ΩC

AΩR

=

Qreg

L

Qglob

L

=

kreg

L

kglob

L

(5.6)

The area of the sphere ΩR with radius R yields AΩR
= 4πR2; the surface element of the computation area

∂ΩC with minimum and maximum geographical coordinates (λmin, ϕmin) and (λmax, ϕmax) on the same sphere
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Figure 5.4: Study region in Northern Germany: the green-bordered area defines the area of investigation ∂ΩI , the gray lines
represent exemplarily altimetry, airborne and terrestrial measurement sites within the observation area ∂ΩO . The red crosses mark
the Reuter grid points Pq within the computation area ∂ΩC (regional number QL = 2118, L = 2190). The margins between the
areas amount each around 0.3◦.

yields

A∂ΩC
= (λmax − λmin) ( |sin ϕmax − sin ϕmin |) R2 . (5.7)

Referring to the initial guess of the rank by Naeimi (2013)21, Lieb et al. (2016) derive the rank deficiency
approximately by

kreg

L
�

A∂ΩC

AΩR

[
Qglob

L
− (L + 1)2

]
. (5.8)

In order to minimize the regional rank deficiency problem, the choice of an appropriate maximum degree L of
the basis functions bq according to Eq. (4.14), is discussed in the next Sec. 5.1.5. Additional problems might
appear due to inhomogeneous data distribution. Their reduction is discussed in Sec. 5.2 by introducing prior
information within the estimation model.

5.1.5 Choice of modeling resolution

From (1) the spectral and spatial resolution of the input data, according to their attribution to the frequency
spectrum as shown in Fig. 4.8, and (2) the spatial extension of the observed area ∂ΩO, both a minimum and
maximum modeling resolution can be derived, in terms of spectral degrees lmin and L. Further, lmin and L are
related to the local support of SBFs.

Local support of SBFs

In Fig. 5.5 (i), the local support of SBFs on ΩR is schematically displayed depending on the maximum
modeling resolution in terms of degree L and will be explained based on two examples.

Modeling resolution L = 1 A basis function up to degree L = 1 is related to the spectral resolution λ1 =

2πR (blue-colored wavelength) and spatial resolution ρ1 = πR, cf. Eq. (4.21). The corresponding
local support ranges from a spherical distance of −180° to 180°, covering the whole sphere ΩR with
circumference 2πR. Note, the origin Q of each basis function is located along the L-axis, i. e. spherical
distance of 0°. For L = 1, the origin Q is indicated by a blue bullet.

Modeling resolution L = 7 A basis function up to degree L = 7 yields a wavelength of λ7 ≈ 0.3πR (red-
colored in Fig. 5.5). With mean value R = 6378.137 km the spatial resolution, Eq. (4.20), results to
ρ7 ≈ 2862 km or ≈ 26°, indicating the local support of the basis function. Relating (i) the local support
at degree L = 7 to (ii) the spatial representation of the Shannon function at level j = 3, cf. Fig. 4.9 a),
the latter represents the main signal content within the spherical distance of ±26° (red-dashed lines).

21The rank can only be estimated, e. g. by the determination of eigenvalues, and not exactly be determined because of computational limitations.
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Figure 5.5: Local support of SBFs on a sphere ΩR . (i) The decreasing local support with increasing spectral degree L is visualized
in the spectral domain. The decreasing wavelength λL relates to (ii) a sharper peak of the SBF in the spatial domain (red-dashed
lines). The gray arrows in (i) indicate decreasing local support with increasing spherical distance for each degree L. The frequency
domain is further discretized by level j.

With increasing spectral degree L, the amplitude of SBFs, cf. Fig. 5.5 (ii), becomes sharper in the spatial
domain and their local support decreases, i. e. the first zero crossing of the Shannon function appears at
a smaller spherical distance from the center of the SBFs, and the wavelengths become shorter (indicated
for L = 7 with red-dashed lines in Fig. 5.5). Further, for each modeling resolution up to degree L, the
local support of a SBF decreases with increasing spherical distance from its origin (the gray arrows in (i)
symbolize decreasing local support). The decline of the spatial influence for both, increasing spectral degree,
and increasing spherical distance, is indicated by the yellow curve in Fig. 5.5 (i).
Haagmans et al. (2002) propose a limited capsize, i. e. truncating the SBFs in the spatial domain at their first
zero crossing, counted radially outwards from the center, in order to remove the side lobes, and estimate the
omission error. Due to the loss of spectral information and additional truncation errors, it is not pursued in
this work.

Minimum spectral resolution

The minimum spectral resolution of a regional gravity model de-
pends on the average spatial extension Π of the observed area
∂ΩO, i. e. on the maximum gravitational wavelength λl,max, cf.
Eq. (4.21), which can be resolved. According to the Nyquist theo-
rem, the minimum spectral resolution in terms of degree lmin and
level j ′ reads

lmin =

⌊
2πR[km]

Π[km]

⌋
, (5.9)

j ′ =
⌊

log2(lmin + 1)
⌋

. (5.10)

The maximum degree of the minimum level j ′ is defined as
l j′ according to Eq. (4.24). For instance, in terms of global
modeling with an average area extent of Π = 40 000 km and
R = 6378.137 km, the minimum resolution results to lmin = 1,
j ′ = 1; for an area extent of Π = 13 200 km, it yields lmin = 3,
j ′ = 2 (visualized as red circle in Fig. 5.6, in analogy to Fig. 5.5);
for Π = 4000 km, it yields lmin = 10, j ′ = 3.

Figure 5.6: Relation of area extent Π =

13 200 km (red circle) and resulting minimum
modeling resolution lmin = 3, w.r.t. maximum
resolvable λl,max.

A selection of minimum resolutions w.r.t. the extent Π of the observation area is listed in Tab. 5.2. For the
example in Fig. 5.1, the area extent of ∂ΩO averages Π =550 km. It yields a minimum resolution of degree
lmin = 36 and level j ′ = 5.
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Table 5.2: Minimum modeling resolution degree and level w.r.t. the extent Π of the observation area ∂ΩO .

average area extent Π[km] minimum spectral degree lmin minimum resolution level j ′

20000 1 1
6600 3 2
5000 4 2
4000 5 2
3000 6 2
2000 10 3
1000 20 4
900 22 4
800 25 4
700 28 4
600 33 5
550 36 5
500 40 5
400 50 5
300 66 6
200 100 6
100 200 7

Maximum spectral resolution

In Sec. 4.3.1, the modeling resolution was introduced in terms of a maximum spectral degree L, depending
on the spectral content of the observations. Referring to the level- j-fragmentation in Tab. 4.8, the highest
resolution level J is defined up to spectral degree lJ . The choice of lJ ≤ L allows to minimize influences of
omission errors stemming from the truncation of the infinite series expansion, discussed in Sec. 4.2.4. This
first aspect is visualized in Fig. 5.7, as extension to Fig. 4.4:

Figure 5.7: Observations with maximum resolution up to degree Lobs are represented by the bandlimited function g up to degree L
(modeling resolution in the analysis; purple bordered). Aliasing errors are reduced by a reasonable choice of modeling resolution
lJ in the synthesis (gray bordered), cf. Fig. 4.4.

• As the maximum resolution, i. e. maximum spectral degree Lobs, of real observations is generally not
known, the SBFs are expanded in a series (4.14) up to maximum degree L ≤ Lmax. The modeled,
bandlimited signal g, cf. Eq. (4.15), is indicated in purple.

• The truncation of the non-bandlimited, observed signal yields an omission error (blue). As already
discussed, the latter is correlated with the commission error due to aliasing effects (yellow) in the high
frequencies.

• In order to reduce the aliasing error, the maximum resolution level J is chosen such, that lJ ≤ L.
Appropriate scaling functions with Legendre coefficients φl,J , cf. Eqs. (4.29) – (4.31), enable the
corresponding low-pass filtering within the synthesis of a MRR, resulting in a smoothed signal up to
degree lJ (gray-bordered spectral domain).
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Referring to the four options of band limitation and truncation of SBFs in
the frequency domain, expressed by the general Legendre coefficients Bl

in Fig. 4.1, an additional case (e) is introduced in Fig. 5.8. In terms of a
MRR up to J, the Legendre coefficients Bl = φl, j , Eqs. (4.29) – (4.31), are
bandlimiting at l ′ = l j = lJ . The referring SBFs are truncated at L, but
bandlimiting at the lower degree lJ < L.
Besides the adaption of lJ ≤ L, the maximum modeling degree L itself is
chosen such that the regional rank deficiency kreg

L
, cf. Eq. (5.8), shall be

minimized. In the ideal case, kreg

L
= kreg

lJ
becomes zero. Lieb et al. (2016)

derive an upper estimate of the maximum modeling degree, i. e.

Lrank
=

⌊√
Qglob

lJ
− 1

⌋
, (5.11)

Figure 5.8: Legendre coefficients
Bl = φl, j of SBFs, bandlimiting
at degree l ′ = l j and truncated at
a different degree L > l j .

from Qglob

lJ
− (Lrank

+ 1)2
= 0, with Qglob

L
= Qglob

lJ
, and lJ = Lrank. Hence, Lrank depends on the maximum

number Qglob

lJ
of corresponding Reuter grid points within the computation area ∂ΩC . In order to account for

both aspects, minimizing the aliasing error and further the regional rank deficiency, the maximum modeling
resolution in terms of spectral degree L is chosen in-between

lJ ≤ L ≤ Lrank . (5.12)

For the example in Fig. 5.1, the lower boundary yields l11 = 2047, cf. Eq. (4.24), and the upper boundary
Lrank

= 2310, with J = 11 and Qglob

lJ
= Nglob

L
= 5 344 564, cf. Tab. 5.1.

5.1.6 Choice of background model

Before any estimation model will be set up, a global background model is subtracted from each input data set,
listed in Tab. 3.7. The main reasons are:

1. As mentioned in the context of normal potential (Sec. 2.3.4), dealing with small input quantities enables
a more accurate model representation, than fitting large values. However, the errors contained in the
long wavelengths of observables are not captured by the background model and have to be taken into
account (cf. discussion in Sec. 6, study case (e)).

2. Global background models cover the low frequencies, while the corresponding long wavelengths cannot
be resolved by regional observations. The minimum spectral resolution of a regional approach down to
degree lmin, Eq. (5.9), refers to the average extension of the observed area ∂ΩO.

3. The low frequency part is very well approximated in existing global models based on global satellite
observations. Thus, the background model can be assumed to be noise-free.

The background model serves in the here presented approach additionally as prior information, see Sec. 5.2.1.
Hence, the choice of its type and resolution depends on the issues of correlation and regularization:
On the one hand, global models should contain data that are independent of the input observations to avoid
correlations. The spectral resolution of the global model then is chosen lower than the maximum modeling
resolution (L), and thus, lower than the maximum resolution of the observations (L ≤ Lobs), in order to extract
the highest spectral content of the observations, which is the primary aim. Further, it should be chosen as
least as high as the minimum modeling resolution (lmin) depending on the average spatial extension Π of the
observed area according to Eq. (5.9), and thus, as least as high as the minimum resolution of the observations,
in order cover the full frequency domain. In terms of a MRR composition as visualized in Fig. 4.5, the
choice of a level-depending resolution (l j′) is appropriate, cf. Eq. (5.10). Several examples are investigated in
Chapter 6.
On the other hand, subtracting a global background model containing explicitly the same data as the input
observations, allows, e. g., rating the model fit of the data within simulation studies, see Sec. 6.1.1. Further,
subtracting the same data types from real observations up to the same resolution, enables, for instance,
analyzing time variations. However, these applications are not part of this thesis.
As mentioned before, introducing additional long wavelength global gravity information stabilizes the solution
of regional modeling approaches. In case of unstable solutions where regularization is needed, i. e. for filling
data gaps, the resolution of the prior information should approximate the one of the observations. In most
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cases, a compromise has to be found between choosing a model of high resolution in order to overcome data
gaps, but taking correlations of equivalent input data into account, versus choosing a model of low resolution
for not subtracting too much valuable information from the observations. Several study cases are investigated
in Chapter 6.
The different input observables, according to Fig. 2.9, are summarized by Y[ Ṽ ] as functionals of the
(differential) gravitational potential Ṽ . Subtracting a background model, thus, requires the adaptation to the
appropriate functional. A differential observable Y[∆Ṽ (x) ] at location x ∈ Ωext

R
, then reads

Y[∆Ṽ (x) ] = Y[ Ṽ (x) ] − Y[ Ṽback(x) ] . (5.13)

Y[ Ṽback ] is obtained from the given global background model. The models are typically provided in terms
of Stokes coefficients Fl,m , Eq. (2.39). In order to ensure consistency w.r.t. the reference potential of the
observations, the SH coefficients are rescaled according to Eq. (2.42), i. e. adapted to the reference potential
of the input data. The regional data sets presented in Tab. 3.7 refer, for instance, to GRS80, cf. Sec. 3.2.1.
The various functionals, e. g. δg (2.66) or ∆g (2.69), then are modeled in terms of SHs by using the relations
in Tab. 2.3.
According to the remove-restore principle, the subtracted background model can be added in the end to the
estimated differential gravity signal, yielding a total gravity model of broad spectral range. Or, in other words,
placing the estimated regional signal on top of a global model, might indicate additional signal and be used
for regional refinements of global models.

5.2 Estimation model

One possibility to determine the unknown coefficients of a series expansion, i. e. for example the Stokes
or scaling coefficients, is the method of parameter estimation. Besides this method, numerical integration
is another very prominent approach. For the task of this thesis, regional gravity field modeling in terms of
SBFs from a combination of heterogeneous real data, the computation of the unknown scaling coefficients via
parameter estimation has essential advantages. As summarized by Bentel et al. (2013a), this technique enables
not only the estimation of the unknown coefficients, but delivers also their covariance matrix, containing
information about their standard deviations and correlations. Further, parameter estimation allows to keep
the observations at their original observation sites, whereas numerical integration requires data provided on a
regular grid, i. e. in most cases a pre-processing procedure in terms of interpolation and, thus, manipulation
of the data.
Schmidt et al. (2006) discuss the suitability of parameter estimation, in contrast to numerical integration, for
regional MRR gravity modeling in terms of SBFs in detail. Based on the findings, the principle of parameter
estimation is adapted to the specific requirements of this work and applied within an (extended) GMM, cf.
Fig. 5.9:

• In a first step, the fundamental Gauß-Markov model is defined for regional gravity modeling from one
observation group. The estimation model is successively established by setting up a linear model for
one single observation (white), and for n̄ observations belonging to one observation type (yellow).
Introducing additional prior information (green) enables to determine the unknown parameters by VCE.

• In a second step, the GMM then is extended to K +1 observation equations, allowing regional modeling
from the combination of several (K) observation groups and the prior information (red). Herein, the
combination at one resolution level is denoted as ”single-level estimation” or ”single-level combina-
tion“ and summarized within the light blue analysis box in Fig. 5.9. (In contrast, the ”multi-level
estimation/combination“ by MRR is explained in the Sec. 5.3.) From the estimated scaling coefficients,
any output functional can be computed in the synthesis (dark blue box on the right side), either from
one (yellow), or from various (red) observation groups. The covariance information of the estimated
coefficients, as well as of the modeled parameters is derived.

Details are explained in the following.
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Figure 5.9: Analysis and synthesis from a single-level estimation of unknowns at one resolution level within an (extended) GMM
and VCE.

5.2.1 Gauß-Markov model

As mentioned, parameter estimation within an appropriate GMM, provides both results, and accuracies, from
one observation type, as well as from several types (extended model). Further, it allows to introduce prior
information in order to overcome singularity problems in case of an ill-conditioned system. Applying VCE for
the relative weighting of the heterogeneous data sets enables their efficient combination on normal equation
level.
Based on the fundamentals and settings derived in the previous sections, the rigorous estimation model is set
up in order to compute regional gravity fields at any resolution level j from the combination of appropriate
input data. In this section, only components of the light blue analysis box in Fig. 5.9 are discussed.

Observation equation

For one single observation

y(xp ) = Y[ Ṽ (xp ) ] − Y[ Ṽback(xp ) ] (5.14)

with measurement error e(xp ), at observation site P(xp ), p ∈ {1, . . . , n̄}, expressing any functionalY[ Ṽ (xp ) ],
reduced by the appropriate functional Y[ Ṽback(xp ) ] of a background model according to Eq. (5.13), the ob-

servation equation reads

y(xp ) + e(xp ) =
QL∑

q=1

dq b̃(xp, xq ) , (5.15)

according to Eq. (4.15). b̃q represent the adapted SBFs of Tab. 4.7. This fundamental relation is displayed
within the white box in Fig. 5.9. In order to estimate the unknown scaling coefficients dq from, in total, n̄
observations, vector notation is used in the sequel. y = [y(x1), . . . , y(x n̄ )]T identifies the n̄ × 1 observation
vector, e = [e(x1), . . . , e(x n̄ )]T the n̄ × 1 vector of measurement errors, and d = [d1, . . . , dQL

]T the QL × 1

vector of unknown coefficients. The GMM then is defined as

y + e = A d
︸         ︷︷         ︸
deterministic part

with D(y) = σ2 P−1

︸             ︷︷             ︸
stochastic part

(5.16)

(Koch, 1999, p. 153). It is visualized within the yellow box in Fig. 5.9. In the deterministic part, A =[
b̃(xp, xq )

]
represents the n̄ × QL design matrix, containing the adapted basis functions b̃(xp, xq ). In the

stochastic part, D(y) denotes the n̄× n̄ covariance matrix of the observation vector y, σ2 the unknown variance
factor, and P is the given n̄ × n̄ positive definite weight matrix. Following Koch (1999, p. 154), P = I is
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introduced as identity matrix, assuming the measurement errors to be uncorrelated and the observations to
have similar accuracies. This simplification is made due to considerably smaller computational expense and
due to insufficient information about the quality of most of the data sets, listed in Tab. 3.7.

Least-squares adjustment

The primary aim of setting up the observation equations within the deterministic part of the GMM (5.16) is
to describe the original data by an appropriate model and to compute the unknown parameters, in the sequel
denoted as analysis. Hereby, the GMM (5.16) is a linear adjustment model, i. e. the adjusted observations with
measurement errors can be expressed by a linear combination of the given design matrix A and the unknown
parameters, i. e. the vector d of coefficients. Koch (1999), pp. 150, presents several methods for estimating
the parameters. Among them, least-squares adjustment is applied in the sequel. Hereby, the estimation d̂ of

the vector of coefficients has to be determined such that the sum of squares
(

y − Ad̂
)T

P
(

y − Ad̂
)

becomes
a minimum (Koch, 1999, pp. 158). This process leads to the normal equation system

(

ATPA
)

d̂ = ATPy (5.17)

with the solution

d̂ =
(

ATPA
)−1

ATPy (5.18)

in case that ATPA is of full rank. The coefficients dq are point parameters belonging to the altogether QL

grid points Pq ∈ ∂ΩC . As already mentioned, the values of dq represent in the spatial domain the amplitude
of the (adapted) basis functions bq , Eq. (4.14), respectively b̃q , Tab. 4.7, and thus have a geophysical meaning.

Prior information

Due to linear dependencies among radial basis functions, the design matrix A in Eq. (5.16) usually reveals
a rank deficiency. In the regional case, kreg

L
can be estimated according to Eq. (5.8). Besides this (1) rank

deficiency problem, the normal equation system in Eq. (5.17) might be ill-conditioned and cause singularities
due to (2) downward continuation problems, and (3) data gaps. For handling these difficulties an additional
linear model

µd + ed = d with D(µd ) = σ2
d P
−1
d (5.19)

is introduced as prior information, cf. green box in Fig. 5.9. µd is the QL × 1 expectation vector of the scaling
coefficients, and ed the corresponding unknown QL × 1 error vector. D(µd ) is the QL × QL covariance
matrix of the prior information, including the variance factor σ2

d
and the inverse of the QL × QL weight

matrix Pd . In case of using the background model as prior information as mentioned in Sec. 5.1.6, i. e.
subtracting according to Eq. (5.13) the same information as additionally supplied, the expectation vector µd

can be introduced as zero vector. This beneficial choice is applied in all numerical studies and studied in the
next Chapter 6. Further, assuming that the coefficients have the same accuracies and are not correlated, the
weight matrix Pd = I yields the identity matrix.

The variance factors σ2 and σ2
d

in Eqs. (5.16) and (5.19) can either be given a priori or estimated, for instance,
by VCE (cf. black arrow in Fig. 5.9). The combination of the two linear models (5.16), cf. yellow box in
Fig. 5.9, and (5.19), green box in Fig. 5.9, then yields an unique solution for d̂, as suggested and applied, e. g.,
by Koch and Kusche (2002) and Schmidt et al. (2007). Details are explained in the next section.

Modeling equation

In analogy to the system of observation equations for one single observation group, i. e. the deterministic part
in the GMM (5.16) within the analysis, the system of modeling equations for any output functional Y[ Ṽ ]

= z (xc ), xc ∈ Ωext
R

reads

z = B d̂ (5.20)
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in the synthesis. It is indicated in yellow within the blue synthesis box in Fig. 5.9. The C × 1 vector

z =
[
z(x1), . . . , z(xC )

]T
contains the output functional values, the C × QL matrix B =

[
b̃(xc, xq )

]
the

adapted SBFs, and the QL × 1 vector d̂ the estimated coefficients from Eq. (5.18).

5.2.2 Extended Gauß-Markov model

Based on the above introduced principles of parameter estimation within a GMM by means of one observation
type, an extended GMM now is set up in order to derive regional gravity models from the combination of
heterogeneous data. The different observation types are distinguished and collected in groups, following the
criteria of

• measurement system (satellite, absolute/relative terrestrial, ship-/airborne gravimetry, . . .),
• observed functional (∆V,V ab,T,∆g, δg, . . .),
• observation height (orbit height of satellite, measurements at the Earth’s surface, at a platform, . . .),
• spectral resolution (depending on functional, measurement system, . . .),
• accuracy (e. g. externally influenced by the climate, humans, . . .),
• observation epoch (hours, months, consideration of seasonal variations, . . .),
• sampling rate (of one or several measurement campaigns, . . .),
• pre-processing (application of reductions, corrections, elimination of outliers, . . .),
• reference (height, gravity, . . .),
• spatial distribution,
• . . .

For the combination of the different groups within an appropriate estimation model, especially the first
three aspects are challenging, i. e. handling a variety of functionals and observation heights from diverse
measurement systems. For the different functionals Y[ V ] ∈ {∆V,V ab,T,∆g, δg, . . .}, different observation
equations (5.15) have to be formulated. The design matrix in Eq. (5.16) then contains the correspondingly
adapted basis functions b̃(xp, xq ) from Tab. 4.7 with x = xp . The varying observation heights are taken into
account by the downward continuation term (R/r )l+1, cf. Tab. 2.2, within the observation equations. Bouman

et al. (2013) study signal and degree RMS at different observation heights; Kern (2003), pp. 105, studies the
effect of attenuation and amplification of gravitational functionals and their errors at different heights. The
remaining criteria which classify the diverse observation groups, depend on the specific data sets, cf. Sec. 3.3.
Examples are given in the next chapter. In the following, components of the single-level combination are
studied, referring to the two boxes of analysis and synthesis in Fig. 5.9.

Analysis: Estimation of coefficients

Within the analysis step (light blue box in Fig 5.9), the unknown scaling coefficients are estimated. They
describe the amplitudes of basis functions in the spatial domain. In Fig. 5.1, it would mean to locate Shannon
SBFs at the Reuter grid points (red crosses) in ∂ΩC , and to multiply them with the estimated coefficients.

Choice of basis functions

The basis functions b̃q are defined as Shannon functions, cf. Eq. (4.6), i. e. inserting Bl = 1 in the expressions
of Tab. 4.7. For the simplest functional, T , the basis function yields

b̃L (xp, xq ) =
L∑

l=0

2l + 1

4πR2

(

R
r

) l+1

Pl

(

(r p )T rq
)

, (5.21)

based on Legendre polynomials Pl w.r.t. the spherical distance angle between observed point Pp
= P(xp )

and computation point Pq = P(xq ), i. e. r p and rq as introduced in Eq. (4.2). The bandlimiting maximum
degree L corresponds to the chosen maximum degree of the modeling resolution, cf. Eq. (5.12). As discussed
before, the Shannon kernel ensures an exact band limitation at degree L without any smoothing behavior.
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Observation equations

For the combination of different observation techniques, the parameter estimation model (5.16) is extended
from one observation group to K groups with observation vectors y = yk , k = 1, . . . , K . Next, an appropriate
background model is selected and subtracted according to Eq. (5.13) from the elements of all observation
vectors yk . It yields the differential n̄k × 1 observation vector yk of the k th measurement technique with
differential elements y(xp ) = yk (xp ) according to Eq. (5.14). ek and Ak are the corresponding n̄k × 1

error vector and the n̄k × QL design matrix. For the combination of the altogether K observation techniques
including the additional model (5.19) for the prior information, the extended GMM reads
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(Schmidt et al., 2007). It is displayed within the red box in Fig. 5.9. The design matrices Ak contain the
adapted basis functions from Eq. (5.21). Each covariance block matrix D(yk ) = σ2

k
P−1
k

consists of an
unknown Variance Component (VC) σ2

k
and the inverse of a given n̄k × n̄k positive definite weight matrix

Pk . Those block matrices, and the covariance matrix D(µd ) of the prior information, are located on the main
diagonal of the covariance matrix D([yT

1
, . . . , yT

K
, µT

d
]), cf. Eq. (5.22). The off-diagonal block elements are

zero-matrices, assuming that the observation groups yk and the prior information µd are uncorrelated.
Further, as mentioned in the context of Eq. (5.16), in all numerical investigations in Chapter 6, the measurement
errors are assumed to be uncorrelated and the observations are assumed to have similar accuracies within one
observation group k. Thus, identity matrices can be introduced for the weight matrices Pk in Eq. (5.22).

Least-squares adjustment

Following Lieb et al. (2016), the K observation techniques with each n̄k (k = 1, . . . , K) observations are
combined at normal equation level. A combination at observation equation level instantly delivered residuals
of the observations, which are necessary for VCE. However, the size and, thus, the computation time of the
linear equation systems restrict a practical realization within the scope of this work. According to the normal
equation system (5.17) for one observation group, the observation equation system (5.22) for K groups and
the prior information yields
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This system of normal equations is independent of the number of observations. The estimated coefficients d̂q ,

collected in the vector d̂L up to degree L, are computed from

d̂L = *,
K∑

k=1

*,
1

σ̂2
k

AT
k PkAk

+- +
1

σ̂2
d

Pd
+-
−1 *,

K∑

k=1

*,
1

σ̂2
k

AT
k Pk yk

+- +
1

σ̂2
d

Pdµd
+- , (5.24)

cf. Eq. (5.18). The components d̂q have the SI-unit m2/s2 of the gravitational potential; the elements of the
design matrix A contain the corresponding conversion factors for the particular functionals.

Variance component estimation

In this work, VCE is used for regulating (1) the relative weighting of heterogeneous observation groups and (2)
the amount of regularization by prior information. The variance components are iteratively estimated to σ̂2

k

and σ̂2
d
, as suggested by Koch and Kusche (2002). The regularization parameter yields λσ = σ̂2

k
/σ̂2

d
. Hereby,

the estimates are computed based on stochastic information, i. e. using the residuals of the observations. The
iteration starts from an initial value and ends in the point of convergence (the first three digits of two successive



5.2. Estimation model 107

iterations must not change any more).
The reciprocals σ̂−2

k
and σ̂−2

d
of the estimated VCs in Eq. (5.24) determine the relative weight of each

observation group yk , and hence, regulate the contribution of each measurement technique to the overall
combination result. The influence depends on the accuracy of the observation data, the spectral resolution and
the spatial distribution (Lieb et al., 2016). Since low-resolution signal is smoother in the spatial domain, i. e. it
shows large scale-variations, and high-resolution signal represents short-scale variations. Further, the spatial
distribution and the spectral content of the observations are related to each other, cf. Eq. (4.21). Data which
cover wide areas enable to recover medium down to long wavelengths. The spectral content of measurements
also depends on the type of the gravitational functional and the aspect of downward continuation. According
to the Meissl scheme (Fig. 2.7), different functionals have different spectral sensitivities to high-frequency
variations and the downward continuation, e. g. of satellite measurements down to the Earth’s surface, amplifies
high frequencies. All those aspects are connected with the need of regularization by prior information µd .
Details are studied and discussed by means of numerical applications in Chapter 6.

Covariance information of the unknowns

The full covariance information of the vector d̂L of estimated coefficients is obtained by applying error
propagation on Eq. (5.24).22 The covariance matrix

D
(

d̂L
)

= Q−1
dd =
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. . .
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, d̂1) . . . v(d̂QL

)



−1

, (5.25)

contains information about the uncertainty of the estimated coefficients (Lieb et al., 2016). The diagonal
elements are the variances v(d̂q ) of the estimated coefficients. The off-diagonal elements represent the

covariances between two coefficients, for instance, c(d̂1, d̂2) between d̂1 and d̂2. Qdd is the QL ×QL normal
equation matrix

Qdd =

K∑

k=1
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1

σ2
d

Pd (5.26)

expressed on the left side of Eq. (5.23), and inverted in Eq. (5.24).

Synthesis: Computation of gravity field functionals

In order to express different functionals of the Earth’s gravity field, the observation equations (5.15) serve as
modeling equations in the synthesis. The elements of the vector d̂L of estimated coefficients from Eq. (5.24)
are again multiplied with adapted scaling functions from Tab. 4.7. However, the functions b̃l′ (xc, xq ) =
Φ̃q,J (xc, xq ) now are related to a maximum resolution level J, as introduced Sec. 4.3.3, and the function
values are computed at locations x = xc , c = 1, . . . ,C, inside a target area ∂ΩI . Therefore, the SBFs are
located, for instance, on a regular grid or along flight tracks in any height on or above the Earth’s surface.
For the example in Fig. 5.1, Blackman SBFs are located on a regular geographical grid in the study area in
Northern Germany, multiplied with the estimated coefficients from the analysis, and visualized up to J = 11

in terms of ∆g (lower right). The functional relations in Tab. 4.7 can be further complemented by other
functionals, e. g. quasi-geoid heights ζ according to Eq. (2.63) or deflections of the vertical ξ, η according to
(2.70).

22In analogy, error propagation can equivalently be applied to the scaling coefficients Eq. (5.18), estimated from one observation group. Since the combination

of several observation groups is in the focus of this work, its description was neglected in Sec. 5.2.1.
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Choice of basis functions

According to Eq. (4.33), the adapted scaling function yields

Φ̃q,J = ΦJ (xc, xq ) =
lJ∑

l=0

2l + 1
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R
r

) l+1

φl,J Pl
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(rc )T rq
)

. (5.27)

Since the components of d̂L are estimated in the analysis step by strictly bandlimiting non-smoothing Shannon
kernels, it is possible to multiply them in the synthesis with a different kernel function (Schreiner, 1996), cf.
Eqs. (4.11). The use of different functions, defined by φl, j ∈

{
φSha
l, j
, φBla

l, j
, φCuP

l, j

}
according to Eqs. (4.29) –

(4.31), is analyzed in Sec. 6.1.1.
The bandlimiting maximum degree lJ ≤ L is chosen smaller than the maximum degree L of the analysis in
order to reduce aliasing errors in the frequency domain, and thus, erroneous side lobes in the spatial domain,
cf. Fig. 5.8. Figure. 5.7 visualizes the principle: Modeling a bandlimited signal g (purple curve) according to
Eq. (4.15) up to maximum degree L within the analysis (purple box) from a finite set of function values, yields
aliasing errors due to frequency folding (yellow) of the originally infinite signal f (Jekeli, 1996). Expanding
the series of Φ̃q,J in the synthesis (gray box) up to lJ ≤ L, acting as low-pass filter, here depending on a
maximum resolution level J, reduces those aliasing errors (Schmidt et al., 2007).

Modeling equations

In analogy to Eq. (5.20), the system

zJ = BJ d̂L → ∆ZJ, (5.28)

of modeling equations can be set up by means of d̂L , estimated from K observation groups according to the
extended GMM (5.22), and BJ , containing the chosen low-pass filtering SBFs Φ̃q,J , Eq. (5.27). The output
functional values zJ (xc ), collected in the C×1 vector zJ , contain information up to maximum spectral degree
lJ and describe the ”differential signal“ ∆ZJ w.r.t. the background model. The system of modeling equations
is highlighted in red in the synthesis box of Fig. 5.9.
Restoring the previously subtracted background model at the modeling positions xc delivers the ”total signal“

ZJ = Zback + ∆ZJ (5.29)

with Zback = Y[ Ṽback ]. In analogy to computing the differences at locations xp , cf. Eq. (5.13), the functional
values Zback at positions xc are obtained from series expansion (2.40) in terms of SHs. Note, in this work, ”total
signal“ means that the (low up to medium) frequency information of the previously subtracted background
model has been restored, in contrast to the ”differential signal“, where the referring spectral content is missing.

Covariance information of the output functionals

Information about the accuracy and the dependencies of the resulting functionals zJ (xc ) from Eq. (5.28)
is obtained by computing the variances and covariances at the output positions P(xc ). Applying error
propagation on the modeling equation (5.28)23, the C × C covariance matrix D(zJ ) reads
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It contains on the diagonal the variances v (zJ (xc )), now indicating the accuracy of the resulting functional
zJ (xc ) up to spectral degree lJ at point Pc , cf. Eq. (5.25). The off-diagonal elements represent the covariances
23In analogy, error propagation can be applied to the modeling equation (5.20).



5.3. Spectral combination via MRR 109

between two values, for instance, c(zJ (x1), zJ (x2)) at the output grid points P1 and P2. They give a measure
for the dependency, i. e. the correlation, between the values of both points.

→֒ In the following, all investigations are transferred from single-level to multi-level combination via
MRR.

5.3 Spectral combination via MRR

Spectral combination of heterogeneous gravity data within a MRR enables (1) capturing as optimally as
possible information from each data set and (2) increasing the information content of the resulting regional
models. Due to those beneficial advantages, the spectral combination via MRR is realized in this work. Kern

(2003), pp. 81, discusses further methods, as e. g. LSC, one of the most prominent approaches.
In Fig. 5.10, the general principle of the spectral combination is visualized as an upgrade of Fig. 5.9: The
single-level combination of several observation groups, presented in the previous section, now is applied at
different resolution levels. Hereby, the data of various measurement techniques contribute at the levels where
they show their highest sensitivity. It is implemented by filling several analysis boxes (blue boxes, collected in
the light orange box on the lower left in Fig. 5.10) and connect them by a MRR bottom-up approach according
to Fig. 4.7, left side. Vice versa, the synthesis boxes (light purple boxes in the dark orange box on the lower
right in Fig. 5.10) of the resulting output functionals at different spectral domains can be connected in a MRR
top-down approach according to Fig. 4.7, right side.

Figure 5.10: Analysis and synthesis from a single-level estimation of unknowns at one resolution level within an extended GMM
and VCE (blue boxes; upper row); MRR from several single-level estimation models (several blue analysis boxes are set up) at
different levels j yield a multi-level estimation up to level J (orange boxes; lower row).

5.3.1 Analysis and choice of observation groups

In order to fill the blue analysis boxes within the MRR as displayed in Fig. 5.10, the estimation of the
coefficient vector d̂L from a single-level combination of heterogeneous data in the extended GMM according
to Eq. (5.24), is applied at different resolution levels j. For the connection of the levels, specific settings are
required and discussed in the following.
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Choice of basis functions

The choice of Shannon SBFs within the analysis, is appropriate for a spectral combination of diverse obser-
vation data. The functions ensure the exact splitting of frequency bands and enable to extract signal content
at each resolution level without any loss or overlap. The characteristic Legendre coefficients, cf. Eq. (4.29),
now are defined as φSha

l,L j
, for j = j ′ + 1, j ′ + 2, . . . , J, with a bandlimiting degree L j ≥ l j , e. g. L = 140 at

j = 7, L = 280 at j = 8 . . ., referring to Fig. 5.5. If LJ is chosen higher than the maximum degree l j of each
resolution level j, aliasing errors due to frequency folding can be reduced in the synthesis, as discussed in the
context of Fig. 5.7. The series of corresponding SBFs are truncated at the same level-depending bandlimiting
degree L j , cf. case (d) in Fig. 4.1. Further, the functions have to be adapted to the different gravitational
functionals according to Tab. 4.7. It yields

Φ̃L j
(xp, xq ) =

L j∑
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l,L j

Pl

(

(r p )T rq
)

. (5.31)

for the Shannon function up to level j, adapted to Y[ Ṽ ] = T . These scaling functions are the components of
the design matrices Ak (e. g. for one observation group k) in the extended GMM (5.22), which is set up at
each level. In Fig. 5.10, every blue box represents one of those single-level estimations; the decreasing size
bottom-up indicates decreasing spectral bandwidths at increasing resolution levels. The resulting estimated
coefficient vectors d̂L j

from Eq. (5.24), cf. Fig. 5.10, contain information each up to L j ≥ l j

Choice of observation groups

In analogy to Eq. (5.13), an appropriate background model is selected and subtracted from all observations as
discussed above, now up to resolution level j ′, cf. Eq. (5.10). At each level j = j ′ + 1, ..., J the observation
groups which contribute most spectral information relatively to the others have to be identified. In this work,
the choice follows the three-step strategy displayed in Fig. 5.11:

Figure 5.11: Choice of observation groups for the spectral combination via MRR.
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(1) Single-level estimation at each level with all observation groups The extended GMM is set up according
to Eq. (5.22) at each level, using all observation groups K . In Fig. 5.11 it is indicated by introducing the
classified observations according to Tab. 4.8 at level j ′, j ′ + 1, j ′ + 2, . . . , J in the blue analysis boxes with
according maximum degrees l j′, l j′+1, l j′+2, . . . , lJ . The maximum resolution level of the resulting regional
model is exemplarily chosen with J = 11, the minimum level with j ′ = 6, cf. Eq. (5.10). Thus, a background
model is subtracted from the observations up to j = 6 with maximum degree l6 = 63, serving further as prior
information µd , as introduced in Eq. (5.19).

(2) Relative weighting of observation groups at each level The observation groups are weighted relatively
to each other by VCE following Koch and Kusche (2002), in analogy to the single-level combination presented
above. As the influence of the K single groups to the resulting regional model is regulated by the variance
factors σ̂2

1 j
, σ̂2

2 j
, . . . , σ̂2

K j
, σ̂2

d
, the latter are used as indicators for the choice of the observation groups, which

contribute relatively to each other the most spectral information at each level j. In Fig. 5.11, the estimated
VCs of step (2) are the output of the analysis boxes of step (1), arranged in colored arrows. The colors
indicate, referring to the classification of data types (orange for high-resolution terrestrial, air- and shipborne
gravimetry, green for high- down to medium-resolution altimetry, and yellow for mid- down to low-resolution
satellite gravimetry data), the dominant type of observation groups which typically get the highest relative
weights at the according levels. At lowest resolution level j ′ (red-blue shaded), most of the information is
removed from the observations by the subtracted background model. The relative weighting of the K groups
depends above all on the availability of data, on their spectral content (i. e. resolution), accuracy and spatial
distribution – hence, on the individual modeling task.

(3) MRR composition from single-level estimations Besides using the VCs from step (2) as first criterion,
two further criteria are defined for selecting appropriate observation groups at each level:

• High sensitivity: Observation groups with smallest VCs are supposed to show the highest sensitivity
and deliver the most spectral information at the corresponding level. It is the main criterion, see step
(2).

• No correlations: Referring to the introduction of the weight matrices Pk and Pd in Eq. (5.22) as
identity matrices, the observation groups are assumed to be uncorrelated, i. e. their information should
contribute only to one level.

• Spectral range and spatial distribution (prior information not sufficient): The second criterion is not
strictly kept, if spectral or spatial data gaps lead to singularity problems when solving the normal
equations (5.23). Especially at higher resolution levels, the low spectral content of the prior information
µd up to degree l j′ might not be sufficient to overcome the gaps.

The third criterion requires the introduction of further observation groups, i. e. repeated contribution of
the same data sets at different levels. Consequently, the modeling results (i. e. the detail signals G j )
of neighboring levels, obtained from the synthesis, are no longer independent of each other and contain
superposing information when summing them up within the MRR, cf. step (4) in Fig. 5.11. (Note, this step
(4) is identical to step (d) in Fig. 4.5.) The effects and the role of the prior information is discussed in Sec. 6,
by means of numerical results.
The here presented approach of selecting observation groups according to the three criteria yields an iterative
process of steps (2) and (3) until no more singularities appear in the normal equations, trying to avoid as much
correlations as possible. This strategy is not as efficient, but quite effective, as which can be seen from the
numerical applications in the next chapter.

Estimation of unknowns and their covariance information

Step (3) of Fig. 5.11 schematically indicates the spectral combination of the selected observation groups (cf.
light orange analysis box in Fig. 5.10): By serving as input at each level, the estimates d̂L j

of the coefficient

vectors (output of analysis) can be computed according to Eq. (5.24); here d̂L6
, d̂L7

, . . ., d̂L11. The covariance

information D( d̂L j
), cf. Eq. (5.25), is obtained from the inverse normal equation matrices Qdd, j , Eq. (5.26),
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computed at at each level j. It yields
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5.3.2 Synthesis and spectral composition

Figure 5.12: Synthesis (gray boxes) of MRR low- (yellow-shaded), mid- (green-shaded), up to high- (orange-shaded) resolution
detail signals G j , and the low-resolution signal Z j′ up to degree l j < L j in the spectral domain. The analysis comprises the
frequency spectrum up to a higher degree L j (red/blue, yellow, green, orange boxes). Adding G j and Z j ′ yields the differential
bandlimited signal ∆ZJ w.r.t. the background model (one-dimensional representation in purple).

The synthesis of the estimation models (5.22), set up at the corresponding resolution levels, finally yields the
low-pass filtered signal Z j′ and the band-pass filtered detail signals G j′+1, G j′+2, . . ., GJ of the differential
signal ∆ZJ . Adding them, and restoring the background model results in the total signal ZJ , according to the
MRR defined in Eq. (4.28).

Choice of basis functions

In order to spectrally combine the signal content as visualized in Fig. 4.5 (c), Shannon wavelet functions
Ψj (xc, xq ), Eq. (4.39), are used with Legendre coefficients ψSha

l, j
according to Eq. (4.36) for the levels

j = j ′ + 1, . . . , J, i. e.
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At the lowest level j ′, the low-pass filtering scaling function
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is formulated according to Eq. (4.33). The adapted scaling (Φ̃ j′ (xc, xq )) and wavelet (Ψ̃j (xc, xq )) functions
can express any output functional, according to the relations from Tab. 4.7. The bandlimiting maximum
degree l j ≤ L j refers to the level-discretization defined in Eq. (4.24), and is chosen smaller than the maximum
degree L j of the analysis in order to avoid aliasing errors, cf. Fig. 5.7. The principle is exemplarily displayed
in Fig. 5.12 for three detail signals: the yellow-, green- and orange-bordered boxes contain the spectral
content of the estimated coefficients from the analysis up to L j ; the gray boxes depict the spectral domain of
the yellow-, green-, and orange-shaded detail signals, obtained from the synthesis by the band-pass filtering



5.3. Spectral combination via MRR 113

wavelet functions up to degree l j . The colors again correspond to the spectral classification of input data in
Fig. 4.5 (b).

Modeling equations

The low-resolution signal Z j′ and the detail signals G j are obtained setting up the modeling equations (purple
boxes in the synthesis step, Fig. 5.10 dark orange)

z j′ = B j′ d̂L j′ → Z j′

z j′+1 = B j′+1 d̂L j′+1
→ G j′+1

z j′+2 = B j′+2 d̂L j′+2
→ G j′+2

... (5.35)

zJ = BJ d̂LJ
→ GJ ,

according to Eq. (5.28) of a single-level combination. The C×1 vectors z j contain the output functional values[
z j (xc )

]
, xc ∈ ΩI , c = 1, 2, . . . ,C of any desired functional Y[ Ṽ ]. They are computed by means of the

estimated coefficient vectors d̂L j
, cf. orange box (4) in Fig. 5.11. The C ×QL j

matrices B j are set up by the
adapted wavelet functions from Eq. (5.33) for the levels j = j ′ + 1, . . . , J, and by the adapted scaling function
from Eq. (5.34) for level j ′. For each vector z j , cf. Eq. (5.35), the covariance information D(z j (xc )) can be

obtained according to Eq. (5.30): Applying error propagation on the covariance matrix D( d̂L j
), Eq. (5.32), of

the estimated parameters, yields the C × C covariance matrix D(z j ) of the output signal z j at each modeling
point P(xc ) w.r.t. level j, i. e.
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according to Eq. (5.30).

Spectral composition and error propagation

Adding the low-resolution signal Z j′ and the detail signals G j of successive resolution levels j, obtained from
the synthesis according to Eqs. (5.35), describes the so-called differential signal

∆ZJ = ∆ZJ (xc ) = Z j′ +

J∑

j= j′+1

G j (x
c ) , (5.37)

of any gravitational functional Y[ Ṽ ] at a modeling point P(xc ) w.r.t. the background model. ∆ZJ is
bandlimited, comprising the low-, medium- and high-resolution levels up to J. This differential MRR-output
signal ∆ZJ represents the result of the spectral combination of diverse heterogeneous observation groups
according to Eq. (4.28).
Restoring the the background model Zback = Y[ Ṽback(xc ) ] – vice versa to Eq. (5.14) – now to the estimated
differential signal ∆ZJ , results in the total signal ZJ = ZJ (xc ), cf. Eq. (5.29). Vice versa to the spectral
composition (bottom-up), the signal ZJ can also be decomposed (top-down) into several detail signals by
successively low-pass filtering, as schematically displayed in Fig. 4.7 and exemplarily visualized in Fig. 5.1.
Both scenarios are studied by numerical applications in Sec. 6.2.
In analogy to summing up the low-resolution signal Z j′ and the detail signals G j of the levels j ′, j ′ + 1, . . . , J
yielding the spectrally combined output signal ∆ZJ , the corresponding accuracy of the differential signal is
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obtained by adding the variances v(z j (xc )) of z j , referring to one modeling point P(xc ), i. e.

vJ (z(xc )) =
J∑

j= j′
v(z j (x

c )) . (5.38)

Since the background model was assumed to be noise free, the restored low-resolution signal Zback is also
assumed to be noise free. Consequently, the variances vJ (z(xc )), cf. Eq. (5.38), derived for the differential
signal ∆ZJ (xc ), cf. Eq. (5.37), account for the total signal ZJ (xc ) as well. They give an estimate of the
accuracy of the regional model w.r.t. the spectral domain of the estimated levels. Hereby, the assumptions
are:

• The signal values of Z j′ and G j are uncorrelated in case of Shannon, i. e.

• the covariances, e. g. c(z j (x1), z j+1(x1)) between the signal of one point P(x1) at two different levels,
j and j+1, are zero (respectively, the covariance c(z j (x1), z j+1(x2)) = 0 between the signal of different
points, P(x1) and P(x2), at different levels), i. e.

• the signals are estimated from different input data,

• the different input data groups provide independent data sets, and

• their long-wavelength errors are small.

Hence, special attention has to be paid to step (3) in Fig. 5.11, the choice of independent input data at each
level, as discussed above. Further, the effect of regularization has to be taken into account depending on the
relative weight of the prior information. Details and the reliability of the assumptions are studied by means of
numerical applications in Sec. 6. Remaining error influences and uncertainties are summarized in Tab. 7.1 in
the end.
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6 Results, Validation and Discussion

The primary aim of this thesis is the development of a proper, stable and efficient regional gravity modeling
approach in order to combine heterogeneous real data via MRR. Three secondary aims can be derived, i. e.

1. verification and judgment of properness, stability and efficiency of the approach,

2. computation of very high-resolution regional gravity fields, and thus,

3. regional refinements of existing global models.

The first point includes the questions, how accurately the approach fits simulated as well as real data, single
as well as multiple data sets, and if the chosen estimation model (cf. Sec. 5.2) and settings (cf. Sec. 5.1) are
appropriate. The covariance information of estimated parameters and output functionals gives a measure for
the model accuracy, correlations, and the handling of noise. From simulation studies in terms of closed-loop
(CL) tests (Sec. 6.1.1), the consistency and stability of the approach may be rated (in the sequel, denoted as
”internal validation“), while the efficiency can be evaluated from comparisons with other approaches.
Taking the findings into account, the approach then is applied using real observations (6.1.2). High-resolution
regional gravity field models and their accuracy can be derived. An ”external validation“ shall prove the
accuracy. By validating the regional results against global models or against further data sets in terms of a
cross-validation, issues, as e. g. if the stochastic model is realistic, can be addressed.
In Sec. 6.2, the spectral combination of real data via MRR is applied. The beneficial peculiarities of the MRR
approach enable detecting data gaps and closing them spectrally by merging information from appropriate
measurement techniques. The resulting regional models may provide, for instance, the basis for national height
systems (second secondary aim), serve as regional refinements of global models (third secondary aim), or can
be used for many geophysical applications at different spectral domains, as e. g., studying density variations
of the Earth’s interior.

The primary, as well as the three secondary aims, shall be discussed in the following by means of selected
study results. In principle, two categories are distinguished: Section 6.1 investigates results from the single-
level estimation model, set up at one resolution level according to Sec. 5.2.2; Section 6.2 investigates results
from the spectral combination model via MRR, according to Sec. 5.3. Table 6.1 gives an overview of the
classification of the different study cases. The arrangement of options to study follows a top-down flow chart.
The selection of parameters (light gray shaded) is arranged along the vertical axis w.r.t. their ”influence
on the target achievement“; The ”complexity“ of options is arranged along the horizontal axis. The chosen
parameters turned out to have the largest influence within the here presented modeling approach.

Number of levels The first parameter, i. e. setting up the approach at one or at multiple resolution levels,
separates the two general categories, Sec. 6.1 and Sec. 6.2, and thus, has the largest influence.

Type of data sets Second, results obtained from simulated and real data are distinguished. While simulation
studies in Sec. 6.1.1 serve especially to achieve the first secondary aim as mentioned above, the studies
on real data in Secs. 6.1.2 and 6.2 mostly relate on specific applications, see second and third secondary
aim.

Number of data sets Before the combination of heterogeneous data sets is explored, the approach is tested
by using single data sets.

Stochastic information Distinguishing between noise-free and noisy data restricts to simulated data sets, as
all real data naturally show a stochastic behavior. The noise-free case further is tested only for one
single data set.

Variety of functionals Consequently, referring to the selection above, several different functionals (at different
observation heights) and their field transformations can only be studied for multiple data sets.
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Data set The data sets (dark gray shaded) and the referring study cases (a) – (g) are classified w.r.t. the
different options to investigate. Their arrangement along the horizontal axis symbolizes increasing
complexity from left to right.

The light-purple boxes in the background visualize validation and comparison strategies applied for one or
several results: For the simulation studies (a) – (c) closed-loop tests are appropriate, while the accuracy of
real data results is verified by trace criterion (d) for GOCE GGs, or X-calibration (e). The results (e) – (g)
further are compared with global SH models.

6.1 Single-level approach

6.1.1 Simulation studies

The central question to be answered in this section is: How well does the regional model fit the input
data? Therefore, simulation studies are appropriate: From an existing global gravity model observations are
simulated, which then are used as input for the regional modeling approach. The output model should deliver
the same values as the input model, i. e. optimally fit the known input data. The simulation data are obtained
from the analysis of a global SH model by computing different gravitational functionals in a certain study area,
e. g. at the grid points of a geographic grid. Modeling as output the same gravitational functional and at the
same locations, cf. study cases (a) and (b), allows to compute their differences; they should converge to zero
in the frame of computational accuracy of 1 × 10−16. (For all numerical investigations, a computer applying
16 digits is used.) If variations of the closed-loop settings, cf. case (c), as e. g. comparing the in- and output
functional in another altitude, deliver similar accuracy by the CL differences, the approach is assumed to be
consistent and stable and, thus, verified for the application of real data.

Study cases (a) and (b): One in-/output functional

Figure 6.1: Closed-loop scenario using simulated V sim
zz GOCE data from EGM2008 up to d/o 280: The differences V sim

zz − Vzz,8 of
the simulated observations and modeled output values are computed at the observation points (green stars) along the gray-dashed
GOCE orbit (h ≈ 225 km). The computation grid (red crosses) of the RegGRAV approach is located at the Earth’s surface (brown
solid line at h = 0 km). Simulations are visualized by black-dashed arrows, regionally modeled values by solid black ones.
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Table 6.1: Classification of study cases from single-level approach (a) – (e) and from spectral combination via MRR (f) – (g).
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Different closed-loop scenarios are discussed in the following in order to validate the regional output models
and rate the methodical settings. Due to the large variety of options, only a selection can be investigated.
According to Tab. 6.1, the study cases (a) and (b), w.r.t. one and the same in-/output gravitational functional,
consider:

Study case (a) CL differences at observation points at satellite altitude: How well does the regional model
fit noise-free data?

Study case (b) CL differences using noisy observations. How strong is the model fit influenced by noisy
observations?

(a) and (b) How large is the regional rank deficiency? How strong is the regularization and the corresponding
influence of the prior information?

Figure 6.1 shows the principle of the closed-loop scenario using one and the same gravitational functional as
in- and output. The regional gravity modeling approach is set up in the study area of Northern Germany, cf.
Fig. 5.1, based on the methodical settings from Sec. 5.1. The chosen specifications are listed in Tab. 6.2 for a
maximum resolution level J = 8 and are explained in the following.

Table 6.2: Study cases (a) and (b): Specifications.

Input (a) · V sim
zz simulated from EGM2008

∂ΩO · Lobs = 280

· n̄ =34 680 measurement positions (λ, ϕ, r) from lower orbit phase, time span 08/2012 - 11/2013
(b) · V sim

zz + white noise n0.01
zz

· V sim
zz + white noise n0.1

zz

· V sim
zz + white noise n0.5

zz

· V sim
zz + white noise n1.0

zz

Approach · Vzz,back: EGM2008, l j′ = 127 ( j ′ = 7)
∂ΩC · prior information: EGM2008, l j′ = 127

· L = 280 (analysis, Shannon)
· QL = 282 unknowns, Reuter grid points respectively
· RReuter = 6378.137 km grid radius
· lJ = 255 (J = 8, synthesis, Shannon)

Output (a) · ∆Vzz,8
∂ΩI (b) · ∆Vα

zz,8

(a), (b) · at original positions (λ, φ, r) (C = 4981)

Simulated input data The global SH model EGM2008, described in Sec. 3.2.2, serves as basis for the
simulation: From the given set of SH coefficients Cl,m , Sl,m , the radial gravity gradient V sim

zz is computed
along the GOCE tracks according to Eq. (2.79) by expanding the series (2.40) of SHs up to degree and order
280. The positions xp ∈ ΩO are represented by green stars along the gray dashed orbit in Fig. 6.1, for further
information see Tab. 6.2. Since the observations are simulated up to Lobs = 280, resolution level J = 8 is the
highest level which is completely covered by their spectral information, cf. Tab. 4.8. Using those simulated
V sim
zz observations, a first study case (a) is investigated at the positions xp

= xc ∈ ΩI of the original GOCE
observations, discussing the model fit and the regional rank deficiency.
In order to approximate simulation studies to real data studies, the influence of noise shall be investigated.
GOCE GGs are assumed to be overlaid by Gaussian white noise in the MBW (Haberkorn et al., 2014).24

Hence, in a more realistic study case (b), simulated noise is added on top of the noise-free observations V sim
zz ,

i. e.

V sim,α
zz = V sim

zz + nαzz . (6.1)

Hereby, the factor α allows to regulate the noise level. In this study, the values α ∈ {0, 0.01, 0.1, 0.5, 1.0}
are exemplarily chosen for simulating an increasing noise level in order to test the stability of the regional
24Colored noise predominates the noise characteristic in the spectral domain below the MBW. The spectrum of white noise is characterized by a constant

power spectral density over a certain frequency domain, i. e. by a continuum of frequencies equally distributed over a certain frequency spectrum, here

the MBW of GOCE.
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modeling approach. The noise nαzz corresponds to around 0.08 mE (α = 0.01), 0.81 mE (α = 0.1), 4.07 mE

(α = 0.5), 8.14 mE (α = 1.0); α = 0 means the noise-free case (a) with nα=0
zz = 0.25

Methodical settings The ”RegGRAV“ box in Fig. 6.1 symbolizes the regional gravity modeling approach
in analogy to Fig. 2.9), established by the methodical settings in Sec. 5.1, and including the (extended) GMM
estimation model presented in Sec. 5.2 as core component. The computation grid (Reuter grid at J = 8, cf.
Sec. 5.1.1) is located near the Earth’s surface (red crosses along brown solid line) at h = 0 km.
The three areas are defined according to Sec. 5.1.2 and displayed in Fig. 6.3: ∂ΩO (with input GOCE tracks
in gray), ∂ΩC (with red Reuter grid points at level J = 8), and ∂ΩI (for the regional output model in Northern
Germany, green bordered). The area margins count η8 ≈ 2.5 (ϕmax = 55°), cf. Eq. (5.5).

Regional rank deficiency The regional rank deficiency kreg

L
, cf. Eq. (5.8), can be computed from the relation

of the regional to the global area ratio, respectively the ratio of the regional to global number of Reuter grid
points according to Eq. (5.6):

• Computing the observation area A∂ΩC
with minimum and maximum geographical coordinates (λmin,

ϕmin) = (1.297°,48.597°) and (λmax, ϕmax) = (18.903°,59.903°) according to Eq. (5.7), the area ratio
yields A∂ΩC

/AΩR
≈ 0.0028, cf. Eq. (5.6).

• With Nglob

280
= Qglob

280
= 100 394 from Tab. 5.1 and QL = 282 from Tab. 6.2, the ratio of number of grid

points yields QL/Q
glob

L
≈ 0.0028. Thus, as postulated, both the area and the grid point ratio deliver the

same value.

• Inserting the latter and Qglob

280
in Eq. (5.8) delivers the estimate kreg

280
≈ 60 of the regional rank deficiency.

• With Qglob

255
at level J = 8 (lJ = 255), according to Tab. 5.1, the upper estimate Lrank of the maximum

modeling degree L yields Lrank ≈ 288, cf. Eq. (5.11).

Background model As discussed in Sec. 5.1.6, in simulation studies it is appropriate to subtract the same
background model from the input data as which is used for generating the latter, i. e. here EGM2008.
Consequently, in the noise-free case (a), the low-resolution information is completely removed from the
observations V sim

zz ; for noisy observations (b) V sim,α
zz , the added white noise remains in the low spectral

domain.
The resolution of the background model depends on different aspects, as discussed in Sec. 5.1.6: From the
average spatial extensionΠ = 550 km of the test region in Northern Germany, a minimum modeling resolution
level of j ′ = 5 is estimated by Eq. (5.10). This defines the maximum spectral resolution of the background
model in order to ensure spectral consistency. However, since dealing with small quantities allows a more
accurate model fit, the background model EGM2008 is computed up to level j ′ = 7 (degree l j′ = 127) in terms
of Vzz,back. It is displayed in Fig. 6.2 at a constant height of h = 225 km; the values range from 2778.84 E

to 2779.20 E. Removing Vzz,back according to Eq. (5.14) from the simulated input data yields the differential
observations

∆V sim,α
zz = (V sim

zz + nαzz ) − Vzz,back (6.2)

25The values of ∆ZJ = ∆Vzz,8, i. e. of the modeled differential output functional Y[ Ṽ ] = ∆Vzz,8 up to level 8 according to Eq. (5.37) from noise-free

input data ∆V sim
zz , satisfy the normal distribution N

(

V̄ sim
zz ; v (∆Vzz,8)

)

, with mean value ¯∆V zz,8 = 0.390 mE and variance v (∆Vzz,8) = (8.143 mE)2

within the frequency domain of spectral degrees l = 128, . . . , 255. The Gaussian white noise nα
zz then is produced w.r.t. N

(

V̄ sim
zz ;α · v (∆Vzz,8)

)

by a

Gaussian random number generator (source: https://www.random.org/gaussian-distributions/).

https://www.random.org/gaussian-distributions/
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for the (a) noise-free (α = 0; nα=0
zz = 0) and (b)

noisy cases. The corresponding differential EGM2008
model, containing spectral content of degree l =
128, . . . , 280, is displayed in Fig. 6.3 (i) in the target
area ∂ΩI . For visualization purposes, EGM is plotted
in ∂ΩI at constant height h = 225 km. A plot of the
simulated input observations ∆V sim,α

zz at their original
positions xp would be dominated by the gravitational
variations w.r.t. the radial distance r = RReuter + h. Us-
ing this spectral input information, the regional model-
ing approach is set up, as described below, at the Reuter
grid points, cf. (ii). Plot (iii) shows the resulting differ-
ential output model ∆Vzz,8 along the GOCE tracks at
constant height h = 225 km.

Figure 6.2: Study cases (a) and (b): Background model
Vzz,back up to l7 = 127 at h = 225 km.

Figure 6.3: Simulation study in Northern Germany at level J = 8: (i) The differential input simulation (sim) data∆V sim,α
zz (noise-free

case, α = 0) stem from EGM2008 up to d/o 280 (here displayed at h = 225 km w.r.t. background model). (ii) Three areas are
defined: computation area ∂ΩC (with Reuter grid points, red crosses), observation area ∂ΩO (with input GOCE tracks in gray),
and area of investigation ∂ΩI (for the regional output model, green bordered); area margins η8 ≈ 2.5. (iii) The resulting differential
output ∆Vα

zz,8
(α = 0) up to l8 = 255 is plotted along the GOCE tracks at h = 225 km w.r.t. background model. The difference

between (i) and (iii) is denoted as closed-loop difference d∆Vαzz .

Estimation model For the functional V sim,α
zz (α ∈ {0, 0.01, 0.1, 0.5, 1.0}) an observation equation (5.15) is

formulated according to Tab. 4.7. The above discussed regional rank deficiency and the downward continuation
of the observations to the Earth’s surface where the Reuter grid is located, cause amongst others a singular
normal equation system (5.17). Those instabilities are reduced by introducing additional prior information µd ,
cf. Eq. (5.19). Since the prior information stems from the previously subtracted background model EGM2008
up to l7 = 127, cf. Tab. 6.2, µd yields a zero vector, as mentioned in the context of Eq. (5.19). Consequently,
the extended GMM (5.22) is set up and the normal equations (5.23) can be solved. Within the analysis step,
the series (5.21) is expanded up to degree L = 280 using Shannon basis functions. Hereby, the modeling
degree L, defined in Eq. (5.12), is adapted to the maximum spectral content of the observations (degree
Lobs
= 280). As the latter equals the maximum modeling degree L = 280 in the analysis, cf. Eq. (5.21), and

the observations are noise-free, aliasing errors as displayed in Fig.5.7, vanish. The non-smoothing Shannon
function ensures the estimated coefficients d̂q , cf. Eq. (5.24), to contain full information up to degree L = 280.
Within the synthesis, the series (5.27) is expanded up to degree l8 = 255, adapted to the level-discretization
of the frequency spectrum, cf. Tab. 4.8. Again, the Shannon function is used. (Alternative filter functions are
discussed in study case (c).) The modeling equations (5.28) deliver the differential output functional ∆Vα=0

zz,8
,
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Table 6.3: Study cases (a) and (b): Estimated variance components (VC) and order of magnitude of relative weights (RW; w.r.t.

∆V sim,α=0
zz ) for ∆V sim,α

zz at different noise levels α.

observation group α = 0 α = 0.01 α = 0.1 α = 0.5 α = 1.0

∆V sim,α
zz VC 0.157 × 10−9 0.170 × 10−9 0.244 × 10−9 0.957 × 10−9 0.161 × 10−8

RW 1 1 1 1 10−1

prior information VC 0.305 × 10−6 0.309 × 10−6 0.305 × 10−6 0.316 × 10−6 0.323 × 10−6

RW 10−3 10−3 10−3 10−3 10−3

cf. Fig. 6.3 (iii), from the noise-free input data ∆V sim,α=0
zz , and ∆Vα,0

zz,8
from the noisy input data ∆V sim,α,0

zz , at
positions xc = xp ∈ ∂ΩI , c = p = 1, . . . ,C.

Variance components The iteratively estimated VCs, cf. Sec. 5.2.2, are listed in Tab. 6.3 for the simulated
input data ∆V sim,α

zz at the different noise levels α ∈ {0, 0.01, 0.1, 0.5, 1.0} and the prior information. In each
case, convergence is already obtained after four to five iterations, indicating that the initial values of the VCs
are chosen appropriate. Further, in Tab. 6.3, the orders of magnitude of the relative weights (RW) are listed,
referenced to the noise-free input data set ∆V sim,α

zz . At all noise levels, the simulated input data obtain a smaller
VC than the prior information. Thus, the resulting models ∆Vα

zz,8
contain mainly information from ∆V sim,α

zz .
In Fig. 6.3 (ii) and (iii), the structures of the in- and output models look very similar; differences are analyzed
below. The VCs of the simulated observations increase with augmenting noise level. The VCs of the prior
information increase as well, except for the noise level α = 0.1 where the estimated VC is identical to the
one of α = 0. However, the relative weight of the prior information is only two to three orders of magnitude
smaller w.r.t. the input data at all noise levels α ∈ {0, 0.01, 0.1, 0.5, 1.0}.
The regularization parameter λσ = σ̂2/σ̂2

d
is plotted

in Fig. 6.4. With augmenting noise level, λσ increases
and indicates a stronger regularization, which seems
reasonable. The smoother increase of λσ for noise
level α = 0.1 results from the smaller VC of the prior
information, cf. Tab. 6.3. All values λσ are in the order
of magnitude of 10−4 to 10−3, i. e. strong regularization
is needed for fitting the simulated data at all noise lev-
els, even for fitting noise-free data, due to the regional
rank deficiency of kreg

L
≈ 60. The consequences of the

strong regularization and the influence of the prior in-
formation on the regional modeling results are studied
in the sequel by means of the closed-loop differences.
Possible effects due to the downward continuation of
the observables are investigated in study case (d).

Figure 6.4: Regularization parameter λσ = σ̂2/σ̂2
d

w.r.t.
different noise levels α.

Closed-loop differences

By computing closed-loop (CL) differences, the regional model fit can be rated. The validation data set ∆V sim
zz,8

(∆V sim,α=0
zz → ∆V sim

zz,8
) corresponds to the simulated input data set (generated from EGM2008), and further is

consistently filtered to the spectral domain (degree l = 128, . . . , 255) of the resulting differential output model
up to level J = 8. The differences

d∆Vα
zz,8 = ∆Vα

zz,8 − ∆V sim
zz,8 , (6.3)

then are computed at positions xc = xp ∈ ΩI , c = p = 1, . . . ,C.

Statistics The mean values (mean), and standard deviations (SD) of the differences are listed in Tab. 6.4.
Further, the statistics range (min ... max), mean value and SD of the output signal ∆Vα

zz,8
, cf. Fig. 6.3 (iii), are

given (vertically arranged), as well as the statistics (horizontally arranged) of the validation data ∆V sim
zz,8

(i. e
smoothed input signal in Fig. 6.3 ii), to which the differences are computed.
In principle, the mean values and SDs of all CL differences d∆Vα

zz,8
are smaller than 1 mE (except for
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α = 1.0). The SDs range from 0.146 mE in the noise-free case (a), up to 0.394 mE for α = 0.5 (corresponding
to around 4 mE) in case (b), i. e. in the order of magnitude of 10−13 (with 1 E = 1 × 10−9 1/s2). Only for
input data of noise level α = 1.0 (corresponding to around 8 mE), the SD of the mean difference increases
up to 0.510 E. Consequently, for the regional models from noisy input data up to the noise level α = 0.5,
the SDs of the mean CL differences are smaller than the variations of the white noise. In those cases (b)
and in the noise-free case (a), the SD values are close to the computational accuracy of 10−16 and indicate
a high regional modeling accuracy. Consequently, the regional model approximates the gravitational signal
within the equivalent frequency domain, here spectral degree l = 128, . . . , 255, very well up to a noise level
of α = 0.5.
Relating the variance v

(

d∆Vα
zz,8

)

of the mean difference to the variance v

(

∆V sim
zz,8

)

= 41.757 mE of the
validation data with mean value 4.684 mE and SD 6.462 mE, yields the relative differences, cf. Tab. 6.4,
lowest row. They range from 5.105 × 10−4 (α = 0) up to 3.718 × 10−3 (α = 0.5). The values augment
approximately proportional with the noise level, which seems reasonable. For instance, a five times higher
noise level fromα = 0.1 toα = 0.5 yields approximately a five times higher relative variance from 7.418 × 10−4

to 37.176 × 10−4.

Table 6.4: Statistics of study cases (a) and (b), distinguished by input data of different noise levels. The range (min ... max), the
mean value (mean) and its standard deviation (SD) of the referring regional output models are listed below; the statistics of the
validation data ∆V sim

zz,8
are listed on the left side. The resulting mean values and SD of the closed-loop (CL) differences (a) and (b),

are presented in the middle, relative variances (w.r.t. the variance of ∆V sim
zz,8

) are given below.

case (a) (b) (b) (b) (b)

output ∆V0
zz,8

∆V0.01
zz,8

∆V0.1
zz,8

∆V0.5
zz,8

∆V1.0
zz,8

min ... −18.702 −18.740 −18.679 −18.381 −19.282

max [mE] ... 18.957 ... 19.003 ... 19.163 ... 19.583 ... 18.860

difference min ... mean, 4.724 4.712 4.797 4.738 4.537 CL
to max [mE] SD [mE] 6.456 6.460 6.454 6.462 6.391 difference

−18.812 4.684 0.040 0.028 0.113 0.054 −0.147
∆V sim

zz,8 ...18.670 6.462 0.146 0.150 0.176 0.394 510
d∆Vα

zz,8

relative 5.105 5.388 7.418 3.718 6.229 v
(

d∆Vα
zz,8

)

v(∆V sim
zz )difference ×10−4 ×10−4 ×10−4 ×10−3 ×103

Geographical distribution The differences d∆Vα
zz,8

from Eq. (6.3) between the estimated output model and
the simulated input data are geographically plotted in Fig. 6.5 (i). With increasing noise level from α = 0

(case a) to α = 1.0 (cases b), the range of the amplitudes augments from around ±0.1 mE in the lower right
plot up to more than ±1.0 mE in the upper left plot. The geographical structures remain about the same,
indicating the presence of systematic effects. Negative differences appear in the middle of the study area,
while positive differences are located in the western and eastern areas. Those systematic differences stem
from the regularization: As discussed above, strong regularization is needed for solving the normal equation
systems at all noise levels. Since the prior information w.r.t. the background model Vzz,back is introduced
as zero vector, the regional models ∆Vα

zz,8
can be interpreted to contain ”zero-signal“, i. e. to be smoothed.

At highest noise level α = 1.0, strongest regularization is needed, i. e. the output model ∆V 1.0
zz,8

contains
the most information from the zero-vector µd . Comparing, for instance, the geographical structure of the
differences d∆V 1.0

zz,8
with those of Vzz,back from Fig. 6.2, intensifies the assumption: Vzz,back shows largest

amplitudes in the middle of the area of investigation, and lower ones in the western and eastern parts. If the
output functionals ∆Vα

zz,8
are smoothed and thus adapted to the low-resolution signal, they delivered too large

values in the middle and too small values in the western and eastern parts. This would result in corresponding
negative (middle) and positive (western/eastern) differences to the validation data ∆V sim

zz,8
.

Histogram The presence of ”zero-signal“ w.r.t. the background model in the estimated output models and
the effects of noise amplification further are visible in the referring histograms of the differences d∆Vα

zz,8
, cf.

Fig. 6.5 (ii). In a perfect model fit of noise-free data, the curves are expected to represent sharp peaks w.r.t. the
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computational accuracy. In this study, they approximately extend to ±1.0 mE, except the peak of noise level
α = 1.0 (dark blue curve), which extends to around ±1.5 mE. The sharpest peak results for the differences
d∆V 0.1

zz,8
of noise level α = 0.1 (pink curve). As discussed above, in this case, the VC of the prior information

(and thus, the regularization parameter) did not increase compared with the behavior of σ2
d

at other noise
levels, cf. Tab. 6.3 (Fig. 6.4). Thus, the corresponding curve of the histogram of the differences confirms this
slightly weaker influence of regularization in the regional model ∆V 0.1

zz,8
. Further, all peaks of the differences

are centered at around 0 mE, except of case α = 1.0. The latter was indicated by the negative mean value
in Tab. 6.4, causing a small shift of the histogram to the negative domain. Since both the simulated input
observations, as well as the output models have a shifted mean value at about 5 mE (cf. Tab. 6.2), it can be
concluded that the regional modeling approach is able to capture this shift of observations up to noise level
α = 0.5 (corresponding to around 4 mE).

Figure 6.5: Study cases (a) and (b): Differences d∆Vα
zz,8

at different noise levels: case (a) noise-free (α = 0), and case (b) Gaussian
white noise (α = 0.01, 0.1, 0.5, 1.0). Displayed are (i) the geographical distribution and (ii) the histograms of the differences.

Summary and discussion of study cases (a) and (b)

The remaining different shapes and magnitudes of the histogram peaks, the range and the geographical
distribution of minimum and maximum differences in Fig. 6.5, as well as the (relative) SDs of the mean
differences indicate some weaknesses in the modeling approach: Especially the regional rank deficiency and
the downward continuation cause instabilities in the normal equation system and require strong regularization.
Consequently, the prior information, introduced as zero-vector, has large influence on the regional solutions.
Further modeling errors are contained due to artificial structures from the oscillating Shannon function in the
spatial domain. Taking those aspects into account, the regional modeling approach can be assumed to be
consistent, in conclusion of study cases (a) and (b). The above all small closed-loop differences w.r.t. the
validation data indicate a high internal accuracy of the regional modeling approach and a proper handling of
noise-free and noisy input data.
The remaining weaknesses in cases (a) and (b) could be reduced, either by (1) introducing additional and/or
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more realistic prior information, (2) investigating alternative regularization strategies, or (3) minimize the
regional rank deficiency.

(1) Additional and/or alternative prior information Introducing a higher-resolution background model,
and thus, a higher-resolution prior information, delivered a more realistic ”zero-signal“, but the instabilities
in the VCE due to the missing residuals of the global model remain. Instead, the prior information could
be replaced by alternative information, e. g. stemming from synthetic Earth models taking into account the
Earth’s topography. Introducing the latter as stochastic observation group in the extended GMM in terms of a
relative gravitational functional might stabilize the method of VCE.
In order to further ensure the relation of the regional model to the long wavelengths of the Earth’s gravity
field, the synthetic model could also be introduced in addition to the prior information w.r.t. the background
model. Hence, on the one hand, the output model is referenced to a low- up to medium-resolution global SH
model, and on the other hand, the estimation model is be stabilized by a higher-resolution synthetic model. A
possible realization within the approach of this work is discussed in the Outlook 7.

(2) Alternative regularization strategies As discussed above, for the combination of heterogeneous data
sets, VCE is appropriate to manage their relative weighting. However, the weaknesses of regularization by
VCE are shown in the study cases (a) and (b) if strong regularization is needed and the prior information is
not realistic enough. Naeimi (2013) compares different regularization strategies and parameters for regional
gravity modeling by SBFs. Besides VCE, generalized cross validation, L-curve analysis and Parameter-
Signal-Correlation (PSC) are investigated for different settings in closed-loop scenarios. In the most cases,
the method of PSC delivers the smallest RMS values of CL differences, while the method of VCE delivers the
largest RMS values. Hence, alternative regularization strategies could reduce the CL differences, obtained in
study cases (a) and (b). However, Naeimi (2013) tested only regional models, using either simulated GRACE,
or simulated GOCE data, but no combined models, which would be relevant for the following case studies of
this work.

(3) Reduction of rank deficiency The global rank deficiency kglob

L
becomes zero, if the number Qglob

L
of

grid points of the computation grid equals the dimension NL = (L + 1)2 of the space H0, ...,L (ΩR), spanned
by the SBFs. It was discussed in the context of Eq. (5.2). However, due to the choice of the Reuter grid
with a defined number of grid points, this cannot be realized in the most cases. As mentioned in Sec. 5.1.1,
alternative point grids were studied by several research groups, but finding a ”perfect“ computation grid is
quite challenging. Irregular grids might be manually adapted such that the global number of grid points
equals the dimension NL of the space H0, ...,L (ΩR ), which is very time consuming. However, even if the
global number of grid points equals the NL , linear dependencies could remain in the normal equation system,
for instance, due to an unfavorable geographical data distribution. Since usually, those linear dependencies
occur very rarely for heterogeneously distributed real data, a fixed Reuter grid enhances in the most cases the
stability of the approach.
In contrast to the global rank deficiency, the regional rank deficiency furthermore depends on several aspects,
as e. g. regionally limiting the number of SBFs. Since the latter are globally defined, spectral information is
missing in the resulting regional models. The larger the extent of the computation area ∂ΩC , i. e. the less
basis functions are neglected. However, the spatial extent of the observation data limits the size of ∂ΩC . By
an appropriate choice of areas and area margins, as discussed in Secs. 5.1.2 and 5.1.3, the local support of
SBFs is tried to be captured as optimally as possible. Note, that kreg

L
gives only a rough estimate of the regional

rank deficiency, cf. Sec. 5.1.4. The actual value is unknown, as e. g. discussed by Naeimi (2013).

Study case (c): Different input functionals

In contrast to the above presented study cases (a) and (b), different gravitational functionals now serve as
input for regional gravity modeling in case (c). According to the classification of study cases in Tab. 6.1, the
complexity increases. The main aspects to be answered read:

Study case (c1) What is the effect of using different basis functions in the synthesis? How well do combined
models from heterogeneous data with different gravitational functionals and spatial distributions fit
validation data?
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Study case (c2) What is the effect of a non-combined solution (c2) in contrast to the combined solution (c1)?

The following investigations are studied in the frame of the International Association of Geodesy (IAG)
Inter-Commission Committee on Theory (ICCT) JSG (Joint Study Group) 0.3 ”Comparison of Current
Methodologies in Regional Gravity Field Modeling“ (http://jsg03.dgfi.tum.de/index.php?id=5).
Some of the results were presented by Lieb et al. (2014).

Table 6.5: Study case (c): Specifications.

Input (c1) · ∆T sim GRACE simulated from EGM2008
∂ΩO , · Lobs = 250

· 4355 observations along flight tracks of one month
(c1), (c2) · T sim

rr GOCE simulated from EGM2008
· Lobs = 250

· 9295 observations along flight tracks of 61 days

Approach (c1), (c2) · J = 8

∂ΩC , · ∆Tback, Trr,back: GOCO03s, d/o 60
· prior information: GOCO03s, d/o 60
· L = 280 (analysis, Shannon)
· QL = 796 unknowns
· RReuter = 6378.137 km grid radius
· lJ = 255 (J = 8, synthesis using Shannon, Blackman, Cubic Polynomial)

Output (c1), (c2) · TSha
8

, TBla
8

, TCuP
8

up to l8 = 255

∂ΩI , (c2) · TBla
8

up to l8 = 255

· validation sites, geographical grid (spacing 30′ × 30′)

Validation (c1), (c2) · T sim
250

up to d/o 250
· validation sites, geographical grid (spacing 30′ × 30′)

Simulated input data According to the suggestion of JSG0.3, a test area in Europe is chosen, see Fig. 6.6 (i).
The color-encoding topography is visualized based on the Digital Topographic Model 2006.0 (DTM2006.0)
(Pavlis et al., 2007). Several data sets are available within this area and provided on the website of JSG0.3,
simulated from EGM2008 (cf. Sec. 3.2.2). In study case (c1) the filtering with different basis functions in
the synthesis shall be investigated, and in case (c2) the combination of GRACE and GOCE vs. a GOCE-only
solution. The specifications of the modeling approach are listed in Tab. 6.5.
The input data are given in the observation area ∂ΩO along real orbits of the GRACE and GOCE satellite
missions. The spatial extent of the simulated data is visualized in Fig. 6.6 (i). The GRACE and GOCE
observations cover the gray-bordered observation area ∂ΩO for a regional modeling approach set up at level
J = 8. White dots indicate the geographic distribution of the data and are equivalent to the gray dots (GRACE)
and lines (GOCE) in (ii). The red- and the larger green-bordered area in (i) are the referring computation and
modeling area, ∂ΩC and ∂ΩI , cf. Sec. 5.1.2.
The simulated data refer to the disturbing potential T , Eq. (2.53), w.r.t. the normal reference field GRS80, cf.
Sec. 3.2.1. Thus, GRACE observations are provided in terms of disturbing potential differences ∆T sim, cf.
Eq. (2.61). The data set covers a time period of one month. Simulated GOCE observations describe radial
gravity gradients T sim

rr , cf. Eq. (2.79), of the disturbing potential and cover a full 61-days repeat cycle.26 Both
data sets are noise free and given with spectral resolution up to SH degree Lobs = 250.

Methodical settings The modeling approach is set up at level J = 8. According to Tab. 4.8 the maximum
spectral resolution of the input data is close to the upper boundary l8 = 255 of this level. The basis functions
are located at Reuter grid points (red crosses in Fig. 6.6 ii) within the computation area ∂ΩC ∈ ΩR with
R = RReuter = 6378.137 km, i. e. at h = 0 km near the Earth’s surface. GOCO03s serves as background model
up to d/o 60. The choice was made in the frame of a variety of comparisons with other research groups in the
ICCT JSG0.3. The input data are reduced by the background model according to Eq. (5.13). Note, EGM2008
was used for the simulation of the input data.
26As mentioned in Sec. 3.1.4, the small angular deviation of the GOCE Tzz component in GRF, to the radial direction r from the geocenter to the center of

the satellite, is neglected in this work and it yields Tzz ≈ Trr .

http://jsg03.dgfi.tum.de/index.php?id=5
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Figure 6.6: Study case (c): Closed-loop scenarios in (i) a test area in the Mediterranean Sea in Europe (altitude encoding topography
from DTM2006.0), set up at level J = 8, using different input functionals (simulated GOCE, GRACE observations). In (i),
computation, observation and modeling area are bordered in red (∂ΩC ), gray (∂ΩO) and green (∂ΩI ). The spatial distribution
of ”GOCE“ and ”GRACE“ is visualized within ∂ΩO in terms of white dots, and symbolized as gray lines (GOCE) and bullets
(GRACE) in (ii); the red crosses symbolize Reuter grid points within ∂ΩC .

Estimation model In order to compute regional gravity field models from a combination of different
functionals, the extended GMM (5.22) is set up. The observation equations are formulated in the analysis
step for each input functional ∆T sim and T sim

rr by means of adapted basis functions from Eq. (5.21). Hereby,
the expressions of Tab. 4.7, formulated w.r.t. V , can be equivalently applied for Y[ Ṽ ] = T . All simulated
observations consistently refer to the same normal potential reference GRS80, and are subtracted by the same
background model according to Eq. (5.14). The design matrix A in the extended GMM (5.22) comprises
the field transformations which are necessary to enable a combination of different gravitational functionals.
Further, prior information µd (zero-vector w.r.t. the background model GOCO03s up to d/o 60) is introduced
as additional observation group, cf. Eq. (5.19), in order to handle singularity problems when solving the
normal equation system (5.23), as exemplarily discussed in study cases (a) and (b).
The series (5.21) is developed in terms of the non-smoothing Shannon functions up to degree L = 280,
i. e. higher than the upper boundary (l8 = 255) of the maximum resolution level J = 8, and smaller than
Lrank

= 288, in order to reduce the regional rank deficiency. (Lrank
= 288 is estimated by Eq. (5.11), with

Qglob

256
= 83966 from Tab. 5.1.) Since Lobs < L, the estimated scaling coefficients, cf. Eq. (5.24), contain only

information up to degree 250.

Different filter kernels

In the synthesis, the low-pass filtering SBFs Φ8(xc, xq ), Eq. (5.27), are adapted to T , cf. Tab. 4.7. While
in the analysis, Shannon functions, defined by Eq. (4.29), are used due to their ideal filter characteristic in
the spectral domain, different filter kernels now shall be investigated in the synthesis in study case (c1). The
uncertainty of the Shannon functions in the spatial domain provokes erroneous side lobes in the output models.
In order to study those effects, the three different low-pass filtering functions Shannon (Sha), Blackman (Bla),
Cubic Polynomial (CuP) from Fig. 4.9, are compared in the sequel. They are defined by setting the Legendre
coefficients in Eq. (5.27) to φSha

l, j
, Eq. (4.29), φBla

l, j
, Eq. (4.30), φCuP

l, j
, Eq. (4.31). As explained in the context
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Table 6.6: Study case (c1): Range (min... max), mean value (mean) and referring standard deviation (SD) of the output models T8

obtained by different filter kernels (Sha, Bla, CuP) in the synthesis. The statistics of the estimated standard deviations sT8 are listed
below.

Shannon (Sha) Blackman (Bla) Cubic Polynomial (CuP)

T8 min ... max [m2/s2] −64.58 ... 47.89 −58.31 ... 49.28 −37.49 ... 37.55

mean +/- SD [m2/s2] −0.07±20.24 0.02±19.11 −0.09±13.29

sT8 min ... max [m2/s2] 0.157 ... 0.527 0.006 ... 0.047 0.006 ... 0.035

mean +/- SD [m2/s2] 0.266±0.0750 0.014±0.0073 0.010±0.0044

of Eq. (4.11), it is possible to multiply the scaling coefficients in the modeling equations (5.28) with different
basis functions. The resulting differential models TSha

8
, TBla

8
, TCuP

8
of the disturbing potential up to level J = 8

(degree l8 = 255) refer to the background model GOCO03s up to d/o 60. They are computed at the given
validation sites xc of a regular grid, cf. Tab. 6.5.

Output models and standard deviations Figure 6.7 shows the geographical structures of the regional
models (i) TSha

8
, (ii) TBla

8
, (iii) TCuP

8
, computed at validation sites xc ∈ ∂ΩI . The referring statistics are listed

in Tab. 6.6. As expected, the gravitational variations are similar in all three cases and a smoothing behavior is
visible for the Blackman and CuP-filtered solutions w.r.t. the non-smoothed Shannon-solution. The statistics
in Tab. 6.6 confirm the decrease of the amplitudes: While for Shannon, they range from −64.58 m2/s2 to
47.89 m2/s2 (with a standard deviation of 20.24 m2/s2), for Blackman the range is smaller with values from
−58.31 m2/s2 to 49.28 m2/s2 (and a SD of 19.11 m2/s2), and for CuP the smallest range is obtained with
amplitudes from −37.49 m2/s2 to 37.55 m2/s2 (SD 13.29 m2/s2). The characteristic Legendre coefficients,
cf. Fig. 4.9 (d) – (f), define this smoothing effect especially in the high frequencies when using Blackman and
CuP functions. Since the resulting gravitational structures are of minor interest in this study case (c1), they
are not further analyzed.
The standard deviations sTSha

8
, sTBla

8
, sTCuP

8
of the resulting differential models are estimated according to

Eq. (5.30) with sT (xc ) =
√
v (T8 (xc )) at validation sites xc ∈ ∂ΩI . They are visualized in Fig. 6.8 for the

three different filter kernels (i) Shannon, (ii) Blackman, (iii) CuP; the statistics are further listed in Tab. 6.6.
As expected, the SD values increase in all three cases close to the borderlines of ∂ΩI due to remaining edge
effects, cf. discussion in Sec. 5.1.3. The latter have been reduced by choosing different extensions of ∂ΩI ,
∂ΩO, ∂ΩC , cf. Fig. 6.6. With |ϕ|max = 47◦ and J = 8, the margin from Eq. (5.5) counts η8 ≈ 2.0°.
For Shannon the standard deviations are around one order of magnitude larger than for Blackman and CuP
(different color bars are used in Fig. 6.8). The maximum SD of sTSha

8
yields with 0.53 m2/s2 around 1 % of

the maximum (positive) signal amplitude of TSha
8

, cf. Tab. 6.6. Both, the signal and the SD maxima, are
reached at the northern boundary of the test area, cf. Figs. 6.7 (i) (orange colored at around 12° longitude)
and 6.8 (i) (red colored along the northern borderline). However, the SD seems not to be correlated with the
signal for the Shannon-, as well as for the Blackman- and CuP-solutions. In the latter two cases, the maximum
SD values reach 0.047 m2/s2 (Bla) and 0.035 m2/s2 (CuP) at the north-western and north-eastern edges of
∂ΩI . Consequently those maxima yield only around 0.1 % of the largest (positive) signal amplitudes of TBla

8

and TCuP
8

, cf. Fig. 6.7 (i) and (ii).
Choosing wider margins between the three areas depending on the choice of basis function (e. g. for Shannon)
might further reduce the edge effects at the expense of reducing the size of the study area ∂ΩI . The here
selected width of the margins tries to balance the reduction of edge effects and a spatial extent of ∂ΩI as wide
as possible adapted to the spatial extent of the observations in ∂ΩO.
Compared with Shannon, the smaller SDs of the Blackman- and CuP-filtered regional models could, on the
one hand, indicate a higher modeling accuracy, since the Shannon function shows strong oscillations in the
spatial domain. This would further explain the strong increase of the SD values along the borderlines. On
the other hand, the smaller SD values of the Blackman- and CuP-solutions could result from smoothing the
signal; thus, smaller standard deviations are obtained. A comprehensive study of a variety of SBFs and their
standard deviations is investigated by Bentel et al. (2013a). The smaller SD values of the Blackman kernel
compared with the SD values of the Shannon function are in agreement.
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Figure 6.7: Study case (c1): Estimated disturbing potential (i) TSha
8

, (ii) TBla
8

, (iii) TCuP
8

, up to spectral resolution level J = 8,
modeled from simulated GRACE and GOCE, using Shannon (Sha), Blackman (Bla), Cubic Polynomial (CuP) functions in the
synthesis. Mean value and SD are depicted in the white boxes; unit [m2/s2].

Figure 6.8: Study case (c1): Standard deviations (i) sTSha
8

, (ii) sTBla
8

, (iii) sTCuP
8

, of the differential signals, using Shannon (Sha),

Blackman (Bla), Cubic Polynomial (CuP) functions in the synthesis. Mean value and SD are depicted in the white boxes; [m2/s2].

CL differences In order to analyze the smoothing behavior of the basis functions and to rate the model fit
of all three versions TSha

8
, TBla

8
, TCuP

8
, they are compared with the validation data T sim

250
, cf. Tab. 6.5. Note, the

same non-smoothed validation data set is used for all three cases. The differences

dTSha
8 = TSha

8 − T sim
250 ,

dTBla
8 = TBla

8 − T sim
250 ,

dTCuP
8 = TCuP

8 − T sim
250 ,

are computed at validation sites xc and displayed in Fig. 6.9. The values (i) dTSha
8

range between around
−30 m2/s2 to 30 m2/s2 and seem to be randomly distributed. Compared with the range of the estimated signal
TSha

8
between around −50 m2/s2 to 50 m2/s2, cf. Fig. 6.7 (i), the differences dTSha

8
are in the same order of

magnitude, cf. Fig. 6.9 (i). The SD of the mean difference counts 7.87 m2/s2. In contrast, the amplitudes
and the SD of the mean of the differences dTBla

8
(ii) are much smaller. They range approximately between

−20 m2/s2 to 20 m2/s2 with a SD of 4.01 m2/s2. However, the extreme values are supposed to be correlated
with the topography, cf. Fig. 6.6 (ii), which becomes especially apparent for the mountainous regions of the
Alps and of South Italy and Sicily. As the Blackman filter smoothes the high frequencies of each resolution
level, cf. Fig. 4.9 (e), the referring spectral content is missing in the regional model TBla

8
, cf. Fig. 6.7 (ii). The

validation data set T sim
250

contains complete spectral information up to degree l = 250, and thus, the closed-loop
differences are assumed to result mainly from the spectral inconsistency. This aspect is manifested by the
investigating the differences dTCuP

8
, using Cubic Polynomial functions. In Fig. 6.9 (iii), topographic correla-

tions are clearly visible. The extreme values of the differences range between −40 m2/s2 to 40 m2/s2 and the
SD of the mean difference counts 10.14 m2/s2. The strong smoothing behavior of CuP, cf. Fig. 4.9 (f), seems
to remove valuable high-resolution information in the regional model of TCuP

8
.

Comparing the CL differences with the standard deviations from Fig. 6.8, the CL differences are for all three
cases, Shannon, Blackman and CuP, around two to three orders of magnitude larger. This indicates too opti-
mistic error estimates due to incomplete stochastic models. Further, low-resolution errors are not considered
in the stochastic model. However, the larger CL differences mainly refer to the different characteristics of the
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filter kernels: In case of Shannon, the large values dTSha
8

and sTSha
8

indicate erroneous effects in TSha
8

stemming
from the oscillations of the function in the spatial domain, cf. Fig. 4.9 a). The CL differences dTBla

8
and

dTCuP
8

are computed between smoothed regional models and non-smoothed validation data. In case of CuP,
the values sTCuP

8
are very small, but the differences dTCuP

8
are strongly correlated with the topography and

the SD of the mean difference is even larger than in case of Shannon. Hence, the small values sTCuP
8

may be
owed to the smoothing in the high frequency domain of the modeled signal TCuP

8
. Blackman scaling functions

deliver the smallest closed-loop differences (smallest range and smallest SD of the mean difference) compared
with Shannon and CuP. Further, the values sTBla

8
are one order of magnitude smaller than for Shannon and

in the same order of magnitude as for CuP. Together with the small CL differences dTBla
8

, the small values
of sTBla

8
indicate the most accurate model fit w.r.t. the three selected cases TSha

8
, TBla

8
, TCuP

8
. In conclusion,

Blackman SBFs are verified to be a good compromise between smoothing functions in the frequency domain
and oscillating functions in the spatial domain (Lieb et al., 2014).
The however relatively large CL difference of around 5 % for Blackman (w.r.t. the range of approximately
±40 m2/s2 of TBla

8
, cf. Tab. 6.6), which mainly stems from missing signal content in the high frequencies of

level J = 8, further results from regularization in order to stabilize the ill-conditioned normal equation system
(5.23), as discussed in study cases (a) and (b). The relative weight of µd counts 1 × 10−10 w.r.t. the simulated
data T sim

rr ; the regularization parameter λσ yields 6.09 × 10−10 (with an estimated VC of 8.87 × 10−14 for the
GOCE observations and 1.46 × 10−4 for the prior information).

Figure 6.9: Study case (c1): Closed-loop differences (i) dTSha
8

, (ii) dTBla
8

, (iii) dTCuP
8

, w.r.t. the validation data set T sim
250

, using
Shannon (Sha), Blackman (Bla), Cubic Polynomial (CuP) functions in the synthesis.

Different functionals

In the following, the combination of the two data sets GRACE and GOCE from study case (c1) shall be
compared with a GOCE-only solution, study case (c2). The modeling approach using just one observation
group T sim

rr is set up at level J = 8 in analogy to study case (c1). The specifications are listed in Tab. 6.5.
Further, prior information in terms of GOCO03s up to d/o 60 is introduced in order to solve the normal
equation (5.17). Consequently, the extended GMM (5.22) is set up for T sim

rr and µd (zero vector).

Variance component estimation In Tab. 6.7, the estimated VCs, the order of magnitude of relative weights
(RL) w.r.t. T sim

rr , and the regularization parameter λσ are listed, both for the combined (c1) and the only (c2)
case. The values of the estimated VCs for T sim

rr are very similar: (c1) 8.87 × 10−14 and (c2) 8.81 × 10−14. The
VC of the prior information gets a slightly higher value of 1.46 × 10−4 in the combined case (c1), i. e. a lower
relative weight, than in the only case (c2) 1.06 × 10−4. The corresponding smaller regularization parameters
(c1) λσ = 6.09 × 10−10 and (c2) λσ = 8.30 × 10−10 affirm a stronger regularization in the GOCE-only
scenario (c2).
In the GRACE-GOCE combination, the simulated GRACE observations ∆T sim obtain a relatively high VC;
the relative weight w.r.t. T sim

rr is 7 orders of magnitude lower (the RW of the prior information is 10 orders of
magnitude lower). Consequently, the contribution of GRACE to the modeling solution TBla

8
from Fig. 6.7 (ii)
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Table 6.7: Study cases (c1) and (c2): Variance components (VC), order of magnitude of relative weights (RW; w.r.t. T sim
rr ), and

regularization parameter λσ for the (c1) combined and (c2) only solution.

case (c1) (c2)

observation group VC RW λσ VC RW λσ

T sim
rr 8.87 × 10−14 1 8.81 × 10−14 1

∆T sim 3.24 × 10−7 10−7 6.09 × 10−10 8.30 × 10−10

prior information 1.46 × 10−4 10−10 1.06 × 10−4 10−10

is relatively weak compared with the one of GOCE. The Reason originates from the spatial distribution
of the observations: While the GOCE observations cover ∂ΩO homogeneously and are equally distributed
(cross-track distances smaller than 0.5°), the GRACE tracks are concentrated and yield cross-track distances of
around 2.5°, as displayed in Fig. 6.6 (ii). The corresponding lower spectral resolution is reasonably considered
within the VCE.
Comparing the regularization parameter of the GOCE-only case (c2) with the one of the GOCE-only case from
study (a), cf. Tab. 6.3, the latter was around 6 orders of magnitude larger, i. e. the regularization much stronger.
Influences stem from different regional rank deficiencies, different resolution of the background models, or
instabilities and uncertainties in the procedure of VCE due to the use of noise-free data. Consequently, the
normal equation system of case (a) is less stable than in case (c2). A more detailed comparison is difficult due
to the different parametrization.

Output models and differences In the synthesis, Blackman functions are used due to the favorable charac-
teristics as discussed in case (c1). The modeling equation (5.28) is set up for J = 8 and yields the regional
GOCE-only model TBla

8
(c2) of the disturbing potential. It ranges from −58.21 m2/s2 to 49.39 m2/s2. The

mean value counts 0.097 m2/s2 and the referring standard deviation 19.994 m2/s2. Consequently, the values
are very similar to the statistics of the combined model TBla

8
in Tab. 6.6.

Due to the weak contribution of GRACE information in
case (c1), the GOCE-only solution (c2) is expected to be
very similar. The difference of the resulting differential
models of case (c1) and (c2) ranges from −0.24 m2/s2

to 0.58 m2/s2 with a mean difference of 0.077 m2/s2

and a SD of 0.058 m2/s2. Hence, the difference counts
around 1 % of the maximum modeled signal ampli-
tude and is one order of magnitude larger than the SD
sTBla

8
, cf. Fig. 6.8 (ii). The difference is plotted in

Fig. 6.10. Hereby, especially the decreasing slope in
south-northern direction, and the negative and positive
slopes towards the south-eastern and north-eastern cor-
ners are noticeable. This could be due to correlations
of low-resolution GRACE information in case (c1), if
the background model GOCO03s up to d/o 60 did not
completely remove the long frequencies. As mentioned
in Sec. 3.2.2, the low-resolution information of both
models, GOCO03s and EGM2008, mainly stems from
GRACE observations.

Figure 6.10: Study cases (c1) and (c2): Difference of the
combined GRACE/GOCE and the GOCE-only models of
the disturbing potential up to level J = 8. Mean difference
and SD are depicted in the white box; [m2/s2].
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The closed-loop differences dT of the combined case
(c1) and the GOCE-only case (c2) are very similar. The
SD of the above presented difference dTBla

8
= dT(c1)

yields 4.01 m2/s2, cf. Fig. 6.9 (ii). The SD of dT(c2)
reaches a marginally larger value of 4.02 m2/s2, cf.
Tab. 6.8. Hence, the SD values differ in the sec-
ond digit, which is in the order of magnitude of the
SD (0.058 m2/s2) of the mean difference between the
resulting models (c1) and (c2), cf. Fig. 6.10. Conse-
quently, the missing GRACE information in (c2) seems
to be less relevant for the CL difference. This is reason-
able, since the contribution of GRACE is very weak in
case (c1), expressed by the small RW in Tab. 6.7.

Table 6.8: Study cases (c1) and (c2): Specifications and
SD of the mean CL difference dT in terms of disturbing
potential T .

Discussion of study case (c)

The SD values of a few m2/s2 of the CL differences in the studies (c1) and (c2), cf. Tab. 6.8, stem amongst
others from rank deficiency problems which are not captured by the regularization and unrealistic prior
information (”zero-signal“), both as discussed in study cases (a) and (b). Further instabilities in the procedure
of VCE in case of noise-free data, and remaining low-resolution signal which is not removed by the background
model influence the CL differences, as well.

Instabilities of VCE As mentioned in Sec. 5.2.2 the variance factors are computed based on stochastic
information, i. e. using the residuals of the observations. However, in this study case (c), noise-free data are
used. In case (c1), convergence in the VCs is reached after 21, in case (c2) after 22 iterations. The number
of iterations, depends on the initial values of the VCs and the chosen point of convergence. In this work, the
parameters are empirical values. Consequently, the estimated VCs might be unrealistic and the regularization
parameter not large enough to stabilize the normal equation system. Choosing a more realistic approximate
value for the beginning of the iterations and/or a defining a more realistic stop criterion could help to stabilize
the procedure. Further investigations follow in real data scenarios by means of noisy data, where VCE is more
appropriate.

Influence of low-resolution signal In order to consistently reduce the simulated data from the EGM2008
by the chosen background model GOCO03s, the SH coefficients of GOCO03s are rescaled according to
Eq. (2.42), i. e. adapted to EGM2008. Note, both SH models refer to GRACE in the low frequencies, cf.
Sec. 3.2.2. However, some signal remains in the long wavelengths of the simulated input data ∆T sim and
T sim
rr . The differences between the chosen background model GOCO03s and the simulation model EGM2008

range from −0.19 m2/s2 to 0.00 m2/s2 in the spectral domain up to degree 60 (for the functional T) with
a mean value of −0.10 m2/s2 and a SD of 0.046 m2/s2. Thus, the differences yield an offset of around
−0.1 m2/s2. Consequently, this low-resolution signal remains in the simulated input data (w.r.t. EGM2008)
after subtracting the background model GOCO03s. Further, the regional models of the study cases (c1) and
(c2) describe differential signal w.r.t. the background model, while the validation data refer to EGM2008.
Both aspects explain to some extent the CL differences.

Comparison with studies from other research groups

By the above discussed closed-loop simulations, the regional gravity modeling approach presented in this
thesis, is tested for diverse parametrization and input data. According to Tab. 6.1, main aspects are the need
of regularization in connection with different stochastic information (study cases (a) and (b)) and the use of
appropriate basis functions in the synthesis (study case (c)). Hereby, the complexity of the scenarios increases.
In the simplest test case (a), the internal accuracy reaches almost the level of computational accuracy. Thus,
the internal stability of the approach is rated. Within the more complex cases (b) and (c), the noise behavior
and some of the methodical settings are tested. From the plausible in- and decrease of standard deviations and
CL differences, the chosen settings seem to be appropriate and the consistency of the resulting models can be
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approved.
The choice of appropriate SBFs is always a compromise between spectral and spatial localization due to the
uncertainty principle of frequency and space, as visualized in Fig. 4.8. The approach, using Shannon SBFs
in the analysis and Blackman SBFs in the synthesis, turns out to be a good compromise by means of small
standard deviations of the modeled signal, and small CL differences. Further research groups use different
basis functions or different methods for regional gravity modeling. The main motivation of the JSG0.3 was
to compare those approaches; an overview of some examples was given in the Introduction. As outcome, the
accuracy and the efficiency of different strategies can be evaluated.
The here presented modeling approach using SBFs was compared with approaches using spherical wavelets,
spherical splines, reduced point masses, least-squares collocation and Slepian functions, cf. Tab. 1.1. The
results are summarized by Schmidt et al. (2014). The closed-loop settings are comparable with the one of
study case (c). All approaches achieve closed-loop differences, i. e. mean standard deviations, in the order of
a few m2/s2. None of the approaches consistently reaches the smallest differences. In general, the efficiency
varies for different applications and comparisons are difficult. However, it is approved that the approach of
this work fits simulated data with analog accuracy as the other approaches. Taking the previously discussed
modeling errors of the case studies (a) – (c) into account, the first secondary aim, mentioned at the beginning
of this chapter, is fulfilled.

6.1.2 Real data studies

The application of the regional modeling approach on real data, is one of the main targets in this work. Based
on the findings of the above discussed simulation studies, further settings and specifications have to be tested.
While simulation studies enable to fit the data as close as possible, real data applications suffer from the
lack of knowledge of the exact spectral content of the measurements. Further, stochastic information might
be missing, and especially data gaps tend to provoke instabilities in the estimation model. Consequently,
regularization is necessary. According to Tab. 6.1, the study cases (d) and (e) are set up, in order to investigate
the combination of real data

Study case (d) ... particularly with different functionals and accuracies.

(d1) Is the relative weighting by VCE appropriate and reasonable? Is the Laplace condition valid in terms of
tensor computations?

(d2) What is the effect of up-/downward continuation?

Study case (e) ... particularly with different observation heights and spatial distributions.

(e1) What is the effect of data gaps on the relative weighting? What is the contribution of prior information
which is used for regularization?

(e2) How accurate and plausible are the estimated scaling coefficients?

(e3) What is the effect of data gaps in resulting regional models? How do they influence the accuracy? What
is the effect of field transformations?

(e4) What is the added value of the regional model w.r.t. global SH models?

(e5) How plausible is the regional result w.r.t. another regional model?

(e6) How well does the regional model fit external data?

Study case (d): GOCE gravity gradients

As already mentioned, gravity field modeling from non-rotated GOCE gravity gradients, obtained w.r.t. GRF,
requires special emphasis, cf. Sec. 3.1.4. In order to derive gravitational information in Earth-bound coor-
dinate systems and, further, to consistently combine GOCE measurements with other observation types, the
adapted basis functions, cf. Tab. 4.7, which are used for setting up the observation equations in the extended
GMM (5.22), contain transformation terms between GRF and the Earth-bound spherical coordinate system,
cf. Sec. 2.2.2. Since the GOCE GGs embody directional information of the Earth’s gravity field, each indi-
vidual gravity gradient is treated as separate observation group assuming them to be uncorrelated. Details are
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Figure 6.11: (i) Geographical location of the test area Scandinavia (green bordered) with altitude encoding topography. (ii)
Distribution of the Reuter grid points (red dots).

Table 6.9: Study case (d): Specifications.

Input (d1), (d2) · Vxx , Vxy , Vxz , Vyy , Vyz , Vzz in GRF
∂ΩO · re-processed release 2 (level-2 products), time span 03/2010 - 05/2012

· pre-processing according to Sec. 3.3.5

Approach · Vab,back: GOCO03s, d/o 250
∂ΩC · prior information: GOCO03s, d/o 250

· L = 280 (analysis, Shannon)
(d1) · RReuter = 6378.137 km grid radius
(d1) · RReuter = 6648.137 km grid radius

· lJ = 255 (J = 8, synthesis, Blackman)

Output (d1), (d2) · Txx,8, Txy,8, Txz,8, Tyy,8, Tyz,8, Tzz,8 in LNCS
∂ΩI · at regular grid (spacing 0.2° × 0.2°), h = 270 km

explained by Lieb et al. (2015). The numerical investigations and the outcome are summarized in the following.

The specifications of the modeling approach are listed in Tab. 6.9. The approach is set up at level J = 8,
as this is the maximum level which is completely located within the sensitivity domain (MBW) of GOCE,
cf. Sec. 3.1.4. The area of investigation ∂ΩI is chosen in the Scandinavian region, see Fig. 6.11 (i), green-
bordered. The level depending Reuter grid points within ∂ΩC can be seen in Fig. 6.11 (ii), red crosses. In
study case (d1), the Reuter grid refers to a sphere with grid radius RReuter = 6378.137 km, in case (d2) with grid
radius RReuter = 6648.137 km. The observations cover the time span 03/2010 - 05/2012 of the re-processed
release 2 (level-2 products), cf. Sec 3.3.
All measurements are reduced by the global background model GOCO03s (Vab,back). Exactly the same model
is used, as for filling up the low frequencies of the observations in the pre-processing step, cf. Sec. 3.3.5, to be
consistent. Further, since GOCO03s contains full signal up to approximately degree 200, cf. 3.2.2, the differ-
ential observations dVab = Vab − Vab,back comprise mainly spectral information above degree l = 200 (no in-
formation below approximately l = 40 due to the pre-processing, and white noise in-between l ≈ 40, . . . , 200).
They are approximated in the estimation model, cf. Eq. (5.22), at level J = 8. Additionally, in order to avoid
singularities in the normal equation system (5.23), prior information is introduced according to Eq. (5.19) and
yields a zero vector µd w.r.t. the background model, cf. Tab. 6.9.
As output, the gradients Tab,8 (a, b ∈ {x, y, z}) of the disturbing potential are computed by formulating appro-
priate modeling equations (5.28), and restoring the background model according to Eq. (5.29). The modeling
height of 270 km is adapted to the mean GOCE orbit height within the Northern test area for the selected time
span of observations.
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Figure 6.12: Study case (d): (i) Gravity gradient grids of the 2nd derivatives of the disturbing potential modeled at 270 km height in
LNCS from GOCE GG measurements. (ii) VCs and corresponding order of magnitude of the relative weights for each observation
group k and the prior information GOCO03s, referenced to Vzz with highest relative weight. (iii) Trace of the tensor Tab (gray
shaded).

Figure 6.12 (i) presents the results of study case (d1) according to the xyz tensor arrangement in LNCS.
The gradients Tab of the disturbing potential show clearly different structures depending on the different
spatial directions. As expected, the radial pointing zz component observes the strongest gravitational signal
between ± 0.5 E, since it is isotropic as the Laplace equation is valid (proof see below). The variations of
the xx component (pointing in flight direction) dominate in North-South direction. The high sensitivity is
explained by the high inclination of the satellite, such that the flight tracks are almost oriented in direction
of the meridians (Bouman et al., 2016). In contrast, the yy component (cross-track) is more sensitive into
East-West direction (along the latitudes), cf. referring variations in Tyy,8 Fig. 6.12 (ii).

Relative weighting by VCE The contribution of the individual GOCE GGs is regulated by VCE, cf.
Sec. 5.2.2. Within Eq. (5.24), i. e. the computation of the unknown scaling coefficients, the estimated
variance factors σ̂2

k
(here k = 1, 2, . . . , 6 for the six tensor components) and σ̂2

d
indicate the relative weighting

of the different observation groups Vxx , Vxy , Vxz , Vyy , Vyz , Vzz , depending on their quality. Table (ii) in
Fig. 6.12 lists the estimated variance components of study case (d1), and respectively the orders of magnitude
of the relative weights, σ̂−2

k
and σ̂−2

d
, w.r.t. the zz component which points in the direction of highest signal

amplitude. The referring observation group Vzz obtains the smallest VC, iteratively determined as described
in Sec. 5.2.2, i. e., the highest relative weight. The VCs of Vxx and Vyy are only marginally larger. Those
gradients have the smallest errors, since the GOCE gradiometer was most sensitive along the X- and Y-axes.
Hence, the systematic errors in the Vyy component due to anomalous signal close to the magnetic poles,
which applies for the chosen study area in Scandinavia, cf. Fig. 6.11, are obviously removed by appropriate
filtering in the pre-processing procedure, cf. Sec. 3.3.5. As expected, the four accurate components Vxx ,
Vyy , Vzz , Vxz , obtain relative weights in the same order of magnitude. The less accurate components Vxy

and Vyz are down-weighted by five orders of magnitude. Thus, their influence on the resulting models
converges to zero. The prior information GOCO03s is down-weighted by four orders of magnitude indicating
that regularization is very weak. This appears intuitively due to the high accuracy of the observables, their
homogeneous spatial distribution and their spectral resolution, which covers the chosen modeling resolution
level J = 8. In conclusion, the method of VCE seems to handle the observation groups in a reasonable way, by
down-weighting less accurate data sets. Together with the findings from case studies (a) – (c), it is appropriate
for the combination of heterogeneous data with different functionals, accuracies, spatial distributions and
number of observations.
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Validation by trace criterion A validation of the estimated gravity gradients Tab,8, displayed in Fig. 6.12 (i),
can be obtained by the Laplace condition (trace (Tab ) = 0). The sum of the diagonal elements (gray shaded)
must be zero. The trace criterion gives a mean value of 0.000 µE and a SD of 0.147 µE. Since 1 µE =
1 × 10−15 1/s2, and since the remaining structures, displayed in Fig. 6.12 (iii) have artificial character, the
Laplace condition is valid in the frame of computational accuracy (10−16). Consequently, it is proved, that
the rotation of the observation equations in the GRF is implemented in a proper way, and that the regional
approach delivers reasonable GG grids, cf. 6.12 (i).

Up-/downward continuation Within study case (d2), the influence of the up- and downward continuation is
investigated. Since the modeling approach from case (d1) uses a Reuter grid with RReuter = 6378.137 km grid
radius, the basis functions are located near the Earth’s surface (h = 0 km). Down- and upward continuation
terms, cf. series expansions in Tab. 4.7, are applied in the observation (analysis in terms of Eq. (5.21)) and
modeling (synthesis in terms of Eq. (5.27)) equations.
In case (d2), the level J = 8 computations are repeated according to the specifications from Tab. 6.9, now
with basis functions located on a sphere with Reuter grid radius RReuter = 6648.137 km, i. e. approximately
270 km above the Earth’s surface, close to the mean observation height. In order to investigate the influence of
down- and upward continuation, the resulting GG grids of tensor T ab,8, case (d1), and T 270km

ab,8
, case (d2), are

compared with GOCO03s (d/o 250). The statistics (mean, SD) of the referring differences dT ab,8, dT 270km
ab,8

,
are listed in Tab. 6.10 for the single tensor components.

Table 6.10: Study case (d2): Mean value and SD of the differences dTab,8 and dT270km
ab,8

to GOCO03s up to d/o 250.

case (d1) case (d2)

RReuter = 6378.137 km RReuter = 6648.137 km

difference mean [mE] SD [mE] difference mean [mE] SD [mE]

dTxx,8 0.014 0.098 dT270km
xx,8

0.012 0.089

dTxy,8 −0.002 0.070 dT270km
xy,8

0.000 0.033

dTxz,8 −0.001 0.132 dT270km
xz,8

0.003 0.078

dTyy,8 0.014 0.214 dT270km
yy,8

0.003 0.077

dTyz,8 0.020 0.230 dT270km
yz,8

−0.003 0.086

dTzz,8 −0.018 0.280 dT270km
zz,8

−0.001 0.129

The mean values of dT 270km
ab,8

are smaller than 0.02 mE, the corresponding SD values smaller than 0.13 mE,

cf. Tab. 6.10. The largest SD 0.129 mE is obtained for dT 270km
zz,8

. In a rough estimate, it is for instance
in the same order of magnitude as the maximum omission error 0.1 mE of Vzz at altitude of h = 225 km,
assessed by Bouman et al. (2016) (using EGM2008 between SH degree l = 361, . . . , 2190), taking different
grid altitudes and spectral resolutions into account. The differences dT ab,8 at h = 0 km are slightly larger.
Similar differences between the tensor components of the main diagonal and GOCO03s are discussed in the
supplementary material of Bouman et al. (2016).
Comparing the SD values of (d1) and (d2) relatively to each other, the value of the zz component distinguishes
the most. However, the difference is in the same order of magnitude as the above mentioned maximum
omission error of 0.1 mE for Vzz from EGM2008 (again, taking into account the different spectral resolutions
and altitudes). It can be concluded, that the grids of both approaches (d1) set up at h = 0 km, and (d2) set up at
h = 270 km, deliver similar modeling results at satellite altitude. The effect of down- and upward continuation
is marginal and does not seem to have an essential influence on the results of (d1).
Moreover, setting up the approach at h = 0 km increases the flexibility and is beneficial for the combination with
terrestrial, air-/shipborne and altimetry data sets, observed at lower heights. Further, in most applications, one
is interested in variations of the Earth’s gravitational field at or close to the Earth’s surface, e. g. for referencing
height systems, analyzing structures of the crust or the lithosphere (Bouman et al., 2013). Differences of GOCE
GGs and GOCO03s at h = 0 km, i. e. applying just downward continuation in the analysis, but avoiding upward
continuation in the synthesis, reach a few E in the Scandinavian test area, the SD of the mean difference counts
around 1 E. Those differences might either indicate modeling errors or different signal in the regional models
w.r.t. global SH models.
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Figure 6.13: Study case (e): Test area (green bordered) in Northern Germany: (i) Spatial distribution of the terrestrial (yellow), air-
(orange), shipborne (red), and altimetry (green) observations. (ii) Computation ∂ΩC (Reuter grid, red crosses), observation ∂ΩO
(gray dots and lines), and modeling ∂ΩI (green bordered) area. Source: Lieb et al. (2016), Figs. 1 and 2.

Study case (e): Terrestrial, air-/shipborne and altimetry data

The investigations and results of study case (e) are published by Lieb et al. (2016). The most relevant aspects
to be discussed in this section are cited below. Figure 6.13 depicts (i) the heterogeneous spatial distribution
of observations according to Fig. 3.9, (ii) the three areas of computation, observation and investigation, cf.
Fig. 5.1. The specifications are summarized in Tab. 6.11. From the average point, along- and cross-track
distances of the measurements presented in Sec. 3.3 and the overall spatial distribution, a mean spatial
resolution of 10 km is derived, cf. Fig. 6.13 (i). According to Tab. 4.8, the modeling approach then is set up
at level J = 11. The pre-processing steps, further described in in Sec. 3.3, ensure a homogenization of the
data sets w.r.t. GRS80, cf. Tab. 3.7.

Table 6.11: Study case (e): Specifications.

Input · δgter gravity disturbances, terrestrial (ter) data
∂ΩO · 5 km average point distance

· pre-processing according to Sec. 3.3.1
· δgair gravity disturbances, airborne (air) data
· 10 km average along-/cross-track resolution
· pre-processing according to Sec. 3.3.3
· δgship gravity disturbances, shipborne (ship) data
· 4 km average along-/cross-track resolution
· pre-processing according to Sec. 3.3.2
· T disturbing potential, derived from altimetry SSH
· 10 km average along-/cross-track resolution
· pre-processing according to Sec. 3.3.4

Approach · δgback, Tback: GOCO05s, l j′ = 127 ( j ′ = 127)
∂ΩC · prior information: GOCO05s, l j′ = 127

· L = 2190 (analysis, Shannon)
· QL = 2118 unknowns, Reuter grid points respectively
· RReuter = 6378.137 km grid radius
· lJ = 2047 (J = 11, synthesis, Blackman)

Output (e1) · ∆g gravity anomalies
∂ΩI · ζ quasigeoid heights

(e1), (e2) · at regular grid (spacing 0.2° × 0.2°), h = 270 km

The estimation model [Eq. (5.22)] contains the functional relationships for the K = 9 different
observation groups from terrestrial [1], airborne (two campaigns: North Sea [2], Baltic Sea

[3]), and shipborne [4] gravimetry, as well as from altimetry (missions: ERS-1e [5], ERS-
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Table 6.12: [Study case (e1):] Relative weights for each observation group k and the prior information, referenced to group [1] with
highest relative weight [...]. Source: Lieb et al. (2016), Tab. 2.

observation group k observation type data set relative weight

[1] terrestrial BKG 1

[2]
airborne

North Sea 1

[3] Baltic Sea 1

[4] shipborne BKG 10−1

[5]

altimetry

ERS-1e 10−3

[6] ERS-1f 10−3

[7] Cryosat RADS 10−3

[8] Envisat EM 10−3

[9] Jason-1 GM 10−3

prior information GOCO05s 10−5

1f [6], Cryosat [7], Envisat EM [8], Jason-1 GM [9]), see [Tab. 4.7]. As prior information
we introduce the same global SH model as the subtracted background model GOCO05s up to
[l7 = 127], contributing low-resolution information mainly stemming from satellite gravimetry
[cf. Sec. 3.2.2]. Thus, the expectation [vector] can be set to µd = 0 and [Pd = I ] (identity
matrix), assuming the SH model as noise-free. We further treat all K = 9 groups as independent
data sets. Both, due to the variety of different measurement systems and due to the unrelated
observation time spans, it is justified to neglect the correlations between the observation groups
k, [cf. Sec. 3.3]. Further, we introduce identity matrices Pk = I , assuming no correlations and
similar accuracies of the measurements yk of one data type, due to insufficient information about
the data quality and due to considerably smaller computational expense. (Lieb et al., 2016)

The external accuracy of the computed functionals can be assessed e. g. by comparing the
regional results [... in study case (e5)] with an existing regional model computed by a different
approach and/or from different input data, or [in case (e6)] by composing a cross-validation, i. e.
extracting some input data from the estimation and comparing the modeling results finally with
those data. A comparison with regional models should [prove] the plausibility of our solution
while differences to existing global models [in case (e4)] identify supplementary significant
signal content in our model and thus the additional value of the chosen approach. However, we
have to take into account correlations between identical input data in the different models. The
cross-validation further allows rating the model fit of the data and thus the external accuracy.
(Lieb et al., 2016)

Relative weighting of input data In a first study case (e1), the relative weighting of the heterogeneous data
sets listed in Tab. 6.11 is discussed.

[Table 6.12] lists the relative weights [...], i. e. the reciprocal [values] of the VCs, for all
observation groups k referred to the observation group [1] (k = 1). This terrestrial data set
obtains the smallest VC, i. e. the highest relative weight due to several positive features, such as
high data quality and quantity: the observations show a good signal to noise (s/n) ratio, few data
gaps, homogeneous and wide-spread distribution, and high spectral resolution [cf. Sec. 3.3.1].
[...]
The off-shore shipborne measurements [4] are down-weighted relatively to [1] by one order of
magnitude, due to their spatial limitation and lower accuracy [cf. Sec. 3.3.2]. The downward
continuation of the airborne measurements [2] and [3] may reduce their s/n ratio as well, but the
effect is marginal [cf. Study case (d),] so that [2] and [3] get the same high relative weights as
[1].
The altimetry measurements [5] to [9] get each similar weights, but they are down-weighted three
orders of magnitude compared to [1]: Especially the limited spatial resolution [cf. Sec. 3.3.4]
reduces their signal content and contribution to the combined solution here; the low influence
in contrast to [4] probably stems from the strong pre-processing of the originally less accurate
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Figure 6.14: [Study case (e2): (i)] Estimated coefficients [...] and [(ii)] their standard deviations up to L = 2190 within the
computation area ∂ΩC . The area of investigation ∂ΩI is bordered in green. For each area the mean value and its standard deviation
(of the 2118, 1000 coefficients) are displayed in the boxes. All numbers are given in m2/s2 [...]. Source: Lieb et al. (2016), Fig. 5.

shipborne data.
The impact of the prior information µd is very weak, indicated by a 5 times lower weight
compared with the terrestrial data [1]. As in general, the target area is well observed by high- and
[medium]-resolution measurement systems, there is only little need for filling in data gaps, but the
low-resolution prior information from GOCO05s [cf. Sec. 3.2.2] mainly serves for stabilizing the
inversion and downward continuation process, in order to reduce rank deficiency and singularity
problems [cf. Sec. 5.1.4]. (Lieb et al., 2016)

The relative weighing of heterogeneous data sets by VCE is influenced by their accuracy, cf. study case
(d), as well as by their spectral resolution, and thus, spatial distribution and size of data gaps. According
to the Nyquist theorem, data sets with large spatial extent enable to resolve medium wavelengths while the
latter cannot be resolved by spatially limited observations. However, for the estimation at level J = 11,
high-frequency information is more relevant. Consequently, regionally more limited data sets, as e. g. the
shipborne measurements [4], contribute in almost the same measure to the modeling solution, as spatially
better distributed terrestrial measurements [1]. Even if the accuracy of observation group [4] is assumed to
be lower, it supplements the spatial distribution of group [1] in the Baltic Sea, cf. Fig. 6.13 (i). Further, the
airborne data set [3] gets a relative weight in the same order of magnitude as [1], despite data gaps and lower
accuracy. The size of the large data gap at around 54.8° latitude, 12° longitude, seems only marginally cause
a down-weighting. The data gap might be balanced by the overall spatial contribution of data set [3] in the
Baltic Sea, where [3] is not overlaid by other data sets.

Accuracy and plausibility of scaling coefficients In study case (e2) the accuracy and plausibility of the
estimated scaling coefficients up to degree L = 2190 is investigated.

The unknown coefficients dq are [...] estimated by inserting the iterated VCs σ̂2
k

and σ̂2
d

into [Eq. (5.24)]. [... Figure 6.14 (i)] shows the 2118 coefficients covering the computation
area ∂ΩC . Inside ∂ΩI (green bordered) the 1000 coefficients themselves already represent the
gravitational structures. Consequently they have a physical meaning: large (positive or negative)
values indicate additional gravity signal w.r.t. the background model. Inside ∂ΩI the coefficients
vary between −1.31 m2/s2 and 2.15 m2/s2; their standard deviations [Fig. 6.14 (ii)], obtained
from the main diagonal elements of Q−1

dd [cf. Eq. (5.25)], between 0.39 m2/s2 and 0.65 m2/s2.
[...] The standard deviations are about one order of magnitude smaller than the coefficients,
indicating a good s/n ratio and thus a well-balanced combination of the data sets.
As expected, the coefficients outside from the target area ∂ΩI alternate and get an artificial
character. Values from −2.15 m2/s2 to 4.34 m2/s2 are reached in the margin between ∂ΩI and
∂ΩC and the standard deviations increase up to 0.97 m2/s2. (Lieb et al., 2016)

Consequently, the structure and the accuracy of the estimated scaling coefficients inside ∂ΩI seem plausible.
An external validation is indirectly obtained after the synthesis in the next step, i. e. multiplying d̂L with
adapted basis functions from Eq. (5.27) up to degree l11 = 2047.
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Figure 6.15: [Study case (e3): (i)] Differential gravity anomalies [∆g] up to level J = 11, referenced to GOCO05s up to j ′ = 7,
and [(ii)] the corresponding standard deviations. Mean values and their standard deviations (depicted in boxes, given in mGal) are
computed for ∂ΩI in [(i) and (ii)], and for an inner region in [(ii)] (dashed box) representing the above all well-observed study area.
Source: Lieb et al. (2016), Fig. 6.

Output model and its accuracy w.r.t. two different gravitational functionals By setting up the modeling
equations according to (5.28), two output models are obtained for the gravitational functionals ∆g and ζ . Their
accuracy is investigated in this study case (e3) with special emphasis on the effect of data gaps.

The resulting gravity anomalies [∆g], shown in [Fig. 6.15 (i)] vary in a range of around
±30 mGal w.r.t. GOCO05s (d/o 127), except in the southwest corner, where edge effects with
values down to −57.22 mGal prevail due to data gaps. In principle, the largest negative anomalies
of the differential signal are located in the South of the target area at around 11◦ longitude, and
in the northwestern edge of ∂ΩI . [...] The respective standard deviations in [Fig. 6.15 (ii)]
show here [...] their largest values with amplitudes of >5 mGal, indicating a low precision of the
modeling result. This might be an artifact resulting from data gaps in the airborne measurements:
[Fig. 6.13 (i)] shows clearly missing tracks in these regions. Large standard deviations further
appear in the southwest corner because of missing observations in the Netherlands (NL). Data
sets should overlap the target area in general [cf. Sec. 5.1.2] to avoid such erroneous edge
effects. However, within the mainly well-observed area (dashed line in [Fig. 6.15 (ii)], the
standard deviations are very small: we obtain on average 0.34 mGal (maximum 1.76 mGal). As
we introduced [...] all weighting matrices as unit matrices in the estimation model [in Eq. (5.22],
we have to take into account that the error propagation [cf. Eq. 5.30] might deliver too positive
error estimates by neglecting possibly correlations between the measurements. A more realistic
stochastic model could further marginally change the relative weighting between the observation
groups. However, we conclude that we derive a modeling result with high internal precision.
(Lieb et al., 2016)

The differential quasi-geoid heights ζ (w.r.t. GOCO05s, d/o 127) in [Fig. 6.16 (i)] show
similar structures as the differential gravity anomalies [Fig. 6.15 (i)], since they are related to
the same set of coefficients d̂L . However, the field transformation smooth[e]s the gravity signal:
the functional ζ is normalized by a normal gravity γ (here w.r.t. GRS80) [...]. Minimum values
are reached in the German lowlands down to −0.48 m w.r.t. GOCO05s. Maximum values up
to 1.06 m appear mainly at the same locations as the maximum values of gravity anomalies.
The corresponding standard deviations [Fig. 6.16 (ii)] increase up to maximum 0.12 m along
the northern borderline and in the southwest corner due to the data gaps, as discussed [above].
Within the well-observed inner area (dashed box), the mean [SD] of only 1 cm (maximum 2.2 cm)
approves the high internal precision of the modeling approach, taking into account feasibly too
positive error estimates. (Lieb et al., 2016)

In conclusion, data gaps provoke a less accurate model fit in the referring areas, indicated by the larger standard
deviations. The modeling approach seems to reasonably identify missing gravitational information. The field
transformation according to the Meissl scheme in Fig. 2.7, affects a smoothing of the ζ-signal, compared to
gravity anomalies. The referring standard deviations in Fig. 6.16 (ii) are slightly smaller relatively to the signal
values in (i), than it is in case of gravity anomalies, cf. Fig.6.15. In both Figs. 6.15 and 6.16, the signal values
(i) are plotted within a range of one order of magnitude larger than the range of their standard deviations (ii).
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Figure 6.16: [Study case (e3): (i)] Differential quasi-geoid heights [ζ] up to level J = 11, w.r.t. GOCO05s up to j ′ = 7, and [(ii)]
their standard deviations. The statistics (depicted in boxes) are given accordingly to [Fig. 6.15]. Source: Lieb et al. (2016), Fig. 7.

In order to investigate the effect of field transformations, a comparison of the regional model to global SH
models is studied w.r.t. both functionals, ∆g and ζ , see below.

Added value w.r.t. global SH models Potential added value contained in the regional model is rated by
a comparison with global SH models in study case (c4). Therefore, the erroneous edge effects are removed
in the data gap areas according to the standard deviations. (Lieb et al. (2016) use a 3-sigma threshold.) The
background model GOCO05s then is restored to the regional solution, obtaining the total signals of ∆g and ζ
according to Eq. (5.29). The total signal of ζ is displayed in Fig. 6.18 (i).

We choose two global high-resolution models, EGM2008 (EGM), available up to d/o 2190,
and EIGEN-6c (EIG), available up to d/o 1949, [cf. Sec 3.2.2,] and computed the differences
[d∆g] and [dζ] to our total regional (reg) results [...]. For spectral consistency, we smoothed
the equivalent functionals of the global SH models with the same Blackman filter up to degree
l11 = 2047, as we used in the regional synthesis [cf. Eq. (5.27)]. (The missing high frequencies
l = 1950, . . . , 2047 in the EIGEN-6c model are set to zero and do not influence the applied
Blackman filter.) [Table 6.13] lists the range, the mean values and the corresponding (relative)
standard deviations of the differences (reg - EGM) and (reg - EIG) for the target area ∂ΩI . In
general, the differences to EGM2008 and to EIGEN-6c are comparable. (The difference between
both global models counts [d∆g] (EGM - EIG) = 0.07 ± 0.94 mGal, ∆ζ (EGM - EIG) = 0.5 ± 3.0

cm respectively, resulting mainly from the different spectral resolution.) The mean values of the
differences of −0.68 mGal for [d∆g] (reg - EGM) (−0.61 mGal for [d∆g] (reg - EIG)), and 0.09 m

for [dζ] (reg - EGM) (0.10 m for [dζ] (reg - EIG)) indicate a small offset, probably stemming from
the spatially limited data sets used in the regional solution and from insufficient prior information,
and thus missing information in the [medium] frequencies.
The according standard deviations of 2.30 mGal and 2.41 mGal (corresponding to EGM2008 and
EIGEN-6c) from the mean value of the gravity anomaly differences are one order of magnitude
larger than the mean values themselves. For quasi-geoid heights they are with 6 cm (EGM) and
5 cm (EIG) similar to the mean values. In order to compare the different output functionals, we
computed relative standard deviations related to the standard deviation (12.67 mGal for [∆g] and
1.32 m for ζ) of the mean value of the EGM2008 signal as well. Thus, the relative standard
deviation counts around 18.1 % for gravity anomaly differences [d∆g] (reg - EGM), but just
around 4.3 % for quasi-geoid height differences [dζ] (reg - EGM). We explain the lower relative
standard deviation of [dζ] by the smoothness of the functional ζ itself (cf. Sec. 2.5.3), whereas
the differential gravity quantity [∆g] shows much more detailed structures. [...]
To further [prove the signal content in our regional model], we study the spatial pattern of the
differences [d∆g] and [dζ] to EGM2008 (reg - EGM), [see Fig. 6.17 (i) and (ii)]. As expected,
the largest deviations (down to −22 mGal for gravity anomalies and up to around 40 cm for
quasi-geoid heights) occur in the southwest corner where our regional model contains erroneous
edge effects due to the lack of data. Comparing the spatial pattern with the observations in
[Fig. 6.13 (i)] we notice that the terrestrial data end up along the borderline of the Netherlands,
and the airborne tracks do not overlap ∂ΩI along the northern margin. Those dominant local
effects coincide with the largest standard deviations in [Figs. 6.15 (ii) and 6.16 (ii)]. Thus, we
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Table 6.13: [Study case (e4):] Differences between regional results (reg) at level J = 11, Blackman filtered up to l = 2047, outliers
removed, and the corresponding functionals Dg and ζ computed from EGM2008 (EGM) and EIGEN-6c (EIG), both Blackman

filtered up to level J = 11. The relative standard deviation (SD) is referenced to the standard deviation of the mean value of
EGM2008 in ∂ΩI . Source: Lieb et al. (2016), Tab. 3.

difference range mean SD relative SD

d∆g (reg - EGM) −21.96 to 14.46 mGal −0.68 mGal 2.30 mGal 18.1 %

d∆g (reg - EIG) −20.97 to 15.46 mGal −0.61 mGal 2.41 mGal 19.0 %

dζ (reg - EGM) −0.08 to 0.40 m 0.09 m 0.06 m 4.3 %

dζ (reg - EIG) −0.04 to 0.43 m 0.10 m 0.05 m 4.1 %

Figure 6.17: [Study case (e4)]: [(i)] Differences [d∆g] and [(ii) dζ] of the resulting total gravity anomalies and quasi-geoid heights
([...] background model GOCO05s restored) to the global model EGM2008, consistently filtered with Blackman kernel up to degree
l11 = 2047. Mean values and standard deviations from the mean values are given for ∂ΩI in the corresponding units. Source: Lieb

et al. (2016), Fig. 9.

conclude a lack of signal content in our [...] model [in this region]. The low-resolution prior
information obtained from GOCO05s up to d/o 127 cannot provide enough spectral information
to overcome these edge effects. For [dζ] the offset of around 10 cm predominates the remaining
small standard deviations [Fig. 6.17 (ii)], while for the more sensitive differences [d∆g] some
small-scale structures occur especially in the off-shore areas. We interpret those deviations as
additional signal in our regional model, stemming especially from altimetry observations (mainly
Cryosat an Jason-1 GM), and from airborne measurements, which overcome the altimetry data
gaps near the coastlines. They are not part of the global model EGM2008. Over land, our regional
model and the global EGM2008 model fit better. For the remaining deviations, correlations
stemming from terrestrial and airborne data sets can be excluded, as we used recently collected
data which are not contained in the existing global models (EGM2008 relies on older data with
less accuracy). Hence, we interpret the differences as supplementary information in our regional
model [... with the] potential to improve the existing global models in selected regions. (Lieb et

al., 2016)

Plausibility of the regional result w.r.t. another regional model

In order to validate our regional modeling result, we thus compare it [in study case (e5)] to an
existing regional model, the German Combined Quasigeoid 2011 (GCG2011) [cf. Fig. 3.8]. It
is provided [...] with an off-shore precision of 4 cm to 10 cm and an on-shore precision of 1 cm

to 2 cm in the German lowlands [cf. Sec. 3.2.3]. Thus, the precision is comparable with the
obtained mean standard deviation of 1 cm of our regional model, [cf. Fig. 6.16 (ii)].
The statistics of all differences are listed in [Tab. 6.14]. The mean value of the difference [dζ]
(reg - GCG) between our regional estimation (reg) and the GCG2011 model (GCG) predominates
with −18 cm the small standard deviations of ≤5 %, relatively to the mean standard deviation
of EGM2008. Comparing the global EGM2008 model (EGM) with GCG2011 delivers a larger
offset of −28 ± 3 cm, but an even smaller relative standard deviation of 2.3 %. The difference
seems to originate from the GCG2011 model, as the difference [dζ] (reg - EGM) at exactly the
same grid points counts a mean value of 9 ± 6 cm, equivalent to the corresponding statistics in
[Tab. 6.13]: In contrast to our regional model, the GCG2011 is not a pure gravimetric geoid
model, as it is adapted to a number of GNSS (Global Navigation Satellite System) leveling points
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Table 6.14: [Study case (e5):] Differences of the quasi-geoid heights obtained by our regional approach (reg) up to level J = 11,
Blackman filtered up to l11 = 2047, to GCG2011 (GCG), as well as to EGM2008 (EGM), also Blackman filtered up to l11 = 2047.
The values [dζ] are computed at the given 1′ × 1.5′ GCG2011 grid. The relative standard deviation is referenced to the standard
deviation of the mean value of EGM2008. Source: Lieb et al. (2016), Tab. 4.

difference range mean SD relative SD

dζ (reg - GCG) −0.38 to 0.20 m −0.18 m 0.06 m 4.8 %

dζ (EGM - GCG) −0.38 to −0.15 m −0.28 m 0.03 m 2.3 %

Figure 6.18: Study case (e5): (i) Total signal ζ up to level J = 11 (GOCO05s restored) and (ii) differences dζ to GCG2011. Mean
values and their SD are given for the entire area, the red-bordered altimetry validation area, the green-bordered shipborne validation
area, and two gray-dashed-bordered pure off-/on-shore areas. Source: Lieb et al. (2016), Figs. 8 b and 10.

in order to allow transformations to geometric reference frames [(BKG, 2011)].
We further evaluate the differences for different sub-regions, shown in [Fig. 6.18 (ii)]. The
offset increases between the western (green-bordered box from 6.2° to 10° longitude) and the
eastern part (10° to 14° longitude) from −14 cm to −22 cm. The mean standard deviations of the
differences increase as well, but they differ additionally between off- and on-shore regions: Over
the North Sea, mainly observed by altimetry (gray-dashed box from 6.2° to 8° longitude), they
count 2 cm from the mean value, and 4 cm for the entire green-bordered western part, containing
both off- and on-shore areas. Over the Baltic Sea they rise up to 5 cm and we obtain finally 7 cm

over the south-east ”terrestrial-only“ area (gray-dashed box). Comparing those values with the
given precision of the GCG2011 model, the differences [dζ] (reg - GCG) are not significant in
off-shore areas, but over land. As the GCG2011 relates to the same terrestrial, air- and shipborne
input data sets as our regional model, the deviations may result from topographic corrections
which have been applied to the GCG2011 model [(BKG, 2011)].
However, regarding the whole area ∂ΩI , both regional models fit very well to each other and
the small standard deviation (6 cm) of the mean difference confirms the high precision [and
plausibility] of our modeling result.

External accuracy of the resulting models

In order to evaluate the external accuracy of our regional model, we set up a cross-validation [in
study case (e6)]: we excluded the altimetry Envisat EM observations and recomputed quasi-geoid
heights at their 1029 positions. We choose Envisat EM among all altimetry missions as it does
not affect the spatial extent of the satellite data, especially the coverage of the Baltic Sea and
the areas along the coastlines. The differences [dζ#] to the eliminated altimeter observations are
displayed in [Fig. 6.19 (i)]. Further, we excluded each 10th shipborne and each 10th terrestrial
observation and recomputed gravity anomalies at their locations. The plots [(iii) and (ii)] show
the corresponding differences [d∆g#] (reg - ship) and [d∆g#] (reg - terr) at the 101 and 1807 data
points. [Table 6.15] lists the statistics of the cross-validation.

Envisat EM data For the cross-validation with Envisat EM (reg - Env) we notice a very
homogeneous structure of the differences [cf. Fig. 6.19 (i)] with a mean value of −2 ± 5 cm,
excluding a few outliers >30 cm, close to the islands in the south. In this coastal area, we
assume the altimeter data to be erroneous [cf. Sec. 3.3.4]. The standard deviations of the mean
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Table 6.15: [Study case (e6):] Statistics of the cross-validation: Differences [dζ] and [d∆g] between the total regional model (reg)
and the previously excluded [(i)] 1037 Envisat EM (Env), [(ii)] 1807 terrestrial (terr), and [(iii)] 101 shipborne (ship) data [cf.
Fig. 6.19]. Additionally we compare the global model EGM2008 (EGM) with both the data sets and the regional results. Relative
standard deviations are referenced to the [SD] of the mean value of EGM2008 in ∂ΩI . Source: Lieb et al. (2016), Tab. 5.

difference range mean SD relative SD

dζ# (reg - Env) −0.28 to 0.25 m −0.02 m 0.05 m 4.1 %

dζ# (EGM - Env) −0.36 to 0.15 m −0.12 m 0.05 m 4.1 %

dζ# (reg - EGM) 0.05 to 0.17 m 0.10 m 0.03 m 2.3 %

d∆g# (reg - terr) −9.02 to 6.97 mGal 0.00 mGal 1.62 mGal 12.8 %

d∆g# (EGM - terr) −7.79 to 5.60 mGal 0.52 mGal 1.59 mGal 12.5 %

d∆g# (reg - EGM) −3.36 to 5.18 mGal −0.52 mGal 0.48 mGal 3.8 %

d∆g# (reg - ship) −7.55 to 5.50 mGal 0.85 mGal 2.12 mGal 16.7 %

d∆g# (EGM - ship) −2.32 to 5.69 mGal 2.46 mGal 1.62 mGal 12.8 %

d∆g# (reg - EGM) −10.11 to 3.44 mGal −1.61 mGal 1.77 mGal 14.0 %

values of both differences (reg - Env) and (EGM - Env) count 5 cm, i. e. 4.1 % of the mean
standard deviation of the EGM2008 signal, [see Tab. 6.15]. The small relative deviation states
a high external precision of our regional model w.r.t. Envisat EM observations. To consistently
compare the cross-validation with the validation against EGM2008 [cf. study case (e4)], we
recomputed the differences along the Envisat EM tracks and obtain a relative standard deviation
(reg - EGM) of 2.3 %. We conclude that over the ocean our regional model fits better to the global
model EGM2008 than to the Envisat EM observations, but both models, the global EGM2008 and
our regional model, fit the altimetry observations similarly. We do not achieve an improvement
with our regional approach in the case of fitting altimeter data sets, but we reach comparable
precision as with a global approach, and even higher accuracy comparing the mean values of the
differences of −2 cm for (reg - Env) vs. −12 cm for (EGM - Env).

Terrestrial data In the case of fitting regional data sets, we reach similar relative approxi-
mations: In a second cross-validation we compare our regional model with the excluded 1807
(10 %) terrestrial observation sites. From [Tab. 6.15] we infer that our regional model (reg)
fits the terrestrial data (terr) again equivalently to the global EGM2008 model (EGM) (relative
standard deviations of 12.8 % and 12.5 %). However, mean value of the differences [d∆g#] (reg
- terr) counts 0.00 ± 1.62 mGal, whereas [d∆g#] (EGM - terr) delivers 0.52 ± 1.59 mGal. As
the differences [d∆g#] (reg - terr), displayed in [Fig. 6.19 (ii)], do not show any systematic, we
conclude that our model confidently extracts as much information as possible from the regional
data set.

Shipborne data From the cross-validations with Envisat EM and with terrestrial data we
conclude a similar modeling precision both by a global and by a regional approach. To further
[prove], if the model approximations are independently from on- or off-shore areas, we set up a
cross-validation with 101 shipborne data, [see Fig. 6.19 (iii)]. The corresponding statistics of the
differences [d∆g#] (reg - ship) in [Tab. 6.15] show a larger relative standard deviation (16.7 %),
than the differences (reg - terr) to terrestrial data. It seems reasonable, as the shipborne data have
[lower] accuracy than the terrestrial and thus get a smaller weight in the VCE, [cf. Tab. 6.12].
The data fit by our regional model is less close than the data fit by the EGM2008 model (12.8 %

relative standard deviation of the differences). Assuming the large differences in the north-east
corner stemming from erroneous edge effects (cf. large standard deviations in [Fig. 6.15 (ii)])
and excluding them, delivers a standard deviation of 1.24 mGal (9.8 %). (Lieb et al., 2016)

In conclusion, all three cross-validations confirm a high external accuracy of the regional modeling results
obtained in the test area in Northern Germany. Together with the high internal precision, discussed in case
(e3), the approach is verified to manage the consistent combination of real data sets with different observation
heights and spatial distributions in this study case (e).
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Figure 6.19: Study case (e6): Cross-validation with [(i)] 1029 Envisat EM (Env), [(iii)] 101 shipborne (ship) and [(ii)] 1807
terrestrial (terr) observations. Displayed are the differences [(i) dζ#] (reg - Env), [(iii) [d∆g#] (reg - ship), and [(ii) d∆g#] (reg -
terr) between the observations and the modeled total gravity functionals (reg), computed without these observations, at locations
of the validation data sets. Mean values and their standard deviations are given in the corresponding units m [(i)], and mGal [(ii),
(iii)]. Source: Lieb et al. (2016), Fig. 11.
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Remaining long-wavelength signal and errors

As discussed in study case (c) by means of simulated noise-free data, low-resolution signal remains after
removing the data by a global background model which contains different information. In case of real data,
long-wavelength errors remain as well. For instance in study case (e), the background model GOCO05s up to
l j′ = 127 is mainly computed from GRACE data, while the regional model uses terrestrial, air-/shipborne and
altimetry data. Those erroneous measurements contain different low-resolution information than GOCO05s.
Figure 6.20 visualizes the aspect referring to Fig. 4.4: The observations, cf. black curve in (i), contain low- up
to high-resolution errors (red-yellow curve). SubtractingY[ Ṽback(x) ] up to degree l j′ according to Eq. (5.13)
from the observations (at location x), yields remaining long-wavelength errors and signal, indicated in (ii)
as red curve in the frequency spectrum up to l j′ . In the analysis, the model g (purple curve) is computed by
series expansion up to degree L (purple box) and in the synthesis up to l ′ < L (gray box). Aliasing errors by
frequency folding (yellow) are reduced, as discussed in the context of Fig. 4.4; long-wavelength errors and
signal (red-purple curve) at degrees < l j′ remain, cf. Fig. 6.20. In the MRR approach which is applied in
Sec. 6.2, the bandpass filtering wavelet functions (cf. gray boxes in Fig. 5.12) reduce in the synthesis the
remaining influence of long wavelengths in the detail signals.
Since low-resolution errors are mainly of systematic nature, they are visible in terms of an offset or a slope of
the data sets and cannot be captured by VCE. However, they are assumed to be small, as the pre-processing
of the data sets according to Sec. 3.3, and the rescaling of the SH coefficients of the background model,
cf. Sec. 5.1.6, ensure consistency w.r.t. a reference potential. Possibilities of estimating the values of the
systematic errors and taking them into account are discussed in the Outlook 7.

Figure 6.20: (i) Observations in the spectral domain containing signal (black curve) up to degree Lobs, and low-/medium-frequency
(red) up to high-frequency (yellow) errors. (ii) Subtracting a background model Y[ Ṽback(x) ] up to degree l j′ yields remaining
long-wavelength errors and signal (truncated red curve < l j′). (iii) The model g (purple curve) is in the analysis computed by series
expansion up to degree L (purple box) and in the synthesis up to l ′ < L (gray box). Aliasing errors by frequency folding (yellow)
are reduced, but long-wavelength errors and signal (red-purple curve) at degrees < l j′ remain.

Summary and conclusion of the real data studies at one resolution level

From both study cases (d) and (e) using a variety of heterogeneous real data, it is shown, that the regional
modeling approach manages different accuracies, observation heights, functionals, field transformations and
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spatial distributions in a proper and consistent way; the error propagation and the different validation strategies
confirm the high accuracy and stability of the resulting models. Further it is demonstrated, that high-resolution
models deliver the potential for regionally refining global models. Taking the findings from the simulation
studies (a) – (c) into account, the three secondary aims, listed at the beginning of this chapter, are achieved for
the presented study cases.
However, especially the data gaps in case (e) indicate weaknesses and limits of the approach. The data gaps
in high-resolution observation groups can be compensated by surrounding observations inside the target area.
In contrast, at the edges, erroneous oscillations predominate data gaps. The prior information, introduced for
regularization purposes, is not sufficient to compensate the lack of measurements at high resolution levels,
since it is a ”zero-signal“ w.r.t. the lower-resolution background model. Further, the above discussed errors
in the long wavelengths are not taken into account.
Since dealing with high-resolution real data implies in the most cases the problem of data gaps, it is imperative
to address their proper handling and to overcome the difficulties in the resulting models. Introducing additional
high resolution prior information from topography models, as mentioned in study cases (a) and (b), might help
to fill those gaps, see Sec. 7 as well. Further, in both case studies (d) and (e), the maximum resolution level
(J = 8 and J = 11) was adapted to the mean spatial, and thus, spectral resolution of the different observation
groups. This choice is beneficial, as long as the different groups have similar spectral resolutions according to
the classification in Fig. 4.8. However, the introduction of GOCE GGs, which are most sensitive at resolution
levels j = 5, . . . , 8, as additional observation groups in study case (e), where the estimation model is set up
at level J = 11, fails. In conclusion, the approach applied at resolution level J = 11 is not appropriate for a
combination of observation groups with lower spectral resolution in case of data gaps. (Note, in contrast to a
homogeneous spatial data distribution, the simulation study in case (c2) indicated, that the solution might be
stabilized by appropriate information in the low frequency domain.)
The spectral combination via MRR, presented in Sec. 5.3, provides the potential to overcome those difficulties
since it allows a flexible combination of heterogeneous data sets according to their different spectral content,
i. e. it enables to extract as optimally as possible the spectral information out of each observation group.

6.2 Spectral combination via MRR

In order to enrich the regional model at each resolution level as optimally as possible with information
stemming from sensitive measurement techniques, a spectral combination via MRR is set up. Hereby, the
use of real data requires specific considerations. Following the definition of the three areas in Fig. 5.3, which
is the above all methodical setting by the transition from global to regional in Sec. 5.1.2, the aspects are
distinguished by

• data depending considerations w.r.t. the observation area ∂ΩO, i. e. spatial distribution, type, spectral
resolution, number, functional, observation height and stochastic information of data sets;

• model depending considerations w.r.t. the computation area ∂ΩC , i. e. type, resolution, weighting of
prior information, modeling height, functional, resolution level and basis function within the synthesis;

• area depending considerations w.r.t. the target area ∂ΩI , i. e. type (oceanic vs. terrestrial) or topography.

Further, selecting the target area requires not only the availability of observations, but also the study of more
details: Which area is ”sufficiently“ covered by data? What means ”sufficient“ in order to achieve the chosen
modeling resolution L according to Eq. (5.12)? How large is the effect of data gaps within the MRR at different
levels, i. e. the spatial influence of edge effects?

Study case (f) : MRR decomposition: How does the information vary at different levels? Up to which level
does the prior information fill data gaps?

Study case (g) : MRR composition: Which observation group contributes at which level most spectral
information?

(g1) Avoiding correlations between detail signals. Is the signal content sufficient?

(g2) Multiple (decomposed) single-level estimations. What is the added value w.r.t. the single-level combi-
nation?
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6.2.1 MRR decomposition

In Fig. 4.7, the MRR decomposition is described by successively low-pass filtering a high-resolution signal
ZJ level by level ”top-down“ to a low-resolution signal Z j′ . This filter procedure is applied to the signal of
differential gravity anomalies ∆g from case study (e), displayed in Fig. 6.15 (i). The approach was set up
at level J = 11, and the background model GOCO05s subtracted up to degree l7 = 127. The latter defines
the minimum resolution level j ′ = 7, cf. Eq. (5.10), since up to its maximum degree l ′

j
, most of the signal

is removed from the observations. Consequently, the fundamental equation (4.28) of MRR reads for the
following study case (f)

∆Z11(x) = ∆Z j′=7(x) +
11∑

j=8

G j (x) . (6.4)

The detail signals G j are computed according to the modeling equations (5.35) for j = 8, . . . , 11. Herein, the
wavelet functions Ψ̃j are formulated for gravity anomalies ∆g and expanded in a series up to the maximum
degree l j of the particular resolution level j according to Eq. (5.33). Since in the approach of study case
(e), Blackman scaling functions are used in the synthesis, cf. Tab. 6.11, the referring Blackman wavelet
functions now are applied in study case (f). They are defined by the band-pass filtering Legendre coefficients
ψBla
l, j

according to Eq. (4.37), as displayed in Fig. 4.10 (e). In the top-down approach, the detail signals are
successively subtracted from ∆ZJ and yield the low-pass filtered signals

∆Z10(x) = ∆Z11(x) − G11(x) ,

∆Z9(x) = ∆Z10(x) − G10(x) ,

∆Z8(x) = ∆Z9(x) − G9(x) ,

∆Z7(x) = ∆Z8(x) − G8(x) .

Low- and band-pass filtered signals

The low- and band-pass filtered signals ∆Z j and G j , as well as the initial signal ∆Z11 at highest resolution
level, are displayed in Fig. 6.21 in terms of gravity anomalies w.r.t. GOCO05s up to l7 = 127. The referring
statistics (range, mean value, SD) are listed in Tab. 6.16; outliers have been removed. As expected, the
successive low-pass filtering of the initial signal from level J = 11 down to level j = 8 is clearly visible:
While the signal ∆Z11 shows a lot of geographical structures, the latter become smoother and smoother for
decreasing resolution levels. The information of the low-resolution signal ∆Z j′=7(x) is almost completely
reduced by the background model, and thus, as good as no gravitational variations are visible.
The statistics (range and SD of the signals ∆Z j ) establish the considerations. The range of ∆Z11 counts about
±30 mGal, the SD around 10 mGal, whereas ∆Z8 ranges between ±10 mGal and yields a SD of approximately
4 mGal. The remaining differences of ∆Z7 w.r.t. GOCO05s at level j ′ = 7 yield 0.29 mGal to 1.64 mGal.
For the levels j = 8, . . . , 11, the mean values of ∆Z j are very similar; they slightly increase from around
2.18 mGal ( j = 8) to 2.61 mGal (J = 11). For ∆Z7, the mean value is with 1.11 mGal only approximately
half as large. As expected, the mean values of G j are close to zero27 for the levels j = 9, . . . , 11, while for G8

the mean value counts 1.07 mGal, i. e. this detail signal contains information of an offset w.r.t. GOCO05s.
Since long wavelengths cannot be resolved by regional models, the appearance of offsets w.r.t. global models
is explicable.
In analogy to ∆Z11, the detail signal G11 shows very fine structures in Fig. 6.21; the latter become rougher
for G10, G9, and G8. Those signals contain the spectral information of the frequency bands, described by the
Legendre coefficients from Fig. 4.10 (e). For the band-pass filtering Blackman wavelet, the frequency bands
overlap due to the smoothing behavior. Consequently, the detail signals are correlated and not independent
from each other. The corresponding ranges and SD values in Tab. 6.16 decrease as well together with the
resolution level.
The erroneous effects, which are visible in the south-western edge and along the northern borderline in
Fig. 6.15 (i) have been discussed in study case (e). They result from data gaps. The missing information is
filled up by prior information, i. e. with ”zero-signal“ w.r.t. GOCO05s up to l7 = 127. The higher-resolution
detail signals G11 and G10 show corresponding erroneous structures in Fig. 6.21; G9 is still affected by the
27The detail signals are globally per definition zero.
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data gap in the south-western corner. In G8 (respectively Z8), the data gaps are not longer apparent; the
”zero-signal“ from the prior information seems to be sufficient to fill them up.

Table 6.16: Study case (f): Range (min... max), mean value and SD of low- (∆Z j ) and band- (G j ) pass filtered signals, as well as
of the background model GOCO05s up to l7 = 127.

∆Z j range [mGal] mean [mGal] SD [mGal] G j range [mGal] mean [mGal] SD [mGal]

∆Z11 −33.81 to 40.42 2.61 11.169 G11 −26.91 to 31.83 0.28 6.850

∆Z10 −20.47 to 24.17 2.36 8.841 G10 −13.67 to 13.27 0.05 4.568

∆Z9 −13.83 to 15.97 2.31 6.697 G9 −9.87 to 13.16 0.13 4.291

∆Z8 −7.38 to 7.80 2.18 3.551 G8 −8.02 to 6.51 1.07 3.389

∆Z7 0.29 to 1.64 1.11 0.332

GOCO05s −28.20 to 16.85 −6.16 11.161

Standard deviations

In Fig. 6.22 the referring standard deviations s∆Z j of the low-, and sG j of the band-pass filtered signals are
visualized. Note, s∆Z8, s∆Z7 and sG7 refer to different color bars. The statistics (maximum, mean, and SD
values) are listed in Tab. 6.17. As discussed in the context of study case (e), the values of s∆Z11 enormously
increase in the corresponding south-western corner and along the northern borderline due to the edge effects.
The standard deviations reach up to around 30 mGal. Low-pass filtering the initial signal ∆Z11 provokes a
smoothing of the signal, as well as of the standard deviations. Consequently, the structures in Fig. 6.22 become
also smoother, especially for the levels j = 8 and j = 9. The referring mean standard deviations then are
smaller than 0.5 mGal, cf. Tab. 6.17.
The standard deviations s∆Z7 refer to the low-resolution signal∆Z7 stemming from the remaining observations
which have not been completely removed by the background model. Consequently, those standard deviations
could give a rough measure of the long-wavelength errors, discussed in the context of Fig. 6.20. The maximum
and mean values are in the order of 0.08 mGal and 0.05 mGal. However, those estimates are obtained via
error propagation from the initial standard deviations at level J = 11. A more realistic estimate of the long-
wavelength errors might be obtained by setting up the modeling approach (with specifications of Tab. 6.11)
at level J = 7, see next section. In general, the standard deviations might be too optimistic, especially since
correlations and realistic accuracies of the observations are not considered in the stochastic model, as discussed
in the previous study cases.

Table 6.17: Study case (f): Maximum , mean value and SD of the standard deviations s∆Z j of the low-, and sG j of the band-pass
filtered signals w.r.t. GOCO05s up to l7 = 127.

Discussion of study case (f)

Besides the previously discussed weaknesses of the regional modeling approach, cf. study cases (a) – (e), the
MRR decomposition in this study case (f) reinforces data gaps to be one of the major problems. As already
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Figure 6.21: Study case (f): MRR decomposition of the signal ∆Z11 of differential gravity anomalies from Fig. 6.15 (i) (w.r.t.
GOCO05s up to l7 = 127) down to ∆Z7 by successively subtracting band-pass filtered detail signals G j .
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Figure 6.22: Study case (f): Standard deviations s∆Z j of low-, and sG j of band-pass filtered signals w.r.t. GOCO05s up to l7 = 127.
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assumed, the low-resolution prior information seems not appropriate to overcome data gaps in high-resolution
regional gravity field models and provokes large erroneous effects. The VCE regulates the regularization, and
thus, the relative weighting of the prior information w.r.t. the whole observation area ∂ΩO. This regularization
might be too weak for single data gaps, if most of the area is well-observed, as in study case (e), respectively
(f). An alternative handling will be discussed in the sequel. Further, since the approach seems to be sensitive
to data gaps, this property is useful, vice versa, in order to detect data gaps of existing gravitational models.

Observation depending weighting of prior information Instead of introducing the additional observation
µd with unit matrix Pd = I in Eq. (5.19), the stochastic model could be adapted to the heterogeneous
spatial distribution of the observations. Hereby, the main diagonal elements of Pd can vary depending on
the number of observations, counted in a specific circle around each grid point Pq ∈ ∂ΩC . The principle is
schematically displayed in Fig. 6.23. In the left red-colored circle with radius ρ around a grid point (red cross),
only two observations are available, here e. g. terrestrial measurements (green triangles). Consequently, the
unknown coefficient to be estimated at this grid point, is only weakly supported by information. Additional
prior information would be necessary. It could be considered by setting the corresponding value at the
main diagonal of Pd smaller than one, depending on the counted number of data points. In contrast, in the
right red-colored circle, there are several terrestrial (green) and satellite (gray-dashed tracks) observations
and the corresponding coefficient located at the right red cross is sufficiently supported by observed signal;
less prior information is necessary and the corresponding value at the main diagonal of Pd could remain
one. Consequently, the estimation model might be purposefully stabilized at data gaps. However, the
spectral content of the prior information refers to the background model, and thus, appropriate high-resolution
information still is missing in the resulting regional model.

Figure 6.23: Observation depending weighting of prior information depending on the number of observations (gray, green) in a
specific influence zone (spherical radius ρ) of each grid point (red cross).

Detecting data gaps in existing models Vice versa to setting up a MRR decomposition by subtracting
the detail signals, the same results can be obtained by successively low-pass filtering the initial signal. As
mentioned in the context of Eq. (4.35) band-pass filters are generated by subtracting the Legendre coefficients
of two low-pass filtering SBFs. Consequently, the subtraction of two consecutive low-pass filtered models,
e. g. ∆Z j and ∆Z j−1, yields the detail signal G j , according to the general Eq. (4.28) of MRR (de)composition.
This aspect is of beneficial relevance, e. g. for spectrally decomposing an arbitrary given model, and thus,
visualizing the signal w.r.t. different spectral domains (Schmidt et al., 2007): Data gaps can be detected at
different resolution levels, if they were filled up with synthetic information. Further applications of a MRR
decomposition arise, for instance, in order to analyze coarser structures as mass variations in the Earth’s
interior, the density of the Earth’s crust and lithosphere (Bouman et al., 2013; Ebbing et al., 2013; Bouman et

al., 2016).

6.2.2 MRR composition

The MRR composition, e. g. in terms of a bottom-up approach as described in Fig. 4.7, aims to estimate detail
signals G j from those input data, which contribute at the corresponding resolution levels j a high measure
of spectral information. Therefore, the spectral sensitivity of the observation groups has to be investigated
w.r.t. j and relatively to each other. From a reasonable choice of observation groups, the detail signals can be
modeled and composed according to the MRR equation (4.28).
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In this study case (g), the data types from cases (d) and (e) shall be combined. The specifications are listed
in Tab. 6.18. The terrestrial (δgter), the two airborne (δgair), the shipborne (δgship), and the five altimetry (T)
data sets correspond to the ones from study (e), listed in Tab. 6.11. Their spatial distribution is displayed in
Fig. 6.13 (i). The elements Vab of the GOCE tensor refer to the time span 08/2012 - 11/2013, i. e. the lower
orbit phase with h ≈ 225 km. The spatial distribution is similar to the data set from the nominal phase, cf.
Fig. 6.3 (ii), which was used in study case (d). In total, it yields K = 15 observation groups. The assignment of
the groups ([k] with k = 1, . . . , 9) refers to Tab. 6.12. The six GOCE GGs obtain the numbers k = 10, . . . , 15.
GOCO05s serves as background model up to l7 = 127, i. e. it is subtracted from all observations and defines
the lowest level j ′ = 7 of the MRR; J = 11 is the highest level of the MRR in analogy to study case (e). While
the area of investigation ∂ΩI is the same at all resolution levels (green bordered in Fig. 6.13), the areas of
observation ∂ΩO and of computation ∂ΩC are adapted with level-depending margins according to Eq. (5.5).

Table 6.18: Study case (g): Specifications.

Input · δgter gravity disturbances, terrestrial (ter) data set [1]
· 5 km average point distance
· pre-processing according to Sec. 3.3.1
· δgair gravity disturbances, airborne (air) data sets [2], [3]
· 10 km average along-/cross-track resolution
· pre-processing according to Sec. 3.3.3
· δgship gravity disturbances, shipborne (ship) data set [4]
· 4 km average along-/cross-track resolution
· pre-processing according to Sec. 3.3.2
· T disturbing potential, derived from altimetry SSH, data sets [5 – 9]
· 10 km average along-/cross-track resolution
· pre-processing according to Sec. 3.3.4
· Vxx , Vxy , Vxz , Vyy , Vyz , Vzz in GRF, data sets [10 – 15]
· re-processed release 2 (level-2 products), time span 08/2012 - 11/2013 (h ≈ 225 km)
· pre-processing according to Sec. 3.3.5

Approach · background model GOCO05s, l j′ = 127 ( j ′ = 7)
· prior information: GOCO05s, l j′ = 127

· RReuter = 6378.137 km grid radius
(g1) · L j = 140 (analysis, Shannon)

· l j = 127 ( j = 7, synthesis, Blackman)
(g1), (g2) · L j = 280 (analysis, Shannon)

· l j = 255 ( j = 8, synthesis, Blackman)
(g1) · L j550 (analysis, Shannon)

· l j = 511 ( j = 9, synthesis, Blackman)
(g1) · L j = 1100 (analysis, Shannon)

· l j = 1023 ( j = 10, synthesis, Blackman)
(g1), (g2) · LJ = 2190 (analysis, Shannon)

· lJ = 2047 (J = 11, synthesis, Blackman)

Output (g2) · ∆g gravity anomalies at each level via multi-level estimation and MRR decomposition
∂ΩI · ∆g gravity anomalies at highest level J = 11 via MRR composition

Step (1): Single-level estimations using all observation groups

The choice of appropriate observation groups which are sensitive at different spectral domains follows the
strategy presented in Fig. 5.11. In step (1), at each resolution level j a single-level estimation model is set up
from the combination of all available data sets.
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Table 6.19: Study case (g1): VCE for all K = 15 observation groups at different resolution levels j = 8, . . . , 11, step (1). The groups
with smallest VCs are highlighted in color referring to the spectral classification in Tab. 4.8. Study case (g2): VCE for selected
groups (bordered in color) at levels j = 8 and maximum MRR level J = 11, step (2). The spectral content then is transferred to the
lower levels (colored arrows) via MRR decomposition.

The observation equations of this study case (g1)

are formulated according to Tab. 4.7 and the se-
ries (5.31) are expanded in terms of Shannon
functions up to a maximum degree L j > l j in
the analysis. In addition, prior information is in-
troduced for regularization purposes. The VCs
are iteratively computed for the K = 15 differ-
ent observation groups. The orders of magnitude
of the VCs are listed in Tab. 6.19 for the single
levels j = 7, . . . , 11. Further, the chosen maxi-
mum degree L j > l j of the analysis is given w.r.t.
j. Figure 6.24 shows the referring regularization
parameter λ j = σ̂

2
k j
/σ̂2

d
(logarithmic representa-

tion) w.r.t. the observation group k = k j , which
obtains the smallest VC at level j.

Figure 6.24: Study case (g1): Regularization parameter λ j w.r.t.
different resolution levels j.

Relative weighting and regularization in step (1)

Level 7 Referring to Tab. 4.8, satellite data are expected to contribute spectral information at j = 7, while
regional observations are expected to contain less signal depending on their spatial resolution and extent. Since
most of the information (if available at all) is reduced by the background model GOCO05s, the spectral content
of all observation groups is low. As mentioned in Sec. 3.2.2, GOCO05s contains GRACE information up to
degree 150, and GOCE predominates from degree 120 on. Hence, low up to medium resolution information
remains in the altimetry and GOCE observations. (The long-wavelength errors of GOCE below the MBW, and
the offsets of the altimetry missions have been reduced by appropriate pre-processing and should be small.)
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The VCE yields for the main diagonal elements [10] Vxx , [13] Vyy , [15] Vzz of the GOCE GG tensor the
smallest variance factors in the order of magnitude of 10 × 10−9, cf. Tab. 6.19. Those observation groups
(highlighted in blue) are identified to deliver the most valuable information compared with the other groups.
The reasons are (i) the long and medium wavelengths information of global satellite data together with the
high spectral sensitivity of GOCE within the MBW (cf. Sec. 3.1.4) which covers this frequency domain in
contrast to terrestrial, air-/shipborne and altimetry measurements, (ii) the high accuracy (Vxx , Vyy ) and the
high sensitivity (Vzz ; direction with largest signal amplitude) of the three main diagonal elements of the GOCE
tensor in contrast to the off-diagonal elements, and (iii) the homogeneous spatial distribution over the whole
area.
The prior information obtains a very large VC, and indicates less need of regularization due to the sufficient
spectral content and the good spatial distribution of the data sets; the regularization parameter λ7 w.r.t. k = 10

yields a small value of 1.26 × 10−11, cf. Fig. 6.24.

Level 8 At level j = 8, ten observation groups are identified with the smallest variance factors: The three
GOCE GGs [10] Vxx , [13] Vyy , [15] Vzz , as well as the five altimetry groups [5 – 9], the [1] terrestrial, and
the airborne data [2] in the North Sea obtain similar VCs in the order of magnitude of 10 × 10−9. They are
highlighted in Tab. 6.19 in yellow [1], orange [2] and green [5 – 9] according to the classification in Tab. 4.8,
and in blue for GOCE [10, 13, 15]. For the latter, the same aspects can be assumed as discussed at level j = 7.
The altimetry data also stem from global satellite observations, and thus, contain information in the long and
medium wavelengths, i. e. they are spectrally sensitive at this level j = 8. However, only over the ocean,
altimetry measurements can be used for gravity field recovery. Their spatial distribution is restricted to the
North and just few parts of the Baltic Sea, as displayed in Fig. 6.13 (i) (green dots). The VCE balances the
spectral resolution and spatial extent according to Eq. (4.22).
The similarly low VC of the [1] terrestrial data results from the spatial distribution of the observations. The
extent of [1] ranges over wide parts of the area of investigation, and thus, medium wavelengths are contained
in the data set. Further, the airborne measurements [2] over the North Sea seem to be relevant for a stable
solution at level j = 8. Corresponding spectral content and probably the need of closing the data gap between
the terrestrial and the altimetry measurements in the North Sea stabilize the constellation.
The large VC of the prior information in the order of magnitude of 10 × 102 indicates low need of regularization
in analogy to the estimation at j = 7. However, the regularization parameter λ8 = 7.26 × 10−11 w.r.t. k = 5 is
around seven times larger than λ7. Hence, singularity problems slightly increase at level j = 8. Since for both
levels, the same observation groups are used, the problems seem to originate from the regional rank deficiency
kreg

L
discussed in study case (a). The size of kreg

L
depending on the resolution level j is investigated below.

Level 9 The terrestrial data set (yellow highlighted in Tab. 6.19) obtains the smallest VC in step (1) at this
level j = 9 (order of magnitude of 10 × 10−11) in contrast to the other observation groups due to the previously
mentioned characteristics of this data set. The GOCE GG groups are, for instance, down-weighted by two
orders of magnitude relatively to the terrestrial data, since the MBW covers the spectral domain of level j = 9

only partially; the errors increase at the high frequencies above the MBW and predominate the GOCE signal,
cf. Sec. 3.1.4.
The [5 – 9] altimetry and the [2 – 3] shipborne groups are down-weighted just by one order of magnitude
w.r.t. [1]. Consequently, they deliver valuable spectral information within the bandwidth of j = 9, and further
balance the spatial restriction of the terrestrial data (south-eastern area; yellow in Fig. 6.13 i) in the western
(especially [5 – 9]; green observation sites) and in the northern (especially [3]; orange-colored flight tracks)
parts of ∂ΩI , cf. 6.13 (i).
The regularization parameter w.r.t. group [1] increases up to 2.05 × 10−10, cf. Fig. 6.24, and thus, around one
order of magnitude compared with λ7. The stabilization of the normal equation system becomes more and
more important for higher resolution levels.

Level 10 At level j = 10 again, the terrestrial data [1] contribute the most valuable content relatively to the
other observation groups; [1] obtains the smallest VC and is yellow highlighted in Tab. 6.19. The airborne
data sets [2] and [3] are down-weighted by one order of magnitude, and thus, contain also spectral information
referring to the frequency band of level j = 10. The [8] Envisat-EM and the [9] Jason-1 GM missions, as well
as the [4] shipborne data provide slightly less spectral content (two orders of magnitude w.r.t. [1]).
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The regularization parameter λ10 increases from λ9 by two orders of magnitude up to a value of 4.33 × 10−8.
This jump in the curve of Fig. 6.4 stems from the missing GOCE information at this level j = 10. While
GOCE contributed as global observation type with the very accurate tensor measurements relevant signal in
the medium resolution levels j = 7, 8, 9, it is not longer sensitive at the higher level j = 10. Consequently,
stronger regularization is needed for stabilizing the normal equation system.

Level 11 At level J = 11, the contrast between global and regional data sets enhances. The VCs of almost all
observation groups obtain smaller values compared with j = 10, while the VCs of the global GOCE gradients
[10 – 15] yield values in the same order of magnitude. The most valuable signal stems from [1] terrestrial
and [3] airborne data; they are highlighted in yellow and orange in Tab. 6.19. As mentioned at level j = 10,
due to the low support of global observations, the prior information becomes more important for stabilization
purposes. It is expressed by the largest regularization parameter λ11 = 4.36 × 10−7 w.r.t. [3], compared to
the one of the lower levels in Fig. 6.4. The increase from λ10 to λ11 is smoother again, indicating a similar
spectral contribution of the (regional) observation groups at levels j = 10 and j = 11.
While for the GOCE GGs [10 – 15], the estimated variance factors remain about the same at all resolution
levels, the VCs of the altimetry groups [5 – 9] decrease by around two orders of magnitude, and the VC of the
terrestrial data [1] by five orders of magnitude from the lowest to the highest level, relatively to their estimates
at j = 7.
In analogy to computing the regularization parameter λ j w.r.t. the smallest VC at each level, it can be
computed w.r.t. one and the same observation group over all levels. It is displayed in Appendix B, Fig. B.1,
exemplarily for the observation groups [1], [3], [5] and [15]. A more detailed study of the contribution of the
single observation types depending on their spectral sensitivity, e. g. by means of Fourier analysis, would go
beyond the scope of this thesis.

Summary: Need for regularization in step (1)

Regional rank deficiency The estimate kreg

L
, Eq. (5.8), depends on the maximum resolution L j , i. e. on

the level j, and on the area ratio of the computation area w.r.t. the area of the whole globe. The area ratio,
Eq. (5.6), is the same at all resolution levels j due to the definition of the level-depending margin width η j in
Eq. (5.5), i. e. A∂ΩC/AΩR ≈ 0.0028, cf. study case (a). For instance, with a maximum degree L8 = 280 at level
j = 8, kreg

280
yields approximately 60. Up to level J = 11, the estimate kreg

2190
enormously increases up to 3669.

Consequently, with augmenting resolution level, singularity problems increase and more regularization is
needed. Besides the possibilities of reducing the regional rank deficiency discussed in study case (a), another
option would be to define a decreasing area ratio A∂ΩC/AΩR , i. e. a smoother increase of η j with increasing
level j. However, since the margin width is adapted to the side lobes of the SBFs, smaller computation areas
could provoke more edge effects in the resulting models. Above all, the the regional rank deficiency kreg

L
is

just an estimate, and thus, difficult to rate.

Data gaps If regularization depended only on the regional rank deficiency, the curve in Fig. 6.4 would be
expected to have a continuous increase. However, there is a jump between level j = 9 and level j = 10,
as discussed above. At the lower levels j = 7, 8, 9, the spectral content as well as the spatial distribution of
all observation groups balance each other, and thus, there are no data gaps at those resolution levels. At the
higher levels j = 10, 11, less observation groups contribute sufficient spectral information, and additionally,
the spatial distribution of appropriate data sets is fragmentary within ∂ΩI , cf. 6.13 (i), i. e. data gaps appear,
and regularization becomes more important.

As discussed in study case (f), with increasing resolution level, the ”zero-signal“ of the prior information w.r.t.
the minimum level j ′ = 7, becomes less appropriate and provokes erroneous effects in the resulting model
in case of data gaps. Since regularization is as good as in all regional modeling approaches needed, realistic
prior information is required. Alternatives to the ”zero-signal“ have been discussed in study case (a).
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Step (2): Choice of observation groups

Even if the VCE in step (1) delivers a reasonable relative weighting of the observation groups, using them
for regional gravity field solutions would provoke strong erroneous effects at all levels due to data gaps, as
described in study case (f). Except at level j = 8, where the prior information is appropriate to overcome the
data gaps. Moreover, the aim is to emphasize the strengths of each data set by their flexible combination within
a MRR approach. Hence, three criteria are defined in Sec. 5.3.1 for a reasonable selection of observation
groups at the different resolution levels:

• high sensitivity,

• no correlations,

• spectral range and spatial distribution.

The observation groups of highest sensitivity relatively to each other are identified within step (1) w.r.t. the
different resolution levels. In Tab. 6.19 they are marked in color. Some data sets obtain the lowest VC at
several levels: The GOCE groups [10], [13] and [15] are expected to contribute most information at levels
j = 7 and j = 8, and the terrestrial data [1] at levels j = 8, 9, 10, 11.
Strictly following the first criterion, i. e. setting up the estimation models at each level by using just the input
data of highest relative weights, yielded correlated detail signals. Further, composing the latter via MRR,
delivered a regional model with multiple presence of one and the same information at several resolution levels.
In this work, hence, the second criterion applies: avoiding correlations by introducing different observation
types at different levels.
Strictly following this second criterion means introducing each data set just once within the MRR composition.
However, strong regularization then is needed at each level for the here available data sets. Due to their limited
spatial extent, cf. 6.13 (i), the single data sets do not sufficiently cover ∂ΩI , and thus, spectral information is
missing. In Appendix B, some tests are summarized in terms of estimated VCs in Tab. B.1, and corresponding
estimated scaling coefficients in Fig. B.2. The data gap areas have to be filled with prior information, but
the ”zero-signal“ w.r.t. GOCO05s up to l j′ = 127 is not sufficient, especially at higher resolution levels as
mentioned above, and large erroneous effects predominated the output signals. Consequently, the spectral
content, the spatial distribution, and the avoidance of multiple presence of the observation groups require a
compromise in the MRR approach. As mentioned in the context of Fig. 5.11, the correlation-criterion has to
be balanced very carefully with the third criterion: ensuring ”sufficient“ spectral range and spatial distribution.
Another possibility would be to consider the presence of multiple information by connecting the consecutive
low- and band-pass filtered signals and their stochastic information. This is the core of a pyramid algorithm,
mentioned in Sec. 4.3.5. Some ideas for its realization are discussed in the Outlook 7.

Multi-level estimation Taking all three criteria into account, the following multi-level estimation is applied
in a study case (g2), in order to combine the data sets and capture their highest measure of information
depending on the spectral sensitivity. Referring to the above identified contrast between the behavior of
regional and global data sets in the VCE, cf. Tab. 6.19, step (1), two levels now are chosen: one estimation
model (5.22) is set up at level j = 8, where the globally observed GOCE GGs [10 – 15] contribute valuable
spectral information, and one is set up at highest level J = 11, where the ”semi-global“ altimetry [5 – 9],
as well as the regional terrestrial [1], air- [2,3] and shipborne [4] data sets deliver appropriate gravitational
content.
In the analysis, the adapted basis functions are expanded for the different functionals each in a series (5.31)
up to L8 = 280 for j = 8, and up to L11 = 2190 for j = 11. The level-8-solution later will be used to describe
the spectral domain of levels j = 8 and j = 7. In analogy, the level-11-solution, which is equivalent to the
solution from study case (e), will be used in order to describe the spectral content of levels J = 11, j = 10

and j = 9. The ”multi-level“ combination of Fig. 5.10, thus, becomes a ”two-level“ combination in this study
case (g2).

Relative weighting and regularization in step (2)

Level 8 According to Tab. 6.19, step (2), the GOCE groups (blue-bordered) show at level j = 8 similar VCs
as in step (1). However, the prior information gets a considerably smaller VC value in the order of 10−6, which
is even smaller than the variance factors of the less-accurate gradients [11] and [14] in the order of 10−5. This
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stronger need for regularization in this study case (g2) might stem from the downward continuation which
causes instabilities in the system (5.23) of normal equations. The chosen GOCE data sets, cf. Tab. 6.18, refer
to an average measurement height of 225 km. Thus, the signal has to be amplified down to the Earth’s surface
where the Reuter grid is set up with a grid radius of RReuter = 6378.137 km; referring noise is amplified as
well. (Note, in study case (d1), similar VCs were obtained for the six GOCE GGs, cf. Fig. 6.12 (ii), taking
into account the different test areas and the different time spans of the data sets.)
In contrast to the GOCE-only combination in step (2), in step (1) the ”near-Earth“ observations stabilize the
solution: Only small signal amplification is needed for the observation groups [2] and [3] (measurement height
of around 30 m, cf. Sec. 3.3.3). Moreover, all data sets contribute valuable spectral information in study case
(g1), and thus, less regularization is necessary than in (g2).

Level 11 The VC values at level j = 11, cf. Tab. 6.19, step (2), refer to the reciprocal relative weights which
have been discussed in detail in the context of Tab. 6.12 in study case (e). The VC σ2

d
of the prior information

(in the order of magnitude of 10−9) decreases compared with the value of σ2
d

in step (1). However, the
decrease yields only around two orders of magnitude; in contrast, at level j = 8, σ2

d
decreases by eight orders

of magnitude. As discussed before, the different need of regularization results from the spectral content of
the corresponding data sets, taking the aspect of downward continuation into account: While in step (1), the
regional data sets (with low need for downward continuation) contain high and medium resolution information
down to level j = 8, vice versa, GOCE does not contribute high-resolution information for the combined
solution at level J = 11. Consequently in step (2), at level J = 11, neglecting the groups [10 – 15] has less
negative influence on the stability of the solution than neglecting groups [1 – 9] at level j = 8.

Summary: Main reasons for regularization

Within step (1) it is shown, that for a large variety of heterogeneous data sets, regularization becomes more
important with increasing resolution level j. The reasons originate from regional rank deficiency problems
and from data gaps. In step (2), the observation groups are divided in two categories: global vs. regional.
In principle, the reduction of data sets at each level requires stronger regularization. However, the latter
increases by a different amount due to the specific spectral contents of the observation groups and the aspect
of downward continuation which causes instabilities in the estimation model, as discussed before.
The higher the influence of the prior information (”zero-signal“ w.r.t. the background model; weight matrix
is the unit matrix), the stronger is the influence of the unit matrix in the stochastic model, i. e. the less
correlations are considered between the scaling coefficients at one level. Consequently, the error estimates are
too optimistic.

MRR composition from (decomposed) single-level estimations

In the following, a combination of MRR-composition and -decomposition are applied. The principle is
visualized in Tab. 6.19: The scaling coefficients are estimated in the synthesis at the specified levels ( j = 8 and
J = 11) by appropriate observations (blue bordered and yellow-/orange-/green-bordered; step 2). The spectral
information then is used to model the referring detail signals at those levels, and further, it is transferred to
the lower levels, in order to compute the low-resolution signal at j ′ = 7 (decomposition of the level-8 signal;
blue-colored arrow), and the detail signals at j = 9, 10 (decomposition of the level-11 signal; yellow-orange-
green-colored arrows). The composition of the signals at each resolution level finally delivers the spectrally
combined level-11 signal.

Estimated scaling coefficients By means of the estimated VCs from Tab. 6.19, the normal equations (5.23)
can be solved at level j = 8 and J = 11. The (i) resulting vectors d̂L8

and d̂L11
of estimated coefficients in step

(2), and (ii) their standard deviations, obtained by Eq. (5.25), are displayed in Fig. 6.25. Note, the level-11
solution (upper row) is identical to the solution from study case (e), displayed in Fig. 6.14, but different
color bars are used. In the sequel, more focus is on the level-8 solution in the lower row. The estimated
coefficients and standard deviations at j = 8 refer to a scaling factor of 10−3 m2/s2. The different orders of
magnitude refer to the different spectral resolution: In contrast to the larger signal amplitudes at the higher
level J = 11 (respectively larger amplitudes of d̂q11

), the amplitudes of d̂q8
vary less since they refer to the
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Figure 6.25: Study case (g2): (i) Scaling coefficients and (ii) referring standard deviations from two single-level estimations at levels
j = 8 (maximum degree L = 280) and J = 11 (L = 2190). Mean values and SDs are depicted in boxes for the entire computation
area and the target area (green-bordered); unit [m2/s2].

medium frequency domain of j = 8. Further, the extent of the computation areas is different at both levels:
While the computation area at level J = 11 comprises 2118 coefficients, 282 coefficients are estimated at
level j = 8. The area of investigation ∂ΩI (green-bordered) comprises 1000 coefficients at level J = 11, and
14 coefficients at level j = 8. As expected and already discussed for J = 11 in the context of Fig. 6.14 (i),
the amplitudes of the coefficients d̂q8

oscillate outside ∂ΩI since they are less supported by observations and
less compensated by side lobes from neighboring SBFs; inside ∂ΩI , they represent gravitational structures.
The statistics (mean ± SD) are depicted in the boxes in Fig. 6.25 for the different computation areas and
the green-bordered target area. Hereby, the signal-related variations of d̂q8

inside ∂ΩI deliver a smaller SD
of 0.38 m2/s2 than the erroneous variations outside with a larger SD of 0.97 m2/s2. (At level J = 11 the
behavior is similar.) The referring standard deviations in plot (ii) confirm the considerations. They reach the
smallest values in the green-bordered target area and increase towards the borderlines of ∂ΩC due to missing
observations. At each level, the SD values are only slightly smaller than the coefficients. It can be explained
by the side lobes of the SBFs: In the analysis, Shannon functions with strong spatial oscillations are used in
favor of ideal filter characteristics in the spectral domain.

Low-resolution and detail signals Using the vectors d̂L8
and d̂L11

of estimated coefficients from the analysis,
they are multiplied with low- and band-pass filtering scaling functions in the synthesis in order to obtain the
low-resolution signal Z j′=7, and the detail signals G j ( j = 8, . . . , 11). According to the two-level estimation,
the system of modeling equations (5.35) is set up in terms of gravity anomalies ∆g: The detail signal G8 is
computed by expanding the adapted wavelet functions Ψ̃8, Eq. (5.33), up to l8 = 255. The low-resolution
signal Z7 is obtained from the same set of coefficients (d̂L8

) by expanding the adapted scaling functions Φ̃7,
Eq. (5.34), up to l7 = 127.
The detail signals G9, G10, G11 refer to the estimated coefficients at level J = 11. Therefore, the wavelet
functions Ψ̃8, Eq. (5.33), are expanded up to l9 = 511, l10 = 1023, l11 = 2047, cf. Tab. 4.8. While in the
analysis, the Shannon kernels ensure that no signal is lost up to L8 = 280 for d̂L8

and up to L2190 for d̂L11
,

in the synthesis, Blackman kernels smooth the high frequencies of each level in favor of reducing erroneous
effects in the spatial domain, as discussed in study case (c).
The detail signals G9, G10, G11 have been discussed in study case (f) in the context of Fig. 6.21, the
corresponding standard deviations sG9, sG10, sG11 by means of Fig. 6.22. There, the (i) detail signal
d11 → G8 was computed from the vector d̂L11

of coefficients, the (ii) standard deviations sd11 → sG8 by
appropriate error propagation. The results are again displayed in the upper row of Fig. 6.26. In contrast, in
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study case (g2), the (i) detail signal G8 and the (ii) standard deviations sG8 are directly computed at level j = 8.
The solutions are visualized in the middle row of Fig. 6.26. Further, the differences (i) ∆G8 and (ii) ∆sG8

between the low-pass filtered solution from study case (f) and the direct solution from (g2) are plotted in the
lower row. The range (min ... max), the mean value and the standard deviation are depicted in white-shaded
boxes for all results in the unit [mGal].
In general, the structures of d11 → G8 and G8 are similar. The largest amplitudes (green colored), describe
an arch from the south-western (passing the mid-northern) to the south-eastern part of the study area. The
lowest amplitudes refer to the north-western, mid-southern, and north-eastern parts. However, G8 contains
obviously more signal than d11 → G8. The amplitudes range from −14.01 mGal to 12.51 mGal, i. e. they are
around twice as high as the amplitudes of d11 → G8 (−8.02 mGal to 6.51 mGal). This is reasonable, since
G8 is directly computed at level j = 8 from appropriate data (GOCE is sensitive at level j = 8). In contrast,
d11 → G8 is obtained by band-pass filtering the estimated signal at level J = 11 from higher-resolution
regional data sets. Even if the decomposition in Sec. 6.2.1 enables the representation of d11 → G8, valuable
GOCE information is missing in this solution.
The difference sG8 indicates the added value of GOCE in G8. Further, remaining aliasing and long-wavelength
errors can be obtained, as discussed in the context of Fig. 6.20. However, due to appropriate filtering in the
synthesis and the pre-processing of the GOCE GGs, both error influences are expected to be small. The
differences range from −5.17 mGal to 6.48 mGal. The spatial extent of the largest amplitudes refer to the
spatial extent of the largest signal values of G8. In analogy, the spatial distribution of the smallest amplitudes
corresponds to the one of the smallest signal values. Consequently, they confirm the signal amplification of
G8 in contrast to d11 → G8. The mean value of the difference (2.11 mGal) indicates an offset between the
model G8 obtained from global satellite observations, and the model d11 → G8 obtained from regional data
sets due to the missing long-wavelength information, as mentioned in study case (f).
The (ii) standard deviations sG8, displayed in the middle row of Fig 6.26, reach maximum values of 0.2 mGal at
the borderlines of the target area due to edge effects. They originate from the limited extent of the computation
area, i. e. the neglect of basis functions outside ∂ΩC . Since all SBFs are globally defined, the remaining
SBFs inside ∂ΩC suffer from the support of the neglected SBFs. These modeling errors increase towards the
borderlines of ∂ΩC , respectively ∂ΩI . They are reduced by an appropriate choice of different area margins
according to Eq. (5.5). On average, the SD values count 0.14 mGal. Thus, they are two orders of magnitude
smaller than the signal values of G8 and indicate an high internal accuracy of the detail signal. Further, they are
smaller than the values sd11 → sG8 of the smoothed level-11 result, displayed in Fig 6.26 (ii), upper row. The
latter are especially influenced by the data gaps at the northern borderline (SD values up to 0.37 mGal) while
the level-8 results do not suffer from missing data. On average, the standard deviations differ by 0.01 mGal; in
the north-eastern part they decrease down to −0.23 mGal. Compared with the signal amplitude of d11 → G8,
the SD values of sd11 → sG8 are closer to the signal, than in case of the level-8 solution. Consequently, the
ratio of G8 to sG8 indicates a higher internal accuracy.

External validation of the level-8 detail signal For an external validation of the detail signal G8, the dif-
ferences to a global GOCE-only model are computed. The latest release GOCE-TIM-R5 (Brockmann et al.,
2014) is chosen (source: http://icgem.gfz-potsdam.de/ICGEM/). For spectral consistency, the low-pass
filtered signal ∆Z7 is added to G8 (cf. G8 + ∆Z7 = ∆Z8 from Fig. 6.21), and GOCE-TIM-R5 (l = 128 up to
l8 = 255) is low-pass filtered with a Blackman kernel as well. The difference ∆Z8 − GOCE-TIM-R58 w.r.t.
GOCE-TIM-R5 (GOCE-TIM-R58) model is displayed in Fig. 6.27 (i) in terms of gravity anomalies. It ranges
from −1.66 mGal to 1.00 mGal and counts approximately 10 % of the maximum signal amplitudes of G8. It
thus indicates different signal and error content in the regional and in the global model.
The geographical pattern of the difference, cf. Fig 6.27 (i), shows to some extent correlations with the struc-
tures of the detail signal (i) G8, middle row. For instance, the spatial extent of the negative part of the G8

signal in the mid-southern part is similar to the spatial extent of the positive differences in Fig. 6.27 (i). Here,
the G8 signal seems to show edge effects probably due to the limited size of the computation area, i. e. the
neglect of basis functions outside ∂ΩC , as discussed before. Further regional modeling errors which cause
the differences inside ∂ΩI , stem from spatial oscillations from the SBFs (the Blackman functions have less,
but still apparent oscillations).
In addition, G8 contains long-wavelength errors in the GOCE GGs, which are still present after the pre-
processing and after subtracting the background model GOCO05s up to degree l j′ = 127. Since GOCO05s
mainly consists of GRACE information in this spectral domain, low-resolution signal remains as well. The ref-

http://icgem.gfz-potsdam.de/ICGEM/
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Figure 6.26: Study case (g2): (i) Detail signal d11 → G8 and (ii) standard deviation sG11 → sG8, obtained from the level-11
estimation (first row); (i) level-8 detail signal G8 and (ii) standard deviation sG8 (middle row); difference (i) ∆G8 of the detail
signals (lower row). Range, mean value and SD are depicted in boxes; unit [mGal].

erence of the detail signal G8, respectively the low-resolution signal ∆Z7, to the background model then causes
the large-scale differences. They are quantified by computing the difference GOCO05s7 − GOCE-TIM-R57

between the background model GOCO05s and GOCE-TIM-R5, both referring to the spectral domain of de-
gree l = 0, . . . , 127. The difference of the long wavelengths is visualized in Fig. 6.27 (ii) in terms of gravity
anomalies (note the different color bar in contrast to (i)). It ranges from −0.24 mGal to 0.15 mGal with a mean
value and SD of −0.05 mGal and 0.10 mGal. The SD of the mean difference GOCO05s7−GOCE-TIM-R57 of
the low-resolution domain (l = 0, . . . , 127), cf. Fig. 6.27 (ii), is around four times smaller than the SD of the
mean difference ∆Z8−GOCE-TIM-R58 of the medium-resolution domain (l = 128, . . . , 255), cf. Fig. 6.27 (i).
However, especially the large-scale negative anomaly in Fig. 6.27 (ii) influences the low- and band-pass filtered
signals ∆Z7, G8 of the regional model which refer to GOCO05s up to l7 = 127, and explain to some extent
the large-scale difference in Fig. 6.27 (i). Further, the input data of the here estimated regional model G8

stem only from the lower orbit phase of the GOCE mission (time span 08/2012 - 11/2013), while the global
GOCE-TIM-R5 model comprises the data from the whole satellite mission.
In total, the differences between the regional and the global GOCE-only models, expressed by Fig. 6.27 (i),
are smaller than the differences ∆G8 in Fig. 6.26 (i), lower row, between the G8 signal and the one which is
obtained from the level-11 estimation. Thus, G8 contains additional GOCE signal in contrast to d11 → G8.
Comparing the difference G8 − GOCE-TIM-R58 with the previously discussed sG8 from Fig. 6.26 (ii) in the
middle row, the standard deviations reach values that are one order of magnitude smaller than the difference.
Those too optimistic error estimates result again, as discussed before, from an incomplete stochastic model.

Differential signal According to the MRR equation (4.28), the composition of the low-resolution signal
Z j′=7 and the detail signals G8, G9, G10, G11 finally delivers the differential signal ∆Z11,MRR, cf. Eq. (5.37).
The standard deviations s∆Z11,MRR =

√
v11 are obtained by adding the variances of the low-resolution of the

detail signals and according to Eq. (5.38). Figure 6.28 (i) shows the differential signal ∆Z11,MRR in terms
of gravity anomalies ∆g up to maximum MRR level J = 11, and (ii) the corresponding standard deviations
s∆Z11,MRR. In (iii) the difference ∆Z11 − ∆Z11,MRR between the single-level estimation from study case (e),
cf. Fig. 6.15 (i), and the MRR-solution ∆Z11,MRR is visualized. The statistics are depicted in the white boxes,
as mentioned above. On average, the differences count −0.99 ±4.09 mGal, i. e. less than 1 % of the signal
range of ∆Z11,MRR and ∆Z11. In general, the geographical pattern of ∆Z11,MRR is similar to ∆Z11. However,
the differences show largest amplitudes down to more than −50 mGal in the data gap area in the south-western
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Figure 6.27: Study case (g2): (i) Difference ∆Z8 − GOCE-TIM-R58 between the low-pass filtered signal ∆Z8 = ∆Z7 + G8

and the consistently filtered global GOCE-only model GOCE-TIM-R5 (GOCE-TIM-R58); (ii) Difference between GOCO05s and
GOCE-TIM-R5 up to degree l = 127; Mean value and SD are depicted in the box in the unit [mGal].

Figure 6.28: Study case (g2): (i) Differential signal ∆Z11,MRR, (ii) standard deviations s∆Z11,MRR, and (iii) difference ∆Z11 −
∆Z11,MRR to the differential signal from the single-level estimation in Fig. 6.15 (i). The statistics (range, mean, SD) in the boxes
are given in [mGal].

corner, and up to around 40 mGal in the same region and further at the north-eastern borderline where high-
resolution observations are missing. Beside small-scale variations, the differential pattern shows above all
large-scale variations: In the western and southern areas the differences are positive (around 5 mGal), while
in the middle, negative differences of around −5 mGal extend to wide parts. Similar large-scale structures
are represented by the difference ∆G8 of the detail signals G8 and d11 → G8 in Fig. 6.26 (i), middle row. In
conclusion, the additional signal from GOCE at level 8 is represented in the MRR-solution ∆Z11,MRR w.r.t. the
regional modeling errors of around 10 %, approximately estimated from the difference G8 −GOCE-TIM-R58

to the global GOCE-only model. Consequently, the enrichment of ∆Z11,MRR in the medium wavelengths
further explains the large-scale differences in Fig. 6.28 (iii) w.r.t. the single-level estimation ∆Z11.

Total signal Restoring GOCO05s to the differential signal delivers the total MRR signal Z11,MRR in terms
of gravity anomalies ∆g up to level J = 11. It is displayed in Fig. 6.29 (i); outliers have been removed
in the graphical representation w.r.t. a three-sigma threshold. In contrast to ∆Z11,MRR, the structures of
Z11,MRR change especially in the North Sea, where negative anomalies overlay the small-scale variations from
∆Z11,MRR. (The difference Z11 − Z11,MRR to the total signal Z11 of the single-level estimation in study case (e)
is expected to correspond to the difference ∆Z11 −∆Z11,MRR to the differential signal, since the same constant
background model GOCO05s was used.)
The difference EGM11− Z11,MRR to the consistently filtered EGM2008 (EGM11) is visualized in Fig. 6.29 (ii).
It yields a similar large-scale geographical pattern as ∆Z11 − ∆Z11,MRR from Fig. 6.28 (iii). Since EGM2008
contains no GOCE information, cf. Sec. 3.2.2, the differences confirm the considerations from above: The
large-scale differences in the medium wavelengths seem to stem from the additional GOCE observations,
which are contained in the regional model Z11,MRR. Comparing Fig. 6.29 (ii) with the differences between
Z11 and EGM2008 from Fig. 6.17 (i), those large-scale structures do not appear.
Besides the beneficial aspect of additional information in Z11,MRR, the differences in the data gap areas seem
to be smaller in Fig. 6.29 (ii) than in Fig. 6.17 (i). While in study case (e), differences down to −22 mGal
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Figure 6.29: Study case (g2): total signal.

were obtained in the south-western corner, the amplitudes now range from −12.65 mGal to 18.83 mGal and
vary around −0.24 mGal with a SD of 3.55 mGal. Note, in study case (e), the differences were computed
vice versa, i. e. Z11 − EGM11; hence, large negative anomalies refer to large positive anomalies in this study
case (g2). In conclusion, erroneous effects due to data gaps are obviously reduced in the MRR-solution.
The contribution of GOCE delivers valuable spectral content in the medium-wavelengths domain and further
stabilizes the regional model in case of missing high-resolution information.

Summary and discussion of study case (g)

• The comparison of the detail signals d11 → G8 and G8 indicates additional signal in G8, stemming
from GOCE. Further, the internal accuracy is higher due to the ratio G8/sG8 of signal and standard
deviation. However, the SDs are too optimistic (in all regional models), since the stochastic model does
not consider correlations of the observations and assumes equal accuracies.

• The comparison of the regional GOCE-only low-resolution signal ∆Z8 with the consistently filtered
global GOCE-only model GOCE-TIM-R5 verifies the additional signal of G8 to some extent. It further
quantifies differences between the regional and the global model (around 10 % of the signal amplitude of
G8) due to different signal content (different time spans), the reference of G8 w.r.t. GRACE signal (from
the background model GOCO05s up to degree l j′ = 127), the influence of remaining long-wavelength
signal and errors (which are not removed by the background model) and remaining modeling errors in
the global model and in the regional approach.

• The differential MRR signal is enriched by the additional signal.

• The total MRR signal shows smaller edge effects in data gap areas than the signal from the previous
single-level estimation.

In conclusion, computing detail signals from measurement techniques depending on their spectral sensitivity
allows to extract at each level valuable information. The combination finally yields a regional model which is
enriched by spectral information at all frequencies.
Besides the above discussed error influences, the MRR composition does not consider connections between
the detail signals. The VCE yields the relative weighting of the observation groups w.r.t. one level j. The same
prior information is introduced at each level for regularization. However, the amount of regularization varies
from level to level so that the total influence of prior information cannot be quantified in the resulting MRR
signal. In order to avoid the multiple presence of one and the same information at different resolution levels,
the observation groups have to be chosen very carefully by balancing spectral content and spatial distribution.
A pyramid algorithm could provide the potential to manage those difficulties, see Sec. 7.
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7 Summary and Outlook

Summary

The enhanced regional gravity field modeling approach from the combination of real data via MRR is founded
on the theory from Secs. 2 to 5. The application in Sec. 6 provides ground for rating the methodical settings
and discussing the obtained results.

Theory of the approach

The Chapters 2, 4 and 5 describe the theory of the regional modeling approach. Hereby, fundamentals of
gravity field representation, which are relevant for this work, are depicted in Sec. 2. Amongst others, diverse
gravitational functionals are introduced w.r.t. their spectral sensitivity according to the Meissl scheme. For
regionally modeling the Earth’s gravity field, in Sec. 4, radial SBFs are specified. Especially the commonalities
and differences between global modeling in terms of SH functions and regional modeling in terms of SBFs
are studied. Section 5 finally investigates the choices of the methodical settings and of the estimation model
for a spectral combination of heterogeneous data sets via MRR.
The diversity of measurement systems, the characteristics and reasonable pre-processing of corresponding
observation types was discussed in Sec. 3.3. The properties manifest the need of carefully adapting the
basis functions, the methodical settings, and the estimation model for an enhanced regional gravity field
modeling from the combination of heterogeneous data by exploiting their strengths. The corresponding
spectral classification of the data types w.r.t. resolution level j in Tab. 4.8 delivers the basis for setting up the
approach.

Choice of SBFs The locally supporting SBFs provide a compromise between the uncertainty in the spectral
and in the spatial domain. While in the analysis, Shannon functions with ideal filter characteristics are used
for the determination of the unknown scaling coefficients, smoothing Blackman functions are used in the
synthesis for modeling the output gravity fields. Those SBFs have smaller oscillations in the spatial domain,
and thus, reduce erroneous effects.

Choice of methodical settings For installing the regional modeling approach, the specific methodical settings
in Sec. 5.1 are chosen such, that they balance, e. g., edge effects due to the spatially limited computation area,
aliasing problems due to the truncation of series expansions, minimum and maximum modeling resolution
w.r.t. the spatial and spectral content of the observations. Edge effects are reduced by defining different spatial
extents for the three areas, i. e. the area of computation, observation and investigation. Hereby, the margin
width η j decreases with increasing resolution level. The maximum modeling resolution L j is chosen higher
than the upper boundary of the desired resolution level of the output model in order to reduce aliasing errors
from frequency folding. The minimum resolution level refers to the average extent of the observed area and
further is related to the maximum resolution of the background model in order to ensure spectral consistency.

Choice of estimation model The unknown scaling coefficients are estimated in an extended GMM which
enables the combination of diverse observation groups on normal equation level. Observation equations
have to be formulated for each functional. Hereby, special emphasize is given to the representation of the
measurements in their most original state. The pre-processing shall be kept as low as possible in order to
capture a high measure of information out of the measurements. For instance, the observation equations for
the GOCE tensor contain transformation terms from the Earth-bound modeling system to the satellite specific
GRF where the gravity gradients were observed. For a multi-level estimation as visualized in Fig. 5.10, several
single-level estimation models are set up. The composition then enables a MRR of the resulting gravitational
signal.
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Application of the approach

The application of the theory is demonstrated and discussed by means of several study cases in Chapter 6.
Table 6.1 gives an overview of the main cases (a) – (g) w.r.t. to their complexity. Hereby, several categories are
identified which influence the target achievement; above all, the number of levels, i. e. setting up the regional
modeling approach in terms of a single-level (Sec. 6.1) or a multi-level estimation (Sec. 6.2), i. e. a spectral
combination via MRR. Further, the types of simulated (Sec. 6.1.1) and real data (Sec. 6.1.2) are distinguished.

The method of VCE has two tasks in this work: It manages the relative weighting of the heterogeneous
observation groups and, by introducing prior information as additional data set, the amount of regularization.

Regularization For a stable solution of the normal equation system in the GMM, regularization is necessary.
By means of study cases (a), (b), (d) and (g), three main issues have been identified for its need: (1) regional
rank deficiency, (2) data gaps, and (3) downward continuation. Hence, due to (1), regional approaches always
require the stabilization of the estimation model in contrast to global approaches. In order to overcome the
ill-conditioned normal equation system, prior information is necessary. It stems in the here presented approach
from a global SH model.
The regional rank deficiency problem was especially investigated in cases (a,b) and (g1). An estimate kreg

L
for

the quantification of the regional rank deficiency was derived in Sec. 5.1.4. kreg

L
increases with augmenting

resolution level and requires a stronger regularization. However, the exact determination is not possible due
to the spatial limitation of the computation area and the corresponding neglect of SBFs outside this area.
A possible reduction of kreg

L
was discussed in study cases (a,b). However, the reduction comes along with

taking either increasing edge effects into account (by reducing η j ), or increasing aliasing errors (by choosing a
smaller modeling degree L j ). In this work, the regional rank deficiency is tried to be kept as small as possible
by appropriate methodical settings.
An inhomogeneous spatial distribution of the observations and referring data gaps require regularization, as
well. The missing spectral content is filled up by the additional prior information. The latter is introduced as
zero-vector due to its dual role: it also serves as background model, i. e. the spectral content of all observation
groups is reduced by the spectral information of this model. In all study cases, the prior information could
stabilize the ill-conditioned normal equation systems. However, the ”zero-signal“ turned out to be not
appropriate for filling in the data gaps at higher resolution levels. In study cases (e) and (g), erroneous effects
predominate the areas of missing high-frequency information.
The third need for regularization due to downward continuation was discussed in study cases (d) and (g1).
For modeling gravitational structures at the Earth’s surface and/or for combining satellite data with near-Earth
observations, downward continuation is necessary, and thus, a stronger regularization.

Relative weighting Since the iteratively estimated variance factors are computed based on the stochastic
information of the observations, the method is appropriate for the relative weighting of noisy data, especially
for real data which is the aim in this thesis. The residuals of the observations indicate the accuracy and
the spectral resolution of the data sets. Low-resolution signal is smoother in the spatial domain, i. e. it
shows large-scale variations, while high-resolution signal represents short-scale variations. Hence, the type
of the gravitational functional and the aspect of downward continuation play a role, as well. According to the
Meissl scheme (Fig. 2.7), different functionals are more or less sensitive to high-frequency variations of the
Earth’s gravity field and signal (e. g. from satellite measurements) is amplified in the high frequencies by
downward continuation to the Earth’s surface. Further, data sets with spatially limited extent cannot resolve
long wavelengths while the latter can be resolved by spatially widespread observations. Thus, the spectral
content of observations depends on the size of data gaps, as well.
The appropriate and reasonable relative weighting of heterogeneous data sets by VCE at one single resolution
level, is shown in study cases (b), (d), (e) and (g1). In the multi-level combination in study case (g2), the
VCs at different resolution levels then are used as indicators for the classification of the observation groups
depending on their spectral sensitivities. This beneficial strategy allows to set up the MRR composition, which
is one of the main tasks of this work.
In study cases (a) and (c), simulated noise-free data are used. Due to the missing stochastic information,
instabilities appear in the method of VCE. They are especially discussed in study case (e). Further, long-
wavelength errors cannot be considered, and the regularization by VCE in terms of prior information from a
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noise-free global SH model is unstable as well. However, the iterations converge in all study cases and stable
normal equation systems can be achieved.

In conclusion, VCE is appropriate for the relative weighting of real data. However, weaknesses appear
when using the method for regularization by low-resolution prior information. Consequently, the choice
of a more suitable strategy is recommended for future studies. In study case (a), alternative regularization
methods, as well as the introduction of additional information from topography models are exemplarily
mentioned. By formulating for the latter observation equations in terms of residual quantities and setting up
an appropriate stochastic model, the influence of the synthetic model can be managed by VCE. Consequently,
this high-frequency information could overcome data gaps at high resolution levels in addition to stabilizing
the modeling approach by long-wavelength information from global SH models.

Results of the approach

Simulation studies by single-level estimation The simulation studies (a) – (c) confirm for various different
settings the plausibility and stability of the approach by means of closed-loop scenarios. Especially different
noise levels and the choice of SBFs in the synthesis are investigated. The method of VCE reasonably considers
the different stochastic information in study case (b); in study case (c) the Blackman function is verified as
a good compromise between a oscillating SBF in the spatial and a smoothing SBF in the spectral domain.
In general, the closed-loop differences are small. However, they do not reach computational accuracy. In
study cases (a,b), especially systematic errors dominate the CL differences, probably stemming from the prior
information. By means of study case (c) additional modeling errors are identified, e. g. due to instabilities in
the VCE or incomplete stochastic models. In Tab. 7.1, possible error influences are summarized.

Real data studies by single-level estimation Taking the findings from the simulation studies into account,
the application of the single-level approach on real data is investigated within study cases (d) and (e). Hereby,
the complexity w.r.t. the influence factors on the target achievement from Tab. 6.1 increases. Data types with
different functionals and accuracies are especially discussed in case (d) by means of GOCE GGs. Hereby the
method of VCE is verified by reasonable relative down-weighting of the less accurate GGs. Further, the trace
criterion of the GOCE tensor is valid at computational accuracy and justifies the consistent rotation of the
observation equations into the GRF. Besides the already identified weaknesses and regional modeling errors,
instabilities in the estimation model due to downward continuation require regularization, as well. In study
case (e), further, different observation heights, functionals, spatial distributions and resolutions of diverse
data sets are investigated at a high spectral resolution level. The small standard deviations of the estimated
parameters and models confirm a high internal accuracy; the small differences of the results to the regional
GCG2011 model and in a cross-validation constitute a high external accuracy of the modeling approach, and
thus, its plausibility. However, the incomplete stochastic model yields too optimistic standard deviations. A
proper consideration of covariance information of the observations is recommended for future studies. From
slightly larger differences to global models, additional resolution in the regional model is assumed. However,
data gaps turn out as most negative aspect. While they can be compensated by surrounding observations
inside the target area, erroneous oscillations predominate data gaps at the edges. Further, the combination
of regional and global data sets, with considerably different spectral resolutions, cannot be properly handled
within the single-level estimation model.

Multi-level estimation The main advantages of a multi-level estimation are that the observation techniques
can contribute information exactly in the spectral domain of their highest sensitivity, and the resulting regional
model is enriched by the spectral content from global low-resolution, as well as from regional high-resolution
measurements. The spectral decomposition of an existing model in several low- and bandpass filtered signals
in study case (f) emphasizes the potential of the MRR approach to detect data gaps w.r.t. the resolution
level. Further applications of the spectral decomposition arise for neighboring disciplines, as e. g., studying
large-scale variations in the Earth’s interior. Vice versa, for the spectral combination, three criteria are
specified in this work: (1) introducing data sets with highest spectral sensitivity, (2) avoiding correlations
between detail signals, (3) ensuring ”sufficient“ spectral content, and thus, spatial distribution of the input
data. In study case (g1), the VCE highlights especially the different nature of the here available global vs.
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regional data sets from study cases (d) and (e). In study (g2), a two-level composition, incorporating further
decomposition, is realized. In contrast to the single-level combination in (e), the MRR-model shows the
enrichment by additional GOCE signal. The comparison with EGM2008 proves that the erroneous effects of
data gaps is reduced compared with the model from study case (e). Further, the large-scale differences indicate
the enrichment of the regional model through GOCE information. They are rated by a comparison to the
global GOCE-only model GOCE-TIM-R5. Since the MRR composition of the high-resolution level-11 signal
does not consider connections, correlations and error propagation between the detail signals, the amount of
additional signal in the regional model compared with EGM2008 cannot exactly be quantified and approved.
In conclusion, the spectral MRR composition enables to stabilize high-resolution regional models by the
enrichment of medium-resolution spectral content and erroneous edge effects are reduced in data gap areas.
The approach has the potential to deliver additional high-resolution information for existing global models.

Error influences and uncertainties

Table 7.1 summarizes the previously specified error influences and uncertainties in the regional modeling
approach of this work. Hereby, their consideration in terms of quantification and/or reduction is assigned and
further or alternative possibilities are suggested. Note, the applied reduction strategies and the (alternative)
possibilities are contradictory in some cases and point out the need for compromises.
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Table 7.1: Error influences or uncertainties, their quantification and/or reduction, and (alternative) possibilities, referring to settings w.r.t. ∂ΩC , input data w.r.t. ∂ΩO , and output models w.r.t. ∂ΩI .

error influences and uncertainties quantification and/or reduction (alternative) possibilities

∂ΩC spatial oscillations of SBFs reduction by choice of Blackman functions in the synthesis alternative basis functions (Bentel et al., 2013a)
regional rank deficiency regularization smaller area margins, studying the amount by singular

value decomposition (Naeimi, 2013), different point
systems

֒→ linear dependencies due to unfavorable spatial
distribution of the observations

regularization alternative point grids

֒→ truncation of the series expansion of SBFs estimation of omission error, reduction of aliasing errors
by appropriate filtering in the analysis and synthesis

֒→ truncation of the computation area, i. e. neglect of
basis functions outside the computation area, and thus,
missing support of those SBFs

estimating regional rank deficiency smaller maximum modeling degree, alternative
computation grids

֒→ truncation of SBFs in the spatial domain by the
borderlines of the computation area (globally defined
functions with local support)

appropriate area margins estimating the truncation error, as e. g. suggested by
Haagmans et al. (2002)

singularities in the normal equation system due to
downward continuation and inhomogeneous data
distribution

regularization

∂ΩO systematic errors stemming from prior information and/or
observations

reduced by homogenization w.r.t. the normal potential additional prior information, adapting parameter
estimation model (additional unknown; complete
stochastic model)

unknown spectral content of observations classification of observation types w.r.t. spatial resolution spectral analysis
inconsistencies in height and gravity datums of different
data sets

homogenization w.r.t. normal potential, pre-processing

unknown height and gravity reference (systematic errors) introducing an additional unknown in estimation model,
deterministic estimation of systematic errors

unknown accuracy, stochastic information of the
observations

assuming the measurement errors to be uncorrelated and
to have the same accuracies

considering more realistic covariance information in the
weight matrix, deterministic estimation of stochastic and
systematic errors

missing stochastic information of the prior information introducing covariance information in stochastic model,
alternative prior information

correlations of background model and observations alternative background models
data gaps prior information additional prior information, e. g. topography models

∂ΩI assuming the detail signals to be uncorrelated Shannon filter functions in the analysis connecting detail signals and applying error propagation
within a pyramid algorithm
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Outlook

From the indicated error sources in Tab. 7.1 and the discussions of the results in Sec. 6, the most relevant open
questions yield consequential recommendations for future studies.

• Considering covariance information of the observations, i. e. formulating a complete stochastic model
taking correlations and different accuracies into account or introducing additional unknowns in the
estimation model.

• Considering covariance information of the prior information stemming from a global SH background
model.

• Introducing additional observation groups with high-resolution information, e. g. from topography
models of the Earth.

• Implementing the pyramid algorithm for a consistent spectral combination.

• Implementing a combined estimation in terms of SBFs and SHs.

Covariance information of the observations

Complete stochastic model For the consistent combination of different observation groups, stochastic and
systematic error components have to be described within the estimation model. However, the information about
the quality of (especially terrestrial, air-/shipborne) regional data sets is often not available. Thus, identity
matrices describe the weight matrices in this thesis. Fecher et al. (2015) suggest an empirical derivation of
the systematic errors from a validation of regional data against global gravity models. The resulting stochastic
models then can be externally calibrated by means of the covariance information of the global SH models. A
similar strategy, computing the differences between a low-pass filtered global SH model and low-pass filtered
observations is described by Wittwer (2009), pp. 157. In the here presented approach, it could be realized as
follows: The SH gravity models, which are introduced as background models up to degree l j′ , are assumed
to be noise-free. The observations have to be low-pass filtered up to the same degree l j′ . The differences then
give an estimate of the remaining long-wavelength errors.

Estimation of long-wavelength errors The estimation model (5.22) further can be extended by additional
unknowns in order to handle long-wavelength errors. Since low-resolution errors are mainly of systematic
nature, an additional parameter could be introduced in the GMM (5.22), e. g. in terms of a constant value
or a regression surface, depending on the differences w.r.t. the background model. In altimetry applications,
as e. g. determining the structure of marine gravity fields, systematic offsets are, for instance, considered by
estimating a constant parameter in the estimation model (Pimenova, 2013).

Covariance information of SH background models

While for regional data sets error information is often missing, it is usually available for global gravity field
models in terms of covariance matrices. In order to formulate an appropriate stochastic model, the covariance
matrix has to be transformed into an appropriate weight matrix Pd in the extended GMM (5.22). In analogy
to the transformation of SH coefficients into scaling coefficients (Eicker et al., 2013), the transformation of
covariance information is not unique and singularities have to be considered.

Additional prior information

As mentioned in study cases (a) and (b), additional prior information from synthetic Earth models, as e. g.
topography models, might help to stabilize the method of VCE and overcome data gaps in the resulting regional
model. In order to reduce the propagation of long-wavelength errors and uncertainties of topography models
onto the regional models, the topographic information should be introduced in terms of relative quantities,
representing derivatives of the gravitational potential. Deflections of the vertical η, ξ, cf. Sec. 2.5.6, or
gravity gradients Vab , cf. Sec. 2.5.7, are, for instance, appropriate gravitational functionals. As suggested
by DGFI-TUM (2014), observation equations can be formulated in analogy to Tab. 4.7 and considered as
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additional observation type in the extended GMM (5.22). In order to account for remaining uncertainties of the
synthetic model, a reasonable weight matrix has to be chosen. The relative contribution to the regional model
then is regulated by VCE. The topographic information might stabilize the regional modeling approach and
reduce the presence of ”zero-signal“ w.r.t. the background model in the differential output signal. Especially
at higher resolution levels, the high-resolution topographic information could be further beneficial in order to
overcome data gaps.

Another aspect comes along with additional information from the Earth’s topography: Instead of using
spherical basis functions, a gravity field representation in terms of ellipsoidal basis functions, e. g. ellipsoidal
harmonics (Hofmann-Wellenhof and Moritz, 2005) or ellipsoidal wavelets (Schmidt et al., 2007), may be more
appropriate in order to achieve a closer fit of the basis functions to the topographic structures of the Earth
(Rummel, 2011). However, the computational effort then increased a lot.

Pyramid algorithm

As schematically displayed in Fig. 4.7, a signal ZJ can be decomposed (top-down) into several detail signals
by successive low-pass filtering. Connecting the detail signals in the top-down decomposition is the core idea
of a so-called pyramid algorithm, mentioned in Sec. 4.3.5. Hereby, the number of scaling coefficients and their
corresponding spectral content are reduced level-by-level, and the spectral information and the covariance
information of higher levels serve as input for lower levels.
The principle is visualized in Fig. 7.1. Starting from the highest level J, the referring detail signal GJ is
computed from high-resolution data sets (e. g. observation group 1; orange) by estimating the unknown
scaling coefficients (collected in the vector dJ ). In order to compute the smoother detail signal GJ−1 of
the next lower level J − 1, the scaling coefficients (dJ−1) of this level are computed from dJ by low-pass
filtering. This has several advantages: (1) The coefficients of different levels do not have to be computed
separately. Their estimation is very time-consuming especially at high levels. (2) The low-pass filter matrix
H J−1, which connects the sets of coefficients dJ and dJ−1, allows to take the estimated signal GJ and the
covariance information from the higher level into account. (3) Appropriate observations (e. g. from group 2;
green) can be introduced and their correlations can be considered in the low-pass filter matrix, as well. The
spectral combination down to level j ′ + 1 hence ensures consistency and full error propagation.
The practical realization of the pyramid algorithm, however, has several challenges: Hierarchical point grids
do not exist on the sphere (Freeden et al., 1998) (non-hierarchical point grids, as e. g. the Reuter grid, have to
be used); The down-sampled scaling coefficients are not unique (a pseudoinverse would have to be introduced
for solving the normal equation system); The area margins have to be adapted (lower levels require larger area
margins due to edge effects); Setting up the low-pass filter matrix H j−1 for the regional case is still an open
issue (Schmidt and Fabert, 2008). All those aspects are implicitly considered or mostly do not matter within
the spectral composition, realized within this work following the bottom-up approach.

Figure 7.1: Pyramid algorithm.
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Combined estimation in terms of SHs and SBFs

Figure 7.2: Future idea: modeling regional gravitational structure (depending on mass distribution) – from observations (terrestrial,
air-/shipborne, altimetry, GOCE, GRACE, ...) – in terms of both SHs and SBFs. The light-blue colored background visualizes the
contributing parts which will be included in a future estimation model – in contrast to Fig. 1.1

In analogy to Fig. 1.1 which presents the idea of the regional modeling approach of this thesis, Fig. 7.2
visualizes the idea of a combined estimation model, including both the estimation of high-resolution parts in
terms of SBFs, as well as the estimation of low-resolution parts in terms of SHs. A combination strategy of
diverse basis functions is, for instance, described by Fischer (2011).

As mentioned in the context of Fig. 1.2, SH functions are optimally localizing in the spectral domain, while
SBFs are a compromise between spectrally and spatially localizing basis functions; a perfect localization in
both domains is not possible. Whereas global gravity field modeling manages the representation of global
satellite data very well since many decades, regional modeling by using the content of spatially limited data
sets is still a young research field. A large number of trade-offs exist in the regional approaches. Some of
them are exemplarily discussed in this work and the methodical settings give a kind of ”receipt“ for balancing
different aspects. As an outcome of the ICCT JSG0.3, the variety of different regional approaches further
demonstrates the fact, that there is no ”optimal“ strategy up to now for regional gravity field modeling.
The primary motivation of this work is to profit from the valuable information of low-, medium- up to high-
resolution resolution data sets by using SBFs for regional gravity modeling. The future aim could be to use
the strengths of the different basis functions, as well, i. e. not only combining heterogeneous data, but also
different basis functions for comprehensively model the Earth’s gravity field.
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Abbreviations and Nomenclature

Abbreviations

AdV
Arbeitsgemeinschaft der Vermessungsverwaltungen der
Länder der Bundesrepublik Deutschland

63

BKG German Federal Agency for Cartography and Geodesy 46, 63–65

CHAMP CHAllenging Minisatellite Payload 59, 62
CPU Central Processing Unit 66
CSR Center for Space Research 57, 58

DGFI Deutsches Geodätisches ForschungsInstitut 64, 65
DHHN Deutsches Haupthöhennetz 63
DLR Deutsches Zentrum für Luft- und Raumfahrt 56
DNSC Danish National Space Center 65
DOT Dynamic Ocean Topography 48, 61
DTM2006.0 Digital Topographic Model 2006.0 125

EGM2008 Earth Gravitational Model 2008 12, 62, 125
EGM96 Earth Gravitational Model 1996 61

EIGEN
European Improved Gravity field of the Earth by New
techniques

59

ESA European Space Agency 51, 60, 66
ETRS89 European Terrestrial Reference System 1989 63

GCG2011 German Combined QuasiGeoid 2011 63–65
GFZ GeoForschungsZentrum 57–59, 61

GG Gravity Gradient
39, 50, 51,

54, 132
GMM Gauß-Markov Model 11, 102, 103

GNSS Global Navigation Satellite System
37, 40, 46,
47, 51, 63

GOCE Gravity field and steady-state Ocean Circulation Explorer
12, 22, 43,
44, 51, 53,
54, 56, 66

GOCO Gravity Observation COmbination 12
GPS Global Positioning System 51, 61

GRACE Gravity Recovery And Climate Experiment
12, 35, 44,

56, 62
GRF Gradiometer Reference Frame 51–53, 56, 66
GRS80 Geodetic Reference System 1980 61

IAG International Association of Geodesy 125
ICCT Inter-Commission Committee on Theory 125
ICGEM International Centre for Global Earth Models 24
IUGG International Union of Geodesy and Geophysics 61
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J2000 Julian Date of 2000 18
JPL Jet Propulsion Laboratory 57, 58

LNCS Local North-Oriented Coordinate System
21, 22, 51,

52, 56
LOCS Local Orbital Coordinate System 22, 51–53, 56

LSC Least Squares Collocation
8, 10, 11, 56,

109

MBW Measurement BandWidth 54, 56, 118

MRR Multi-Resolution Representation
9, 10, 12, 13,

59, 73, 75,
81, 86, 87

NASA National Aeronautics and Space Administration 56

POD Precise Orbit Determination 51, 57–59

RMS Root-Mean-Square 47, 105

SBF Spherical Basis Function

7–13, 15, 24,
25, 32, 33,
69, 70, 72,
75, 76, 86,

174
SGG Satellite Gravity Gradiometry 50–52, 54, 56

SH Spherical Harmonic

7, 9–15,
24–27, 29,
30, 32, 33,
36, 40, 51,
61, 69, 70,
72, 75, 76,

174
SLR Satellite Laser Ranging 51, 54, 60
SSH Sea Surface Higth 48, 51
SST Satellite-to-Satellite Tracking 57, 59

UTCSR University of Texas Center for Space Research 56

VC Variance Component 106, 107, 111

VCE Variance Component Estimation
8, 11, 60,

102–104, 106

WGS84 World Geodetic System 1984 61

Nomenclature

Bl Legendre coefficients 70
E f energy of a non-bandlimited signal f 79
Eg energy of a bandlimited signal g 79

Fl,m spherical harmonic coefficients
25, 26, 29,

30, 72
F kgm/s2 magnitude of gravitational force F 22
GM m3/s2 standard gravitational parameter 23
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G j (x) detail signal at x, containing information from level j 85, 88, 89
G m3/kgs2 gravitational constant: 6.6742 × 10−11 22, 23, 27
HR
l,m surface spherical harmonic function 25, 26, 33

H0, ...,L space of dimension (L + 1)2 76
Hnorm m normal height 41, 64, 65, 67
Horth m orthometric height 40, 41, 51
Hl,m solid spherical harmonic function 25, 26
J maximum resolution level of MRR 100
Lrank upper estimate of modeling resolution in terms of SH degree 101

Lobs
maximum spectral resolution of observations in terms of SH
degree

100

L
maximum spectral (modeling) resolution in terms of SH
degree

100

M0 kg total mass of the Earth’s normal ellipsoid 27
M kg total mass of the Earth 27
N ′ normal curvature of an ellipsoid 20
NL = (L + 1)2 dimension of the space H0, ...,L (Ωext

R
) 76

Nglob

L
total global number of Reuter grid points 95

Nmax
L

upper estimate of the global number of Reuter grid points 94

N m geoid height, geoid undulation
31, 36–38,
40, 48, 51,

184
OGRF origin of GRF 52
OJ2000 origin of inertial reference system at J2000 18
OLNCS origin of LNCS 21, 22, 52
OLOCS origin of LOCS 22, 51
Pl Legendre polynomial 24, 26, 181
Pl,m (associated) Legendre function 24, 26, 181
P arbitrary point on or above the Earth’s surface 18, 19, 26

QL = (L + 1)2 total global number of coefficients at max. degree L for a
fundamental point system SQ

75, 76

Qglob

L
total global number of scaling coefficients 94

Qreg

L
regional number of scaling coefficients 97

Q ≥ (L + 1)2 total global number of coefficients at max. degree L for an
admissible point system SQ

73, 74

R m constant radius 19, 31, 83
SQ admissible point system 74, 76

T m2/s2 disturbing potential
29–32, 36,
37, 39, 41,

43, 44
U m2/s2 normal potential 27, 29, 35, 40
Vback

m2/s2 gravitational potential of a global background model 30

Vab s−2 gravity gradients
40, 44, 50,

54, 55

V m2/s2 gravitational potential

15, 22, 23,
26, 30, 32,
35, 36, 39,

40, 43
W0

m2/s2 gravity potential of the geoid 15, 23, 35, 36

W m2/s2 gravity potential
15, 21, 29,
35, 38, 39
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X l+i up-/ downward continuation operator
30, 31, 33,

80, 81
XGRF X-axis of GRF 52
XJ2000 X-axis of inertial reference system at J2000 18
XLNCS X-axis of LNCS 22, 52
XLOCS X-axis of LOCS 22, 52
YGRF Y-axis of GRF 52
YJ2000 Y-axis of inertial reference system at J2000 18
YLNCS Y-axis of LNCS 22, 52
YLOCS Y-axis of LOCS 22, 52
Z ′(x) non-bandlimited gravitational signal at x 90
Z (x) bandlimited gravitational signal at x 85
Z j (x) gravitational signal at x, containing information up to level j 89
ZGRF Z-axis of GRF 52
ZJ2000 Z-axis of inertial reference system at J2000 18
ZLNCS Z-axis of LNCS 22, 52
ZLOCS Z-axis of LOCS 22, 51, 52, 54
Z m2/s2 centrifugal potential 15, 23, 29, 51
∆V m2/s2 gravitational potential difference 35, 44, 67
∆V [3 × 3] tensor of gravity gradients 39, 53, 54, 56
∆g [3 × 1] vector of gravity anomaly 37, 38

∆g m/s2 gravity anomaly
37, 38, 44,

46, 184
Λ

◦, [rad] astronomical longitude 21, 23, 39

Ω
ext
R

exterior and surface of a sphere with radius R

17, 23, 25,
26, 29, 70,
71, 76, 81,

102, 104

ΩR sphere with radius R

16, 17, 19,
25, 26, 31,
71, 72, 76,
81–83, 98,

184
Φq, j = Φ j (x, xq ) spherical scaling function 88
Φ

◦, [rad] astronomical latitude 21, 23, 39
Ψq, j = Ψj (x, xq ) spherical wavelet function 90
Σ telluroid 36
n̄ total number of observations at locations xp 103
δ [3 × 1] components of the GOCE satellite linear accelerations 53, 54
β ◦, [rad] ellipsoidal latitude 20, 28, 39
RLNCS

GRF
[3 × 3] rotation matrix from GRF to LNCS 53, 66

RLOCS
GRF

[3 × 3] rotation matrix from GRF to LOCS 53, 56
g [3 × 1] gravity vector 21, 23, 38, 39
n′ [3 × 1] ellipsoidal normal unit vector 20, 37
n [3 × 1] unit vector along the plumb line 21, 23, 38
r [3 × 1] unit vector 19, 37
x [3 × 1] geocentric position vector [x, y, z]T 15, 18, 22
δg [3 × 1] vector of gravity disturbance 37, 38

δg m/s2 gravity disturbance
37, 38, 44,

46, 184
ω̇ab [3 × 3] components of the GOCE satellite angular accelerations 53, 54
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ηJ ◦, [rad] margin width w.r.t. maximum resolution level J 97
η ◦, [rad] deflection of the vertical in east-west direction 38, 39, 44
Y[ Ṽback ] functional of Ṽback 102

Y[ Ṽ ] functional of Ṽ

16, 30–39,
43, 67, 81,
102, 104,
110, 113,
119, 126

γL control parameter of the Reuter grid 94
γh′ m/s2 normal gravity at height h′ above an ellipsoid 28
γ m/s2 normal gravity 28, 34, 38
λL m wavelength at degree L 82

λ ◦, [rad] spherical, ellipsoidal longitude
19, 20, 22,
27, 32, 39

∇2 Laplace operator 23, 29
∂/∂r normal derivative operator 30, 31
ωab [3 × 3] components of the GOCE satellite angular rates 53, 54
ω rad/s angular velocity of the Earth: 7 292 115 × 10−11 27, 47
∂ΩC computation area 96
∂ΩI modeling area, area of investigation 96
∂ΩO observation area 96
φl, j Legendre coefficients of scaling functions 89
ψl, j Legendre coefficients of wavelet functions 89
ψ ◦, [rad] spherical distance angle 19, 24, 184
ρL m spatial resolution at degree L 82, 83
ρmax, j m max. spatial resolution of level j 83
ρ kg/m3 density 23
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30–33, 36,
40, 43, 80,

81, 174
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ϑ ◦, [rad] spherical co-latitude: ϑ = 90◦ − ϕ 19, 22, 32, 39

d̂ [1 ×QL] vector of estimated scaling coefficients 104, 105

ξ ◦, [rad] deflection of the vertical in north-south direction 38, 39, 44
ζ m quasigeoid height, quasigeoid undulation 36, 37, 41
a m major semi-axis of an ellipsoid 19, 27
b′(x, xq ) = b′q non-bandlimiting SBF 70
b(x, xq ) = bq bandlimiting SBF 70, 73, 88
b m minor semi-axis of an ellipsoid 19

dωR surface element on a sphere with radius R
16, 19, 25,

184
dq scaling coefficients of SBFs 76, 103
ds m element of distance, element of arc 18, 19
f ′ flattening of an ellipsoid 19, 27
f harmonic function 23, 25, 26, 70

gl (r) gravity anomaly operator
30, 31, 33,

40, 80
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g Gal gravity
21, 23, 38,
40, 41, 44

h′ m height above an ellipsoid
20, 28, 34,

37, 40
h m height above a sphere 19, 51
i′ ◦ inclination angle of a satellite’s orbit 22, 51, 56
j ′ minimum resolution level of MRR 85
j resolution level 83
k ′(x, xq ) = k ′q non-bandlimiting Abel-Poisson kernel 71

kglob

L
global rank deficiency 95

kreg

L
estimate of the regional rank deficiency 97

l j maximum spectral degree of level j 101
lmin minimum spectral resolution in terms of SH degree 99
l degree 25, 31
m order 24, 25, 27
n′ direction of the ellipsoidal normal 36–41
n direction of the plumb line 38, 41
o base 83

r m radial distance
19, 22, 25,

30–32, 39, 51
t argument of Legendre function/polynomial 24, 181
x m Cartesian x-coordinate 18
y m Cartesian y-coordinate 18
z m Cartesian z-coordinate 18
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Appendices

A Supplementary theory

Relation of SBFs and SHs

Derivatives of Legendre functions and polynomials

The first and second order derivatives of the Legendre functions Pl,m (t), as well as of the Legendre polyno-
mials Pl (t) are derived w. r. t. t = cosψ, and t = cos ϑ respectively. For Pl,m (cos ϑ) it yields

∂Pl,m (cos ϑ)
∂ϑ

= −Pl,m+1(cos ϑ) + m cot ϑPl,m (cos ϑ) (A.1)

∂2Pl,m (cos ϑ)

∂ϑ2
= − cot ϑ

∂Pl,m (cos ϑ)
∂ϑ

−
(

l (l + 1) − m2

sin2 ϑ

)

Pl,m (cos ϑ) (A.2)

e. g. after Rummel (2007); Hobson (1965). The first and second order derivatives of the Legendre polynomials

Pl (cosψ) w. r. t. the spherical coordinates λ, ϑ read

∂Pl (cosψ)
∂λ

=

∂Pl (cosψ)
∂ cosψ

· ∂ cosψ

∂λ

∂Pl (cosψ)
∂ϑ

=

∂Pl (cosψ)
∂ψ

· ∂ cosψ

∂ϑ

∂2Pl (cosψ)

∂λ2
=

∂2Pl (cosψ)

∂ cosψ2
· ∂ cosψ

∂λ
· ∂ cosψ

∂λ
+

∂Pl (cosψ)
∂ cosψ

· ∂
2 cosψ

∂λ2
(A.3)

∂2Pl (cosψ)

∂ϑ2
=

∂2Pl (cosψ)

∂ cosψ2
· ∂ cosψ

∂ϑ
· ∂ cosψ

∂ϑ
+

∂Pl (cosψ)
∂ cosψ

· ∂
2 cosψ

∂ϑ2

∂2Pl (cosψ)
∂λ∂ϑ

=

∂2Pl (cosψ)

∂ cosψ2
· ∂ cosψ

∂ϑ
· ∂ cosψ

∂λ
+

∂Pl (cosψ)
∂ cosψ

· ∂
2 cosψ

∂λ∂ϑ
.

Hereby, the first and second order derivatives w. r. t. the argument t = cosψ yield

∂Pl (cosψ)
∂ cosψ

=

l

cos2 ψ − 1
(cosψPl (cosψ) − Pl−1(cosψ)) (A.4)

∂2Pl (cosψ)

∂ cosψ2
=

l (l + 1)

cos2 ψ − 1
Pl (cosψ) − 2 cosψ

cos2 ψ − 1

∂Pl (cosψ)
∂ cosψ

(A.5)

Eq. (A.4) is adapted from Rummel (2007) and results from the recursion formula (e. g. Freeden et al., 1998,
p. 42); Eq. (A.5) is derived from a differential equation, according to Hofmann-Wellenhof and Moritz (2005,
p. 14). They have to be inserted in Eqs. (A.3), together the following derivatives of the spherical distance
angle ψ w. r. t. λ, ϑ:

∂ cosψ

∂λ
= − sin ϑ sin ϑq sin(λ − λq )

∂ cosψ

∂ϑ
= − sin ϑ cos ϑq + cos ϑ sin ϑq cos(λ − λq )

∂2 cosψ

∂λ2
= − sin ϑ sin ϑq cos(λ − λq ) (A.6)

∂2 cosψ

∂ϑ2
= − cos ϑ cos ϑq − sin ϑ sin ϑq cos(λ − λq )
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∂2 cosψ

∂λ∂ϑ
= − cos ϑ sin ϑq sin(λ − λq ) .

Deriving SHs and SBFs from Legendre polynomials

Figure A.1: Relation between Legendre polynomials, functions, and basis functions, extension of Fig. 2.5.

Omission error in terms of SHs

1. Parseval’s identity holds for a continuous signal f on the sphere ΩR , modeled in terms of surface SHs
HR
l,m

. Physically interpreted, the energy of a the signal f is equivalent both in spectral and in spatial
domain.

2. The inner product (light green) is equivalently described by the fully normalized Stokes coefficients
Fl,m , i. e. the Fourier transformation of HR

l,m
, according to Eq. (2.39). In the artificial scenario of

completely modeling the continuous signal f up to degree l → ∞, an infinite number of SH coefficients
would be required.

3. Modeling the bandlimited signal g by a finite series expansion, i. e. a finite number of Stokes coefficients
Gl,m (orange), is achieved by convolution, i. e. multiplying the Fourier transformations Fl,m with
bandlimiting coefficients Bl according to Eq.(4.8) in the spectral domain. The L2 norm of the truncated
series expansion g (purple), cf. Eq. (4.12), delivers the degree variances σ2

l
of the modeled coefficients

Fl,m , respectively signal g, i. e. σ2
l
(g) =

∑l
m=0 |Fl,m |2, providing the errors for different orders m

within a degree l (Jekeli, 2012).

Mathematical relations between physical and geometrical quantities of the gravity field

Geoid height

The geoid height N following Stokes theory is the geometrical distance between a certain point P0 of the geoid
(potential W0) and a point Q0 of the reference ellipsoid with U = U0 = W0 (Hofmann-Wellenhof and Moritz,
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Table A.1: Energy (spectral power) of a bandlimited signal g and omission error.

2005, p. 91). The normal potential U = U (P0) at the geoid point is obtained from

U (P0) = U (Q0) +

(

∂U
∂n′

)

Q0

N

U (P0) = U (Q0) − γ(Q0) N (A.7)

(Hofmann-Wellenhof and Moritz, 2005, p. 93). Further, inserting U (P0) in Eq. (2.52) at point P0, i. e.

W (P0) = U (P0) + T (P0)

W (P0) = U (Q0) − γ(Q0) N + T (P0) , (A.8)

it yields with W (P0) = U (Q0):

T (P0) = γ(Q0) N

N =
T (P0)
γ(Q0)

. (A.9)

Quasigeoid height

Following Molodensky, the quasigeoid height ζ is defined analogously to N with

U (P) = U (Q) +

(

∂U
∂n′

)

Q

ζ

U (P) = U (Q) − γQ (Q) ζ

W (P) = U (P) + T (P)

W (P) = U (Q) − γQ (Q) ζ + T (P)
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T (P) = γQ (Q) ζ

ζ =
T (P)
γQ (Q)

. (A.10)

Stokes formula

The computation of geoid undulations N from gravity anomalies ∆g, using Eq. (2.68) reverse, leads to the
famous Stokes formula, (e. g. Hofmann-Wellenhof and Moritz, 2005, p. 104). On a sphere ΩR with radius R
and surface element dωR defined in Eq. (2.10), it yields

N =
R

4πγ0

∫

ΩR

∆gS(ψ) dωR . (A.11)

S(ψ) is the so-called Stokes function or Stokes operator, depending on the spherical distance angle ψ, cf.
Eq. (2.11). The key aspect is, that it connects the Earth’s geometry with its gravity by relating the metrical
quantity N to the physical quantity ∆g.

Fundamental equation of physical geodesy

Gravity disturbance δg according to Eq. (2.64) relates the gravity field with potential W to a normal gravity
field with potential U. Hereby, the gravity vector g = gradW denotes the change of the total gravity potential
W according to Eq. (2.27), while the normal gravity vector γ = gradU denotes the change of the normal
potential U. Neglecting the small difference between the directions of n and n′, and counting h′ along the
same direction as introduced in Eq. (2.59), it yields for a Point P0 at the geoid

δg = g(P0) − γ(P0)

= −
(

−∂W
∂n
+

∂U
∂n′

)

= −∂T
∂n

= − ∂T
∂h′

. (A.12)

The normal gravity γ(P0) in Point P0 (with height h′ = N) is computed from γ0(Q0), i. e. upward continued
from a point Q0 at the ellipsoid, by applying the Taylor series of Eq. (2.50):

γ(P0) = γQ0
(Q0) +

∂γ

∂h′
N . (A.13)

For the gravity anomaly ∆g according to Eq. (2.67) it therefore yields

δg = − ∂T
∂h′

= g(P0) − γQ0
(Q0) − ∂γ

∂h′
N

= ∆g − ∂γ

∂h′
N

∆g = − ∂T
∂h′
+

∂γ

∂h′
N . (A.14)

And with Bruns formula according to Eq. (2.62) the connection of both functionals ∆g,δg results in the
fundamental equation of physical geodesy

∂T
∂h′
− 1

γ

∂γ

∂h′
T + ∆g = 0 (A.15)

(e. g. Hofmann-Wellenhof and Moritz, 2005, p. 95).
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B Supplementary numerical studies

Regularization

Figure B.1: Study case (g2): Regularization parameter w.r.t. different observation groups.

Fig. B.1 shows the regularization parameter λ j = σ2
k
/σ2

d
exemplarily w.r.t. the observation groups k =

[1], [3], [5], [15] from Tab. 6.19 for different resolution levels j. The ratio of the estimated VC σ2
k

of the
observation group k and the estimated VC σ2

d
of the prior information describes the contribution of each

group to the modeling result relatively to the other groups for each level j. Since the VCs are estimated
depending on the accuracy, spectral and spatial resolution of the observations, cf. Sec. 5.2.2, the curves
from Fig. B.1 indicate the relative spectral sensitivity of the data sets. The GOCE Vzz gradient (blue curve)
requires, for instance, with augmenting resolution level more regularization than the other groups. This is
reasonable, as GOCE delivers in the MBW, i. e. in the medium frequency domain, most valuable information.
For comparison, the black curve from Fig. 6.24 w.r.t. the smallest VC is plotted as well. It indicates the need
of regularization at each level independent from the observation type. A more detailed analysis of Fig. B.1
would go beyond the scope of this thesis.

Reducing correlations

In order to reduce correlations between the resolution levels, some investigations are summarized in terms of
estimated VCs in Tab. B.1, and corresponding estimated scaling coefficients in Fig. B.2, by strictly using each
observation group just once for the levels j = 8, . . . , 11. The estimation model at level j = 8 is set up using
the [10 – 15] GOCE groups, j = 9 using [5 – 9] altimetry groups, j = 10 using [2 – 4] air-/shipborne groups,
and J = 11 using [1] terrestrial data. In Tab. B.1, step (2), they are highlighted in the referring colors. Strong
regularization is needed at each level.
The estimated scaling coefficients and their standard deviations are plotted in the left and middle rows of
Fig. B.2 for the different levels. The standard deviations show clearly the borderline between the observed
and unobserved areas. In the latter, they enormously increase. In the right column the erroneous scaling
coefficients are eliminated: (1) the standard deviation sd of the coefficient must be smaller than or equal to the
mean standard deviation s̄d j

of all estimated coefficients of level j; (2) the absolute value ���dq
��� of the estimated

coefficient must be smaller than or equal to (three times) s̄d j
, cf. criteria on the right in Fig. B.2.

Replacing the removed coefficients by zero-values and computing the detail signals according to Eq.(5.35)
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yields at levels j = 9, 10, 11 solutions which are predominated by extremely erroneous effects due to the
missing spectral information in wide parts of the study area.

Table B.1: Study case (g2): VCE at different levels; reduced correlations between observation groups.



1
9
3

Table B.2: MRR study case (g): Coefficients.
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