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Zusammenfassung

Globale Schwerefeldmodelle sind fundamentale Informationsquellen in der Geodäsie und Geophysik, und rel-
evant für eine Reihe von Anwendungen in unterschiedlichen Disziplinen, wie z.B. Ozeanographie oder Luft-
und Raumfahrt. Die vorliegende Dissertation untersucht, in welchem Maße das topographische Potential
(TP) zur Verbesserung globaler Schwerefeldmodelle im kurzwelligen Bereich, d.h. bis zur räumlichen Auflö-
sung herkömmlicher Modelle (∼ 10 km) und darüber hinaus, beitragen kann. Dabei werden ausschliesslich
spektrale Vorwärtsmodellierungsmethoden, die auf sphärisch-harmonischer Reihenentwicklung beruhen, für
die Berechnung des TPs unter Einbindung aktueller digitaler Höheninformation herangezogen. Die spektrale
Analyse höchstaufgelöster kontinentaler Schwerefeldkarten aus topographischer Vorwärtsmodellierung – kon-
densiert in ein neues empirisches Gradvarianz-Modell bis Grad 90,000 – zeigt, dass signifikante Schweresig-
nale in diesem spektralen Bereich existieren. Dieses Ergebnis rechtfertigt das Ziel der Arbeit, die kurzwelligen
spektralen Bestandteile des Schwerefelds, die aus der Nahfeldanziehung der topographischen Massen resul-
tieren, global zu modellieren. Zu diesem Zweck wird eine umfassende Auswahl an verschiedenen spektralen
Vorwärtsmodellierungsansätzen verglichen, die der Berechnung sphärisch-harmonischer Kugelfunktionskoef-
fizienten der unkompensierten gravitativen Nahfeldanziehung der topographischen Massen dienen. Beste-
hende strenge und effiziente Ansätze unter Verwendung von einer oder mehrerer Masseschichten werden
untersucht und angepasst, z.B. durch arithmetische Erweiterung und Parallelisierung der Algorithmen, um
Berechnungen bis zu ultra-hohen Graden zu realisieren. In diesem Zusammenhang wird eine neue spek-
trale Methode hergeleitet, die es ermöglicht, das TP mehrerer Masseschichten in ellipsoidischer Approxi-
mation zu bestimmen. Dabei wird die Integration auf ein abgeplattetes Rotationsellipsoid bezogen. Die
Methode führt zum ellipsoidisch-topographischen Potential (ETP), welches im Gegensatz zum häufig ver-
wendeten sphärisch-topographischen Potential (STP) sphärische Approximationen vermeidet. Alle Metho-
den werden mit einem neu zusammengesetzten Massenmodell mit einer Auflösung von einer Bogenminute
(Earth2014), welches die Grenzflächen zur Definition der Masseschichten für festes Krustengestein, Ozeane,
größere Süßgewässer und polare Eisschilde bereitstellt, bis zu den Graden 5,400 und 21,600 untersucht.
Eine der zentralen unter mehreren Erkenntnissen dieses Experiments ist, dass die spektrale Vorwärtsmod-
ellierung mit den effizienten Ansätzen in der hier gewählten Implementierung (double-precision Umgebung)
zu sphärisch-harmonischen Graden der Größenordnung von etwa 10,800 sinnvoll ist. Hauptgrund für diese
Beschränkung ist der enorme Rechenaufwand, der mit der vollen Konvergenz der dabei auftretenden Binom-
inalreihen zusammenhängt. Für diese Auflösung werden z.B. kmax = 46 und jmax = 94 Binominalterme der
k- und j-Reihe benötigt. Zusätzlich wird für die Potenzierung der oberen und unteren Grenzfunktionen der
Masseschichten bis zur Potenz kmax eine Überabtastung benötigt, um Aliasing zu vermeiden. Dies kann zu
extrem großen Gittern führen, die nur mit massiver Parallelisierung sphärisch-harmonisch analysiert werden
können. Letzteres ist der zeitkritischste Prozess der spektralen Vorwärtsmodellierung, welcher in dieser Arbeit
mit Hilfe effizienter und exakter Quadratur-Techniken gelöst wird. Auf kurzen Skalen (2160 < n ≤ 5480) führt
die sphärische Approximation lokal über gebirgigem Gelände zu Fehlern von einigen mGal Amplitude (∼ 0.4
mGal globaler RMS), weshalb die ETP Modellierung zur allgemeinen Praxis werden, und die rein sphärischen
Ansätze ersetzen sollte. Der Fehler, der durch das Konzept der rock-equivalent-topography (RET) in der
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Einzelschicht-Modellierung entsteht, liegt im kurzwelligen Bereich (< 10 km) bei etwa ∼ 0.5 mGal (globaler
RMS). Über kontinentalem und maritimen küstennahem Gebiet ist der RET-Effekt in diesem Auflösungsbere-
ich vernachlässigbar klein, deshalb scheint eine Modellierung mit mehreren Masseschichten nur über großen
bathymetrischen Massen oder tiefen Ozeangräben gerechtfertigt. Diese Erkenntnis macht die rechentech-
nisch weniger aufwendigere Einzelschicht-Modellierung basierend auf dem RET-Konzept zu einer attraktiven
Methode für eine hochauflösende globale Modellierung über Landflächen und im Küstenbereich, was durch
das rein additive Konvergenzverhalten, welches einen frühzeitigen Abbruch der k-Reihe erlaubt, bekräftigt
wird. Bereits eine einfache Kombination mit herkömmlichen beobachtungsbasierten Schwerefeldmodellen
(GOCO05s und EGM2008) zeigt, dass das kurzwellige gravitative Signal der ETP-Modelle bis Grad 5480 die
Übereinstimmung zu gravimetrischen Kontroll-Messpunkten (KMP) um ∼6 bis ∼46 % verbessern kann. Die
Verwendung von über 1 Million KMP über unterschiedlichsten Regionen der Erde erlauben robuste und weit
differenzierte Aussagen. Mit aufwendigeren Kombinationstechniken, z.B. durch Einführung der ETP-Modelle
als Vorinformation oder mit allgemeinen Ausgleichungsansätzen, sind durch die Möglichkeit einer regionalen
Gewichtung bessere Ergebnisse zu erwarten. Problematisch für letzteres ist der damit verbundene enorme
Rechenaufwand und eine fehlende stochastische Modellierung der hier verwendeten und entwickelten Metho-
den.



Abstract

Global gravity field models are fundamental resources in geodesy and geophysics and required for a range of
applications in different fields, such as aeronautics/astronautics and oceanography. The dissertation investi-
gates to which extent the topographic potential (TP) – based on spectral spherical harmonic forward modelling
techniques – together with up-to-date topographic elevation data is a means to improve global gravity field
models at short scales, i.e. up to and beyond the resolution of present day models (∼10 km). The analysis
of high-resolution continental gravity maps of near-global coverage – condensed into a new empirical degree
variance rule up to degree 90,000 – shows that significant gravity signal amplitudes are present at those scales,
justifying the attempt to model the high-resolution constituents of the gravity field implied by the topographic
masses in this work on global scale. For this purpose a variety of spectral forward modelling techniques that
can be used to compute the short-scale gravitational attraction in terms of solid spherical harmonic coefficients
of the uncompensated TP are studied in a comparative manner. Existing rigorous and efficient single- and
multi-layer methods are reviewed and adapted, e.g. by embedding arithmetic extensions and parallel struc-
tures into the algorithms, to accommodate ultra-high degree computations. In this context a new spectral
approach has been derived that allows to compute the TP from a multitude of volumetric-layers in ellipsoidal
approximation, i.e. by an integration with respect to an oblate reference ellipsoid. This method leads to the
ellipsoidal topographic potential (ETP) that in contrast to the widely used spherical topographic potential (STP)
avoids spherical approximations. All methods are studied up to degree 5,400 and 21,600 using a new 1 arc-
min source-mass model (Earth2014) that provides the geometric boundaries for the definition of layers of the
solid crust, the oceans, lake water masses and polar ice sheets. Amongst a number of new insights, the ex-
periments revealed that the efficient methods in their presented form (double precision environment) are useful
to model the complete TP to degrees not much further than 10,800. Main reasons are large computational
costs associated with a full convergence of the involved binominal series expansions that in this case require
kmax=46 and jmax=94 binominal terms of the k− and j−series, respectively. Additionally, raising the boundary
functions to the kth power also requires oversampling of the boundary functions in order to avoid aliasing which
may result in extremely large grids, demanding massive parallelisation in the spherical harmonic analysis. The
latter is found to be the "bottleneck" of spectral forward modelling in terms of computation time and is facilitated
efficiently with the help of exact numerical quadrature algorithms in this work. At short scales (2160 < n ≤ 5480)
the spherical approximation locally leads to errors of up to several mGal amplitude over mountainous terrain
(∼0.4 mGal global RMS), therefore ETP modelling should become common practice and replace spherical
approaches. The error introduced by the rock-equivalent-topography (RET) concept of single-layer modelling
techniques is in the range of ∼0.5 mGal (global RMS) at short scales (< 10 km). However, at these scales
the RET effect is negligible over continental and coastal marine areas. Only for large bathymetric features,
such as deep-ocean trenches, multi-layer modelling seems justified at short scales. This makes single-layer
ETP modelling based on RET an attractive method when aiming at high-resolution global modelling of land
and coastal areas, underpinned further by its additive convergence behaviour that allows an early truncation
of the k-series. Simple combinations with state-of-the-art observation-based satellite-only and combined grav-
ity models (GOCO05s and EGM2008) show that the short-scale gravitational signal from ETP models up to
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degree 5480 improves the agreement with ground-truth gravity observations (at more than 1 million points)
over various regions of Earth between ∼6 and ∼46 %. Further improvements can be expected using more
sophisticated combination techniques that allow for regional weighting. However, the latter is complicated by
enormous computational costs and lacking stochastic modelling within the here used and proposed spectral
techniques.
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Chapter 1

Preamble

1.1 Motivation and Scope

The gravitational force that causes the apple to fall to the ground and that defines the orbit geometry of celestial
bodies – as discovered by Isaac Newton in 1686 in his Philosophiae Naturalis Principia Mathematica – can be
represented in mathematical models.
In geodesy and geophysics these so called global gravity field models (GGM) or potential models are fun-
damental resources and are needed, e.g., to establish the vertical datum of global reference systems and to
realize global height unification (Sideris and Fotopoulos, 2012) or to explore the interior structure and retrieve
the geologic evolution of Earth (Wieczorek, 2015). Also in many other disciplines the precise knowledge of
the Earth’s gravity field is of great importance: in aeronautics/astronautics gravity models are used to simulate
perturbing forces that act on (space) vehicles and predict orbits (Chao, 2005); inertial navigation needs pre-
cise information on deflections of the vertical that can be derived from gravity field models (Wu et al, 2016);
the exploration of minerals or fossil fuels and geophysical models rely on gravity inversion (Oldenburg et al,
1998; Bosch and McGaughey, 2001); orthometric heights are measured w.r.t. to the geoid – an equipotential
surface of the gravity field – and are relevant for a wide field of applications and sciences, such as construc-
tion or hydrological modelling; melting of ice-covered regions and ground-water depletion can be observed
through spatio-temporal gravity variations (Tapley et al, 2004); or in oceanography where the geostrophic
ocean circulation is derived from the dynamic ocean topography that is given by the difference of the heights
measured by satellite altimetry and the geoid heights of a static gravity field model (Bosch and Savcenko,
2010).

Today, available satellite, aerial and terrestrial gravity observations at global scale are sufficing in terms of
resolution and quality to describe the Earth’s gravitational potential in models down to scales no smaller than
∼10 km, generally (cf. Fig. 1.1). Truth is that some remote areas (mostly found in Asia, Africa and South
America) lack sufficiently dense observations or the inaccuracies of the observations over those areas actually
don’t support such a high resolution (Pavlis et al, 2012, 2013). However, in global environmental sciences –
mainly driven by the political commitment to understand global phenomena such as the climate change and
driven by available high-resolution satellite data (other than space gravimetry) – a demand for finer scale gravity
models exists.
A means to increase the resolution of gravity field models is to extend observation based models with forward

modelled gravity – which is subject of this work. In brief, forward modelling describes the process of computing
values of the gravitational attraction based on a given mass model – knowing or assuming a certain geometry
and density – of Earth. Forward models therefore (only) serve as estimates of the actual gravitational field,
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Fig. 1.1 – Scheme of the topographic potential in the context of global high-resolution gravity field modelling.

but their application can be useful if carefully considered. Up-to-date satellite-based digital elevation models
provide detailed knowledge of the geometry of the uppermost masses of Earth – the so called topographic
masses: visible topography, oceans, lakes and ice-sheets – down to scales of tens to hundreds of metres. Due
to the attenuation of gravitational force with distance, it is exactly those uppermost masses that cause most
of the short-scale gravity variations at Earth’s surface. With this in mind, the gravitational information hidden
in global digital elevation models is of key importance to high-resolution gravity modelling and deserves to be
unveiled.
This is obvious, since the gravitational potential implied by the topographic masses, hereafter referred to as
topographic potential (TP), is used successfully to improve current global potential models, e.g. regionally
as fill-in data where terrestrial observations are scarce (Pavlis et al, 2012, 2013; Fecher et al, 2013). The
combination of observation based models and forward models plays a key role in combined high-resolution
gravity field modelling. During the combination it is crucially important to ensure that the information content
of observation-based gravity at large and medium scales is not substituted by the estimated gravity in forward
models. With appropriate combination methods it can be achieved that the topographic potential only accounts
for short-scale (=high-resolution) gravitational variations, coming into play in a transition zone ranging from
scales of ∼200 km to ∼10 km in present day models (Pavlis et al, 2012, 2013; Fecher et al, 2013, 2017) (cf.
Fig. 1.1). Optimally, the transition is held regionally variable during the combination since the scales where
forward modelled gravity is introduced depends on the coverage of a region with terrestrial observations and
since the quality of the (observation) data often is heterogeneous (Fecher et al, 2017).
Beyond the zone of transition, forward-modelled gravity alone is deemed to add significant information of the
gravitational potential at short-scales (Fig. 1.1). In a near-global attempt gravity has been forward modeled
for most parts of Earth’s continental areas to a so far unprecedented scale of ∼220 m, recently (Hirt et al,
2013). However, towards short-scales the diminishing amplitude of gravity signals makes forward modelling
more and more challenging since modelling errors and assumptions need to be reduced to a minimal level.
This is accompanied by increased computational costs, not least because higher resolution means more data
points.
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Different approaches exist for forward modelling of the topographic potential. They may be grouped according
to the respective domain where the integration over Earth’s masses is performed:

• the space domain (e.g. Mader (1951); Nagy (1966); Forsberg (1984); Papp (1996); Kuhn and Seitz
(2005) and others), or

• the spectral domain (e.g. Lee and Kaula (1967); Balmino et al (1973); Rummel et al (1988); Novak
(2010); Balmino et al (2012); Claessens and Hirt (2013) and others).

While both domains have successfully been used to model Earth’s topographic potential at ∼10 km scale (e.g.
Grombein et al (2016b); Rexer et al (2016)) and were shown to be mutually consistent (Hirt et al, 2016), this
work is dedicated to the approaches in the spectral domain (=spherical harmonic domain). These techniques
are designated global approaches since they inherently are defined globally, due to their parametrization in
spherical harmonics. Further, it is believed that spectral methods are efficient, which will be investigated in the
course of this work. Efficiency is not the only, but in this case the determining criterion regarding the enormous
amount of data present in global high-resolution modelling and given that both domains were shown to result
in exactly the same potential (Hirt et al, 2016). The spectral methods benefit computationally from Fast-Fourier
Transforms (FFT) that efficiently facilitate analysis and synthesis steps. Note that for geographically-limited
modelling space domain integration most likely is faster, simply due to less data.
Recently a spectral approach has been used to model the topographic potential globally down to scales of
∼2 km, i.e. degree 10, 800 (Balmino et al, 2012). In the course of this dissertation it will be shown that the
models created by Balmino et al (2012) lack spectral completeness. Moreover, their modelling is subject to
systematic errors since it relies on a spherical approximation of the rather ellipsoidal Earth and it is devoid
of most recent elevation data, especially over Greenland and Antarctica. Modelling in ellipsoidal approxima-
tion has only recently been proposed (Claessens and Hirt, 2013), but neither been adapted for modelling the
topographic masses explicitly in a multi-layer approach nor applied at high resolution. A systematic and com-
parative investigation of different spectral solutions to the topographic potential at high resolution is missing in
the literature and shall be performed in this work.

Condensed into one sentence, the scope of this work is the following:

The dissertation shall answer the question to which extent spectral forward modelling together with up-to-date
topographic elevation data is a means to improve global gravity field models at short scales, i.e. up to and

beyond the resolution of present day models (∼10 km).

In more detail, breaking the scope of this work down into three defined goals of research, in this work it
envisaged to

G1 - improve the understanding of the short-scale characteristics of the topographic potential,

G2 - study different spectral forward modelling approaches, involved approximations and available source-
mass data down to a resolution of ∼1 km and identify the best spectral approach,

G3 - create a complete high-resolution topographic potential model using the best spectral approach and
elaborate whether the created forward model can successfully be used in global high-resolution gravity
modelling using simple combinations methods.

As argued above, optimal combination strategies are vital for global high-resolution gravity modelling but be-
yond the scope of this dissertation. In the next section the concept and structure of the dissertation are pre-
sented, explaining the methods and strategies in order to meet the above research goals G1 - 3.
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1.2 Structure and Research Aims

The thesis is of cumulative type, since parts of the research and of the results have been published in arti-
cles in peer-reviewed scientific journals. This manuscript contains the synthesis and synoptic discussion of
all publications plus additional research, and is meant to fulfill the overall research goals. First author papers
are reprinted in the appendix together with a declaration of own contribution, since the publications were con-
ducted with one or more co-authors. Publications with co-authorship are not reprinted, but own contributions
are declared in the appendix. The original article of co-authored papers can be found in the respective issues
of the journals or in the publishers’ online repositories (see Appendix).

Fig. 1.2 – Scheme of the thesis structure, highlighting links and interaction between chapters (black numbers) and
included publications (blue numbers).

The research is subdivided into the three topics topographic potential, forward modelling and high-resolution
gravity modelling, closely aligned to the research goals G1-3 that cover the entire scope of the dissertation (see
end of previous section). This structure is reflected by the three chapters of the main part of the manuscript
(Chpts. 2, 3 and 4). At the end of each chapter the respective research goal, and more detailed research
questions and aims (further down) are evaluated. Then the results of the three chapters and all publications
are synoptically discussed and future directions are given (Chpt. 5). Finally, conclusions are drawn from the
main findings and the discussion (Chpt. 6), forming the central outcome of the dissertation. (cf. Fig. 1.2)
Essentially, the single chapters are not treated separately in the course of the research. Interactions are
permitted and encouraged by the structure of the dissertation, leading to a symbiosis and an exchange of
knowledge across the topics (Fig. 1.2). For example, the clear definition of the topographic potential is required
to set up adequate forward modelling data and techniques. The forward modelling itself provides estimates of
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the topographic potential which improves our knowledge about it. With the knowledge about the characteristics
of the topographic potential we may improve its application in high-resolution gravity field modelling. The
combined models contain valuable feedback about the characteristics of the topographic potential as a result
of their validation. Further, forward modelling facilitates the increase in resolution in high-resolution gravity
models, while the validation of the combined models returns valuable feedback about the applied forward
modelling data and techniques.

The main part starts with an introduction to the topographic potential (Chpt. 2), being the elementary subject
of the research. Its parametrisation in terms of spherical harmonics is introduced and discussed. The focus
in the first section is placed on the investigation of the short-scale characteristics of gravity disturbances and
geoid heights represented by the topographic potential. The characterisation and improved understanding of
topography related gravity effects at short scales are vital for the purpose of high-resolution gravity modelling.
The following research questions shall be answered in this section:

Q1 - How is the topographic potential defined?

Q2 - Is the topographic potential relevant for high-resolution gravity field modelling?

In order to answer the questions the following aim can be stated for Chpt. 2:

A1 - Quantify the signal strength and examine the spectral characteristics of the topographic potential at
short scales.

The second chapter of the main part deals with the forward modelling of the topographic potential with spectral
methods (Chpt. 3). It can be subdivided into 1) one section about the data required for the forward modelling
(Sect. 3.2) and 2) a methodological section about different spectral forward modelling approaches and their
mathematical and computational realisation (Sect. 3.3). At the end of this chapter the methods and data are
applied to develop topographic potential models with high- and ultra-high resolution (Sect. 3.4). The treated
research questions that will be answered in these sections are the following:

Q3 - Which acquisition techniques, geophysical data and models exist that would allow the generation of an
appropriate mass model that can be used for the forward modelling of the topographic potential at short
scales and on a global scale?

Q4 - Can spectral forward modelling be further improved and is it a feasible technique for global high-
resolution forward modelling?

From these questions two related aims may be defined for the Chpt. 3:

A2 - Review existing global topographic data sets and mass models in order to create a truly global and
up-to-date mass model at best means that is suited for the purpose of forward modelling.

A3 - Review existing spectral forward modelling techniques in order to further develop and test the best
suited approaches for high-resolution modelling.

A4 - Define challenges and limitations of spectral forward modelling with regard to resolution.

The third chapter in the main part is dedicated to the application of the developed data and methods in the
context of high-resolution combined gravity modelling (Chpt. 4). The combination of gravity observations
and forward modelled topographic gravity is discussed and simple combination schemes are tested to ex-
emplify the benefit of including topographic information in high-resolution gravity field modelling. The section
serves as a validation of forward modelled gravity, on the same time demonstrating the application of forward
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Paper Research Questions Research Aims
ID Q1 Q2 Q3 Q4 Q5 A1 A2 A3 A4 A5 A6

P-I x x x
P-II x x x
P-III x x x
P-IV x x x x x x x
P-V x x x
P-VI x x x x

Tab. 1.1 – Assignment matrix showing the dedication of publications used in the dissertation to research questions
and research aims.

modelling in combined gravity field modelling. The chapter can be summarised by the following research
question:

Q5 - Are spectrally forward modelled topographic potential models useful for high-resolution combined gravity
field modelling or other applications at global scale?

The questions leads to the following research aims for Chpt. 4:

A5 - Find combination strategies for a combination of observed and high-resolution forward modelled gravity
and show the added value of the latter to combined gravity field modelling, globally.

A6 - Elaborate the usage of such a combination, the developed data and methods in other applications.

In total, six publications P-I to P-VI that contain important results and findings are used in this cumulative
dissertation – three first author papers and three papers with co-authorship. They are an active part of the
above described interactive and symbiotic research structure. Since the papers have to form a complete
research on their own, i.e. they deal with theory, data, methods and practical experiments, they in some
cases address more than one topic of the dissertation (cf. blue numbers in Fig. 1.2). Still each paper has
a clear focus and is closely linked to one (or more) of the research questions and aims of the chapters (Tab.
1.1).

On the next two pages all involved publications are listed with title, authors, journal and a short summary of the
paper’s content and role in the dissertation.
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P-I Spectral analysis of the Earth’s topographic potential via 2D-DFT: a new data-based
degree variance model to degree 90,000

Moritz Rexer, Christian Hirt
in: Journal of Geodesy

The publication focuses on the investigation of the short-scale characteristics of the topographic
potential as implied by near-global gravity maps of ∼220 m resolution. With an approximate trans-
formation of the maps into the spherical harmonic domain via 2D-DFT and by a parametrization in
terms of degree variances models, signal strengths at different scales and over different types of
terrain are studied. The paper can be regarded as pre-study and is meant to give answers to Q1
and Q2 and to meet the research aim A1. In essence the paper shows that significant gravitational
energy may be implied in Earth’s topographic masses at short-scales, therefore its modelling and
inclusion in high-resolution gravity field models is relevant. More information and a reprint of the
publication are found in appendix P.1.

P-II Earth2014: 1’ shape, topography, bedrock and ice-sheet models - Available as
gridded data and degree 10,800 spherical harmonics

Christian Hirt, Moritz Rexer
in: International Journal of Applied Earth Observation and Geoinformation

The publication is dedicated to the creation and description of an up-to-date geometric data set
of Earth’s topographic masses. The data set is named Earth2014 and comprises the boundary
surfaces of Earth’s bedrock, ocean, lakes and ice-sheets at 1’ (arc-min) resolution. Moreover, the
boundary functions are represented in sets of high-resolution surface spherical harmonics. All
data sets have been made publicly available. As such, Earth2014 is a formidable input data set
for (spectral) forward modelling of Earth’s topographic potential and other global applications in
geosciences. The publication provides answers to Q1 and Q3, and is closely linked to research
aim A2. More information and a declaration of own contribution are found in appendix P.2.
The Earth2014 data set has been made available to the public and to the scientific community
here: http://ddfe.curtin.edu.au/models/Earth2014/.

P-III Ultra-high-degree surface spherical harmonic analysis
using the Gauss-Legendre and the Driscoll/Healy quadrature theorem and application

to planetary topography models of Earth, Mars and Moon
Moritz Rexer, Christian Hirt
in: Surveys in Geophysics

In this publication two harmonic analysis methods, quadrature based on sampling theorems of
Gauss-Legendre and of Driscoll/Healy, are investigated, improved and evaluated for their appli-
cation at high resolution, i.e. high spherical harmonic degree (> 2700). Both methods are shown
to enable accurate high-degree spherical harmonic transforms (up to some 10,000s of degrees),
after employing X-numbers in order to achieve extended arithmetics that are needed to avoid
under/overflow in the computation of the associated Legendre Functions (ALFs). A parallelisa-
tion of certain analysis steps leads to acceptable computation times, while the Gauss-Legendre
quadrature is found to be the more efficient technique. The development and implementation of a
method for high-resolution spherical harmonic analysis is a prerequisite for high-resolution spec-
tral forward modelling. In this respect, this paper is dedicated to the research aims A3 and A4
and helps to give an answer to Q4. More information and a reprint of the publication are found in
appendix P.3.
The code and all routines used for ultra-high degree analysis in this publication are available to
the public and to the scientific community here: https://www.researchgate.net/publication/
291102839_ultra_high_degree_extension_v1_SHTOOLS.

http://ddfe.curtin.edu.au/models/Earth2014/
https://www.researchgate.net/publication/291102839_ultra_high_degree_extension_v1_SHTOOLS
https://www.researchgate.net/publication/291102839_ultra_high_degree_extension_v1_SHTOOLS
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P-IV Layer-based modelling of the Earth’s gravitational potential up to 10km-scale
in spherical harmonics in spherical and ellipsoidal approximation

Moritz Rexer, Christian Hirt, Sten Claessens, Robert Tenzer
in: Surveys in Geophysics

This publication deals with different methods and various important aspects of spectral forward
modelling. Existing spectral forward modelling techniques and underlying assumptions are inter-
compared and new expressions for the rigorous modelling of volumetric layers with respect to
a reference ellipsoid are derived. Contrary to the modelling w.r.t. a reference sphere, the ellip-
soidal modelling can be associated with less approximation errors and is spectrally compatible
with observation based models. Further, the importance of avoiding aliasing errors and paying
proper attention to the convergence behaviour of involved binominal series expansions during the
modelling is highlighted. Concluding, layer-based volumetric modelling improves over single-layer
modelling and the use of an ellipsoidal reference is desirable for applications of high accuracy
and high resolution. The paper is important for answering the research questions Q1, Q2, Q4 and
Q5. It also helps to meet the research aims A3, A4 and A5. More information and a reprint of the
publication are found in appendix P.4.
The spherical harmonic topographic potential models developed in this publication were made
available to the public and to the scientific community via ICGEM (http://icgem.gfz-potsdam.
de/ICGEM/) and http://ddfe.curtin.edu.au/models/Earth2014/potential_models.

P-V A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from
GRACE, GOCE and Bedmap2 data

Christian Hirt, Moritz Rexer, Mirko Scheinert, Roland Pail, Sten Claessens, Simon Holmes
in: Journal of Geodesy

The publication describes the development of a degree-2190 gravity field model that apart from
latest satellite gravity observations includes forward modelled gravity from a recent Antarctic
bedrock and ice-sheet data set (Bedmap2). It is shown how the spectral forward model that is
defined w.r.t. a reference ellipsoid can be combined with the normal equations of a satellite-only
gravity field solution by means of regularisation. The transition between observed and forward
modelled data is steered by empirical weighting schemes that are meant to provide optimal com-
bination results over the region of Antarctica. The benefit of this kind of combination is demon-
strated by comparison with ground truth data from the IAG Subcomission 2.4f "Gravity and Geoid
in Antarctica". The paper provides answers to the research question Q5 and is closely linked to
research aims A5 and A6. More information and a declaration of own contribution are found in
appendix P.5.
The combined potential model developed in this publication is available to the public and to the
scientific community here: http://ddfe.curtin.edu.au/models/Antarctica/.

P-VI Topographic gravity modelling for global Bouguer maps to degree 2,160: Validation of
spectral and spatial domain forward modelling techniques at the 10 microgal-level

Christian Hirt, Elisabeth Reußner, Moritz Rexer, Michael Kuhn
in: Journal of Geophysical Research

This publication is dedicated to the mutual validation of global forward modelling in the spatial
and in the spectral domain. Starting from a degree-2160 input topographic function it is shown
that amongst other aspects 1) over a dozen integer powers and frequencies far beyond the input
band-width of the topographic function are required in spectral forward modelling and 2) a high
oversampling of the topographic function is needed in spatial domain modelling in order to avoid
discretisation errors for achieving a perfect agreement between both modelling domains. The
costly numerical experiments involve the modelling of short-scale gravity signals to ultra-high
degree 21,600. Spectral domain modelling is found to be the more efficient variant, while it seems
to be at the edge to convergence issues for selected points. The paper is useful for answering
research questions Q1, Q4 and Q5 and contains important contributions to research goal A4.
More information and a declaration of own contribution are found in appendix P.6.

http://icgem.gfz-potsdam.de/ICGEM/
http://icgem.gfz-potsdam.de/ICGEM/
http://ddfe.curtin.edu.au/models/Earth2014/potential_models
http://ddfe.curtin.edu.au/models/Antarctica/


Chapter 2

The Topographic Potential

2.1 Definition and geodetic perspective

In simple words the gravitational field induced by the topographic potential describes the gravitational attraction
that is caused by the Earth’s topographic masses along with some assumptions on their mass-density. In
contrast, the term gravitational potential generally refers to the gravitational field that is generated by the
entire masses of Earth, i.e. the topographic masses and the masses below with their actual densities. The
atmospheric masses shall be disregarded at this stage. For a precise definition of the topographic masses it
helps to visualize Earth’s geophysical structure (Fig. 2.1).

2.1.1 Topographic masses

Fig. 2.1 – Scheme of Earth’s structure including the topographic masses
comprised by the topographic potential (not to scale).

In good approximation the inner masses
of Earth can be described by concen-
tric layers of constant thickness. While
the density is not homogenous within the
layers, the mass density generally in-
creases towards Earth’s center of mass.
Drastic jumps in density or changes of
the aggregate phase (e.g. from solid to
fluid) are expressed by so called discon-
tinuities forming the boundaries between
the layers. The outermost masses of
Earth are not well described by a con-
centric layer model, since there exist sig-
nificant deviations from a simple spheri-
cal shell. The topography describes the
morphological surface that represents the
boundary of the physical body of Earth
with the atmosphere. The topographic
masses are therefore found at the upper-
most part of the lithosphere, the crust.
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Generally (and in this work), the topographic masses comprised by the topographic potential are the masses
of sediments and solid rock of the crust, hydrospheric and cyrospheric masses, i.e. ocean water, lake water
and ice-sheets. Vegetation cover or human buildings as well as small rivers or small snow/ice caps are not
considered, due to their (comparatively) small gravitational impact. While the upper bound of the topographic
masses is clearly defined by the topography, the lower boundary is a matter of definition and subject to discus-
sion. The crustal layer can reach depths of 60 to 80 km in extreme cases (below Cenozoic mountain ranges),
but in average the Mohorovicic discontinuity (Moho) is found at ∼35 km depth below continental areas and at
∼10 km below oceanic areas (Torge, 2003).
Using the Moho as lower bound of the topographic masses would without doubt be a very logical and geophys-
ical definition which in addition is closely linked to the actual structure of Earth. Conventionally, however, the
definition of the topographic masses is done differently. They are defined as mass surpluses (e.g. mountain
peaks or highland) or deficits (e.g. valleys or oceans) relative to a defined reference body (Fig. 2.2). The
surface of the reference body is mostly chosen to coincide with mean sea level (MSL) – which is expressed by
the geoid over land – and sometimes approximated by a sphere or an ellipsoid. The effect of these approxi-
mations is studied intensively in P-IV. The density of the reference body often is assumed to be constant and
approximated by Earth’s mean density.
This definition of the topographic masses appears very geodetic, and here two reasons are given that might
explain its evolution. The first reason is data-driven and related to the incomplete knowledge of the Moho.
Especially at short scales (<10 km) no global model of the Moho is available. At best the Moho is described
globally with 1◦ in (seismic) geophysical models, corresponding to ∼111 km resolution (P-IV ). Higher resolution
models of the Moho are derived from gravity and still lack reliability (see further down). Additionally, introducing
gravimetric Moho depths as a priori information to estimate gravity would mean a loop that preferably is to be
avoided. The second reason is related to the geodetic methods that historically have been used to recover
the geoid given gravity measurements at Earth’s surface. The problem is manifested in the boundary value
problem (BVP) of physical geodesy, often referred to as Stokes’ problem (Torge, 2003). In order to solve
it gravity variations caused by the topographic masses outside the geoid, which often is approximated by a
mean sphere or ellipsoid of revolution in the first place, need to be removed. For this purpose it is common
geodetic practice to apply Bouguer modelling (Torge, 2003). Thereby a spherical slab (in the past) or a spher-
ical shell of distinct height is used as a zero-degree approximation of the topography. The residual parts of
the topography – masses above and below the upper boundary of the Bouguer shell – are accounted for by
a so called terrain correction (Torge, 2003). The terrain corrections may e.g. be approximated via residual
terrain modelling (RTM) (Forsberg, 1984), with the upper bound of the shell serving as reference surface.

2.1.2 Isostatic masses and isostatic hypothesis

The immediate consequence of not including the Moho in the definition of the topographic masses is that
isostatic compensation, i.e. the equilibrium state of the solid lithosphere with the elastic asthenosphere (indi-
cated in Fig. 2.1) is disregarded. The isostatic compensation mechanism may be imagined as crustal roots
ranging into the mantle (e.g. below mountain ranges) and so called anti-roots, where the Moho is shifted
upwards into the crust (e.g. below the oceans, see Fig. 2.2). The roots and anti-roots are often referred to
as isostatic masses that (to some extent) compensate topographic mass surpluses or deficits (Fig. 2.1); the
distance between reference surface and Moho is called compensation depth. More generally isostasy means
the interaction of the elastic upper mantle with the masses of the more rigid crust.



2.1 Definition and geodetic perspective 11

Fig. 2.2 – Scheme of the topographic and isostatic masses.

During the modelling of the topographic potential isostatic compensation can be accounted for by including
isostatic hypothesis (see e.g. Rummel et al (1988); Göttl and Rummel (2009); Tsoulis (2013)). Prominent
geodetic hypothesis, such as those by Pratt-Hayford (Pratt, 1855; Hayford, 1909) or Airy-Heiskanen (Airy,
1855; Heiskanen and Vening Meinesz, 1985), assume local compensation, with a column-wise compensation
of the topographic load. Thus, the elastic flexural rigidity of the crust is ignored in this models (Göttl and
Rummel, 2009) and it is, e.g., not accounted for isostatic compensation taking place within the litospheric
mantle (cf. Bagherbandi and Sjöberg (2012)). Not astonishingly, the results produced by these hypothesis
are not satisfactory on regional and global scale, e.g. when evaluated against satellite gravity data (Hirt et al,
2012) or seismic Moho depths (Bagherbandi and Sjöberg, 2012). But isostatic hypothesis exist that also try to
account for isostasy on regional and even global scale e.g. in the form of consolidated crust models or after the
Vening-Meinesz-Moritz (VMM) model (Vening Meinesz, 1931; Moritz, 1990). In the latter model, an isostatic
gravity disturbance equivalent to zero is postulated that represents the balance between gravitational attraction
given by gravity disturbances, corrected for topography, and the isostatic compensation masses. The VMM is
often used to recover the crustal thickness since it shows a strong correlation to the Moho-layer geometry
(Bagherbandi et al, 2013). However, applying the VMM leaves deviations in the order of several kilometres
(RMS = 3.4 km) compared to the best seismologic models at scales of ∼220 km (Bagherbandi et al, 2013).
In essence, all different hypotheses were found to lead to substantially different results (Novák et al, 2016),
which means that for different applications different isostatic models may be suitable. This makes it hard to
justify the usage of a certain hypothesis during forward-modelling. Therefore modelling of the uncompensated
topographic potential is considered in the frame of this work (see below).
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2.1.3 The uncompensated topographic potential

Fig. 2.3 – Energy of gravitational potential, (uncompensated) topographic
potential and isostatic potential in terms of degree vari-
ances; black line: EGM2008 (Pavlis et al, 2012); red
line: dV_ELL_Earth2014 (Rexer et al, 2016); yellow line:
RWI_ISOS_2012 (Grombein et al, 2014).

The potential of uncompensated topo-
graphic masses leads to an overestima-
tion of the actual gravitational potential of
Earth, especially over mountain ranges
and at large scales. However, due to
the rather smooth structure of the Moho
and due to its distance to Earth’s sur-
face (gravity signals are attenuated with
reciprocal powers of the Euclidean dis-
tance), the compensation plays a de-
creasing role towards short scales. This
is exemplified in Fig. 2.3 using a poten-
tial model of the istostatic masses that is
based on an improved Airy-Heiskanen hy-
pothesis that incorporates seismic Moho-
depths (Grombein et al, 2014). At scales
of ∼10 km the signal of the isostatic po-
tential (yellow line) already is about 5 or-
ders of magnitude below the signal of the
actual gravitational potential (black line). Similar differences in magnitude between the topographic and the
isostatic potential at this scale based on the Airy-Heiskanen concept were also found by Pavlis et al (2007)
(Fig. 3 ibid). This is supported by Göttl and Rummel (2009) who state " (...) it is known that only larger moun-
tains are compensated, while local topographic features with an extension of less than 100 km are supported
by the lithosphere underneath (TORGE, 2003) (...) ". In contrast, the topographic potential (red line) shows the
same level of energy at scales of ∼100 km and smaller, suggesting that the gravitational potential is correlated
with the topographic potential at short scales. This is also confirmed by Jekeli (2010) who finds that neglecting
isostatic effects is justified at very short scales (only).

As an immediate consequence of the above, isostatic compensation mechanisms are not included in the
definition of the topographic masses and the corresponding topographic potential in this work. Strictly speaking,
all herein produced or investigated topographic potential models are uncompensated topographic potential
models. The main reasons are the diminishing, or even negligible, relevance of isostatic effects for the short-
scale gravity field and the still existing differences and shortcomings of present isostatic compensation models.
Their improvement is beyond the scope in this work.



2.2 Spherical harmonic parametrization 13

2.2 Spherical harmonic parametrization

Since the topographic potential V t, similar to the gravitational potential V , is a harmonic function outside of
Earth’s masses (it fulfills the Laplace condition: ∆V t ≡ 0) it can be expressed conveniently as a series ex-
pansion of solid spherical harmonic base functions. In geodesy the spherical harmonic concept is a common
instrument for global analysis and global modelling of harmonic functions, such as the gravity field or the mag-
netic field (Barraclough, 1978). Alternatively, other base functions (e.g. spherical radial basis functions (Bucha
et al, 2016)) or discretisations (e.g. gridded maps (Hirt et al, 2013)) can be used to represent the topographic
potential or its functionals, such as derivatives of the potential. The advantage of the concept of spherical
harmonics for the purpose of global modelling is its inherent global support. This means the concept allows to
represent gravity values at every location of the globe (outside of all masses) in one set of solid spherical har-
monic coefficients (SHCs). Since the spherical harmonic base functions are orthogonal, the exact separation
of frequencies/SHCs is possible. Another alternative to spherical harmonics with global support are ellipsoidal
harmonics, also referred to as oblate spheroidal harmonics in Literature, which employ the ellipsoidal coor-
dinates instead of the (radial) spherical coordinates (see e.g. Jekeli, 1988). Although not applied commonly
in the geodetic community – which may be due to the somewhat larger complexity associated with ellipsoidal
harmonic computations – the ellipsoidal harmonic concept bears certain advantages which are discussed in
the course of this work. For the difference between ellipsoidal and spherical harmonics and the transformation
between the two domains it is referred to Jekeli (1988) and Sebera et al (2012).

2.2.1 Spherical harmonic series expansion

Let W be the Earth’s gravity potential, being the sum of gravitational potential V and the potential of the
centrifugal force Z. Then the gravitational potential becomes

V = W − Z. (2.1)

The disturbing potential T denotes all the anomalous gravitational potential that occurs with respect to the
potential of a reference potential U and is derived by (Torge (2003), Eq. 6.1 ibid)

T = W − U. (2.2)

Usually U is defined by the potential of a rotating reference mass-ellipsoid – conventionally the Geodetic Ref-
erence System 1980 (GRS80) plus Earth’s centrifugal force potential Z (Moritz, 2000). Then the gravitational
potential V and the disturbing potential T – as well as the topographic potential V (TP ) – can be described as
the solid spherical harmonic series expansions (cf. Torge (2003), Eq. 6.4 ibid)

V (r, λ, θ) =
GM

r

∞∑
n=0

n∑
m=0

(
R

r

)n
V nmY nm(λ, θ) (2.3)

and

T (r, λ, θ) =
GM

r

∞∑
n=0

n∑
m=0

(
R

r

)n (
V nm − Un

)
Y nm(λ, θ) (2.4)
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at any location outside the Earth’s masses defined by the point P(r, λ, θ) in spherical coordinates with co-
latitude θ = π − ϕ, where

G: universal gravitational constant,
M : Earth’s mass,
R: spherical harmonic reference radius, conventionally often chosen to coincide with

the semi-major axis a of the GRS80 reference ellipsoid,
V nm: fully normalised solid SHCs of the gravitational potential of degree n and order m,
Un: fully normalised solid SHCs of the reference potential of degree n,

conventionally given by the J2, J4, J8 and J10-terms of the GRS80,
Y nm: fully normalised Laplace’s (surface) spherical harmonic functions of degree n and order m

(e.g. Heiskanen and Moritz, 1967, Sect. 1.10 ibid)

Y nm(λ, θ) = Pnm (θ)

{
cos (|m|λ) for m ≤ 0

sin (mλ) for m > 0
, (2.5)

Pnm: fully normalised associated Legendre functions (ALFs) of the first kind (e.g. Abramowitz and
Stegun (1972)).

The infinite character of the series in Eqs. 2.3 and 2.4 (n 7→ ∞) and their truncation at a distinct maximum
degree nmax is discussed further down (Sect. 2.2.3). Further, one often finds the series starting at n = 2 which
assumes that the total mass and the centre of mass of the actual Earth and the reference ellipsoid coincide.
The applied normalisation of the ALFs (and of the potential coefficients) is a function of degree n and order m
(cf. Heiskanen and Moritz, 1967, Sect. 1.14)

Pnm = Pnm


√

(2n+ 1) for m = 0√
2(2n+ 1) (n−|m|)!

(n+|m|)! for m 6= 0
, (2.6)

and is also referred to as geodetic or 4π-normalisation, where Pnm are the non-normalised ALFs. The normal-
isation means that the average square value of these normalised harmonics integrated over the sphere is unity
according to (cf. Heiskanen and Moritz, 1967, Sect. 1.14)

1

4π

∫
σ

Y nm(λ, θ) · Y n′m′(λ, θ) dσ = δnn′δmm′ (2.7)

where

δij : Kronecker delta which is 1 for i = j and 0 otherwise .
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2.2.2 Spherical harmonic integration and SHCs of the topographic potential

In this work it is focused on the determination of V nm or more precisely the SHCs of the topographic potential
V

(TP )

nm in the spectral domain (see Chpt. 3). Generally, this is achieved by an integration over Earth’s masses
after Newton’s law of gravitation which translates into spherical harmonics as follows (cf. Rummel et al, 1988)

V
(TP )

nm =
3

ρR3(2n+ 1)

1

4π

∫
B

(rQ
R

)n
ρ(λQ, θQ) Y nm(λQ, θQ) dB(λQ, θQ), (2.8)

where

V
(TP )

nm : fully normalised solid SHCs of the topographic potential of degree n and order m,
ρ: Earth’s mean mass-density,
B: volume of Earth’s gravitating masses,
Q: source-mass point Q given at the spherical coordinates <rQ, λQ, θQ> with Q ε B,
ρ: mass-density (at point Q), and

dB: infinitesimal spherical volume element.

The introduction of different reference surfaces – a sphere or an ellipsoid – for the geometric description of the
masses during the integration leads to different spherical harmonic topographic potential models. Taking some
ellipsoid as a reference surface gives the SHCs of the ellipsoidal topographic potential (ETP) V

ETP

nm whereas
taking some sphere of constant radius as a reference surface leads to the SHCs of the spherical topographic
potential (STP) V

STP

nm . In the course of this work ETP and STP models are also referred to as ellipsoidally
approximated and spherically approximated topographic potential models, respectively. While the ETP at
least theoretically can be used to determine Earth’s topographic potential exactly, the STP always is subject to
(spherical) approximations. The publication P-IV is dedicated to the computation of V

ETP

nm and V
STP

nm , and to
the interpretation and use of both types of models, which is also discussed in publication P-I, Sects. 2.3.2 and
3.3.1.6.

2.2.3 Spherical harmonic truncation, spatial resolution and signal strength

The SHCs of the gravitational potential V nm are often referred to as gravitational/gravity field model or geopo-
tential model. Although the series in Eqs. 2.3 and 2.4 theoretically is infinite it commonly is truncated at the
maximum degree nmax of V nm, which defines the spatial resolution of the model. In this work it is aimed to
increase the parameter nmax (and thus the resolution) of potential models, and to investigate the behavior and
suitability of spherical harmonics and spectral modelling approaches at short scales. The relation between
spatial resolution x and degree n is provided in good approximation by the spherical harmonic half-wavelength
at the equator of Earth following (see e.g. Jekeli, 2010, p.840, Eq. 34)

x =
π ·R
n
≈ 20000 km

n
. (2.9)

Giving a simple example, up-to-date satellite gravity missions resolve the gravity field up to degree n = 250

(roughly) which translates into spatial scales of x ≈ 80 km (half-wavelength) or a full-wavelength of 160 km.
The high resolution gravity signal that is lost by a truncation of the spherical harmonic series at a distinct nmax
is called omission error. It describes all the signal contained in the omitted frequencies ranging from nmax + 1

to ∞. The omission error is an important quality indicator for gravity field models, because the lower it is the
closer the model is to the actual potential (at least theoretically). In the same way it also quantifies how much
(valuable) gravitational signal can be expected at different scales. In publication P-I new empirical estimates
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of the omission error at short scales are given, and a degree variance rule that can be used to retrieve the
omission error at arbitrary scales between ∼10 km and ∼200 m has been formulated. The (dimensionless)
spherical harmonic degree variance c2n reflects signal power of the model per degree/resolution and is given
by the square sum over all coefficients of the same degree

c2n =
n∑

m=−n
V

2

nm, (2.10)

and can be related to physically meaningful quantities by scaling factors given, e.g., in P-I (Eq. 3 and Table
1 ibid). Having the degree variances at hand the (dimensionless) omission error εOM can be expressed as

εOM =

√√√√ ∞∑
n=nmax+1

c2n. (2.11)

The omission error can be translated to physically meaningful quantities (see P-I), such as geoid heights N
(m)

εOM (N) = R · εOM (2.12)

or gravity disturbances Tr (mGal)

εOM (Tr) =
GM

R2
·

√√√√ ∞∑
n=nmax+1

(n+ 1)2 c2n · 105. (2.13)
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2.3 Signal strengths and spherical harmonic characteristics at
short-scales

For studying the signal strengths and the characteristics of the topographic potential at short scales (≤ 10 km),
either a densely sampled set of observations of a gravity field quantity or forward modelled gravity quantities
are needed. Interesting properties are the general variability of the field (e.g. extreme values and the average
variability), the decrease of the signal magnitude with increasing resolution as well as regional characteristics
and dependencies. However, adequate dense observations are available only locally or regionally. As de-
scribed in more detail in publication P-I (Sect. 2.1 ibid) few studies based on high-resolution gravity data for
spatially limited test areas exist, e.g. by Jekeli (2010). Their findings are relevant for the respective area under
investigation but do not give a global picture. At global scale observations are available at best with a resolu-
tion of 5′ and represented in the gravity field model EGM2008 (Pavlis et al, 2012), but the used original gravity
anomalies are proprietary data of the NGA (National Geospatial-Intelligence Agency) and are not available.
Therefore, in this work high-resolution gravity quantities computed from forward modelling are used to retrieve
short-scale properties of the gravity field. Also other studies use forward modelled gravity to retrieve informa-
tion about the gravitational field, but global studies are limited to scales of ∼10 km (Pavlis et al, 2007) and
shorter scales are only investigated locally (Voigt and Denker, 2007). Larger scale terrain effects, by con-
trast, have been studied more intensively, e.g. path-breaking by Forsberg (1984) or Vassiliou and Schwarz
(1987).

2.3.1 Estimating short-scale signal strengths from an analysis of GGMplus

Here the short-scale gravitational signal is investigated based on the recently published 220m-resolution Global
Gravity Model Plus (GGMplus) (Hirt et al, 2013) that provides discrete gravity values at Earth’s physical surface
over land areas between ±60◦ latitude. This means modelled gravity is not available over polar areas and
oceans, thus the corresponding short-scale signal characteristics found over those areas are not studied here.
Today, GGMplus is unprecedented in coverage at this high resolution and therefore allows a broad and detailed
view of Earth’s gravity field at the same time. In detail, GGMplus combines

• satellite gravity observations from the Gravity Recovery and Climate Experiment (GRACE)
(Tapley et al, 2004) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE)
(ESA, 1999) satellite missions in low and mid-frequencies (n ≤∼ 200),
• terrestrial and altimetric gravity observations from EGM2008 in mid- to high frequencies (∼

200 < n ≤ 2160) and
• forward modelled gravity in high to ultra-high frequencies (n > 2160).

See Hirt et al (2013) for more details on the combination of the gravity information from different sources
and frequencies. The forward modelling in GGMplus – in contrast to this work – has been performed by an
integration in the space domain and in planar approximation. It follows the RTM principle (Forsberg, 1984) and
its computation is associated with a huge computational effort, taking estimated ∼180, 000 CPU hours, roughly
(Hirt et al, 2013). The forward modelling is based on the assumption of constant rock-density (the crustal
mean density of 2670 kg

m3 is used) and the topography geometry as given by the 220m-resolution digital elevation
model (DEM) from the Shuttle Radar Topography Mission (SRTM) (Farr et al, 2007). The high and ultra-high
frequency characteristics of GGMplus’s near-global discretisations of geoid heights and gravity anomalies are
studied and analyzed in P-I using a 2D-DFT procedure (Forsberg, 1984; Flury, 2006). The DFT method was
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Degree range 2161 to 90, 000 5401 to 90, 000 10, 801 to 90, 000 21, 601 to 90, 000

(Scale) (∼ 10− 0.22 km) (∼ 4− 0.22 km) (∼ 2− 0.22 km) (∼ 1− 0.22 km)

Tr [mGal] 8.62 5.26 3.51 2.23

N [cm] 1.53 0.38 0.13 0.02

Tab. 2.1 – Average signal strength as found over continental areas at Earth’s surface between ± ∼ 60◦ latitude
(polar areas and oceans thus are excluded) for different spatial scales as defined by the GGMplus degree
variance rule (P-I: Eq. 29) in terms of omission errors of gravity disturbances Tr (mGal) (Eq. 2.12) and
geoid heights N (m) (Eq. 2.13). Values are based on the assumptions of a uniform rock-density (2670 kg

m3 )
and uncompensated masses at short-scales.

found to retrieve the spherical harmonic spectrum of a spatially-limited discretisation of the gravity field in terms
of degree variances with an accuracy of 10− 20 % and in spherical approximation. The resolution of GGMplus
allows to recover the spherical harmonic spectrum up to degree 90,000. This resolution it is far beyond the
resolution of current spherical harmonic gravity models. Since no comparable work is known that could be
used for a cross-validation, the results in this work can be considered pioneering. A full account of the analysis
technique, the results and their interpretation is given in paper P-I. Among others, the latter publication contains
detailed investigations concerning the impact of the geographical limitation of GGMplus and the amplification of
gravity signals as projected onto the sphere, as is the case for ordinary spherical harmonic degree variances.

Essentially, the analysis of GGMplus suggests that considerable short-scale gravitational energy is contained
in the topographic masses of Earth. Following the average signals strengths in different spectral bands listed in
Table 2.1 (taken from Tab. 4 in P-I), a spherical harmonic expansion up to degree 5400 (at least) is needed for
the often envisaged 1cm-geoid over continental areas. Further, models that with a resolution of ∼ 10 km, such
as EGM2008, omit gravity signals of averagely 8.6 mGal (1.5 cm) magnitude globally due to the early truncation
of the series. But the expected signal strengths strongly depend on the presence and nature of topographic
masses, i.e. hills, mountain ranges or flat terrain. This was found by analysing the gravity quantities in 2.5◦x2.5◦

sized tiles as a function of the contained topographic elevation by means of the so called terrain RMS (see
P-I: Tab. 4 and Fig. 11). In the Himalayas omitted signals as large as 38 mGal (7.51 cm) are to be expected
due to a truncation at degree 2160, while it is still 2.8 mGal (0.5 cm) in low elevated regions with a terrain RMS
of less than 250 m. These numbers indicate a large variability and large signal magnitudes of the topographic
potential at short scales and justifies the attempt to model the high-frequency topographic potential globally as
is the purpose of this work.

2.3.2 Understanding topographic potential models and spherical harmonics at
high-degrees

The spectral modelling techniques and source-mass models introduced further down (Chpt. 3) were used to
create new spherical harmonic models of the TP complete up to degree 5400 (∼4 km spatial resolution). The
short scale behaviour of these models, dV _ELL_Earth2014_5400 (ETP model) and dV _SPH_Earth2014_5400

(STP model), is investigated here anticipatory. The models are interesting because

1) they are – in contrast to GGMplus – truly global representations of the topographic potential and

2) they exceed degree 2190 of state-of-the-art gravity models and provide signals down to scales of ∼4 km.
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As discussed elaborately in P-I the ETP and STP models have different spectral energy, which is a result of
the different approximation of the underlying field generating reference source-mass – an ellipsoid or a sphere,
respectively. More precisely it is the term (rQ

R

)n
(2.14)

found in the radial integration of Eq. 2.8, that effects the attenuation of gravitational signal of masses located
in the interior of the spherical harmonic reference radius (so where rQ < R ). Per definition, in case of
ETP modelling, the topographic masses are arranged w.r.t. to a reference ellipsoid with the semi-major axis
corresponding to the reference radius (a = R). Consequently, a large part of the masses, especially near
to the poles, are located inside the reference sphere in this case. In contrast, in the case of STP modelling,
the topographic masses are mostly close to or above the spherical reference shell and not affected by stark
attenuation. Additionally, the attenuation effect is getting stronger towards short scales because the ratio in
Eq. 2.14 is taken to the power of n. This is why the spectrum of ETP or the ellipsoidal approximation appears
to be underpowered as compared to the STP, especially at short scales.
Another important finding in P-I is that the surface to which the spherical harmonic spectrum (and the degree
variances) refers, changes its spectral signal decay and magnitude. This is relevant since GGMplus provides
gravity at Earth’s surface and not downward continued to the reference surface. The latter effect is irrelevant
at low degrees, say up to degree 200, but is amplified towards high degrees. The reasoning is similar to the
above and related to the attenuation term (

R

r

)n
(2.15)

found in the spherical harmonic series expansion (Eqs. 2.3 and 2.4), which becomes(re
r

)n
(2.16)

in the case of choosing an ellipsoidal reference. It means a stronger attenuation of the signal with increasing
distance from the reference surface (so where r > R or r > re, respectively) and with increasing resolution n
of the model. Thus, at Earth’s physical surface (on top of the topographic masses) the gravitational energy is
less than that found at the reference surface, especially at high degrees.
For a full picture of these effects, the degree variances of

1a): dV _SPH_Earth2014_5400 referring to the reference sphere of radius R,
1b): dV _SPH_Earth2014_5400 referring to Earth’s surface (at height H above reference sphere),
2a): dV _ELL_Earth2014_5400 referring to the reference sphere of radius R
2b): dV _ELL_Earth2014_5400 referring to Earth’s surface (at height H above reference ellipsoid)

are computed (Fig. 2.4, top panel). The idea of this exercise also is to get degree variances that represent
gravity as found on Earth’s surface and are suitable for a comparison with GGMplus. The degree variances
(DVs) of the cases 1a) and 2a) can be computed straight forward from the actual coefficients of the models
(using Eq. 2.10), because they – per definition – refer to the spherical harmonic reference sphere. The DVs
of the STP model 1a) (blue) are running above the ETP model 2a) (magenta), as a consequence of their
underlying mass arrangement. In case of 1b) and 2b) DVs have been computed by a synthesis of gravity
disturbances at Earth’s surface using the gradient approach (Hirt, 2012) up to the 15th order as implemented
efficiently in the isGraflab software (Bucha and Janák, 2014) and a consecutive analysis using a solid spherical
harmonic variant of the Gauss-Legendre quadrature (P-III). In the analysis a sphere of radius R serves as a
reference surface in all cases. As to be expected, the DVs at Earth’s surface 1b) (light blue) and 2b) (green)
almost coincide, since the gravitational signal is attenuated according to the respective reference surface. Their
variances are running below those of 1a) and cross/underrun those of 2a) near degree 3100. Their differences
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(red dotted line) manifest the spherical (or ellipsoidal) approximation of the topographic potential in STP and
ETP models, respectively; in the space domain these differences amount to ∼0.35 mGal (RMS), see further
down.

Additionally, curves have been fitted in least-squares sense for all three cases (1b and 2b coincide), following
the exponential-type (EXP) model

c2EXP,n = a(bn)cn−d, (2.17)

where a, b, c and d are the parameters (given in Tab. 2.2) that can be used to retrieve the degree variances.
The mathematical models of other degree variance rules, e.g. those proposed by Kaula (1966), Tscherning
and Rapp (1974) or Sanso and Sideris (2013), are found to not adequately model the curvature in the degree
variances of these high resolution models, at least for cases 1a) and 2a). For comparison purposes also a
Sanso/Sideris-type (SS) model (P-I)

c2SS,n =
a · bn

(n− 1)(n− 2)(n+ 4)(n+ 17)
(2.18)

is fitted for the case 1b&2b (middle panel in Fig. 2.4). For more details on the historically different mathematical
parametrisation of degree variance rules see P-I (Sect. 2.3 and Sect. 3.2). Close to the degree of truncation
of the topographic potential models (so near degree 5400/5480) the spectrum starts to drop slightly and does
not reflect the general trend at high degrees (in the case of the ETP model the stark drop is related to the
ellipsoidal reference, see further down). As a consequence the last 100/180 degrees were not used for the
estimation of the degree variance rules, thus they are data-based up to degree 5300, strictly. The quality of
the fit is indicated by the residuals with the actual degree variances, which are at the level of 10% of the actual
signal over large parts of the spectrum for all EXP-type models (Fig. 2.4, lower panel). The SS-type model for
case 1b&2b (light green curve) shows a significantly worse fit in low degrees (up to degree ∼2000), but nicely
fits the DVs in the spectral band ∼2000− 5300, also at the 10% level.

In Fig. 2.5 the degree variances of the above described DV-rules and the GGMplus DV-rule (P-I: Eq. 29) are
plotted all together up to degree 10, 800, scaled to gravity disturbances in mGal2 (according to the factors given
in P-I: Tab.1). Additionally – for the sake of orientation – the gravity-related degree variances of the (spherical
harmonic) EGM2008 and the transformed ellipsoidal harmonic EGM2008 (see P-IV ) are plotted to degree
2190 and 2159, respectively. In the spectral window 5301 to 10, 800 the DVs of DV-rules are extrapolations.
Very striking is the exponential rise of the gravity-DVs of the ETP and STP model (1a and 2a) towards short
scales. The turning point (from falling to rising) is around degree ∼2000 in case of the STP and ∼3000 in

Model type rule evaluation at a b c d

1a STP EXP ref. sphere 4.18478 · 10−20 6.94626 · 10−4 7.05915 · 10−4 3.81921

2a ETP EXP ref. sphere 3.93368 · 10−22 2.08525 · 10−4 8.52962 · 10−4 3.82219

1b&2b STP/ETP EXP Earth’s surface 2.47412 · 10−23 9.10380 · 10−5 3.52286 · 10−4 3.74328

1b&2b STP/ETP SS Earth’s surface 5.935595 · 10−8 1.000035 - -

GGMplus STP SS Earth’s surface 1.79 · 10−7 0.999995 - -

Tab. 2.2 – Degree variance rule parameters for the models dV _SPH_Earth2014_5400 and
dV _ELL_Earth2014_5400 using the parametrisation given by Eq. 2.17 (EXP) and Eq. 2.18 (SS)
for an evaluation of the models at the reference sphere of radius R or at Earth’s surface, respectively. Also
shown are the parameters of the GGMplus DV-rule described in P-I. All parameters are derived based on
the assumptions of a uniform rock-density (2670 kg

m3 ) and uncompensated masses at short-scales.
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Fig. 2.4 – Dimensionless degree variances of the TP models dV _SPH_Earth2014_5400 (STP) and
dV _ELL_Earth2014_5400 (ETP) referring to the reference sphere (as is convention) and Earth’s
surface (upper panel); fitted degree variance rules (mid panel) and the accuracy to which the DV-rules
represent the actual degree variances in percent (lower panel). Note again that the TP models are based
on the assumptions of a uniform rock-density (2670 kg

m3 ) and uncompensated masses, which is justified only
at short-scales.
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case of the ETP model. However, as learned from above this is not in contradiction with potential field theory
which dictates decreasing energy towards short scales. It simply is a necessity of the spherical harmonic
parametrisation that causes the spectrum of the spherical harmonic coefficients to rise with increasing n:
since the coefficients, inserted into the spherical harmonic series, must represent the attenuated signal at
Earth’s surface correctly – and the attenuation is increasing exponentially by n (Eq. 2.15) – they must be
amplified accordingly at high degrees n. In other words, the SHCs are consistent amplifications, representing
valid surface topographic gravity signals. In contrast – at Earth’s surface – the degree variances (light green
and red) predict monotonous decreasing energy. This nicely depicts a rather unknown spherical harmonic
phenomenon that is present in high-resolution models only and which is found vital for the correct interpretation
of the energy of spherical harmonic models (at short scales).

In this context it is found most importantly that the parametrization of the degree variance rules can have a
large impact on the extrapolation. This can be seen from the differences between the SS-type and the EXP-
type DV-model for n ≥ 5300 (light green line vs. dotted green line in Fig. 2.5). The EXP-type model in this
case falsely predicts rising DVs beyond degree ∼6000 (dashed green line). Evidence that the EXP-type DV-
rule 1b&2b is not correct beyond degree 5400 is also given by the monotonously decreasing GGMplus degree
variances which are data-based up to degree 90, 000. Certainly, also the extrapolation of SS-type models
should be treated carefully. As lesson learned, extrapolations of DV-rules should be handled carefully and the
parametrisation of the DV-rule must be trustworthy. This finding is underpinned by the diverging results of other
DV-rules found in the literature when extrapolated to short scales (P-I: Fig. 13).

Fig. 2.5 – Degree variances of degree variance rules developed in this work together with the degree variances of
the spherical harmonic and the ellipsoidal harmonic EGM2008 in terms of gravity disturbances (mGal2).
Beyond degree 5300 the STP and ETP DV-rules are extrapolations.
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2.3.3 Estimating short-scale signal strengths from high-degree global topographic
potential models

The new analytical models from Tab. 2.2 can be used to estimate the average signal power captured in the
spectral band from degree 2161 to 5400 (accumulated via Eq. 2.11) in terms of geoid heights and gravity
disturbances (Tab. 2.3). In this band the degree variances are data-based and free of extrapolation errors (see
above). The maximum degree of this spectral band exceeds the spatial resolution of up-to-date observation
based models by 3210 degrees, i.e. the jump from 10 km scale down to 4 km scale. Generally, the amplitudes
in Tab. 2.3 reflect the different level of the degree variances in Figs. 2.4 and 2.5.

The DV-rule 1a with ∼32 mGal (≈ 5 cm) yields the largest signal in this band. With a considerable gap it is
followed by DV-rule 2a with ∼5 mGal (∼0.9 cm), and 1b&2b with ∼4 mGal (∼0.9 cm). In this spectral band the
EXP-type and the SS-type parametrisation of the 1b&2b case deliver the same result in good approximation.
The fact that model 1b&2b and 2a provide nearly the same signal strengths can be considered a coincidence,
since both differ regarding their approximation level and evaluation surface. Importantly, all models/DV-rules
are measures of the signal strength of the (same) topographic potential, but not all of them are useful/valid.
Due to the lessons learned from above and from the discussion in P-I (Sect. 4.3 ibid) the model 1b&2b is
considered to deliver the most meaningful signal strengths, because it refers to signal strengths as found at
Earth’s surface which is needed for most applications in general.
It shall be pointed out explicitly that the STP-rule 1a, the ETP-rule 2a and the actual degree variances of
any other observation-based spherical harmonic model are actually not useful to quantify signal strengths at
short scales since their spectra refer to the reference sphere of radius R. This leads to an underestimation
of the signal strength at n < ∼3100 and to an overestimation for n > ∼3100 in the case of ellipsoidally
approximated models. In the case of spherical approximated models the signal strengths are overestimated
for n > ∼700.

As an aside, ellipsoidal (spheroidal) harmonic models based on ellipsoidal approximation deliver signal strengths
comparable to those of spherical harmonic models based on spherical approximation. The last conclusion
is based on the fact that the degree variances of the ellipsoidal harmonic EGM2008 are very close to the
STP-rule 1a (EGM2008 slightly dips away beyond degree ≈ 1600, which might be an effect of underpowered
marine gravity in EGM2008 (Hirt et al, 2017) and because the degree correlation between the ETP model and
EGM2008 only reveal high correlation at high degrees if both are represented in ellipsoidal harmonics (P-IV :
Fig. 10). In other words, ellipsoidal harmonic models based on ellipsoidal approximation and spherical har-
monic models based on spherical approximation are intrinsically consistent and comparable in terms of their
spectral energy.

DV-rule model- rule- evaluation gravity disturbances geoid heights

type type surface Tr [mGal] N [cm]

1a STP EXP ref. sphere 31.73 4.90

2a ETP EXP ref. sphere 4.91 0.92

1b&2b STP/ETP EXP Earth’s surface 4.25 0.92

1b&2b STP/ETP SS Earth’s surface 4.21 0.91

GGMplus STP SS Earth’s surface 6.84 1.49

Tab. 2.3 – Average signal power in the spectral band 2161 < n ≤ 5400 as captured by the degree variance rules
created in this work. Values are computed with the omission error formula (Eq. 2.11) and are based on the
assumptions of a uniform rock-density (2670 kg

m3 ) and uncompensated topographic masses at short-scales.
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Note, that the SS-type DV-rule 1b&2b equals the GGMplus degree variance rule (P-I: Eq.29) in terms of
parametrisation, approximation (spherical/STP) and evaluation surface (at Earth’s surface). The differences
between both (4.25 vs. 6.84 mGal) rules is a result of several effects. Mainly the differences stem from the
areas covered by the rules: GGMplus is only based on land data and therefore possesses higher spectral
energy (cf. P-I: Fig. 6). Apart from that, the computational procedures for the forward modelling differ and
the 2D-DFT procedure plus the fitting is able to retrieve the degree variance’s energy level with roughly 20%
accuracy, only.
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2.4 Summary and evaluation of the chapters’s research aims

This chapter (Chpt. 2) together with the publication P-I are meant to contribute to a better understanding of the
topographic potential as used in geodesy and geophysics. The elaboration on Earth’s topographic masses,
their conceptual usage in geodesy and the distinction from isostatic masses are in the focus of Sect. 2.1 and
are fundamental for the correct usage and interpretation of the gravitational attraction that is described by the
topographic potential. In this regard the section is an answer to research question Q1. The conventional spher-
ical harmonic parametrisation of the gravitational/topographic potential then is is introduced in Sect. 2.2. It is
used to analyse, quantify and model the signal strengths at arbitrary scales on a (near) global level in the follow-
ing section (Sect. 2.3) based on results and findings in P-I. Thereby it was found that average signal amplitudes
up to ≈ 8.6 mGal in terms of gravity disturbances (≈ 1.5 cm geoid height) are inherent to the continental (=only
land) topographic potential at scales smaller than ∼10 km at Earth’s surface. This significant gravitational sig-
nal is omitted by current gravity field models that are developed to degree 2190. Based on the investigated
data sets up to degree 5400, on global scale the average topography implied signal to be expected in between
scales of ∼4 − 10 km amounts to ∼4.3 mGal (∼0.9 cm) at Earth’s surface. Thus, answering research ques-
tion Q2, the exploitation of the short-scale topographic potential seems relevant for high-resolution gravity field
modelling. Finally, important relationships and short-scale properties that are related to the field-generating
reference body, the evaluation surface and the attenuation of the gravitational energy in spherical harmonics
could be unveiled, secondarily. Consequently, research aim A1 that reads

"Quantify the signal strengths and examine the spectral characteristics of the topographic potential at short
scales."

can be considered to be met, fulfilling also the overall research goal G1.
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Chapter 3

Forward Modelling

3.1 General

Forward modelling in the context of this work describes the mathematical and computational process to derive
the gravitational potential that is caused by a known source-mass. Here, Earth’s topographic potential is
sought with the help of an as-detailed-as-possible source-mass model. This requires a solution to Newton’s
law of gravitation, manifested in an integration over all of Earth’s (topographic) masses as, e.g., given by (P-IV :
Eq.1)

V (P ) = G

∫
B

ρ(Q)

l(P,Q)
dB(Q), (3.1)

where P describes a point exterior to Earth’s body B, Q is the source-mass point associated with density
ρ(Q), l(P,Q) is the Euclidean distance between P and Q, and the infinitesimal spherical volume element
dB(Q) = r2 sin θdrdθdλ.

Publication P-II describes the creation of an up-to-date source-mass model with 1’ resolution (∼2 km) that
serves as input data set for all numerical tests and topographic potential models created in this work. The
model is briefly presented and input data are discussed in Sect. 3.2.
Numerous forward modelling approaches exist, which typically can be divided into to two classes by the re-
spective domain in which the integration takes place: the space domain or the spectral domain. A detailed
overview of existing approaches and (selected) relevant literature in chronological order is given in Fig. 3.1, in-
cluding the placement of the publications of this work. The focus of this work is placed upon forward modelling
in the spectral, i.e. spherical harmonic, domain (right side of the chart in Fig. 3.1). In spherical harmonics the
integration problem in Eq. 3.1 is derived in spherical coordinates (using geocentric latitudes) and becomes Eq.
2.8, as shown in P-IV. Publication P-IV is dedicated to a new spectral multi-layer approach for the ETP which
is compared to existing spectral approaches of STP and ETP. The principle, important equations, advantages
and disadvantages of the different spectral methods are discussed further down (Sect. 3.3). Note that by
a different choice of the underlying coordinate system the ETP may also be derived in spheroidal harmonics
using reduced latitudes (Wang and Yang, 2013) or in ellipsoidal harmonics using geodetic latitudes (Novak and
Grafarend, 2005), which is not discussed further here.
The spectral methods benefit from efficient transformations (analysis and synthesis) of the so called height-

density functions (HDFs), sometimes referred to as topographic height function (THF), between space and
spectral domain by employing FFT-techniques. At high resolution, however, spherical harmonic analysis and
synthesis is not a trivial task given the enormous amount of data points, and – numerically as well as arith-
metically – intensive operations. Publication P-III and Sect. 3.3.2 deal with efficient quadrature techniques
as a means for high-resolution spherical harmonic analysis, embodying another thematic focus of this work.
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Finally, the modelling techniques are used and tested to model the topographic potential up to degree 5400

and 21, 600, respectively (Sect. 3.4).

3.2 Source-mass models of Earth’s topographic masses

A source-mass is defined by a geometric body of known shape and density. A source-mass model accumulates
various source-masses in order to describe a more complex body’s mass, such as Earth’s topographic masses.
The gravitational potential originating from that complex body then is the integral effect of all source-masses
(Sect. 3.3).

3.2.1 Available source-mass data and its quality

In this work a complete (in the sense of global and 3D) and detailed (in the sense of high-resolution) source-
mass model is envisaged. It shall be used to model short-scale gravity effects on global scale. In terms of
availability and quality of the source-mass data, the geometric information on the one hand, and the density
information on the other hand, have to be treated separately.
In practice, the geometry of Earth’s topographic masses is provided in the from of digital elevation models
(DEMs) that cover oceanic depths below mean sea level as well as topographic heights above mean sea
level. As found in P-IV the geometric information is far more reliable as compared to density information,
and available in dense grids globally. Over continental and land areas the cell spacing of non-proprietary and
non-commercial available elevation grids is at the level of ∼30 m. The quality and accuracy of up-to-date ∼30

m resolution DEMs was investigated, e.g., by Rexer and Hirt (2014). They found that the most accurate and
reliable of which – the hole-filled CGIAR-CSI SRTM v4.1 – is based on data of the SRTM mission, providing
heights with approximately 4.5 m accuracy over the Australian continent on average. Since Australia is sparsely
covered by vegetation and is morphologically rather smooth, this is a rather optimistic value. Over mountain
ranges the accuracy varies between 8−15 m (Rexer and Hirt, 2014). For an overview of current models, space-
missions and sensors and their sensor-specific limitations we refer to Rexer and Hirt (2014). Recently, a 12m-
resolution DEM with a designated height accuracy of ∼4 m globally has become available with TanDEM-X’s
WorldDEM (Bartusch et al, 2008). Already the intermediate releases of WorldDEM were found to outperform
any existing global DEM over land (Rexer and Hirt, 2016). Unfortunately, WorldDEM is not freely available as
a whole for research, thus, in this work SRTM serves as best source for global land elevations.
The ocean’s floor, which is described by bathymetric depths, is known with less detail simply due to the fact
that it is obscure to optical and radar-based satellite sensors. The depth of the ocean floor ”(...) is sensed
directly only via local-scale ship soundings and determined globally indirectly via ties to the altimetric gravity
field (Smith and Sandwell 1994). According to Sandwell et al. (2014), more than 50 % of the ocean is more
than 10 km away from the next direct depth measurement. The highest resolution gravity field over the oceans
is derived from satellite altimetry, and available models reach ∼1′ (∼2 km) resolution (Andersen et al. 2013;
Sandwell et al. 2014) at best. (...) But due to the attenuation of the shorter wavelength (altimetric) gravity
signals, the estimation of bathymetric heights from gravity works best in the wavelength band from 12 km to
160 km (Sandwell et al, 2014), which means it is of lower quality at scales < 12 km.” (P-III).
Mainly, however, the creation of a more detailed source-mass model is obstructed by the poor knowledge of
the actual density distribution of Earth’s masses, at least on global scale. As elaborated in publication P-IV, the
highest resolution global density model (CRUST1.0) is laterally limited to a spatial scale of ∼110 km (1◦). As
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a workaround, density will be assumed homogeneous for defined geophysical layers in the construction of a
composite model of Earth’s topographic masses in the following. The approximate character of this assumption
is discussed further down.

3.2.2 Earth2014: a 1’ composite source-mass model

The construction and a detailed description of the source-mass model, Earth2014, which is used throughout
this work is given in publication P-II. In brief it provides topographic heights, bedrock heights (i.e. solid rock
elevations covered by ice, ocean water or water of large lakes) and ice-sheet thickness for polar regions. Its 1
arc-min grid spacing (∼2 km scale) is reasonable given the available true resolution of bathymetric depth data
(see above) and is commensurate to other existing global geometric models such as ETOPO1 (Amante and
Eakins, 2009). Also two higher resolution global models exist: SRTM30PLUS and its successor SRTM15PLUS
(Becker et al, 2009). The gain in resolution in the latter models, however, can not be fully exploited by the re-
spective input data, especially over the oceans and over polar regions. Compared to those data sets Earth2014
comprises more recent and improved input-data sets – e.g. the hole-filled SRTM V4.1 topography (Jarvis et al,
2008) over land areas between±60◦ latitude, Bedmap2 (Fretwell et al, 2013) for bedrock geometry, bathymetry
and ice-sheet thickness over Antarctica, and the Greenland Bedrock Topography (GBTv3) (Bamber et al, 2013)
– that make Earth2014 a decent representation of Earth’s topographic masses. This is confirmed by Hirt et al
(2015) who show that gravity forward modelled using the Earth2014 data set explains the medium/high res-
olution gravitational patterns sensed by GOCE satellite better or at least equivalently compared with other
available source-mass models.
Earth2014 is composed by the layers

SUR: Earth’s surface (i.e. lower bound of the atmosphere),
BED: bedrock of Earth (i.e. solid rock below water and ice),
TBI: Earth’s surface over land and bedrock below water masses, and
ICE: ice-sheet thicknesses

that represent the boundaries to the volumetric geophysical layers of the solid crust, ocean water masses, lake
water masses and ice-sheets, as needed in multi-layer spectral forward modelling approaches. A guide how to
use Earth2014 in a multi-layer modelling approach is given in P-IV (Sect. 3 ibid). The layer boundaries were
also expanded to degree-10800 surface SHCs that are needed to facilitate e.g. spherical harmonic filtering
and oversampling as required in the forward modelling process.
The complete Earth2014 data set, i.e. 1’-layer grids and their degree-10800 SHCs, is publicly available and
can be freely downloaded: http://ddfe.curtin.edu.au/models/Earth2014/potential_model/. It receives
quite some attention and is used within the community, e.g. by Grombein et al (2016b) and Tenzer et al
(2016).

By associating density distributions, i.e. 2D or 3D-functions of mass-density, to the geophysical layers, Earth2014
becomes a source-mass model. As discussed above the poor knowledge of Earth’s short-scale density dis-
tribution enforce the choice of constant density values for each layer in this work. The density in each layer
is defined by state-of-the-art estimates of their average values (see P-IV : Tab. 7). Earth’s crust is associated
with an average value of ρ0 ≈ 2670 kg

m3 . Since the crustal layer consists of various types of solid matter in lateral
and vertical direction, it is subject to largest approximation errors. The crust hosts materials such as sediments
(ρ ≈ 2000 − 2200 kg

m3 ) and basalt (ρ ≈ 2900 kg
m3 ) beneath the ocean floor, granite (ρ ≈ 2500 − 2800 kg

m3 ) in the
upper crust, and, basalt and gabbro (ρ ≈ 2700− 3100 kg

m3 ) in the lower crust (Torge, 2003). At maximum, thus,

http://ddfe.curtin.edu.au/models/Earth2014/potential_model/
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the crustal density locally may deviate roughly by about 20 − 25% (+760 kg
m3 or −430 kg

m3 ) relative to the mean
density in extreme cases. Over the Canadian Rocky Mountains, the "(...) relative error of this approximation,
reaching up to 10 % [in terms of gravity at Earth’s surface], can further be decreased by using a laterally-
varying mass density" (Novak, 2010), as found by Huang et al (2001). In general, however, the application
of ρ0 works quite satisfactory (as will be shown) and is common practice. Still, the approximation with mean
density values results in differences between forward modelled and observed gravity. Those differences reflect
density inhomogeneities that exist in Earth’s interior. In geodesy this type of gravity differences are named
Bouguer anomalies (Torge (2003) and see Sect. 4.3.2).
In reality, also the seawater of the oceans, and ice-sheets do not have homogenous density distributions. In
fact seawater density generally increases with depth/pressure, primarily. Secondarily, it also varies with tem-
perature and salinity. The effect of vertical density variations in the ocean water has been investigated recently
using a simple polynomial to account for the variations during the integration by Tenzer et al (2010, 2012).
They found that the approximation of the actual seawater with its mean value lead to relative inaccuracies
of about 2% translating into a maximum of "(...) 200m

2

s2 and 16 mGal in computed values of the bathymetric
potential and attraction, respectively. Extreme values apply particularly to the computation areas situated over
the deepest oceans." (Tenzer et al, 2012). These small effects seem acceptable given the overall uncertainty
of bathymetric depths and are not modelled explicitly in this work.

As an aside the Earth2014 data set contains a rock-equivalent-topography (RET) layer that is the input bound-
ary for single-layer forward modelling. The RET describes Earth’s surface in terms of the (constant) density of
solid-rock, in this case the crustal mean density ρ0. In this concept water and ice masses are compressed by
applying the respective density ratio ρ

ρ0
to their vertical geometric extend in each grid cell (see P-II for the exact

definition). As a consequence the geometry of Earth is changed, but the overall mass balance is retained.
In terms of gravity, the RET leads to approximation errors at the level of 1.8 mGal (RMS) at Earth’s surface
when modelled up to degree 2190, globally (P-IV ). Over the oceans the errors are at the level of 10 − 20

mGal and can reach up to +66 mGal or −46 mGal over the deepest parts of the oceans (cf. P-IV : Fig.
8).
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3.3 Spectral forward modelling

Spectral forward modelling deals with the solution of Eq. 3.1, Newton’s integral law, in the spherical harmonic
domain. In spherical harmonics the problem is formulated by Eq. 2.8. Different analytical and computa-
tional solutions to this problem are presented and reviewed in the following. Thereby attention is directed
towards increasing the resolution during the modelling and towards adaptations that are required to realise
high-resolution modelling successfully.

3.3.1 Modelling techniques and most important equations

As seen from Fig. 3.1 (right branch) the spectral modelling techniques can be subdivided into modelling of
the spherical topographic potential (STP) and ellipsoidal topographic potential (ETP). The first of which uses
a sphere, the latter an oblate ellipsoid of revolution as reference body during the modelling. In both cases the
coordinate system is truly spherical (with geocentric latitudes) and the modelling relies on spherical harmonic
base functions. The reference body serves as the reference source-mass and on the same time defines
the geometric reference surface for the description of topographic masses; thus it defines the overall mass-
arrangement in the modelling approach.
In both cases a single or a multi-layer approach can be considered. Modelling of isostatic corrections is not
done, resulting in uncompensated topographic potential models, generally (Sect. 2.1.2). The single-layer
modelling has approximate character since it is commonly used together with the RET-boundary surface, that
covers all of Earth’s masses condensed into one layer (see above and P-II). In contrast, multi-layer modelling
is capable of combining the gravitational effects of an arbitrary number of volumetric layers that are bounded
by two geometric surfaces, defining the lower-bound (LB) and the upper-bound (UP) of the layers. The multi-
layer modelling in the ETP-case is novel and has been developed in the course of this work. In both, multi-
and single-layer modelling, a lateral varying density distribution can be applied separately for each layer, while
the density must be assumed constant in the vertical direction in each cell. Further, the modelling can be
done rigorously (exact) or efficiently using binominal series expansions for some of the involved terms. Both,
rigorous and exact solutions, are based on the spectral variant of the Newtonian integral (Eq. 2.8). Assuming
constant mass-density (in a layer) the radial integral of the inverse distance can be solved analytically resulting
in the rigorous solution. Applying a binominal expression when solving the integral results in the efficient
solution, where the infinite binominal series needs to be truncated for its numerical evaluation. This makes the
efficient solution a lot faster than the rigorous solution, in general. However, the convergence of the series is
not guaranteed for a general geometry. The convergence of all occurring binominal series is comprehensively
addressed further down in the dissertation and publication P-IV.

For a complete picture of all techniques, the equations of spectral forward modelling are given here in rig-
orous (exact) and efficient notation (Eqs. 3.2 to 3.21). The expressions are grouped into four tables as fol-
lows:

Tab. 3.1 : single-layer STP modelling,
Tab. 3.2 : multi-layer STP modelling,
Tab. 3.3 : single-layer ETP modelling,
Tab. 3.4 : multi-layer ETP modelling.

The derivations of all equations can be found in P-IV. The parameters V̂nm denote the rigorous SHCs and
V nm denote the SHCs given by the efficient expressions. The binominal series expansions in the efficient
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modelling procedures with the binominal orders k and j, as well as differences between V̂nm and V nm are
treated further down. Important parameters are explained below, a full list of all parameters/symbols is given
in Tab. 3.5.

Spherical Topographic Potential (STP)
single-layer

rigorous V̂ (STP )
nm =

3

ρ(2n+ 1)(n+ 3)
HDF

(STP )
nnm (3.2)

solution HDF
(STP )
nnm =

1

4π

∫ 2π

λ=0

∫ π

θ=0

ρ(θ, λ)

(
R+DRET

R

)n+3

Y nm(θ, λ) sin θdθdλ. (3.3)

efficient V
(STP )
nm =

3

ρ(2n+ 1)(n+ 3)

kmax∑
k=1

(
n+ 3
k

)
HDF

(STP )
knm (3.4)

solution HDF
(STP )
knm =

1

4π

∫ 2π

λ=0

∫ π

θ=0

ρ (θ, λ)

(
DRET
R

)k
Y nm (θ, λ) sin θdθdλ. (3.5)

Tab. 3.1 – Single-layer expressions for the spherical topographic potential (STP).

Spherical Topographic Potential (STP)
multi-layer

V̂ (STP )
nm =

ωmax∑
ω=1

V̂ (STP,Ωω)
nm (3.6)

rigorous V̂ (STP,Ωω)
nm =

3

ρ(2n+ 1)(n+ 3)
HDF

(STP,Ωω)
nnm (3.7)

solution HDF
(STP,Ωω)
nnm =

1

4π

∫ 2π

λ=0

∫ π

θ=0

ρ(Ωω)(θ, λ)

((
R+D

(Ωω)
UB

R

)n+3

−

(
R+D

(Ωω)
LB

R

)n+3)
Y nm(θ, λ) sin θdθdλ.

(3.8)

V
(STP )
nm =

ωmax∑
ω=1

V
(STP,Ωω)
nm (3.9)

efficient

solution V
(STP,Ωω)
nm =

3

ρ(2n+ 1)(n+ 3)

kmax∑
k=1

(
n+ 3
k

)
HDF

(STP,Ωω)
knm (3.10)

HDF
(STP,Ωω)
knm =

1

4π

∫ 2π

λ=0

∫ π

θ=0

ρ(Ωω) (θ, λ)

(D(Ωω)
UB

R

)k
−

(
D

(Ωω)
LB

R

)kY nm (θ, λ) sin θdθdλ

(3.11)

Tab. 3.2 – Multi-layer expressions for the spherical topographic potential (STP).



34 Forward Modelling

Ellipsoidal Topographic Potential (ETP)
single-layer

rigorous V̂ (ETP )
nm =

3

ρ(2n+ 1)(n+ 3)
HDF

(ETP )
nnm (3.12)

solution

HDF
(ETP )
nnm =

1

4π

∫ 2π

λ=0

∫ π

θ=0

ρ(θ, λ)
(re
R

)n+3
(
re + dRET

re

)n+3

Y nm(θ, λ) sin θdθdλ (3.13)

efficient V
(ETP )
nm =

3

ρ(2n+1)(n+3)

(
b

R

)n+3kmax∑
k=1

(
n+3
k

)jmax∑
j=0

(−1)j
(

−n+3
2

j

)
e2j

j∑
i=−j

K
2i,2j
nm HDF

(ETP )
klm

(3.14)

solution HDF
(ETP )
klm =

1

4π

∫ 2π

λ=0

∫ π

θ=0

ρ(θ, λ)

(
dLB
re

)k
Y lm(θ, λ) sin θdθdλ (3.15)

Tab. 3.3 – Single-layer expressions for the ellipsoidal topographic potential (ETP).

Ellipsoidal Topographic Potential (ETP)
multi-layer

V̂ (ETP )
nm =

ωmax∑
ω=1

V̂ (ETP,Ωω)
nm (3.16)

rigorous V̂ (ETP,Ωω)
nm =

3

ρ(2n+ 1)(n+ 3)
HDF

(ETP,Ωω)
nnm (3.17)

solution HDF
(ETP,Ωω)
nnm =

1

4π

∫ 2π

λ=0

∫ π

θ=0

ρ(Ωω)(θ,λ)
(re
R

)n+3
((

re+d
(Ωω)
UB

re

)n+3

−

(
re+d

(Ωω)
LB

re

)n+3)
Y nm(θ,λ) sinθdθdλ

(3.18)

V
(ETP )
nm =

ωmax∑
ω=1

V
(ETP,Ωω)
nm (3.19)

efficient V
(ETP,Ωω)
nm =

solution
3

ρ(2n+1)(n+3)

(
b

R

)n+3kmax∑
k=1

(
n+3
k

)jmax∑
j=0

(−1)j
(

−n+3
2

j

)
e2j

j∑
i=−j

K
2i,2j
nm HDF

(ETP,Ωω)
klm

(3.20)

HDF
(ETP,Ωω)
klm =

1

4π

∫ 2π

λ=0

∫ π

θ=0

ρ(Ωω)(θ, λ)

(d(Ωω)
UB

re

)k
−

(
d

(Ωω)
LB

re

)kY lm(θ, λ) sin θdθdλ

(3.21)

Tab. 3.4 – Multi-layer expressions for the ellipsoidal topographic potential (ETP).
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symbol meaning of symbol
rigorous sol. efficient sol.
V̂

(STP )
nm V

(STP )
nm SHCs of the STP model

V̂
(STP,Ωω)
nm V

(STP,Ωω)
nm SHCs of layer Ωω of the STP model

HDF
(STP )
nnm HDF

(STP )
knm surface SHCs of the height density function of a (single-layer) STP model

HDF
(STP,Ωω)
nnm HDF

(STP,Ωω)
knm surface SHCs of the height density function of layer Ωω of the STP model

V̂
(ETP )
nm V

(ETP )
nm SHCs of the ETP model

V̂
(ETP,Ωω)
nm V

(ETP,Ωω)
nm SHCs of layer Ωω of the ETP model

HDF
(ETP )
nnm HDF

(ETP )
knm surface SHCs of the height density function of the (single-layer) ETP model

HDF
(ETP,Ωω)
nnm HDF

(ETP,Ωω)
knm surface SHCs of the height density function of layer Ωω of the ETP model

Ωω layer ω
ωmax maximum number of layers
ρ Earth’s mean density

ρ(θ, λ) density at the point defined by the spherical coordinates θ, λ
ρ(Ωω)(θ, λ) layer’s density at the point defined by the spherical coordinates θ, λ

R spherical reference radius of the topographic potential model
re ellipsoidal radius

DRET mapped spherical height of the RET function
DUB mapped spherical height of the upper bound of the volumetric layer
DLB mapped spherical height of the lower bound of the volumetric layer
dRET mapped ellipsoidal height of the RET function
dUB mapped ellipsoidal height of the upper bound of the volumetric layer
dLB mapped ellipsoidal height of the lower bound of the volumetric layer

Y nm (θ, λ) fully-normalised spherical harmonic functions (Eq. 2.5)
K

2i,2j
nm sinusoidal Legendre-weights (see Claessens and Hirt (2013))
k binominal order of k-series (see Sect. 3.3.1.2)
j binominal order j-series (see Sect. 3.3.1.3)
nm spherical harmonic degree n and order m
l spherical harmonic degree n+ 2i

Tab. 3.5 – List of parameters/symbols used in the STP and ETP expressions in Tabs. 3.1 to 3.4.

3.3.1.1 Geometric parameters

The parameter HDF knm and HDFnnm denote the surface SHCs of the height density function of the re-
spective volumetric layer Ωω taken to the power of k or n, respectively. The surface SHCs can be obtained
by spherical harmonic analysis (SHA). An exact and efficient SHA is of great importance in spectral forward
modelling, especially when aiming at high resolution as explained further down. The Sect. 3.3.2 is dedicated
to SHA procedures in the context of forward modelling. The number of layers ωmax is arbitrary and depends
on the application and available source-mass data.

For a detailed description of the geometric situation and heights applied in ETP and STP modelling it is referred
to P-IV (Fig. 13 and Tab. 9, ibid); the variables are only recalled briefly in the following. In the case of STP
modelling, the geometric definition of a layer’s boundaries is given by the mapped spherical height DUB and
DLB (UB: upper bound; LB: lower bound) that is measured in radial direction from the reference sphere of
radius R to the (mapped) surface points. In case of ETP modelling, the layer’s boundaries are given by the
mapped ellipsoidal height dUB and dLB which is defined as the radial distance between reference ellipsoid
(given by the ellipsoidal radius re) and (mapped) surface point.
Note that only the ETP expressions can be used with an exact geometric definition of Earth’s topographic
masses, i.e. without any mapping/projection, when so called pseudo-ellipsoidal heights h′ are used. These
heights are defined in radial direction, describing the distance between reference ellipsoid and actual surface
point, and can be computed from ellipsoidal heights (see appendix 2 in P-IV ).
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Using d instead of h′ can be regarded as ellipsoidal approximation and leads to the ellipsoidally approximated
ETP. The mapping is discussed in P-IV and was found to lead to a surface-point-displacement of 33 m at max-
imum, which translates into maximum errors in the order of ±3 mGal (RMS = 0.04 mGal) for modelling up to
degree 2160/2190.
In practice, often orthometric heights are used in both cases (H replaces D and d), i.e. the geoid height is
neglected. The error introduced by this approximation is in the order of ∼3.7 mGal (RMS), ranging in between
∼ ±14 mGal (not shown). This was found using EGM96 to compute geoid heights that can be used as bound-
ary function in ETP modelling. The effect, however, is mainly of long wavelength character – in fact it shows
analogies to the actual geoid structure – and diminishes quickly towards shorter wavelengths. In the spectral
band n = 281 − 2190 the effect only shows an average signal RMS ≈ 0.04 mGal, ranging in between ∼ ±2

mGal.

Fig. 3.2 – Meaning and convergence associated with binominal order k used within efficient spectral modelling of STP:
V
STP
nm (left plots) and ETP: V

ETP
nm (right plots) in terms of degree variances: potential contribution per order

k (upper row); accumulated potential for various orders of k (middle row) together with the direct (rigorous)
solutions (V̂ STPnm and V̂ ETPnm ) for degrees 360, 2160 and 5400 (red asterisks); convergence of the efficient
modelling method as a function of order k for degrees 360, 2160 and 5400 in percent by comparison against
the rigorous value, where 100 % means efficient and rigorous solution coincide (bottom row).
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3.3.1.2 Meaning of parameter k and kmax

The parameter k denotes the order of the binominal series expansion introduced for the terms
((

R+D
R

)n+3 − 1
)

(P-IV : Eq. 17) and
((

re+d
re

)n+3

− 1

)
(P-IV : Eq. 25) in the efficient expressions of STP (Eqs. 3.4/3.10) and

ETP (Eqs. 3.14/3.20), respectively. The series expansions and their convergence behaviour were investigated
in detail in P-IV. The choice of kmax depends on the maximum degree n, on the value range of d and D,
and to a small extend also on R and re, respectively. The theoretical values for the truncation of this series
– when the relative error associated with the truncation of the binominal series falls below 1% – for various
model resolutions nmax are given in P-IV : Tab. 1. It tells us that kmax generally increases with nmax. This is
accompanied by an increase of computational costs. There are two main implications of k for the processing:
First, kmax SHAs are required for each layer boundary. Second, to account for the (k − 1) · nmax additional
frequencies introduced by the exponentiation of the HDF with k, the grid-size has to be adapted – theoretically
up to the maximum frequency kmax · nmax– in order to avoid aliasing effects during the analysis (see Sect.
3.4.1.2 for further details). The issue: grid size and memory requirements grow non-linearly, approximately by
the factor k2max. Nevertheless, employing the binominal series is much less costly than the rigorous solution
where nmax analyses of each HDF are needed and aliasing has to be taken care of, too.
The meaning of parameter k and differences between V̂nm and V nm are visualised in Fig. 3.2 for the STP
and the ETP case in terms of degree variances of the single-layer solution. The modelling is complete up to
degree 5400 and 5480, respectively, and based on the RET2014 layer of Earth2014. The truncation of the
k-series is discussed in Sect. 3.4.1.1, where an absolute criterion is suggested instead of the relative criterion
in P-IV.

3.3.1.3 Meaning of parameter j and jmax

The parameter j denotes the order of the binominal series expansion found in the efficient solution to the ETP
(Eqs. 3.14 and 3.20). The binominal series replaces the term ( reR )n+3 (P-IV : Eq. 27) in Eqs. 3.13 and 3.18

Fig. 3.3 – Meaning and convergence
associated with binominal
order j used within efficient
spectral modelling of the
ETP (V

ETP
nm ); upper plot:

degree variances of accu-
mulated potential for var-
ious orders of j together
with the direct (rigorous)
solution for degrees 360,
2160 and 5400 (red aster-
isks); lower plot: conver-
gence of the efficient mod-
elling method as a func-
tion of order j for degrees
360, 2160 and 5400 in per-
cent through the compar-
ison against the rigorous
value V̂ ETPnm (100 % means
efficient and rigorous solu-
tion coincide).
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and accounts for the oblateness of Earth during the modelling. The always converging series (Claessens and
Hirt, 2013) is based on relations with the sinusoidal Legendre-weights K2i,2j

nm (Claessens, 2006) which can be
computed through the recursion relations in Claessens and Hirt (2013) (Appendix A, ibid). The choice of jmax
for sufficient convergence was investigated in P-IV and the theoretical orders of truncation are given in P-IV
(Tab. 2). Generally a higher nmax in the modelling requires the choice of a higher jmax. The series converges
faster at the poles than at the equator, therefore the co-latitude θ = 90 delivers the critical truncation value.
The series is responsible for (algebraic) correlations among the coefficients (see Sect. A.1) and for additional
coefficients of degrees nmax < n ≤ nmax + 2jmax and orders m ≤ nmax, that are always required for the
correct synthesis of gravity functionals. Those become visible by a "tail" in the degree variances (right-hand
side plot in Fig. 3.3).
The meaning and convergence behaviour of j is shown exemplary by the degree variances of the ETP single-
layer solution up to degree 5400 in Fig. 3.3. The truncation of the j-series is discussed in Sect. 3.4.1.1 with an
absolute criterion instead of the relative criterion in P-IV.

3.3.1.4 Workflow and computational demands

The general workflow of spectral topographic potential modelling as done in this work is shown in Fig. 3.4. It
starts with the discretised Earth2014 layer boundaries and ends with the synthesised gravity functional in the
space domain (white background). The radial integration and summation over k and j is done in the spectral
domain (shaded in grey). The computationally most demanding step is the transition from space to spectral

Fig. 3.4 – Scheme of the processing workflow of spectral topographic potential modelling, here exemplary for nmax =
2160 and kmax = 12.
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model nmax kmax jmax layers SHA time integration total time
type [CPU h] time [CPU h] [CPU h]
STP 2160 12 - 1 1.25 0.02 1.27

4 6.25 0.08 6.33
5400 25 - 1 247.33 0.10 247.43

4 989.33 0.40 989.73
ETP 2160 12 30 1 1.25 0.4 1.65

4 6.25 2.00 8.25
5400 25 40 1 247.33 22.5 269.83

4 989.33 90.00 1079.33

Tab. 3.6 – Computation times for (single and multi-layer) STP and ETP modelling with the efficient expressions (Eqs.
3.4/3.10 and Eqs. 3.14/3.20). Integration time here denotes the time required for the summation over
k, j and i. CPU hours are calculated as the product of processing time and the number of allocated
workers/CPUs for the individual process. Remark to integration times: the STP integration is implemented
in MATLAB, while the ETP integration is implemented mainly in FORTRAN (F95).

domain (and vice versa) facilitated by means of SHA (and SHS, see Sect. 3.3.2). Comparing solely the
computational demand of the integration of an ETP model to that of an STP model based on the needed CPU
hours (Tab. 3.6) shows that at a resolution of nmax = 2160 the ETP integration is about 25 times more intensive
owing to the additional summation over j. At a resolution of nmax = 5400 it is already about 225 times. Note that
the additional computation time is not critical since the overall integration time in the latter case accumulates
to roughly 2 CPU h and is much lower than the time needed for the SHA. Note that CPU hours only serve as
an estimate of the computational effort associated with a computational process since it depends on various
factors, e.g. the quality of the implementation, CPU features and the used compiler/language. Importantly, the
computation time increases – in good approximation – linearly with the number of modelled layers in both, ETP
and STP.

3.3.1.5 Rigorous vs. efficient expressions

The efficient expressions should always be preferred to the rigorous expressions, especially for high-resolution
modelling. There are two main arguments for this suggestion: Firstly, the computational effort is tremendously
smaller within the efficient approaches generally since the rigorous approach requires nmax instead of kmax
analyses, where kmax << nmax. Secondly, the exponentiation of the boundary functions (or HDFs) by nmax
would require stark oversampling (theoretically of factor nmax) to ensure that no aliasing occurs during the
analysis, which results in excessively large grids very soon. Nevertheless, the rigorous expressions can help
to cross-validate the efficient modelling with spot-checks (at least approximately), see Fig. 3.2. On the other
hand, the efficient expressions require a sound investigation and understanding of the convergence behaviour
of involved binominal series expansions to avoid that significant signal contributions are omitted by mistake
(see Sect. 3.4).

3.3.1.6 STP vs. ETP modelling

Both, STP and ETP models are valid and usable representations of the topographic potential. However, the
respective spherical and ellipsoidal approximations cause characteristic differences that make them more or
less suitable, or even deny their usage, for different applications.
First, the different reference surfaces used in the modelling dictate the reference surface that has to be used
for their evaluation in the space domain (via SHS): ETP models have to be evaluated on or above the ellipsoid
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and STP models have to be evaluated on or above a reference sphere of radius R (Claessens and Hirt, 2013).
If an evaluation above the reference surface is deemed, the height – following the spherical harmonic concept
with geocentric coordinates – is applied in radial direction.
A detailed comparison of STP and ETP in spectral and space domain up to degree 2160/2190 can be found in
P-IV and P-I. Based on the investigations in these publications, the following advantages, disadvantages and
possible applications can be stated:

• The STP is a simple and easy to implement modelling approach, while the ETP is more complex and
thus more susceptible for mistakes.

• The STP modelling is the more efficient approach in terms of integration time, especially at high degrees.
Nevertheless, the integration time is not critical, i.e. tiny compared with the time needed for the analysis
of the boundary functions.

• The ETP with ellipsoidal approximation is less affected by mapping (displacement of masses stays below
33 m) and shows less associated approximation errors as compared with the STP with spherical approx-
imation. In the space domain, the spherical approximation effect/error – which appears in the difference
between ETP and STP – amounts to about ±3 mGal (RMS≈ 0.4 mGal) at the Earth’s surface and shows
rather long-wavelength structures that are correlated with topography. Therefore ETP models are desir-
able for applications that require a high accuracy or need to resolve the topography-implied gravity down
to very short scales.

• The spectrum of the ETP is compatible with state-of-the-art gravity field models (cf. http://icgem.

gfz-potsdam.de/ICGEM/). In contrast, the spectrum of STP models tends to follow Kaula’s rule and
truly ellipsoidal harmonic gravity models, roughly. Observation-based spherical harmonic gravity models
such as EGM2008 represent Earth’s actual mass distribution which – in approximation – are given by an
ellipsoid of revolution. Thus, they can be considered to inherently rely on an ellipsoidal approximation.
This makes the ETP usable for combination strategies based on regularisation (see Sect. 4.1).

• While STP models can be promptly truncated at arbitrary degree in the series expansion, the trunca-
tion of the ETP series leads to erroneous patterns in the space domain. These truncation errors, also
sometimes referred to as striations, are more severe in high latitudes and grow with the harmonic degree
of truncation. In principle the errors are very similar to those occurring when truncating EGM2008 at
nmax < 2190. Therefore ETP models should strictly be evaluated up to their maximum degree (nmax).
The reason are correlations/dependencies among the coefficients of ETP models that require a special
filtering when some kind of band-limited usage is envisaged (see appendix A.1). The dependencies in
ETP models, e.g., were found to manipulate the degree correlation to other (observation-based) mod-
els (see P-IV ) or lead to misinterpretation when single or a few harmonic coefficients are investigated
separately.

• The relation of degree variances to physically meaningful quantities that would allow the realistic esti-
mation of short-scale signal strengths or omission errors is only possible with STP models. Since ETP
models represent gravity of an ellipsoidal mass distribution and degree variances refer to the spherical
harmonic reference radius R, the ETP spectrum underestimates gravity signals increasingly with rising
degree. As a workaround ETP models have to be transformed to ellipsoidal harmonics in order to deliver
physically-meaningful degree variances. (cf. Sect. 2.3 and P-I)

The differences between ETP and STP at short scales are investigated in Sect. 3.4.1.4.

http://icgem.gfz-potsdam.de/ICGEM/
http://icgem.gfz-potsdam.de/ICGEM/
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3.3.1.7 Single vs. multi-layer modelling

The single-layer modelling means a simplification of the modelling process since it compresses all water and
ice-masses in a single layer, the RET (see end of Sect. 3.2.2), and is therefore sometimes also called RET-
modelling. As explained above this is associated with a geometric rearrangement of Earth’s masses. The
approximation error associated with this compression is most severely, but not exclusively, found over oceans,
lakes and ice covered regions and reaches some tens of mGal – in extreme cases up to ±70 mGal (P-IV ).
In fact, the approximation also leads to gravity errors over the continents and at global scale (albeit small).
These are the outcomes of the investigations in publication P-IV (Sect. 4.1 and 4.2) where the comparison to
observed gravity from GOCE satellite could be used to validate the benefit of layer-modelling globally down to
scales of ∼80 km. The RET approximation error at short scales (∼4− 10 km) is investigated in Sect. 3.4.1.5.
The single-layer approach is useful for applications such as geoid modelling based on remove-compute-restore
schemes, however, whenever (geo-) physical interpretation sought, the multi-layer approach should be used
instead. Note, that at very high elevation (such as satellite orbit height) the numerical values of both approaches
may coincide, because of attenuation of gravity signals (and of RET approximation errors) with increasing
distance from the spherical reference surface.

3.3.2 Analysis techniques

3.3.2.1 Surface spherical harmonic analysis

In spectral forward modelling the spherical harmonic analysis facilitates the transition from space to spectral
domain (see Fig. 3.4). It thus enables the subsequent spectral integration that is based on the relations
between the SHCs of the mass-density distribution and the SHCs of gravitational potential. Therefore SHA
is an important component of the forward modelling procedure. The importance of the SHA also becomes
evident considering that the analysis in the modelling is the time-critical component in the processing (Tab.
3.6).
Here a surface spherical harmonic analysis technique is sought that provides a computational solution to the
spherical double integral

Fnm =
1

4π

∫ 2π

λ=0

∫ π

θ=0

f(θ, λ) Y nm(θ, λ) sin θdθdλ (3.22)

and results in the fully-normalised surface spherical harmonic coefficients Fnm of some continuous function
f given on the sphere (or a spheroid). In our case the functions that need to be analysed are height density
functions of the volumetric layers aiming at their spherical harmonic representation HDFnm (below and cf.
Eqs. 3.4 to 3.21).

3.3.2.2 Numerical quadrature as means for high and ultra-high degree analysis

The publication P-III is concerned with the evaluation of two promising exact quadrature techniques: Gauss-
Legendre quadrature (GLQ), see e.g. Sneeuw (1994), and quadrature based on Driscoll/Healy’s sampling
theorem (DHQ) (Driscoll and Healy, 1994). In general quadratures denote a numerical integration based on
FFT (Walker, 1996), see e.g. Hofsommer (1957); Colombo (1981); Sneeuw (1994). Principally also an analysis
based on a least-squares (Sneeuw, 1994; Pavlis, 2011) or collocation techniques (Moritz, 1978; Arabelos and
Tscherning, 1998) can be considered to solve Eq. 3.22. The latter techniques are advantageous because
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they additionally provide variance-covariance information and can be applied to arbitrarily sampled functions.
However, at high resolutions the normal equation system becomes extremely large and impossible to solve by
today’s computational means. Inversions of full normal equation systems of degree 720 require large-scale
computational resources as demonstrated by Fecher et al (2013); no higher degree inversion is known. As this
work aims at resolutions ≥ 2160 quadrature techniques become inevitable. Alternatively – if a least-squares
formulation is wanted – only a block-diagonal technique (Gruber, 1999; Pavlis, 2011) can be used to achieve
a computationally solvable least-squares problem. A least-squares block-diagonal formulation, however, is
equivalent to quadrature in terms of computational constraints and was shown to deduce into a quadrature
formally (Sneeuw, 1994). The major disadvantage of quadrature (and of block-diagonal formulations) is that
the function needs to be sampled with equi-distant spacing in longitudinal direction (a prerequisite for employing
FFTs) and/or according to some other regular spacing in general, at least for exact quadrature formulations.
Since the HDFs are available with a regular spacing in terms of dense global grids (in this work Earth2014 is
used, see P-II and Sect. 3.2) this methodological shortcoming of quadratures is mitigated. Remark: individual
existing discretisation (=sampling) differences between Earth2014 and the quadrature prerequisites can be
circumvented by means of a 2D-interpolation. In the processing in this work (Fig. 3.4) stark oversampling
mitigates interpolation inaccuracies.

During the evaluation of GLQ and DHQ in P-III it was shown that both techniques – principally – are analysis
techniques suitable for the purpose of forward modelling. Even at a high degree such as 21, 600, a precision
in the order of < 5 · 10−5 m could be achieved by analysing and synthesising band-limited topographic sur-
face functions in a closed-loop environment. Generally, at high-degree the GLQ is advantageous because of
minimal requirements regarding memory consumption and less mathematical operations, resulting into shorter
computation times. To achieve the latter, i.e. spherical harmonic transforms at resolutions nmax ≥ 2160, two
major computational measures were found to be necessary: 1) extension of the arithmetics during the com-
putation of the ALFs and 2) parallel computing. The first modification is needed to ensure a numerically exact
evaluation of the ALFs at high degrees which was realised successfully by employing the X-number approach
(Fukushima, 2012a,b). The second adaptation was achieved by embedding OpenMP parallel directives in
certain parts of the analysis process in order to achieve acceptable computation times. For details on the
modifications it is referred to P-III at this point.
The correct operability of DHQ and GLQ up to ultra-high degree has been demonstrated with the Martian
(nmax = 23, 040), Earth’s (nmax = 43, 200) and the Lunar (nmax = 46, 080) topographic surface functions re-
solved down to scales of ∼460 m, ∼460 m and ∼120 m, respectively (P-III: Sect. 4). Interestingly, Moon’s
surface depicts the largest variability (in terms of STD applied to its topographic function) and on the same
time shows the least residuals errors during the analysis (∼0.9 m). This is explained as follows: since Moon’s
spherical harmonic expansion is the highest among the three, the associated truncation error of the spherical
harmonic series is expected to be smaller. As an aside, the spectral analysis of the planetary topographic sur-
face functions was used to reveal ”(...) artifacts and systematics/characteristics of the observation techniques
used for the creation of the elevation data.” (P-III).

3.3.2.3 Analysis of height-density-functions in forward modelling

In the analysis of the HDFs in Eqs. 3.4 to 3.21 another computational aspect comes into play: the exponenti-
ation with the binominal order k. This supposedly unsuspicious operation has some implications that deserve
special attention during the analysis.
First, it leads to large numbers. These large numbers were found to cause overflow in a quadrature (GLQ or
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DHQ) implemented in double precision (REAL*8) and for large k. The value of k, where the overflow occurs
depends on the numerical range of the HDF itself. As a simple workaround, the HDF can be normalised by its
largest absolute value following

HDF ∗(θ, λ) =
HDF (θ, λ)

max(|HDF (θ, λ)|)
, (3.23)

prior to the exponentiation so that the function to be analysed stays in the numerical range [−1 1]. Then the
normalised SHCs HDF

∗
knm of order k have to be renormalised afterwards by

HDF knm = HDF
∗
knm · (max(|HDF (θ, λ)|))k, (3.24)

resulting in the SHCs of the HDF taken to the k-th power. Alternatively to a normalisation extended arithmetics
similar to the X-number approach (see above) or even quadruple precision could be used to solve the overflow
problem. Those solutions were not investigated.

The other implication of the exponentiation is that it increases the number of frequencies – the spectral band-
width N– covered by the HDF. In fact, it increases proportionally with the exponent k according to (Hirt and
Kuhn, 2014)

N(k) = kN. (3.25)

As discussed above and in publication P-IV this causes increased sampling requirements (oversampling) to
avoid aliasing problems during the analysis. This can lead to very large grids, since the grid size grows
quadratically with finer sampling. However, in most cases oversampling by a factor k < kmax can sufficiently
ban aliasing effects (see Sect. 3.4.1.2). The actual meaning of Eq. 3.25 – which in brief denotes that a
"(...) band-limited topographic mass distribution generates a full-spectrum gravity field" (Hirt and Kuhn, 2014)
– is explained in more detail in Hirt and Kuhn (2014) and P-VI. Importantly, Eq. 3.25 implies that (spherical
harmonic) frequency filtering in the domain of source-mass models is not equivalent to frequency filtering in
the gravity domain. This is the very reason why RTM (Forsberg, 1984) is not an optimal forward modelling
procedure.
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3.4 Global spectral forward modelling with high resolution

In this section the global spectral forward modelling techniques and source-mass data presented in Sect. 3.2
and 3.3 are used to demonstrate and investigate the potential of spectral forward modelling for resolutions
smaller than 10 km (nmax > 2160/2190). The methods and data sets were already tested and validated in P-IV
up to degree 2160/2190. The novelty here solely is the increase in resolution nmax during the modelling.
The following demonstrations focus on the efficient multi-layer expressions (Eqs. 3.10/3.11 and 3.20/3.21 for
STP and ETP, respectively) by using the layer-reduction-approach (LRA) (P-IV ). The Gauss-Legendre quadra-
ture technique (P-III: Eqs. 2 and 10 - 11) is used for the analysis, since this set-up is most promising in regard of
computational demand, smallest level of approximation and increased resolution.

3.4.1 A complete degree-5400 model (∼4 km resolution)

k Min Max Mean RMS
[mGal] [mGal] [mGal] [mGal]

1 -942.36 580.85 -284.02 350.23
2 -443.98 427.96 0.21 9.39
3 -780.09 1068.42 -0.02 7.69
4 -1676.63 1512.18 0 8.01
5 -2308.71 2065.93 -0.01 8.58
6 -2490.41 2902.09 0 8.96
7 -3112.88 2764.81 0 8.92
8 -2664.35 2922.52 0 8.29
9 -2445.65 2270.21 0 7.14
10 -1914.91 1849.83 0 5.68
11 -1475.67 1537.15 0 4.19
12 -1132.92 1083.23 0 2.87
13 -735.81 771.73 0 1.84
14 -488.64 465.01 0 1.11
15 -274.71 289.01 0 0.63
16 -160.36 152.33 0 0.34
17 -79.63 83.78 0 0.17
18 -41.36 39.32 0 0.08
19 -18.40 19.35 0 0.04
20 -8.6 8.19 0 0.02
21 -3.47 3.64 0 0.01
22 -1.47 1.4 0 0
23 -0.54 0.57 0 0
24 -0.21 0.2 0 0
25 -0.07 0.08 0 0
1-25 -803.24 669.22 -283.83 349.57

Tab. 3.7 – Descriptive statistics of the gravity signal produced
by the order kth STP contribution based on the
Earth2014 data set, evaluated at the Earth’s surface
(in terms of gravity disturbances). Unit is in mGal.

Here a topographic potential model of degree
5400 is modelled with the efficient spectral ex-
pressions (Eqs. 3.10/3.11 and 3.20/3.21). The
modelling involves the computation of nearly 30
million SHCs which require 233.3 MByte mem-
ory when stored in a double-precision binary vari-
able.

3.4.1.1 Choice of kmax and jmax

The first step compared with degree-2160 mod-
elling is the consideration of increased maximum
orders kmax and jmax to ensure convergence of
the involved binominal series expansions.
According to the theoretical values for truncation,
when the relative signal amplitude of the binom-
inal term (BT) of order k (P-IV : Eq.17 and 25)
and j (P-IV : Eq.27) falls below 1% w.r.t. the
maximum amplitude (P-IV : Tab. 1), kmax = 17

and jmax = 34 should be sufficient at degree
5400. Looking at the signal amplitudes of the
gravity contributions per k at Earth’s surface sug-
gests that the convergence is not reached yet at
kmax = 17 since significant signal is contained for
k = 17 (up to ∼ ±80 mGal, cf. Tab. 3.7). Those
large values must be associated rather with sin-
gle spikes (at discrete places on Earth) where the
convergence is not yet reached, since the global
RMS becomes smaller than 1 mGal for k > 15.
The reason is that the relative 1% criterion is a
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Fig. 3.5 – Left: Amplitude of the binominal term (BT) running over k (P-IV : Eq. 17 and 25) for d/D/H = +9 km and
R/re = 6378137 m (blue) together with the relative truncation criterion BT < 1% (green) and the absolute
truncation criterion BT < 0.001 (magenta). Right: Both truncation criteria as a function of degree n.

Fig. 3.6 – Left: Amplitude of the binominal term (BT) running over j (P-IV : Eq. 27) for θ = 90◦ km, R = 6378137 m
and b = 6356752.5 (blue) together with the relative truncation criterion BT < 1% (green) and the absolute
truncation criterion BT < 10.0 (light blue). Right: Both truncation criteria as a function of degree n.

bad criterion at high nmax since the amplitudes of the binomial terms grow dramatically with increasing nmax
(Fig. 3.5: left plot). As a consequence, rather an absolute than a relative truncation criterion should be used
to predict the convergence of the k-series. Taking the absolute criterion BT < 0.001 which coincides with the
amplitude of the BT where the convergence is reached in the case of nmax = 5400 and k = 25 (cf. Tab. 3.7)
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suggests higher kmax than the relative ones listed in P-IV : Tab. 1 (Fig. 3.5: right plot). Note that because of
the product

k∏
i=1

(n+ 4− i) (3.26)

found in the computation of the binominal coefficient – it runs into an overflow in a double precision environment
close to degree n = 17800 and k = 72 – no BTs for k > 71 were computed.
In similar manner, the 1%-criterion also is a bad criterion for the binominal series running over j for nmax >
2160. The amplitude of the BT (P-IV : Eq. 27) also grows dramatically with nmax (Fig. 3.6: left plot). In this
case an absolute criterion of BT < 10.0 seems sufficient and it corresponds to convergence at jmax = 46 for
nmax = 5400. The 10.0 criterion is rather overcautious as seen from the degree variances differences between
the potential based on jmax = 30, 40, 50 with that based on jmax = 60 (Fig. 3.7), which suggest that jmax = 40

should already be enough. However, the j-series is not the critical series in terms of the overall computation
time, thus overshooting jmax is not a problem in this regard. Note that also the j-series is subject to overflow
issues in double precision close to j > 145 and nmax = 16500. The overflow occurs in the computation of the
binominal coefficient (

−n+3
2

j

)
=

1

j!

j∏
i=1

(−n+ 3

2
+ 1− i). (3.27)

Nevertheless, due to the linear increase of kmax with nmax according to the 0.001-criterion, and jmax with nmax
according to the 10.0-criterion the following empirical rules of thumb for correct truncations of the binominal
series expansions in spectral modelling is postulated for nmax > 2160 :

kmax = 13 + 3.828 · 10−3(nmax − 2160), (3.28)

jmax = 16 + 9.014 · 10−3(nmax − 2160). (3.29)

These rules of thumb have been derived from the average change rate of k and j by n using the absolute criteria
for n > 2160 shown in Fig. 3.5 (magenta line) and Fig. 3.6 (light blue line), respectively. From the change rates
in the above equations we learn that jmax increases faster than kmax.

Fig. 3.7 – Degree variances of the RET2014 potential modelled with jmax = 60 (black) and differences to the respec-
tive degree variances corresponding to jmax = 30, 40, 50.
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Fig. 3.8 – Aliasing error in terms of degree variances (upper plots) and gravity disturbances (mGal) at Earth’s surface
(lower plots). The left panels show the aliasing error for various oversampling of the HDF for single-layer
modelling up to degree 2160. The right panels show the aliasing error that is present, when an oversampling
of factor 6 was applied (compared to the reference solution with oversampling factor 12) for single- and
multi-layer models up to degree 5400.

3.4.1.2 Computational demands, aliasing and realisation of the analysis

The oversampling required to cover all of the additional frequencies entering the HDFs due to the exponenti-
ation exceeds the memory capacities of ordinary computers, and even challenges computing facilities. Rep-
resenting all frequencies associated with kmax × nmax = 135, 000 degrees correctly would result in a Gauss-
Legendre grid of the dimensions 135, 001 × 270, 001, which approximately corresponds to 292 GB memory
per HDF/layer boundary. The oversampling, however, can be reduced to acceptable level without yielding any
substantial aliasing error in the spectral band n = 0 − 5400. This is owed to the fact that during an analy-
sis the aliasing infiltrates the highest frequencies most severely while aliasing errors diminish towards longer
wavelengths. This is the result of the following experiment: when modelling to degree 2160 (kmax = 12) an
oversampling of factor 2, i.e. a grid that covers frequencies up to degree 4320, is sufficient to reduce aliasing
errors to negligible level in the band n = 0 − 2160 (Fig. 3.8, panel 1a and 1b). This more or less confirms
the investigations of Wieczorek (2015) who found that a grid corresponding to degree 5000 is necessary to
mitigate against aliases. As an aside, without oversampling the aliasing errors are up to ≈ ±60 mGal with a
global RMS of nearly 1 mGal in this case (not shown).
In the case of modelling to degree 5400 the experiment cannot be repeated to full resolution because of the
computational constraints it is aimed to find a solution for. But by comparing a degree-5400 solution generated
with oversampling of factor 6 (corresponding to degree 32,400) to one with oversampling of factor 12 (corre-
sponding to degree 64,800), we can see that in the case of a single-layer model aliasing errors in the order of
±0.6 mGal are present (Fig. 3.8, panel 2a and 2b). In the case of a multi-layer model the aliasing errors are
slightly larger (green curve is above the red curve). In this work oversampling of factor 12 is considered suffi-
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Fig. 3.9 – Variability of the gravitational field implied by the topographic masses as represented in the multi-layer
STP model (kmax = 25) in terms of gravity disturbances (mGal) at Earth’s surface: a) full bandwidth (n =
0 − 5400) and b) high frequency part (n = 2161 − 5400). Unit is mGal.

cient, knowing that the error will be much lower than in the case of oversampling by factor 6. The resulting grid
size – 64, 801× 129, 601 (∼67 GB) – still is demanding but can be handled by supercomputing facilities. In this
work the computations were done with the services of the Leibniz-Rechenzentrum (LRZ). Together with the
parallelisation of the quadrature procedures (P-III) a single HDF can be analysed 25 times (= kmax) in about
240 CPU h (or 30h using 8 CPUs). Note that each latitude-parallel of the grid can be loaded and analysed
separately, reducing the general RAM requirements during the analysis to a minimum level.

3.4.1.3 Gravity signal per spectral band and layer up to degree 5400

The multi-layer models based on the Earth2014 source-mass model developed up to degree and order 5400
are modelled with kmax = 25 and jmax = 40 (see above). Note that the ETP model in this case is resolved up
to nmax = 5480 due to the j-series. The processing and remaining modelling constants are similar to those of
the degree 2160/2190 models created along with publication P-IV.
Fig. 3.9 shows the STP multi-layer model for n = 0− 5400 (panel a) and n = 2161− 5400 (panel b) evaluated
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spectral band 0 ≤ n ≤ 5400 2161 ≤ n ≤ 5400
Min Max Mean RMS Min Max Mean RMS

Layer [mGal] [mGal] [mGal] [mGal] [mGal] [mGal] [mGal] [mGal]
CRUST -1318.18 579.84 -503.79 584.15 -349.28 212.29 -0.07 4.75
OCEAN 80.51 512.97 208.13 232.49 -36.61 36.4 0 0.64
ICE -5.51 175.05 11.86 32.75 -26.04 35.54 0 0.42
LAKES -1.34 66.24 0.02 0.48 -15.38 12.62 0 0.03
EARTH (all layers) -803.24 669.22 -283.83 349.57 -349.29 212.26 -0.07 4.47

Tab. 3.8 – Global statistics of the gravitational signal per STP layer in the spectral bands n = 0 − 5400 and n =
2161 − 5400 in terms of gravity disturbances evaluated at Earth’s surface. Unit is mGal.

in terms of gravity disturbances at Earth’s surface. As before, the gradient approach (Hirt, 2012) up to the 15th
order (reference height = 4 km) as implemented efficiently in the isGraflab software (Bucha and Janák, 2014)
is used for this purpose. In the spectral range n = 2161 − 5400 all long wavelength features of the gravity
field vanish and the small-scale features show a much reduced average signal variability (RMS = 4.5 mGal).
The signal in this band is correlated with the highest peaks of the topography (Himalayas, Rocky Mountains,
Andes) and with deep bathymetric features such as mid-oceanic ridges and deep ocean trenches (Fig. 3.9).
The mountain chains of Earth’s topography host most extreme values (maxima and minima), i.e. they exhibit
the largest variability of the topographic gravitational potential at short scales. Looking at the global signal
statistics per layer suggests that – at Earth’s surface – the crustal layer is responsible for the major part of the
topographic gravitational signal, at least in the bands n = 0− 5400 and n = 2161− 5400 (Tab. 3.8). The ocean
layer shows the second biggest signal amplitudes and RMS. This is largely owed to the fact that the ocean
does not cover the entire globe, while the crustal layer does. Of course the oceanic water masses also cause
attraction over continents (and islands), because the potential of a closed body always leaks over its physical
boundaries. But over the continents, the oceanic potential is of smooth character and quickly attenuates with
increasing distance to the shoreline (not shown). Thus the ocean layer is hardly contributing to the short-scale
topographic potential over land (it does though in long and mid-wavelengths cf. P-IV : Fig. 9). In the spectral
band ranging from n = 2161− 5400 the RMS of the ocean layer then falls below the 1 mGal level and reaches
approximately ±36 mGal at maximum over the ocean. The ice and especially the lake layer make up even less
of the global signal and have extreme values in the order of approximately ±35 mGal over Earth’s ice-sheets
and ±15 mGal over Earth’s major lakes, respectively.
Notably, in the spectral band n = 2161 − 5400 the complete Earth layer-model shows signal amplitudes of
up to ≈ −350 mGal and ≈ +210 mGal (RMS = 4.5 mGal). This means – in view of combined gravity field
modelling– that the topographic potential as modelled here is likely to make a significant difference to global
potential models that are resolved to degree 2160/2190, at least over some regions with highly-elevated topo-
graphic or deeply-layed bathymetric features.
Chapter 4 deals with the combination and validation of the here described degree-5480 ETP model.

3.4.1.4 High-frequency differences between ETP and STP

STP and ETP were shown to have significant differences in the spectral domain up to degree and order
2160/2190 and 5400/5480 (cf. Sect. 2.3, P-I and P-IV ). In the space domain characteristic differences up
to degree 2160/2190, investigated first by Claessens and Hirt (2013) with an single-layer model, could be
confirmed in P-IV for multi-layer models (Fig. 16, ibid : RMS = 0.35 mGal; min = −4.66 mGal;max = 2.84

mGal; mean = −0.08 mGal). The patterns in the differences and their signal amplitudes do not change
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Fig. 3.10 – Differences between ETP and STP in the band 0 ≤ n ≤ 5480 in terms of gravity disturbances (mGal) at
Earth’s surface over a) the entire Earth, c) Europe and Alps and d) Australia. Unit is mGal.

significantly in the case up to degree 5400/5480 (Fig. 3.10: RMS = 0.36 mGal; min = −3.08 mGal;max = 6.19

mGal; mean = 0.08 mGal).
In the spectral band ranging from degree 2161 to 5400 (5480 in the case of ETP) all long wavelength signal
structures vanish in the differences between ETP and STP – the remaining short-scale signals show an RMS
of 0.4 mGal (Fig. 3.11, panel a). The extreme values (minima and maxima) in this band of the spectrum
exceed those of the entire spectrum. The short-scale differences are concentrated over the following high
elevated mountain chains: the Andes, the Himalayas, the Peg. Maoke/ Central Ra (New Guinea) and the
European Alps (Fig. 3.11, panel b). Over those regions short scale fluctuations in the order of ±30 mGal can
exist between ETP and STP. These amplitudes are in the order of to up to ∼10% of the maximum short-scale
signal found in the band n = 2161 − 5400 of the STP model (Fig. 3.9, panel b). Interestingly, over other high-
elevated regions such as the Rocky Mountains much smaller differences exist between ETP and STP at short
scales. In very low elevated regions, such as the Australian continent, the differences amount to up to ±3− 5

mGal at maximum (Fig. 3.11, panel c).

3.4.1.5 High-frequency differences between single- and multi-layer modelling

The RET approximation effect, i.e. the differences between single- and multi-layer modelling, are in the order
of ∼ 1.8 mGal (RMS) when modelling up to degree and order 2160/2190 (P-IV : Fig. 8). The patterns and
amplitudes of the differences do not change significantly when modelling up to degree 5400/5480 (Fig. 3.12a).
This indicates that the RET approximation effect plays a minor role for n > 2160/2190. The differences in the
spectral band ranging from degree 2161 to 5400 are in the order of 0.5 mGal (RMS) amount to about ±30 mGal
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Fig. 3.11 – Differences between ETP and STP in the band 2160 < n ≤ 5480 in terms of gravity disturbances (mGal)
at Earth’s surface over a) the entire Earth, c) Europe and Alps and d) Australia. The ETP solution has
been high-pass filtered according to Eqs. A.2 and A.3 and Tab. A.1. Unit is mGal.

in extreme cases, globally (Fig. 3.12b). The short-scale differences are concentrated along the mid-oceanic
ridges and deep ocean trenches, while large parts of the ocean hardly show any RET approximation effect in
the spectral band 2161 < n ≤ 5400. It should be considered, though, that the gravitational effects in the this
band generally are in the order of 4.5 mGal (RMS), only (Fig. 3.9b). Thus, for a correct representation of the
short-scale gravitational effects over the oceans multi-layer modelling is inevitable.

3.4.2 An experimental degree-21,600 model (∼1 km resolution)

Here an experimental topographic potential model of degree 21, 600 is developed with the efficient spectral
expressions (Eqs. 3.10/3.11 and 3.20/3.21), the LRA and GLQ. The modelling involves the computation of
nearly 467 million SHCs which take 3.7 GByte when stored in a binary variable. In this section the focus is on
challenges, issues and possible simplifications during the modelling; it is not aimed to get a complete model in
the first place.

3.4.2.1 Challenges associated with large kmax and jmax

The above postulated rules (Eqs. 3.28 and 3.29) suggest the choice of kmax ≈ 87 and jmax ≈ 191 for a fully
converged STP and ETP model with the efficient expressions, respectively. These high values are numeri-
cally challenging mainly because of a) the overflow issues associated with the computation of the respective
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Fig. 3.12 – Differences between single- and multi-layer modelling in terms of gravity disturbances (mGal) at Earth’s
surface a) in the band 0 ≤ n ≤ 5400 and b) in the band 2161 ≤ n ≤ 5400. Unit is mGal.

binominal coefficients (see above) and because of the exponentiation of the HDF with k. For both of which the-
oretically an arithmetic extension, e.g. by choosing X-numbers or quadruple precision, could help to solve the
problem in the first place. However, the exponentiation requires massive oversampling which also challenges
the memory requirements (and computation times): with an oversampling of factor 30 – which is assumed
here to ban aliasing – the grid would have the dimensions 648001× 1296001, which amounts to approximately
6720 GBytes. To get an idea of involved computation times: a degree-21,600 GLQ analysis based on a grid
dimensioned 64801 × 129601 takes approximately 20 CPU-hours, adding up to a total of 1740 CPU hours per
layer. In the current implementation the factor 30 oversampled grid would take approximately a factor of 100
longer, so roughly 174,000 CPU-hours per layer are needed, solely for the analysis.
From these considerations we learn that a lot of numerical optimization and further parallelisation of the here
presented algorithms and implementations together with access to super-computing facilities are needed to
create a fully-resolved and fully-converged topographic potential model of degree 21, 600.

3.4.2.2 Modelling multiples of the bandwidth of the input HDF

To study the forward modelling procedures up to degree 21, 600 despite some of the above described chal-
lenges it is also possible to use the additional frequencies of a degree-2160 (band-limited) HDF – so called
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Fig. 3.13 – Degree variances of single- (left) and multi-layer (right) STP models for different degrees of truncation of
the k-series in the first 10 multiples of the HDF’s band-width of nmax = 2160 up to degree 21, 600.

Fig. 3.14 – Degree variances of the potential contributions of a single- (left) and multi-layer (right) degree-21,600
STP model per term of the k-series. In case of the single-layer model, the incomplete convergence is
acceptable due to the additive convergence behaviour. In case of the multi-layer model, the incomplete
convergence causes large errors because of the eliminating convergence behaviour.

multiples of the input bandwidth – that occur by its exponentiation according to Eq. 3.25. In this way, we
exclude issues such as excessively large grids and aliasing problems more easily.
The gravitational signal in the multiples of a band-limited input boundary frequency were first treated in Hirt

and Kuhn (2014) for single-layer STP modelling. The findings and methods were revisited in P-VI under the
aspect of Bouguer gravity modelling and it was shown that the multiples of a degree-2160 topographic mass
distribution up to degree 21, 600 and up to k = 15 are needed to achieve successful validation with space
domain modelling at the level of 10 µGal. In the following the investigations of P-VI are expanded to the as-
pect of multi-layer modelling. Further it shall be clarified whether early truncations of the binominal k-series,
which means a great simplification of the modelling procedure, is an acceptable means to enable and justify
high-resolution spectral forward modelling. This is also relevant since in the literature the k-series often is
truncated at very low kmax. For example, Gruber et al (2014) and Balmino et al (2012) choose kmax = 3 for
STP modelling up to degree 5,400 and to degree 10,800, respectively.
Note that the j-series can never be truncated in an early manner since this always leads to a convergence
error reflected in the solution by (large) striations, especially at high latitudes. Since the convergence of the
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Fig. 3.15 – Degree variances of the layers’ potential contributions (colored lines) to the degree-21,600 STP multi-layer
model (black line) in comparison to the single-layer model (yellow line) for kmax = 30.

k-series in the STP works similar to that in the ETP, it is waived to investigate the ETP model in the follow-
ing.

3.4.2.3 Early truncation of the k-series at high degrees: global convergence implications of deep
ocean masses

For the experimental modelling the degree-2160 HDFs are oversampled by a factor of 30, i.e. a GL grid cover-
ing frequencies up to degree 64,800. For k > 30 it is assumed that the degree range 21, 601− 64, 800 absorbs
all or at least big parts of the aliasing error, which is a valid assumption given the investigations in Sect. 3.4.1.
Truncating the k-series of the STP at different binominal orders kmax = 12, 20, 30, 50 leads to very differ-
ent spectral energy in high degrees of the respective single and multi-layer models based on the Earth2014
source-mass model (Fig. 3.13). In both, at high degree (n > 8000) the level of convergence is around 10−25

and the higher kmax the higher is the degree where the variances break away from this level, in general. An
early truncation in case of single-layer modelling leads to falling energy towards higher degrees, e.g. near
degree 12,000 for kmax = 20. In case of multi-layer modelling, an early truncation leads to an increase of the
short-scale energy in the degree variances, e.g. near degree 16,500 for kmax = 50. Each additional kth binom-
inal potential contribution from the k-series has more power at high degrees than the contribution of k − 1, at
least up to k = 35 where the is behaviour is reversed (Fig. 3.14). Importantly, the total signal energy (black line)
is below that of the single potential contributions at high degrees, i.e. here signal is eliminated incrementally in
the total potential with each additional kth contribution.

The increasing signal strengths arise from the incomplete convergence of the oceanic layer that is the dom-
inating layer at those short scales, as seen from the degree variances per layer in Fig. 3.15 (here exemplary
for kmax = 30). The incomplete convergence, due to spherical harmonics, leaks over the bounds of the ocean
and contaminates large areas along great arcs that have their origin in seemingly problematic points located
in the Pacific ocean (Fig. 3.16a). In contrast, the single layer model is devoid of such problems and shows
realistic short-scale gravity in the band ranging from degree 2161 to 21, 600 which is in the order of 0.5 mGal
RMS (Fig. 3.16b).
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Fig. 3.16 – Gravity disturbances at Earth’s surface (mGal) in the degree band n = 2160−21, 600 of the degree-21,600
STP models with kmax = 50: a) multi-layer model, b) single-layer model.

Picking one of the seemingly problematic locations in the ocean layer over the Pacific – a deep ocean trench in
Kiribati – and increasing the maximum degree incrementally by steps of 2160 degrees in the synthesis of grav-
ity disturbances of the single- and multi-layer STP reveals that the erroneous pattern start to appear around
n = 15120 for kmax = 50 in the multi-layer modelling, only (Fig. 3.17). This actually is not surprising since the
truncation rule for the k-series (Eq. 3.28) predicts that kmax = 62 is needed for a full convergence at degree
15120. Looking at the boundaries of the source-masses over Kiribati exhibits drastic depth differences of more
than 3 km between the RET geometry used in single-layer modelling and the actual bathymetry which is used
as lower boundary of the ocean layer (= bedrock), but no other suspicious irregularity (Fig. 3.18). Also at the
point on Earth diametrically to Kiribati no irregularity can be found in the bedrock (not shown). In general the
bedrock geometry shows larger amplitudes and a higher RMS than the RET (Tab. 3.9), which is an effect of
the compression of water masses in the latter, mainly. A premature interpretation is thus that deep masses, as
found in the bedrock, generally take longer to converge at high degrees. But as we can see from the degree
variances in Fig. 3.13 also the single-layer model has not converged fully at the displayed truncations of the
k-series. But the early truncation of the k-series in the case of the single-layer model does not cause large
(erroneous) signals (cf. Fig. 3.17). The crucial difference is the way the convergence happens: in single-layer
modelling the k-series converges in an additive manner at high degrees, i.e. each additional potential contri-
bution ka > kmax adds spectral energy to the total potential of kmax. In contrast, this additive convergence is
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Fig. 3.17 – Single- and multi-layer STP models (RET2014 and Earth2014) for kmax = 50 in different spectral bands
in terms of gravity disturbances at the reference ellipsoid (mGal) over the deep ocean trench located in
Kiribati. The multi-layer potential model is affected by incomplete convergence of the k-series and shows
severe error patterns for degrees n > 15120.

present only up to k = 8 in the case of the ocean-layer. Beyond that binominal order each additional potential
contribution ka at high degrees is needed to reduce/eliminate (parts of) the spectral energy of the total potential
of kmax < ka. This makes an early truncation of the k-series of the single-layer model possible and denies
the truncation in the case of the forward modelling of the ocean layer, because it would result in an unusable
potential model. This is the very reason why the validation of the single-layer modelling in publication P-VI up
to degree 21, 600 was successful despite the early truncation at kmax = 15. Whether the signs of divergence
over Kiribati between space- and spectral domain modelling stated in publication P-VI vanish with additional
terms ka > 15 remains an open question, since RET2012 was used in P-VI (here RET2014 is used).
Concluding: whether the k-series may be truncated or not at high-degrees depends on the respective HDF
(more precisely its negative amplitudes). In general, a very early truncation (k ≤∼ 8) seems unproblematic
as found above. Higher early truncations should be carefully considered, when modelling to high or ultra-high
degree.

Note that the here computed experimental model was developed following the LRA, so by reducing density
contrasts. In case of the LCA approach, not only the ocean-layer but also the crustal layer would be affected
by the problematic (eliminating) convergence, since only then the bedrock depths are used as lower bound-
ary for the crust explicitly. Thus it seems advantageous to use the LRA for ultra-high resolution modelling,
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Boundary Min Max Mean RMS
BED -10588.11 6709.67 -2117.50 3162.62
RET -6501.11 6710.46 -1163.00 2005.02

Tab. 3.9 – Statistics of Earth2014’s degree-2160 RET (rock-equivalent topography) and the BED (bedrock) bound-
aries used in single-layer modelling an multi-layer modelling to degree-21600, respectively.

Fig. 3.18 – Elevation of the bedrock layer (bathymetric depths) over the area of Kiribati in the pacific (a), depth differ-
ences between bedrock to the rock-equivalent-topography layer (b) and gravity differences between single-
and multi-layer modelling (nmax = 12960, kmax = 50) evaluated at the ocean’s surface (H = 0) (c) over
the deep ocean trench in Kiribati (depths down to ∼−8600 m). BED: bedrock layer from Earth2014; RET:
rock-equivalent-layer from Earth2014.

since it reduces the computational costs, i.e. an excessively high binomial order k is necessary for one layer,
only.

3.4.2.4 Meaning and amplitudes of gravitational signal in multiples of the bandwidth of a degree-2160
mass distribution

The value of the gravitational signal in multiples of a (degree-2160) band-limited mass distribution can be
estimated roughly from the gravity signal amplitudes in Figs. 3.17 and 3.16b. In Publication P-VI the signal
strengths at Earth’s surface per scale as found in the multiples have soundly been investigated on a global scale
(for a single-layer model with kmax = 15), see Tab. 2 (ibid). Further, it is stated " (...) the topographic gravity
field – as generated by a degree 2160 topographic mass model – reaches significant signal amplitudes at the
20 mGal level beyond degree 2160, while its power is negligible beyond degree ∼17, 280. In terms of maximum
signals, about ∼90 % of this short-scale spectral energy is concentrated in the second multiple of the input
band (degrees 2161 − 4320), another ∼8 % in the third multiple, and the remainder beyond harmonic degree
6480.". As very important finding, the short scale gravity in the band n = 2161− 21600 was found necessary to
explain (a big part) of the discrepancies existing between space-domain and spectral-domain modelling in the
literature. The reason is that in space-domain modelling the high-frequency gravity signals (n>2160) always
are implicitly accounted for. Further, the rest of the discrepancies had their origin in insufficient discretisation
of the topographic masses in space-domain modelling (see P-VI).
The energy in the multiples also unveils the advantage of spectral topographic potential modelling over residual
terrain modelling: spherical harmonic coefficients (V̄nm) enable a filtering in the gravity domain. The energy
of the multiples would be disregarded by RTM because filtering takes place in the (geometric) domain of the
source-mass models.
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3.5 Summary and evaluation of the chapter’s research
aims

Chapter 3 deals with spectral forward modelling under the aspect of increased resolution, i.e. modelling gravity
signals at scales ≤ 10 km. It aims to:

"Review existing global topographic data sets and mass models in order to create a truly global and
up-to-date mass model at best means that is suited for the purpose of forward modelling". (A2)

"Review existing spectral forward modelling techniques in order to further develop and test the best suited
approaches for high-resolution modelling". (A3)

"Define challenges and limitations of spectral forward modelling with regard to resolution". (A4)

The data and methods for this purpose are described and derived in the publications P-II, P-III and P-IV,
mainly. In P-II a high-resolution (∼2 km) and up-to-date global source-mass model (Earth2014) has been
created that has been proven to be of adequate quality for the purpose of forward modelling. It especially
stands out because of latest geometric information over polar ice-covered regions. A complete overview and
comparison between different existing rigorous and efficient spectral forward modelling approaches that rely on
different levels of approximation has been carried out. In this context, a new modelling approach, accounting
for masses in multiple volumetric layers, that omits spherical approximation effects was developed and shown
to deliver improved topographic potential models. The spherical harmonic analysis of height density functions,
which can be considered the "bottleneck" of high resolution forward modelling, has been achieved through
arithmetic extension and parallelisation of existing exact quadrature techniques. As demonstrated, spherical
harmonic expansions up to extremely high degrees close to 50,000 are not a problem any more.
In the second part of chapter 3 the data and most promising spherical harmonic forward modelling approaches
were tested up to high-degrees. Complete models up to degree 5400 have been developed unveiling the
truly global short-scale topographic potential down to scales of ∼4 km. In this context an improved empirical
rule for the convergence of the involved binomial series expansions at high-degrees could be derived. As
another important finding, aliasing errors can be circumvented with adequate oversampling by factors smaller
than kmax. Full resolution modelling to very high degree, such as 21,600, is not possible in ordinary double
precision and requires further arithmetic adaptations of the algorithms along with further parallelisation. Main
reasons are numerical overflow of the binominal coefficients (for k > 72 and j > 145 corresponding to degree
∼ 17, 800 and ∼ 16, 500, respectively) and excessively large grids that are needed to omit aliasing. Modelling
to degree 10,800 seems possible in double precision, convergence is reached with k = 46 and j = 94, but
would require massive parallelisation to treat the large grids. The exact oversampling needed in this case
has not been determined. Nevertheless, the modelling and early truncation of the k-series were examined
up to degree 21, 600 using the signal in multiples of the band-width of degree-2160 source mass distributions.
Those occur due to the exponentiation of the HDFs by integer powers. Here a different behaviour in the
convergence of the k-series between single- and multi-layer modelling was discovered. While the convergence
is additive in single-layer modelling – the total potential always is larger than the kth potential contribution
– the convergence is mainly eliminating in the case of multi-layer modelling. More precisely only the ocean
layer, reaching the farthest into Earth’s interior, is affected by the eliminating convergence. Thus, the deeply
located masses of the ocean layer deny an early truncation of the k-series above k ≈ 8 in the case of multi-
layer modelling. In this context, the LRA is preferable compared with the LCA, because the bathymetry is
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used as lower bound only once. In general, the energy in the multiples in the band n = 2161 − 21, 600

was shown to produce significant gravity signals. Importantly, those are needed to explain the discrepancies
between space- and spectral domain forward modelling, which is the topic of publication P-VI. Concluding,
chapter 3 satisfies the research aims A2-A4. As a requirement of the overall research goal G2, the multi-layer
ETP approach could be identified as best spectral approach. However, the RET-based single-layer approach,
is sufficient if the ETP is sought only over continental and coastal regions, and only at short-scales (≤10

km).
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Chapter 4

Application and validation of spectral forward
modelling in high-resolution combined global
gravity field modelling

4.1 Strategies for the combination of topographic potential and
observed gravitational potential

In this work it is aimed to examine to which extent (uncompensated) forward modelled gravity – as implied
by the topographic masses – is able to improve the knowledge of the gravity field beyond the resolution and
coverage of today’s observation techniques on global scale. As argued above, global gravity field models that
are based on observations are limited to resolutions of about 10 km. In the previous chapter it was shown that –
with spectral forward modelling techniques – the gravitational attraction can be modelled down to much shorter
scales, albeit relying on some assumptions and approximations. In contrast, at long and mid-wavelengths the
observation-based models can hardly (if at all) benefit from forward modelling, mainly because of insufficient
knowledge of Earth’s (deeper) mass distribution and isostatic compensation mechanisms. In order to use the
short-scale gravity information of the topographic potential, measured gravity and forward modelled gravity
therefore have to be combined as shown and explained schematically in Fig. 1.1. It is important to understand
that this kind of combination model may well be used for the applications that require the model to be as close
as possible to the actual (observable) gravitational attraction. A geophysical interpretation of the short-scale
spectral constituents, however, is not possible since the models rely on several approximations and geophysical
assumptions.
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Different theoretical strategies exist for this kind of combination, each of them associated with certain disad-
vantages and advantages regarding methodological, computational and practical feasibility. A quite complete
overview of the different methods and how they relate is given in Fig. 4.1. In principle it can be distinguished
between the following 5 types of merging (i.e. combination) of topographic potential and observed gravitational
potential:

C1 - spatial merge: ∆ĝt/δĝt ⊕ ∆ĝ/δĝ → ∆ĝc/δĝc

C2 - spectral merge: V̄ tnm ⊕ V̄nm → V̄ cnm

C3 - regularisation merge: V̄ tnm ⊕ ATPA(V ) → ATPA(V c)

C4 - block-diagonal merge: ÂTPA(V t) ⊕ ATPA(V ) → ATPA(V c)

C5 - least-squares merge: ∆gt/δgt ⊕ b = ATPA(V t) ⊕ ATPA(V ) → ATPA(V c)

where b are observations (e.g. gravity anomalies or gravity gradients), ∆ĝ/δĝ are band-limited gravity anoma-
lies/ disturbances, ∆g/δg are not band-limited gravity anomalies, V̄nm are SHCs of a potential model, ATPA(V )

denotes the (full) normal-equation (NEQ) matrix of the potential V and ÂTPA(V t) is the normal-equation matrix
assembled in block-diagonal structure of the potential V t. A superscript t affiliates a variable with the topo-
graphic potential, superscript c with the combined potential and no superscript denotes variables of the gravita-
tional potential. All merging variants are discussed briefly in the following sections.
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4.1.1 Combination based on least-squares and normal-equations

The combination strategy based on least-squares (C5), that involves the assembly of a full (joint) normal equa-
tion matrix, certainly is the most powerful in terms of possible data distribution, individual (regional) weighting
and stochastic modelling. In this strategy, forward modelled gravity is introduced point-wise (or area-mean-
wise) and principally treated similar to observed gravity. This, however, makes C5 the most demanding strat-
egy, especially when aiming at high-resolution modelling. The major disadvantages of C5 are that it requires
realistic errors of all input data for a correct regional weighting – the above forward modelling techniques do not
provide co-variance information or errors – and the computational costs that are associated with the inversion
of large normal-equation systems. Up to today no full NEQ system exceeding degree 720 could be solved
(Fecher et al, 2013). For more details on this type of combination it is referred to Fecher et al (2013); Fecher
(2015); Fecher et al (2017).
The method C4 also is a least-squares combination but it separates the assembly of NEQs of observed and
of forward modelled gravity. The two types of gravity then are combined on normal-equation level, i.e. by
addition or stacking, where additional relative weighting factors can be introduced. With this method the in-
version of high-degree fully-assembled normal equations can be circumvented. Thereby, only the observation
based NEQ matrix is fully assembled, e.g. up to degree 720. The NEQ matrix containing the short-scale topo-
graphic gravity is assembled in block-diagonal structure (BD), accepting certain restrictions on data distribution
and stochastic modelling (see further down), resulting in a sparse system that is solvable even for high maxi-
mum degrees (Gruber, 1999; Pavlis, 2011). During the combination of the full and the BD system the simple
sparsity is lost, unfortunately. Zingerle et al (2016) therefore suggest a more sophisticated ordering of the
combined/stacked NEQ matrix, a so-called kite-ordering, for the purpose of efficient computational solving of
systems of ultra-high degree. Major drawbacks of the BD-system (and the kite-system) are restricting sampling
requirements and limitations for the stochastic models. It, e.g., requires a strong homogenization of the data,
i.e. equidistant distribution of the data points at same height above the reference body for each latitude parallel.
Controlling the regional influence of the short-scale topographic gravity by weighting (due to explicit stochastic
models) is not possible. Individual weighting is solely possible per latitude. However, when assuming equal
errors for the topographic gravity this strategy bears an advantage: in the transition zone (where the normal
equation matrix is fully-assembled) the regional weighting is indirectly facilitated by the variance co-variance
information of the observation data.
These somewhat ambitious combination techniques based on least-squares have not been followed in this
research, but deserve to be properly studied. The international GOCO (Gravity Observation Combination)
initiative currently is main driver in the field of least-squares and normal-equation-based global gravity combi-
nation (http://goco.eu/) (Fecher et al, 2017). Also other consortia exist for combined gravity-field modelling,
such as the EIGEN (European Improved Gravity model of the Earth by New techniques) group and NGA (Na-
tional Geospatial-Intelligence Agency). They also use techniques similar to some of the techniques described
below.

http://goco.eu/
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4.1.2 Combination based on a regularisation of normal-equations

In the regularisation merge (C3) – which introduces the topographic potential as prior information at short
scales – a full normal equation matrix is regularised with the potential coefficients of a topographic potential
model, following (P-V )

(ATPA(V ) +ATP tA(V t)) V
c

nm = ATPb+ATP tV
t

nm (4.1)

where P and P t denote the weight matrix of the observations b and the forward modelled gravity, respectively
(i.e. the inverse of the respective variance-covariance matrix), and A is the Jacobian matrix. Since the coeffi-
cients of the topographic potential model V

t

nm are treated as a priori known the Jacobian in this case becomes
the identity matrix and thus

(ATPA(V ) + P t)) V
c

nm = ATPb+ P tV
t

nm (4.2)

which leads to the coefficients of the combined gravity model through inversion

V
c

nm = (ATPA(V ) + P t))−1 (ATPb+ P tV
t

nm). (4.3)

The diagonal weight matrix P t contains the inverse variances of each topographic potential coefficient and
defines the influence of the forward modelled gravity in the combination. Since the variances are unknown –
the forward modelling in Chpt. 3 does not imply stochastic modelling – the weight matrix has to be defined
empirically. The main advantages of this approach are twofold: firstly, a full normal equation system has to
be solved only to the maximum degree of the observed gravity. Secondly, the forward modelled gravity is
weighted indirectly by the variance-covariance information of the observations and principally equal variances
can be assumed for the coefficients of the topographic potential model. This makes the approach somewhat
comparable to the above combination based on block-diagonal techniques.

This type of combination technique has been successfully applied in the combination of satellite observations
from GRACE and GOCE with a single-layer ETP model in P-V and with a multi-layer ETP model in P-IV, yield-
ing the combined models SatGravRET2014 and SatGravEarth2014. By comparison with ground-truth data it
could be shown that the models manifest a better merge of satellite and forward modelled gravity regionally
over the area of Antarctica and the polar-gap, that is not covered by GOCE observations. Better is meant in
the sense that residuals w.r.t. ground-truth are lower as compared with the merging according to C2 or C1
(described further down). Techniques C4 and C5 were not tested due to the above described obstacles. The
empirical weighting thereby ensured that low-degree satellite gravity is not deteriorated by the uncompensated
topographic potential (see P-IV ). Further, it was found that spherical topographic potential models are not eli-
gible for this kind of combination. The level of approximation of a STP model (=spherical) is not consistent with
the observations that represent the (actual) ellipsoidal mass-distribution of Earth.
The combination technique has also been successfully used, e.g., in the creation of GGMplus (Hirt et al, 2013)
where EGM2008 coefficients where used to stabilize the high-frequencies contained in satellite normal equa-
tions. In Rexer et al (2013) the regularisation approach was used to combine satellite gravity with the SHCs
of terrestrial gravity. However, the regularisation approach is not feasible when a combination with dense terres-
trial observations is envisaged, since the normal equation systems will get very large, too.
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4.1.3 Combination in space and spectral domain

The spectral (C2) and the spatial merge (C1) are mutually consistent/equivalent, if done correctly. Both are
based on the concept of spherical harmonic filtering in the potential domain, i.e. the (abrupt) truncation of
the spherical harmonic series. In principle, the topographic potential is high-pass filtered according to the
maximum degree nbmax of an observation-based potential model V nm, i.e. only V

t

nm of n > nbmax are used. In
the spectral domain the relevant coefficients of V nm and V

t

nm are simply stacked together, directly resulting
in the combined potential model V

c

nm. In the space domain the combination is achieved by a superposition of
synthesized gravity functionals, e.g. ∆ĝ/δĝ and ∆ĝt/δĝt, in the relevant spectral band.
Importantly, when ETP models are used for this kind of combinations an abrupt truncation will lead to truncation
errors, especially for truncations at mid, high and ultra-high degree. To accommodate such a combination
additionally the filter coefficients FCnm or corrections ∆ĝfc/δĝfc are needed. The computation of the filter
coefficients FCnm and their meaning is explained in the appendix A.1.

This type of combination commonly finds application in the spectral enhancement method (Hirt et al, 2011),
for the purpose of validation of gravity field models, e.g. Pail et al (2011); Šprlák et al (2012); Hirt et al (2012);
Hirt (2012), and for the purpose of height unification (see also Sect. 4.3.1). Thereby, the spectral gap existing
between spectrally limited potential models (nbmax) and terrestrial (ground-truth) observations is filled by forward
modelled gravity, i.e. topographic potential models or RTM. The major drawback of RTM is that it disregards
that filtering in the geometric domain, i.e. spectral filtering of the function that represents the topographic mass
distribution, is not equivalent to filtering in the gravity domain (see Eq. 3.25). In case of a residual terrain
model based on a degree-2160 high-pass filtered mass distribution the error that occurs due to the incorrect
filtering amounts up to some tens of mGal locally and ∼0.5 mGal on global average (P-VI and Sect. 3.4.2.4:
Fig. 3.16b).

Note that the spectral combination between observed and forward modelled gravity in C2 can also be facili-
tated with the help of some transition function, that omits an abrupt truncation, and tries to achieve a smooth
transition in a certain spectral band of width dN . This has been investigated by Grombein et al (2016a) who
use a Hanning function for combining satellite-only models with EGM2008. Varying the degree of truncation
N of the satellite-only model and the transition band-width dN they found that over Germany and Austria, an
abrupt truncation (dN = 0) is favorable. Over Brazil, which is not very well modelled in EGM2008, a smooth
transition with dN = 50 (N = 220) delivers best results. It is assumed that these kind of smooth transitions
can also be useful for the purpose of combining observation-based and topographic potential models, but they
would also be of purely empirical nature. Therefore they always require proper validation. Alternatively, an
abrupt truncation can also be omitted by "(...) approaches like a stochastic combination based on the error
variances of the SH coefficients, see, for example, Huang and Véronneau (2013) and Ferreira et al. (2016)"
(Grombein et al, 2016a). This would require uncorrelated and realistic errors. However, errors (or variances)
are not given at all by the forward modelling procedures in this work.
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4.2 Demonstration and validation of global high-resolution combined
gravity modelling

This section has two purposes: 1) demonstration of the improvements of high-resolution topographic poten-
tial models to combined high-resolution gravity field modelling and 2) the validation of the potential models of
degree 5,480 that have been computed using the spectral methods and source-mass data (Earth2014) de-
scribed in chapter 3. Here, only the simplest combination techniques (C1 and C2) are used. This choice is
based on the fact that a) no variance-covariance information is available for the topographic potential mod-
els, and b) they will be shown to be sufficient for the envisaged purposes (see above). The application of
the more sophisticated combination strategy based on regularisation has already been investigated in P-IV
and P-V where it was shown to be advantageous e.g. for optimised combinations over polar regions such as
Antarctica.

The following comparisons with ground truth data are based on the spectral merges of EGM2008 (up to nmax =

2190) and the single- and multi-layer ETP (dV _ELL_RET2014 and dV _ELL_Earth2014) in the band n =

2160 − 5480. For a correct high-pass filtering of the ETP models the filter coefficients FC
(ETP,A)

nm (nt = 2160)

and FC
(ETP,B)

nm (nt = 2160) need to be subtracted and added, respectively. Their computation is given in
appendix A. The improvement due to the short-scale topographic potential in this combination is measured
by the residual gravity (in the following just denoted residuals) that occurs by the comparison with different
ground truth data sets against the performance of solely using EGM2008 for the comparison. The results of
this investigation are structured by the prevailing topographic features in the area of the respective ground-truth
data set.

4.2.1 Area with large topographic features: Switzerland

Exemplifying an area of large topographic features, a dense ground-truth data set with 31, 598 gravity observa-
tions at sites located in the European Alps over Switzerland (Marti, 2004) has been chosen (Fig. 4.2). Here
a large impact of the topographic potential is expected at short scales. The area covers about 550 x 275 km2

and the average elevation of the stations is 833.3 m, varying between ∼250 − 3550 m (RMS = 957, 6 m).
In this area, EGM2008 is able to explain roughly 8.3 % of the observed gravity disturbances, while the combi-
nation models – with EGM2008 up to degree 2190 merged spectrally with ETP models up to degree 5480 –
achieves a reduction of ∼50.4 % (Tab. 4.1) in terms of RMS. Both, single-layer and multi-layer models show
the same performance. Relatively, the inclusion of the short-scale forward modelled gravity from the ETP mod-
els leads to an impressive improvement of about ∼ 46.0 % w.r.t. to EGM2008 in terms of RMS. Thus, over

Statistics over Switzerland Min Max Mean STD RMS red. rel. to red. rel. to
Gravity data [mGal] [mGal] [mGal] [mGal] [mGal] Obs. [%] EGM08 [%]
Observations -145.68 245.19 1.49 43.03 43.06 - -
Obs. - EGM2008 -224.70 95.08 -18.18 35.06 39.50 8.28 -
Obs. - (EGM2008 ⊕ RET2014) -176.22 62.83 -8.68 19.50 21.35 50.42 45.95
Obs. - (EGM2008 ⊕ Earth2014) -176.21 62.83 -8.68 19.50 21.35 50.42 45.95

Tab. 4.1 – Statistics of the 31,598 ground-truth observations for the area of Switzerland and residuals w.r.t. gravity
from EGM2008 and the combination model that includes the short-scale gravity from the single- and multi-
layer ETP models. The right side of the table shows the percentage of RMS reduction (=improvement) of
the residuals obtained w.r.t. the observations and EGM2008.
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Switzerland short-scale gravity from the ETP models on average halves the discrepancies existing between
EGM2008 and the terrestrial gravity measurements.
In Figs. 4.3b and 4.3c it can be seen that the additional signal from the ETP models smooths large residual
patterns present in the comparison with EGM2008. Especially in the Alpine valleys, where EGM2008 deviates
in the order of ∼ −100 mGal from the gravity observations, significant reductions (mostly down to ±∼ 20 mGal)
are visible. In the northern prealpine lands, the residual patterns in the order of ∼ ±20 mGal are reduced down
to ∼ ±10 mGal. Although the patterns are significantly reduced they do not vanish in general. However, they
are smaller in their lateral extent and finer in structure.

Fig. 4.2 – Elevations (m) and gravity disturbances at Earth’s surface (mGal) in the degree band n ∼ 2160 − 5480 of
the degree-5,400 ETP multi-layer model over the European Alps in Switzerland.

Fig. 4.3 – Gravity observations (a) and residuals at the stations of the ground-truth sites (mGal) over Switzerland
obtained with EGM2008 (b) and the combination with the ETP multi-layer model (c). The ground-truth data
has kindly been provided by Swisstopo.
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4.2.2 Areas with medium topographic features: Northern Canada

The ground-truth data set with 43, 422 gravity observations over Northern Canada originates from the Canadian
gravity data base maintained by the department of Natural Resources Canada. Including near-polar areas, it
covers a huge area of about 4880 x 2750 km2 (Fig. 4.4) which is characterised with medium topographic
features compared with the other investigated regions (see above and below). The average elevation of the
stations is 438.4 m, varying between ∼−50 and +4970 m (RMS = 629.3 m). Despite this test data set shows
higher elevated stations than the Swiss data set due to the spur of the Rocky Mountains in the South-West of
the region, on average it is much smoother.
In this area, EGM2008 is able to explain roughly 66.2 % of the observed gravity disturbances, while the com-
bination models – with EGM2008 up to degree 2190 merged spectrally with ETP models up to degree 5480
– achieves a reduction of ∼75.9 % (Tab. 4.2). Again, single-layer and multi-layer models show the same per-
formance. Relatively, the inclusion of the short-scale forward modelled gravity from the ETP models leads to a
significant improvement of about ∼ 28.7 % w.r.t. to EGM2008.
Largest parts of the improvement due to the ETP models can be found in the higher elevated regions, i.e. the
Rocky-Mountains in the south-west, and Ellesmere Island and Baffin Island in the north (Figs. 4.5b and 4.5c).
There, residual gravity in the order of ∼ ±50 mGal obtained with EGM2008 are reduced to about ∼ ±20. Still
these residual patterns remain dominating compared with the rest of Northern Canada, where residuals are
rather in the order of ∼ ±2 − 5 mGal. The latter also reflects that EGM2008 is a very good model over rather
flat parts of Canada, since the topographic gravity effects are close to zero there (see right plot in Fig. 4.4).

Statistics over North. Canada Min Max Mean STD RMS red. rel. to red. rel. to
Gravity Data [mGal] [mGal] [mGal] [mGal] [mGal] Obs. [%] EGM08 [%]
Observations -127.74 399.97 -9.4 38.71 39.83 - -
Obs. - EGM2008 -137.01 106.66 -1.28 13.39 13.45 66.22 -
Obs. - (EGM2008 ⊕ RET2014) -167.76 87.17 -0.34 9.59 9.59 75.92 28.70
Obs. - (EGM2008 ⊕ Earth2014) -167.68 87.18 -0.34 9.59 9.59 75.92 28.70

Tab. 4.2 – Statistics of the 43,422 ground-truth observations over Northern Canada and residuals w.r.t. gravity from
EGM2008 and the combination model that includes the short-scale gravity from the single- and multi-layer
ETP models. The right side of the table shows the percentage of RMS reduction (=improvement) of the
residuals obtained w.r.t. the observations and EGM2008.
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Fig. 4.4 – Elevations (m) and gravity disturbances at Earth’s surface (mGal) in the degree band n ∼ 2160 − 5480 of
the degree-5,400 ETP multi-layer model over Northern Canada.

Fig. 4.5 – Gravity observations (a) and residuals at the stations of the ground-truth sites (mGal) over Northern Canada
obtained with EGM2008 (b) and the combination with the ETP multi-layer model (c).
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Fig. 4.6 – Elevations (m) and gravity disturbances at Earth’s surface (mGal) in the degree band n ∼ 2160 − 5480 of
the degree-5,400 ETP multi-layer model over Australia.

4.2.3 Areas with small topographic features: Australia

The largest ground-truth data set, with 775, 732 gravity observations spread across the Australian continent,
covers big parts of an area of about 7, 692, 024 km2 (Fig. 4.7a). The ground-truth data set consists of the
most reliable terrestrial gravity observations (σ < 1 mGal) of the Australian National Gravity Database (ANGD)
(Wynne and Bacchin, 2009). The average elevation of the stations is ∼ 311 m, varying between ∼−32 and
+1888 m (RMS = 369.3 m, Fig. 4.6). Compared with the other ground-truth data sets (above) it thus represents
the smallest and smoothest topographic features.

In this area, EGM2008 is able to explain roughly 81.4 % of the observed gravity disturbances, while the com-
bination models – with EGM2008 up to degree 2190 merged spectrally with ETP models up to degree 5480 –
achieves a reduction of ∼84.3 % (Tab. 4.3). Again, single-layer and multi-layer models show the same perfor-
mance. Relatively, the inclusion of the short-scale forward modelled gravity from the ETP models leads to an
improvement of about ∼ 16.3 % w.r.t. to EGM2008. Thus, even over a comparatively smooth country (in terms
of topography) such as Australia, the gravitational potential of the topographic masses is able to improve the
agreement between observed and modelled gravity in combination with up-to-date gravity field models such
as EGM2008. However, largest statistical improvements originate from the highest elevated areas such as the
Australian Alps in the south-east, seen vaguely from Figs. 4.7b and Figs. 4.7c.

Statistics over Australia Min Max Mean STD RMS red. rel. to red. rel. to
Gravity Data [mGal] [mGal] [mGal] [mGal] [mGal] Obs. [%] EGM08 [%]
Observations -180.22 163.36 7.85 26.66 27.8 - -
Obs. - EGM2008 -195.87 61.2 -1.23 5.02 5.17 81.40 -
Obs. - (EGM2008 ⊕ RET2014) -193.97 61.47 -1.13 4.18 4.33 84.43 16.31
Obs. - (EGM2008 ⊕ Earth2014) -193.95 61.49 -1.13 4.18 4.33 84.43 16.32

Tab. 4.3 – Statistics of the 775,732 ground-truth observations over Australia and residuals w.r.t. gravity from EGM2008
and the combination model that includes the short-scale gravity from the single- and multi-layer ETP mod-
els. The right side of the table shows the percentage of RMS reduction (=improvement) of the residuals
obtained w.r.t. the observations and EGM2008.
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Fig. 4.7 – Gravity observations (a) and residuals at the stations of the ground-truth sites (mGal) over Australia obtained
with EGM2008 (b) and the combination with the ETP multi-layer model (c).

4.2.4 Performance over Antarctica

Over Antarctica the observation-based Antarctic Gravity Anomaly Grids (AGAG) (Scheinert et al, 2016) serve
as ground-truth data for the validation of the topographic potential models and the evaluation of combined high-
resolution gravity modelling. Here only the most accurate 24,315 observations (those with a denoted accuracy
of STD < 2 mGal) are used. The mean elevation at the data points of this excerpt of the AGAG data set
roughly is 800 m (RMS= 1313 m), ranging between ∼ −60 m to ∼ +3620 m. See Scheinert et al (2016) and
P-IV for more general information about AGAG.

In general, Antarctica is a very interesting area for the validation of layer-based spectral forward modelling
procedures since Antarctica’s topography hosts ice sheets, lake water, ocean water and solid bedrock with
considerable elevations (Fig. 4.8). Furthermore, Antarctica is not very well represented in up-to-date gravity
field models, mainly because of poor or sparse terrestrial gravity observations and GOCE satellite’s orbit incli-
nation that leaves a polar gap unobserved. Thus, the added value by including topographic potential models
in combined high-resolution gravity modelling is comparatively large w.r.t. to other areas on Earth. This was
shown up to degree 2160/2190 in publication P-V, where the improvement due to taking into account a single-
layer topographic potential model in the combination with respect to a joint GRACE and GOCE satellite-only
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Fig. 4.8 – Surface elevations (m) and forward modelled gravity (mGal) in the degree band n ∼ 2160 − 5480 of the
degree-5,400 ETP multi-layer model over Antarctica.

model was in the order of 8 to 75%. In publication P-IV, using a multi-layer model instead of a single-layer
topographic potential model, an even higher agreement between the ground-truth data and the combination
model was found over Antarctica (by about 2 % on average). Over the Antarctic ocean the improvement due
to layer-based forward modelling is slightly higher (around ∼ 5 % on average).
Here the same experiment – combining the satellite-only model GOCO05s with the topographic potential mod-
els and comparing their performance to the satellite-only model over Antarctica – is repeated up to degree
5400/5480. The topographic potential models thereby are used for the spectral band 280 < n ≤ 5480. The
results of this experiment is shown in Fig. 4.9 and numerically in Tab. 4.4. The best agreement with the
ground-truth observations is achieved by the combination using the multi-layer topographic potential model,
which reduces the observations by ∼ 56.7 % (improvement of 9.5 % relative to GOCO05s). The single-layer
model achieves a reduction of ∼ 55.5 % (improvement of 7.0 % relative to GOCO05s). This confirms the actual,
albeit small, advantage of multi-layer modelling. For a more detailed visual inspection of the observed gravity,
the residuals and the step-wise improvement, a close-up of the Antarctic Peninsula is given in Fig. 4.10. How-
ever, the improvement from panel D to F (left to right in lower row) of Fig. 4.10 is so small that it is visible only

Statistics over Antarctica Min Max Mean STD RMS red. rel. to red. rel. to
Gravity Data [mGal] [mGal] [mGal] [mGal] [mGal] Obs. [%] GOCO05s [%]
Observations -147.4 166.3 -2.02 36.56 36.61 - -
Obs. - GOCO05s -98.69 139.69 -0.29 17.52 17.52 52.14 -
ETP models taken for 280 < n ≤ 5480:
Obs. - GOCO05s + RET2014 -201.58 98.78 -0.13 16.29 16.29 55.50 7.03
Obs. - GOCO05s + Earth2014 -199.71 95.72 -0.13 15.86 15.86 56.68 9.48
ETP models taken for 280 < n ≤ 2190:
Obs. - GOCO05s + RET2014 -201.79 96.60 -0.17 15.76 15.67 57.20 10.1
Obs. - GOCO05s + Earth2014 -200.29 93.12 -0.17 15.43 15.43 57.85 11.9

Tab. 4.4 – Statistics of the 24,315 ground-truth observations over Antarctica and residuals w.r.t. gravity from the
satellite-only model GOCO05s and the combination model that includes the short-scale gravity from the
single- and multi-layer ETP models using the full resolution of nmax = 5480 (cf. Fig. 4.9) and truncating
at nmax = 2190 (from Tab. 8 in P-IV ). The right side of the table shows the percentage of RMS reduction
(=improvement) of the residuals obtained w.r.t. the observations and GOCO05s.
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Fig. 4.9 – Observed gravity from the AGAG (where STD < 2 mGal) over Antarctica (a) and residual gravity obtained
with GOCO05s (evaluated up to degree n = 280) (b), the combination with the ETP single-layer model (c)
and the combination with the ETP multi-layer model (d). Numerical results to this figure are given in Tab.
4.4. Units are in mGal.

in the statistics.
As interesting outcome, the improvement is better when solely modelling the topographic potential models to
degree 2160/2190. Then the improvement relative to GOCO05s is in the order of 10.1 % and 11.9 % on aver-
age for single- and multi-layer modelling, respectively (Tab. 4.4), as found in P-IV. Thus the gravitational signal
of the topographic potential models in the additional spectral window 2160 < n ≤ 5480 seems to worsen the
agreement with the observations contained in the AGAG (by about 2− 3 %). This is in stark contrast to the im-
provement that was found with all other ground-truth data sets investigated here at scales < 10 km. Even over
Northern Canada, that similarly to Antarctica covers polar regions, the short-scale topographic gravity from the
spectral forward models could improve the agreement to ground-truth data by about 10 % (cf. Tab. 4.2). Since
only the most accurate points of the AGAG have been used for the evaluation over Antarctica it is very likely that
the geometric input of the forward modelling over Antarctica is not very reliable at short scales, i.e. between 4

km and 10 km resolution. To be precise, the Earth2014 layers over Antarctica rely on the elevations of bedrock
and ice sheets of BedMap2 (Fretwell et al, 2013). The data producers of Bedmap2 state "(...) We provide the
ice thickness, bed and surface elevation grids at a uniform 1-km spacing. In creating the ice thickness grid,
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however, we initially gridded the direct measurements of thickness at 5 km, primarily because the distribution
of these direct measurements does not warrant a higher resolution. (...)" (Fretwell et al, 2013). They justify the
choice of a 1 km grid resolution by including detailed available geometric information for outcrops of rocks and
mountains. Mostly (over ice-covered bedrock), the actual Bedmap resolution does not exceed ∼ 5 km, which is
confirmed by the above findings (Tab. 4.4). So far, however, Bedmap2 is the state-of-the-art geometric model
over Antarctica and was shown to deliver improved elevations as compared to previous Antarctic DEMs, at
least up to the resolution of GOCE satellite data (∼100 km) (Hirt, 2014).

Fig. 4.10 – Gravity anomalies from the multi-layer ETP model in the band n=2161-5480 (a), observed gravity anoma-
lies from the AGAG (b) and residual gravity over the Antarctic Peninsula: obtained with GOCO05s (evalu-
ated up to degree n = 280) (c), the combination with the ETP single-layer model for n=281-5480 (d), the
combination with the ETP multi-layer model for n=281-5480 (e) and for n=281-2190 (f). Units are in mGal.
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4.2.5 Performance over the ocean

For the evaluation of the performance of high resolution combined gravity modelling with the help of topographic
potential models over the ocean, a large data set with (ship-track) gravity observations that covers big parts
of the Arctic (Northern Polar) ocean around Canada is used. As seen from Fig. 4.11, especially the coastal
areas are well covered. Also some observations over deep bathymetry (up to −3450 m bathymetric depth) are
contained over the Beaufort Sea west of Canada.
The statistics (Tab. 4.5) reveal, that over the Arctic ocean, the improvement of the combination model with
gravity up to up to degree 5480 relative to EGM2008 is rather small. EGM2008 alone – without topographic
gravity augmentation – already explains about 85.7 % of the observed gravity. The improvement relative to
EGM2008 is about ∼ 6.4 % for single-layer and ∼ 6.6 % for multi-layer modelling, respectively. This amounts
to a RMS reduction of about ∼ 0.35 mGal. The most significant reduction of observed gravity due to the
topographic potential models is found over coastal zones, especially in the fjords found in the north-eastern
part of Baffin Island (see Fig. 4.11bc, lower panels).
The fact that over the ocean, the topographic potential models do not seem to contribute to the same extent
to combined gravity field modelling as over land in high degrees requires explanation. There are two main
reasonings providing such an explanation: signal attenuation of deep bathymetric masses and their (poor)
knowledge at shorter scales. Firstly, the bathymetric masses (bedrock) are located further away from the point
of evaluation (the ocean’s surface) than in case of evaluations over land, where the evaluation point is located
directly on the topographic masses. Thus, over the ocean the gravitational signal of the masses of solid rock
is attenuated. As learned above (Sect. 2.3.2) the attenuation is of increasing manner towards high- and ultra
high degree. As seen from Fig. 4.4 (right plot) there is hardly any short-scale (topographic) signal found over
the oceans. The ocean water masses themselves play a subordinate role due to their (comparatively) small
associated density contrast despite their immediate vicinity. In other words, at Earth’s surface (i.e. at the
boundary to the atmosphere) the short-scale gravitational fluctuations are smaller over the ocean than over
land, in general. This and the fact that EGM2008 contains homogeneous altimetric measurements over the
ocean explains why EGM2008, that resolves the gravity field down to scales of ∼ 10 km, gives a better fit
to the ship-track gravity observations than to gravity observations over rugged terrain. Also it explains why
the reduction of the ground-truth observations is larger in close vicinity to the coast (in shallow water): there
satellite altimetry is less accurate and due to coastal topographic masses (fjords) larger signals come into
play in the topographic potential. Secondly, inaccurate high-resolution bathymetric depth information in the
input topographic data set (Earth2014) would explain the small improvement of topographic potential models
to combined gravity field modelling over the oceans. We know that the resolution of bathymetric depth data
is very inhomogeneous (see Sect. 3.2.1 and Sandwell et al (2014)), however, coastal zones typically are well
surveyed.

Statistics over the Arctic ocean Min Max Mean STD RMS red. rel. to red. rel. to
Gravity Data [mGal] [mGal] [mGal] [mGal] [mGal] Obs. [%] EGM08 [%]
Observations -164.85 248.58 -18.76 43.96 37.79 - -
Obs. - EGM2008 -97.54 106.94 -0.63 5.36 5.40 85.71 -
Obs. - (EGM2008 ⊕ RET2014) -91.7 108.67 -0.49 5.03 5.05 86.63 6.41
Obs. - (EGM2008 ⊕ Earth2014) -91.51 108.52 -0.49 5.02 5.04 86.65 6.56

Tab. 4.5 – Statistics of the 142,167 ground-truth observations and residuals over the Artic/Northern Polar Ocean and
parts of Hudson Bay w.r.t. gravity from EGM2008 and the combination model that includes the short-scale
gravity from the single- and multi-layer ETP models. The right side of the table shows the percentage of
RMS reduction (=improvement) of the residuals obtained w.r.t. the observations and EGM2008.
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Fig. 4.11 – Gravity observations (a) and residuals (mGal) of along ship-tracks over the Arctic/Northern Polar Ocean
and parts of Hudson Bay obtained with EGM2008 (b) and the combination with the ETP multi-layer model
(c).
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Following the above line of arguments, it becomes clear that to the same reasoning also the RET approx-
imation effect, affecting mainly the oceans, becomes acceptable towards high- and ultra high degrees: the
expected signals are small anyway. While at global scale, the RET approximation error is in the order of
∼ 0.5 mGal (RMS) in the band 2161 < n ≤ 5400 (Fig. 3.12), it is about ∼ 0.01 mGal (RMS) in the here
investigated differences to ship-track data. Obviously the impact of the RET approximation diminishes to-
wards high and ultra-high degrees (at least for the here investigated area), given inaccuracies of the ship-track
data and of the bathymetric depths, and other prevailing modelling errors. Over deep-ocean trenches and
mid-oceanic ridges the picture is different (see Fig. 3.12b), since there the RET approximation is most se-
vere.
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4.3 Other applications of spectral forward modelling of the
topographic potential

This section deals with other applications for global forward modelling in the spectral domain and its topographic
potential models. Spectral forward modelling generally can be used for

- the testing of isostatic hypotheses (e.g. Göttl and Rummel, 2009),

- omission error modelling, e.g. in the frame of height unification or validation of gravity field models (e.g.
Gruber et al, 2012),

- Bouguer gravity computation (e.g. Wieczorek, 2015),

- smoothing or reducing the Earth’s gravity field or its observations, e.g. in the frame of remove-compute-
restore applications or Stokes’s geodetic boundary value problem (e.g. Grombein et al, 2014),

- geoid-to-quasigeoid separation (e.g. Tenzer et al, 2016),

- evaluation of global digital elevation models (e.g. Rexer et al, 2015),

and even more applications. Here, only the concepts of two out of these applications are described briefly
together with small computational examples. Thereby references to related work, where more examples and
details about the applications can be found, are given. Focus is placed on the expected benefits of the here
proposed forward modelling procedures for the applications.

4.3.1 Height unification and realisation of a global vertical datum

One of the up-to-date topics of research in geodesy is the realisation of a global vertical datum which can be
achieved by a satellite-based height unification with the help of satellite derived global gravity field models. In
simple words, height unification involves the determination of height offsets between national vertical datums
on regional and inter-continental level. The geoid – the equipotential surface coinciding with a hypothetical
global ocean – is provided by global gravity field models and serves as a global vertical reference surface.
Height offsets of national, local or regional vertical datums can then be measured relative to this global ref-
erence. This typically is achieved by comparing geoid heights obtained by a subtraction of GPS heights and
levelling heights with the global reference geoid. Recently, the gradiometer measurements of the satellite mis-
sion GOCE have led to a new generation of accurate (global) geoid models initiating new attempts to adjust
vertical datums on regional and global scale (see collection of articles in Sideris and Fotopoulos (2012)). An-
other method for the estimation of vertical datum offsets is the ocean approach where it is aimed " (...) to
connect the MSL at various tide gauges by a model of mean dynamic ocean topography (MDT)." (Rummel,
2012), which is not further discussed here.
Given spirit leveling and GPS measurements at each point i belonging to the same local vertical datum A, the
connection to the (quasi-) geoid height is given by (Gruber et al, 2012)

NA
i = hi −HA

i , (4.4)

where NA
i is the observed geoid height, referring to vertical datum A, hi is the GPS-based ellipsoidal height

for point i and HA
i is the orthometric or normal height for point i from spirit leveling. The datum offset

∆NA
i relative to the geoid retrieved from a GOCE-based geopotential model at each point then becomes

∆NA
i = NA

i − (NGOCE
i +Nres

i ) (4.5)
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Fig. 4.12 – Omission error in terms of quasi-geoid heights (cm) at Earth’s surface computed by a spherical harmonic
syntheses of the multi-layer ETP model (dV _ELL_Earth2014) in the spectral band ranging from degree
2161 to 5480. The maximum and the minimum are located close to each other in the Himalayas, about
2.9◦ west of Mount Everest.

from which the mean datum offset ∆N
A

of the vertical datumA can be retrieved as

∆N
A

=

∑
i ∆NA

i

nA
, (4.6)

where NGOCE
i is the GOCE-based geoid height at point i, Nres

i is the residual geoid signal that is omitted by
the GOCE-based geopotential model (i.e. omission error) and nA is the total number of points referring to the
vertical datum A. These relations can be used in least-squares adjustment approaches taking into account
stochastic models in order to retrieve optimal height offsets (Rummel, 2012; Grombein et al, 2016a). The above
relation (Eq. 4.5) "(...) only is correct for ideal situations assuming error-free spirit leveling and gravimetry, error-
free GNSS as well as an error-free GOCE geoid (...)" (Gruber et al, 2012) and a known omission error. Usually
the omission error is unknown. In this case forward modeling of the potential of the topographic masses is
a means to get estimates of it and to achieve reasonable datum offsets. Other methods exist for mitigating
the residual geoid signal, such as the inclusion of the Stokes integral formula into a least-squares adjustment
approach (Rummel, 2012).

The principle of omission error modelling is the same as in the spectral enhancement method (Hirt et al, 2012),
where the spectral gap existing between gravity model and terrestrial gravity measurement is filled by (spec-
trally filtered) forward modelled topographic gravity. Beyond the resolution of GOCE-based gravity models
(typically n > 200 − 250) first other observation-based gravity models are used to estimate the omission error
(e.g. EIGEN-6C or EGM2008). Beyond the actual resolution of these models, i.e. for n > 2161, the omission
error has to be estimated from other sources, e.g. RTM or forward modelling. The first is a common method
(with some disadvantages, see further up) and is freely available with the near-global ERTM gravity model,
providing residual gravity maps of ∼ 220 m resolution over the continents (Hirt et al, 2014). Very recently, omis-
sion error modelling successfully has been achieved in a least-squares adjustment approach with the help
of local space-domain forward modelling based tesseroids derived from a 7.2 arc-sec resolution topography



4.3 Other applications of spectral forward modelling of the topographic potential 81

(Grombein et al, 2016a). The authors found that the estimated height offsets can be changed by up to 3 cm
with test data sets over Austria and Brazil, resulting in a reduction of the standard deviation up to 30 − 40 %.
Willberg et al (2017) showed that over Greece the consideration of the omission error from EGM2008 and
forward modelling using the RTM method leads to a significant change of the vertical datum offsets between
its different islands (see also further down). Fig. 4.12 shows that the omission error in the spectral window
2161 < n < 5480 in terms of quasi-geoid heights computed with the here developed degree-5480 multi-layer
ETP model (see Sect. 3.4.1) can reach extreme values of up to −67 cm and +33 cm (RMS ≈ 1 cm) on global
scale. Looking at a close-up of the omission error over Greece (Fig. 4.13b) reveals significant signals over land
as well as over some of the Greek islands, which are well resolved by a degree-5480 (∼ 4 km) topographic
potential model. The problem of vertical height offsets between the Greek island can be seen as small-scale
example for height unification in general, which is directly transferable to global height unification, where the
offset between continents is sought. Islands have a high omission error because they often stand out as peaks
in the topographic/bathymetric function (especially volcanic islands), which was also observed by Willberg et al
(2017). For example the island Karpathos exhibits a mean omission error of 2.4 cm, ranging from +9.0 cm to
−6.9 cm (RMS=4.8 cm) in the spectral band 2161 < n ≤ 5480. Thus, the consideration of the omission error at

Fig. 4.13 – Example for the omission error as given by the spectral forward modelling techniques in this work over the
area of Greece: a) bedrock elevations (m), b) omission error in terms of quasi-geoid heights at Earth’s
surface of a multi-layer ETP model filtered to n=2161-5480 (cm), c) error introduced by the RET approx-
imation (i.e. difference of single- and multi-layer model) and d) by the spherical approximation of STP
models (i.e. difference of ETP and STP model) in the same spectral band.
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single GPS/levelling-points beyond the resolution of up-to-date observation-based GGMs can make significant
changes to the mean vertical offset of Karpathos to the local vertical datum (LVD), which is in the order of −3.2

cm (Willberg et al, 2017).
In the context of investigating the omission error over Greece the improvement of the here developed layer-
based forward modelling in ellipsoidal approximation over single-layer (RET) modelling and the spherical ap-
proximation can be demonstrated: at short scales (2161 < n ≤ 5480) the RET approximation (as found in
single-layer modelling) causes errors in the order of 0.2 cm (RMS), ranging from −2.4 cm to 1.8 cm. The
RET error is introduced over the oceans, mainly, and most severely over the north-west to south-east aligned
Mediterranean subduction zone (Fig. 4.13c). In contrast, the error introduced by the spherical approximation
of STP models is also found over land, but shows similar amplitudes (RMS=0.2 cm) that are concentrated over
topographic/bathymetric peaks (Fig. 4.13d).

4.3.2 Bouguer coefficients and global maps of Bouguer gravity

The Bouguer gravity anomaly (or simply Bouguer anomaly ) is defined as observed gravity reduced for normal
gravity and for the gravitational attraction of the topographic masses. In geophysics Bouguer anomalies play
an important role for "(...) geophysical studies of interior mass variations associated with geological units (..)"’
(P-VI) and gravity inversion, e.g. for recovering the Earth’s actual density distribution or to recover its crustal
thickness, globally (e.g. Wieczorek, 2015) and locally (e.g. Ebbing et al, 2001).
Historically Bouguer gravity has been achieved by reducing a planar slab (or spherical shell), representing the
mean height of the topography (cf. Torge, 2003). Today, the complete Bouguer gravity anomaly – including
the terrain correction – can be achieved conveniently based on global potential models as described in the
following.

Fig. 4.14 – Degree variances of the Bouguer signal (blue line) as given by the
difference of the observation based model EGM2008 (Pavlis et al,
2012) (black line) and the (uncompensated) multi-layer ETP model
(red line) in terms of gravity (mGal2).

The Bouguer potential may be de-
fined as the observed gravitational
potential V reduced by the gravi-
tational potential of the topographic
masses V t. With the help of
the spectral forward modelling tech-
niques and source-mass data devel-
oped in this work (see Chpt. 3) V t is
well described by spherical and el-
lipsoidal topographic potential mod-
els on a global scale. The observed
gravitational potential V may be rep-
resented by any observation-based
GGM listed at ICGEM. Then the
Bouguer potential, as e.g. shown in
Rexer et al (2015) with GGMs based
on data of the GOCE satellite mis-
sion or by Claessens and Hirt (2013)
with EGM2008, conveniently can be expressed through fully-normalised spherical harmonic Bouguer coeffi-
cients (BC) Bnm, following

Bnm = V nm − V
ETP

nm . (4.7)
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Fig. 4.15 – Bouguer gravity disturbances (mGal) at Earth’s surface as given by the difference of EGM2008 and the
here developed multi-layer ETP model in the spectral band n = 0 − 2190

Importantly, the constants of the spherical harmonic models V nm and V
ETP

nm must be identical (e.g. reference
radius and GM ) or have to be chosen consistent a priori. Taking EGM2008 as source for V nm and the
layer-based spectral forward modelling for V

ETP

nm gives the Bouguer signal shown in terms of gravity degree
variances in Fig. 4.14. Introduced in the spherical harmonic series (Eq. 2.4) the Bouguer coefficients allow
the straight forward computation of global map of Bouguer gravity disturbances (Fig. 4.15), or any other gravity
functional.

Note that Bnm cannot be retrieved with a STP model (V
STP

nm ), since the spherical approximation is not com-
patible with observation based GGMs (see above). The BC in Eq. 4.7 improve conceptually over the clas-
sical (planar) definition of Bouguer modelling in geodesy (Rexer et al, 2015): they take into account (1)
the actual ellipsoidal shape of Earth, (2) the implicit modelling of terrain corrections, (3) the effect of re-
mote masses (Kuhn et al, 2009) and (4) ensure spectral consistency (i.e. identical band-widths) of both
signals.

Theoretically, in order to compute accurate short-scale Bouguer gravity anomalies it is further important to
also consider the signal in multiples of the input bandwidth of topographic source-mass model of topographic
potential models, being the main outcome of publication P-VI. The gravitational signal in the first 10 multiples
(spectral band from degree 2160 to 21,600) has a global RMS of ∼ 0.5 mGal and ranges between −33.4 and
+52.3 mGal (see Sect. 3.4.2.4 and Fig. 3.16b). The relevance of these amplitudes depend on the application,
of course.
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4.4 Summary and evaluation of the chapter’s research aims

This chapter (Chpt. 4) along with (parts of) the publications P-IV, P-V and P-VI dealt with the application and
validation of the methods and data compiled and developed in this dissertation in view of the research aims A5
and A6, that read:

"Find combination strategies for a combination of observed and high-resolution forward modelled gravity and
show the beneficing of the latter to combined gravity field modelling, globally". (A5)

"Elaborate the usage of such a combination, the developed data and methods in other applications". (A6)

In this context, five strategies for this type of combination were reviewed and assessed comparatively. The
most powerful of which, the least-squares merge and the block-diagonal merge were not tested due to missing
stochastic information (i.e. the actual errors) about the computed forward models and their associated enor-
mous computational demands. Nevertheless, these approaches would be the best suited for a regionally con-
trolled impact of forward-modelled gravity in areas devoid accurate terrestrial observations. The regularisation
merge enables an indirect regional weighting (due to the stochastic model of the observed gravity) via regular-
isation of the fully assembled normal equation system of the observations. In this procedure the SHCs of an
ellipsoidal topographic potential model are introduced as prior information which was shown to deliver regional
improvements over the area of Antarctica in publication P-IV and P-V, compared to the rather simple spectral
and spatial merge. The latter two techniques are mutually consistent and rely on the concept of spectral filter-
ing, which in case of the ETP requires extra filter coefficients instead of a (abrupt) truncation of the spherical
harmonic series in order to treat the correlations between coefficients of the same order. For the purpose of
demonstration and validation, the simplistic spectral merge was used to generate combined models consisting
of EGM2008 to model the gravitational signal for n ≤ 2160 and forward-modelled gravity for 2161 ≤ n ≤ 5480.
Those were evaluated over diverse areas at over 1 million ground-truth points in order to get a representative
judgment of the quality of the single- and multi-layer ETP models. Over areas with large topographic features
such as the alpine country Switzerland, the short-scale information of the multi-layer ETP model improves the
RMS agreement with the ground-truth data by about 46 % relative to EGM2008. In Northern Canada, which on
average has a smoother topography, the improvement is at the level of 29 %. Over a comparatively flat region
such as the Australian continent, the improvement still is significant (∼ 16 %). Over Antarctica, the relatively
small improvement w.r.t. the satellite-only model GOCO05s is to be explained by rather poor short-scale in-
formation of the bedrock and ice sheet geometry as contained in Bedmap2. Over the Arctic (Northern Polar)
ocean the positive effect due the combination with the high-resolution ETP models is also comparatively small
(RMS reduction of about 6.5 %), which is due to the attenuation of the short-scale gravitational signal of deeply
located bathymetric masses at the oceans surface, to inaccurate short-scale bathymetric depth information
or to altimetry contained in EGM2008. Generally, the reduction over the oceans is largest in the vicinity to
the coastline and in fjords. Over land, the small RET approximation effect visible in the band 0 ≤ n ≤ 2160

disappears entirely in the band 2161 ≤ n ≤ 5480, while it shrinks to acceptable level over the ocean, at least
in comparison with the here used ship-track data. Summarising, the short-scale (topographic) gravitational
signal from the here developed data and methods is beneficial to high-resolution gravity modelling, especially
over land and over coastal areas in vicinity of large topographic masses, as seen from an investigation up to
degree 5480. In this respect, also the overall research goal G3 is fulfilled. Finally, the application of spectral
topographic potential models as developed in this work for global Bouguer modelling and height unification was
shown and discussed briefly, fulfilling the other research aims of this chapter.
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Discussion and Future Directions

The overall research goals of this work were discussed and evaluated in detail in Chpts. 2.4, 3.5 and 4.4. This
chapter is devoted to a synoptic discussion across all chapters and publications of this dissertation, illuminating
the key findings in a broader perspective and giving directions for future research.

Dealing with the question up to which scale global forward modelling of the topographic masses is useful
can – in the first place – be answered with the help of the created empirical degree variance rule based on
GGMplus. Certainly, this has to be done in light of the respective application. The GGMplus rule delivers
realistic estimates for the average continental short-scale gravitational signals expected at Earth’s surface,
being slightly larger than the truly global average signals (when including the oceans). This can be seen from
comparisons with the created degree-5400/5480 models and other local estimates of signal strengths in the
literature. From this perspective, modelling to at least degree 5, 400 is required for the determination of the
geoid height with cm accuracy on global average. Even modelling up to extremely high degree such as 21, 600

seems justified for the purpose of high-resolution gravity field modelling, since GGMplus predicts an omission
error still in the order of∼ 2 mGal for the truncation at this degree. Investigations restricted to very mountainous
terrain in the Himalayas revealed that in those areas signals in the order of ±10 mGal are found on average at
scales < 1 km.

The available source-mass models lack sufficiently resolved density information to fully exploit the actual capa-
bilities of spectral forward modelling: the techniques generally would allow for much more detailed density infor-
mation (in the vertical and lateral dimension), than available by current geophysical models (e.g. CRUST1.0).
In contrast the lateral resolution of today’s satellite-borne digital elevation models provide – for most parts of
the world – more details of the topography than exploitable by spectral forward modelling. However, over ice-
covered regions such as Antarctica, the resolution (and quality) of the bedrock component still needs to be
improved. Generally, the seafloor geometry from bathymetry is of poorer quality than the land geometry from
topography. This especially is true for scales smaller than ∼ 12 km, i.e. degree ∼ 1670, where the altimetry-
based depth recovery is not working very well anymore due to signal attenuation with increasing depth. At
these short scales it relies on sparsely available ship soundings, mainly, that are known to show gaps of more
than 10 km lateral distance between the measurements for 50 % of the oceans. The degree 10, 800 source-
mass model Earth2014 is an up-to-date compilation of available information of solid bedrock, lake and ocean
water, and major ice sheets close to the actual resolution limits of the methods (see further down). For reasons
of simplicity and lack of high-resolution density information, the density is assumed constant and approximated
by the estimated mean density for each derived geophysical layer, leading to satisfactory results (see further
down). In this respect, future modelling attempts should also include improved mass-density modelling, e.g.
over the oceans (Tenzer et al, 2012), isostatic compensation based on isostatic hypothesis and actual seismic
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Moho depths (e.g. Grombein et al, 2014) and might even account for the atmosphere’s gravitational potential
(e.g. Novak, 2010).

The historically and even today widely used spherical approximation in spectral forward modelling affects the
gravitational signal not only at scales > 10 km but also at shorter scales, especially over Earth’s mountain
chains (errors up to ∼ 30 mGal). Still STP modelling is useful for some applications (e.g. band- or degree-wise
evaluations) and is, apart from that, easy to understand due to rather simple analytical expressions. Generally
the ellipsoidal approximation keeps approximations at a minimum level as it allows mapping-free modelling
with the source-mass data arranged in appropriate manner (using pseudo-ellipsoidal heights). Further, the
additional computational demand of modelling w.r.t. an ellipsoid is not relevant. The time critical task during
the processing is the spherical harmonic analysis of multiple height-density-functions, an aspect that equally
holds for ETP and STP modelling. Thus, the ETP should become common practice for spherical harmonic for-
ward modelling. ETP modelling becomes crucial for applications such as creating spherical harmonic Bouguer
coefficients or a combination with observations-based data via regularisation. In the future, forward mod-
elling in ellipsoidal (or spheroidal) harmonics should be envisaged since the underlying coordinate system fully
supports the ellipsoidal shape of Earth’s masses and would allow for a wider and more versatile field of appli-
cations, e.g. band- or degree-wise evaluations. This is because ellipsoidal harmonic coefficients of successive
degrees are arithmetically un-correlated, in contrast to spherical harmonic coefficients that represent an ellip-
soidal mass-distribution. First pioneering work in this direction exists, e.g. by Novak and Grafarend (2005) or
Wang and Yang (2013).

If the short-scale (n < 2160) gravitational potential over continents is sought, single-layer modelling is sufficient
given the up-to-date available source-mass models at global scale that do not provide layers differentiating
between different types of rock/sediment or provide the extent of glaciers at scales < 10 km. The error asso-
ciated with single-layer modelling or the RET approximation at short scales is restricted to the oceans with an
average global amplitude of 0.5 mGal (RMS). Even over the oceans, thus, the RET approximation effect only
plays a role over rugged or deepest bathymetric features, with amplitudes up to ∼ 20 mGal. The investigation
with the ground-truth data set over the Arctic ocean shows an influence of the RET approximation effect at the
level of 0.01 mGal RMS, suggesting that RET leads to negligible errors at scales < 10 km given the accuracy
of the ground-truth and the bathymetric depth data.

Using spectral forward modelling methods up to ultra-high degree seems possible up to degrees close to
10, 800 without substantial changes of the here presented double-precision algorithms. The only exception
are the ALFs, that require extended arithmetics beyond degree n ≈ 2700. But taking proper care of sampling
requirements in order to ban aliasing it would require access to super-computing facilities and a stark paral-
lelisation of the spherical harmonic analysis step. However, full convergence of the involved binominal k− and
j−series at higher degrees will require an arithmetic extension of the algorithms, e.g. to cope with the over-
flow of the binominal coefficients. Against practice in many works in literature (e.g. Root et al (2016); Gruber
et al (2014); Balmino et al (2012)), this work shows that the evaluation of the k-series up to kmax-values much
larger than three should be considered for n ≥ 2160, since these terms may lead to significant gravity signal
amplitudes at short scales. Further, tests up to degree 21, 600 showed a convergence of eliminating charac-
ter for layers with deep masses (such as bathymetric masses in deep ocean trenches) that prohibits an early
truncation of the k-series (for k>8), leaving substantial short-scale signals unmodelled. In contrast, single-
layer modelling is devoid of such problems as it shows a purely additive convergence behaviour. Given that
the RET approximation effect reaches relevant amplitudes only over deep ocean trenches at scales < 10 km,
single-layer modelling (in ellipsoidal approximation) seems to be an advisable method if only the short-scale
gravitational signals over land and coastal areas are sought/used. Due to the strong increase of computational
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costs – mainly driven by the increasing number of k-terms to be evaluated with rising nmax – space domain
forward modelling is to be preferred for high-resolution forward modelling applications with only local extent.
On global scale, spectral integration methods seem to outperform the space domain integration approaches
(e.g. numerical integration of rectangular prisms in P-VI or the tesseroid approach in Grombein et al (2016b))
in terms of computation time, at least up to degree 2160.

Concerning the stable implementation of ALFs (of the first kind) at high degrees, also other (and faster) ap-
proaches than the here used X-number approach (Fukushima, 2012a,b) can be used. For example, Gruber
and Abrykosov (2016) suggest the computation of ALFs in the spectral domain which seems favorable in terms
of efficiency for high resolution spherical harmonic transforms, at least if the Fourier coefficients of ALFs are
precomputed and stored.
Another interesting aspect that was not treated in this work is the development of the here presented spectral
forward modelling methods based on integral values of ALFs (of the first kind). In their current form point ALFs
(of the first kind) are used in the analysis of the height-density functions. Since the height values provided
by DEMs and satellite observation techniques rather are block-mean values, the employment of integral ALFs
seems more adequate and should be investigated in the future.

In view of global combined gravity field modelling with the help of high-resolution spectral forward modelling
approaches, least-squares combination techniques are desirable because of the ability to control the regional
impact of the forward modelled gravity within the combination. This, however, would require stochastic infor-
mation which is not given by the spectral forward methods presented here. Indeed, an error propagation or a
thorough analysis of individual errors such as DEM inaccuracies or density estimates is missing in this work.
Attempts in this direction were made by Balmino et al (2012) (Eq. 37, ibid) who translates the spherical har-
monic representation error of the DEMs into values of uncertainty in terms of gravity or geoid heights: e.g.,
a ∼ 4 m global height representation error would correspond to ∼ 0.5 mGal gravity error on global average.
Another interesting attempt was made by Abrykosov et al (2012) who estimated formal errors of the spherical
harmonic coefficients of a 1’-grid. A proper error propagation and stochastic modelling for spectral forward
modelling approaches warrants for future research.
Indirectly, of course, an analysis of the (overall) error of the forward modelling was done in this work by the
comparison to the different ground-truth data sets. Doing so in this work, it was shown that with simple spectral
merges that incorporate high-resolution spectral forward models computed with the here compiled methods
and data, an improvement over state-of-the-art observation based degree-2190 GGMs by nearly 50 % can
be achieved over mountainous areas, i.e. halving the differences between model and terrestrial observa-
tion.

As a final remark, by evaluating gravity functionals at the Earth’s surface the thesis implicitly assumes the
convergence of the spherical harmonic series expansion of the topographic potential at the top of Earth’s actual
masses. Up to the investigated degrees this seems justified, very small possible signs of divergence were only
found in the series up to degree 21,600 (P-VI). Theoretically, the convergence of the spherical harmonic series
is only guaranteed on or outside the Brillouin sphere (Jekeli, 2012) – the sphere encapsulating all of Earth’s
topographic masses – which might become a limiting factor when raising the spherical harmonic series to
higher degrees than investigated here.
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Chapter 6

Conclusions

The thesis showed that significant gravitational acceleration signals are caused by the uncompensated topo-
graphic masses at short-scale (≤10 km). Modelling these signals with the help of efficient spectral spherical
harmonic solutions to Newton’s integral formula was found to improve high-resolution global gravity field models
using up-to-date topographic elevation data.

For example, at scales between ∼4 and 10 km, gravity signals in the order of ∼ 4.5 mGal and ∼ 1 cm in
terms of geoid heights are found on global average (RMS). Those signals were shown to substantially improve
the agreement with ground-truth gravity observations w.r.t. the state-of-the-art observation-based gravity field
model EGM2008 by almost 50 % over Alpine areas and ∼ 16 % over flat countries such as Australia. Even
at finer scales (< 4 km), an omission error in the order of ∼ 5 mGal (∼ 0.4 cm) is to be expected at Earth’s
continental surface on average which can be estimated from a newly-derived empirical degree variance model
up to degree 90, 000.

Reviewing existing spectral forward modelling approaches, a novel approach has been developed that provides
some advantages w.r.t. prevailing techniques. It allows the efficient spectral computation of the ellipsoidal
topographic potential from a set of volumetric layers of laterally-varying mass-density (i.e. integrated w.r.t. to
an oblate ellipsoid of revolution). The method avoids two types of approximations that are commonly found in
spectral forward modelling:

1) the spherical approximation present in the spherical topographic potential, leading to errors in the order
of some mGals (global RMS ≈ 0.4 mGal up to degree 5,400), and

2) the RET approximation of single-layer modelling, leading to errors in the order of some tens of mGals
(global RMS ≈ 1.8 mGal up to degree 5,400).

At short scales (≤4 km) the spherical approximation is most severe over rough terrain/ mountains, while the
RET approximation becomes negligible over the continents and in coastal maritime regions. Thus, at short
scales multi-layer modelling is only justified when the global topographic potential is sought, i.e. including
oceans and deeper bathymetry, where the RET error is most severe.

Efficient spectral forward modelling techniques are equivalent to their rigorous counterparts when enough
terms of the involved binominal series expansions are taken into account. Importantly, for high degrees a
very large number of binominal terms is required, which has not been accounted for in many related works in
literature. The correct amount of terms can be estimated from newly-derived linear relationships between the
desired maximum degree of the forward model and the maximum order of the binomial series required for full
convergence.
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Very or ultra high-degree forward modelling is only possible when the spherical harmonic analysis, being the
time critical processing step, is done efficiently. In this work this was achieved by exact numerical quadra-
ture techniques. Principally, the only two major modifications to existing techniques that need to be imple-
mented are numerically stable ALFs, achieved by an arithmetic extension using the X-number approach, and
a parallelisation of parts of the code. Then spherical harmonic analyses up to some ten thousands of de-
grees are well feasible in short time, e.g. ∼ 10 h are needed for an analysis to degree 21, 600 using only 8

CPUs.

In the first place, limiting factors of spectral forward modelling in terms of maximum resolution are twofold.
Firstly, the binominal coefficients of the involved binominal series expansions are running into an overflow.
If a full convergence of the k- and the j-series is considered, the overflow occurs close to degree ∼ 17, 800

and ∼ 16, 500, i.e. kmax = 72 and jmax = 145, respectively. Secondly, the exponentiation of the topographic
boundary functions up to power kmax requires an oversampling of the gridded function in order to ban aliasing
effects. Although the oversampling factor generally can be chosen smaller than kmax, this soon leads to
extremely large grids, because the grid size grows quadratically with the oversampling factor. An analysis in
reasonable time can only be achieved with the help of massive parallelisation and access to supercomputing
facilities.

Testing the forward modelling procedures experimentally up to degree 21, 600 (∼ 1 km) an eliminating conver-
gence behaviour was detected that prohibits the early truncation of the k-series of layers having the ocean’s
bathymetry as a lower bound. In contrast, single-layer modelling shows a purely additive convergence behavior,
suggesting the use of the RET approximation for very high-degree applications.

Concluding, spectral spherical harmonic forward modelling with the here presented methods that use an ellip-
soid as reference surface (ellipsoidal approximation) are a powerful means for global modelling of the uncom-
pensated topographic potential down to scales of about 1.5 − 2 km. This finding is based on the limitations
found, and the estimated computational demands for spectral forward modelling. The derived ellipsoidal topo-
graphic potential, modelled to degree 5, 400 based on data from Earth2014, was shown to positively contribute
to combined high-resolution global gravity field modelling and to other applications. Especially, this holds given
the steady improving quality of high-resolution digital elevation and source-mass data. Currently, source-mass
models are of comparatively poor quality over the oceans and Antarctica, and lack detailed mass-density infor-
mation on a global scale.

Finally, in light of the next-generation observation-based spherical harmonic gravity field model of degree
2190 (successor of NGA’s EGM2008), to be released in 2020 (Barnes et al, 2016), the herein proposed
multi-layer ETP approach together with source-mass information from Earth2014 are formidable means to
generate fill-in gravity in areas devoid terrestrial or air-borne gravity, or to mitigate the omission error beyond
the model’s resolution, globally. In similar manner, methods and data of this work are believed to provide
valuable contributions to global combined gravity field modelling in the frame of the EIGEN and GOCO initia-
tives.
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Appendix A

A.1 Truncation and filtering of topographic potential models

As learned in Sect. 4.1 some combination methods afford the truncation of topographic potential models, which
in more general words means nothing else than spectral filtering of the gravitational signal. More precisely, the
topographic potential often is made spectral complementary to the maximum degree of the observed gravita-
tional potential by high-pass filtering (spectral and spatial merge in Sect. 4.1.3). The filtering principle also
applies for the spectral enhancement method (Hirt et al, 2011) or omission error modelling.
The truncation of the spherical harmonic series usually is straight forward and defined by the choice of the max-
imum degree nmax in the spherical harmonic series (see 2.2). This holds as long as the spherical harmonic
concept is not violated and the harmonic function really is spherical (or spherically approximated). This is e.g.
the case for all STP models (cf. Sect. 3.3) that are computed in spherical approximation. On the contrary,
this feature of abrupt truncation is lost for spherical harmonic models that represent a potential that originates
from an ellipsoidal mass distribution, which is the case for ETP models (cf. Sect. 3.3). Then a more com-
plex filtering is required – a topic rarely dealt with in the community probably because of missing awareness.
The reason are (algebraic) correlations among some spherical harmonic coefficients which have already been
noted by P-IV (Sect. 4.3 ibid). The correlations deny that single frequencies (or coefficients) can be treated
or investigated independently without having to deal with errors in the form of spherical striation patterns. The
correlations also appear in observation-based high-resolution spherical harmonic GGMs, such as EGM2008,
because the observations refer to the (actual) ellipsoidal mass arrangement of Earth, i.e. observation-based
models can be considered to be of ellipsoidal approximation.
The reason for the correlations in ETP modelling can be found in Eq. 28 in P-IV. It expresses the term
sin θ2j Ȳn,m with the help of fully normalised sinusoidal Legendre weight functions (Claessens and Hirt, 2013)

sin2j θ Y nm =

j∑
i=−j

K
2i,2j

nm Y n+2i,m, (A.1)

which are found in the final expression of the (layered) ETP potential (Eq. 31 in P-IV ). The correlations among
certain spherical harmonic coefficients arise from the summation over i from −j to j, since i is found in the
degree-index of the fully normalised surface spherical harmonic functions Y n+2i,m. Thus, any coefficient V̄nm
depends on (some of) the equal order coefficients of degree n− 2jmax < n ≤ n+ 2jmax.

If a truncation of the ETP series for the purpose of high- or low-pass filtering of the gravitational signal at
degree nt is desired, two possible procedures can be suggested to account for correct filtering: 1) compute
a full ETP model up to the degree of truncation nt (and subtract it from the higher degree model in case of
high-pass filtering) or 2) compute the correlations that occur for a truncation at nt explicitly and apply them
as filters to the truncated ETP model. The latter variant is the more elegant way, since less computational
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filter type FC
(ETP,A)

nm FC
(ETP,B)

nm

low-pass + −
high-pass − +

Tab. A.1 – Sign for the application of ETP filter coefficients for high- and low-pass filtering

Fig. A.1 – Dimensionless degree variances of the filter coefficients FC
(ETP,A)
nm (in blue) and FC

(ETP,B)
nm (in red) for

various degrees of truncation.

resources are required. The explicit computation of the filter coefficients FC
(ETP )

nm depends on nt and jmax

and can be derived from Eq. 31 in P-IV as follows:

FC
(ETP,A)

nm (nt) =
3

ρ(2n+ 1)(n+ 3)

(
b

R

)n+3 kmax∑
k=1

(
n+ 3

k

)

×
jmax∑
j=0

(−1)
j

(
−n+3

2

j

)
e2j
bnt−n

2 c∑
i=−j

K
2i,2j

nm HDF
(ETP )

klm

(A.2)

for all correlations occurring at n > nt and

FC
(ETP,B)

nm (nt) =
3

ρ(2n+ 1)(n+ 3)

(
b

R

)n+3 kmax∑
k=1

(
n+ 3

k

)

×
jmax∑
j=0

(−1)
j

(
−n+3

2

j

)
e2j

j∑
i=i0

K
2i,2j

nm HDF
(ETP )

klm

where

{
i0 =

⌈
nt−n

2

⌉
for n < nt

i0 = 1 for n = nt

(A.3)

for correlations occurring at n ≤ nt. How the filter coefficients FC
(ETP,A)

nm and FC
(ETP,B)

nm should be applied to
a truncated series (with positive or negative sign) is given in table A.1. Since the correlations need to be added
or eliminated depending on the application, respectively.

In terms of degree variances the correlations look like what is often associated with and called "tail" of
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coefficients (cf. Claessens and Hirt (2013)). While only the correlations FC
(ETP,A)

nm are visible at the end of
every ETP model, the correlations contained in FC

(ETP,B)

nm are not visible since they are dominated by the
energy of the actual topographic gravity signal (see e.g. degree variances of dV _ELL_Earth2014 (black)
in Fig. A.1). Computed for various different nt (and constant jmax=40) we can see how the energy of the
coefficients FC

(ETP,A)

nm and FC
(ETP,B)

nm is rising towards higher degrees of truncation (Fig. A.1). This can
be verified in the space domain. In the case of a truncation at nt = 280 the filter signals are in the order of
1 − 3 mGal while they reach some 100 mGals for nt = 2160. The largest part of the signal in both cases
is found in polar latitudes. This reflects the close relation of the correlations with the differences between an
ellipsoidally and a spherically shaped Earth, since Eq. A.1 is introduced within a binominal series expansion
in order to replace the term

(
re
R

)n+3.
The parameter jmax defines the "length" of the tails and the larger it is chosen, the higher is the correlation ratio

among the coefficients (Fig. A.3). Note, that the choice of jmax is a matter of convergence in ETP modelling,
as described in Rexer et al (2016) and Claessens and Hirt (2013).

In similar manner as the ETP that employs the sinusoidal Legendre weights also Jekeli’s renormalisation
(Jekeli, 1988; Sebera et al, 2012) introduces correlations into the spherical harmonic series when a transfor-
mation from an ellipsoidal harmonic set of coefficients to their spherical harmonic equivalents is performed.

Fig. A.2 – Gravity effect of the ETP filter coefficients (Eqs. A.2 and A.3) synthesised in terms of gravity disturbances
at Earth’s surface for truncation at degree 280 (Min = −3.4 mGal; Max = 3.3 mGal; RMS = 0.6 mGal)
and 2160 (Min = −300.0 mGal; Max = 326.2 mGal; RMS = 23.1 mGal). Unit is in mGal.

Fig. A.3 – Dimensionless
degree vari-
ances of the
filter coefficients
FC

(ETP,A)
nm and

FC
(ETP,B)
nm

as a function
of jmax (for
constant degree
of truncation
nt = 280).



104 Appendix A



Appendix B

P.1 Publication I: Spectral analysis of the Earth’s topographic
potential via 2D-DFT: a new data-based degree variance model to
degree 90,000

Reference:
Rexer M., Hirt C.: Spectral analysis of the Earth’s topographic potential via 2D-DFT: a new data-based degree
variance model to degree 90,000; Journal of Geodesy, Vol. 89, Issue 9, p.887-909, Springer Berlin Heidelberg,
ISSN 0949-7714, ISSN (Online) 1432-1394, DOI: 10.1007/s00190-015-0822-4, 2015.

Copyright
This work originally has been published in Journal of Geodesy, available at http://link.springer.com/, and
is reprinted here with permissions of Springer. The copyright has been transferred to Springer-Verlag Berlin
Heidelberg.

Short Summary
The near-global and freely-available GGMplus gravity grids with 220 m resolution are well-suited to study
the spectral characteristics and signal strengths of Earth’s topographic potential at short-scales. GGMplus is
a composite model consisting of satellite-data and terrestrial data as contained in the model EGM2008 up to
scales of≈ 10 km. At shorter scales gravity signals originate from forward-modelling, thus GGMplus represents
the gravity as implied by the topographic masses assuming a constant rock density of 2670 kg

m3 . A commonly
used 2D-DFT approach has been chosen to perform the spectral analysis, which was shown to recover the
gravity spectral energy only approximatively (error margin of 10 − 20%) and in spherical approximation. The
results of the analysis were used to estimate and parametrize a degree variance model complete up to degree
90, 000, representing gravity as found at Earth’s surface over the continental area (−56◦ ≤ ϕ ≤ 60◦). The model
is the only data-driven degree variance model beyond scales of 10 km and shows considerable differences to
other models. The degree variance model can be used to estimate omission errors and signal amplitudes
over continental areas. Importantly, it suggest larger signal amplitudes at short scales than most of the other
models.

Declaration of own contribution
(MR: Moritz Rexer; CH: Christian Hirt)

CH had the idea to spectrally investigate the short-scale signals as contained in GGMplus gravity maps using
2D-FFT transforms. MR and CH mutually designed the study. MR did all software development and performed
all calculations. CH had the idea to fit curves to the degree variances and MR selected suitable mathematical
models and tools. MR added a lot of aspects to the original idea of the study, e.g. the detailed investigation
of the used 2D-FFT method, or the numerical description of the ratio between the spherical and ellipsoidal
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approximation. MR drafted all interpretations of the numerical results. Some of the interpretations were the
result of discussion with CH, especially those regarding the differences between spherical and ellipsoidal ap-
proximation. Text, figures and tables were drafted and created by MR.
The overall own contribution of MR for P-I is estimated at 85 %, which is the average value of the percent-
age values estimated for the six criteria listed in the table below (Tab. P.1).

Criteria Estimated
own contribution

Computation and results 100 %
Ideas and study design 50 %
Analysis and interpretation 70 %
Text 90 %
Figures 100 %
Tables 100 %
Total 85 %

Tab. P.1 – Criteria and estimated contribution share of Moritz Rexer for P-I
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Abstract Classical degree variance models (such as
Kaula’s rule or the Tscherning-Rapp model) often rely on
low-resolution gravity data and so are subject to extrapo-
lation when used to describe the decay of the gravity field
at short spatial scales. This paper presents a new degree
variance model based on the recently published GGMplus
near-global land areas 220 m resolution gravity maps (Geo-
phys Res Lett 40(16):4279–4283, 2013). We investigate and
use a 2D-DFT (discrete Fourier transform) approach to trans-
form GGMplus gravity grids into degree variances. The
method is described in detail and its approximation errors
are studied using closed-loop experiments. Focus is placed
on tiling, azimuth averaging, and windowing effects in the
2D-DFT method and on analytical fitting of degree vari-
ances. Approximation errors of the 2D-DFT procedure on
the (spherical harmonic) degree variance are found to be at
the 10–20 % level. The importance of the reference surface
(sphere, ellipsoid or topography) of the gravity data for cor-
rect interpretation of degree variance spectra is highlighted.
The effect of the underlying mass arrangement (spherical
or ellipsoidal approximation) on the degree variances is
found to be crucial at short spatial scales. A rule-of-thumb
for transformation of spectra between spherical and ellip-
soidal approximation is derived. Application of the 2D-DFT
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München, Munich, Germany
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on GGMplus gravity maps yields a new degree variance
model to degree 90,000. The model is supported by GRACE,
GOCE, EGM2008 and forward-modelled gravity at 3 billion
land points over all land areas within the SRTM data cover-
age and provides gravity signal variances at the surface of the
topography. The model yields omission errors of ∼9 mGal
for gravity (∼1.5 cm for geoid effects) at scales of 10 km,
∼4 mGal (∼1 mm) at 2-km scales, and ∼2 mGal (∼0.2 mm)
at 1-km scales.

Keywords Degree variance · Omission error · Discrete
Fourier transform · Ultra-high resolution gravity · GGMplus ·
Spherical approximation · Ellipsoidal approximation

1 Introduction

Much progress has been made in global gravity field deter-
mination with the dedicated satellite gravity field missions
GRACE (e.g., Tapley et al. 2004) and GOCE (e.g., Pail et al.
2011). While these missions provide good global data cov-
erage, their resolution is limited to spatial scales of ∼80 km
due to the gravity attenuation with altitude. The fine struc-
ture of the field is, therefore, usually retrieved from (a)
terrestrial measurements (e.g., gravity anomalies or vertical
deflections) and (b) from gravity forward modelling (i.e.,
computation of gravity effects from topographic mass mod-
els), particularly over areas devoid of terrestrial data (Pavlis
et al. 2007; Hirt et al. 2010). Due to the fact that terrestrial
measurements are neither homogeneously nor completely
given on a global scale (e.g., Pavlis et al. 2012), gravity effects
implied by the topographic masses are often considered as a
means to increase the resolution of a gravity model.

With the help of integration techniques based on New-
ton’s law of gravitation, digital elevation models along with
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mass-density assumptions can be used to approximate the
gravity field at very short scales (e.g. scales of few hundreds
of meters to tens of kilometers). Recently, this has been done
on a near-global scale by Hirt et al. (2013) in the spatial
domain. The authors provide GGMplus gravity maps for all
land areas between 60◦ North and 56◦ South at 220 m ground
resolution. The maps incorporate gravity from a combination
of GRACE and GOCE satellite observations, terrestrial grav-
ity data from EGM2008 (Pavlis et al. 2012) and topographic
gravity effects beyond the 10-km resolution of EGM2008.
The gridded GGMplus gravity maps provide fairly complete
information on the topography-generated gravity field over
the continents at spatial scales down to 220 m corresponding
to spherical harmonic degree of about 90,000.

In order to examine topography-generated gravity signal
strengths at different spatial scales, and to describe the decay
of these signals as a function of the spatial scale, some spec-
tral representation of the gravity field is required. This can be
in terms of spherical harmonic coefficients (SHCs) or degree
variance spectra (power law) describing the decay of the field
as a function of wavelength. Three techniques suitable for this
are:

• Global spherical harmonic analysis transforming gridded
gravity data to SHCs (e.g., Sneeuw 1994; Pavlis et al.
2012; Gruber and Abrikosov 2014).

• Spectral-domain gravity forward modelling transforming
a global spherical harmonic topographic mass model to
SHCs of the implied potential (e.g., Rummel et al. 1988;
Balmino et al. 2012).

• Application of 2D-Fourier techniques to derive degree
variance spectra of gridded gravity data (e.g., Forsberg
1984a; Flury 2006), which is the scope of this paper.

While the first two methods have been applied to harmonic
degree 10,800, or ∼2 km spatial scales (Abrykosov et al.
2012; Balmino et al. 2012), there are currently no results
from global harmonic analysis or spectral-domain forward
modelling reported in the literature that reach sub-km res-
olution for degree variance spectra. This may be due to
significant computational costs associated with ultra-high
degree spherical harmonic modelling, particularly with the
forward method that involves multiple harmonic analyses
(e.g. Hirt and Kuhn 2014). However, ultra-high resolution
spectral representations would be useful to study the short-
scale properties of the gravity field, e.g., to derive signal
strengths and omission errors.

In this paper we determine degree variance spectra of
the topographic potential at short spatial scales as incor-
porated in GGMplus (harmonic band of degrees 2161 to
90,000) with near-global scope using 2D-Fourier trans-
form and variance model fitting techniques. At long spatial
scales the spectra are supported by a combination of satel-

lite gravity (GRACE and GOCE) and terrestrial gravity as
contained in EGM2008 (harmonic band of degrees 2 to
2160). The spherical harmonic power spectra are computed
from equi-angular GGMplus grids of gravity disturbances
(http://ddfe.curtin.edu.au/models/GGMplus/). As a major
advantage over spherical harmonic modelling, 2D-Fourier
techniques can be flexibly applied on regional and global
data sets to derive power spectra and are computationally less
expensive than the first two methods when going to ultra-high
degree. This is evident from the fact that 2D-Fourier tech-
niques were used already few years ago to study the power
spectra of local and regional gravity data sets to ultra-high
degree (e.g. Flury 2006; Voigt and Denker 2007), cf. Sect. 2.
Different to the first two techniques, 2D-Fourier methods do
not yield sets of SHCs as spectral description of the gravity
data set, and involve some approximations, which are stud-
ied and quantified in this paper. While potential spectra from
2D-Fourier techniques and several degree variance models
are reported in the literature, a guide that would describe
and analyse all processing steps in detail and investigate the
approximations involved and their impact on the estimated
spectra was not available to us.

This paper attempts to provide a tutorial-style description
for the computation of degree variances and the consecutive
fitting of degree variance models using commonly used math-
ematical models (Sect. 3). We make use of a two-dimensional
Discrete Fourier Transform (DFT) approach dating back
to Forsberg (1984a) for recovery of potential spectra. This
approach is reviewed here and tested in a closed-loop envi-
ronment in view of application on global and near-global
gridded gravity data. We discuss in detail the so-called radial
averaging in the 2D-DFT, and focus on the role of the refer-
ence surface for spherical harmonic spectra (sphere, ellipsoid
or topography). This is rarely dealt with in the literature
but crucial for interpretation of degree variances. We fur-
ther develop a rule of thumb for the transformation of degree
variances of the topographic potential from spherical to ellip-
soidal approximation and vice versa. With the computed
degree variances in hand we are able to define a new degree
variance model based on GGMplus which describes the spec-
tral energy of the topographic potential at the surface of the
Earth’s landmasses to ultra-fine spatial scales (Sect. 4).

Our work extends the study by Flury (2006) who analysed
the signal strength of the medium-wavelength part of the
gravity field. While Flury studied the spectral properties of
topography-reduced gravity by 2D-DFT, he pointed out (in
his outlook) the need for investigation of the very-short wave-
length components caused by the topographic masses and
computed from digital terrain models. This is exactly the
purpose of this work.

This paper is structured as follows: In Sect. 2 we start
with some introductory comments on the topographic poten-
tial at short scales and its computation through forward
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modelling techniques. We describe the spherical harmonic
modelling concept, elaborate the spherical and ellipsoidal
approximation regarding the underlying mass distribution
of those models and define degree variances. In Sect. 3 we
introduce the mathematical tools and experiments that are
needed for the computation and correct interpretation of
degree variances recovered from 2D grids of topographic
gravity. We elaborate—in the form of a detailed guide—the
2D-DFT approach of Forsberg (1984a) for its global appli-
cation and discuss the different domains of degree variances
(e.g., sphere vs. ellipsoid). Section 4 deals with the approxi-
mation of the topographic gravity energy to ultra-short scales
of 220 m (equivalent to spherical harmonic degree 90,000)
based on GGMplus gravity maps, and omission errors are
estimated. Further, we deal with the nature and the inter-
pretation of the computed degree variance models based on
spherical and ellipsoidal approximations. Finally, in Sect. 5
we summarise our findings and give an outlook on future
work.

2 Background

2.1 Topographic potential and topographic gravity
effects

Because of the quadratic attenuation of gravity with distance,
the fine structure of the Earth’s gravity field is strongly influ-
enced by the mass distribution in the outermost layer of the
Earth—the topography. While the Earth’s flattening and the
masses of core and mantle account for more than 99 % of the
total variations in gravity, the topographic masses cause less
than 1 % of the global variations (cf. Torge 2001). Locally
and particularly in areas of rugged terrain, however, the topo-
graphic masses are necessary to explain the full gravitational
signal because the contribution of the topography to gravity is
dominant at very short scales. Since gravity observations on
very short scales are limited, forward modelling of gravity
effects is a crucial technique in view of generating high-
resolution (global) gravity field models (Pavlis et al. 2012;
Hirt et al. 2013).

Besides the visible topographic masses, other
components—such as mass anomalies in the Earth’s inte-
rior, sediments, salt domes—also generate higher-frequency
gravity signals. The gravity forward modeling data used in
this study are based on the visible topographic masses as
represented by the SRTM topography.

Forward gravity field modelling techniques can be classi-
fied as follows (Kuhn and Seitz 2005):

• Space domain techniques rely on a numerical evalua-
tion of Newton’s law of gravitation to yield topographic

gravity effects (e.g., Forsberg 1984b; Pavlis et al. 2007;
Grombein et al. 2014).

• Spectral domain techniques expand the topographic
potential into integer powers of topographic heights and
require several harmonic analyses or need some rigorous
formulation to obtain the SHCs of the topographic poten-
tial, and subsequent synthesis to derive gravity effects
(e.g., Rummel et al. 1988; Pavlis and Rapp 1990; Novak
2010; Claessens and Hirt 2013).

For more details and an in-depth comparison of both for-
ward modelling techniques we refer to Hirt and Kuhn (2014).
Importantly, the approaches are often based on the assump-
tion of an underlying mass sphere with topographic masses
assumed to reside on Earth’s spherical surface. The topo-
graphic gravity constituents of the GGMplus gravity maps
which we investigate in this study were generated in the
space domain with the well-known residual terrain modelling
(RTM) technique by Forsberg (1984b). GGMplus is based
on a spherically approximated mass distribution as far as the
topography-implied gravity signal (RTM) is concerned (see
Sect. 2.2) and a full account of the RTM forward modelling
of GGMplus is given in Hirt et al. (2014).

The spectral characteristics of topographic gravity effects
on short scales have been investigated in local and regional
scale studies e.g., by Voigt and Denker (2007) and Jekeli
(2010). Voigt and Denker (2007) investigated topographic
gravity effects on gravity anomalies, deflections of the verti-
cal and geoid heights computed from digital terrain models
(DTM) with 1′′, 3′′, 6′′, 12′′ and 30′′ (arc-second) resolution
in Germany. Their tests concentrate on three 1◦ × 1◦ tiles
for which empirical covariance functions and power spectral
densities (and degree variances) are computed and analysed.
In view of a one centimetre geoid they conclude that at
least a 6′′ DTM for an alpine region and 30′′ DTMs for
the non-alpine regions are required. Jekeli (2010) elaborated
the disturbing gravity potential as a stochastic process and
presents two topographic PSDs generated from 1 arc-min
gravity anomaly grids over the mid US. The author analyt-
ically derived a linear relationship between the topographic
heights and the gravity anomaly, which is confirmed empiri-
cally with digital elevation data of 30 arc-sec resolution over
the same areas.

2.2 Spherical harmonic models, spherical vs. ellipsoidal
approximation

Today, spherical harmonic (SH) representations are the most
common way to globally describe the gravity field. Follow-
ing Sanso and Sideris (2013), a global representation of the
disturbing potential T may be written as
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T (θ, λ, r)= GM

R

∑Lmax

l=2

(
R

r

)l+1 ∑l

m=−l
CSlmYlm(θ, λ),

(1)

where CSlm are the SH coefficients of the representation,
Ylm are the SH basis functions, R is the scaling parameter
associated with the model coefficients (often the semi-major
axis a of some reference ellipsoid), GM is the product of the
gravitational constant times the Earth’s mass, l is the spher-
ical harmonic degree, Lmax is the maximum degree (degree
of truncation of the series expansion) and m is the spheri-
cal harmonic order. Negative and positive orders m (m < 0;
m ≥ 0) denote the affiliation to the sine and cosine terms of
the base functions, respectively. The geocentric coordinate
triplet—geocentric latitude, longitude and geocentric radius
θ, λ, r—defines the point of evaluation of the series, usu-
ally located outside of the Earth’s topographic masses. For
more details on the spherical harmonic representation, see,
e.g. Sanso and Sideris (2013).

Spherical harmonic potential coefficients can be com-
puted via forward modelling techniques from mass distri-
butions on a sphere, or on an ellipsoid. In either case, the
SH coefficients describe the potential field in the domain
exterior to the mass distributions, where the field is har-
monic.

Spherical harmonic models in spherical approximation are
computed from masses arranged on the surface of a sphere of
some constant radius. This requires “mapping” of the topo-
graphy (e.g., taken from an elevation model) onto the surface
of the sphere. This approach has been used, e.g., in Rum-
mel et al. (1988), Balmino et al. (2012), and Hirt and Kuhn
(2012) to construct models of Earth’s topographic poten-
tial in spherical approximation. In this paper we use the
topographic potential model dV-SPH-RET2012 (Hirt and
Kuhn 2012) as an example for spherical harmonic models
in spherical approximation. Besides Earth’s visible topogra-
phy it also models gravity effects of the ocean water masses,
those of the major lakes and masses of Earth’s ice sheets
via the concept of rock-equivalent topography (e.g. Rummel
et al. 1988). While models such as dV-SPH-RET2012 “disre-
gard” the ellipsoidal shape of the Earth, they are useful, e.g.,
for testing of computational procedures as will be shown in
Sect. 3.

When gravity forward modelling is applied to a mass dis-
tribution arranged on the surface of some reference ellipsoid,
the topographic potential is obtained in ellipsoidal approx-
imation (Claessens and Hirt 2013; Grombein et al. 2014).
An example for a SH model of the topographic potential
in ellipsoidal approximation is the dV-ELL-RET2012 model
(Claessens and Hirt 2013). In this type of model, the mass
arrangement is much closer to that of the real Earth than in
spherical approximation.

Spherical harmonic models of Earth’s geopotential, e.g.,
those available via IAG’s International Centre for Global
Earth Model (ICGEM) service, are in ellipsoidal approxi-
mation too. This is because geopotential models are usu-
ally based on gravity field observations, which reflect
that the field-generating mass distribution is—in good
approximation—ellipsoidal. For instance, the EGM2008
geopotential model (Pavlis et al. 2012) and those from the
GOCE gravity field mission (Pail et al. 2011), among other
geopotential models of the ICGEM, can be considered as
ellipsoidal approximation—type.

In summary, the main difference between spherical har-
monic potential models in spherical and ellipsoidal approxi-
mation in this study is the arrangement of the field-generating
masses (sphere vs. ellipsoid), which come into play when for-
ward modelling the gravitational field in spherical harmonics.

2.3 Degree variances

Degree variance models are power laws that describe the
decay of the gravity signal in some spectral representation.
They are mostly of purely empirical nature and reflect the
observable variations in a set of global spherical harmonic
coefficients (see Sect. 2.2). As such degree variances are
dimensionless (unitless). They are defined as the sum of
squared spherical harmonic coefficients per spherical har-
monic degree as

c2
l =

∑l

m=−l
CS2

lm . (2)

In other words the degree variance of degree l reflects the
signal power contained in all the coefficients of same degree
(and of different orders m ∈ [−l, . . . ,+l]). Degree variances
as computed in this work refer to gravity disturbances and
are given in mGal2. They relate to dimensionless degree vari-
ances (Eq. 2) by the (functional-dependent) scaling factor �

(Table 1) following

c2
l [�] = � ·

∑l

m=−l
CS2

lm, (3)

Table 1 Gravity functionals and degree variance dimensioning factors
together with their unit

Gravity functional Dimensioning factor � Unit

None 1 –

N : geoid heights R2 m2

Tr : gravity disturbances (l + 1)2
(

GM ·105

R2

)2
mGal2

�g : gravity anomalies (l − 1)2
(

GM ·105

R2

)2
mGal2
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Note that the factors may be derived from the spherical har-
monic expansion (of the respective gravity quantity, e.g.
Eq. (4) in case of gravity disturbances) for r = R. The
converted degree variances (e.g. in metres or mGal) roughly
reflect the signal strength (per wavelength) as expected from
a spherical harmonic synthesis with evaluation points resid-
ing on the surface of a sphere of radius R.

Degree variances generally can be obtained from

• a set of spherical harmonic coefficients: e.g., of gravity
field models as found at the ICGEM and evaluated by
Eq. (2).

• degree variance models/rules (based on analytical func-
tions): e.g., Kaula (1966), Tscherning and Rapp (1974),
Heller and Jordan (1976), Moritz (1977), Jekeli (1978),
Flury (2006), Sanso and Sideris (2013), also see Sects.
3.2 and 4.

3 Recovering the spherical harmonic power
spectrum from gridded gravity data by 2D-DFT

3.1 Computation of degree variances by 2D-DFT

In the literature, different ways for computing degree vari-
ances from a set of 2D-scattered point gravity values are
described. Flury (2006) reviews several approaches to calcu-
late degree variances and elaborates their complementarity
(see Fig. 5 in Flury 2006). In principle one can either
choose to estimate the degree variances from the 2D-PSDs
(power spectral density) by azimuth averaging (c.f. Fors-
berg 1984a) or to calculate the degree variances from the
empirical auto-covariance function (or from an analytical
auto-covariance model, cf. Wenzel and Arabelos 1981). Both
ways naturally assume homogeneity, isotropy and periodic-
ity of the signals as well as no violations of the sampling
theorem in the discretization process. With PSDs, the cal-
culation of the Legendre polynomials can be omitted as
the similarity of the shape of the Bessel functions and
the Legendre polynomials is exploited (Forsberg 1984a).
The PSDs are generally obtained by Fourier transforma-
tion of an equally spaced grid calculated from the 2D
scattered point data. Note that PSDs can also be retrieved
from the auto-covariance function of the 2D scattered point
data by the so-called discrete Hankel transform (c.f. Flury
2006).

To exemplify the processing steps of the 2D-DFT method,
we use a global 5 arc-min grid of topography-implied grav-
ity disturbances (Fig. 1). These were synthesised from the
spherical-harmonic topographic potential model dV-SPH-
RET2012 (Hirt and Kuhn 2012, Section 2.2) in the spectral
band of harmonic degrees 0 to 2160 with the harmonic_synth
software (Holmes and Pavlis 2008) following

Fig. 1 Global 5′ × 5′—gravity disturbance grid of the topographic
potential model dV-SPH-RET2012 evaluated from degrees 0…2160
(Eq. 4)

δg(θ, λ, r) = GM

R2

∑Lmax

l=0
(l + 1)

(
R

r

)l+1

∑l

m=−l
CSlmYlm(θ, λ). (4)

The dV-SPH-RET2012 model is chosen in this study because
it allows (1) computation of the true spectrum of poten-
tial degree variances to benchmark all approximation errors
in the 2D-DFT method, and (2) its approximation level is
suitable for testing Forsberg’s 2D-DFT formalism which is
shown to be based on spherical approximation, too.

In Fig. 2 the flow from 2D gridded data in space domain to
the signal representation in frequency domain and finally the
transformation to the spherical harmonic frequency domain
is shown. Next a detailed description of the five working
steps shown in Fig. 2 is given for the computation of degree
variances. Following the procedure of Forsberg (1984a) and
the description given in Flury (2006), the guide elaborates
the details of the 2D-Fourier transform for potential spectrum
recovery.

1. Interpolation of 2D scattered gravity data to an equidis-
tant grid with Kx row samples at the equidistant coor-
dinates xk and Ky column samples at the equidistant
coordinates y j

xk = k · �x (5)

y j = j · �y, (6)

where k = 1, 2 . . . Kx, j = 1, 2 . . . Ky and �x /�y is
the equidistant spacing of the grid in row-/column direc-
tion in metres. The equidistant sampling in metres is
related to the spacing in degree by the mean co-latitude
θave of the grid following
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Fig. 2 Flow chart showing the transition of gravity data in Space Domain to PSDs in Frequency Domain and to degree variances in Spherical
Harmonic Frequency Domain

{
�x [km]
�y[km]

}
=

{
�x [rad]
�y [rad] · sin θave

}
· R. (7)

We acknowledge that according to the definition in
Eq. (7) equidistant sampling is only given in good approx-
imation for small grids; thus one DFT prerequisite is
actually violated for regional or global grids. However,
closed loop results will show this effect to be non-critical.

2. The discrete 2D-Fourier transform of the gridded data
f (x, y) is given by

F(vp, vq) = 1

Kx Ky

Kx−1∑

k=0

Ky−1∑

j=0

f (xk, y j ) · e
−i2π

(
pk
Kx

+ q j
Ky

)

(8)

returning the 2-dimensional Fourier Spectrum F(vp, vq)

at the frequencies vp and vq for p = 0, 1, . . . Kx −1 and
q = 0, 1, . . . Ky −1. The Fourier Transform is complex-
valued and can generally be described by a real and an
imaginary part as

F(vp, vq) = a(vp, vq) − ib(vp, vq), (9)

where a and b are the Fourier coefficients at the frequen-
cies vp and vq .

3. The 2D-PSD is then estimated by

φ(vp, vq) = Dx Dy
∣∣F(vp,vq)

∣∣2 , (10)

as the square of the amplitude spectrum
∣∣F(vpvq)

∣∣, where

∣∣F(vpvq)
∣∣ =

√
a2(vp, vq) + b2(vp, vq), (11)

and scaled to the grid dimension Dx = Kx · �x and
Dy = Ky · �y. The frequencies are defined as vp =
p/Dx in the row direction and as vq = p/Dy in the
column direction (their unit is km−1). Note that only
the one-sided spectrum is of interest (corresponding to
the upper left quadrant of the 2D-Fourier Transform),
as the 2D-PSD is mirrored at its centre. The unit of
the PSD is mGal2km2 for gravity anomalies. As exam-
ple, Fig. 3 (left plot) shows the corresponding 2D-PSD
of the previously introduced dV-SPH-RET2012 gravity
disturbance grid, which exhibits the radial decay of the
signal power with rising frequency and a sudden drop
at vp = vq ≈ 0.1078 km−1 which corresponds to the
maximum harmonic degree (=2160) of the model.

4. In order to obtain a 1D-PSD which later can be trans-
formed to degree variances, a so-called “azimuth aver-
aging” (Forsberg 1984a) procedure is applied to the
2D-PSD. Values along equi-frequency circles (values at
the same azimuth distance from the upper left corner of
the PSD-matrix) are averaged, following

φ(vi ) = φ
(√

ν2
p + ν2

q

)
(12)

In other words, frequency classes Vi are to be defined
containing the average PSD corresponding to the aver-
age frequency vi within the class boundaries Vi − �h

2 ≤
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Fig. 3 Two-dimensional power spectrum density φ(vp, vq ) in log10
(mGal2 km2) (left) and the corresponding spherical harmonic degrees
(right) of the Fourier Spectrum derived from a global 5′ × 5′ dV-SPH-

RET2012 grid evaluated from degrees 0…2160; the black illustration
in the right plot shows the meaning of the class-width parameter �h of
the azimuth-averaging procedure

√
ν2

p + ν2
q < Vi +�h

2 , where�h is the class width (Fig. 3,

right plot). The parameter �h then defines the spec-
tral resolution of the approach and directly affects the
smoothness of the computed degree variance curve (see
step 5 and Fig. 4).

5. Finally, the obtained azimuth average φ(vi ) of the
2D-PSD is scaled to physically interpretable quanti-
ties related to the signal contained in the coefficients
of a spherical harmonic representation of the gravita-
tional potential. The transformation is given in (Forsberg
1984b, pp. 8–10) and is a good approximation especially
for high spherical harmonic degrees (l > 10). Hence, it is
well suited to determine the signal at short spatial scales.
It is based on the similarity of the shape of the Bessel
functions J0 and Legendre Polynomials Pl , as shown in
Forsberg (1984a): Pl(θ) ≈ J0(

2l+1
2 · θ) with a relative

error of 1 % at l = 10 and θ = 8.1◦. We investigated the
approximation errors in detail for various degrees and
latitudes. Our numerical investigations show that the rel-
ative error of this approximation stays below 10 % for
θ ≤60◦ and below 25 % for θ ≤90◦ up to degree 90,000.
Degree variances c2

l are then (approximately) obtained
by

c2
l ≈ l + 1

2

2π R2 φ(vi ), (13)

where R is Earth’s mean radius 6,371,008.77 m (c.f.
Moritz 2000) and l denotes the spherical harmonic
degree. The degree variances are defined for the “nat-
ural” wave numbers, which are the frequencies vi =
(l + 1

2 )/(Rπ). The frequencies vi can easily be trans-
formed to the corresponding spherical harmonic degree
by the simple relation

l = (π R) · vi − 1

2
. (14)

The approach, e.g. finds application in studies by Fors-
berg (1984a, b), Vassiliou and Schwarz (1987), Flury
(2006), Voigt and Denker (2007), Jekeli (2010) and
Szücs et al. (2014), where the high-frequency part of the
spherical harmonic power spectrum was retrieved from
regional datasets.

The minimum Lmin and maximum Lmax retrievable spher-
ical harmonic degree depends on the dimension of the grid
Dx and Dy and the sampling distance �λ,φ = �x = �y,
respectively:

Lmax = 1

�λ,φ[◦] · 180◦ − 0.5 = 1

�x,y [km]
· π R − 1

2
(15)

Lmin = 1

Dλ,φ[◦] · 180◦ − 0.5 = 1

Dx,y [km]
· π R − 1

2
(16)

3.2 Fitting degree variance models through analytical
models

Spherical harmonic degree variances, e.g. as computed from
2D-DFT (see previous section) can be approximated by an
analytical mathematical function relying on a relatively small
number of parameters. These so-called degree variance mod-
els are convenient to describe the decay of the gravity signal
in general, for estimating the signal power of a gravity func-
tional at a specific spatial scale and for extrapolating its power
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Fig. 4 Degree variances from original topographic potential model dV-SPH-RET2012 (in black) and the degree variances retrieved by 2D-DFT
(coloured lines) for various different class widths �h (in degrees); degree variances are in mGal2

to shorter spatial scales. Three selected mathematical mod-
els are used to represent computed degree variances in this
work, which date back to Kaula (1966), Tscherning and Rapp
(1974) and more recently Sanso and Sideris (2013). In brack-
ets the gravity functional to which the mathematical models
refers to is given along the lines of the notation in Sect. 2.3.

The functional model of Kaula’s degree variance model
is given by

c2
K (l) = A

l B
(=c2

l [� = 1]), (17)

where A = 1.6 · 10−10 (unit: dimensionless) and B = 3.The
functional model (Eq. 17) is referred to as Kaula-type in
the following. The original model of Tscherning and Rapp
(1974) refers to gravity anomalies and is parameterised
as
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c2
T Rorig(l) = A(l − 1)

(l − 2)(l + B)
· σ l+2

0
⎛

⎝= c2
l

⎡

⎣� = (l − 1)2

(
GM · 105

R2

)2
⎤

⎦

⎞

⎠ for l ≥ 3

c2
T Rorig(2) = 7.54 mGal2

c2
T Rorig(0, 1) = 0, (18)

where A = 425.28 mGal2, B = 24 and σ0 = 0.999617
(unit: mGal2). In Sanso and Sideris (2013) the best fitting
Tscherning/Rapp model w.r.t. EGM2008 is parameterised as

c2
T REGM08

(l) = A · Bl

(l − 1)(l + 2)(l + 4)
(=c2

l [� = 1]), (19)

where A = 2.8 · 10−10 (unit: dimensionless) and B =
0.998365. Note that this version differs from the original
model (Eq. 18). Sanso and Sideris (2013) also present a mod-
ified version of their functional model

c2
SS(l) = A · Bl

(l − 1)(l − 2)(l + 4)(l + 17)
(=c2

l [� = 1]) (20)

to better analytically fit the spectrum of the EGM2008 gravity
field model. We denote this functional model as Sanso/Sideris
type. (Sanso and Sideris 2013, p 158) have published (dimen-
sionless) coefficients A = 3.9 · 10−8 and B = 0.999443
(ibid, Eq. 3.178) as best fitting analytical description of the
EGM2008 spectrum. However, as will be shown in Sect. 4,
Sanso and Sideris’ numerical values for A and B are erro-
neous and do not fit the EGM2008 spectrum well. Instead,
Eq. (20) evaluated with A = 5.0 × 10−8 and B = 0.999845
(derived in this paper with the procedure described next) fits
the EGM2008 spectrum in a least squares sense. The func-
tional model in Eq. (20) is well suited to describe spectra of
EGM2008 and GGMplus (cf. Sect. 4).

Fitting the above models (Eqs. 17, 19 and 20) to com-
puted degree variances is done in an iterative least-squares
adjustment approach. During the fit the observations (i.e., the
degree variances) are assumed to be without errors and conse-
quently, the adjustment yields the same results as a regression
(residuals are not used to improve observations).

The gravity signal expressed by degree variances shows a
characteristic decrease over several orders of magnitude with
increasing spherical harmonic degree, most of it happening
in the low degrees. This non-linear behavior would lead to a
bias of the fitted curve in the adjustment to the low degrees,
where the signal is much larger. In order to overcome this
issue the degree variance is substituted by its logarithmic
value y:

y(l) = log10(c
2(l)). (21)

Table 2 Partial derivatives of the functional models (Eqs. 17, 19, 20)
by the unknown parameters A and B as needed for the design matrix J

∂y
∂ A

∂y
∂ B

y = log10 c2
K

1
ln(10)·A − ln(l)

ln(10)

y = log10 c2
TREGM08

1
ln(10)·A

l
ln(10)·B

y = log10 c2
SS

1
ln(10)·A

l
ln(10)·B

Another alternative (not further used here) would be to lin-
earize the functional models, e.g., using a Taylor series as
proposed by Jekeli (1978).

The partial derivatives ∂y
∂ A and ∂y

∂ B of the three functional
models which are needed for the development of the respec-
tive design matrix J are given in Table 2. When equal and
uncorrelated observations y(l) are assumed the weight matrix
turns into the identity matrix and the adjustment is given by

�x̂ = (J ′ J )−1 J ′w, (22)

where �x̂ = [� Â �B̂] is the vector of the adjusted cor-
rections of the initial parameters A0 and B0. The vector
w describes the disagreement between observations and the
function evaluated with the initial parameters

w = y(l) − log10(c
2(l, A0, B0)). (23)

Then the adjusted parameters are

Â = A0 + � Â (24)

B̂ = B0 + �B̂. (25)

The iterative process is terminated when � Â < 10−13 and
�B̂ < 10−8 (for Kaula-type models �B̂ < 10−5). Using
these criteria four to five iterations are found to be necessary
for the fit (up to ten for Kaula-type models), depending on
the choice of the initial parameters.

3.3 Empirical investigation of the 2D-DFT approach

3.3.1 Effects of class width, averaging, regional coverage
and evaluation height

In the literature, the 2D-DFT approach described above (Sect.
3.1) has been applied on local or regional data sets. The
application of the method with global scope needs further
investigation. We focus on determining the approximation
errors by comparisons between 2D-DFT-recovered spec-
tra from dV-SPH-RET2012-derived gravity against those
directly from the dV-SPH-RET2012 SHCs which serve as
true reference. This allows us to test the influence of free
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parameters in the 2D-DFT (e.g., class width) in a closed-
loop environment.

Of particular interest is the effect of tiling of the input
gravity grids on the spectra in view of an application of the
2D-DFT to compute degree variances from GGMplus (see
Sect. 4.1). It provides gravity at the surface of the topogra-
phy only over the continental landmasses of the Earth (except
for polar regions). We, therefore, compare the global spec-
tra recovered from regional averages with spectra recovered
from one global grid processed at once, study the effect of the
data extent and investigate the role of the evaluation height
in the synthesis of dV-SPH-RET2012 gravity on the degree
variances spectra. Next we test a range of simple scenar-
ios based on the global 5 arc-min grid of dV-SPH-RET2012
gravity disturbances (Fig. 1; Eq. (4)) as input for the
2D-DFT.

• Processing a global grid
In this test, we apply the 2D-DFT to the global dV-SPH-
RET2012 gravity disturbance grid without any tiling. The
mean latitude of the global grid is zero and Dy and Dx

become 40,075.0 km and 20,035.5 km, respectively. The
recovered degree variances (Fig. 4a) show greatest devi-
ations from the original degree variances (black line)
for the very low (<40) and very high degrees (>2000),
see detail plots in Fig. 4b, c. In the low frequencies the
deviations are directly related to the azimuth averaging
and the chosen class width, e.g. �h = 50 (cyan line),
which in this case indicates that the computed degree
variance values are actually averages over ±25 spherical
harmonic degrees of the denoted degree. Thus, the para-
meter �h (see Sect. 3.1) defines the spectral resolution of
the 2D-DFT approach and �h = 20 seems to be a good
compromise in terms of smoothness and spectral resolu-
tion. As the signal decay is very steep (and exponential)
near the low-degree harmonics, the averaged values are
rather overestimates.
In the very high frequencies, the signal is underesti-
mated as the recovered degree variances dip away beyond
degree ∼2000 (Fig. 4c). The behavior in the high degrees
is related to the chosen gravity grid sampling of 5 arc-min,
which is near the Nyquist frequency for high harmonic
degrees (the high frequencies near degree 2160 are not
well represented at 5 arc-min resolution). By increasing
the grid sampling to 1 arc-min (oversampling of factor
5) in the synthesis, the signal power beyond 2000 can
be retrieved with almost the same quality as for degrees
<2000 (not shown here). The recovered degree variances
correctly drop by about eight orders of magnitude around
degree 2160, which is the resolution of the input model.

• Role of tiling and averaging
In a second step, the global grid of synthesised gravity
disturbances is divided into 2592 5◦×5◦ tiles and each of

Fig. 5 Closed-loop performance of 2D-DFT approach based on the
topographic potential model dV-SPH-RET2012 when applied on global
grid (blue lines) and on 5◦ × 5◦ tiles with consecutive averaging (green
lines) in terms of gravity disturbances (mGal2)

the tiles is evaluated by the 2D-DFT approach. The aver-
age of the 2592 computed degree variances (Fig. 5a, green
line) oscillates around the true degree variances (black
line). For comparison purposes, the 2D-DFT-recovered
spectrum of the global dV-SPH-RET2012 gravity grid
is shown too (Fig. 5a, blue line), revealing there are no
notable oscillations. The amplitude and frequency of the
oscillations associated with the tiling are to some extent
related to the tile size (decreasing the tile size leads to a
lower frequency but a higher amplitude and vice versa).
The ability for retrieval of the low-degree harmonics is
limited because the maximum wavelength in a 5◦×5◦ tile
is ∼555 km. Therefore, the spherical harmonic degrees
below ∼36 cannot be recovered, which explains why the
low-frequency power cannot be retrieved in the same
manner as the 2D-DFT applied to a global grid. How-
ever, this effect is non-critical for this study because of
our interest in the GGMplus gravity field spectra at short
scales.
Fitting a Sanso/Sideris-type model (Eq. 20) to the
averaged degree variances between degree 50…2000
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Fig. 6 2D-DFT signal degree variance fits from synthesised dV-SPH-
RET2012 gravity disturbance grid in dependence of different global
coverage

(Fig. 5b, dashed green line for spectra from tiled data,
dashed blue line for grid processed as whole), the dif-
ferences with respect to the true dV-SPH-RET2012
SHC-derived spectrum are at the 10 % level and hardly
exceed 20 % (Fig. 5c).
In summary, the fairly good agreement in the closed loop
tests show that the 2D-DFT method is capable of recov-
ering the gravity power spectra with reasonable quality.
There are ∼10 % errors over much of the spectrum when
using regional tiles. The choice of the tile size puts limi-
tations to the minimum recoverable degree and the tiling
and averaging leads to an oscillation of the signal around
the original degree variance. Most importantly, the oscil-
lations do not deteriorate the fit, and the precision of the
tiling and averaging procedure is commensurate or even
better compared to processing a global grid at once.

• Role of coverage
In view of spectrally analysing GGMplus gravity maps,
available only for land areas in between 60◦ North and
56◦ South, the effect of different global coverage on the
spectra is important. Therefore, the dV-SPH-RET2012
gravity disturbance grid is divided into 10◦×10◦ tiles and
degree variance averages for selected spatial coverages
are computed and analysed. The fitted degree variance
curves in Fig. 6 indicate the following: polar regions con-
tain less topographic gravity signal over nearly all scales,
because excluding tiles North of 60◦ and South of −60◦
latitude from the average (red line) leads to more power
in the degree variances than the global grid (dark blue
line); additionally excluding all tiles entirely located over
the oceans (green line) leads to even more power in the
degree variances; hence, the continental areas are covered
by higher-power topographic gravity features compared
to the bottom of the oceans. Conversely, averaging only
the degree variances from ocean tiles (light blue line)
leads to signal power below the global energy level in

the spherical harmonic domain. Note that these consid-
erations hold for the topographic potential (and probably
for gravity at very short scales), but not necessarily for
Earth’s actual gravity field.

• Role of evaluation height
In the experiments above gravity values were synthesised
on the sphere (r = R). In geodetic practice, gravity
is often given on the surface of the topography (e.g.
measurements or gravity models such as GGMplus). In
spherical approximation, evaluation at the surface of the
topography is done by introducing r = R + H in Eq.
(4). Gravity signals at the reference surface (e.g. sphere)
are downward-continued and thus amplified compared
to signals at the surface of the topography. In Fig. 7 the
2D-DFT procedure has been applied to a global grid of
gravity disturbances of the spherical topographic poten-
tial model dV-SPH-RET2012

• evaluated at the surface of the model’s reference
sphere (light blue line) and,

• evaluated at the surface of the topography (red line)
using an upward continuation technique along with
gravity gradients of up to sixth order (see Hirt 2012
for details).

For comparison purposes, the true dV-SPH-RET2012
degree variances computed from SHCs are shown as well
(dark blue line). The degree variance curves start to deviate
near degree 600 where the red degree variances fall below
the energy level of degree variances at the sphere. At degree
2000 the difference between the “topography-residing” and
the “sphere-residing” degree variances reaches a factor of
∼2.8.

This behaviour is explained by the attenuation of grav-
ity with height. At the reference sphere gravity (e.g. gravity
disturbances) is downward continued, thus amplified. With
increasing height gravity becomes attenuated. This particu-
larly affects short-scale signals because the attenuation effect
becomes stronger the shorter the associated wavelengths.
From Fig. 7, it is thus important to discriminate between
spectra of gravity provided at the reference sphere, and those
at the surface of the topography.

3.3.2 Degree variances in ellipsoidal and spherical
approximation

To study the effect of ellipsoidal approximation (see Sect. 2.2
for the definition in our context) in the 2D-DFT technique,
we have synthesised gravity from the ellipsoidal topographic
potential model dV-ELL-RET2012 (which is the counter-
part to the spherical topographic model dV-SPH-RET2012)
and investigated the (2D-DFT) recovered spectra. The orig-
inal degree variance spectra of dV-ELL-RET2012 (green
line) and dV-SPH_RET2012 (blue line) already differ, and
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Fig. 7 Results of 2D-DFT experiments using two different models
evaluated on different surfaces such as sphere, ellipsoid and topog-
raphy: (1) topographic potential model dV-SPH-RET2012 (blue line)
recovered from gravity disturbances evaluated at the sphere (cyan line),

at the topography (red line), (2) topographic potential model dV-ELL-
RET2012 (green line) recovered from gravity disturbances evaluated at
the ellipsoid (cyan cross), at the topography (red cross); unit in mGal2

the decay of the ellipsoidal approximated spectra (green) is
stronger than the spherical approximated spectra (blue) with
increasing degree (Fig. 7). This is due to different attenuation
factors ((a/R)l+1vs.(a/re)

l+1) that are implicitly contained
in the spherical harmonic coefficients (c.f. Claessens and Hirt
2013). In Fig. 7 the 2D-DFT technique has been applied to a
global grid of dV-ELL-RET2012 gravity disturbances

• evaluated on the surface of the model’s reference ellipsoid
(light blue crosses); r = re [see Eq. (4)]; and

• evaluated at the surface of the topography using the
gradient continuation technique as above (red crosses);
r = re + H [see Eq. (4)].

Importantly, the recovered spectra of dV-ELL-RET2012
(light blue/red crosses, Fig. 7) almost exactly follow the
recovered spectra of dV-SPH-RET2012 (light blue /red line)
(see last paragraph of previous subsection). This is due to the
spherical nature of the 2D-DFT approach, given by apply-
ing a constant radius R in Eq. (13). Hence, the 2D-DFT
refers to a truly spherically approximated Earth and cannot
be used to recover degree variances in ellipsoidal approxi-
mation. When applying the 2D-DFT approach to a grid of
gravity disturbances from the ellipsoidal topographic poten-
tial model dV-ELL-RET2012 (2…2190), we obtain degree
variances which are (quasi) transformed/compatible to their
spherical counterpart (dV-SPH-RET2012).

The distinctly different decay between spherical and
ellipsoidal approximation can be expressed by the ratio
cl (dV-ELL-RET2012)
cl (dV-SPH-RET2012)

(black line, Fig. 8). For the very low
degrees the approximations nearly coincide while the gap
becomes larger (non-linearly) towards the high degrees,
where the spectra differ in the order of 10−1 at degree 2160.

Describing this ratio by α
e/s
l , a 1st order polynomial (as

exponent to 10) as a function of the degree l with k0 =
−4.5511 × 10−2 and k1 = −4.1104 × 10−4 following

cl(dV-ELL-RET2012)

cl(dV-SPH-RET2012)
∼ α

e/s
l = 10(k0+l·k1) (26)

yields quite a good fit for degrees larger than 150 (see red
line, Fig. 8). In Eq. (26) the superscripts e/s indicate it is
a ratio between degree variances of ellipsoidal and spheri-
cal approximation. In approximation the ratio α

e/s
l can now

be used as an empirically derived rule of thumb for a trans-
formation of degree variances of any degree l > 150 from
spherical to ellipsoidal approximation of the underlying mass
distribution, and vice versa.

Note that the empirical law is derived from degree vari-
ances of the topographic potential and, therefore, it is primar-
ily applicable to any functional derived from this topographic
potential. As the dimensioning factor � in Eq. (3) cancels
out in the ratio, the rule is valid for any gravity functional. As
an aside, fitting an 8th order polynomial to the ratio yields
a very good fit for degrees l <150 (see green line, Fig. 8);
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Fig. 8 Ratio between the spherically and the ellipsoidally approximated degree variances of the topographic potential (dimensionless)

however, eight parameters are not considered very handy for
a rule of thumb.

The rule of thumb applied to both RET2012 topographic
potential models (Fig. 9) shows an average disagreement
of 2.1 % (over all degrees) to the respective other model,
with discrepancies per degree hardly exceeding 10 %. The
rule of thumb allows generation of a spherically approxi-
mated spectrum of EGM2008 (or any other potential model)
at degree variance level (grey line, Fig. 9), which closely fol-
lows the spherically approximated model dV-SPH-RET2012
(for degrees >∼250).

Besides, Fig. 9 shows that the spectrum of the Earth Grav-
itational Model 2008 model (black line) can be directly
compared with that of the dV-ELL-RET2012 model. The
very close agreement over most part of the spectrum demon-
strates that EGM2008 is in ellipsoidal approximation (as
expected).

3.3.3 Discussion

The above experiments investigating the 2D-DFT approach
provide valuable insight into the interpretation of degree vari-
ances of the topographic potential and the applicability of the
2D-DFT approach for recovery of these spectra.

In general, the experiments show that due care is needed
in the interpretation of degree variances obtained from grav-
ity values measured/synthesised on the topography. At the
reference surface (r = R) the gravity is amplified (for all
functionals), e.g. gravity disturbances according to ( R

r )l+2.
Therefore, the 2D-DFT spectra generated from gravity at the

topography (r > R) exhibit less energy than those retrieved
directly from the original spherical harmonic models that
refer to the underlying reference body, especially in the high
degrees (beyond degree 600). In order to be consistent, the
gravity values would have to be downward continued to the
reference body of the geopotential model before applying the
2D-DFT procedure.

Additionally, the type of approximation chosen for the
underlying mass distribution of a topography-implied SH
model, i.e. spherical or ellipsoidal approximation, yields
different energy levels in the spectrum according to an atten-
uation factor that is implicitly contained in the spherical
harmonic coefficients. The spherical approximation, histori-
cally and even today, often plays an important role in forward
modelling Newtonian gravity from the topographic masses
(Balmino et al. 2012; Hirt and Kuhn 2014).

With the new empirical rule of thumb (Eq. 26), derived
from two topographic potential spectra, one can transform the
degree variance between its spherical and ellipsoidal repre-
sentation (Fig. 9). The method is only approximate (∼10 %)
and derived from topographic potential models; thus it may
yield larger discrepancies for geopotential models, especially
at low-degree harmonics. Furthermore, the transformation
applies in degree variance domain and is a good approxima-
tion at least for the degrees 150 to 2160.

The comparison of the degree variances shows that the
spectral power of the ellipsoidal models is (seemingly)
smaller than of the models in spherical approximation, and
this effect becomes more pronounced as the harmonic degree
increases (Fig. 7, particularly Fig. 9). This behavior of the
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Fig. 9 Transformation of the degree variances of three selected spherical harmonic models between their ellipsoidal and their spherical approxi-
mation using the rule of thumb (Eq. 26)

degree variances reflects that the mass distribution in spher-
ical approximation is close to the reference radius, while
being up to ∼20 km below the reference radius (at the poles)
in ellipsoidal approximation. Because of the radial damp-
ening of the field, the amplitudes of the degree variances
are thus much lower in ellipsoidal approximation. This is
both the case for EGM2008 and the topographic poten-
tial model dV-ELL-RET2012, both reflecting ellipsoidal
mass distributions. The lower spectral energy associated
with the ellipsoidal models (Fig. 9) does not represent a
smoother gravity field, but rather the (ellipsoidal) location
of field-generating masses w.r.t. to the reference radius of
the spherical harmonic model.

Balmino et al. (2012) noted different energy levels
between their topographic potential and the EGM2008
geopotential model at short spatial scales, down to degree
2160 (ibid, see Fig. 10). The authors find the spectral energy
of the topographic potential to be “significantly larger” and
attribute this to a “well known sign of a compensation mech-
anism such as isostasy”. However, our results show that the
differences simply reflect two levels of approximation: While
EGM2008 is in ellipsoidal approximation, their generated
topographic potential coefficients are in spherical approxi-
mation as they reflect the topographic masses arranged on
the surface of a sphere. Our work, especially the developed
rule for the transformation between the two approximations
(ellipsoid vs. sphere), can thus be seen as an extension to
their work. We expect the developed rule to make their power
spectrum more compatible to models in ellipsoidal approxi-
mation, such as EGM2008.

Fig. 10 Global coverage with utilized GGMplus 2.5◦ × 2.5◦ tiles and
their classification into seven terrain RMS classes

The 2D-DFT approach is capable of delivering spherically
approximated spectra only. This is because it relies on the
transformation of Forsberg (1984a), which uses a constant
(mean) Earth radius (Eq. 13). Applying the 2D-DFT glob-
ally for recovery of gravity spectra yields pleasingly good
results given the simplicity of the approach and taking into
account that some 2D-DFT prerequisites are being violated
(e.g. equidistant spacing, periodicity). This even holds true
for working in small tiles and consecutive averaging over the
spectra of all tiles. With the tiling procedure, the degree vari-
ances of a potential model can be retrieved from a global grid
with discrepancies at the 10–20 % level over large parts of
the spectrum by fitting an appropriate degree variance model
to it. The tiling allows for the evaluation of degree variances
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in selected regions of the Earth, e.g. the spectral energy over
polar regions, continental landmasses, the oceans or areas of
different terrain type. The method is, therefore, suited for the
estimation of high-degree spherically approximated degree
variances from GGMplus gravity grids (next section).

4 Approximation of the Earth’s gravitational
potential energy to ultra-short spatial scales

4.1 Data and processing

In this section information on the data and the workflow for
an approximation of the power spectrum of the topographic
potential as implied by the Earth’s land topographic masses
in terms of degree variances for the degrees 2160 up to 90,000
by 2D-DFT are provided.

For this purpose we make use of the GGMplus (Hirt et al.
2013) gravity maps. GGMplus is a set of digital gravity maps
available for different gravity functionals with near-global
coverage (all landmasses from −56◦ to 60◦ latitude). The
gravity implied in the maps is a combination of satellite grav-
ity, gravity as given by EGM2008 (Pavlis et al. 2012) and
forward modelled topographic gravity up to ultra-short scale.
In the low to mid-range frequencies (degrees 0…∼180) the
maps rely on a combination of ITG-GRACE (Mayer-Gürr
et al. 2010) and GOCE (Pail et al. 2010) satellite information
(equivalent to GOCE-TIM4 release). Gravity information
from EGM2008 (Pavlis et al. 2012) supersedes the satellite-
only information in the maps near degree 190. EGM2008 is
dominant in the degrees 200…2190. From degree 2160 up
to degree ∼90,000, corresponding to spatial scales ranging
from ∼10 km down to ∼220 m, the maps rely on for-
ward modelled topographic gravity. The forward modelling
is achieved assuming a standard rock-density of 2670 kg/m3

and applying residual terrain modelling (RTM) procedures
(Forsberg 1984b) based (mainly) on topographic informa-
tion of the Shuttle Radar Topography Mission (SRTM) (Farr
et al. 2007). More information on the computation of the
GGMplus maps can be found in Hirt et al. (2013). The
maps can be accessed at http://ddfe.curtin.edu.au/models/
GGMplus/.

We have chosen GGMplus maps of gravity disturbances
(radial derivative of the disturbing potential) which provide
the anomalous part of the gravity acceleration with a formal
resolution of 0.1 microGal (1µGal = 10−8 m

s2 ) for the eval-
uation with the 2D-DFT. In principal, other functionals, e.g.
quasi-geoid heights, could be used likewise for the evalua-
tion. However, topographic gravity signals at scales of 250 m
might not be represented fully by the provided data resolution
of 1 mm for quasi-geoid heights.

The maps come in 5◦ ×5◦ sized tiles with an equi-angular
grid sampling of 7.2 arc-seconds. Inserting the tile size in

Eq. (15) and the sampling in Eq. (16), yields a minimum and
maximum retrievable degree of ∼36 and ∼90,000, respec-
tively. Hence, both the 2D-DFT method and the data allow the
approximation of power spectra of the topographic potential
between degree 2160 and ∼90,000.

The processing of the GGMplus tiles exactly follows the
procedure of our closed loop test performed with tiles of the
topographic potential model dV-SPH-RET2012 (Sect. 3.1),
except for the tile size which is decreased to 2.5◦. The smaller
tile size allows finer selection of ocean and non-ocean tiles,
thus taking into account more gravity data closer to the shore
line, extending the landmasses covered by our analyses (see
Fig. 10). The degree variances are computed for each sin-
gle 2.5◦ × 2.5◦ inland tile and then all tiles are averaged to
obtain an approximation of the topographic potential degree
variances over the landmasses of the Earth.

As a refinement, this is also done for different types of
terrain: from low- to high elevated terrain. The terrain type is
determined by means of the root-mean-square (RMS) over
the heights in each tile. We will refer to this indicator as
Terrain RMS in the following. The colour of the degree vari-
ances is linked to the class colour attributed to each class in
Fig. 10 that visualises the spatial distribution of the tiles by
Terrain RMS. Seven groups of terrain roughness are defined
given by the following thresholds for the Terrain RMS: 0–
250 m (1), 250–500 m (2), 500–750 m (3), 750–1000 m (4),
1000–2000 m (5), 2000–3000 m (6), >3000 m (7). The latter
class contains parts of the Andes and Himalaya mountains
as highest elevated areas of Earth.

Any tile containing non-available numbers (i.e., cells 10
km or more apart from the coast line) is excluded from the
computation, as gravity is not provided offshore in GGMplus.
Alternatively, (1) ocean tiles could have been filled with zeros
which would underestimate the spectral power, or (2) marine
gravity from altimetry could be filled in, which, however,
does not resolve the field much below 4 arc-min scales.

Our derived degree variance models are based on the func-
tional model of the Sanso/Sideris-type model (Eq. 20), with
the coefficients A and B estimated using our least-squares
fitting procedure (Sect. 3.2). This model has been identi-
fied to approximate the computed degree variances best,
based on the least-square fit residuals. The computed degree
variances of the topographic potential are an approxima-
tion of the Earth’s actual geopotential spectra due to several
reasons:

– The forward modelling in GGMplus uses uniform rock-
density; the actual gravitational attraction caused by the
topographic masses might therefore be over- or underes-
timated in some places.

– The topographic heights used in the forward modelling
are from the SRTM model which is not free of errors (see,
e.g. Rexer and Hirt 2014).

123

Author's personal copy



M. Rexer, C. Hirt

– Approximation errors of the 2D-DFT method for the
computation of degree variances with respect to rigorous
spherical harmonic modelling (about 10–20 % in terms
of degree variances, see Sect. 3, Fig. 5).

– Non-global coverage; GGMplus is limited to the land-
masses in between −56◦ and 60◦ latitude while degree
variances of the spherical harmonic representation are
per se defined in a truly global sense.

We note that GGMplus gravity values and thus also the
derived spectra represent the gravity at the Earth’s surface
(on top of the topography), and not at some reference body
(ellipsoid or sphere).

4.2 Results

4.2.1 Degree variances and models

In this section degree variances estimated from GGM-
plus gravity maps are presented following the procedures
described above.

The black curve in Fig. 11a illustrates the average degree
variance of all 1502 2.5◦ × 2.5◦ tiles. The signal of all aver-
ages shows (1) the decay of the signal with rising degree
and (2) strong oscillations towards the ultra-high frequencies.
The oscillations stem from the tiling of the global grid in 2.5◦
tiles (c.f. Sect. 3). As explained above, the oscillations are of
lower frequency and of higher amplitude the smaller the tiles
are. The oscillations showed not to have negative impact on
the fit. The coloured degree variance curves in Fig. 11a reflect
the average degree variances in our seven different classes
of terrain. With this classification we can give estimates for
the gravitational power of the topographic masses on small
scales as a function of the terrain’s elevation. The variances
confirm that the higher the Terrain RMS (meaning: the larger
the amount of the topographic masses) the higher the gravi-
tational signal (meaning: higher variability of attraction). In
addition, by grouping the tiles by the STD of the elevation
instead of by RMS, we may say that the rougher the terrain
(meaning: the more mountainous) the higher the gravitational
signal, and the flatter the terrain the lower the gravitational
signal (results not shown here in detail).

Fitting curves to the computed degree variances using the
functional model of the Sanso/Sideris-type degree variance
model (Eq. 20) yields the curves in Fig. 11b, with the (indi-
vidual) model coefficients A and B reported in Table 3. Note
that the values in the degree range 0…2160 are extrapolations
for the seven terrain class models, as the models are fitted
from computed degree variances starting at degree 2160. The
degrees below 2160 were neglected because the focus of this
study lies upon the very high frequencies and including the
lower degrees leads to a poorer fit in the upper part of the
spectrum.

Fig. 11 Resulting GGMplus degree variances (total average : black
line); a class averages of the degree variances computed in each tile by
2D-DFT; b fitted degree variance curves for each class by means of a
best fitting Sanso/Sideris-type model (Eq. 20)

The fitted curves provide a clearer picture of the signal
power at all scales. As expected, the average over all tiles
(black curve) is found in the middle of the other curves, close
to the equivalent of tiles with Terrain RMS of around 750 m.

4.2.2 Omission errors from computed degree variance
models

Omission errors in physical geodesy denote the error asso-
ciated with the truncation of the infinite series (of spherical
harmonic functions) at some maximum degree. Degree vari-
ances calculated from degree variance models may easily be
transformed into omission errors. The error εOM is defined
as the sum over all squared spherical harmonic coefficients
CS2

lm of degree l > lmax and thus may be written as

εOM =
∑∞

l=lmax +1

∑l

m=−l
CS2

lm =
∑∞

l=lmax +1
c2

l . (27)

In Table 4 the omission errors for three different truncation
degrees (lmax = 2160, 10,800, 21,600) of popular degree
variance models and of degree variance models computed
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from the different GGMplus spectra are listed. The omission
error here is evaluated up to degree 90,000 (and not up to
infinity) in terms of gravity disturbances and geoid heights.

4.3 Interpretation and discussion of results

When comparing our degree variances to the spherical har-
monic spectra of global geopotential models (or common
degree variance models), we keep in mind that

(a) for degrees higher than 2160, the computed degree vari-
ances reflect only the gravitational signal implied by the
topographic masses,

(b) our degree variances are not truly global (although rep-
resented in spherical harmonic domain) and

(c) the degree variances represent gravity on top of the
topography and not directly at any reference surface (e.g.
a sphere or an ellipsoid). This makes our degree variances
“incompatible” to those from global spherical harmonic
models, which represent gravity downward-continued to
some reference surface. Downward-continuation of the
GGMplus gravity with procedures described in Pavlis
et al. (2012) would make the spectra more mutually com-
patible, however this remains as a future task.

It was shown in Sect. 3.3.1 that (b) leads to an over-
estimation (as poles and oceans are excluded) and (c) to
an underestimation of the power spectrum. Our calculated
degree variances contain a mixture of both effects. This in
turn suggests how the presented degree variances (models)
are to be interpreted and used: they reflect the signal of the
topography-implied gravity field over the continental land-
masses, as sensed directly at its surface (the topography). Due
to the generation procedure our degree variances are close to
spherical approximations of the topographic potential, i.e.
the underlying reference surface is a sphere (see Fig. 7).

As the central result of our study Fig. 12 shows the
fitted GGMplus-based degree variances (solid red line)
together with spectra of other selected degree variance mod-
els (Kaula, Tscherning/Rapp, Sanso/Sideris), and directly
computed spectra from the spherical harmonic model coef-
ficients (EGM2008, and of topographic potential mod-
els dV-SPH-RET2012 and dV-ELL-RET2012). For com-
parison purposes, the 2D-DFT recovered spectra from
dV-SPH-RET2012 gravity (evaluated at the topography,
over continental 5◦ × 5◦ sized tiles within ±60◦ latitude
only, which is comparable to the GGMplus data area)
is shown (dashed blue line). From Fig. 12, the models
clearly group into ellipsoidal approximation (EGM2008,
dV-ELL-RET2012, Sanso/Sideris) and spherical approxi-
mation (dV-SPH-RET2012, Kaula, Tscherning/Rapp). The
latter sets of degree variances have somewhat more power
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Fig. 12 Overview on computed GGMplus degree variances and selected well-known degree variances (from models) in terms of gravity distur-
bances (mGal2); for degrees 0…5000

than those evaluated at the topography (GGMplus and dV-
SPH-RET2012 at the topography).

4.3.1 GGMplus-based omission errors

Looking at the GGMplus-based omission errors (computed
as averages over all 2.5◦ tiles) we find the signal strengths of
omitted signals on the order of ∼9 mGal for gravity (∼1.5
cm for geoid effects) at scales of ∼10 km, ∼ 4 mGal (∼
1 mm) at scales of ∼ 2 km and ∼2 mGal (∼0.2 mm) at
scales of ∼1 km. Our omission errors are lower than those
of Kaula’s rule and somewhat higher than those based on
the Tscherning/Rapp (1974) degree variance model beyond
degree 10,800 (Table 4).

4.3.2 Correction to Sanso and Sideris (2013)

The Sanso and Sideris (2013) degree variance model based
on their numerical values A = 3.9×10−8 and B = 0.999443
(solid grey line) is shown in Fig. 12. This model is in clear
disagreement with the EGM2008 spectrum. Instead, a least-
squares fit of the EGM2008 degree variances is obtained
with Sanso and Sideris’ model along with coefficients A =
5.0×10−8 and B = 0.999845 (dashed grey line). We denote
this as “corrected Sanso and Sideris model”. Note that while
the numerical coefficients listed in Sanso and Sideris (2013)
are not correct, their figures and omission error estimates
seem to be based on coefficients similar to our corrected
model.

4.3.3 Ellipsoidal approximation underestimates omission
errors

Importantly, the GGMplus omission error estimates are con-
siderably larger than those based on EGM2008 spherical
harmonic potential coefficients. Omission errors thus appear
to be much underestimated in ellipsoidal approximation. For
instance, the omission error beyond degree 2160 seemingly
reduces from ∼1.5 cm for GGMplus to ∼0.6 cm (∼0.3
cm) for the corrected (original) Sanso and Sideris model by
virtue of the approximation level. This effect is much more
pronounced for ultra-short scales, e.g., ∼2.2 mGal (from
GGMplus) versus ∼0.12 mGal signal strength (corrected
Sanso and Sideris model) beyond degree 21,600.

These results—to our understanding—show that the ellip-
soidal approximation level of the spherical harmonic spectra
is not compatible with the spherical computation of omis-
sion errors. This is corroborated by the observation that a
∼0.6 cm geoid omission error for degree 2160 expansions
is in contrast to practical results from omission error mod-
elling (e.g., Jekeli et al. 2009; Hirt et al. 2010) showing this
effect to be on the lower cm-level. Using models of spher-
ical approximation type yields more realistic estimates of
the short-scale spectral energy (e.g., Tscherning/Rapp: 2.3
cm, this work: 1.5 cm geoid signals) omitted by degree-
2160 expansions. Another way to obtain realistic estimates
of short-scale spectral energy would be to work entirely with
ellipsoidal harmonics. The spectral energy of spherical har-
monic models in spherical approximation is very close to the
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Fig. 13 Overview on computed GGMPlus degree variances and selected well-known degree variances (from models) in terms of gravity distur-
bances (mGal2)

energy of the truly ellipsoidal harmonic spectrum (compare,
e.g. to Fig. 7, p. 24 in Pavlis et al. 2012).

On the other hand, EGM2008 represents truly global
degree variances, while the GGMplus variances are only
valid over land, where the gravity field power was shown
to be larger than globally. As such, one would expect the true
(albeit unknown) omission error to be somewhat lower than
that derived from the GGMplus land data.

4.3.4 GGMplus-based omission errors for different types of
terrain

Investigation of the omission error dependence on the Terrain
RMS present in the tiles exhibits an increase in omission
error with rising terrain elevation (Table 4). As expected, the
error produced by the truncation of the spherical harmonic
series at some degree >2160 in average is larger in regions
of large topographic masses (Terrain RMS = 7) than in low
elevated regions (Terrain RMS = 1). Although the gravity
signal beyond degree ∼21,600 becomes small (∼2 mGal and
<1 mm) on average, there are regions on Earth where there
is still significant contribution of topographic masses to the
gravity signal. This can be concluded from the maximum
omission error of all 1502 2.5◦ tiles per degree (bottom row in
Table 4), which is found in the Himalayas (75◦E–77.5◦E and
32.5◦N–35◦N). The investigation of the maxima indicates
that at scales less than ∼1 km (degree 21,600) the omission

error can still be on the order of 9–10 mGal (∼2 mm) over
high elevated areas (bottom rows in Table 4).

4.3.5 Corroboration from dV-SPH-RET2012

The GGMplus degree variances are in close agreement with
those from the topographic potential dV-SPH-RET2012 (2D-
DFT recovered using a similar area as GGMplus) at short
spatial scales and nearly coincide at degree 2160 (compare
solid red and dashed blue lines in Fig. 13). The dashed blue
line and the red line express signal strengths of the same
gravity functional (gravity disturbances from topographic
potential model evaluated at the top of the topography)
and over the same region of Earth. Given that a large part
of Earth’s observed gravity field (i.e., GGMplus to degree
2160) is generated by the topographic masses at short scales,
this good agreement between the 2D-DFT-recovered dV-
SPH-RET2012 and GGMplus is within the expectations and
indicates the consistency of our processing procedure.

4.3.6 Validation with Parseval’s theorem

The validity of our processing is assessed by evaluating Par-
seval’s theorem that states identical signal power in space
and frequency domain and, hence, a lossless transformation
between the domains (see, e.g. Papoulis 1984). Parseval’s
Theorem in our case can be written as
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√√√√√
360∫

0

90∫

−90

| f (ϕ, λ)|2 cos φdφdλ =

√√√√√
nmax∫

nmin

cn(l)2dl, (28)

where in our discrete case the left-hand side is equivalent
to the root-mean-square of the function f (ϕ, λ) (in space
domain), here given on a grid, and the right-hand side corre-
sponds to the omission error (in the frequency domain). From
Hirt et al. (2014), Table 3 ibid, the total RMS of GGMplus
gravity and geoid effects at spatial scales of ∼10 km–220
m (where the model relies on topography-implied gravity
only) is 1.6 cm in geoid height (10.59 mGal) in the space
domain [left side of Eq. (28)]. This is in good agreement
with the omission error from the 2D-DFT recovered GGM-
plus spectrum of 1.51 cm (8.62 mGal) from our computed
degree variances for the degree range 2161…90,000 [right
side of Eq. (28)]. The differences are less than 20 % (grav-
ity) and below 10 % (geoid), which is commensurate with
the approximation errors of the 2D-DFT method quantified
in Sect. 3.

4.3.7 Comparison with classical degree variance models at
ultra-short scales

Comparing all degree variance models in the short and the
ultra-short wavelengths (Fig. 13) reveals strong divergence.
This is not surprising as the classical degree variance models
were developed based on long/medium-wavelength gravity
data, so are extreme extrapolations in the ultra-high degrees.
Beyond degree 8000 Kaula’s rule shows the least decay, while
the Tscherning/Rapp model indicate much faster decay of the
gravity signal. The GGMplus-derived signal (representing
continental, forward modelled gravity as synthesised on top
of the topography) resides in between those of the classical
models. Of all degree variance models in Fig. 13, it is only the
GGMplus-based spectrum that is supported by gravity data
(topography-implied) to ultra-fine scales of degree 90,000.

The extrapolation effect of the classical models at ultra-
short scales is evident, e.g., from estimated omission errors
beyond degree 21,600, where the Tscherning-Rapp model
suggest 0.11 mGal gravity signal strengths which is a factor
as large as 20 below those indicated by the GGMplus-based
spectrum (2.2 mGal, cf. Table 4). Conversely, Kaula’s rule
significantly overestimates the gravity signal omission at
these scales by a factor of 7 compared to GGMplus (cf.
Table 4).

4.3.8 Comparison with literature results

Finally, comparing the estimated (spherical) omission errors
from our new degree variance model (Table 4) with previ-
ous regional work we find our values in the same magnitude

range. Voigt and Denker (2007) have estimated the omis-
sion error from RTM gravity effects in three 1◦ × 1◦ bins
in Germany (German Alps, Harz and Franconia), represent-
ing rough and medium-elevated topographic areas. In those
areas the omission error at degree 10,800 in terms of geoid
heights ranges from 0.1 to 0.5 cm (this work: ∼0.13 cm in
average, ranging from 0.04 to 0.34 cm). For degree 21,600
their analyses yield a geoid RMS power of 0.0 to 0.1 cm (this
work: ∼0.045 cm in average, ranging from 0.01 to 0.1 cm).

5 Summary and outlook

This study started with some remarks on topographic grav-
ity modelling and recapitulating the definition and meaning
of degree variances and current degree variance models. For
the approximation of signal powers of Earth’s topographic
potential from gridded gravitational field quantities in terms
of degree variances we describe and investigate the 2D-DFT
approach dating back to Forsberg (1984a) and Flury (2006)
and discussed curve fitting based on the analytical functions
of common degree variance models. Closed-loop experi-
ments with the 2D-DFT approach on global scale revealed
that

(a) the approach can be used for recovery of degree vari-
ances with 10–20 % accuracy;

(b) this holds true also for tiling of the global grid and con-
secutive averaging (and fitting) of the degree variances
obtained in each tile;

(c) the tiling and averaging leads to an oscillation of the sig-
nal around the original degree variance; the oscillation’s
frequency and magnitude are linked to the tile size;

(d) the azimuth averaging procedure determines the smooth-
ness and the spectral resolution of the computed degree
variances.

As key result of this work, we applied the 2D-DFT procedure
to GGMplus gravity maps, yielding a new degree variance
model for gravity signal strengths at the surface of the topog-
raphy:

c2
GGMplus(l) = 1.79 · 10−7 · (0.999995)l

(l − 1)(l − 2)(l + 4)(l + 17)
(29)

This model is supported by about 3 billion points of GGM-
plus topography-implied gravity effects at spatial scales of
10 km to 220 m over all land areas where SRTM data is
available. The model is thus defined for harmonic degrees
up to 90,000 and allows for estimates of omission errors that
are in the order of ∼9 mGal (∼1.5 cm) at scales of ∼10 km
(degree 2160 truncations), and ∼3.5 mGal (∼1 mm) at scales
of ∼2 km (degree 10,800 truncations). The approximation
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errors caused by the 2D-DFT procedure (instead of rigorous
spherical harmonic modelling) was found to be 20 % or less.

In comparison to degree variance models fitted to spec-
tra of spherical harmonic coefficients/ geopotential models,
the model in Eq. (29) has two major differences that make
it incompatible to those (apart from the fact that the input
GGMplus gravity data are not truly global).

First, it does not describe signal strengths of gravity
downward-continued (amplified) to some reference surface
(which is the case in spherical harmonic models of the topo-
graphic and gravitational potential). Instead, our new degree
variance model describes gravity signal strengths as found at
the surface of the topography. This is compatible with signal
strengths of (unreduced in the sense of not continued) terres-
trial gravity field observations and represents a more natural
way for describing short-scale signal characteristics.

Second, the new degree variance model reflects a spher-
ical approximation of the field-generating masses. It is thus
not compatible with spherical harmonic degree variance
models from geopotential models that reflect the field gen-
erating masses to be —in good approximation—ellipsoidal.
Importantly, degree variance models relying on ellipsoidal
approximation were shown to underestimate the spectral
energy of gravity at short spatial scales. They, therefore,
lead to unrealistically small omission errors. In this context
an empirical rule has been developed to transform spherical
harmonic spectra between spherical and ellipsoidal approxi-
mation. The spherical harmonic spectrum in spherical mass
approximation is found to be very close to a truly ellipsoidal
harmonic spectrum.

While building upon approximations and assumptions,
it is hoped that the new GGMplus-based degree variance
model provides an improved description of the Earth’s grav-
ity spectrum to ultra-fine spatial scales. Refining the chosen
2D-DFT approach through a more sophisticated estimation
of the localized power spectrum, e.g. by multitaper spec-
tral methods/Slepian tapers (e.g. Dahlen and Simons 2008;
Szücs et al. 2014) and a more rigorous analysis of approxi-
mation errors warrant future research. It is also likely that in
the next years spherical harmonic analysis procedures will
be used up to ultra-short scales, yielding further improved
estimates of the signal power at those scales in a truly global
manner.
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P.2 Publication II: Earth2014: 1’ shape, topography, bedrock and
ice-sheet models - Available as gridded data and degree 10,800
spherical harmonics
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Hirt C., Rexer M.: Earth2014: 1’ shape, topography, bedrock and ice-sheet models - Available as gridded data
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Short Summary
Gravity forward-modelling at high-resolution and other geodetic/geophysical techniques require reliable and
densely sampled digital elevation models of Earth’s topographic masses. The herein created model named
Earth2014 is the most up-to-date global topographic model at 1 arc-min resolution, providing topography, ice-
sheet, bedrock and shape geometries. Compared to ETOPO1, Earth2014 includes latest observations and
models over Antarctica, Greenland and parts of the ocean. The different layers were expanded into series
of surface spherical harmonic coefficients complete up to degree 10, 800, allowing to study the spectral short-
scale properties of Earth’s different layer boundaries. For each set of coefficients a degree variance model has
been parametrized. Earth2014 is freely available to the community.

Declaration of own contribution
(MR: Moritz Rexer; CH: Christian Hirt)

CH had the idea to Earth2014 and designed the entire study. CH contributed the largest share of numerical
results, e.g. combination of different data sources. MR performed the harmonic analysis of the boundary
functions (the Earth2014 layers BED, TBI, SUR, ICE and RET) to d/o 10, 800. Additionally, MR fitted degree
variance models to the spectra of all Earth2014 layers. CH is responsible for most of the interpretations and
drafted most of the text. MR drafted the text to sections 3.3 and 4.2, created Fig. 5 and Table 3, while the
remaining tables and figures were created by CH.

The overall own contribution of MR for P-II is estimated at 15 %, which is the (rounded) average value of the
percentage values estimated for the six criteria listed in the table below (Tab. P.2).

Criteria Estimated
own contribution

Computation and results 20 %
Ideas and study design 0 %
Analysis and interpretation 10 %
Text 15 %
Figures 16 %
Tables 25 %
Total 14.3 %

Tab. P.2 – Criteria and estimated contribution share of Moritz Rexer for P-II
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Models of Earth, Mars and Moon

Reference:
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Short Summary
The quadrature theorems based on Driscoll/Healy (DH) and Gauss-Legendre (GL) weights are suitable can-
didates for high resolution spherical harmonic modelling, since they allow exact transforms and are efficient
due to employing Fast Fourier Transforms (FFT). It is shown how numerical underflow/overflow occurring in the
computation of the associated Legendre Functions (ALFs) can be avoided using arithmetically extended num-
bers (so called X-numbers) and how computation times can be reduced to acceptable level by parallelisation
(parallel computing) of certain analysis steps. Both investigated quadrature techniques provide high accuracy
up to some 10, 000s of degrees. The GL quadrature is preferred in terms of computation times. The application
of the techniques is demonstrated by harmonic analyses of the topographic functions of Earth up to degree
43, 200, Mars up to degree 23, 040 and Moon up to degree 46, 080 as needed e.g. for high-resolution spectral
gravity forward-modelling.

Declaration of own contribution
(MR: Moritz Rexer; CH: Christian Hirt)

MR had the idea to demonstrate high-resolution spherical harmonic analysis by quadrature and CH had the
idea to test the procedures with planetary topography models. MR and CH mutually designed the study. MR
developed the software and computed all numerical results. The analysis and interpretation of the results orig-
inate from MR and were improved by discussions with CH. MR drafted the entire text and created all figures
and tables in the paper.
The overall own contribution of MR for P-III is estimated at 90 %, which is the (rounded) average value of
the percentage values estimated for the six criteria listed in the table below (Tab. P.3).
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Criteria Estimated
own contribution

Computation and results 100 %
Ideas and study design 50 %
Analysis and interpretation 90 %
Text 90 %
Figures 100 %
Tables 100 %
Total 88.3 %

Tab. P.3 – Criteria and estimated contribution share of Moritz Rexer for P-III
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Abstract In geodesy and geophysics, spherical harmonic techniques are popular for

modelling topography and potential fields with ever-increasing spatial resolution. For ultra-

high-degree spherical harmonic modelling, i.e. degree 10,000 or more, classical algorithms

need to be extended to avoid under- or overflow problems associated with the computation

of associated Legendre functions (ALFs). In this work, two quadrature algorithms—the

Gauss–Legendre (GL) quadrature and the quadrature following Driscoll/Healy (DH)—and

their implementation for the purpose of ultra-high (surface) spherical harmonic analysis of

spheroid functions are reviewed and modified for application to ultra-high degree. We

extend the implementation of the algorithms in the SHTOOLS software package (v2.8) by

(1) the X-number (or Extended Range Arithmetic) method for accurate computation of

ALFs and (2) OpenMP directives enabling parallel processing within the analysis. Our

modifications are shown to achieve feasible computation times and a very high precision: a

degree-21,600 band-limited (=frequency limited) spheroid topographic function may be

harmonically analysed with a maximum space-domain error of 3� 10�5 and 5� 10�5 m

in 6 and 17 h using 14 CPUs for the GL and for the DH quadrature, respectively. While not

being inferior in terms of precision, the GL quadrature outperforms the DH algorithm in

terms of computation time. In the second part of the paper, we apply the modified

quadrature algorithm to represent for—the first time—gridded topography models for

Earth, Moon and Mars as ultra-high-degree series expansions comprising more than 2

& Moritz Rexer
m.rexer@tum.de

Christian Hirt
c.hirt@tum.de

1 Institute for Astronomical and Physical Geodesy, Technische Universität München, Arcisstrasse
21, 80333 Munich, Germany

2 Institute for Advanced Study, Technische Universität München, Lichtenbergstr. 2 a,
85748 Garching, Germany

3 Western Australian Geodesy Group, Department of Spatial Sciences, The Institute for Geophysical
Research, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia

123

Surv Geophys
DOI 10.1007/s10712-015-9345-z

Author's personal copy



billion coefficients. For the Earth’s topography, we achieve a resolution of harmonic

degree 43,200 (equivalent to*500 m in the space domain), for the Moon of degree 46,080

(equivalent to *120 m) and Mars to degree 23,040 (equivalent to *460 m). For the

quality of the representation of the topographic functions in spherical harmonics, we use

the residual space-domain error as an indicator, reaching a standard deviation of 3.1 m for

Earth, 1.9 m for Mars and 0.9 m for Moon. Analysing the precision of the quadrature for

the chosen expansion degrees, we demonstrate limitations in the implementation of the

algorithms related to the determination of the zonal coefficients, which, however, do not

exceed 3, 0.03 and 1 mm in case of Earth, Mars and Moon, respectively. We investigate

and interpret the planetary topography spectra in a comparative manner. Our analysis

reveals a disparity between the topographic power of Earth’s bathymetry and continental

topography, shows the limited resolution of altimetry-derived depth (Earth) and topogra-

phy (Moon, Mars) data and detects artefacts in the SRTM15 PLUS data set. As such, ultra-

high-degree spherical harmonic modelling is directly beneficial for global inspection of

topography and other functions given on a sphere. As a general conclusion, our study

shows that ultra-high-degree spherical harmonic modelling to degree*46,000 has become

possible with adequate accuracy and acceptable computation time. Our software modifi-

cations will be freely distributed to fill a current availability gap in ultra-high-degree

analysis software.

Keywords Spherical harmonic analysis � Quadrature � Gauss–Legendre � Driscoll/Healy �
Topography � Digital elevation model � Earth � Mars � Moon

1 Introduction

1.1 Motivation

The application of spherical harmonic modelling has a long tradition in Earth and planetary

sciences such as geodesy and geophysics (see e.g., Sneeuw 1994; Wieczorek 2007; Balmino

et al. 2012; Wieczorek 2015). The representation of a function (e.g., gravity field func-

tionals, topography and magnetic field strength) on a spheroid planet in spherical harmonics

(SH) can be used to (1) explore the spectral constituents of a global function (e.g., through

global power spectral densities), (2) spherical harmonic modelling [e.g., combination of

satellite data and/with terrestrial data (Pail et al. 2011)], (3) enable transforms in the spectral

domain [e.g., spectral forward modelling of the topographic potential (Claessens and Hirt

2013)] or (4) to interpolate between discrete points. The two mathematical processes to

expand a function in the spatial domain into spherical harmonics, i.e. spherical harmonic

coefficients (SHCs), and vice versa are known as the spherical harmonic analysis (SHA) and

the spherical harmonic synthesis (SHS), respectively.

Today, many space-borne observation techniques are delivering high-resolution global

data sets (i.e. 10 m to a few hundreds of metres in terms of global topographic data sets:

TanDEM-X (Bartusch et al. 2008) surveyed the Earth with 12-m resolution, and LOLA

(Smith et al. 2010) surveyed the Moon with up to 30-m resolution). Further, there is an

environmentally and politically driven growing demand for geophysical and environmental

modelling. In consequence, the requirements for spherical harmonic computations con-

cerning (1) spatial resolution, (2) numerical accuracy and (3) computational aspects such as
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memory and computation times steadily increase. For ultra-high-degree (i.e. spherical

harmonic degrees of 10,800 and beyond) spherical harmonic synthesis, free software has

become available with the MATLAB-based GrafLab by Bucha and Janák (2013). How-

ever, as far as the ultra-high-degree SHA is concerned, there is a demand to review the

existing SHA methods, eventually providing suitable SHA algorithms and software with

ultra-high-degree capability to the scientific community.

1.2 Past Work

The fast Fourier technique (FFT) (Walker 1996) for spherical harmonic analysis is a

method of choice as it allows efficient evaluation of integrals in the frequency domain

(with transformations between spatial and frequency domain). The most important pre-

requisite for the FFT is that the data are sampled on a regularly arranged grid. In general, a

spherical harmonic analysis using FFT can be performed by numerical integration

(=quadrature) following certain sampling theorems or by least-squares (LSQ) techniques

(Sneeuw 1994). The advantage of the latter is that it is the only SHA technique that allows

stochastic modelling and hence is capable of delivering variance–covariance information

for the estimated spherical harmonic parameters. The major drawback of the LSQ tech-

nique is that for ultra-high spherical harmonic degrees, the normal equations become

extremely large and require large-scale computational resources for its inversion [see e.g.,

Fecher et al. (2013)]. In comparison, quadrature techniques are more efficient to handle, as

they usually (only) require a number fast Fourier transforms and series expansions (see also

Sect. 2.1).

The theoretical foundations and derivations of quadrature techniques for SHA are well

known. For a sound overview on most common methods and related literature, see Sneeuw

1994; Claessens 2006; Driscoll and Healy 1994. Few works exist on the implementation of

ultra-high-resolution spherical harmonic analysis techniques. Recently, some works were

published that comprise spherical harmonic computations up to degree 10,800 at maximum

(Gruber et al. 2011; Abrykosov et al. 2012; Balmino et al. 2012), which is the lower limit

of the degree range taken into consideration in this work.

In Balmino et al. (2012), 1 arc-min topography is analysed ‘‘by a standard quadrature

method applied to 10 � 10 equiangular mean values, and accelerated by the Longitude

Recursion-Partial Sums algorithm’’. Numerical stability of the computed integrals of

associated Legendre functions (ALFs) above degree and order (d/o) 2700 is achieved by

the authors by multiple application of a normalization factor which prevents overflow with

respect to the IEEE limitations on real numbers (Balmino et al. 2012). Abrykosov et al.

(2012) analyse a 1 arc-min gravity anomaly grid. The work relies on the 2D-FFT method

by Gruber et al. (2014) that circumvents shifts of the FFT base by latitude-dependent phase

lags, which occur when data are given in geodetic latitudes and cannot be treated effi-

ciently by an FFT algorithm. The computation of ALFs in Gruber et al. (2011, 2014) is

based on Fourier expansions of ALFs (Hofsommer and Potters 1960), modified as

described in Gruber (2011).

The cited works and this work deal with the harmonic transformation based on spherical

harmonic base functions. With respect to the rotationally flatness of most planets, the use

of ellipsoidal harmonics (EH) is possible likewise (see, e.g., Dassios 2012). EH may even

seem more natural; however, ellipsoidal harmonic tools are not (yet) widely used.
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1.3 This Work

This paper primarily deals with the computational realization and validation of two

numerical quadrature techniques for ultra-high-resolution (surface) spherical harmonic

analysis (Cdegree 10,800): the Gauss–Legendre quadrature and the quadrature based on

Driscoll/Healy’s sampling theorem. As a second aspect, we exemplify the application of

the methods to ultra-high-resolution planetary topography. We make use of the imple-

mentation of both techniques in the Fortran (F90)-based SHTOOLS v2.8 package (http://

SHTOOLS.ipgp.fr/) written by Mark Wieczorek. The relevant routines are extended here

with (1) stable algorithms for the computation of the fully normalized ALFs based on the

Extended Range Arithmetic (ERA) approach (Fukushima 2012) and (2) parallel processing

using OpenMP standards. First, the newly derived routines are validated in a closed-loop

environment of consecutive analysis and synthesis up to spherical harmonic degree 21,600

(later during application, the routines are validated indirectly up to degree 46,080). Then,

the routines are used to investigate the characteristics and differences in spectral energy of

the planetary topography of Earth and Mars as well as the Moon’s body up to ultra-fine

scales based on SRTM15 PLUS and the available Planetary Data System (PDS) data sets.

Major motivation for the analysis of the high-resolution topography is that surface

spherical harmonic coefficients of different powers of the topography may be used to

forward-model the gravitational potential in the spectral (i.e. the spherical harmonic)

domain (see, e.g., Rummel et al. 1988; Wieczorek 2007; Balmino et al. 2012; Claessens

and Hirt 2013; Hirt and Kuhn 2014) at scales far beyond the resolution of gravity-capturing

satellite missions such as the Gravity and steady-state Ocean Circulation Explorer

(GOCE) (ESA 1999), for Earth, or the Gravity Recovery and Interior Laboratory (Grail)

(Lemoine et al. 2014), for the Moon.

The paper is outlined as follows: Sect. 2 briefly introduces the spherical harmonic series

expansion and recapitulates the basic theory of numerical quadrature. In Sect. 3, the

modifications for making the previously introduced algorithms suitable for ultra-high-

degree SHA by extending the SHTOOLS package are described. Computation times,

allocated memory and precision of the algorithms are discussed in Sects. 3.2 and 3.3. In

Sect. 4, the procedures are applied to planetary topography models of Earth, Mars and

Moon (Sect. 4.1), revealing their spectrum up to degree and order 43,200, 23,040 and

46,080, respectively. The application of our procedures is described in Sect. 4.2, and the

results and the overall performance are discussed in Sects. 4.3 and 4.4, respectively.

Finally, we summarize the main findings of this work and give an outlook on future work

in Sect. 5.

2 Theory

2.1 Spherical Harmonic Analysis by Quadrature

Quadratures here denote methods that translate a function on a spheroid into its spectral

constitutes with respect to the spherical harmonic base functions by means of numerical

integration. It is thus, in amore general view, a spherical harmonic analysis procedure such as

SHAbased on least-squares (Sneeuw1994) or collocation techniques (Moritz 1978;Arabelos

andTscherning 1998). Sneeuw (1994) showed that an approximate quadrature can be derived

from the least-squares collocation formulation. For fundamental mathematical relations
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concerning spherical harmonic analysis, see, e.g., Hofsommer (1957), Colombo (1981) and

Sneeuw (1994).

Following the explanations in Sneeuw (1994), in continuous space, the harmonic

coefficients Cnm and Snm may be defined by the two integrals

AmðhÞ
BmðhÞ

� �
¼ 1

ð1þ dm0Þp

Z 2p

0

f ðh; kÞ
cosmk

sinmk

� �
ok ð1Þ

�Cnm

�Snm

� �
¼ 1þ dm0

4

Z p

0

�Pnmðcos hÞ
AmðhÞ
BmðhÞ

� �
sin hoh ð2Þ

where f is the function on a sphere with spherical coordinates h (co-latitude) and k (lon-

gitude) and �Pnm are the fully normalized ALFs of the first kind with

dm0 ¼
1; m ¼ 0

0; m 6¼ 0

� �
: ð3Þ

The spherical harmonic degree and order are n and m, respectively, while ok and sin hoh
are the differentials indicating the integration variables.

Equations 1 and 2 can directly be translated into discrete space, giving the basic for-

mulas for an approximate quadrature (here modified after Sneeuw 1994)

AmðhiÞ
BmðhiÞ

� �
¼ si

1

Nð1þ dm0 þ dmLÞ
X2N�1

j¼0

f ðhi; kjÞ
cosmkj
sinmkj

� �
ð4Þ

�Cnm

�Snm

� �
¼ 1þ dm0

4

XN
i¼1

�Pnmðcos hiÞ
AmðhiÞ
BmðhiÞ

� �
ð5Þ

where N denotes the number of latitude parallels (the equation holds for an equiangular

grid, with 2N � 1 meridian parallels) and si is a weight which is proportional to the sine of

the co-latitude (akin to the sinhdh term in Eq. 2). The weights may be seen as a means to

account for the meridian-convergence-implied distortion of the scaling in each latitude

parallel.

2.1.1 Approximate Quadrature

According to Sneeuw (1994), the weights si may be chosen as

si ¼
p
N
sin hi; ð6Þ

or

si ¼
2PN

k¼1 sin hk
sin hi ð7Þ

and, inserted into Eqs. 5 and 4, may be used as formula for an approximate quadrature.

However, the weights in Eqs. 6 and 7 do not account for the fact that some of the base

functions, namely the Legendre functions, lose their orthogonality in the discrete case

(Sneeuw 1994), and thus, applied in the quadrature, yield approximate values for the

harmonic coefficients only. Two (known) possibilities to ensure the orthogonality of the
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discretized Legendre functions by certain weighting and sampling schemes are presented

in Sects. 2.1.2 and 2.1.3, leading to an exact harmonic retrieval of spherical functions by

numerical integration.

2.1.2 Exact Quadrature Through Driscoll/Healy

Following the quadrature based on Driscoll and Healy’s (DH) algorithm (Driscoll and

Healy 1994), the geographic data have to be provided on a regular (quadratic) grid of

½2nmax þ 2� 2nmax þ 2� ¼ ½N � N� grid points, where nmax is the maximum spherical

harmonic degree (and order) of the coefficients, with latitude parallel sampling of Dh ¼
180�=N and meridian sampling of Dk ¼ 360�=N or on a larger (truly) equiangular grid

(½N � 2N�) with Dh ¼ Dk ¼ 180�=N. The additional information in the larger grid is

ignored by the algorithm; however, grids dimensioned with N � 2N are often used by

global geographic data sets and therefore might be the more practicable grid size. The

number of samples, N, must be even for this type of quadrature, and the spherical harmonic

expansion is exact if the function represented by the grid is band-limited to degree

nmax ¼ N=2� 1. More precisely, the algorithm is based on the fact that ‘‘a function, whose

Fourier transform has bounded support, may be recovered’’ from its uniformly arranged

samples ‘‘with a frequency at least twice the bounding frequency’’ (Driscoll and Healy

1994).

To account for the fact that the sample points near the poles are closer to each other than

they are near the equator, latitude-dependent sample weights are introduced (Driscoll and

Healy 1994), achieving orthogonality of the base functions. The weights ai are given in

Driscoll and Healy (1994, eq. 9, p. 216) as

ai ¼ 4p
2

ffiffiffi
2

p

N
sin

pi
N

� �XN=2
l¼0

1

2lþ 1
sin ð2lþ 1Þ pi

N

� �
for i ¼ 0; . . .;N � 1 ð8Þ

where the factor 4p additionally is introduced into the original equation, as Driscoll and

Healy (1994) use unity normalized spherical harmonics and the quadrature is based on 4p-
normalized spherical harmonics (as is common in geodesy). Then, the coefficients Am and

Bm within Driscoll and Healy’s method for an equiangular grid become

AmðhiÞ
BmðhiÞ

� �
¼

ffiffiffi
2

p

p
ai

X2N�1

j¼0

f ðhi; kjÞ
cosmkj
sinmkj

� �
¼

ffiffiffi
2

p

p
ai

Re Fm f hi; k1. . .k2N�1ð Þð Þð Þ
�Im Fm f hi; k1. . .k2N�1ð Þð Þð Þ

� �

ð9Þ

and, with Eq. 9 inserted into Eq. 5, the surface spherical harmonic coefficients may be

retrieved. The variable Fm denotes the complex-valued fast Fourier transform which is

computed for each ith latitude parallel of the gridded functional f ðhi; ki; . . .; k2N�1Þ and

contains the Fourier coefficients [real (Re) and imaginary (Im) part of Fm]. The back and

forward Fourier transformations are possible because of the periodicity of the function

described by each latitude parallel and because of the orthogonality of the sine and cosine

functions (c.f. Sneeuw 1994).

Note that due to the oversampling needed for the algorithm N or 2N complex Fourier

coefficients are computed (for a quadratic or an equiangular grid, respectively) for each

parallel, of which only N
2
� 1 ð¼nmax ¼ mmaxÞ are used. All frequencies n[ N

2
� 1 are

simply discarded as they would lead to aliasing.
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2.1.3 Exact Quadrature Through Gauss–Legendre

Following the Gauss–Legendre quadrature (GLQ) (or second Neumann method in Sneeuw

1994), an irregular grid (½nmax þ 1� 2nmax þ 1� ¼ ½N � 2N � 1�) with equidistant sam-

pling along latitude parallels and variable sampling along meridians is established. On the

meridians, grid points are at the zero-crossings of the associated fully normalized Legendre

polynomials, i.e. �Pnmaxþ1;m¼0 cos hið Þ :¼ 0. This grid is referred to as Gauss–Legendre grid

or Gauss–Neumann grid (Sneeuw 1994).

Neumann’s latitude-dependent quadrature weights wi (also called Legendre weights)

ensure that the orthogonality of the discrete Legendre functions is guaranteed and is given,

e.g., by Krylov (1962) in Sneeuw (1994)

wi ¼
2

1� cos ðhiÞ2
� �

P
0
nmaxþ1ðhiÞ

� �2
for i ¼ 0; . . .;N � 1; ð10Þ

where P
0
is the first derivative of the Legendre polynomial with respect to h. Then, the

coefficients Am and Bm within the GLQ become

AmðhiÞ
BmðhiÞ

� �
¼ 2wi

X2N�1

j¼0

f ðhi; kjÞ
cosmkj
sinmkj

� �
¼ 2wi

Re Fm f hi; k1. . .k2N�1ð Þð Þð Þ
�Im Fm f hi; k1. . .k2N�1ð Þð Þð Þ

� �
ð11Þ

and, with Eq. 11 inserted into Eq. 5, the surface spherical harmonic coefficients may be

retrieved. The quadrature is exact when the function on the sphere is band-limited to

degree nmax ¼ N � 1.

3 Computational Aspects

This section describes the implementation of the above algorithms for high-degree SHA

under computational and numerical aspects. The starting point for the realization is

existing (open-source) Fortran (F90) routines (http://SHTOOLS.ipgp.fr/) for both

quadrature rules (DH and GLQ) in the SHTOOLS v2.8 package. The package written by

Mark Wieczorek consists of a compilation of F90 routines dedicated to spherical harmonic

computations (e.g., transformations, multitaper spectral analysis).

In SHTOOLS, the implementation of the two quadrature algorithms given above by

Eqs. 9 and 11 inserted in Eq. 5 is done in a very efficient manner by (1) employing FFT for

the evaluation of the sum over longitude-dependent cosine and sine arguments in each

latitude parallel and by (2) exploiting the symmetry of the Legendre polynomials and ALFs

about the equator [Pnmðcos hÞ ¼ Pnmðcos�hÞ]. Due to the latter measure, ALFs are

computed only once for corresponding latitude parallels on the northern and southern

hemisphere. In effect, the loop for the summation in Eq. 5 halves (upper summation index

then is N=2þ 1), leading to significant acceleration of the quadratures. Additionally, the

ALF computation is embedded in the routines, which is time-saving as multiple initial-

izations are omitted and no calls to external modules/routines are necessary (see

SHTOOLS routines: SHExpandDH.f90, SHExpandGLQ.f90).
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3.1 Computation of associated Legendre functions (ALFs)

The key aspect facilitating numerically accurate spherical harmonic computations up to

ultra-high degree and order is numerical stability in the evaluation of the fully normalized

ALFs to ultra-high degree. In contrast to the fully normalized associated Legendre poly-

nomials (�Pn0), the ALFs (�Pnm with m 6¼ 0) are numerically inaccurate when evaluated with

standard recursion formulas for high spherical harmonic degree and order. In the

SHTOOLS package, the computation of the ALFs is realized via the modified forward-

column method (Holmes and Featherstone 2002). This method is a modification of the

standard forward-column recursion which prevents over-/underflow of the ALFs (held in

double precision variables) by applying a scaling factor of 1�280 at the beginning of the

recursion. This modification allows the stable computation of Legendre polynomials to

degree 2700 (Holmes and Featherstone 2002).

Aiming at higher-degree computations, we incorporated the Extended Range Arithmetic

(ERA) approach (Fukushima 2012), also known as X-number approach, for the compu-

tation of fully normalized ALFs, instead. In theory, the ERA allows the stable evaluation of

ALFs up to arbitrary degree and order. Within the algorithm, under–/overflow problems are

omitted by extending the exponent of floating point numbers, keeping the numbers in the

numerical range of ordinary double precision (REAL�8) numbers. The ALF algorithms by

Fukushima (2012) for the computation of the sectorial and tesseral ALFs are comple-

mented by a standard forward-column method for the computation of the zonal Legendre

polynomials (which are unaffected by over-/underflow issues at ultra-high degrees). The

zonal (m ¼ 0) fully normalized Legendre polynomials Pn follow the recursive description

e.g., given in Holmes and Featherstone (2002) as

P0 ¼ 1

P1 ¼
ffiffiffi
3

p
sin h

Pn ¼ Pn�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þð2n� 1Þ

p
n

� cos h� Pn�2 � ðn� 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p

n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 3

p ; for n[ 1:

ð12Þ

To verify the accuracy of the implemented ALF algorithm, tests with exact identities

that represent certain sums of ALFs may be used (see, e.g., identity tests provided in

Fig. 1 Identity error I0 (Eq. 13)
of the implemented ALF
algorithm for various maximum
degrees per latitude parallel. Note
that the green and blue curves are
very close together
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Holmes and Featherstone 2002; Fukushima 2012). We use the identity error defined

by

I0 ¼
PM

n¼0

Pn
m¼0 Pnmðcos hÞ2

ðM þ 1Þ2
� 1 ð13Þ

(cf. Holmes and Featherstone 2002), where the square-sum over all ALFs up to a certain

maximum degree M for any h in the interval �90�\h\90� must equal ðþ1Þ2. Our tests
(Fig. 1) show that for M ¼ 2190; 21;600; 43;200 and 46,080, the error stays well below

1�10 for h[ 5� and below 1�8 for polar latitudes (h\5�). Note that for accurate com-

putation of the identity error in Eq. 13, the variable holding the squared ALFs must be of

quadruple precision (REAL*16).

We acknowledge other methods exist for the numerically stable computation of ALFs at

ultra-high degree (see, e.g., Balmino et al. 2012 or Gruber 2011), which could be con-

sidered for implementation too.

3.2 Parallelization and Computation Times

Ultra-high-degree spherical harmonic computations require efficient parallel computation

techniques. The reason is that the number of parameters and ALFs to be estimated or

computed increases in a quadratic manner with the maximum degree, by ðnmax þ 1Þ2.
Simultaneously, the size of the grid increases quadratically, as raising the degree requires a

finer sampling of the function to be analysed by the quadrature. An overview on the

number of parameters, ALFs and grid points together with related memory allocation is

given in Table 1 for selected spherical harmonic degrees. A degree-21,600 SHA thus

requires the computation of 466.6 million spherical harmonic parameters and the same

number of ALFs per latitude. Even when taking into account the symmetry of the ALFs to

the equator a total of �1013 or*5 � 1012 SHCs and ALFs need to be computed within the

implementation of Driscoll/Healy’s quadrature (DH) and the Gauss–Legendre quadrature

(GLQ), respectively. These large numbers already suggest that using a single CPU is

Fig. 2 Scheme of the general
program structure of the
SHTOOLS quadratures (applies
for GLQ and DH) showing the
location of the implemented
OpenMP parallel loop directive
in this work
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hardly sufficient for high-degree quadratures. Therefore, we make use of the OpenMP

Application Program Interface (API) (www.openmp.org), which provides a flexible

interface for certain CPU directives, enabling shared-memory parallel programming for

multiple platforms in C/C?? and Fortran.

In a first attempt, we make use of the OpenMP Parallel Loop directive, which allows to

share time-consuming loops among a predefined number of threads, i.e. CPUs. There are

generally two major loops needed, one outer loop over all orders m and on inner loop over

all degrees n[m, when it comes to the computation of all sectorial and tesseral SHCs

associated with a certain latitude (and to its symmetrical counterpart) in Eq. 5 together with

Eqs. 9 or 11. The parallel regions are embedded directly into the SHTOOL quadrature (and

synthesis) routines (SHExpandGLQ.f95, SHExpandDH.f95, MakeGridGLQ.f95, Make-

GridDH.f95) and embrace the computationally costly double loop (Fig. 2). Within the

outer loop, the ALF routine is called nmax � 1 times to calculate a vector containing all

ALFs of the same order m, which is then multiplied with the corresponding Fourier

coefficients (or with the corresponding spherical harmonic coefficients in case of SHS

routines) within the inner loop over all degree n for n[m. The resulting ðnmax � 1Þ þ
ðnmax � 1Þ � ðnmaxÞ=2 operations per latitude (e.g., *233.3 million operations for

nmax ¼ 21;600) are shared between the allocated CPUs.

With this kind of parallel processing, computation times of the GLQ quadrature could be

reduced approximately by a factor of 6 and by a factor of 13 of the time needed by a single

CPU using 8 and 14 CPUs, respectively. In the case of using the DH algorithm in the

quadrature, the parallelization reduces to a fifth and a thirteenth of the time needed by a single

CPU using 8 and 14 CPUs, respectively. Absolute computation times of both algorithms are

illustrated in Fig. 3. The CPU time (=computation time times number of used CPUs) of the

here-investigated SHA methods is significantly lower compared to, e.g., the method sug-

gested byGruber et al. (2011).A degree and order 10,800 analysis inGruber et al. (2011) (c.f.

Table 1) takes 	170 CPU hours (in a 16 thread environment), while it takes 	8 CPU hours

using the here-implemented GLQ quadrature (in a 14 thread environment).

We note that at degree 2160 the computation times are about 8 times longer compared

to the original SHTOOLS quadrature routine which is based on the standard forward-

column recursion (47 vs. 376 s). The significant prolongation owes to (1) using the

X-number routines for the computation of the ALFs, which are approximately a factor 2

more time-consuming than the modified forward-column recursion (personal comm.

Fukushima 2015) and to (2) calling an external routine for the computation of the

Fig. 3 Computation times for
spherical harmonic analysis using
the Gauss–Legendre quadrature
(GLQ) and the Driscoll/Healy
quadrature (DH) as a function of
maximum recovered degree and
allocated CPUs
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X-number ALFs. In the original SHTOOLs implementation, the ALF computation is

embedded in between the lines of the quadrature routine which means initialization of

parameters is only done once (and not m times) and storage of ALFs in large arrays is not

required.

In a second attempt, we tried to assign a single core directly to the processing of a whole

latitudinal parallel. This approach turned out to be not feasible because within each lati-

tudinal parallel the CPUs have to update the array holding the SHCs. As the different CPUs

may write (update) an allocated memory within the array at the same time, data integrity is

not ensured. The OMP attribute clauses for shared variables, like ATOMIC or REDUC-

TION, would ensure this kind of integrity. Those attributes, however, only work for scalar

variables. The variable holding the SHCs is an array of dimension ½2; nmax þ 1; nmax þ 1�,
and thus, the attributes are not applicable here.

3.3 Precision of Implemented Algorithms

The implemented DH (Sect. 2.1.2) and GLQ (Sect. 2.1.3) quadratures are exact algo-

rithms, only, when applied to a band-/frequency-limited function that is discretized (or

sampled) in the correct manner. In order to validate both algorithms, we use band-limited

variants of Earth’s relief (topography and bathymetry) and perform two consecutive

analysis and synthesis to create a closed-loop experiment. First, DEM elevations are

resampled according to the respective algorithms’ sampling scheme (described above) by

means of a 2D interpolation (cubically). The obtained grids are harmonically analysed via

the implemented extended SHTOOLS quadratures. The computed spherical harmonic

coefficients can then be used to create band-limited grids of DH or GLQ kind up to degree

21,600, via another synthesis. The synthesis step is validated externally with the freely

available GrafLab software (Bucha and Janák 2013), a MATLAB-based synthesis for ultra-

high spherical harmonic expansions. Our implementation of the synthesis based on

SHTOOLS (see above) is in very good agreement with GrafLab, and errors in the space

domain do not exceed 2� 10�6 m at degree/order 21,600.

The numerical precision of the quadratures given by the maximum absolute error of

analysis and consecutive synthesis of the created band-limited topography function in the

space domain is given in Table 2 for selected maximum spherical harmonic degrees nmax.

The maximum residual errors of both approaches (GL and DH) are in the same order of

magnitude, not exceeding 5� 10�5 m even at maximum degree 21,600. This suggests that

the implementation is well suited for ultra-high-degree spherical harmonic analysis. Error

patterns in the residuals are shown and discussed in Sects. 4.4.1 and 4.4 up to maximum

degree 46,080.

Table 2 Maximum absolute space-domain error of closed-loop experiments with band-limited variants of
Earth’s topography using the GLQ and the DH quadrature algorithm

nmax Gauss–Legendre (GLQ) Driscoll and Healy (DH)

2160 3:09� 10�9 2.6 9 10-9

10,800 2:10� 10�6 1.58 9 10-6

21,600 2:63� 10�5 4.89 9 10-5

Units are in metres
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4 Application to Planetary Topography

In this section, the implementation of the GLQ quadrature (Sect. 3) is applied to planetary

topography of different resolution and features, followed by a discussion of computational

aspects and interpretation of results.

4.1 Data

The two planets Earth and Mars as well as the Earth’s Moon are found to be suited to

extensively test the numerical quadrature algorithms described in Sect. 2.1, mainly

because high-resolution shape functions are available in public data sets, covering the

bodies’ surfaces in their entirety. Additionally, the bodies show very different charac-

teristics and surface features at large, medium and small scales (Wieczorek 2007). On

Earth, we have the clear and unique distinction between continents (topography) and

oceans (bathymetry) along with plate margins accompanied by (active) rift, subduction

and uplift zones. On Mars, we find a unique dichotomy—an asymmetry between low

elevations in the northern and high elevations in the southern hemisphere—as well as

large impact basins, rifts and the monumental regional peaks of the Tharsis volcanoes

near the equator. Next to the Tharsis volcanoes located is the highest peak known as

Olympus Mons reaching almost 22 km (Wieczorek 2007). The Lunar topography, with

its heavily cratered farside and comparatively smooth nearside (reasoned by the young

basaltic material and the Moon’s Earth-bound rotation), is home to the largest known

impact structure in the solar-system: the giant South Pole-Aitken impacts basin on the

southern farside hemisphere with a total relief of over 10 km within a region of 2000 km

diameter (Wieczorek 2007). At the same time, the central processes being responsible for

the morphology are very different due to the very different outer conditions and forces

present in the respective planetary system. Among others, the processes leading to unique

surface structures are: exposure to solar radiation, existence and composition of atmo-

sphere, tectonic and volcanic activity, existence of water and gravity.

Planetary topographic data sets are provided in terms of digital elevation models

(DEMs) and have been used in spherical harmonic analyses in the past. To our knowledge,

the maximum degree of available SHCs does not exceed 10,800 for Earth, 2600 for the

Moon and 2600 for Mars. The corresponding data sets and references are listed in Table 3.

Within the publicly provided data sets, there generally exist limitations or inconsis-

tencies which are independent of the provided data resolution. Those may, e.g., be related

to the technique of measurement and blur our knowledge about the surface elevations of a

Table 3 Existing works on high-degree spherical harmonic analysis of planetary topography

Planet Degree SHC data set Reference Topographic data

Earth 10,800 Earth2014 Hirt and Rexer (2015) SRTM30 PLUS v9, Bedmap2,
SRTM v4.1, GBT v.3

Earth 10,800 ETOPO1 Balmino et al. (2012) ETOPO1

Moon 2600 LOLA2600p Wieczorek (2015) LOLA

Mars 2600 MarsTopo2600 Wieczorek (2015) MOLA

SRTM Shuttle Radar Topography Mission, GBT Greenland Bedrock Topography, PDS Planetary Data
System, LOLA Lunar Orbiter Laser Altimeter, MOLA Mars Orbiter Laser Altimeter
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planet. On Earth, for example, we have large differences between the quality of topo-

graphic elevations and seafloor (=bathymetric) elevations. The first of which can be

measured with various terrestrial/airborne/space-borne sensors, while the latter is sensed

directly only via local-scale ship soundings and determined globally indirectly via ties to

the altimetric gravity field (Smith and Sandwell 1994). According to Sandwell et al.

(2014), more than 50 % of the ocean is more than 10 km away from the next direct depth

measurement. The highest resolution gravity field over the oceans is derived from satellite

altimetry, and available models reach *10 (ffi2 km) resolution (Andersen et al. 2013;

Sandwell et al. 2014) at best. However, the actual resolution in these models is dependent

on the spacing (or density) and the orientation of the satellite altimeter ground tracks. The

available new altimeter data sets of CryoSat-2 and Jason-1 have a ground-track spacing of

2.5 and 7.5 km (Sandwell et al. 2014), respectively. When combined with altimeter data of

older satellites (Geosat and ERS-1), the gravity data can be used to retrieve seamounts

between 1 and 2 km height (Sandwell et al. 2014). But due to the attenuation of the shorter

wavelength gravity signals, the estimation of bathymetric heights from gravity works best

in the wavelength band from 12 to 160 km (Sandwell et al. 2014), which means it is of

lower quality at scales\12 km. Further, the quality of the estimates decreases with the

thickness of the seafloor (Sandwell et al. 2014).

On Mars and Moon, the actual resolution also is dependent on the across-track spacing

of the laser altimeter ground tracks, and higher-resolution data products are released as

soon as the measurement density is good enough that there are some samples per pixel

accumulated (Neumann 2010). However, the track density is lowest near the equator and

highest towards the poles due to the (near) polar orbit. Owing to this fact, there exist gaps

of up to 12 km between neighbouring profiles at the equator in case of Mars. In the data

products, these gaps are filled with interpolated values (Smith et al. 2003).

Further, deviations from the orbital inclination of 90� inherent to most orbiters lead to

non- or poor observations in polar regions (see Farr et al. 2007 and Tachikawa et al.

2011a for Earth or Smith et al. 2003 for Mars) and can only partly be compensated by

other missions or observation techniques.

4.1.1 Earth’s Topography and Bathymetry

Earth’s topography and bathymetry here are taken from the first version of the SRTM15

PLUS data set (ftp://topex.ucsd.edu/pub/srtm15_plus/). It is the 15 arc-sec nominal reso-

lution (*0.5 km) successor of the well-known 30 arc-sec topography/bathymetry maps

SRTM30 PLUS (Becker et al. 2009). SRTM15 PLUS contains a new combination of

SRTM, ASTER and CryoSat-2 ice sheet data over land and is based on SRTM30 PLUS

v11 over the oceans’ bathymetry. The SRTM30 bathymetry was derived, in principle, from

the anomalous gravity field as sensed by various satellite altimeters and was calibrated and

augmented locally by ship-sounding data aggregated over 40-year time (Smith and

Sandwell 1994). The bathymetric data in areas devoid of ship sounding have a resolution of

*12 km with a maximum resolution of 2 km, rather than the nominal 500-m resolution of

SRTM15 PLUS (cf. Sandwell et al. 2014; Sect. 4.1). For more details on the creation of

the bathymetry and its accuracy, the reader is referred to Smith and Sandwell (1994),

Sandwell et al. (2014), Marks et al. (2010).

The elevations and depths are given in terms of orthometric heights (in metres) relative

to the EGM96 geoid, which is referenced to the WGS84 ellipsoid and which in good

approximation represents the mean sea level.
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As the SRTM15 PLUS data refer to geodetic latitudes, it has to be transformed to

geocentric latitudes in order to be used by the quadratures correctly. This is done by a 2D-

spline interpolation using the simple relation

tanH ¼ a2

b2
tan / ð14Þ

(see, e.g., Torge 2001, p. 95) between the spherical co-latitude H and the geodetic co-

latitude /, where a is the semi-major and b the semi-minor axis of the underlying ellipsoid,

which is GRS80 (Moritz 2000) in this case.

Further, we found 6,194,174 NaN (not-a-number)-flagged pixels in the SRTM15 PLUS

data set (0.17 % of all pixels). We filled these data gaps with SRTM30 PLUS information

in order to get to a truly complete (=global) topography/bathymetry data set for Earth.

4.1.2 Martian Topography

The topography model for Mars originates from the Mars Orbiter Laser Altimeter (MOLA)

which was part of the Mars Global Surveyor (MGS) mission. The MGS orbiter was

operated between 1998 and 2006 in a near-polar orbit (inclination ¼ 93�). We use the

Mission Experiment Gridded Data Record (GDR)—digital topographic maps that are

generated from the altimeter observation data accumulated over the entire primary mis-

sion—made available via NASA’s Planetary Data System (PDS) (Smith et al. 2003). The

maps are sampled at 128 pixel per degree (*460 m). The MOLA topography is referenced

to an areoid, defining a surface of constant (gravitational and rotational) potential

(12,652,804.7 m2=s2 as the mean value at the equator at an average radius of 3396.000 km)

(Smith et al. 2003). The areoid may be calculated by the Goddard Mars Gravity Model

GGM-2B (Lemoine et al. 2001) evaluated to degree and order 50 (Smith et al. 2003). The

MOLA topography then is the difference between the real planetary radius and areoid at a

certain planetocentric longitude and latitude (IAU2000 coordinate system).

In the case of Mars, the polar regions ([þ88� and\�88� latitude) are not covered by

the gridded data products of 128 pixel per degree due to the spatially limited availability of

MOLA observations. Therefore, we used the 64-pixel-per-degree elevation product in the

polar regions instead and oversampled it by means of a bi-cubical interpolation to reach a

nominal global resolution of 128 pixel per degree.

4.1.3 Lunar Topography

The Lunar topography originates from the Lunar Orbiter Laser Altimeter (LOLA)

instrument of the Lunar Reconnaissance Orbiter (LRO) mission (Smith et al. 2010). The

orbiter circulates the moon on a polar orbit since mid-2009. We use the NASA PDS

Gridded Data Record’s digital elevation model with 256-pixel-per-degree resolution

(*120 m), provided in terms of an equidistant cylindrical map (Neumann 2010). The

elevations are referenced to a reference sphere of 1737.4 km radius. A planetopotential

topography, i.e. physically meaningful heights, similar to the Earth’s and the Martian case

could be derived for the Moon by subtracting a selenoid model from the planetary radius.

The selenoid (=Lunar geoid) can be derived from any potential model for the Moon.

However, this is not required for the purpose of the present study.
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4.2 Processing

For the spherical harmonic analysis of the planetary topography, we choose the Gauss–

Legendre quadrature as described and tested in Sects. 2.1.3 and 3.2. Both the GLQ and the

DH algorithm would be qualified for this task in terms of precision (see Sect. 3.3), but

because of comparatively long computation times the DH method is not efficient for ultra-

high degrees ([10,800), see Sect. 3.2 and Fig. 3.

The spectral bandwidth of the real topography is unlimited, and the recoverable

spherical harmonic bandwidth of the topography, however, is limited by its discretization

(Sect. 2.1). Thus, the sampling of a discrete topographic function defines the degree of

truncation in the spherical harmonic analysis (and leads associated truncation errors, see

Sect. 4.3). The sampling and the associated maximum recoverable degree of each topo-

graphic data set (Sect. 4.1) are listed in Table 4. In order to apply the Gauss–Legendre

quadrature, the latitude parallels have to coincide with the zero-crossings of the Legendre

polynomials (Eq. 12). This was achieved by bi-cubically interpolating topographic height

values at the respective latitudes using MATLAB’s intrinsic 2D-interpolation method

(cubic interpolater).

4.3 Results and Discussion

The harmonic analysis reveals the spectral composition of Earth’s topography and bathy-

metry to degree 43,200 (=500 m half-wavelength), of the Martian topography to degree

23,040 (=460 m half-wavelength) and of the Lunar topography to degree 46,080 (=120 m

half-wavelength). The degree variances are given in Figs. 4 and 5, as a function of harmonic

degree and of the half-wavelength (=spatial resolution), respectively. At the same time, re-

expanding the calculated harmonic coefficients to a grid—sampled in the same manner as

the input grid—allows evaluation of the accuracy of the implemented GLQ quadrature for

the different maximum degrees in a closed-loop scenario (Figs. 6, 10, 12).

4.3.1 Spectra of Planetary Topography Models

The topography of each planet exhibits different spectral energy towards ultra-short scales,

and the degree variances also reveal different decay of the topographic signal with har-

monic degree (Fig. 4).

Table 4 Spatial resolution (sampling), maximum harmonic degree and sources of the data used in the
spherical harmonic analysis of planetary topography (see also Sect. 4.1) in this work

Planet Sampling Harmonic degree Topographic data

pixels
degree

� �
(arc-sec) (m)

Earth 240 15 *500 43,200 SRTM15 PLUS v1

Mars 128 28.125 *460 23,040 MOLA

Moon 256 14.0625 *120 46,080 LOLA

SRTM Shuttle Radar Topography Mission, LOLA Lunar Orbiter Laser Altimeter, MOLA Mars Orbiter Laser
Altimeter
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Notably, it is Earth that has highest topographic energy beyond degree *1900 (black

curve), exceeding the Moon’s topographic energy by almost 2 orders of magnitude at

degree 43,200. The major part of this short-scale energy is associated with Earth’s con-

tinental topography. This can be seen from the harmonic analysis of the continental

topography only (by setting all values below sea level to zero: light blue curve) and of the

bathymetry only (by setting all values above sea level to zero: magenta curve). Bathymetry

makes up most of the power in the black degree variance curve up to degree *4000,

whereas continental topography dominates Earth’s spectral harmonic power beyond this

degree. Adding the degree variances of the magenta and the light blue curve would lead to

the full (topography and bathymetry) signal and result in the black curve (Fig. 4).

The spectral properties of the Martian and Lunar topography are comparatively even

(until degree 23,040). The Lunar degree variance curve (red) intersects with the Martian

curve (green) near degree 4000, having more power beyond this degree. Due to the limited

Fig. 4 Degree variances of planetary topography: Earth’s topography and bathymetry in black, Earth’s
topography (ocean values set to zero) in light blue, Earth’s bathymetry (continental values set to zero) in
magenta, Lunar topography in red and the Martian topography in green; unit on y-axis is metres squared

Fig. 5 Degree variances of planetary topography by associated spatial scale (half-wavelength in
kilometres): Earth’s topography and bathymetry in black, Earth’s topography (ocean values set to zero)
in light blue, Earth’s bathymetry (continental values set to zero) in magenta, Lunar topography in red and
Martian topography in green; unit on y-axis is metres squared

Surv Geophys

123

Author's personal copy



grid resolution of the topographic data of Mars, only half of the spherical harmonic degrees

could be recovered compared to the other two planets.

Translating the spherical harmonic degrees into spatial scales using each planet’s nat-

ural half-wavelength (Fig. 5) allows to compare the spectral power in the degree variances

of the different planets more intuitively, at the level of metric scales. Among the three

bodies, the Moon’s topography possesses the highest energy over all spatial scales, indi-

cating that its planetary relief has a higher variability (and thus roughness). In particular, at

spatial scales of *80 to *200 km, there are several pronounced topographic features on

Fig. 6 Earth’s topography and bathymetry (upper plot), closed-loop residuals with input topography after
the first spherical harmonic analysis and synthesis (middle plot) and residuals of the analysis and synthesis of
a band-limited input topography (to degree 43,200); unit is metres
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the Moon (craters of similar size). This is to be seen in the degree variances of the Lunar

topography, which remain at the level of �10� 104 m2, while the power of the other

topography models (Earth and Mars) steadily decreases in this spectral band. In the Lunar

topography, this spectral bands represents several large-size class 1 craters classified as

TYC type by Wood and Anderson (1978), e.g., Tycho (86 km diameter), Aristoteles

(87 km diameter), Langrenus (132 km diameter) or Humboldt (207 km diameter). Those

TYC craters are attributed multiple tiers of terraces, crenulated rim crest, large flat floor

and a central peak (Wood and Anderson 1978). Compared to Earth, also the Martian

topography possesses more power at low and medium scales. Only below scales of 1.5 km,

the Martian topographic variability is below that of Earth’s.

Compared with the topographic spectra of Moon and Mars, which show a very smooth

decay (Fig. 4), the decay of Earth’s topographic spectrum slows down in the band from

*30 km down to *10 km (degree *600 and 2160). Further, near degree 2160, a sudden

drop in the power of the degree variances (see Fig. 4) or a change in tilt of the black curve

(see Fig. 5), respectively, becomes visible. This behaviour is attributable to the bathymetry

component of the SRTM15 PLUS model, which is seen from the intercomparison of the

three Earth power spectra (black vs. blue vs. magenta curve). We interpret the change of

tilt at degree 2160 (*9–10 km *4–5 arc-min) to indicate the limit of the full resolution of

bathymetric depth data (the seafloor mapping is not complete anymore at shorter spatial

scales). This is supported by the assessment of the bathymetric resolution in Sect. 4.1.

Note that the absolute power of the degree variances also depends on the sphere-aeroid

and the sphere-geoid-separation, respectively, which has been treated differently for the

planets or not at all in case of the Moon (see Sect. 4.1). However, this effect is relevant

only at long and medium spatial scales because the underlying geoid models are of rather

smooth nature (maximum degree is 360 for SRTM30 Plus and 50 for MOLA).

4.3.2 Analysis of Earth’s Topography to d/o 43,200

For Earth, the topography could be harmonically analysed to degree 43,200. Using the

computed SHCs for SHS, we can compare the resulting 1500 � 1500 grid with the SRTM15

PLUS input topography (Fig. 6, upper and middle plot). The standard deviation of the

differences is about 1 m (RMS ¼ 3:06 m) in the space domain. Much of the differences

(here further denoted as residual error but also found denoted as representation error by

Fig. 7 Earth’s topography (left plot), closed-loop residuals with respect to input topography after the first
spherical harmonic analysis and synthesis (middle plot) and residuals of the analysis and synthesis of a band-
limited input topography (right plot) to degree 43,200 over a selected region over the Himalayas; unit is
metres
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Balmino et al. 2012) occur in high elevated or rough terrain (e.g., in the Himalayas with

amplitudes of about �50 m, see middle plot in Fig. 7), whereas flat terrain (e.g., Australia)

shows very small residual errors. Interestingly, apart from the mid-oceanic ridges at the

Fig. 8 Bathymetry over parts of the Pacific Ocean as contained in SRTM15 PLUS (left) and the SHA/SHS
residual error over this region (right), clearly depicting the ship-sounding tracks; unit is metres

Fig. 9 Upper row area of minimum SHA/SHS residual error (�2447.31 m) in the SRTM15 PLUS data set;
bottom row area of maximum SHA/SHS residual error (3498.47 m) in the SRTM15 PLUS data set (note
that some of the pixels on the island were NaNs and are filled by SRTM30P values, see Sect. 4.1.1); unit is
metres

Surv Geophys

123

Author's personal copy



floor of the oceans, also linear residual error patterns become visible over the oceans.

These linear errors seem to coincide with the ship routes that contributed the sounding data

which was used to calibrate the SRTM15 PLUS bathymetry (Fig. 8). Obviously, these ship

tracks create sharp edges in the modelled bathymetric surface. A much higher sampling

frequency and higher degree in the analysis would be needed to adequately represent those

features in spherical harmonics. These residual errors together with the residual errors that

appear in the areas of steep slopes (mountains, trenches) are here classified as truncation

errors.

Fig. 10 Martian topography (upper plot), closed-loop residuals with input topography after the first
spherical harmonic analysis and synthesis (middle plot) and residuals of the analysis and synthesis of a band-
limited input topography (to degree 23,040); unit is metres
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The minimum and maximum residual SHA/SHS error (�2447.31 and 3498.47 m,

respectively) is very high compared to the analysis of Mars and Moon (see further down).

Importantly, they are the result of artefacts with sharp edges (or single pixel errors)

detected in the SRTM15 PLUS data set (Fig. 9) and are no sign for deficiencies in the

quadrature algorithm.

4.3.3 Analysis of the Martian Topography to d/o 23,040

For Mars, the topography could be harmonically analysed to degree 23,040 with a trun-

cation error of about 0.4 m in terms of STD (RMS = 1.94 m) in the space domain (Fig. 10,

upper and middle plot). High residual errors are found around the highest elevated peaks

(but not directly over the peaks), at the edges of some of the impact craters and along the

deep rift valley such as the east-west-aligned Vallis Marineris. The minimum and maxi-

mum errors are �1335.80 and 937.75 m, respectively, less than in Earth’s case.

Investigating different spectral bands of the MOLA topography by SHS reveals a

slightly inclined striping in the MOLA data (with *5–10 m amplitude in the spectral band

17,280. . .23,040, Fig. 11). The stripes are also visible in the spectral band 11,541. . .17,279
(not shown here). Most probably, the stripes are related to the ground tracks and ground

coverage of the MOLA/MGS orbiter and illustrate the domain where MOLA DEM offers

full resolution. Observation gaps existing between neighbouring ground tracks are filled by

interpolation (Smith et al. 2003 and see also Sect. 4.1) and might thus be an explanation

for the visible inconsistencies.

4.3.4 Analysis of the Lunar Topography to d/o 46,080

For Moon, the topography could be harmonically analysed to degree 46,080 with a stan-

dard deviation of about 0.2 m (RMS = 0.91 m) in the space domain (Fig. 12, upper and

middle plot). The residuals on Moon show less co-location with topographic rough features

(such as impact craters) and are generally of lower amplitude compared to those of the

other planets analysed in this work. However, we find the amplitudes of the residuals

slightly rising towards the poles.

Fig. 11 Elevations around Olympus Mons obtained from a analysis and synthesis of MOLA data in the
spectral band 0. . .23,040 (left) and 17,280. . .23,040 (right); the green arrows indicate the direction of the
visible striping pattern; unit is metres
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By performing a synthesis in various spectral bands, we find certain bands affected by

striping. In contrast to the striping in the MOLA data set, the stripes in LOLA data are

north–south aligned and thus in along-track direction of the LRO spacecraft that was

navigated on a polar orbit. In the band 23,081. . .34,620, the stripes have amplitudes at the

5- to 15-m level (Fig. 13), indicating the limit in the resolution for the LOLA data.

MOLA/MGS has an inclined orbit, and thus, also the stripes are inclined against the

north–south direction. We suspect the reason for LOLA and MOLA stripes to be of similar

kind and to be related to the ground track/ coverage of the laser altimeters.

Fig. 12 Lunar topography (upper plot), closed-loop residuals with input topography after the first spherical
harmonic analysis and synthesis (middle plot) and residuals of the analysis and synthesis of a band-limited
input topography (to degree 46,080); unit is metres
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4.4 Quadrature Performance at Ultra-high Degrees

4.4.1 Accuracy and Truncation Errors of the Analysis of Planetary Topography

The accuracy of the quadrature is not critically deteriorated by the choice of a higher

spherical harmonic degree (see also Sect. 3.3), as the Moon’s much higher resolved

topography is much better represented in spherical harmonics than Earth’s topography.

Instead, by interpreting the residuals (=differences to input topography shown in the

middle plots of Figs. 6, 10, 12) as truncation error, we learn that the choice of a higher

harmonic degree in case of the Lunar topography (and the finer sampling intervals of the

grid) leads to a lower truncation error (as expected). Taking the global topographic

function’s standard deviations as indicator for the overall roughness of a planet’s topog-

raphy, the Moon shows the highest variability (STD = 865.33 m), followed by Mars

(STD = 303.73 m) and Earth (STD = 261.96 m). Although Earth features the smoothest

surface on average, it shows the highest truncation error.

Further, we find that the accuracy of the quadrature locally is dependent on the topo-

graphic surface function itself, i.e. smoothness/roughness of the terrain, because the

residuals coincide with the locations of mountains, steep slopes or edges (such as the ship-

sounding data tracks in Earth’s bathymetry). This was also found by Balmino et al. (2012).

4.4.2 Precision of the Quadrature at Ultra-high Degrees

The residuals of each topographic input grid with respect to the topographic grid syn-

thesized from its computed spherical harmonic coefficients reveal the quality (i.e. accu-

racy) by which the topographic surface functions are represented in the spherical harmonic

domain through the GLQ quadrature (Sects. 4.3.2, 4.3.3, 4.3.4) and may be interpreted as

truncation errors (Sect. 4.4.1).

By performing another harmonic analysis and synthesis using band-limited topographic

input grids of the three planets (obtained by synthesis using the SHCs from the initial

SHA), we can investigate the precision of the GLQ quadrature in closed-loop manner

(similar to the experiments done for the DH and the GLQ algorithm in Sect. 3.2 up to

degree 21,600). The results—space-domain residual errors—are shown in the bottom plot

Fig. 13 Elevations around Tycho crater obtained from a analysis and synthesis of LOLA data in the spectral
band 0. . .34,620 (left) and 23,081. . .34,620 (right); the green arrows indicate the direction of the visible
striping pattern; unit is metres
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of Figs. 6, 10 and 12. The absolute amplitudes of the errors (Earth: \3 mm; Mars:

\0.03 mm; Moon:\1 mm) suggest that the GLQ algorithm works very precise even at the

ultra-high harmonic degrees and that the precision is not the limiting factor for the

application of the algorithm to planetary topography in this work.

All residual plots from band-limited input topography reveal a striping pattern along

latitude parallels, which is interrupted by white areas (indicating less or no errors) that

show some obvious correlation to the topography. Similar striping patterns can be inves-

tigated for using the DH algorithm instead (not shown here). This striping is entirely non-

critical for the application to digital elevation data of the planetary topography done here;

nevertheless, it deserves some close-up investigation. In case of Earth, this pattern can be

characterized as follows: ocean and continental areas of about �2000-m elevation are free

of the striping pattern; higher or lower elevated areas are affected by the striping. Thus, the

floor of the large oceans (except for the ridges), the Himalayas, but also Olympus Mons on

Mars are covered by striping. Due to the strict east–west alignment of the striping pattern,

the error must originate from the zonal harmonic coefficients. Those are, e.g., dependent on

the Legendre polynomials (LPs). However, the LPs are determined accurately using exact

identities (see Sect. 3.1). Nevertheless, at very high or very low elevated points, the

algorithm must be at the edge of arithmetic over-/underflow, setting the limits for the

precision of the quadrature and leading to the characteristic error patterns in the spatial

domain. This may be an issue for extremely high-resolution quadratures (e.g., up to some

hundred thousands of degrees) some day in the future.

5 Summary and Outlook

In this work, two known algorithms—the Gauss–Legendre quadrature and the quadrature

following Driscoll/Healy—and their implementation for the purpose of ultra-high (surface)

spherical harmonic analysis of spheroid functions were presented in detail. We extended

the implementation of the algorithms found in the SHTOOLS software package by (1) the

X-number (or ERA) method for accurate computation of ALFs and (2) OpenMP directives

enabling parallel computing for feasible computation times. A degree 21,600 quadrature

(of a degree 21,600 band-limited topographic function) that involves the computation of

over 466� 106 parameters, shows a precision of at least 3� 10�5 and 5� 10�5 m in the

space domain for the GL and DH algorithm, respectively. Sharing the degree-21,600

quadrature between 8 or 14 CPUs, the computation times could be reduced approximately

to a sixth (to *12.1 h) or a thirteenth (to *5.9 h) of the single-thread time in case of the

GL algorithm and to a fifth (to *49.5 h) or thirteenth (to *16.9 h) of the single-thread

time in case of the DH algorithm. Hence, the Gauss–Legendre algorithm can be considered

computationally more effective, although neither algorithm is inferior in terms of

numerical precision.

The implementation of the GL quadrature was then used to harmonically analyse the

Earth’s topography and bathymetry (from the SRTM15 PLUS data set) to degree 43,200,

the Martian topography (from MOLA data products) to degree 23,040 and the Lunar

topography (from LOLA data products) to degree 46,080. The retrieved spherical harmonic

coefficients gave spectral insights into the different short and ultra-short wavelength

characteristics of the topography of the three bodies. Degree variances reveal that the

power (variability) of the Moon’s topography is significantly larger compared to the

planets at all spatial scales (at least down to a half-wavelength of 500 m), especially below
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scales of 200 km. The representation of the Earth’s bathymetry (only) and topography

(only) in terms of degree variances reveals irregularities in the bathymetry data of

SRTM15 PLUS data set. The bathymetric degree variance curve exhibits a change in the

decay of the spectral power around degree 2160, which indicates the limit of full resolution

in contemporary bathymetry data, based on inversion of gravity from satellite altimetry.

Neglecting these irregularities, we find the ocean floors making up most of the Earth’s

topographic variability at scales above 5 km and the continental topography making up

most power below scales of 5 km (*degree 4000).

Importantly, the residuals and the ultra-high bands of the spectral representation may

also be used to reveal artefacts and systematics/characteristics of the observation techniques

used for the creation of the elevation data. In case of SRTM15 PLUS, ship tracks become

clearly visible in the bathymetry and an artefact over Antarctica and the Arctic ocean was

detected. In case of MOLA and LOLA, the synthesis of certain spectral bands (e.g.,

2160–10,800) reveals the ground tracks of the orbiters that carried the laser altimeters.

The accuracy of the representation of the planets’ topography in spherical harmonics

was investigated in terms of residual errors in the space domain. The global STD of the

residuals are 3.06 m for Earth (d/o 43,200), 1.94 m for Mars and 0.91 m for Moon. Apart

from the rather high residuals in case of Earth, the results corroborate that choosing a

higher degree in the analysis minimizes the truncation error. Among others, artefacts and

ship-track edges in the SRTM15 PLUS data set might be responsible for comparatively

high residuals in the case of Earth. The residuals in all cases generally show a high

correlation with the topography, and most errors are found over areas of steep (or rough)

terrain (e.g., mountains, trenches, crater edges). Investigation of the quadrature precision

for the three cases of high-degree spherical harmonic analysis in closed-loop manner shows

east-west-aligned stripes (caused by the zonal coefficients) which are pronounced in high

and low elevated areas at the 1� 10�7 m level, with the absolute errors not exceeding

3 mm for Earth, 0.03 mm for Mars and 1 mm for the Moon. As the key conclusion, both

algorithms and their implementation are suitable for efficient and accurate ultra-high-

degree spherical harmonic analysis of spheroidal functions, tested here up to degree

46,080. The Gauss–Legendre algorithm outperforms the Driscoll/Healy algorithm in terms

of computation times and therefore is preferable.

The extension of the algorithms for solid spherical harmonic analysis (e.g., of a func-

tional of the gravitational field) is possible and would certainly extend the applicability of

the algorithms in geophysics and geodesy.
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D, Gruber T (2011) Combination of GOCE data with complementary gravity field information
(GOCO). In: Proceedings of 4th international GOCE user workshop, Munich, 31 March 2011

Rummel R, Rapp R, Sünkel H, Tscherning C (1988) Comparisons of global topographic/isostatic models to
the Earth’s observed gravity field. OSU report 388, Ohio State University

Sandwell DT, Müller RD, Smith WH, Garcia E, Francis R (2014) New global marine gravity model from
CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67

Smith WH, Sandwell DT (1994) Bathymetric prediction from dense satellite altimetry and sparse shipboard
bathymetry. J Geophys Res Solid Earth (1978–2012) 99:21803–21824

Smith DE, Zuber M, Neumann G, Guinness E, Slavney S (2003) Mars global surveyor laser altimeter
mission experiment gridded data record (mgs-m-mola-5-megdr-l3-v1.0). Technical report, NASA
Planetary Data System

Smith DE, Zuber M, Jackson G, Cavanaugh J, Neumann G, Riris H, Sun X, Zellar R, Coltharp C, Connelly
J, Katz R, Kleyner I, Liiva P, Matuszeski A, Mazarico E, McGarry J, Novo-Gradac AM, Ott M, Peters
C, Ramos-Izquierdo L, Ramsey L, Rowlands D, Schmidt S, Scott I VStanley, Shaw G, Smith J,
Swinski JP, Torrence M, Unger G, Yu A, Zagwodzki T (2010) The Lunar Orbiter Laser Altimeter
investigation on the Lunar Reconnaissance Orbiter mission. Space Sci Rev 150(1–4):209–241. doi:10.
1007/s11214-009-9512-y

Sneeuw N (1994) Global spherical harmonic analysis by least-squares and numerical quadrature methods in
historical perspective. Gepohys J Int 118:707–716

Tachikawa T, Hato M, Kaku M, Iwasaki A (2011) Characteristics of ASTER GDEM version 2. In: IEEE
international geoscience and remote sensing symposium (IGARSS). IEEE, pp 3657–3660

Torge W (2001) Geodesy, 3rd edn. Walter de Gruyter, Berlin
Walker JS (1996) Fast Fourier transforms, vol 24. CRC Press, Boca Raton
Wieczorek M (2007) Gravity and topography of the terrestrial planets. Treatise Geophys 10:165–206.

doi:10.1016/B978-044452748-6/00156-5
Wieczorek M (2015) Gravity and topography of the terrestrial planets. In: Schubert G (ed) Treatise Geo-

phys, vol 10, 2nd edn. Elsevier, Oxford, pp 153–193. doi:10.1016/B978-0-444-53802-4.00169-X
Wood C, Anderson L (1978) New morphometric data for fresh lunar craters. Lun Planet Sci Conf Proc

9:3669–3689

Surv Geophys

123

Author's personal copy



164 Appendix B

P.4 Publication IV: Layer-based modelling of the Earth’s gravitational
potential up to 10km-scale in spherical harmonics in spherical and
ellipsoidal approximation

Reference:
Rexer M., Hirt C., Claessens S., Tenzer R. : Layer-based modelling of the Earth’s gravitational potential up
to 10km-scale in spherical harmonics in spherical and ellipsoidal approximation; Surveys in Geophysics, DOI:
10.1007/s10712-016-9382-2, 2016.

Copyright
This work originally has been published in Surveys in Geophysics, available at http://link.springer.com/,
and is reprinted here with permission of Springer. Copyright has been transferred to Springer.

Short Summary
Spectral forward-modelling with respect to a reference ellipsoid, leading to the ellipsoidal topographic potential
(ETP), is less affected by mapping effects and provides the gravity spectra compatible to observation-based
geodetic gravity models. The recently developed harmonic combination (HC) method that computes the ETP
is conceptually extended for application with multiple volumetric mass layers, allowing a better approximation
of Earth’s mass distribution. Additionally to efficient integral solutions based on binominal series, also the rigor-
ous expressions for layer-based modelling w.r.t. a reference ellipsoid are given. Further, often ignored aspects
such as aliasing and convergence behavior are of great importance for correct spectral forward modelling.
The provided new expressions are used with the Earth2014 boundary data up to degree 2160/90. Computed
potential models are validated using gravity observations over Antarctica. Benefits of layer-modelling as com-
pared to single-layer (rock-equivalent-topography) modelling are detected using GOCE-satellite observations.
Studying geometric and gravity differences between modelling w.r.t to a spherical or ellipsoidal references con-
firms characteristic spectral differences. Since space domain differences are rather small (up to ∼ 3 mGal),
modelling with an ellipsoidal reference is mainly necessary for applications requiring high accuracy or high-
resolution.
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10.1007/s10712-016-9382-2
http://link.springer.com/


P.4 Publication IV 165

Criteria Estimated
own contribution

Computation and results 100 %
Ideas and study design 35 %
Analysis and interpretation 80 %
Text 90 %
Figures 100 %
Tables 100 %
Total 84.1 %

Tab. P.4 – Criteria and estimated contribution share of Moritz Rexer for P-IV
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Abstract Global forward modelling of the Earth’s gravitational potential, a classical

problem in geophysics and geodesy, is relevant for a range of applications such as gravity

interpretation, isostatic hypothesis testing or combined gravity field modelling with high

and ultra-high resolution. This study presents spectral forward modelling with volumetric

mass layers to degree 2190 for the first time based on two different levels of approxi-

mation. In spherical approximation, the mass layers are referred to a sphere, yielding the

spherical topographic potential. In ellipsoidal approximation where an ellipsoid of revo-

lution provides the reference, the ellipsoidal topographic potential (ETP) is obtained. For

both types of approximation, we derive a mass layer concept and study it with layered data

from the Earth2014 topography model at 5-arc-min resolution. We show that the layer

concept can be applied with either actual layer density or density contrasts w.r.t. a refer-

ence density, without discernible differences in the computed gravity functionals. To avoid

aliasing and truncation errors, we carefully account for increased sampling requirements

due to the exponentiation of the boundary functions and consider all numerically relevant
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terms of the involved binominal series expansions. The main outcome of our work is a set

of new spectral models of the Earth’s topographic potential relying on mass layer mod-

elling in spherical and in ellipsoidal approximation. We compare both levels of approxi-

mations geometrically, spectrally and numerically and quantify the benefits over the

frequently used rock-equivalent topography (RET) method. We show that by using the

ETP it is possible to avoid any displacement of masses and quantify also the benefit of

mapping-free modelling. The layer-based forward modelling is corroborated by GOCE

satellite gradiometry, by in-situ gravity observations from recently released Antarctic

gravity anomaly grids and degree correlations with spectral models of the Earth’s observed

geopotential. As the main conclusion of this work, the mass layer approach allows more

accurate modelling of the topographic potential because it avoids 10–20-mGal approxi-

mation errors associated with RET techniques. The spherical approximation is suited for a

range of geophysical applications, while the ellipsoidal approximation is preferable for

applications requiring high accuracy or high resolution.

Keywords Gravity forward modelling � Ellipsoidal topographic potential � Harmonic

combination method � Spherical harmonics � Spherical approximation � Ellipsoidal

approximation � Layer concept � Earth2014

1 Introduction

1.1 Motivation and Related Work

Global modelling of the Earth’s gravitational potential from its underlying mass distri-

bution in spherical harmonics is a classical problem in geophysics and geodesy (e.g.,

Balmino et al. 1973; Rapp 1982; Rummel et al. 1988; Wieczorek 2007, 2015). The

solution to this problem can be used for testing of topographic/isostatic hypothesis

(Rummel et al. 1988; Göttl and Rummel 2009; Hirt et al. 2012; Grombein et al. 2014),

modelling of Bouguer gravity (Balmino et al. 2012; Wieczorek 2015; Rexer et al. 2015),

smoothing or reduction of the Earth’s gravity field and its observations [as, for example,

needed for Stokes’ geodetic boundary value problem or improved interpolation/prediction

with remove-compute-restore techniques (Grombein et al. 2014)], computation of fill-in

gravity for combined gravity field models (Pavlis et al. 2007, 2012; Fecher et al. 2013),

omission error modelling (Hirt et al. 2011; Rexer and Hirt 2015a) and the evaluation of

digital elevation models (Rexer et al. 2015).

For some of the listed applications, a forward model that is as close as possible to the

actual gravity field is desirable. Aiming at such a ‘‘perfect’’ synthetic gravitational model,

an accurate mass model of the Earth is required. Mass models deliver information about

the physical geometry of Earth along with density information about its interior. A perfect

mass model would be able to describe the masses in terms of infinitesimal small bodies

(such as rectangular prisms or tesseroids) at all 3D positions of Earth. Together with an

adequate implementation of Newton’s law of gravitation, which means numerical inte-

gration over all masses (see, for example, Kuhn and Seitz 2005; Grombein et al. 2014), this

mass model would allow to accurately determine the gravitational potential of Earth.

However, such a mass model in reality is not practicable as the computational requirements

are very challenging, and more prohibitively, because the required density and geometric

information is neither available globally nor in 3D with adequate resolution. Today,
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globally consistent physical surface information (usually provided in terms of digital

elevation models) at best is given with a resolution of � 12 m [TanDEM-X satellite

mission: Bartusch et al. 2008] and a vertical accuracy of � 4 m (Rexer and Hirt 2016). At

short scales ð� 10 km or less), it is mainly the masses of the crust—the upper part of the

lithosphere—and hydrosphere that cause substantial anomalous gravitational signals. The

anomalous potential that originates from the Earth’s interior (upper mantle or below) has

long-wavelength character. Satellite-borne and terrestrial observation techniques result in

complete (global) high-resolution models of the topographic elevation and to some extent

also of the bathymetric depth, water bodies and ice sheets (Hirt and Rexer 2015), making

forward modelling of short-scale (=crustal) gravity signals possible to ultra-high resolu-

tion, e.g., up to � 2 km scale (Balmino et al. 2012) and up to � 200 m scale (Hirt et al.

2013).

In contrast, available density information for the lithosphere (crust and upper mantle,

down to about 30 km depth) is limited to a lateral resolution of about 110 km [CRUST1.0

(Laske et al. 2012) and LITHO1.0 (Pasyanos et al. 2014)]. Considering the density profile

(vertical resolution), which is derived mainly from seismic tomography, presently avail-

able models only distinguish between 8 and 10 different layers, assuming that the density is

not varying vertically within each layer. This short review of mass models already suggests

that it is convenient and practicable to model Earth’s masses in terms of layers since layers

are a natural way to describe the structure of the physical Earth.

Forward modelling can either be conducted by Newtonian integration over Earth’s

masses in the space domain, e.g., by using rigorous analytical integration formulas for

rectangular prisms (Nagy et al. 2000, 2002) or tesseroids (Grombein et al. 2013; Heck and

Seitz 2007), or in the spectral domain, by using relations among surface spherical harmonic

coefficients of the geometric boundary surfaces. Historically (Lee and Kaula 1967; Bal-

mino et al. 1973; Rummel et al. 1988) and recently (Wieczorek 2007, 2015; Forsberg and

Jensen 2015; Hirt et al. 2015) forward modelling approaches were often used in combi-

nation with ‘‘single-density’’ mass models, also known as rock-equivalent topography

(RET) models. RET modelling involves a compression of all masses to a layer of constant

(rock) density, resulting in approximation errors in the order of several dozens of mGal;

see, for example, Grombein et al. (2016) and Kuhn and Hirt (2016). Therefore, it is very

useful to have forward modelling approaches that are adapted to rigorous modelling of

mass layers. These are available for spatial domain modelling in spherical (Kuhn and Seitz

2005) and ellipsoidal (Grombein et al. 2014) approximation. In spherical approximation,

the topographic masses are forward modelled relative to a mass sphere. Correspondingly,

in ellipsoidal approximation, a mass ellipsoid as a much closer approximation of the real

Earth is used to provide the reference for the forward modelling. For spectral domain

modelling a layer-based approach only was formulated in spherical approximation (Pavlis

and Rapp 1990; Tenzer et al. 2010, 2015; Root et al. 2016). The spectral approach has

mainly been used to create low resolution models, e.g., in

• Pavlis and Rapp (1990): to d/o 360, distinguishing between 6 different terrain types

corresponding to the explicit modelling of 4 layers—topography, ocean, ice sheets/

glaciers and lake water—as represented by the OSUJAN89 topographic database

• Tenzer et al. (2010): to d/o 90, only ice layer based on the CRUST2.0 model and the

surface heights in GTOPO30 (US Geological Survey, released 1996)

• Tenzer et al. (2015): to d/o 180 based on the CRUST1.0 model as contained in the 9

layers—topography, ocean, polar ice sheets, sediments (3 layers) and consolidated

crust (3 layers)—of Earth’s spectral crustal model (ESCM180: Chen and Tenzer 2014)
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• Tenzer et al. (2016): to d/o 360 based on 4 layers—topography, ocean, inland lakes/

seas and ice sheets– of the Earth2014 model (Hirt and Rexer 2015)

• Root et al. (2016): to d/o 1800 based on 2 layers—topography and ocean—of

GTOPO30

and also for ultra-high-resolution modelling [Balmino et al. (2012): d/o 10800 based on

four layers—topography, ocean, inland lakes/seas and ice sheets—of the ETOPO1 model

(Amante and Eakins 2009)]. Note that in the work of Balmino et al. (2012), Tenzer et al.

(2010) and Root et al. (2016) the integration is facilitated using a binominal series. In these

cited works, the series expansion is evaluated only up to the third-order term resulting in

(unknown) truncation errors (see Sect. 2.3), while Pavlis and Rapp (1990) present a rig-

orous integration which is more accurate but computationally more demanding, especially

for high resolutions.

Recently, Claessens and Hirt (2013) have developed a spherical harmonic technique to

model the Earth’s gravitational potential in ellipsoidal approximation, i.e. with respect to a

reference ellipsoid. In contrast to the spherical concepts of Rummel et al. (1988); Pavlis

and Rapp (1990); Balmino et al. (2012); Wieczorek (2015); Tenzer et al. (2015)—where

the topograpdhic masses are considered relative to a reference sphere—the Harmonic

Combination Method (HCM) (Claessens and Hirt 2013) models the topographic masses

considered relative to a reference ellipsoid. Thus, the HCM provides the gravity spectrum

to the same level of approximation (w.r.t. the same reference) as most spherical harmonic

gravity field models based on observations available at IAG’s International Center for

Global Earth Models (ICGEM: http://icgem.gfz-potsdam.de/ICGEM/). This, as will be

shown, is a major advantage especially when it comes to combining and comparing the

forward models with satellite data or other terrestrial data.

We may thus define—because of the underlying ellipsoidal approximation—Claessens

and Hirt (2013) to provide a solution to the ellipsoidal topographic potential (ETP) while

the methods based on a spherical approximation of the Earth’s masses provide a solution to

the spherical topographic potential (STP).

Tenzer et al. (2015) and Root et al. (2016) provide the framework for layer-based

modelling of the STP. For the ETP, such a framework is still missing. The HCM as

formulated in Claessens and Hirt (2013) is designed for a single-density mass model, but it

can be reformulated to adopt layer-based mass models, as will be shown in this

contribution.

1.2 This Work: Contributions to Spectral Forward Modelling

In this contribution, we formulate a new spherical harmonic approach to compute the ETP

from arbitrary volumetric layers having laterally varying density. The approach is based on

the Harmonic Combination Method (Claessens and Hirt 2013) and allows the layers to be

referenced to the surface of some reference ellipsoid. The new approach is then validated

by modelling the Earth’s gravitational potential as implied by the masses of layers of the

solid crust, ocean water, lake water and ice sheets up to spherical harmonic degree 2190

ð� 10 kmÞ.
First, we recapitulate known expressions for layer-based spherical harmonic modelling

of the STP (with layers referenced to the sphere) (Sect. 2.1). In the next step, we make the

transition from the spherical to the ellipsoidal case and formulate new expressions for

layer-based spherical harmonic modelling of the ETP (with layers referenced to the

ellipsoid) (Sect. 2.2). Then, a layer concept based on the layers of the Earth2014 (Hirt and
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Rexer 2015) data set (Sect. 3) and two ways of applying it within the previously introduced

forward modelling approaches are defined (Sect. 3.1 and 3.2). The gravitational spectra

and signals of the layer-based ETP are computed with 10-km spatial resolution (Sect. 4.1)

and validated using GOCE satellite gradiometry (Sect. 4.2), other gravity field models

(Sect. 4.3) and terrestrial observations (Sect. 4.4). Finally, differences between the ETP

and the STP are elaborated in detail (Sect. 4.5) and conclusions are drawn (Sect. 5).

2 Spectral Forward Modelling of the Gravitational Potential Based
on Volumetric Layers of Laterally Varying Density

Let V(P) be the gravitational potential at a point P exterior to the Earth’s body B. Fol-

lowing Newton’s law of gravitation and neglecting the presence of atmospheric masses, it

may be written as the integral over the Earth’s mass distribution (see, for example,

Heiskanen and Moritz 1967; Sanso and Sideris 2013)

VðPÞ ¼ G

Z
B

qðQÞ
lPQ

dB ð1Þ

where G is the Newtonian gravitational constant, qð[ 0Þ is the density value associated

with the infinitesimal volume element dB ¼ r2
B sin hdrdhdk at Q with Q 2 B and lPQ being

the Euclidean distance between P and the respective mass element at Q. In order to get

Eq. 1 in a spherical coordinate system (P and Q are then defined by the coordinate triplet:

geocentric distance r, longitude k, co-latitude h), the reciprocal distance 1=lPQ has to be

replaced by its spherical harmonic expansion. Rummel et al. (1988) show that Eq. 1 can

then be represented as spherical harmonic series of the form

VðPÞ ¼GM

R

X1
n¼0

Xn
m¼�m

R

rp

� �nþ1

� 1

Mð2nþ 1Þ

Z
B

rQ

R

� �n
qðQÞYnmðhQ; kQÞdB

� �
YnmðhP; kPÞ

ð2Þ

with the mass of Earth M, its mean radius R, the geocentric radii of the computation point

rP and the source point rQ, the spherical harmonic degree n and order m. Ynm denote the

well-known set of fully normalised Laplace’s surface spherical harmonic functions

Ynmðh; kÞ ¼ Pnm cos hð Þ
cosðmkÞ form� 0

sinðmkÞ form[ 0

�
ð3Þ

with Pnm being the fully normalised (4p-normalised) associated Legendre functions of the

first kind. The term in curly brackets in Eq. 2 now contains the integration over the Earth’s

mass distribution and can alternatively be represented as a set of dimensionless fully

normalised coefficients

Vnm ¼ 3

qR3ð2nþ 1Þ
1

4p

Z
B

rQ

R

� �n
qðQÞYnmðhQ; kQÞdB; ð4Þ

that can be subdivided into their cosine- and sine-assigned equivalents, Cnm and Snm,

according to Eq. 3, where M is replaced by 4
3
pqR3 and with q being the mean density of

Earth. Then, Eq. 2 can be rewritten conveniently as
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VðPÞ ¼ GM

R

X1
n

Xn
m¼�m

R

rp

� �nþ1

VnmYnmðhP; kPÞ: ð5Þ

Now, let’s consider an Earth that is subdivided into a set of volumetric mass layers Xx

ðx ¼ ½1; 2; . . .;xmax�Þ fulfilling the following requirements:

(i) q varying only in the lateral direction in each layer (qðXxÞ is radially invariant:

qðXxÞðh; kÞ),
(ii) each layer having a defined upper bound (UB) and lower bound (LB)

r
ðXxÞ
LB � r

ðXxÞ
UB

� �
,

(iii) the layer’s boundaries being entirely inside Earth’s body r
ðXxÞ
UB � rB

� �
(iv) the layers being uniquely separated by their boundaries Xx \ Xxþ1 � 0ð Þ
(v) and the set of layers (including the remaining volumetric body inside the lower

most layer boundary) forms a complete subset of Earth’s body
P

x Xx � B
� 	

.

Then, the gravitational potential V(P) in Eq. 5 may be written as a sum of the gravitational

potential of each layer VðPÞðXxÞ

VðPÞ ¼
X
x

VðPÞðXxÞ ¼ GM

R

X1
n

Xn
m¼�m

R

rp

� �nþ1

V
ðX1Þ
nm YnmðhP; kPÞ

þ GM

R

X1
n

Xn
m¼�m

R

rp

� �nþ1

V
ðX2Þ
nm YnmðhP; kPÞ

þ � � � þ GM

R

X1
n

Xn
m¼�m

R

rp

� �nþ1

V
ðXmaxÞ
nm YnmðhP; kPÞ

¼GM

R

X1
n

Xn
m¼�m

R

rp

� �nþ1X
x

V
ðXxÞ
nm YnmðhP; kPÞ:

ð6Þ

Thus, the fully normalised coefficients in Eqs. 4 and 9 are the sum of the respective

coefficients of all layers

Vnm ¼
X
x

V
ðXxÞ
nm ð7Þ

The fully normalised potential coefficients of a layer V
ðXxÞ
nm are given by the global radial

integration of the layer’s masses

V
ðXxÞ
nm ¼ 3

qR3ð2nþ 1Þ
1

4p

Z
Xx

rQ

R

� �n
qðXxÞðhQ; kQÞYnmðhQ; kQÞdXx

¼ 3

qR3ð2nþ 1Þ
1

4p

Z 2p

k¼0

Z p

h¼0

Z r
ðXxÞ
UB

r
ðXxÞ
LB

rQ

R

� �n

� qðXxÞðhQ; kQÞYnmðhQ; kQÞr2
Q sin hdrdhdk

ð8Þ

where qðXxÞ denotes the layers density distribution. With moving the reference radius

outside the integrals, we then write (see Rummel et al. 1988)
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V
ðXxÞ
nm ¼ 3

qRð2nþ 1Þ
1

4p

Z 2p

k¼0

Z p

h¼0

XðxÞYnmðhQ; kQÞ sin hdhdk ð9Þ

where XðxÞ denotes the radial integration of the layer’s masses

XðxÞ ¼
Z r

ðXxÞ
UB

r
ðXxÞ
LB

rQ

R

� �nþ2

qðXxÞðhQ; kQÞdr: ð10Þ

Since qðXxÞ is assumed to be a function of k and h only (and thus constant in radial

direction within each layer), the solution of the integral in Eq. 10 yields

XðxÞ ¼ qðXxÞðhQ; kQÞ
R

nþ 3

r
ðXxÞ
UB

R

 !nþ3

� r
ðXxÞ
LB

R

 !nþ3
2
4

3
5: ð11Þ

Then, consider that the integral in Eq. 10 can also be defined with respect to the ellipsoidal

radius by two separate integrals, e.g., by

XðxÞ ¼
Z re

r¼r
ðXxÞ
LB

rQ

R

� �nþ2

qðXxÞðhQ; kQÞdr þ
Z r

ðXxÞ
UB

r¼re

rQ

R

� �nþ2

qðXxÞðhQ; kQÞdr: ð12Þ

The above (split) integral solution holds for all possible vertical arrangements of layer

boundaries (where all, none or only a part of the masses of a layer are located within the

reference ellipsoid), as shown in Claessens and Hirt (2013) for single-layer modelling.

Then, with qðXxÞ being radially invariant, the solution to the integral in Eq. 12 becomes

XðxÞ ¼qðXxÞðhQ; kQÞ
R

nþ 3

� r
ðXxÞ
UB

R

 !nþ3

� re

R

� �nþ3

2
4

3
5� r

ðXxÞ
LB

R

 !nþ3

� re

R

� �nþ3

2
4

3
5

0
@

1
A;

ð13Þ

which essentially is the same as Eq. 11, since re
R

� 	nþ3
cancels out in Eq. 13. Starting from

this solution to the radial integral of the masses within a layer Xx—which will turn out to

be of mathematically convenient form—we will derive the potential VðPÞðXxÞ of a volu-

metric layer in spherical approximation in Sect. 2.1 and in ellipsoidal approximation in

Sect. 2.2.

2.1 Layer-Based Modelling with Respect to a Reference Sphere

The potential based on volumetric layers of laterally variable density as given by Eq. 6

modelled with respect to a reference sphere means—in simple words—a spherical

approximation of Earth’s masses and yields the spherical topographic potential VSTP. A

solution to the layer-based STP was given already by Pavlis and Rapp (1990), Tenzer et al.

(2015) and other works (see Sect. 1) and is recapitulated in own notation here.

The first spherical approximation that is introduced is setting

re ¼ R ð14Þ

in Eq. 13, which yields the spherical approximated mass of the layer
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XðSTP;xÞ ¼ qðXxÞðhQ; kQÞ
R

nþ 3

r
ðXxÞ
UB

R

 !nþ3

�1

2
4

3
5� r

ðXxÞ
LB

R

 !nþ3

�1

2
4

3
5

0
@

1
A: ð15Þ

The second spherical approximation is made by describing the layer’s boundaries with

respect to the reference sphere as

r
ðXxÞ
UB ¼Rþ H

ðXxÞ
UB

r
ðXxÞ
LB ¼Rþ H

ðXxÞ
LB

ð16Þ

where H
ðXxÞ
UB and H

ðXxÞ
LB denote the orthometric height of the upper and the lower boundary

of Xx, respectively. We may then introduce the well-known binominal expansion for both

terms in square brackets in Eq. 15 (see Rummel et al. 1988)

r
ðXxÞ
UB

R

 !nþ3

�1 ¼
Xnþ3

k¼1

nþ 3

k

� �
H

ðXxÞ
UB

R

 !k

¼
Xnþ3

k¼1

1

k!

Yk
i¼1

ðnþ 4 � iÞ H
ðXxÞ
UB

R

 !k

r
ðXxÞ
LB

R

 !nþ3

�1 ¼
Xnþ3

k¼1

nþ 3

k

� �
H

ðXxÞ
LB

R

 !k

¼
Xnþ3

k¼1

1

k!

Yk
i¼1

ðnþ 4 � iÞ H
ðXxÞ
LB

R

 !k
ð17Þ

and yield

XðSTP;xÞ ¼qðXxÞðhQ; kQÞ
R

nþ 3

Xnþ3

k¼1

nþ 3

k

� �
H

ðXxÞ
UB

R

 !k

�
Xnþ3

k¼1

nþ 3

k

� �
H

ðXxÞ
LB

R

 !k
0
@

1
A

¼qðXxÞðhQ; kQÞ
R

nþ 3

Xnþ3

k¼1

nþ 3

k

� �
H

ðXxÞ
UB

R

 !k

� H
ðXxÞ
LB

R

 !k
0
@

1
A:

ð18Þ

Inserting Eq. 18 into Eq. 9 gives, after moving the double integral into the binominal

series, the solution to the layer’s spherical topographic potential

V
ðSTP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ
Xnþ3

k¼1

nþ 3

k

� �
1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ

� H
ðXxÞ
UB

R

 !k

� H
ðXxÞ
LB

R

 !k
0
@

1
AYnmðhQ; kQÞ sin hdhdk

ð19Þ

where the height function (HF) to the power k within the double integral, scaled by the

density qðXxÞðhQ; kQÞ in each cell, can be expressed as a series of (fully normalised) surface

spherical harmonic coefficients of the layer’s height density function (HDF)

HDF
ðSTP;XxÞ
knm ¼ 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ

� H
ðXxÞ
UB

R

 !k

� H
ðXxÞ
LB

R

 !k
0
@

1
AYnmðhQ; kQÞ sin hdhdk:

ð20Þ

Surv Geophys

123

Author's personal copy



Then, we arrive at a concise expression of the layer’s spherical topographic potential

V
ðSTP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ
Xnþ3

k¼1

nþ 3

k

� �
HDF

ðSTP;XxÞ
knm : ð21Þ

Note that the radial integration (Eq. 10) can also be done rigorously (without using

binominal series expansions), as shown, for example, by Pavlis and Rapp (1990). However,

the rigorous integration is much less efficient compared to an integration based on

binominal series expansions (Rummel et al. 1988). Therefore, especially for large nmax, the

rigorous approach may become excessively computationally demanding. The rigorous

expressions in our notation are found in Appendix 1.

2.2 Layer-Based Modelling with Respect to a Reference Ellipsoid

Next, the potential based on volumetric layers of laterally variable density as given by

Eq. 6 is modelled with respect to a reference ellipsoid. This procedure yields the ellip-

soidal topographic potential VETP. In contrast to the spherical variant described in

Sect. 2.1, this modelling technique defines the layered masses with respect to a reference

ellipsoid. The Earth is thus not approximated by a sphere and the true physical shape of

Earth can be preserved.

The solution to the layer-based ETP discussed next is based on the HC method derived

in Claessens and Hirt (2013), who applied the HC method only to compute the ETP from a

single-density (RET) model.

The starting point is Eq. 13 that is a solution to the radial integral of a layer’s masses

(Eq. 10) with respect to an ellipsoid, which can also be written as follows:

XðETP;xÞ ¼qðXxÞðhQ; kQÞ
R

nþ 3

re

R

� �nþ3 r
ðXxÞ
UB

re

 !nþ3

�1

2
4

3
5� r

ðXxÞ
LB

re

 !nþ3

�1

2
4

3
5

0
@

1
A: ð22Þ

The layer’s boundaries in the ellipsoidal case may be described by their pseudo-ellipsoidal

heights h0
ðXxÞ
UB and h0

ðXxÞ
LB following

r
ðXxÞ
UB ¼ r0e þ h0

ðXxÞ
UB

r
ðXxÞ
LB ¼ r0e þ h0

ðXxÞ
LB

ð23Þ

measured along the direction towards the origin of the ellipsoid, akin to the geocentric

coordinates needed for spherical harmonics [denoted approximate ellipsoidal height in

Claessens and Hirt (2013)]. In approximation, the layer’s boundaries may be described by

d
ðXxÞ
UB and d

ðXxÞ
LB denoting the ellipsoidal height h taken in the direction towards the geo-

center and thus yields

r
ðXxÞ
UB ¼ re þ d

ðXxÞ
UB

r
ðXxÞ
LB ¼ re þ d

ðXxÞ
LB :

ð24Þ

The error of this ellipsoidal approximation, when d
ðXxÞ
UB and d

ðXxÞ
LB are used instead h0

ðXxÞ
UB

and h0
ðXxÞ
LB , is investigated in Sect. 4.5.

Both square brackets terms in Eq. 22 can—equivalent to the spherical case (Eq. 17)—

be expressed by the binominal series expansions
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r
ðXxÞ
UB

re

 !nþ3

�1 ¼
Xnþ3

k¼1

nþ 3

k

� �
d
ðXxÞ
UB

re

 !k

¼
Xnþ3

k¼1

1

k!

Yk
i¼1

ðnþ 4 � iÞ d
ðXxÞ
UB

re

 !k

r
ðXxÞ
LB

re

 !nþ3

�1 ¼
Xnþ3

k¼1

nþ 3

k

� �
d
ðXxÞ
LB

re

 !k

¼
Xnþ3

k¼1

1

k!

Yk
i¼1

ðnþ 4 � iÞ d
ðXxÞ
LB

re

 !k

:

ð25Þ

Inserting Eq. 25 and Eq. 22 into Eq. 9 gives a preliminary solution to the ETP of a layer

V
ðETP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ
Xnþ3

k¼1

nþ 3

k

� �

� 1

4p

Z 2p

k¼0

Z p

h¼0

re

R

� �nþ3

qðXxÞðhQ; kQÞ
d
ðXxÞ
UB

re

 !k

� d
ðXxÞ
LB

re

 !k
0
@

1
A

� YnmðhQ; kQÞ sin hdhdk:

ð26Þ

In order to get a practicable solution for the ETP that is independent of any term with

degree n in the exponent, Claessens and Hirt (2013) have introduced a second (infinite)

binominal series for re
R

� 	nþ3
that has been derived in Claessens (2006):

re

R

� �nþ3

¼ b

R

� �nþ3

1 � e2 sin2 h
� 	 �nþ3

2ð Þ¼ b

R

� �nþ3X1
j¼0

�1ð Þj � nþ 3

2
j

0
@

1
Ae2j sin2j h ð27Þ

where b is the semi-minor axis of the ellipsoid and e2 is the squared first numerical

eccentricity. With the help of fully normalised sinusoidal Legendre weight functions K
2i;2j
nm

[see, for example, Appendix 1 in Claessens and Hirt (2013) for more details on the

recursion relations], it is evident that

sin2j hYnm ¼
Xj

i¼�j

K
2i;2j
nm Ynþ2i;m: ð28Þ

Inserting Eqs. 28 and 27 in 26 yields coefficients of the ellipsoidal topographic potential

V
ðETP;XxÞ
nm of the layer Xx:

V
ðETP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ
b

R

� �nþ3Xnþ3

k¼1

nþ 3

k

� �X1
j¼0

�1ð Þj � nþ 3

2
j

0
@

1
Ae2j

Xj

i¼�j

K
2i;2j
nm

� 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ
d
ðXxÞ
UB

re

 !k

� d
ðXxÞ
LB

re

 !k
0
@

1
A

Ynþ2i;mðhQ; kQÞ sin hdhdk

ð29Þ

Again, the term within the double integral, scaled by the density qðhQ; kQÞ in each cell, can

be expressed as a series of (fully normalised) surface spherical harmonic coefficients of the

layer’s (ellipsoidal) height density function
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HDF
ðETP;XxÞ
klm ¼ 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ
d
ðXxÞ
UB

re

 !k

� d
ðXxÞ
LB

re

 !k
0
@

1
A

� Y lmðhQ; kQÞ sin hdhdk

ð30Þ

where l ¼ nþ 2i and we arrive at a compact expression for the layer’s ellipsoidally

approximated potential

V
ðETP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ
b

R

� �nþ3Xkmax

k¼1

nþ 3

k

� �Xjmax

j¼0

�1ð Þj � nþ 3

2
j

0
@

1
Ae2j

�
Xj

i¼�j

K
2i;2j
nm HDF

ðETP;XxÞ
klm

ð31Þ

where kmax � nþ 3 and jmax\1 denote the maximum orders of the binominal series

expansions. While kmax and jmax are much smaller than the maximum harmonic degree of

the model nmax, generally, the number of binominal terms that are required to avoid

truncation errors for different modelling parameters (e.g. spatial resolution) is discussed

next. The rigorous expressions for the ETP of mass layers (devoid of binominal series

expansions) are given in Appendix A.

2.3 Convergence of Binominal Series Expansions

As shown above, Eq. 31 contains two binominal series expansions, one incrementing by k

and one by j. The convergence of the first series (Eq. 25), which is also found in the

solution of the STP for re ¼ R (Eq. 17), has been thoroughly studied, for example, by Sun

and Sjöberg (2001) for various resolutions. Commonly, kmax ¼ 7 is considered sufficient

for degree 2160. We have studied the relative amplitudes in Eq. 17 since the series

additionally depends on re in case of the ETP. However, for a ¼ 6;378;137 m and b ¼
6;356;752 m (where a	 re 	 b), an identical number of terms were found to be required

for different re. Our investigations show kmax ¼ 10 is needed to achieve convergence at the

1% level (i.e. less than 1% truncation error) at degree 2160 (Table 1). Note that Root et al.

(2016) showed that the convergence may be problematic for deep layers (e.g., upper mantle

layers), with the boundaries’ lower bound 
 R. According to Root et al. (2016), the

problem can be overcome by reducing the reference radius R during the forward modelling

of the affected layer and a subsequent rescaling of the computed coefficients.

The second series (Eq. 27), a function of degree n and the co-latitude H, occurs in the

ETP only. Despite its infinite summations, it was shown to always converge (Claessens

2006). Looking at the amplitudes of the series’s terms in a relative manner, at least

jmax ¼ 18 should be used to achieve convergence at the 1% level for degree 2160 and

h 2 0; p
2


 �
(Table 2).

2.4 Sampling Requirements of Height Density Functions

Special attention is required for the harmonic analysis of the layer’s height density func-

tions [e.g., by means of quadrature (Rexer and Hirt 2015b)] that is needed to derive the

surface spherical harmonic coefficients HDF
ðSTP;XxÞ
knm or HDF

ðETP;XxÞ
klm . Due to the expo-

nentiation of the height function by k, the bandwidth (expressed by the maximum degree N
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of the original height function) increases proportionally with k, following Hirt and Kuhn

(2014),

NðkÞ ¼ kN: ð32Þ

Importantly, Eq. 32 implies that the gridded height functions need to be sampled according

to kmax (see Sect. 2.3) in order to avoid any aliasing effects. Computing the STP to degree

2160 with kmax ¼ 7 in an experiment (not shown here), with the grid sampling limiting the

maximum degree to degree 2700, yields aliasing errors of up to � 20 mGal and a global

root mean square (RMS) of 0:17 mGal. In all computations in this contribution, the

increased sampling requirements are thus fully taken into account. A more detailed study

of the aliasing effect is outside the scope of this paper.

3 Layer Concept Based on Earth2014

The mass layer concept using the STP and ETP framework presented in Sect. 2 can be

applied with the four (geophysical) volumetric layers

X1: Ice

X1: Lakes

X1: Ocean

X1: Crust (solid rock)

Table 1 Order of truncation kmax of the first binominal series (Eq. 25) at various resolutions (harmonic
degree n) and locations of the layer boundary required to reduce the relative error below the 1%-level,
where a ¼ 6;378;137 m	 re 	 b ¼ 6;356;752 m

n Distance to reference surface (H or d)

�9 km �4:5 km �1 km

10 2 2 2

360 4 4 3

2160 10 7 4

2190 10 7 4

5400 17 11 5

10,800 29 17 7

Table 2 Order of truncation jmax of the second binominal series (Eq. 27) at various resolutions (harmonic
degree n) and co-latitude h required to reduce the relative error below the 1%-level, where b ¼ 6;356;752 m
and R ¼ 6;378;137 m

n H ¼ 0� H ¼ 10� H ¼ 30� H ¼ 45� H ¼ 60� H ¼ 80� H ¼ 90�

10 1 2 3 3 3 3 3

360 1 3 4 5 6 7 7

2160 1 4 8 12 15 18 18

2190 1 4 8 12 15 18 18

5400 1 5 13 21 27 33 34

10,800 1 7 21 34 46 56 57
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while different rock types or sediment layers shall not be considered. It is of course

possible to include more layers, but relevant global data sets at resolutions \111 km are

not available (see Sect. 1.1). Note that vertical density functions (e.g., given by some

polynomial) for the integration of ocean water columns (Tenzer et al. 2015) or radially

varying mass density distributions in general (Root et al. 2016) were not integrated into the

layer concept (although possible), as this is not the scope of this paper.

The layer’s boundaries are generated from the Earth2014 data set (Hirt and Rexer 2015)

that provides a suite of self-consistent surface layers and masks which can be used to

distinguish between ice, lake, ocean and solid Earth surface at 10 resolution ð� 2 kmÞ.
Earth2014 is a freely available composite model combining up-to-date digital elevation

data with other gridded surface data products from different sources in terms of mean-sea-

level heights. As such Earth2014 can be considered an up-to-date, higher resolution and

more detailed version of the OSUJAN89 (Pavlis and Rapp 1990), DTM2002 (Saleh and

Pavlis 2002) and ETOPO1 (Amante and Eakins 2009) topographic databases that in

principle provide the same terrain types (see, for example, Fig. 1 in Pavlis and Rapp 1990).

We refer to Hirt and Rexer (2015) for a full account on Earth2014 data.

In Fig. 1, a scheme of the layer concept is given based on Earth2014 layers: bedrock

layer (BED) describing the boundary of solid rock (green lines), surface layer (SUR)

which is defined as the boundary between atmosphere and Earth (red lines) and the ice

thickness layer (ICE). The difference between SUR and ICE describes an Earth free of ice

cover/sheets and is indicated by the orange lines. Here, a total of ten different cases (A)–

(J) are given showing the most common arrangement of layers w.r.t. mean sea level

(MSL). Those cases and examples for occurrences on Earth are described in Table 3. Note

that in both above described approaches the layer’s boundaries are subject to approxi-

mation since they are defined by the orthometric height w.r.t. the respective reference

surface in a spherical harmonic frame. Effectively, thus, the geoid height is neglected and

the reference surface conforms with the MSL line in Fig. 1. The geometry and approxi-

mation error due to height assumptions is further discussed in Sect. 4.5.

Two different possibilities exist for the choice of the densities, leading to the following

two different approaches for layer-based forward modelling

Fig. 1 Simplified scheme of the four geophysical layers extracted from the Earth2014 data set
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1. LCA: layer correction approach with actual layer densities (c.f. Table 4)

2. LRA: layer reduction approach with density contrasts (c.f. Table 5)

which are described in the following.

3.1 Layer Correction Approach (LCA)

In this approach, the gravitational potential generated by each mass layer is modelled with

its actual density. Each layer thus makes a (positive) contribution to the final model, i.e. the

total topographic potential, that can be thought of as a correction in geodetic sense. Then,

the total topographic potential is the sum of the potential contributions of all layers. In the

LCA, the layer boundaries and densities for the four layers are selected from the Earth2014

database as listed in Table 4. The LCA can be best understood as bottom-up approach as

Table 3 Cases of layer arrangements shown in Fig. 1 and their occurrences on Earth

Case Type Occurrence

A Dry land—bedrock below MSL e.g., Death Valley

B Dry land—bedrock above MSL Most continental areas

C Ocean All open oceans

D Lake—bedrock and lake surface above MSL e.g., shallow parts of Great Lakes and Lake
Baikal

E Lake—bedrock below MSL, lake surface above
MSL

e.g., deep parts of Great Lakes and Lake Baikal

F Lake—bedrock and lake surface below MSL e.g., Caspian Sea

G Ice shelf—ice above ocean e.g., shorelines of Antarctica and Greenland

H Ice-/snow-covered bedrock above MSL e.g., continental glaciers, Antarctica, Greenland

I Ice-/snow-covered bedrock below MSL e.g., Antarctica

J Ice-/snow-covered lake e.g., Lake Vostok

Table 4 Description of layer boundaries and densities in the LCA approach using Earth2014 data

Layer name Density

ðkg=m3Þ
Layer boundary
type

Over land Over ocean
and shelf
ice

Over lakes Over ice

Ice layer 917 UB SUR SUR SUR SUR

LB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

Lakes layer 1000 UB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

LB SUR–ICE SUR–ICE BED SUR–ICE

Ocean layer 1030 UB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

LB SUR–ICE BED SUR–ICE SUR–ICE

Crust layer 2670 UB BED BED BED BED

LB REF REF REF REF

Cases (c.f. Fig. 1) A, B C, G D, E, F, J H, I

SUR, Earth2014 surface layer; ICE, Earth2014 ice thickness layer; BED, Earth2014 bedrock layer;
ICE-SUR, Earth2014 surface removed for ice sheets (see yellow lines in Fig. 1); REF, reference surface
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each layer from the reference surface to the surface of Earth is modelled one after another.

This is different from the approach described next.

3.2 Layer Reduction Approach (LRA)

One can best imagine the LRA approach as a top-down approach: the crustal potential is

modelled using the uppermost boundary layer (the physical surface of Earth) and is then

reduced for the effect of mass density anomalies expressed by density contrasts (w.r.t. the

assumed crustal density) that exist in each layer beneath the surface, down to the reference

surface. The layer boundaries and density contrasts in the LRA approach are listed in

Table 5. When using negative density contrasts for the layers, the total topographic

potential is the sum of the gravitational effects of each layer.

3.3 LRA Versus LCA

Theoretically, both approaches should yield the same potential and neither of the

approaches is preferable in terms of computational expense. However, practically small

differences may remain between the approaches, mainly due to spherical harmonic rep-

resentation errors as will be shown (see Sect. 4.1). In the literature, often only the LRA

approach based on density contrasts is considered. In Tenzer et al. (2015), for example, so-

called striping corrections to the topographic correction are computed based on density

contrasts, so their procedure corresponds to the LRA approach.

The cross-validation of the results of both approaches is a valuable tool for detecting

inconsistencies of the used mass models. For example, consider

(a) a layer A intersecting with another layer B (Fig. 2a)—then, the overlapping space

would be modelled twice in the LCA approach and in the LRA approach, leading to

different potentials: in case of LCA, the overlapping space would be corrected using

both layers’ densities; in case of LRA, the overlapping space would be reduced for

both layers’ density contrasts. In general, the error � associated with this kind of

inconsistency depends on qB if UBB is wrong and on qA if LBA is wrong. However,

Table 5 Description of layer boundaries and densities in the LRA approach using Earth2014 data

Layer name Density/
-contrast

ðkg=m3Þ

Layer
boundary
type

Over land Over ocean
and shelf ice

Over
lakes

Over ice

Crust layer 2670 UB SUR SUR SUR SUR

LB REF REF REF REF

Ice layer -1753 UB SUR SUR SUR SUR

LB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

Lakes layer -1670 UB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

LB SUR–ICE SUR–ICE BED SUR–ICE

Ocean layer -1640 UB SUR–ICE SUR–ICE SUR–ICE SUR–ICE

LB SUR–ICE BED SUR–ICE SUR–ICE

Cases (c.f. Fig. 1) A,B C,G D,E,F,J H,I

SUR, Earth2014 surface layer; ICE: Earth2014 ice thickness layer; BED, Earth2014 bedrock layer; ICE–
SUR, Earth2014 surface removed for ice sheets (see yellow lines in Fig. 1); REF, reference surface
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no error will occur in case of the LRA if UBB is wrong and layer B happens to be the

crustal layer ðqB ¼ qcrustÞ.
(b) a not modelled (volumetric) empty space between two layers A and B (Fig. 2b)—

then, this space is not accounted for in the LCA approach at all, while the space is

implicitly filled and modelled with crustal density in the LRA approach. Again, no

error will occur in case of the LRA if UBB is wrong and layer B happens to be the

crustal layer ðqB ¼ qcrustÞ.
Note that it is likewise possible (and associated with less computational costs) to detect

inconsistencies in the mass models by applying the (purely) geometric conditions listed

under (ii) to (v) in Sect. 2.

4 Results

This section presents a numerical study based on the ellipsoidal layer-based forward

modelling technique (Sect. 2.2) using the volumetric layers defined in Sect. 3. It also

shows the results of the layer-based forward modelling in spherical approximation

(Sect. 2.1) for comparison purposes.

4.1 Global Gravitational Potential from Volumetric Layers in Ellipsoidal
Approximation

The above presented techniques allow modelling the topographic gravitational potential of

a single layer as well as the combined (total) effect of several layers via corrections or

reductions. For the sake of clarity, an overview on the computed potential fields together

with their approximation level and acronyms is given in Table 6.

The dimensionless degree variances

cn ¼
Xn
m¼�n

V
2

nm ð33Þ

of the ETP of all layers computed using the constants given in Table 7 are shown in Fig. 3.

While the single layers’ potentials (coloured lines) are different (by a constant scale factor)

for the LRA and the LCA approach, the sum of all layer’s potentials (black lines) yields

similar spectra for both approaches. The difference is at least five orders of magnitude

below the signal (Fig. 4, left plot), corresponding to a root mean square (RMS) of

Fig. 2 Scheme and associated error of (a) intersecting layers or (b) empty space between layers in the LCA
and the LRA approach
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� 0:001 mGal in terms of gravity disturbances evaluated at the surface of Earth (Fig. 5).

The largest differences are found above the inland lakes, which are accompanied by error

patterns distributed approximately along great arcs. We believe those differences stem

from spherical harmonic representation errors (Gibbs effect) that occur over small areas

with large variations in height/depth (e.g., Lake Baikal). The corresponding coefficient

differences are given in Fig. 4 (right plot).

We have computed a 5’ global grid of gravity disturbances from the new dV_EL-

L_Earth2014_lca model in spectral band of degrees 0 to 2190 at the Earth’s surface as

represented by the Earth2014 SUR layer. This was done by using the isGrafLab software

(Bucha and Janák 2014) along with the gradient approach for 3D harmonic synthesis (Hirt

2012). In Fig. 6, the gravity disturbances from the dV_ELL_Earth2014_LCA model vary

approximately between -802 and 624 mGal with an average signal strength (RMS) of

� 350 mGal.

The area of Antarctica has been selected to show the gravitational contribution of each

layer to the total gravitational effect of the Earth2014 based mass model (Fig. 7), as each

layer has a significant contribution over that region. The largest contributions are given by

the crust layer and ocean layer, while the ice layer and lake layer have smaller (but still)

significant contributions. Note especially that, for example, the ocean layer has significant

Table 6 Acronyms of computed potential models in the numerical study together with used layers, type of
approximation, layer approach and maximum spherical harmonic degree

Acronym Approximation Layer Layer approach Max. degree

dV_ELL_Earth2014_lca Ellipsoidal/ETP All LCA 2190

dV_ELL_Earth2014_lra Ellipsoidal/ETP All LRA 2190

dV_ELL_ICE2014_lca Ellipsoidal/ETP Ice layer LCA 2190

dV_ELL_ICE2014_lra Ellipsoidal/ETP Ice layer LRA 2190

dV_ELL_LAKES2014_lca Ellipsoidal/ETP Lakes layer LCA 2190

dV_ELL_LAKES2014_lra Ellipsoidal/ETP Lakes layer LRA 2190

dV_ELL_OCEAN2014_lca Ellipsoidal/ETP Ocean layer LCA 2190

dV_ELL_OCEAN2014_lra Ellipsoidal/ETP Ocean layer LRA 2190

dV_ELL_CRUST2014_lca Ellipsoidal/ETP Crust layer LCA 2190

dV_ELL_CRUST2014_lra Ellipsoidal/ETP Crust layer LRA 2190

dV_ELL_RET2014 Ellipsoidal/ETP All RET 2190

dV_SPH_Earth2014_lca Spherical/STP All LCA 2160

dV_SPH_Earth2014_lra Spherical/STP All LRA 2160

dV_SPH_ICE2014_lca Spherical/STP Ice layer LCA 2160

dV_SPH_ICE2014_lra Spherical/STP Ice layer LRA 2160

dV_SPH_LAKES2014_lca Spherical/STP Lakes layer LCA 2160

dV_SPH_LAKES2014_lra Spherical/STP Lakes layer LRA 2160

dV_SPH_OCEAN2014_lca Spherical/STP Ocean layer LCA 2160

dV_SPH_OCEAN2014_lra Spherical/STP Ocean layer LRA 2160

dV_SPH_CRUST2014_lca Spherical/STP Crust layer LCA 2160

dV_SPH_CRUST2014_lra Spherical/STP Crust layer LRA 2160

dV_SPH_RET2014 Spherical/STP All RET 2160

ETP, ellipsoidal topographic potential; STP, spherical topographic potential; LCA, layer correction
approach; LRA, layer reduction approach; RET, rock-equivalent topography (=single-density modelling)
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contributions over continental Antarctica (and over other continents) which underlines the

importance of explicitly modelling the ocean’s masses in order to retrieve a good

approximation of the gravitational potential over land.

The benefit of layer-based modelling, as done here, compared to RET-based (single-

density models) modelling obviously is largest over ice- and water-covered parts of Earth

where discrepancies are of the order of � 10�20 mGal (Fig. 8). Especially over the mid-

oceanic ridges and deep ocean trenches (but also over many other areas), notable differ-

ences are present which all can safely be interpreted as RET approximation errors (see

Table 7 Constants and modelling parameters used for the numerical study

Symbol Description LCA LRA

qðX1Þ Ice layer density/contrast 917 kg=m3 -1753 kg=m3

qðX2Þ Lakes layer density/contrast 1000 kg=m3 -1670 kg=m3

qðX3Þ Ocean layer density/contrast 1030 kg=m3 -1640 kg=m3

qðX4Þ Crust layer density/contrast 2670 kg=m3 2670 kg=m3

q Earth’s mean density 5495:30635355977 kg=m3

R Reference radius 6;378;137:0 m

a Semi-major axis of GRS80 6;378;137:0 m

e2 Square of first eccentricity of GRS80 0.00669438002290

M Earth’s mass 5:972581 � 1024 kg

GM Mass � Gravitational constant 3:986005 � m3=s�2

kmax Maximum power 12

jmax Maximum summation index 30

nmax Maximum degree STP:2160; ETP:2190

nmax;DEM maximum degree of input Earth2014 DEM 2160

resolution/sampling of input Earth2014 DEM 25’’

Fig. 3 Degree variances of the ellipsoidal topographic potential models and their layers using the LCA
approach (left) and the LRA approach (right)
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Sect. 4.2). The discrepancies shown in Fig. 8 are in good agreement with the findings by

Grombein et al. (2016) and Kuhn and Hirt (2016).

4.2 Validation of Layer-Based Modelling Using GOCE Satellite Gradiometry

The successful operation of a gradiometer on board of ESA satellite Gravity Field and

steady-state Ocean Circulation Explorer (GOCE) resulted in global gravity gradient

observations which currently are the most consistent and accurate source for Earth’s

gravity at scales up to � 70�80 km. Its observations as incorporated in the GOCE-only

gravity field model GO_CONS_GCF_2_TIM_R5 (EGM_TIM_R5) (Brockmann et al.

2014) are totally independent of any of the computed topographic potential models in this

Fig. 4 LCA versus LRA approach: difference between the respective spectra of layer-based ETP in terms
of degree variances (left) and dimensionless coefficient differences (right)

Fig. 5 LCA versus LRA approach: difference of layer-based ETP (dV_ELL_Earth2014_lca -
dV_ELL_Earth2014_lra) in terms of gravity disturbances evaluated at the surface of the Earth, d/o
0..2190 (unit is in mGal). RMS ¼ 0:001 mGal; min ¼ �0:06 mGal; max ¼ 0:07 mGal; mean ¼ 0:00 mGal
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work and can therefore be used to quantify the benefits of layer-based modelling over

RET-based modelling, thus corroborating our spectral layer approach. In this regard, we

compute regional reduction rates (RR) (Hirt et al. 2012) from 1� � 1� blocks of band-

limited gravity disturbances dg globally at the reference ellipsoid following

RRlayer ¼100 � 1 � RMS dgdV ELL Earth2014 � dgEGM TIM R5ð Þ
RMS dgEGM TIM R5ð Þ

� �

RRRET ¼100 � 1 � RMS dgdV ELL RET2014 � dgEGM TIM R5ð Þ
RMS dgEGM TIM R5ð Þ

� � ð34Þ

and investigate their differences RRlayer � RRRET (Fig. 9). The limitation of the investi-

gation to the spectral band n ¼ 160. . .250 is reasoned as follows: the GOCE gravity model

contains the effects of isostatic compensation that are not modelled in this work. Since

isostatic effects are predominantly of long-wavelength character, we exclude all degrees

n\160. We further exclude all degrees n[ 250 since Brockmann et al. (2014) showed

that this is where the signal-to-noise ratio of the gradiometer observations becomes 1. RMS

denotes the root mean square operator, applied on the respective gravity disturbances. The

RR visualise to what extend the forward modelled gravity in the ETP models can be

reduced (i.e. explained) by the satellite’s observations. Blue areas in Fig. 9 thus are areas

where the layer modelling—in simple words—agrees better with GOCE observations than

RET-based modelling. Moreover, it is interesting to see that above the continents—pre-

dominantly above near-coastal land areas—significant improvement through the layer-

based modelling was achieved, although the mass model over the continents is the same

(except of lakes) in the case of RET-based and layer-based modelling. The reason for this

behaviour of course is that the gravitational signal of a bounded density contrast (which in

this case is the ocean) leaks over its physical boundaries.

Fig. 6 Gravity of layer-based ETP (dV_ELL_Earth2014_lca) in terms of gravity disturbances evaluated at
the surface of the Earth, d/o 0..2190 (unit is in mGal). RMS ¼ 349:45 mGal; min ¼ �802:07 mGal;
max ¼ 623:63 mGal; mean ¼ �283:58 mGal

Surv Geophys

123

Author's personal copy



4.3 Corroboration of Layer-Based Modelling Using Other GGMs

Any existing global gravitational model (GGM) may be used to investigate the quality of

the suggested layer-based forward modelling. We restrict our investigations to two models

which are

Fig. 7 Gravity contribution in terms of gravity disturbances (mGal) of the single layers, their combined
effect and the difference between LCA and LRA approach over the area of Antarctica
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1. EGM2008: the Earth Gravitational Model 2008 (Pavlis et al. 2012) which is a

combined GGM using satellite observations, terrestrial observations and residual

terrain fill-in gravity complete up to degree and order (d/o) 2190. EGM2008

incorporates the most complete (and up-to-date) set of terrestrial gravity observations

of any available GGM and is therefore the best candidate to investigate the layer-based

modelling at short scales with real observations.

Fig. 8 Layer-based modelling versus RET-based (single-density) modelling: difference between the layer-
based ETP and the RET-based ETP in terms of gravity disturbances evaluated at the reference ellipsoid (unit
is in mGal). RMS ¼ 1:79 mGal; min ¼ �45:67 mGal; max ¼ 65:91 mGal; mean ¼ �0:05 mGal

Fig. 9 Layer-based modelling versus RET-based (single-density) modelling: reduction rate differences
(Eq. 34) in 1� � 1� blocks using gravity from the GOCE-only model GO_CONS_GCF_2_TIM_R5 in the
band from degree 160 to 250. Positive values denote a better agreement between layer-based modelling and
GOCE observations (unit is in percent). RMS ¼ þ5:47%; average ¼ þ3:25%
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2. RWI_TOPO_2015: the Rock–Water-Ice topographic model 2015 (Grombein et al.

2016) is a forward model based on layers of solid rock, water and ice derived from the

same data set (Earth2014) as used for the layer-based ETP models in this work.

Contrary to this work RWI_TOPO_2015 has been generated from an integration in the

space domain using a tesseroid approach (see Grombein et al. 2013) and was

transformed into the spectral domain by a subsequent spherical harmonic analysis. The

model is also complete up to d/o 2190 and is perfectly suited for a cross-validation

with the suggested spectral approach in this work.

Consequently, the comparison with EGM2008 will allow us to judge how closely the

computed models approximate the observable gravity field at short scales while the

comparison to RWI_TOPO_2015 will provide independent feedback on the modelling

technique as such. The degree correlation (DC) yn (see, for example, Wieczorek 2007) of a

GGM w.r.t. EGM2008 is given by

yn ¼
cxnðEGM2008;GGMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cnðEGM2008Þ � cnðGGMÞ

p ð35Þ

and indicates the degree of correlation ð �1; 1½ �Þ between the signal contained in coeffi-

cients of equal degree of EGM2008 and the GGM under evaluation, where cxn is the cross-

degree variance

cxnðEGM2008;GGMÞ ¼
Xn
m¼�n

VnmðEGM2008Þ � VnmðGGMÞ: ð36Þ

As expected, the computed layer-based ETP models (dV_ELL_Earth2014_lca/lra) and

RWI_TOPO_2015 show a higher correlation with EGM2008 than the RET-based model

(Figs. 10, 11). However, the degree correlation computed from the (original) spherical

harmonic models reaches a maximum correlation of 0.93 near degree � 1000, after which

the correlations decrease again (and stay above 0.8). This is against all expectations, since

the short-scale signals of the gravity field are driven by the topographic masses. Hence, an

increase in the correlation is to be expected. The reason for this behaviour is that spherical

harmonic models in ellipsoidal approximation (like EGM2008 and most other models

found at ICGEM) cannot be used in small bands (band limited) because of dependencies

Fig. 10 Degree correlation w.r.t. EGM2008 in terms of spherical harmonic models (left panel) and in terms
of their ellipsoidal harmonic equivalents (right panel)
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among the coefficients that effect the ellipsoidal approximation. For instance, EGM2008

and other such models constructed in ellipsoidal approximation have to be synthesised up

to degree 2190 to avoid erroneous striations increasing with latitude (also see Hirt et al.

(2015), Fig. 13 ibid). However, by transforming the spherical harmonic models into truly

ellipsoidal harmonic models using Jekeli’s transform (Jekeli 1988), a band-limited

investigation of the GGMs becomes possible. Then, the degree correlations stay at a high

level ð� 0:92Þ even beyond degree � 1000 (c.f. Fig. 10, right panel), indicating that the

computed layer-based ETP models agree well with the short-scale gravity as contained in

EGM2008.

The difference of respective DCs reveals that the computed layer-based ETP models of

this work show an increasingly higher correlation beyond degree 800 or so (up to 2% near

degree 2160) compared to the RWI_TOPO_2015 model (Fig. 11). Note that a higher

correlation with EGM2008 is not necessarily a valid indicator for a better quality since

EGM2008 itself (a) has incomplete observations over some areas (e.g., it contains only

GRACE over Antarctica) and contains fill-in gravity and (b) is not error-free. However, we

find the degree correlations in Fig. 10 together with the findings in the previous Sect. (4.2)

to corroborate the layer-based modelling approach in this work, since the agreement with

EGM2008 is at least as good as that of RWI_TOPO_2015.

4.4 Combination with Satellite Data and Validation over Antarctica

For external validation with ground truth data, we have computed combination models

with GOCE and GRACE gravity observation data. A combination is necessary to be able to

directly compare the computed layer-based forward models (see Table 6) with ground truth

data, particularly at short scales. Also, because isostatic effects have rather long-wave-

length character (c.f. Grombein et al. 2014) and were not taken into account in the forward

Fig. 11 Differences between the (spherical harmonic) degree correlation w.r.t. EGM2008 of
RWI_TOPO_2015 (blue) and dV_ELL_RET2014 (black) versus the degree correlation of the layer model
computed in this work (dV_ELL_Earth2014_lca) in per cent. Positive values denote a higher correlation of
dV_ELL_Earth2014_lca
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modelling, satellite observations are used here as an accurate source of such information. We

use precomputed normal equation matrices for GRACE [ITG-Grace2010: Mayer-Gürr et al.

(2010)] and GOCE [fifth release of time-wise method: Brockmann et al. (2014)] along with

the combination strategy described in Hirt et al. (2015) (Eqs. 5–8) to create a combined

model of (1) a layer-based ETP model and (2) GRACE and GOCE information that is optimal

over the area of Antarctica (and to be used with care outside this area, since the ETP is likely to

possess a too strong weight in some spectral bands there). The combination in principle means

a regularisation of (non-regularised) GOCE and GRACE normal equations using ETP

coefficients with empirically designed regularisation weights. We choose the weighting

scheme A in Hirt et al. (2015), which was found superior especially within the polar gap

region of GOCE. The combination of GRACE and GOCE with the model dV_ELL_

RET2014 and dV_ELL_Earth2014_lca is named SatGravRet2014 and SatGravEarth2014,

respectively. Importantly, a combination of this kind is not possible with spherically

approximated (STP) models, since the levels of approximation of the satellite component and

the topography component would not be consistent (see Sect. 4.5).

We compared the combined models with gravity observations as contained in the newly

released Antarctic gravity anomaly grids (AGAG) (Scheinert et al. 2016). The AGAG data

set is based on 13 million observations and covers an area of 1 � 107 km2, corresponding

to 73% of the Antarctic continent (Fig. 12). We therefore synthesise the gravity anomaly

at each AGAG point of height h above the reference surface from both combination models

up to their maximum degree of resolution (d/o 2190). We also compute the gravity

anomaly from the model EGM2008 (Pavlis et al. 2012) and the satellite-only model

GOCO05s (Pail et al. 2011; Mayer-Gürr et al. 2015). The residuals—the differences

between the AGAG data and the synthesised gravity—are taken here as an indicator of

how close the observed potential (via AGAG) is represented by the different modelling

variants. In case of the combination models, the differences between the AGAG gravity

and modelled gravity can also be interpreted as short-scale Bouguer gravity: the AGAG

observations are (more or less) completely reduced by the observed satellite gravity in the

long wavelengths; in the short wavelengths, the AGAG gravity is reduced for the gravi-

tational effect of the visible topographic masses (=Bouguer gravity).

For the entire AGAG data set (181,443 grid points) and a subset of the most accurate

grid points (24,315 grid points with standard deviation ðSTD\2 mGalÞ the residuals

reveal that the herein created combination model based on the layer approach (Sat-

GravEarth2014) performs better than the other models under investigation (Table 8). The

improvement in SatGravEarth2014 w.r.t. EGM2008 is 15% using all AGAG points and

25% using the more accurate subset of points, while it improves over GOCO05s with 8%
using all points and 18:5% in the subset. The improvement in layer-based modelling w.r.t.

RET modelling is about 2% over both areas in Antarctica, which corresponds to an RMS/

STD of � 0:3 mGal. The improvement is not very large in absolute terms but still

indicative, given the differences between SatGravRet2014 and SatGravEarth2014 gravity

at the AGAG points (Fig. 12) have an RMS of � 1 mGal only. Further, the positive effect

of layer-based modelling is more notable over the ocean ð5% improvementÞ than over

land/continental Antarctica ð1% improvementÞ. Globally, this tendency is shown already

in Fig. 9. Note that EGM2008 shows a better performance over the ocean than the other

investigated models. This is to be expected and reflects that AGAG data and EGM2008 are

observation based down to short scales. EGM2008 has DTU altimetry data included over

the oceans while AGAG over the oceans presumably relies on ship-track-based observa-

tions; hence, both data sets are observation based and thus in closer agreement than the
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AGAG observations with forward models. Also, this finding reveals limitations in cur-

rently available Antarctic bathymetry data.

The sum of (1) GOCO05s taken (from n ¼ 0) up to degree 280 and (2) ETP model

(dV_ELL_RET2014 or dV_ELL_Earth2014) taken in the band 281� n� 2190 shows less

agreement with AGAG data (� 1 mGal more in terms of RMS/STD, see Table 8) than the

Fig. 12 Antarctic gravity anomaly grid (upper left plot) and residuals with gravity anomalies synthesised
from various GGMs (unit is in mGal)
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combination models that also comprise gravity from GRACE, GOCE and ETP model (Sat-

GravRET2014 and SatGravEarth2014). Thus, a quite simple combination of the ETP and

observed gravity, e.g., as done here by means of a regularisation, is better than omission error

modelling, since the latter leads to higher residuals. Omission error modelling means the

estimation of short-scale gravity signals that are not contained in a GGM (i.e. signals beyond

the maximum degree N of the model) by band-limited information that can, for example, be

computed from a residual terrain model (RTM modelling, c.f. Forsberg 1984) or taken from a

(abrupt) truncation of a topographic potential model, as done here.

4.5 Modelling Differences Between the Spherical and Ellipsoidal Approach

The spherically approximated (see Sect. 2.1) and ellipsoidally approximated (see Sect. 2.2)

layer-based forward modelling of the potential in spherical harmonics—leading to solu-

tions of the STP and ETP, respectively—is to be treated and interpreted differently. The

STP and ETP are inherently different regarding the spectral and spatial domain charac-

teristics as will be shown next.

4.5.1 Geometric Differences and Mapping of the Layer Boundaries

Essentially, both STP and ETP are different representations of the (same) potential that is

generated by the same masses which are defined by volumetric layers (see Sects. 2, 3). The

spherical approach assumes the boundaries of the layers to be referenced to some reference

Table 9 Definition of heights and their usage in this work (see also Fig. 13)

Symbol Term Direction Meaning Use in this work

N Geoid height Normal to
ellipsoid

Diff. between
h and H

None

~H Mean-sea-level
height

Appr. normal to
geoid

Distance: MSL
to Ps

Given by DEMs and used for H

H Orthometric height Normal to geoid Distance: geoid
to Ps

Used to approximate the heights
in STP and ETP modelling

h Ellipsoidal height Normal to
ellipsoid

Distance:
ellipsoid to Ps

Unusable in the modelling
because of direction

d Mapped ellipsoidal
height

Direction to
geocenter

Distance:
ellipsoid to Pm

In ETP modelling under
ellipsoidal approximation

h’ Pseudo-ellipsoidal
height

Direction to
geocenter

Distance:
ellipsoid to Ps

Can be used in ETP modelling to
avoid mapping

Dsph Mapped spherical
height

Direction to
geocenter

Distance: sphere
to Pm

In STP modelling under spherical
approximation

Hsph Spherical height Direction to
geocenter

Distance: sphere
to Ps

In STP modelling (theoretically)

Ps, surface point; Pm, mapped surface point; MSL, mean sea level

bFig. 13 Scheme of mapping of the Earth’s physical surface in the investigated modelling techniques:
mapping situation in STP modelling in spherical approximation (a), mapping situation in ETP modelling in
ellipsoidal approximation (b) and mapping-free situation in ETP modelling without approximation by using
pseudo-ellipsoidal heights h0 at their respective latitudes u0 (c); u: geocentric latitude; B: geodetic latitude;
re: ellipsoidal radius to Po; r0e: ellipsoidal radius to P0

o; a, b: semi-major/minor axis of ellipsoid; R: spherical

radius; H: orthometric height; h: ellipsoidal height; Dsph: mapped spherical height; d:mapped ellipsoidal

height; Ps: surface point; Pm: mapped surface point; tsm: distance PsPm
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sphere. This is accomplished with the orthometric height serving as an approximation for

the distance between sphere and surface point (referred to as mapped spherical height). The

ellipsoidal approach assumes the layers to be referenced to some reference ellipsoid using

the orthometric height as approximation for the distance between ellipsoid and surface

point (referred to as mapped ellipsoidal height). See also Table 9 for an overview of the

used heights, their definitions and use. Neither of the approaches thus takes into account

the geoid–ellipsoid separation (i.e. the geoid height), which shall not be further looked at

here, nor the fact that orthometric heights are not measured along the direction to the

geocenter, which is implicitly assumed in the spherical harmonic framework.

The result of the latter is a displacement (often referred to as mapping) of the Earth’s

physical surface and of all layer boundaries (Fig. 13). In case of the spherical approxi-

mation (STP), the approximation error introduced by the mapping is hard to be determined/

interpreted, since the masses and computation point PS are rearranged w.r.t. a spherical

reference (Fig. 13a) and there is no workaround to avoid a displacement of masses. In case

of the ellipsoidal approximation (ETP), the displacement due to mapping is largest at mid-

latitudes and becomes zero at the poles and the equator (Fig. 13 B and Fig. 14). These

displacements are also a part of the mapping within the STP, but (additionally) projected

onto the sphere. At maximum, consider a point Ps with extreme elevation of h ¼ 9 km

above or h ¼ �10 km below the ellipsoid and at a latitude of B ¼ 45�, the displacement

given by the distance tsm ¼ PsPm between surface point Ps and its mapped equivalent Pm

becomes � 30 m or 33 m, respectively (i.e. u� u0 � 0:900 and h� h0 � 5 cm). This con-

firms similar the findings by Balmino et al. (2012). In view of 10-km resolution models as

computed in this model, mass displacements of this order hardly play a role. Nevertheless,

in case of the ETP, displacement can be avoided by working with what we denote pseudo-

ellipsoidal heights h0 (c.f. Appendix 1 for their computation). They are given at their

respective geocentric latitudes u0 that are defined along the direction towards the geocenter

(Fig. 13c). Working with the pseudo-ellipsoidal heights instead of mapped ellipsoidal

heights within layer-based modelling to degree 2190 yields differences in the order of

�3 mGal or RMS=0.04 mGal (see Fig. 14). Accounting for the mapping is thus only

required for applications of high accuracy or high resolution.

4.5.2 Differences in the Spectral Domain

The spherical harmonic coefficients of STP and ETP differ notably as can be seen from

their degree variances (Fig. 15). The degree variances of the STP (dV_SPH_Earth

2014_lca/lra) follow Kaula’s rule (Kaula 1966) closely, which itself is close to the truly

ellipsoidal harmonic spectrum of the gravity field (Rexer and Hirt 2015a). The degree

variances of the ETP (dV_ELL_Earth2014_lca/lra) run below those of STP. They are

comparable to commonly used gravity field models (e.g., those listed at ICGEM). This has

already been found by Rexer and Hirt (2015a), who empirically derived an approximate

rule of thumb that allows to transform degree variances from a spherically approximated

model (STP) into their ellipsoidally approximated equivalents (ETP) (and vice versa). All

spherical harmonic GGMs ðof N[ 2000Þ that (implicitly) assume an ellipsoidal Earth are

accompanied by a ‘‘tail’’ of 30 degrees (from degree 2160 to 2190) with rapidly decreasing

bFig. 14 Mapping effects in the ETP in terms of height differences h� h0 (in metres, upper plot), latitude

differences u� u0 (in arc-seconds, middle plot) and the resulting gravity disturbance differences dg � d0g (in

mGal, lower plot) of both geometric effects. Note, the effects are also contained in the mapping within the
STP, but projected onto the sphere
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energy, which are needed for a proper representation of the potential. This is the very

reason why band-limited investigation is not possible with this kind of models (see

Sect. 4.3) without suffering from erroneous striations increasing with latitude (see also

Claessens and Hirt 2013; Pavlis et al. 2012). Spherical harmonic models in spherical

approximation allow band-limited investigations akin to truly ellipsoidal harmonic models

(see Sect. 4.3).

4.5.3 Differences in the Space Domain

In the space domain, rather long-wavelength differences appear between the STP and the

ETP at the level of few mGals (Fig. 16). Note that for a comparison of ETP and STP in the

space domain, the ETP was evaluated on the surface of the reference ellipsoid while the

STP was evaluated on the surface of the reference sphere. Similar differences were already

found to reflect different mass arrangements between ETP and STP by Claessens and Hirt

(2013) (ibid. Fig. 6a) who applied the HC method to a single-density mass model. At the

Earth’s surface, the effect is almost of the same dimension with marginally smaller

amplitudes and similar RMS (Fig. 17). The differences in Figs. 16 and 17 also contain the

effect of mapping discussed above ðh vs. h0 and u vs. u0Þ, but they are dominated by the

additional mapping of the masses from the ellipsoid onto the sphere.

The differences notably differ from the ellipsoidal correction (Fig. 12 in Balmino et al.

2012) which is thought to correct a STP model for the difference between integrating

Earth’s masses w.r.t. spherical instead of an ellipsoidal reference. The range of the ellip-

soidal correction in Balmino et al. (2012) is much smaller ð� 0:005

mGal vs. � 8 mGalÞ—even when investigating the differences in Fig. 16 in the same

spectral band ð0� n� 120Þ—and is predominated by a zonal J2 effect. Possibly, their

correction, which is only computed to the second order, is a part of the true difference

between a topographic forward model in spherical and ellipsoidal approximation.

Fig. 15 Spectral characteristics of the spherically (dV_SPH_Earth2014_lca/lra) and the ellipsoidally
(dV_ELL_Earth2014_lca/lra) approximated potential models in terms of degree variances, together with
those of EGM2008 and Kaula’s rule of thumb
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5 Conclusions and Outlook

We presented spectral forward modelling based on volumetric mass layers to d/o 2190 at

two different levels of approximation (spherical and ellipsoidal) and took full account of

increased sampling requirements and all relevant terms of the involved binominal series

expansions, avoiding aliasing and truncation errors due to early truncation of the series.

Fig. 16 Gravity difference between the spherically (dV_SPH_Earth2014_lca/lra) and the ellipsoidally
(dV_ELL_Earth2014_lca/lra) approximated potential models in terms of gravity disturbances evaluated at the
respective reference surface (sphere and ellipsoid, respectively); RMS ¼ 0:35 mGal; min ¼ �4:66 mGal;
max ¼ 2:84 mGal; mean ¼ �0:08 mGal (unit is in mGal)

Fig. 17 Gravity difference between the spherically (dV_SPH_Earth2014_lca/lra) and the ellipsoidally (dV_
ELL_Earth2014_lca/lra) approximated potential models in terms of gravity disturbances evaluated at the Earth’s
surface; RMS ¼ 0:36 mGal; min ¼ �2:89 mGal; max ¼ 2:11 mGal; mean ¼ �0:08 mGal (unit is in mGal)
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Based on the HCM method, we derived a new spherical harmonic approach that allows

us to rigorously and efficiently compute the ellipsoidally approximated topographic

potential based on volumetric layers of laterally varying density that are referenced to an

ellipsoid. A layer concept has been established with the layers’ boundaries taken from the

Earth2014 model, separating the masses of ice sheets, water in inland lakes/seas, ocean

water and solid rock with 10 resolution. Applying the layer concept in two ways—in a

correction approach with actual densities or in a reduction approach with density con-

trasts—leads to equivalent potentials, with negligible differences ðRMS� 0:001 mGalÞ
that are caused by the spherical harmonic representation of the respective layer boundaries.

The layer-based modelling approach reaches over 90% correlation with EGM2008 in the

band 900� n� 2150 with significantly higher correlations compared to single-density

(RET) modelling. Further, it was shown to be at least equivalent to state-of-the-art layer-

based forward modelling in the space domain. A validation with ground truth gravity data

over Antarctica shows that layer-based modelling improves over single-density modelling

by � 2%, with the improvement being largest over the ocean ð� 5%Þ. The latter was also

confirmed globally by computing reduction rates with GOCE satellite observations as

contained in GO_CONS_GCF_2_TIM_R5. For the validation, we computed a combination

model, combining computed spherical harmonic coefficients in ellipsoidal approximation

with satellite observations from GOCE and GRACE satellite, which is necessary in order

to mitigate the problem of isostatically uncompensated masses in the forward models. The

combination was done by means of an empirical regularisation of GOCE and GRACE

normal equations. Using solely the most accurate ground truth observations

ðSTD\2 mGalÞ available, the combination model was found superior to EGM2008 and

the satellite-only model GOCO05s (by � 25 and � 8% in terms of RMS). The comparison

with ground truth data also showed that a combination of satellite data with the topographic

potential, e.g., by means of a regularisation, is to be preferred compared to omission error

modelling in general.

Depending on the level of approximation—spherical or ellipsoidal—we provided the

framework to the spherical topographic potential (STP) or the ellipsoidal topographic

potential (ETP), which were found to have substantially different spectral characteristics,

yet rather small differences in the space domain. Evaluated at the respective reference

surface or at surface of Earth, the STP and ETP show differences at the level of � �
5 mGal ðRMS ¼ 0:4 mGalÞ that mainly stem from a different arrangement of masses

(mapping) due to different geometric assumptions in the approaches. In ellipsoidal

approximation, the mapping, which was found to cause a rearrangement of masses by 30 m

at maximum, can completely be avoided by using pseudo-ellipsoidal heights that are

measured towards the geocenter. The error introduced by the mapping is in the order of

mGal and should be taken into account in applications requiring ultra-high-resolution or

high accuracy topographic gravity.

In the spectral domain, the STP shows substantially larger energy at short scales

(comparable to that predicted by Kaula’s rule of thumb or to the truly ellipsoidal harmonic

spectrum of EGM2008) than the ETP. The ETP shows short-scale energy comparable to

other spherical harmonic GGMs that make an (implicit) ellipsoidal assumption of Earth,

e.g., EGM2008. This feature makes the ETP coefficients suitable for a combination with

satellite data, e.g., as done in this work. The dependencies among the spherical harmonic

coefficients in ellipsoidal approximation prevent application of the harmonic models in a

band-limited manner (i.e. no truncations at n\2190). In contrast, spherical harmonic

models in spherical approximation and truly ellipsoidal harmonic models are free of such

dependencies and may be used in band-limited form (i.e. truncated at n\2190).
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In conclusion, the choice between spherical and ellipsoidal approximation in spectral

forward modelling depends on the application of the final models. While STP models may

be good enough for a wide range of geophysical applications, ETP models are more

accurate and needed for high-resolution applications. Current observation-based gravita-

tional models conform spectrally with the ellipsoidal topographic potential which is

inevitable for geodetic applications, such as a combination with satellite and terrestrial data

by means of regularisation. The herein computed models are available at: http://ddfe.

curtin.edu.au/models/Earth2014/potential_model/.
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Appendix 1: Rigorous Expressions—Direct Solution to the Radial Integral
in Modelling of the ETP and the STP

In contrast to the above presented solutions to the STP (Sect. 2.1) and ETP (Sect. 2.2) that

rely on a binominal series expansion for the solution of the radial integral (Eq. 17), and in

case of the ETP also on the binominal series expansion in Eq. 27, here the rigorous

expressions are given.

The direct (rigorous) solution to the radial integral over the masses in a layer (Eq. 10)

was given already in Eq. 11 or (in more generalised form) in Eq. 13, respectively.

Rigorous Solution to the STP of a Volumetric Mass Layer

In case of the STP, the direct integral solution to the radial integral from the lower to the

upper layer bound in spherical approximation reads

XðSTP;xÞ ¼ qðXxÞðhQ; kQÞ
R

nþ 3

Rþ H
ðXxÞ
UB

R

 !nþ3

� Rþ H
ðXxÞ
LB

R

 !nþ3
0
@

1
A: ð37Þ

Inserting Eq. 37 into Eq. 9 the rigorous expression of the STP of a volumetric mass layer is

V̂
ðSTP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ �
1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ

� Rþ H
ðXxÞ
UB

R

 !nþ3

� Rþ H
ðXxÞ
LB

R

 !nþ3
0
@

1
AYnmðhQ; kQÞ sin hdhdk; ð38Þ

and with
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HDF
ðSTP;XxÞ
nnm ¼ 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ
Rþ H

ðXxÞ
UB

R

 !nþ3

� Rþ H
ðXxÞ
LB

R

 !nþ3
0
@

1
A

YnmðhQ; kQÞ sin hdhdk:

ð39Þ

we arrive at the more concise form

V̂
ðSTP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3ÞHDF
ðSTP;XxÞ
nnm : ð40Þ

As mentioned above, rigorous expressions for the STP of a layer in principle are known

already in different notation, e.g., by Pavlis and Rapp (1990). The disadvantage of the

rigorous expression in Eq. 40 is that it needs nmax spherical harmonic analyses of the

surface function HDF
ðSTP;XxÞ
nnm , while the expression relying on a binominal series expan-

sion (Eq. 21) only needs kmax analyses, where kmax 
 nmax in general (see Sect. 2.3 for

convergency behaviour of the binominal series).

Rigorous Solution to the ETP of a Volumetric Mass Layer

In case of the ETP, the direct integral solution to the radial integral from the lower to the

upper layer bound in ellipsoidal approximation reads

XðETP;xÞ ¼ qðXxÞðhQ; kQÞ
R

nþ 3

re

R

� �nþ3 re þ d
ðXxÞ
UB

re

 !nþ3

� re þ d
ðXxÞ
LB

re

 !nþ3
0
@

1
A: ð41Þ

Inserting Eq. 41 into Eq. 9, the rigorous expression of the ETP of a volumetric mass layer

is

V̂
ðETP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3Þ

� 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ
re

R

� �nþ3 re þ d
ðXxÞ
UB

re

 !nþ3

� re þ d
ðXxÞ
LB

re

 !nþ3
0
@

1
A

� YnmðhQ; kQÞ sin hdhdk;

ð42Þ

and with

HDF
ðETP;XxÞ
nnm ¼ 1

4p

Z 2p

k¼0

Z p

h¼0

qðXxÞðhQ; kQÞ
re

R

� �nþ3

� re þ d
ðXxÞ
UB

re

 !nþ3

� re þ d
ðXxÞ
LB

re

 !nþ3
0
@

1
AYnmðhQ; kQÞ sin hdhdk:

ð43Þ

we arrive at the more concise form

V̂
ðETP;XxÞ
nm ¼ 3

qð2nþ 1Þðnþ 3ÞHDF
ðETP;XxÞ
nnm : ð44Þ
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The disadvantage of the rigorous expression in Eq. 44 is that it needs nmax spherical

harmonic analyses of the surface function HDF
ðETP;XxÞ
nnm , while the expression relying on

binominal series expansions (Eq. 31) only needs kmax analyses, where kmax 
 nmax in

general (see Sect. 2.3 for convergency behaviour of the binominal series).

Appendix 2: Computation of the Pseudo-Ellipsoidal Height h0 and Its
Latitude u0 of the Surface Point PS

Given a surface point PS with ellipsoidal height h, geodetic latitude B and geocentric

distance r defined by

r2 ¼ ðr0e þ h0Þ2 ð45Þ

the pseudo-ellipsoidal height h0 that is running along the direction towards the geocenter

(Fig. 18) can be computed using the cosine rules

r2 ¼ c2 þ ððN � e2NÞ þ hÞ2 � 2cððN � e2NÞ þ hÞ � cos ðp� BÞ ð46Þ

where

c ¼e2N cosB; ð47Þ

N ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2 � sin2 B

p ð48Þ

and

r
02
e ¼ a2 1 � e2

1 � e2 � cos2 u0 : ð49Þ

Fig. 18 Ellipsoidal height h and
pseudo-ellipsoidal height h0
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The (geocentric) latitude u0 can be computed using the sine rule

sinu0 ¼ ððN � e2NÞ þ hÞ � sin ðp� BÞ
r

� �
: ð50Þ

Then, the pseudo-ellipsoidal height is retrieved with

h0 ¼ r � r0e: ð51Þ
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P.5 Publication V: A new degree-2190 (10 km resolution) gravity field
model for Antarctica developed from GRACE, GOCE and Bedmap2
data

Reference:
Hirt C., Rexer M., Scheinert M., Pail R., Claessens S., Holmes S.: A new degree-2190 (10 km resolution) gravity
field model for Antarctica developed from GRACE, GOCE and Bedmap2 data; Journal of Geodesy, Vol. 90,
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2016.

Copyright
This work has been published in Journal of Geodesy and is available at http://link.springer.com/. Copy-
right has been transferred to Springer Berlin Heidelberg.

Short Summary
Continental Antarctica happens to be one of the few areas on Earth where gravitational variations are not re-
solved down to ∼ 10 km scales by current high-resolution combined gravity field models, such as EGM2008
and EIGEN6C4. Antarctica lacks homogenous terrestrial gravity observations, thus the models are entirely
based on satellite gravimetry. In this work latest satellite gravity data from GRACE (ITG-GRACE2010) and
GOCE (TIM5) satellite as contained in the respective normal equations are combined with forward-modelled
gravity originating from the rock-equivalent-topography given by the Antarctic Bedmap2 data set by means
of regularization. The new combined potential model (SatGravRET2014) shows significantly higher agree-
ment with the IAG Sub-commission 2.4f ’Gravity and Geoid in Antarctica’ (AntGG) database compared to
satellite-only models and thus demonstrates the value of Bedmap2 topographic data. The combination,
however, is not optimal in global sense and different weighting schemes for the regularization are tested
and discussed. SatGravRET2014 is thought of as reference for future gravity modelling efforts over Antarc-
tica.
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(MR: Moritz Rexer; CH: Christian Hirt; MS: Mirko Scheinert; RP: Roland Pail; SC: Sten Claessens; SH: Simon Holmes)

CH had the idea to the study and drafted its design. MR helped developing the design of the study as far as
the combination schemes is concerned. The other co-authors contributed little to the idea and design of the
study. CH created most of the numerical results, e.g. the dV_ELL_RET2014 and the dV_ELL_ETOPO1 model
and all comparisons with ground truth data. MR performed all the combinations in the study (GOCE/GRACE,
SatGravRET2014/A/B/C, SatGravETOPO1/A/B/C) and designed the combination weights. MR calculated the
relative contributions of data types in the combinations. MR calculated the degree variances and computed the
localized degree variances over Antarctica. MS prepared and selected the ground truth gravity anomaly data
over Antarctica. RP contributed with his knowledge to the combinations. SC contributed with his knowledge
and software to the computation of the topographic potential models. The data analysis and interpretation was
done by CH. CH drafted almost the entire text. MR drafted section 3.2.1 and 3.2.2. Further, MR created figures
6, 7, 8 and 14. All other figures and tables were created by CH.

The overall own contribution of MR for P-V is estimated at 15 %, which is the average (rounded) value of
the percentage values estimated for the six criteria listed in the table below (Tab. P.5).
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Criteria Estimated
own contribution

Computation and results 25 %
Ideas and study design 10 %
Analysis and interpretation 10 %
Text 12 %
Figures 33 %
Tables 0 %
Total 15.5 %

Tab. P.5 – Criteria and estimated contribution share of Moritz Rexer for P-V
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P.6 Publication VI: Topographic gravity modelling for global Bouguer
maps to degree 2,160: Validation of spectral and spatial domain
forward modelling techniques at the 10
microgal-level
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Short Summary
The evaluation of Newton’s integral in the space and in the spectral domain are both valid and commonly
used domains for forward modelling of the topographic masses in geodesy and geophysics. For a perfect
agreement between both modelling approaches it is necessary 1) to take into account multiple integer powers
and multiples of the input band-width of the topographic function in spectral domain modelling and 2) to work
with high spatial resolution in order to reduce discretisation errors in space domain modelling. For a degree-
2160 (≈ 10 km) topography the spectral method requires 15 integer powers and modelling of short-scale
gravity signals to ultra-high degree 21, 600 (≈ 1 km) in order to reach an agreement at the microGal level with
space domain modelling. Space domain modelling is found to be associated with a higher computational effort,
however, the convergence behavior in spectral domain modelling indicates that convergence may not always
be guaranteed at ultra-short scales.

Declaration of own contribution
(MR: Moritz Rexer; CH: Christian Hirt; ER: Elisabeth Reußner; MK: Michael Kuhn)

CH had the idea to the global validation study and designed most parts. ER contributed more than the other
co-authors since she performed a local study in her master thesis. MR provided the software for the challeng-
ing spherical harmonic analysis which was parallelised using the LRZ-Linux Cluster resources and computed
the surface spherical harmonic coefficients from the 11th to the 25th power of the RET topography to degree
21, 600. ER computed the 1st to the 10th power of the RET topography, performed the forward modelling and
synthesized on the topography. MK did the space domain forward modelling. CH did the joint analysis and
created the outcomes of the study. CH did the data analysis and drafted all interpretations. MR and the other
co-authors improved the interpretation in discussions with CH. MR created Fig 2 and 3. CH created the rest of
the figures. CH created all tables and drafted most of the manuscript text with the exception of Sect. 3 and 4
where all co-authors made textual contributions.

The overall own contribution of MR for P-VI is estimated at 10 %, which is the average (rounded) value of
the percentage values estimated for the six criteria listed in the table below (Tab. P.6).
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Criteria Estimated
own contribution

Computation and results 15 %
Ideas and study design 5 %
Analysis and interpretation 10 %
Text 3.3 %
Figures 20 %
Tables 0 %
Total 8.9 %

Tab. P.6 – Criteria and estimated contribution share of Moritz Rexer for P-VI
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