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Abstract

The current generation of manufacturing systems relies on monolithic control soft-
ware which provides real-time guarantees but is hard to adapt and reuse. These
qualities are becoming increasingly important for meeting the demands of a global
economy. Ongoing research and industrial efforts therefore focus on service-oriented
architectures (SOA) to increase the control software’s flexibility while reducing devel-
opment time, effort and cost. With such encapsulated functionality, system behavior
can be expressed in terms of operations on data and the flow of data between oper-
ators. In this thesis we consider industrial real-time systems from the perspective of
distributed data processing systems. Data processing systems often must be highly
flexible, which can be achieved by a declarative specification of system behavior. In
such systems, a user expresses the properties of an acceptable solution while the sys-
tem determines a suitable execution plan that meets these requirements. Applied to
the real-time control domain, this means that the user defines an abstract workflow
model with global timing constraints from which the system derives an execution
plan that takes the underlying system environment into account. The generation of
a suitable execution plan often is NP-hard and many data processing systems rely
on heuristic solutions to quickly generate high quality plans. We utilize heuristics for
finding real-time execution plans. Our evaluation shows that heuristics were success-
ful in finding a feasible execution plan in 99% of the examined test cases. Lastly, data
processing systems are engineered for an efficient exchange of data and therefore are
usually built around a direct data flow between the operators without a mediating
entity in between. Applied to SOA-based automation, the same principle is realized
through service choreographies with direct communication between the individual
services instead of employing a service orchestrator which manages the invocation of
all services participating in a workflow.

These three principles outline the main contributions of this thesis: A flexible recon-
figuration of SOA-based manufacturing systems with verifiable real-time guarantees,
fast heuristics based planning, and a peer-to-peer execution model for SOAs with
clear semantics. We demonstrate these principles within a demonstrator that is close
to a real-world industrial system.
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Kurzfassung

Die heutige Generation von Fertigungssystemen nutzt monolithische Kontrollsoft-
ware, welche zwar Echtzeitgarantien bietet, aber dafür schwer wartbar und kaum
wiederverwendbar ist. Diese Eigenschaften werden jedoch zunehmend wichtiger um
den Anforderungen einer globalisierten Wirtschaft gerecht zu werden. Die aktuelle
Forschung und Entwicklungsbestrebungen der Industrie setzen daher auf service-
orientierte Architekturen (SOAs), um die Flexibilität der Kontrollsoftware zu er-
höhen und dadurch Entwicklungsaufwand, -Zeit und -Kosten einzusparen. Durch
die Kapselung der Funktionalität in SOAs kann das Systemverhalten dabei auf der
Ebene von Operatoren, sowie dem Datenfluss zwischen diesen Operatoren, ausge-
drückt werden. In dieser Arbeit betrachten wir daher industrielle Echtzeitsysteme
vom Standpunkt der verteilten Datenverarbeitung.

Datenverarbeitungssysteme müssen oft hoch flexibel sein, was sich durch eine deklar-
ative Spezifikation des Systemverhaltens umsetzen lässt. Nutzer beschreiben in
solchen Systemen die Eigenschaften von akzeptablen Lösungen woraufhin das Sys-
tem selbsständig einen Ausführungsplan erstellt, welcher diese Eigenschaften erfüllt.
Angewendet auf die Domäne von Echtzeitsystemen bedeutet dies, dass Nutzer einen
abstrakten Ablaufplan in Form eines Graphen mit globalen zeitlichen Anforderun-
gen defineren ausgehend von dem das System eigenständig einen Ausführungsplan
erstellt, welcher die konkrete Systemumgebung berücksichtigt. Die Erzeugung solch
eines Ausführungsplans ist meist NP-schwer, weswegen viele Datenverarbeitungssys-
teme heuristische Lösungen nutzen um in kurzer Zeit hochqualitative Lösungen zu
erstellen. Wir nutzen ebenfalls Heuristiken um echtzeitfähige Ausführungspläne zu
erstellen. Unsere Auswertung zeigt, dass Heuristiken in 99% der untersuchten Fälle
einen echtzeitfähigen Ablaufplan erstellen konnten, falls solch ein Plan existiert.
Datenverarbeitungssysteme sind zudem auf effiziente Kommunikation ausgelegt und
tauschen daher Daten meist direkt zwischen den einzelnen Operatoren aus ohne über
Dritte zu kommunizieren. In SOAs wird dieses Prinzip durch Servicechoreographien
mit direkter Kommunikation zwischen den einzelnen Services umgesetzt, welche im
Gegensatz zur Serviceorchestrierung durch einen Orchestrator stehen der die einze-
lenen Services aufruft und die Kommunikation zwischen ihnen verwaltet.
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Die drei obenstehenden Prinzipien skizzieren bereits die wissenschaftlichen Beiträge
dieser Dissertation: Die flexible Rekonfiguration von SOA-basierten Fertigungssys-
temen mit verifizierbaren Echtzeiteigenschaften, schnelle Generierung von Aus-
führungsplänen für solche Systeme mit Hilfe von Heuristiken und ein Peer-to-
Peer Ausführungsmodell für SOAs mit einer klar definierten Semantik. Zusätzlich
verdeutlichen wir diese Prinzipien in einem Demonstrator, der an ein Echtweltsystem
angelehnt ist.
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CHAPTER 1

Introduction

“Then there is the man who drowned crossing

a stream with an average depth of six inches.”

- W.I.E. Gates

This thesis takes a distributed data processing perspective on industrial real-time

systems. The main building block of this approach is a service-oriented architectural

style that encapsulates mechatronic or computational functionality in self-describing

services. We have therefore named our approach rtSOA. With these self-contained,

reusable services the development of automation systems can be shifted to reasoning

over the flow of data between service instances, thus taking a step into the direction

of distributed data processing (DDP) systems. To realize a high level of flexibility,

users of DDP systems often do not have to explicitly specify concrete execution plans.

Users instead list the properties of acceptable solutions for which the DDP system

will automatically generate a matching execution plan. This plan fulfills the specified

requirements while hiding the complexities of the underlying networked system from

the user. rtSOA applies this principle by only requiring the specification of global

real-time constraints for a given task-graph, which constitutes the distributed real-

time automation task. Timing constraints for individual service instances are derived

automatically from the global constraints, the concrete placement of the services on

machines and the configuration of the connecting network. The execution plan then

consists of a schedule for the network and each participating device, so that the

specified real-time requirements are realized.

rtSOA is focused on enabling wide-reaching reuse of existing code modules and en-

abling fast, iterative and incremental development for distributed real-time systems.

The main use case for rtSOA lies within the area of industrial manufacturing. In

recent years increasing uncertainty about the production volume of a product is ac-

companied by demand fluctuations over the product’s life cycle [53,103,117]. To ad-

dress these issues, the paradigm of the reconfigurable manufacturing system (RMS)

has been postulated in research. Software reconfiguration is a key component in
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enabling reconfigurable manufacturing systems, which therefore benefit immensely

from a modular and reconfigurable software architecture, supported by a declarative

approach to the generation of execution plans. To the best of our knowledge, rtSOA

is the first approach that achieves predictable and deterministic execution plans

by applying distributed data processing principles in a flexible and reconfigurable

service-oriented architecture.

In the following, we present basic principles of distributed data processing systems in

Section 1.1 and real-time systems in Section 1.2 before giving an overview of the goals

and contributions of this thesis in Section 1.3 and detailing the outline in Section 1.4.

1.1 Distributed Data Processing

Distributed data processing may become necessary due to different reasons: Either

because the amount of data cannot be handled on a single device or because the

processing of data in the network is more efficient in terms of computation time,

energy efficiency or other resources, including organizational resources such as money

or employee working hours. In this section we will outline several different systems

which are contained under the umbrella of distributed data processing and which

demonstrate certain properties or principles of DDP that are applicable to the rtSOA

approach.

In recent years, distributed data processing has often become synonymous with pro-

cessing of big data sets that cannot be contained on a single machine. One of

the most successful programming paradigms in that area is MapReduce [31], which

requires the programmer to specify computation in terms of a map and a reduce

function. The underlying library then takes care of issues such as parallelization,

inter-machine communication and fault tolerance. Efficient scheduling of network

resources becomes particularly relevant when aiming for high overall system perfor-

mance. Starting from the observation that the increase of computational resources

has progressed at a faster pace than the increase of network communication speeds,

Rödiger et al. have analyzed the impact of network scheduling on joins in distributed

databases [96] and designed a network-optimized join that is based on solving two

distinct optimization problems. The first of these problems is the optimal partition

assignment which specifies which parts of the input data will be processed on which

machine. By choosing an optimal partition assignment, the length of the network

transfer phase can be minimized. The second optimization problem lies with deter-

mining a suitable communication schedule. Cross traffic and other inefficiencies can

render an otherwise efficient execution plan ineffective, meaning that much time is

spent idly waiting for network packets that obstruct each other during transmission.

Applied to the field of industrial real-time systems, the two optimization problems

solved by Rödiger et al. map to determining a suitable assignment of (computa-

tional) tasks to machines and determining an efficient overall execution plan that

takes network particularities into account.
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Stream processing systems are moving away from traditional database systems, which

operate on stored data, towards execution semantics over data streams which oper-

ate on in-flight data, meaning data that is analyzed as soon as it is produced and

may also carry a temporal component. Data for stream processing systems is often

generated by distributed systems and the stream processing system may itself be a

distributed system. Stonebraker et al. [105] detail eight general rules for real-time

stream processing. Among these rules are performance requirements, demanding

that data should be processed “in-stream” (1) without a separate storage step to

achieve suitably low latency and the general requirement that the system must be

able to “keep up” (2) with the amount of data generated. Rules for consistency de-

mand that a system must process data in a repeatable and predictable (3) manner

while handling stream imperfections (4) such as delayed, missing or out of order

data. The stream processing systems must also be highly available and ensure data

integrity under hardware failures (5). Usability requirements for a declarative stream

query language (6) with easy integration of stored data (7) and support for automatic

partitioning and scaling (8) are classic principles of DDP systems.

Many of the outlined principles can also be applied to industrial real-time systems,

which must process sensor data as it is generated (1) while always offering guar-

anteed timing properties (2). Automation systems should remain deterministic (3),

even when handling communication (4) and hardware failures (5). rtSOA aims to

introduce some of the usability principles described by Stonebraker et al. to the area

of industrial real-time systems by allowing the user to specify high-level timing con-

straints without manual consideration of network particularities (c.f. rules 6 and 8).

Real-time in the context of the above paragraph means “a timely manner”, with-

out timing guarantees, whereas real-time in the context of this thesis always means

real-time guarantees. Section 1.2 introduces our notion of the term.

Another requirement for using a declarative approach to generating execution plans

is the presence of well understood and stringent semantics for the specification lan-

guage. In traditional database management systems, the relational algebra [60,

Chapter 8] provides the semantics and logical basis for the generation of the query

execution plan. The semantics of a relational algebra expression are contained in

the semantics of the individual operators used in the expression and the data flow

between them. Contrastingly, rtSOA views individual services in a SOA as black-box

operators and only reasons about the data flow between them. Section 3.4 defines

these semantics.

The main driver for distributed data processing in embedded systems lies not in

handling otherwise intractable amounts of data. Instead, achieving a balance of

flexibility and efficiency in highly complex systems of systems is often the main mo-

tivation behind applying distributed data processing methods in embedded networks.

One example for such a system is TinyDB [78]. TinyDB is an acquisitional query

processing system that explicitly addresses, and deeply integrates with, the particu-

larities of wireless sensor networks. Sensor networks consists of tens or hundreds of
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self-organizing battery powered nodes that operate without human intervention for

months or years. Since sensor nodes are usually battery powered and severely energy

constrained, optimization for energy efficiency and limiting network communication

are essential for realizing a practical system. One way to realize long battery life

spans is to configure sensor nodes to sleep in a low-power state for most of the time

and only wake up periodically to perform data acquisition, processing and network

communication. Communication often follows a multi-hop pattern to one or more

gateways which act as data sinks. By performing in-network aggregation along these

multi-hop communication paths, the network traffic and thus the energy usage can

be greatly reduced. Acquiring sensor data and performing data aggregation and

analysis is greatly simplified by using TinyDB’s declarative SQL-like query interface

instead of manually configuring the data acquisition and in-network aggregation be-

havior of each sensor node. In contrast to traditional database or stream processing

systems, TinyDB can control the frequency of when sensor data is acquired instead

of acting on stored data or only analyzing incoming data streams. Other issues,

such as determining which sensor nodes have relevant data and in which order sam-

ples should be taken, are more closely related to traditional query optimization and

stream processing.

TinyDB illustrates a flexible but specialized solution to distributed data processing

in embedded (sensor) networks. Scholz et al. presented a more general solution in

the form of a service-oriented middleware for embedded networks named εSOA [98].

εSOA takes a data centric view on service-oriented architectures and models ser-

vice interaction following a push-based communication pattern. As explained in the

context of TinyDB, various data flows inside the network should be optimized in

terms of the timing and frequency of the individual messages. The εSOA stream dis-

patcher therefore applies principles of data stream management systems to optimize

the rate of all data streams in terms of energy efficiency and desired message inter-

val. The εSOA middleware additionally tackles the service placement problem with

the simulated annealing meta heuristic. Based on an abstract representation of the

workflow to be executed by the devices in the embedded network, εSOA transpar-

ently applies its optimization techniques and thus hides the details of the underlying

network structure from the application developer. This approach follows the same

high-level structure as the MapReduce library where users are required to specify

their application following certain development principles but are freed from explicit

consideration of network issues because the middleware is addressing them. Users

can thus reason about the implementation on a higher level of abstraction.

The examples in this section outline that distributed data processing systems may

share some commonalities in their principles but have to be carefully adapted to their

intended target area. In Section 1.2 we therefore give more background information

about general real-time systems before detailing the system environment for our

envisioned distributed data processing approach to industrial real-time automation

in Section 2.
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1.2 Background: Real-Time Systems

This short introduction to real-time systems is based on the book “Hard Real-Time

Computing Systems” by Buttazzo [14]. The fundamental difference between a real-

time system and other computing systems is the fact that the correctness of a com-

putational result depends on the time at which the result is produced. The presence

of a deadline thus marks a real-time system. The reason for this is that the system

interacts with its environment, often meaning the physical environment, thus mak-

ing real-time requirements an integral part of many embedded systems. Examples

for real-time systems include automotive and avionic systems, telecommunication

systems, robotics, environmental monitoring and industrial manufacturing systems,

which are the main focus of this thesis.

Figure 1.1 illustrates different types of real-time systems. They are classified by

the value of a computational result after its expected deadline. In hard real-time

systems a single missed deadline may have catastrophic consequences for the system

itself, attached equipment, the environment or humans. The value of a late result

is therefore negative and deadlines must be guaranteed. Examples for these kind

of systems could be chemical process plants, safety critical systems in airplanes or

automobiles or in general systems that incorporate sensing, actuating and control

activities. In firm real-time systems deadline misses are not catastrophic. Late

results are nevertheless useless and have no value. Examples would be video or

audio decoding systems where frames may be dropped occasionally. In soft real-time

systems a late result still has value but the performance of the system is degraded.

Examples would be systems handling user input or graphical displays.

deadline

100%

0%
time of 
result

value of 
result

(a) Hard real-time

deadline

100%

0%
time of 
result

value of 
result

(b) Firm real-time

deadline

100%

0%
time of 
result

value of 
result

(c) soft real-time

Figure 1.1: A schematic visualization of the value of a late computational result

under the hard, firm and soft real-time paradigms.

An often held misconception is that real-time simply means “fast”, but execution

speed only relates to the average response time of a system. Hard real-time systems

require guarantees for the worst case and not for the average case. These timing

requirements are determined by the system’s environment and the system must al-

ways react within the time frame set by the environment to be fit for its purpose.

Experience with real-time systems shows that the worst case scenario can, does and

will happen (c.f. the anecdotes presented by Buttazzo in the introduction of his

book [14]). Buttazzo defines the following basic properties that real-time systems

should possess:
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• Timeliness: Results must not only be correct but also be available for the

consuming entity within a specific time frame.

• Predictability: The system must be analyzable in order to determine the

consequences of any scheduling decision. For safety critical applications, timing

requirements should be guaranteed before the system is put into operation.

• Efficiency: Most real-time systems are embedded devices with restricted stor-

age, computational and energy resources. This must be taken into account

when developing the system’s hardware and software.

• Robustness: Real-time systems must be robust under peak-load conditions

and should be designed to handle all anticipated load scenarios.

• Fault tolerance: Single failure of hardware or software should not cause the

overall system to fail. Critical components of the system should therefore be

designed to be fault tolerant.

• Maintainability: The architecture of a real-time system should be modular,

ensuring that future system modifications are easy to perform.

To achieve these properties in distributed real-time systems, all components of the

system need to be chosen accordingly. For example, fault tolerance in the area of

networking may require the presence of physical duplication of the communication

equipment. When writing software for these systems, developers are severely re-

stricted in the primitives available to them. Dynamic memory allocation at run

time might not be possible because this could introduce unbounded delays. Simi-

larly, unbounded recursion or unbounded loops are often not allowable in real-time

programs [14].

1.3 Goals and Contributions

The overall goal of this thesis was the development of an engineering approach for

distributed hard real-time systems, with a special focus on reconfigurable manufac-

turing systems. By following principles of distributed data processing systems the

approach should reduce development time, effort and cost. The design of rtSOA

was based on the following desired system properties while addressing the general

properties for hard real-time systems stated at the end of Section 1.2:

Goal 1 rtSOA systems are adaptable at run time with minimal downtime.

Goal 2 rtSOA systems are hard real-time systems. They have deterministic and

verifiable behavior.

Goal 3 The development of automation workflows with rtSOA is decoupled from

timing and networking concerns.

Goal 4 Development with rtSOA is iterative, visual and has short feedback cycles.
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Resulting from the stated set of goals, the contribution of this thesis are:

• To the best of our knowledge, rtSOA is the first approach that achieves pre-

dictable and deterministic execution plans by applying distributed data pro-

cessing principles in a flexible and reconfigurable service-oriented architecture.

• We compare the use of domain specific heuristics with a state-of-the-art linear

program solver for the generation of distributed real-time workflow execution

plans. This analysis is performed over a benchmark data set with 1.2 million

feasible problem instances.

• We propose two new domain specific heuristics that contribute a large number

of unique execution plans. Unique means that no other heuristic contributed

a feasible solution for the same test case.

• We propose several adaptions of existing heuristics to increase their effective-

ness for the generation of rtSOA execution plans.

• We showcase the adaption of DDP principles for industrial real-time systems

with a demonstrator that is close to a real industrial system.

1.4 Outline of the Thesis

The rest of this thesis is structured in the following way: Chapter 2 expands upon

the general introduction to real-time systems given in Section 1.2 by outlining past

and present developments in industrial automation from a hardware and software

perspective. Chapter 3 introduces our approach, named rtSOA, for real-time service-

oriented architectures from a distributed data processing perspective. It reconciles

the flexibility and reconfigurability of a service-oriented architecture with the timing

guarantees and determinism required to verify the correctness of hard real-time sys-

tems. rtSOA achieves these properties via cyclic execution plans for each device that

participates in the execution of the automation workflow. These execution plans fol-

low a stringent set of dataflow semantics, also defined in Chapter 3. Chapter 4 details

how execution plans can be derived from an abstract representation of the workflow.

The chapter includes an extensive evaluation of the alternatives. To provide con-

fidence that a set of execution plans conforms to the required real-time properties

engineers rely on verification or simulation of the overall system. Chapter 5 presents

how these methods can be applied to rtSOA. In Chapter 6 we present a prototype

for the overall rtSOA system that ranges from configuration of a workflow with a

graphical user interface (GUI), over generation of execution plans with the methods

presented in Chapter 4, to simulation, deployment, and execution on a real-world

demonstration system. The thesis ends with a summary of our approach and results

in Chapter 7 wherein we also point out further directions for research.
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CHAPTER 2

History and Trends in Industrial Automation

Parts of this chapter have been previously published in [64, 65, 67].

“Any customer can have a car painted any

color that he wants so long as it is black.”

- Henry Ford

Products, markets and societies are experiencing an increasing pace of change which

requires flexibility and changeability from the manufacturing industry to meet the

demands of a global economy [62, 117]. Indeed, the technological and sociological

conditions under which the industry has operated have constantly been changing for

over 100 years. Figure 2.1 shows the changes in manufacturing paradigms in the

automobile industry. In the middle and end of the 19th century the automobile (or

in the beginning the carriage making) industry was following the paradigm of craft

production, meaning that each product is essentially unique and hand crafted by

skilled workers. In 1913 Henry Ford introduced the moving assembly line method

in production of the famous Ford Model T. The assembly line ushered in the era of

mass production which saw a drastic reduction in product variety while increasing

the production numbers of each variant. This development in the United States’

automobile industry reached its peak in 1955 [62]. From then on more product vari-

ants have been introduced to meet customers’ different needs and desires. The 1980s

mark the emergence of mass customization as a new paradigm in which customers

are able to customize a product by choosing from different options for its individual

characteristics, e.g.,different accessories in their car or different components of their

laptop computers. Koren observes that the 2000s have marked another paradigm

shift triggered by the increased interrelations of global value chains and a world-

wide customer base [62]. The customization trend may be taken to its extreme by

paradigms such as personalized production which offers fully individualized prod-

ucts to the customer. Another trend is regionalization of products, as manufacturers

have to take the cultural and legal particularities of different countries and regions
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into account. A certain make and model of a car will have different components

if manufactured for the European market when compared to the Chinese market.

Chryssolouris remarks:

“It is increasingly evident that the era of mass production is being re-

placed by the era of market niches. The key to creating products that

can meet the demands of a diversified customer base, is a short develop-

ment cycle yielding low cost, high quality goods in sufficient quantity to

meet demand. This makes flexibility an increasingly important attribute

to manufacturing.” [22]

Each of the manufacturing paradigms is best realized by a different manufacturing

system. Craft production of one of a kind items is best realized with the most

adaptable of all production systems: A skilled human worker with general purpose

machine tools.

Product 

Volume 
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Variant 

Product Variety 

Globalization 

1850 
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2000 

Dedicated 

Manufacturing 

Lines 

Flexible  

Manufacturing  

System 

Reconfigurable 

Manufacturing 

System 
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Purpose 

Machine Tools 

Optimal 

Manufacturing 

System 

Figure 2.1: Changing manufacturing paradigms over time in the context of the au-

tomobile industry. [62]

Since the 1980s software controlled manufacturing systems have increasingly come to

dominate the automation landscape, making software another key factor in the suc-

cess or failure of manufacturing solutions. Dedicated manufacturing systems (DMS)

excel at mass production of goods at high volume and quality while keeping product

cost low through economies of scale. These centralized, monolithic and scan-based

control systems are optimized for a given physical and network configuration allowing

them to fully operate with high production rates after a long and costly setup period.
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However, these dedicated lines can only be used to manufacture a narrow range of

products and cannot be adapted in terms of production volume. The per-unit cost

of goods manufactured on a DMS rises whenever it is not run at full capacity. There

is also no quick way to increase the capacity of a DMS if demand exceeds supply.

From a software perspective, the modularization and reuse of source code running

on these systems is hindered by a tight coupling with their environment.

Flexible manufacturing systems (FMS) emerged as a way to handle changing cus-

tomer demands within a given family of products or parts through rapid reconfigura-

tion of their hardware and software [117]. As such, they are an enabling technology

for the mass customization manufacturing paradigm [62]. Computerized numeri-

cal control (CNC) machines are an example for flexible production systems. These

machines can be programmed to mill and bore work pieces from a solid block of ma-

terial with high precision, granting them an unprecedented flexibility in the variety

of products that they can manufacture, albeit at the cost of reduced throughput.

FMSs are designed for a specific range of work pieces and often feature overprovi-

sioning of tools or transport capabilities because retrofitting of new capabilities is

expensive [117]. Section 2.1 outlines the state of the art in current industrial man-

ufacturing from a software and networking perspective, thus showing the challenges

to reconfigurability inherent in traditional architectures.

In recent years increasing uncertainty about the production volume of a product is

accompanied by demand fluctuations over the product’s life cycle [53, 103, 117]. To

address these issues, the paradigm of the reconfigurable manufacturing system (RMS)

has been postulated in research [36,62,117]. Koren is giving the following definition:

“A reconfigurable manufacturing system [. . . ] is designed for rapid ad-

justment of production capacity and functionality [. . . ] by rearrangement

or change of its components (hardware and software).” [62]

A RMS is modular and designed to evolve both in terms of capacity and capability

over its lifetime. Apart from reconfigurable hardware, software reconfiguration has

been identified as a key technology for RMS [36]. This need for reconfigurability

and flexibility of the control software has led to research endeavors which aim at

fulfilling these requirements through implementation of service-oriented architectures

(SOAs) [106] [23] [46], which encapsulate hardware behavior and software capabilities

in services which can be combined in a modular way. Software capabilities also play a

large role in the digitalization of the manufacturing industry. The German initiative

Industrie 4.0 envisions a landscape of smart factories which are fully integrated

with the manufacturer’s other plants, its suppliers and its customers [53]. These

smart factories also offer a detailed view of their current state to enterprise systems

concerned with production planning and logistics. SOAs are likely to play a central

role in realizing the capabilities envisioned under the Industrie 4.0 term [97]. In

Section 2.2 we therefore give an overview of the role of service-oriented architectures

in future manufacturing systems with a special focus on the Industrie 4.0 vision.
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2.1 State of the Art in Industrial Manufacturing

Today’s manufacturing plants are usually designed following the hierarchical archi-

tecture described in the IEC 62264 standard [5] and visualized in Figure 2.2. Therein,

sensors and actuators on level 1 are controlled by a control system on level 2. Com-

munication between field devices and controllers is strictly hierarchical and follows

a polling model or a cyclic publish-subscribe relation. Communication between con-

trollers on level 2, or higher levels, may be peer-to-peer. Levels 3 and 4 are the

domains of operations control and enterprise planning systems, respectively. Sensors

and actuators are usually controlled by programmable logic controllers (PLCs), also

following a cyclic model. At the beginning of each scan cycle an input scan is per-

formed which obtains readings from all connected sensors. Based on these updated

values, the PLC performs its logic computations, updates all outgoing communica-

tion values and sends commands to the connected actuators.

Level 3: Manufacturing 

Operations and Control

Level 4: 

Business 

Planning and 

Logistics

Level 2: Monitoring, 

Supervision and Control

Level 1: Sensing and 

Actuation
Sensors & Actuators

Programmable 

Logic Controllers

(Industrial) PCs

PCs

Fieldbus / 

Analogue Line

Ethernet

(Industrial) Ethernet

Read Sensors / 

Network

Write Actuators / 

Network

Logic OperationsPLC Scan Cycle

Level 0: Physical Process

Figure 2.2: Traditional Automation Pyramid with passively queried sensors and

actuators. Control programs are realized through programmable logic controllers

(PLCs) following a processing architecture called a scan cycle.

IEC 61131-3 is the prevalent standard for PLC programming. This standard speci-

fies the function block diagram (FBD) and structured text (ST) languages which are

higher level and, from a software engineering perspective, should have higher pro-

ductivity than the ladder diagram (LD) and instruction list (IL) languages included

in the same standard. Structured text is based on, and similar to, the programming

language Pascal. It can be used to define function blocks that can then be used

in function block diagrams. FBDs are a graphical representation of programs con-

sisting of (elementary) function blocks such as add, compare, logic functions, and

FBs defined with structured text. Instruction list programs resemble code written in

assembly. Lastly, ladder diagrams are a program representation form that resembles

a notation form for electrical circuits. It is thus focused on logic relations. Although

recent industry efforts target increased reusability of code blocks, the control soft-
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ware is often rewritten from scratch when integrating new devices [123]. Software

architectures of higher level systems mostly follow object-oriented principles with lo-

cal method calls or direct data access. Services may be available, but not necessarily

accessible for remote applications [5].

Networking and data acquisition between level 1 and level 2 devices are strictly

hierarchical. Devices may be connected to PLCs either with analogue connections

or, increasingly, over field buses or even Ethernet based solutions [5]. In most cases

the communication is polling-based although cyclic publish-subscribe alternatives

exist [5]. Because all input / output operations of a PLC are performed during

each scan cycle, the tightest timing requirement determines the available runtime

for the whole scan cycle. Additionally, the scan cycle is tightly coupled with the

network cycle. Controllers on level 2 of the automation pyramid are usually able to

communicate in a peer-to-peer fashion but messages are also often transmitted in a

cyclic fashion. Alarms are special high-priority events which are always transmitted

in an event-based fashion [5], other data may also be transmitted in an event-based

manner instead of a cyclic manner. Networking between controllers also requires

time determinism which is guaranteed by the utilized network protocols.

These traditional control applications offer a high degree of determinism and con-

tribute to the high throughput of today’s manufacturing systems. However, their

setup and installation cost contribute up to one third of their total lifecycle costs [47].

Manufacturing strategies based on reconfigurable manufacturing systems are there-

fore hard to implement with the traditional automation architecture. More flexible

hardware and software architectures which offer extensive interoperability and quick

reconfiguration are thus needed to react to today’s changing market demands. The

following section outlines modern approaches to achieve these requirements.

2.2 Emerging Technologies

The key differences between traditional and future manufacturing systems can be

summarized by two factors from a hardware perspective: Increased networking,

based on a more unified protocol and hardware landscape, and ubiquitous com-

putation resources leading to smart devices and even smart products or work pieces.

These advances in hardware to support manufacturing are already evident. Industrial

Ethernet is gaining traction [28] while smarter embedded devices are performing an

increasing number of orthogonal tasks, for example wireless sensor networks (WSNs)

monitoring machine health. Recent developments include the roll out of smart field

devices, like Ethernet-equipped sensors and actuators. In the automotive and avionic

industries a different process with similar results can be observed. Subsystems, that

were previously separated, are consolidated through a single real-time communica-

tion network to reduce weight and costs. In both domains the result is a hardware

architecture of multiple networked processing units.
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These developments lead to a more interconnected and heterogeneous automation

landscape as depicted in Figure 2.3 [7, 57, 112]. Smart devices, consisting of sensors

and actuators with direct networking and computation capabilities, are blurring the

line between data acquisition and processing devices. Traditional hardware and soft-

ware architectures, together with traditional approaches to software development for

these systems, are not capable of addressing the challenges brought on by the hetero-

geneous automation landscape shown in Figure 2.3. Effectively leveraging the new

capabilities offered by these interconnected systems is the topic of numerous ongoing

and completed research projects. Research concerning service-oriented architectures

in the industrial domain is addressing the need for interoperability between devices

near the physical process and enterprise applications, which are placed several lay-

ers apart in the classical automation pyramid, thus realizing a vertical integration.

Industry and research have reacted by developing the IEC 61499 standard for dis-

tributed automation systems which we introduce briefly in Section 2.2.1. SOAs are

also poised to simplify the composition of multiple devices so that they may coop-

erate to realize an automation workflow, implementing a horizontal integration of

devices. Section 2.2.2 is giving an overview of research endeavors covering the topic

of SOAs for industrial automation.

Cloud 

Applications

(Industrial) 

Ethernet

High 

Bandwidth 

Connections

Smart Device Microcontroller

(Industrial) PC

Figure 2.3: The emerging automation landscape is characterized by an increasing

heterogeneity and interconnectedness between devices.

The term Industrie 4.0 encompasses horizontal and vertical integration, not of indi-

vidual devices in a factory but of the factory, then termed a smart factory [7], with its

surroundings. Horizontal integration in the Industrie 4.0 world describes the integra-

tion of the smart factory in the value chain of the enterprise, meaning an integration

with systems used in different stages of the manufacturing and business planning

process, whether in-house or with external business partners. Vertical integration

refers to the integration of systems on different levels of the automation process with

higher level systems [53], similar to the usage of the term when applied to SOAs.

Section 2.2.3 will provide further introduction to the concept of Industrie 4.0.
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2.2.1 Distributed Systems with the IEC 61499 Standard

The IEC 61499 standard has been proposed as a way to address distributed au-

tomation in industrial systems. Its main concept is the hierarchic encapsulation of

functionality in function blocks (FBs) which offer a high level of abstraction and

promise greater code reuse. An abstract example of a FB is shown in Figure 2.4.

This way, “the IEC 61499 architecture exploits the familiarity among control engi-

neers accustomed to a block-diagram way of thinking” [114]. Internally, the execution

of an FB is driven by an execution control chart (ECC) state machine [122]. Multiple

instances of the same function block type may exist in the same block diagram. Input

and output ports are separated into event ports and (typed) data ports as shown in

Figure 2.4. Signals on event ports are either present or absent, they carry no addi-

tional data but may be associated with data ports. New data is loaded and emitted

from data ports whenever an associated event is present [122]. Abstract, more high-

level function blocks often interact with the underlying hardware through service

interface function blocks (SIFBs), which are conceptually similar to device drivers

or hardware abstraction layers in traditional embedded systems development [122].

SIFBs provide services such as sending or receiving data over the network or access

to IO-pins. Algorithmic FBs may thus easily interface with different hardware.

InEvent1

InEvent2 OutEvent2

OutEvent1

InData1

InData2 OutData2
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InData3 OutData3
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BOOL
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Figure 2.4: A function block instance in the IEC 61499 standard

Function blocks can be nested arbitrarily and allow the combination of different dia-

gram types, among them IEC 61131-3 languages other than FBDs. IEC 61499 mod-

els also include specifications of the automation workflow’s infrastructure, i.e.,the

associated devices and the network structure. This results in an executable spec-

ification of the distributed automation system [114]. The execution semantics of

IEC 61499 blocks are event-driven, they are activated whenever an event reaches

one of their event inputs. It is assumed that the FB cannot be reactivated before

it has finished its execution, however the standard does not specify how this should

be enforced and which measures should be taken if events arrive faster than the FB

is executed [114]. Encapsulation of data into FBs is another principle from software

engineering that has been applied in IEC 61499. Data encapsulation was often not

present in traditional PLC programming and communication between different mod-

ules often happened via shared variables [114]. The principles of encapsulation of

data and functionality, together with a distributed execution of function blocks, is

conceptually consistent with service-oriented architectures [27] which we discuss in

detail in the next section.
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2.2.2 The Role of Service-Oriented Architectures

There are many definitions of the term service-oriented architecture. The author

prefers the following definitions from the OASIS “Reference Model for Service Ori-

ented Architecture”:

“[Service-oriented architectures are] a means of organizing solutions that

promotes reuse, growth and interoperability.” [86]

and from the SIRENA EU project on SOAs in industrial manufacturing:

“A service-oriented architecture [. . . ] is a set of architectural tenets for

building autonomous yet interoperable systems.” [47]

A service-oriented architecture in itself is therefore not a concrete implementation

or a set of technologies, but rather an architectural style for implementing systems

that achieve the conflicting goals of autonomy and interoperability. In many cases

SOAs have been realized with web service standards, as is also the case in industry

driven initiatives (Section 2.2.2.1) and collaborative research projects sponsored by

the European Union (Section 2.2.2.2). However, this introduction will not focus on

technology details of web services but instead outline the general characteristics of

SOAs in the industrial context. The context in which a SOA is deployed has an in-

fluence on its characteristics. SOA as an architectural style has originally emerged as

a way to organize business processes on an enterprise IT level. Owing to the particu-

larities of the manufacturing domain, some of the original tenets of a service-oriented

architecture need to be adapted for use in industrial automation scenarios [88].

The basic building block of a SOA is a service. A service encapsulates functionality,

which may be either software functionality or mechatronic functionality. To outside

entities, like service orchestrators or other services, the service is fully described via

its service interface. Services with the same interface should be seamlessly exchange-

able in classical enterprise-IT SOAs. This may not be the case in the automation

domain, as the location of a service plays a role in the semantics of its execution [88].

A conveyor belt may offer the same service interface as the neighboring belt, but

the correct execution of the automation task will depend on choosing the compo-

nent with the right physical location for the given context. The objective of a SOA

in industrial automation is therefore not distributed computation but instead the

execution of a technical process [88]. A service may therefore have certain require-

ments for the hardware environment where it is executed, meaning that it cannot

be placed freely on any device. This is already implicit in the fact that a service can

encapsulate mechatronic behavior. A service that offers temperature measurements

will need access to a temperature sensor. However, this does not mean that services

should be defined technology centric. Instead each service should be rather coarse

grained and oriented around business functions [47], meaning it should encapsulate

functionality that is already useful on its own without the need to be composited
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with other services. When services are composited in a sequence we are referring

to this composition as a workflow. The execution of a workflow may be controlled

centrally by a service orchestrator invoking the individual services, receiving their

responses and then using these responses in invocations of succeeding services, thus

implementing a service orchestration. Workflows may also be executed decentrally

with each service being aware of its successor in the workflow. This mode of workflow

execution is called a service choreography.

Service-oriented architectures are designed to address the weaknesses, such as inflex-

ibility and high setup costs, of traditional automation architectures. The strengths

of SOA lie in its flexibility and adaptability. By encapsulating basic functionality

in interchangeable services the programming of automation systems can be lifted

to a higher level [47, 88]. Instead of dealing with individual IO-signals, new con-

trol flows can be created by rearranging pre-existing services and rerouting the data

flow between them. Our prototype implementation in Chapter 6 demonstrates this

principle with a real-world system. Ideally, the interface descriptions of services are

standardized and physically compatible systems would offer services that are trans-

parently interchangeable with each other, thus allowing fully vendor independent

planning and programming phases [48]. To leverage the full strength of SOAs, the

hardware should therefore also be designed in a modular fashion and allow quick

reconfiguration on the physical side. Reconfigurable manufacturing systems are thus

an ideal fit for service-oriented architectures, and vice versa [97, 112]. In the tran-

sition phase legacy automation systems can be integrated in higher level SOAs via

service facades, allowing a gentle transformation [47].

In SOAs messages between services and devices are sent in a push-based manner mak-

ing more efficient use of the limited communication resources than the traditional

scan or pull-based communication patterns [47]. Extensive research has been under-

taken to push the performance envelope of SOA (or more specifically, web-service)

technology on constrained embedded devices [123]. These endeavors have seen SOA

solutions developed for lower and lower layers of the automation pyramid [46]. It is,

however, difficult to verify the emergent properties of distributed event-based sys-

tems. Implementations with centralized control are therefore likely to be favored in

the near future [58]. Centralized control is realized through a service orchestration

which is executed by an orchestration engine that invokes each individual service in a

workflow [48]. While such an orchestration represents an improvement over the tradi-

tional model, the full impact of the SOA paradigm could be realized through service

choreographies providing global cooperation without central coordination [104]. In

Chapter 3 we show how decentralized execution plans can be used to realize service

choreographies for cyclic control tasks with real-time constraints.

The clear benefits offered by service-oriented architectures have been recognized by

the industry and research communities. The remainder of this section covers the cur-

rent state of SOAs in industry (Section 2.2.2.1) before presenting the research results

realized in several framework programs of the European Union (Section 2.2.2.2).
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2.2.2.1 Industry Efforts

The automation community has long identified the need for self-describing devices

and easy discovery and configuration of automation devices. For this purpose nu-

merous standards and vendor specific implementations have been developed. We

have chosen relevant examples based on their importance in industry and research

as well as their relation to service-oriented principles. The two most prominent spec-

ifications concerning service orientation for industrial devices are the Devices Profile

for Web Services (DPWS) [87] and the Object Linking and Embedding for Process

Control Unified Architecture (OPC UA) [89]. Both are conceptually similar: They

implement a SOA through web services and rely on built-in base services for dis-

covery and service reservation. In both cases, SOAP over HTTP is the standard

message binding and messages are either encoded with XML or in a binary format

for increased performance. In the following we will look closer at their similarities

and differences.

OPC UA

OPC UA is a service-oriented version of the original OPC architecture and its main

mission is still to connect industrial devices to control and supervision applications

[16]. It is therefore not directly aimed at the communication between the devices

themselves and follows a client-server architecture. Connecting devices to monitoring

and human-machine interaction (HMI) interfaces may entail a large amount of data

to be transferred, as one of the roles a OPC UA client may occupy is that of a data

logger. For this reason OPC UA also specifies a binding to optimized native binary

protocols which may reduce network traffic and processing requirements. Typically

lower-level devices take the role of OPC UA servers, as they make their information

available to higher level devices [16]. OPC UA servers implement a predefined set

of (web)services, which include discovery services, services for reading and writing

of attributes or remote invocation of methods, as well as services for subscription to

data or negotiation of secure communication channels between client and server [75].

Semantics of data exchanged via OPC UA are defined via the OPC UA meta model.

The client-server architecture as well as the predefined service sets of OPC UA

make it well suited for its intended task of data export from lower layers to higher

layers of the automation pyramid, especially when taking the existing model for

data semantics into account. However, OPC UA is not suited for implementation

of true peer-to-peer general purpose SOAs. The client-server architecture limits the

communication patterns of OPC UA devices and the predefined service sets do not

allow for definition of additional services that can encapsulate device behavior [16].

DPWS

DPWS is a web service middleware and profile that aims to constrain the WS-*

set of standards to make them suitable for embedded use. It is aimed directly at

the devices performing the automation task and therefore supports a peer-to-peer

as well as a client-server architecture [123]. DPWS defines two basic elements: the
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individual devices and the services hosted upon the devices. This corresponds to our

earlier observation that descriptions of services in the industrial context need to be

considered together with additional information about the device which provides the

service. Similar to OPC UA, DPWS also specifies a set of basic services for device

discovery, publish / subscribe services for events and metadata exchange services.

Additionally, DPWS allows the definition of user specified hosted services which

encapsulate device functionality [16]. DPWS does not specify a meta model like

OPC UA, or a similar framework for providing semantics. Semantic descriptions for

DPWS services are an area of active research [42]. Efficient binary representation

of messages is not part of DPWS, but the profile is open enough to allow for usage

of data reduction techniques such as the Efficient XML Interchange (EXI) standard

[115]. Käbisch et al. [52] showed how EXI can be applied in embedded networks.

DPWS closely fits our description of characteristics for service-oriented architectures

in industrial automation. DPWS is directly aimed at constrained devices with only

a few kB of RAM and ROM [123], thus allowing an integration of individual devices

in the overall SOA. User defined services enable the encapsulation of the device’s

mechatronic capabilities. The discovery and metadata services provided by DPWS,

along with the defined description format for the device itself as well as the hosted

services, are a necessary component in an interoperable software architecture. The

focus on peer-to-peer messaging between devices allows using DPWS services as part

of control algorithms. Thus, we consider DPWS to be an enabling technology for

service oriented architectures in the industrial context. The development of DPWS,

as well as its use in service-oriented architectures, has been the subject of several

EU research projects which we will consider next.

2.2.2.2 Research Projects on Industrial SOAs

The concept of service-oriented architectures emerged during the early 2000s as a

way to realize interoperable and cooperating systems in the e-business domain [13].

Research into service-oriented architectures for industrial automation started in 2003

with the “Service Infrastructure for Real-time Embedded Networked Applications”

(SIRENA) project which was financed with grants from the European Union. Major

progress into service-oriented manufacturing architectures has since been made in

several additional EU-projects. Because much of the academic research is conducted

in this context this section will focus on work performed as part of the initiatives

outlined in Figure 2.5. The projects depicted therein are not following the traditional

hierarchical approach, the automation pyramid is only used in this figure to convey

an intuition about the relative target area of the differing projects.

The need for modular, interoperable and reconfigurable manufacturing systems was

already recognized before the start of the SIRENA project or the advent of service-

oriented architectures. Earlier research was focused on agent-based architectures

[100], which share some similarities with SOAs. Agents encapsulate functionality

and may interact with each other. In contrast to services, an agent is not invoked
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but self activating. Agents are therefore often used to implement the concept of

holonic manufacturing systems which are composed of self controlled modules, called

holons. A holon is “an autonomous and cooperative building block of a manufac-

turing system” [100]. The concept of the holon can also be applied to modules in

a reconfigurable or modular manufacturing system which offer appropriate software

services. The remaining conceptual difference between service-oriented and agent-

oriented systems lies in their activation semantics: while agents are self-activating

and self-regulating, services are often activated by a central orchestrator. Another

possibility for service invocation are distributed service choreographies in which ser-

vices are themselves invoking their successors in a workflow. With choreographies

the line between the agent-oriented and service-oriented architectural styles is blur-

ring. For the remainder of the thesis we will continue to use the service-oriented

terminology.
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Figure 2.5: An overview of the rtSOA research project described in this thesis and

several research projects into SOAs for industrial manufacturing financed by grants

from the European Union

SIRENA 2003-2006

The SIRENA project was started in 2003 to examine the use of SOAs for inter-

connecting embedded devices in the industrial, automotive, telecommunication and

home automation domain [11]. Initial development efforts still used the Universal

Plug and Play (UPnP) technology, as DPWS was still being standardized. After the

completion of the standardization, DPWS became the intended target technology

for the project [11]. One of the major outcomes of the SIRENA effort was the first

embedded DPWS-stack, which had a memory footprint of under 200kB [47]. Several

tools to simplify the development of DPWS based systems, such as a generator for

marshalling and demarshalling of SOAP-XML messages, have also been developed

during the project. Based on this implementation an industrial demonstrator [48]

was developed which consisted of a dose maker filling granules into a container.



2.2. Emerging Technologies 21

SODA 2006-2008

The SIRENA follow-up project “Service Oriented Device and Delivery Architecture”

(SODA) extended the SIRENA framework by providing a toolkit for manageability,

orchestration and security [79]. Apart from furthering the integration of DPWS

services with high-level business processes, SODA also focused on improving the

performance and serviceability of the DPWS infrastructure [79]. Together, these two

projects proved the feasibility of DPWS-based architectures on embedded devices.

RI-MACS 2005-2008

The“Radically Innovative Mechatronics and Advanced Control Systems”(RI-MACS)

project is the first effort that takes real-time requirements into account, which could

not be fulfilled by DPWS or other web service technologies at the time [19, 26].

DPWS is used for interaction with higher level systems which have no, or only

relaxed, timing requirements. More time critical tasks are implemented through

a separate communication stack which is build directly upon TCP/IP or UDP/IP

instead of the HTTP / SOAP / DPWS protocols used by general services. A custom

protocol stack may also be used to interact with legacy or hard real-time systems.

SOCRADES 2006-2009

The “Service Oriented Cross-Layer Infrastructure for Distributed Smart Embedded

Devices” (SOCRADES) project built on the SIRENA and SODA results to further

the vertical cross-layer integration between shop floor and enterprise systems [102].

The project also focused on the questions of how legacy devices could be integrated

into a service-oriented architecture and how the evolution of existing manufacturing

systems and plants towards a SOA can be accomplished [55]. When executing a step-

wise transformation to a SOA, it may not always be feasible to replace legacy devices

with SOA-capable devices. In these cases gateways or service mediators can be

used. Gateways function as a service-facade for an individual device whereas service

mediators offer a higher level view focused on functionality instead of representing an

individual device. Therefore, service mediators may have internal data aggregation

or composition functionality [55].

SOCRADES achieved an initial integration of constrained devices on the lower levels

of the automation pyramid, but identified orchestration, determinism of the SOA

run-time behavior, decentralization and effective reconfiguration as open research

issues [106]. The project also focused on the engineering aspects of networks of smart

devices, leading to new tools and technologies for modeling, design, implementation

and operation of these new kinds of distributed embedded systems [17]. One of

the major take-away messages from the project is that the effort required to add

web service capabilities increases for devices further down the automation hierarchy.

However, the benefits of having a service enabled device are also increasing when

moving further down in the traditional automation pyramid [55].
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AESOP 2010-2014

The SOCRADES follow-up project “Architecture for Service Oriented Process -

Monitoring and -Control” (AESOP) [23] investigated the feasibility and limits of

using a SOA-based approach inside control loops [46]. By implementing several pro-

totypes, the project closely investigated the performance implications of using web

services for the concurrent control of several thousand devices, thus addressing some

of the open issues raised by SOCRADES. One real-world showcase included the mi-

gration of a legacy plant lubrication system to a service-oriented architecture [84],

addressing issues such as SOA on low-level devices and in closed-loop control [24].

AESOP achieved cross-layer collaboration of services and devices mainly through

use of an orchestration engine, which constitutes an event based model with cen-

tral control through an orchestrator. Other research within the project highlighted

the benefits of decentralized execution plans for service choreographies over using

centralized service orchestrations for automation tasks. Starke et al. implemented

an event-based choreography engine for service-oriented automation and observed

a higher degree of performance and reactivity in an choreography based approach

when compared to an approach based on orchestration [104].

Arrowhead 2013-2017

The Arrowhead project consolidates previous research into a comprehensive frame-

work that supports the development, deployment and operation of cooperative sys-

tems in a SOA [110]. Its main contributions are design guidelines and patterns for

faster engineering; documentation guidelines and templates on the levels of individual

services, systems, and systems-of-systems; and a software framework build around

core services which support the interaction of application specific services across dif-

ferent base technologies. Among the provided core set are services for discovery,

authorization, orchestration and status monitoring. They address the main techni-

cal questions examined in the Arrowhead project: How can systems advertise their

services and discover remote services? How can systems ensure that only authorized

entities may consume its services? How can systems-of-systems be orchestrated?

Comparison with our approach

SIRENA, SODA and SOCRADES achieved the vertical integration of industrial

control devices with higher-level enterprise systems. Arrowhead mostly focused on

engineering related questions and orchestration of systems-of-systems. Since our

work on rtSOA is focused on providing hard real-time guarantees on the underly-

ing device level, RI-MACS, and especially AESOP, can be considered conceptually

similar projects. AESOP showed the feasibility of integrating embedded devices in

a control loop through a SOA. In our opinion, message exchange in a control loop is

possible by leveraging one of the protocol stacks investigated by AESOP [46]. Addi-

tionally, work performed in the context of the AESOP project has already pointed

out that a distributed choreography approach to SOA is preferable to the classical

orchestration-based approach [104]. Our work focuses on the planning required to

achieve performant, hard real-time execution plans for devices in a tight control loop.
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Our proposal for a real-time service-oriented architecture (rtSOA) reconciles the

SOA paradigm with predictable execution semantics while enabling decentralized

coordination of devices. rtSOA implements decentralized execution plans for service

choreographies and focuses on the temporal aspects required to offer deterministic,

predictable and verifiable real-time properties, thus addressing the research questions

raised by SOCRADES. The AESOP design can be united with the rtSOA approach to

achieve both event-based flexibility and cyclic determinism where needed: A cyclic

sub-system, scheduled with rtSOA, can periodically trigger events which are then

processed by an event-based architecture on higher layers.

2.2.3 Industrie 4.0

Industrie 4.0 is heralded as the fourth industrial revolution, with the three previous

revolutions being the mechanization of industry beginning in the 1780s, the electri-

fication starting in the 1870s and finally the introduction of computer control in the

1970s. The unique aspect of Industrie 4.0 is seen in the advent of Cyber-Physical Sys-

tems (CPS) [7,53,112]. Cyber-Physical Systems are computer systems which register

properties from the physical world via sensors and are often also able to affect these

properties via actuators. So far, this is identical to the definition of an embedded sys-

tem. The defining properties of cyber-physical systems are the aspects of networking,

interconnectedness and advanced decision making and reasoning [7, 53,73].

In the United States a different classification and terminology is being used: The

Industrial Internet is seen as the third wave of innovation and productivity increase

after the industrial revolution and the internet revolution. The Industrial Internet is

characterized as the convergence of industrial systems with sensing and computing

power, as well as networking capabilities [37]. These technical enablers are combined

with an analytical and predictive evaluation of the gathered data. This description

is similar to the definition of a CPS in the Industrie 4.0 context.

The Industrie 4.0 vision also calls for a horizontal and vertical integration of smart

factories within a company and even with other companies along its value chain

[53]. The definition of vertical integration is identical to the meaning of the term in

the SOA context as it implies an interconnection between processes on the lowest

layer of the production floor with enterprise planning modules. Leveraging this data

effectively through analytical and predictive evaluation is the area of big-data and

complex event processing systems [7, 97]. Horizontal integration encompasses more

than interconnection of devices within a factory or within a single enterprise. In the

Industrie 4.0 model, there should be a connection between the manufacturing systems

of a company, its logistics process, its suppliers, and customers. The horizontal

and vertical integration is envisioned through a large scale application of service-

oriented architectures, called the Internet of Services [7, 53]. Service-orientation of

individual machines and devices is an important part of this architecture [97]. Finally,

end-to-end engineering in the context of Industrie 4.0 refers to the use of model-

based techniques in an integrated engineering environment for the development and

optimization of products and the associated manufacturing system [53].
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To conclude, Industrie 4.0 and the Industrial Internet describe the concept of lever-

aging Cyber-Physical Systems for increased flexibility, awareness and data-driven de-

cision support in several industries with the manufacturing industry at the forefront.

Service-oriented architectures and model-based design, simulation and visualization

are integral parts of this vision [7,37,53]. Efforts in developing a reference architec-

ture for Industrie 4.0 name service-oriented architectures as a key component and

enabler [111]. The SOA should extend down to the manufacturing process where

suitable orchestration techniques are an important building block [53]. Our work

inside the rtSOA project focuses at providing engineers with an easy and intuitive

way to specify service compositions in a declarative way influenced by distributed

data processing principles. rtSOA users can quickly evaluate the implications of their

design decisions through simulation, verification and visualization of the generated

execution plans. These decentralized plans can be deployed automatically to devices

in a service-oriented architecture. The next chapter will introduce the rtSOA archi-

tecture and its execution semantics before we detail and evaluate the heuristics-based

rtSOA planning process in Chapter 4.2. Additional challenges arise from the vision

of hosting some parts of the automation logic in the cloud [56], especially when con-

sidering the lack of fault tolerance in current publish / subscribe middleware facing

complex failures scenarios such as byzantine failures or selfish node behavior [80].



CHAPTER 3

The rtSOA Approach

Parts of this chapter have been previously published in [64–67].

“I love deadlines. I love the whooshing

noise they make as they go by.”

- Douglas Adams

This chapter introduces our approach, named rtSOA, for service-oriented architec-

tures with real-time execution plans. It reconciles the flexibility and reconfigurability

of a SOA with the timing guarantees and determinism required for hard real-time

systems. The development of systems with rtSOA follows principles of distributed

data processing (DDP) systems and hides much of the networking and timing issues

from the engineer. The design goals and principles of the rtSOA architecture are

explained in Section 3.1. Based on these principles, and the assumptions detailed

in Section 3.2, Section 3.3 introduces the basic rtSOA architecture. Coherent se-

mantics are required to generate execution plans for any distributed data processing

system. Section 3.4 is therefore giving an in-depth analysis of the dataflow-driven

execution semantics of rtSOA. We conclude the chapter by discussing alternative

design decisions for rtSOA and placing it in context with related work in Section 3.5.

3.1 Design Goals and Principles

The target domain of rtSOA are distributed hard real-time systems for industrial

automation. The changing realities of the manufacturing world necessitate a focus

on flexibility, reconfiguration and reuse (c.f. Chapter 2). rtSOA is thus focused on

applying DDP principles to modular and reconfigurable manufacturing systems in

the smart factory ecosystem envisioned with Industrie 4.0. This section presents the

design goals for rtSOA and the principles behind the rtSOA design philosophy. The

term rtSOA refers to a service-oriented architecture for embedded real-time systems

based on DDP principles. We distinguish between the rtSOA architecture and the

following pieces of software:
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• rtSOA planner: The planner is the algorithmic core that generates rtSOA

execution plans from abstract workflow descriptions. Its inputs are one or

multiple workflows modeled as a task graph and a representation of the target

system’s infrastructure, i.e.,the available machines and the network configura-

tion. The planner’s output is a static schedule for each of the machines. These

schedules constitute the rtSOA execution plan.

• rtSOA runtime: The rtSOA runtime is the software running on the individual

devices partaking in the execution plan. The runtime is tasked with executing

the schedule generated by the rtSOA planner by invoking the individual service

instances and routing the messages between them.

• rtSOA user interface (GUI): The rtSOA GUI is an engineering tool used

to composite individual services into workflows by arranging the services in a

graph through specification of the messages passed from one service instance

to another. The feasibility of a workflow on a given infrastructure can be

determined by the rtSOA planner, which can be triggered from the GUI. The

GUI can also be used to deploy a new execution plan to the machines.

The following chapters will focus on the rtSOA planner, as it is the main contribution

of this thesis. The GUI and runtime have been implemented prototypicaly and are

presented in Chapter 6. The design of rtSOA was based on the following desired

properties:

Goal 1 rtSOA systems are adaptable at run time with minimal downtime.

Goal 2 rtSOA systems are hard real-time systems. They have deterministic and

verifiable behavior.

Goal 3 The development of automation workflows with rtSOA is decoupled from

timing and networking concerns.

Goal 4 Development with rtSOA is iterative, visual and has short feedback cycles.

These four design goals serve as the basis and rationale for the high-level design

decisions which guide the development of rtSOA. These design principles are:

Distributed Data Processing Principles

Manually dealing with the complex interrelations of large distributed systems is

a time-consuming and error prone activity. By applying principles of distributed

data processing systems, such as the automatic generation of execution plans that

handle the timing issues arising from network communication and data dependencies,

rtSOA aims to reduce development effort and time. It thereby enables a fast change

of system behavior (Goal 1) while providing verifiable real-time guarantees (Goal 2).

Decoupling system development from the concrete network situation, as stated in

Goal 3, is a common principle of DDP systems.
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Service-Oriented Architecture

Section 2.2.2 has already outlined the role of service-oriented architectures in future

manufacturing systems. The concept of a service encapsulates mechatronic functions

of the individual devices which may then be composited into larger workflows, thus

enabling easy reuse of existing functionality. Another important property of services

is their loose coupling at run-time which enables modification of the system’s be-

havior by changing the service composition. The SOA architectural style is thus an

excellent conceptual match for the flexibility demanded in Goal 1.

Dataflow Driven System Behavior

In a SOA, the services are more permanent than the ephemeral connections between

them. New services offering additional software functionality may be installed on

the devices, but their basic mechatronic services change rarely, if ever, because this

would require the installation of new hardware. Changing a system’s behavior, as

mandated by Goal 1, is thus realized by changing the flow of data between services.

The dataflow driven system behavior applies DDP principles and accomplishes the

decoupling of functionality from low-level timing concerns (Goal 3) by raising the

level of abstraction for the implementation of automation workflows to reasoning over

dataflow between mostly invariable services. The semantics described in Section 3.4

offer the deterministic behavior and verifiable real-time properties required by Goal 2.

Decentralized Execution

Traditional approaches to service orchestration or service choreographies pose a chal-

lenge in the context of real-time environments. Decentralized service choreographies

have been shown to possess superior runtime performance [104], which is a necessity

for fulfilling the performance requirements raised in Goal 2. Decentralized execution

with peer-to-peer messaging can also reduce the amount of messages sent.

Schedule-Based Execution Plans

Hard real-time systems often require formal verification or otherwise need to give

certain performance guarantees. This is stated in the second part of Goal 2. The rt-

SOA approach therefore bases its execution plans upon static, cyclic, non-preemptive

schedules for each device, providing determinism and verifiability through these

schedules. Validation of rtSOA schedules is discussed in detail in Chapter 5. Sched-

ule based execution plans also fit well with the previous principle of decentralized

execution and allow for lightweight runtime systems, which are the next design prin-

ciple of rtSOA.

Lightweight Runtime

To realize the general reconfiguration of automation systems, as stated in Goal 1,

rtSOA systems need to reach down to the lowest layers of the automation pyramid

which encompasses sensors and actuators with limited computational resources. The

possibility for a lightweight runtime environment suitable for embedded systems is a

prerequisite of the real-time requirements stated in Goal 2 in combination with the

flexibility mandated by Goal 1.
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Model-Based, Interactive Engineering Environment

Model-Driven Engineering (MDE) describes an approach wherein an abstract model

of a system is created and then systematically transformed to a concrete implemen-

tation [38]. This methodology promises the decoupling of functionality from timing

and network issues, as stated in Goal 3, and raises the abstraction to a higher level,

thus fulfilling Goal 4. It also fits well with the declarative approach for specifying

system behavior that is often present in DDP systems. The rtSOA GUI is a proto-

typical implementation of a model-based engineering environment. Although rtSOA

does not currently offer full end-to-end model driven engineering of all aspects of

the automation system, the visual service composition offered by the GUI together

with an interactive simulation of rtSOA execution plans already implements impor-

tant aspects of a model-driven engineering approach. Currently missing from rtSOA

are other MDE aspects such as models at different abstraction levels, e.g.,models

of the behavior inside individual services, and support for automatic transformation

between models, which may cumulate in the generation of runnable code. rtSOA is

therefore only model-based in the context of service composition and choreographies.

Fast and Effective Heuristics

Short feedback cycles enabled, among other factors, by quick compile and build

times are known to increase the efficiency of software development as well as the

quality of the outcome [44]. Following the same reasoning, explorative and iterative

development within the rtSOA framework would be severely hindered by answer

times of multiples minutes or even hours. Similarly, the rtSOA planner and GUI

can be viewed as an information system supporting the user in the decision whether

a specified automation workflow can be executed on a given infrastructure. Fast

feedback times are paramount in this scenario as well. This requirement is contained

in Goal 4 and, to a lesser degree, in Goal 1. Our approach employs domain specific

heuristics which constitute a proof-by-construction for the existence of a feasible

execution plan. Exhaustive state space search methods may have unsuitably long

response times (c.f. Chapter 4).

3.2 System Model and Assumptions

This section describes the system model and the assumptions on which rtSOA is

based. The basic assumption behind rtSOA is the presence of services on each

device participating in an rtSOA workflow. A service encapsulates (mechatronic)

functionality and has well-defined input and output ports, described by its service

definition. A port in this context can be seen as an interface which describes the

type and size of data consumed by the service. A service can have multiple input

and output ports. An output port may be connected to an arbitrary amount of

input ports. However, there may not be any cyclic dependencies between service

instances, i.e.,the graph formed by connections between instances’ ports must be

a directed acyclic graph (DAG). In addition to ports, service instances can have

attributes which do not change over the instance lifetime. A service instance is the
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concrete instantiation of an abstract service definition, similar to how an object is

the concrete instantiation of a class in object-oriented programming. There may be

multiple instances of the same service definition. The lifetime of a service instance is

the time from the creation and scheduling of the instance to its destruction. Cyclic,

static, non-preemptive schedules implement a service choreography which constitutes

the rtSOA execution plan. Service instances are created on individual machines

and must have concrete values for their worst case execution time (WCET) and

their schedule time. Each machine follows a schedule. Multicore CPUs are not

explicitly modeled but could be represented by pinning a separate schedule to each

core. Timing side effects from parallel execution are outside of the scope of this thesis.

Workflows are a composition of multiple service instances and a service choreography

may comprise multiple workflows. Service instances may only communicate via their

input and output ports. The invocation of a service is side-effect free, meaning that

a service may not free or allocate memory, write outside of its private memory or

otherwise influence the execution of other services apart from explicit messages to

their input ports or via effects on the physical environment. Figure 3.1 illustrates

the domain model of rtSOA in UML.
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Figure 3.1: UML domain model for rtSOA

Because we need to provide real-time guarantees for the control loop in a distributed

system, the network also needs to offer these guarantees. We therefore assume all de-

vices in the control loop are connected by a real-time capable network with bounded

message delays. The network also provides reliable message transfer in bounded

time, the application layer therefore does not have to include acknowledgment mech-

anisms. The predominant message exchange mode in industrial control applications

is cyclic; thus, we also assume a cyclic communication model. In this model, each

network cycle is divided into a number of time slots that are assigned to a device,

i.e.,TDMA. We do not assume a master-slave relationship on the system or network

level. Each device can potentially send data to any other device in the network.

The tight time-synchronization required for distributed real-time execution plans

are also needed by the TDMA-network so there is no additional overhead. Commu-

nication between service instances only happens over pre-determined TDMA-slots.

These slots may not be used otherwise, neither by other rtSOA service instances or

by other tasks running on the same machine or in the same network. We assume

broadcast messaging semantics, meaning that all devices in the same TDMA-network
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receive the data sent inside the slot. Another assumption is that the devices in an

rtSOA execution plan start the current iteration of the plan at the same point in

time and that this instant coincides with the beginning of a TDMA-cycle. Figure 3.2

illustrates the resulting execution model as described in this section.

t1
t 2

t6

Machine A

t3

Machine B

t4

t5

Machine C

A B C A B C A B C

Network Timeline

Figure 3.2: Devices cooperate in a distributed execution plan by locally executing

cyclic schedules and communicating over a deterministic real-time TDMA network.

Gaps in the machine time-line and white slots on the network time line represent

unused network and computational resources. The hatched areas indicate resources

used by an example workflow, arrows represent data dependencies.

3.3 The rtSOA Architecture

Our proposal for a real-time service-oriented architecture (rtSOA) applies principles

of distributed data processing to reconcile the flexibility and reconfigurability of DDP

systems and service-oriented architectures with the timing guarantees required by

hard real-time systems. The approach enables global coordination of field devices

through deterministic execution plans that comprise communication and computa-

tion schedules with verifiable real-time properties. The execution plan is derived

from a model-based representation of the control loop. During design and develop-

ment, the control loop is modeled as a directed acyclic graph (DAG) of dependent

tasks, similar to an automation workflow incorporating individual services in a SOA

approach. We therefore also refer to the task-DAG as workflow. The workflow carries

global timing information, such as its global deadline and period. Timing restrictions

on a per-job level are derived from global constraints when binding a set of workflows

to devices connected through a real-time network. This binding is performed by a

skilled engineer who is supported by the rtSOA GUI. The rtSOA planner generates

a static, cyclic, non-preemptive schedule for each device that includes all relevant

tasks from a real-time workflow. The network communication is implicitly included

in the generated schedules as each task is scheduled to finish before a certain com-

munication deadline and the receiving tasks on different devices are only scheduled

to start after the delivery of the relevant data from their predecessors.
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This approach allows for a separation of concerns: When specifying workflows, an

engineer is freed from timing constraints imposed by the hardware and network. New

devices can quickly be integrated into the existing infrastructure by deploying those

sub-tasks of a workflow that are specific to the device and subsequently generating

new schedules that include the device. While we focus on applications in the context

of manufacturing, rtSOA could also be applied in other areas, e.g.,the automotive or

avionic industries.

As explained in Section 2.2.2, there are two separate domains that need to be spec-

ified when deploying a SOA in the industrial context: the automation workflow

and the infrastructure on which it will be executed. The infrastructure comprises

the devices which partake in the automation process, the physical capabilities of

each device (e.g.,provision of sensor data, high computational capability, etc.) and

the characteristics of the network which connects the devices. Previous work has

demonstrated that web service technology can be leveraged in the embedded context

and efforts to standardize DPWS are well under way. The capabilities of a device

can therefore be described, advertised and discovered through industry standards

(c.f. Section 2.2.2.1). Service discovery at run-time is not required for planning and

deploying the tasks of the control loop but offers possibilities for seamless integra-

tion into less time critical applications. Similarly, the rtSOA planner does not require

run-time discovery of network particularities. Our assumption is that the network

configuration, including addressing, message delay and TDMA slot assignment, is

made available to the planner together with matching device descriptions.

The goal of the rtSOA planner is to provide a distributed execution plan wherein each

device fulfills its part to cooperatively realize the control loop. The target platforms

for rtSOA span from large control systems to very small embedded devices, such

as smart sensors or actuators. We use the term smart device to describe a sensor

or actuator attached to a system on a chip with several kilobytes of memory, a

CPU clock rate of a few Megahertz and integrated networking capability. We do

not assume that any advanced real-time operating system (RTOS) is available. The

output of the rtSOA planning stage is a static, non-preemptive, cyclic schedule for

each device. The job timing in each schedule is adjusted in such a way that the

devices cooperate in a distributed service choreography without a centralized point

of control. The exact execution semantics for rtSOA execution plans are given in

Section 3.4. Advanced RTOS features are not required but can be leveraged to

provide additional quality of service (QoS) levels beneath the critical real-time task.

Figure 3.3 depicts an overview of the planning steps necessary in our architecture.

We chose an adaptive cruise control system as an example. In this example, a

3D-vision system is used together with a radar system to measure the distance to

vehicles in front of the object vehicle and regulate vehicle acceleration and deceler-

ation accordingly. The resulting workflow is shown in Figure 3.3a. This only covers

the functional dependencies and modular decomposition of the system so far. The

global deadline and period of the workflow are derived from physical requirements
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Figure 3.3: A complex workflow in an adaptive cruise control scenario

and / or control theory. Once the automation task has been modeled according to

the modular decomposition (Figure 3.3a), these global deadlines are attached to the

workflow (Figure 3.3b). Because embedded systems often require platform specific

implementations for each functional module and the modules themselves make use

of sensors and actuators, the assignment of jobs to machines can be viewed as a

design time decision performed by a skilled engineer. For any given assignment, the

worst case execution time (WCET) of each task in the workflow can be measured

or estimated. This estimation leads to the situation shown in Figure 3.3c where

the global deadline and period of the workflow are known and the machine place-

ment and WCET of each workflow task have been determined. Afterwards, the

heuristics take over: a deadline assignment algorithm can be used to generate lo-

cal constraints (Figure 3.3d), which are then used to generate a matching execution
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plan that consists of a feasible task ordering. Alternatively, a suitable distributed

scheduling algorithm can directly determine the task ordering. Methods for solving

the scheduling problem, with an emphasis on suitable domain specific heuristics, are

presented in Chapter 4. In the final step, the system is validated through discrete

event simulation (c.f. Section 5.2). Output from this simulation step for our exam-

ple is shown in Figure 3.3e. The fundamental difference between the planning and

the execution phase of the control loop is important: whereas the execution plan is

generated in a centralized, offline fashion, the execution of this plan is distributed

without a central point of control.

In communicating systems with tight timing requirements, the network configuration

plays an essential role in finding valid execution plans. We cannot simply place an

upper limit on the communication delay and add it to the WCET of each task as

this action would prevent us from finding a feasible schedule in Figure 3.3e and

many other situations. Instead, timing information about each individual TDMA

slot has to be considered when generating the execution plan. As shown in our

example, the slots may be distributed irregularly. Real life examples would be an

application sharing the same communication medium with a legacy application or

communication protocols, such as Flexray, which set aside a portion of each cycle for

lower priority traffic. We therefore consider the available TDMA slots as an input to

our schedule synthesis instead of searching for a suitable slot assignment for a given

schedule.

3.4 Execution Semantics

The semantics of our execution plans are strongly related to principles of dataflow

programming which were presented by Dennis in the 1970s [32]. The original usecase

for dataflow was as a programming model for massively parallel computing architec-

tures which were seen as an alternative to classical von Neumann machines [2, 32].

In the abstract dataflow model, programs are modeled as graphs with data values,

called tokens, flowing on their edges and operators being located in the nodes of

the graphs. The activation of nodes follows a data-driven approach where a node

becomes fireable when a token is present at each of its input edges. The node then

fires some undetermined time after it has become fireable [2, 50]. When firing, the

node removes a token from each of its input edges and produces a new token on

each output edge. An example dataflow graph is shown in Figure 3.4. The example

illustrates two key properties of the dataflow model. Nodes without any direct con-

nection can potentially be evaluated in parallel. The other property is determinancy,

meaning that the result does not depend on the order in which potentially parallel

nodes are executed [2]. Acyclic dataflow graphs with side-effect free nodes are always

well-behaved, meaning that a single wave of input tokens produces exactly one wave

of output tokens [2, 50].
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Figure 3.4: An acyclic dataflow graph for calculating the quadratic formula
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2a . Operators are evaluated in infix notation with the leftmost incoming

edge being placed before the operator and the rightmost edge after the operator.

The edges labeled a, b and c are called input edges.

For conditional and loop programs control operators are required. The switch oper-

ator has one input and two outputs, labeled true and false, and an additional second

input, called the control input, that takes a Boolean value. The Boolean value re-

ceived by the control input determines the output edge on which the input token is

forwarded. The counterpart of the switch operator is the merge operator. It also

has a special control input. In the case of the merge operator, the control input

determines whether the token from the “true” or “false” input edge is forwarded on

the node’s single output. With these two control operators conditional and loop

programs can be represented.

The details of handling tokens is an important distinction between different dataflow

models. In the abstract model, edges in the graph are assumed to be unbounded

first-in first-out (FIFO) queues storing the tokens. Implementations of the dataflow

architecture diverge from this idealized view. The static dataflow approach allows

only one token to exist on an edge at any time whereas the tagged-token dataflow

approach allows an unbounded number of tokens but enforces no ordering. A later

development is synchronous dataflow (SDF) wherein the number of consumed and

produced tokens on each edge is known at compile time [74]. This places restrictions

on the type of programs than can be implemented in SDF, for example the maximum

number of iterations for loops must be specified beforehand [50]. The benefit of this

approach is that SDF programs can be statically scheduled and do not need the dy-

namic scheduling inherent in the other activation semantics [74]. This makes SDF an

attractive execution semantic for embedded and real-time systems. The popular real-

time programming language LUSTRE [40] is based on SDF. Synchronous dataflow

is built around large grain dataflow [74], which means that the nodes in the dataflow
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graph do not represent individual operators but rather groups of von Neumann op-

erators, i.e.,larger code modules or functions. Large grain dataflow has become the

dominant model since the 1990s as it has been noted that pure, fine grain dataflow

networks do not offer the expected performance benefits [50]. The mathematical

properties of dataflow do not change with the granularity of its nodes [50].

Our approach is mapping dataflow semantics to execution plans in service-oriented

architectures. The natural fit for this approach is a large grain dataflow semantic.

The individual service instances form the nodes in the dataflow graph and the com-

munication between the instances maps to the edges in the dataflow graph. Visual

programming with dataflow semantics is a paradigm that many engineers are already

used to through commercial products such as LabVIEW1 or Simulink2. Surveys have

found that the visual aspect of LabVIEW is rated more positively than its textual

aspects, indicating an inherent benefit of visual programming with dataflow seman-

tics [116]. We therefore believe that the same programming paradigm can be quickly

applied by domain experts for service composition in industrial automation.

rtSOA is targeted at hard real-time systems and small embedded devices. This

application domain prohibits the use of tagged dataflow semantics. Tagged dataflow

requires scheduling decisions and buffer management at run time. Both of these

requirements lead to indeterministic timing behavior. Memory allocation at run

time may not even be possible on embedded devices. We have therefore chosen to

model the execution semantics of rtSOA choreographies after the static dataflow

model. This model requires that at most one token be present on an edge in the

dataflow graph at any time. This allows constant time checking of a node’s ability

to fire. As described in Section 3.2, each service instance has several input ports

and output ports. These ports are the targets of connections between different

instances and represent memory areas that can be allocated before the execution of

the choreography. Each of the input ports has a flag which represents that data is

present. Since the number of input ports is constant, assessing the fireability of a

service instance can also be performed in constant time.

Classical dataflow literature mentions severe problems with enforcing the “one token

per edge” restriction [2, 50]. The problem lies in the requirement that a node may

only be fired if there is no token present on any of its output edges. This is usually

enforced through adding acknowledgment edges in the opposite direction of each

edge or by following a demand driven approach where a node is only activated

after receiving a request via its output edge [50]. These semantics would both add

additional network communication and reduce the performance of the system, similar

to pull-based communication patterns. Another drawback mentioned in literature is

the limit that this architecture places on parallelism as loops in the graph may not

be dynamically unrolled. This means that a second loop iteration may not begin

until the first iteration has finished [2].

1http://www.ni.com/labview
2http://www.mathworks.com/products/simulink

http://www.ni.com/labview
http://www.mathworks.com/products/simulink
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In the context of hard real-time systems, the restriction on loop parallelism is not

a serious problem. In fact, real-time determinism requires the specification of the

maximum number of iterations inside a loop (c.f. Section 1.2) which allows unrolling

of loops at compile or specification time [2]. The dataflow graphs rtSOA has to

handle are therefore always directed acyclic graphs (DAGs). The increase in network

traffic caused by enforcing the “one token per edge” property, however, is a concern

for rtSOA. For well-behaved graphs, the acknowledgment edges can be dropped

if we ensure that each node is activated exactly once before the next tokens are

placed on the input edges of the graph. New input may thus only be placed on

the input edges after all nodes in the graph have been activated once. This is

enforced through predetermined static schedules. The real-time domain requires

reliable message transfer, so it can be assumed that tokens sent will always reach

their destination, eliminating the need for acknowledgment edges for this purpose.

When enforcing the predetermined schedule, data consistency and determinism of the

dataflow DAG can be established by viewing the problem in the light of transaction

processing in databases [60, Chapter 11]. The external actions of a node activation

can be modeled as a transaction as shown in Equation 3.1.

T1 = r1(In1)→ . . .→ r1(Inn)→ w1(In1)→ . . .→ w1(Inn)→ w1(Out1)→ . . .→ w1(Outn)→ c1 (3.1)

A node will first read from all its input ports, then delete all tokens from its input

ports before writing to its output ports and committing the transaction. Read / write

conflicts could potentially arise from data dependencies between services. Viewing

the two transactions T1 and T2 in Equation 3.2 without rules for ordering or schedul-

ing of input tasks, T2 could read from B before T1 has written B, leading to an

inconsistent state. However, the dataflow activation rules demand that T2 may only

ever be started after T1 has finished its execution because there is a direct data de-

pendency between them expressed through the token T1 places in the input buffer

of T2. The read / write conflict between T1 and T2 is thus eliminated.

T1 = r1(A) → w1(A)→ w1(B) → c1

T2 = r2(B) → w2(B)→ w1(C) → c2
(3.2)

The entry c1 in transaction T1 stands for a commit in the database world. Applied

to the rtSOA architecture, committing means delivery of the tokens written by T1
to the input ports of T2. If both T1 and T2 are executed on the same machine, this

means writing data to the memory location representing the input port. This is either

performed by the service itself or by a data routing sub layer (c.f. Chapter 6) and

may be added to the WCET of the service instance performing T1. If the two services

are located on different nodes data must be delivered over the network. If we assume

bounded message delay, we can include an upper bound for the network delivery time

to the execution time of T1, thus ensuring that the “commit” is completed before the

dependent service, represented by transaction T2, is started. rtSOA uses a more fine-

grained model that schedules message transfer in individual slots of a TDMA-cycle.
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Under these circumstances, T2 may only start after the tokens from its predecessor

T1 have been transmitted over the network.

T1 = r1(X) → w1(X)→ w1(A) → c1

T2 = r2(Y ) → w2(Y )→ w2(A) → c2

T3 = r3(A) → w3(A)→ w3(B) → c3

(3.3)

Given no further restriction, there is indeterminism inherent in two edges connecting

to the same input port, as is apparent in Equation 3.3. This violates the determinism

property of dataflow architectures. Graphs with two connections to an input port

are therefore forbidden and the engineer must specify an additional arbitration node

which will determine the canonical value written to the original target port. The

addition of the arbitration service would transform the set of transactions to the

following form, which is free of write / write conflicts and free of read / write conflicts

when scheduled according to rtSOA rules, which is shown in Equation 3.4

T1 = r1(X)→ w1(X)→ w1(A)→ c1

T2 = r2(Y )→ w2(Y )→ w2(A)→ c2

Tar = rar(A1)→ rar(A2)→ war(A1)→ war(A2)→ war(A)→ car

T3 = r3(A)→ w3(A)→ w3(B)→ c3

(3.4)

rtSOA activates individual service instances at a predetermined offset from a global

time instant. Conceptually, this can be modeled as an additional input edge for

each node in the dataflow graph which writes a token to the node at the schedule

time of the node, thereby making the node fireable. We call this token the trigger

token. We distinguish between two types of schedules generated by rtSOA: non-

blocking and blocking schedules. In non-blocking schedules, the arrival of the trigger

token makes the node fireable and the node is executed immediately. In blocking

schedules the trigger token arrives before all data tokens have arrived from other

nodes. The node becomes fireable and is executed upon arrival of a data token. This

indicates an imperfect schedule which may still be a feasible schedule given the global

workflow deadline. Our simulation and verification modules (Chapter 5) therefore

consider blocking schedules under the assumption that the blocking schedule can be

transformed to a non-blocking schedule by delaying the arrival of the trigger token.

Our real-world demonstrator (Chapter 6) only implements non-blocking schedules,

assuming that feasible blocking schedules have been transformed to non-blocking

schedules before starting the execution of the service choreography.

As pointed out by Lee and Messerschmitt, runtime overhead from dataflow archi-

tectures exists in the forms of buffering overhead and scheduling overhead where

the system dynamically determines which nodes should be activated [74]. Our ap-

proach eliminates both of these sources of overhead since only a single token must be
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stored per edge and all scheduling decisions are performed a priori. Lee and Messer-

schmitt also introduced static scheduling for synchronous dataflow (SDF) systems

which form a sub set of dataflow systems. In contrast to traditional dataflow, the

amount of data produced and consumed by a node is specified a priori. For exam-

ple, a node may consume two tokens of input for each token of output it generates.

These kind of different sampling rates are common in DSP programming. To achieve

real-time properties, SDF also restricts the form of a dataflow graphs that can be

modeled. Restrictions are placed on conditionals where Lee and Messerschmitt dis-

tinguish between data dependent and state dependent conditional control flow [74].

An example for state depended control flow would be bounded loops that are not de-

pendent on input data. These can be handled in SDF by unrolling the loop through

transformation of the dataflow graph. A data dependent example are nodes that

generate tokens on one output edge if their input is below a certain threshold and

generate tokens on another output edge when input is over the threshold value. Data

dependent control flow is not explicitly handled in the synchronous dataflow model.

The same restrictions apply in the dataflow model applied by rtSOA. We addition-

ally restrict our model to well-behaved graphs where only one single wave of tokens

is active at any given time, making the rtSOA dataflow semantics a subset of the

SDF model. rtSOA thus does not currently support nodes with different sampling

rates in the dataflow graph nor does it support different cycle lengths for the sched-

ules performed by each device collaborating in a given execution plan. Although

these additional restrictions further limit the range of systems that can be modeled

through rtSOA, when compared with general SDF, they allow efficient runtime im-

plementations on constrained embedded devices. Although it is possible to allocate a

bounded amount of buffer space for a given schedule for a SDF graph, the algorithm

given by Lee and Messerschmitt for scheduling of these graphs is not optimal in

terms of required buffering space [74]. rtSOA eliminates the requirement for buffer

management for input tokens while allowing run time reconfiguration of the system

without recompilation. Limiting the execution model to well-behaved graphs also

reduces the memory requirements of the rtSOA runtime system because at most one

token must be kept in memory for each edge in the dataflow graph. Future work

could assess the implementation of synchronous dataflow semantics for distributed

execution plans.

3.5 Discussion

This section reviews the design decisions and implications of rtSOA. First, Sec-

tion 3.5.1 presents alternatives to the high-level decisions made for the design of

rtSOA and states the benefits and drawbacks of each. Related systems in the field

of industrial automation and real-time service-oriented architectures are examined

in Section 3.5.2.
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3.5.1 Design Alternatives

Time-triggered Architecture vs. Event-triggered Architecture

The question whether distributed real-time systems should be based around time-

triggered or event-triggered designs has been debated since the 90’s [61]. rtSOA

follows a time-triggered architecture. Event-based systems offer benefits in terms of

resource utilization, because they do not follow a static schedule that is provisioned

to meet the worst case requirements. In high-load situations the additional overhead

introduced by task-switching and decision making in event-triggered systems may

make time-triggered systems more competitive as they have a lower runtime over-

head. Another argument against time-triggered systems is that adding additional

tasks often requires a total replanning of the whole schedule while event-triggered

systems appear to be easier to extend since all scheduling decisions are taken locally.

However, adding another task to a machine in an event-triggered system may also

change the temporal dynamic of the system [61], which is compounded by the fact

that event-triggered systems are hard to verify and predict. The quick replanning

offered by rtSOA mitigates this classic drawback of time-triggered systems, allowing

engineers to extend the system with confidence that the change will not introduce

unpredictable temporal behavior.

A disadvantage of rtSOA, when compared with purely event-based approaches, is

that the upper bound for the runtime of the execution plan also constitutes the

lower bound. rtSOA users need to specify the WCET of each task and, due to the

time triggered execution semantics, an early completion of a task will not lead to

early completion of the workflow or offer additional processing time to succeeding

tasks. rtSOA is thus well suited to critical cyclic control tasks but may overprovision

resources in a more unpredictable environment, for example one where a human is

interacting frequently with the system. A more event-driven approach could offer

faster response times at the cost of predictability.

Run Time Reconfiguration vs. Code Generation

rtSOA provides flexibility and adaptability of manufacturing services through re-

configuration at run time without the need for providing new binaries or source

code that implements the changed functionality. New system behavior is achieved

strictly by reordering the invocation sequence of precompiled services and rerouting

the dataflow between them. As such, reconfiguration fits well within the DDP and

SOA paradigms as it keeps coupling between services low and offers a fast change of

functionality.

An alternative approach would have been the generation of optimized binaries for

each device that participates in the execution plan. An example for such an approach

is realized in the AESOP project through the real-time programming language Tim-

ber [91] where an optimizing compiler allows for efficient implementations of real-time

choreographies, thus reducing run time overhead.
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In our opinion, the biggest issue with approaches based on code generation is the

reprogramming of embedded devices with the new binaries. It is common for em-

bedded systems to execute a single binary which may or may not include a real-time

operating system kernel. These RTOSs often do not support dynamic linking and

loading, meaning that the usual way to update code on embedded systems consists of

bringing the system to a stop, reprogramming the system by replacing the executed

binary and then restarting the device [43]. The reprogramming operation often re-

quires physical access and cannot be performed over the network. This has been

recognized in recent research endeavors aiming to offer lightweight solutions to the

problem of run time code updates on embedded systems [43]. The rtSOA approach

works with the service binaries residing on a device, requiring no re-programming,

re-linking or re-loading of binaries. This means than engineers changing the chore-

ography of a system do not need access to the services’ code or binaries, they may

simply change the system’s configuration. rtSOA still benefits from run time code

updates for loading new services onto a device or updating existing services to newer

versions. However, as it stands, the rtSOA architecture can be implemented with

very lightweight runtime environments that require no run time code update features.

Service Choreographies vs. Service Orchestrations

The SOCRADES project has studied the differences between service orchestrations

and choreographies [15]. Among the benefits of service orchestrations identified by

SOCRADES are the isolation of the workflow logic to a single device, the exposi-

tion of the orchestrated workflow itself as a single service and the simplicity of the

approach. The drawbacks of service orchestration were listed as the absence of hor-

izontal interaction due to orchestration being a strictly hierarchical approach that

pushes the decision logic out of the individual devices onto the orchestrator. Addi-

tionally, the request / response messaging pattern of service orchestrations means

an increase in network traffic [104].

The identified benefits of service choreographies mentioned by Candido et al. [15]

include the truly distributed control with peer-to-peer communication and decision

making at the individual devices. Starke et al. elaborated on this by explaining

that service orchestrations lead to longer reaction times because the orchestration

engine is an intermediate device which is one additional step (and network hop)

removed from sensing and actuation [104]. Candido et al. stated the drawbacks of

choreographies as the distribution of workflow logic to each participating device and

the scaling to large and complex systems.

rtSOA is aimed at hard real-time sub systems in automation settings. The chore-

ographies executed by these systems are limited to a smaller number of devices which

must interact with each other within tight timing bounds. Higher level interactions

between multiple sub systems may follow different interaction models and could again

be implemented through service orchestrations. Integration of multiple systems per-

forming a mixture of service orchestrations and choreographies is outside of the scope

of this thesis. With rtSOA the localized view on a service choreography is realized in
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terms of the schedules executed by each device together with the information about

where and when messages generated by the services should be sent. This realizes the

benefits of a truly distributed execution while addressing some of the open questions

raised by SOCRADES about the semantics and implementation of hard real-time

service choreographies. The choreography model is also a good fit for the dataflow

semantics described in Section 3.4.

Dataflow Semantics vs. Petri Net Semantics

Synchronous dataflow is a special case of Petri nets [74] which can model asyn-

chronous systems, as compared to the synchronous systems modeled by SDF, and

have been used as execution semantics in the SOCRADES and AESOP projects [81].

With the rtSOA dataflow semantics being a subset of SDF, and SDF being a spe-

cial case of Petri nets, one could also model the rtSOA semantics based on Petri

nets. Related work using Petri nets has remarked that run time reconfiguration of

small embedded devices may not be feasible when using interpreted Petri nets as the

underlying semantics [81]. In contrast, we have realized a very lightweight yet still

run-time-reconfigurable and verifiable implementation with the simple but restricted

execution semantics of rtSOA. The richer Petri net formalism should therefore only

be used when the system behavior cannot be expressed through simpler semantics.

Since rtSOA systems are synchronous systems by construction, much of the complex-

ity needed to model event-based asynchronous systems is not required. The richer

semantics of Petri nets also lead to a more complicated graphical notation. The

dataflow notation is very similar to existing standards for programming industrial

control systems, for example the IEC 61131-3 function block diagrams (FBDs) which

are a standardized language for programming PLCs.

Heuristic Schedules vs. Optimal Solutions

Applying heuristics for the generation of execution plans is the usual approach in

interactive data processing systems which focus on providing an overall low response

time to user queries. We view the rtSOA planner as a component of such an in-

teractive systems as it may be used early and often in the engineering process of

the automation system. The question remains if these heuristic schedules are suit-

able for continued execution in the automation system. The hard real-time domain

has a binary value function for computation results. Anytime before the deadline

the computation result has a relative value of 100%, anytime after the deadline its

value drops to 0% or even a negative value. Therefore, an algorithm solving the

optimization problem inherent in rtSOA’s schedule based execution plans must find

a schedule that is verifiably below the specified workflow deadline. Assuming that

there is some slack time in the workflow, this schedule need not necessarily be the

shortest possible schedule. Although heuristics may fail to find such a schedule, even

if it exists, they are a feasible alternative because of their speed and effectiveness.

Our work has proven that a combination of heuristics will find feasible schedules

in the overwhelming majority of cases. Details are given in Section 4.2. However,

heuristics cannot prove the absence of a feasible schedule. We therefore also give a
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fast formulation of the rtSOA scheduling problem as a mixed integer linear program

(MILP) in Section 4.1.2. However, the formulation is optimized for finding any fea-

sible schedule, not the shortest schedule. Even with this restriction, the exhaustive

search performed by the MILP solver may not lead to acceptable response times

when included in an interactive design environment as described in Section 3.1.

3.5.2 Related Work

Commercial State of the Art

In today’s manufacturing plants sensors and actuators are usually controlled by

programmable logic controllers (PLCs), following a cyclic model. At the beginning of

each scan cycle an input scan is performed which obtains readings from all connected

sensors. Based on these updated values, the PLC performs its logic computations,

updates all outgoing communication values and sends commands. Although recent

industry efforts target increased reusability of code blocks, the control software is

often rewritten from scratch when integrating new devices [77]. The tightest timing

requirement determines the available runtime for the whole scan cycle, which is

tightly coupled with the network cycle. The resulting hierarchical communication

with tight cycle times can quickly exhaust existing network resources and lead to

difficulties during network scheduling.

The cyclic rtSOA execution plans seem conceptually similar to the PLC scan cycle.

However in a PLC scan cycle, code blocks are executed in sequence and without

specified offsets from the start of the cycle time. Additionally, the majority part

of a PLC program is executed in each cycle. In the rtSOA runtime, at most one

service is triggered per iteration of the main loop. Only sensors required by the

currently scheduled service instance are queried over analog / digital IO or pushed

to the service instance over the network. Users do not have to specify the task order

explicitly, it is instead determined by the dataflow and may easily be reconfigured.

Compared to traditional, hierarchical control paradigms based on PLCs, rtSOA offers

easier reconfiguration and more efficient network communication. Reconfiguration

is enabled by an encapsulation of device capabilities in reusable services, and the

separation of functionality from the timing and network scheduling aspects which are

intermingled when writing PLC programs, thus limiting the reuse of existing code.

The true peer-to-peer relationship of rtSOA devices and services reduces network

communication overhead when compared with traditional, polling based approaches.

The rtSOA planner explicitly generates a network schedule, so only required TDMA-

slots are used. The assignment of TDMA-slots to devices is seen as an input to the

planner, which means an rtSOA workflow can coexist with other workflows or legacy

applications on the same network. The cyclic execution model of rtSOA has little

communication jitter, thus allowing easy composition of rtSOA-controlled cells with

other modular systems in a hierarchic manner.
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IEC 61499

The IEC 61499 architecture has a number of parallels with the rtSOA architecture,

for example the encapsulation of functionality in function blocks which can be freely

placed among devices in a distributed system. Vyatkin names a number of concerns

among researchers and practitioners about the IEC 61499 architecture [114]. Chief

among them is the issue of determinism, arising from the purely event driven ex-

ecution model of the standard. As events may potentially arrive at any time, the

execution of function blocks implies that those events need to be stored in queues.

Events may be explicitly or implicitly lost if the storage capacity of those queues is

exceeded. This may lead to non-deterministic behavior given the same input con-

ditions but slightly different message timing. Research has tried to address these

issues through cyclic or synchronous activation semantics. However, the cyclic and

synchronous IEC 61499 event processing models do not address situations in which

multiple inputs arrive simultaneously at the same FB. Correct handling of event

flows has also been shown to add substantial performance overhead [114].

rtSOA follows well-defined, conflict free data flow semantics (c.f. Section 3.4) which

can be implemented on resource constrained devices without large overheads or mes-

sage buffering. Also, by design, IEC 61499 is a programming and development

model for distributed automation which aims to improve the development of such

systems. Therefore, its focus is more on efficient code generation than on chang-

ing system behavior through reconfiguration at run-time, which is offered by the

rtSOA architecture. Real-time execution of IEC 61499 systems is usually based on

preemption [125], requiring more advanced RTOS features than rtSOA.

RI-MACS

Cucinotta et al. presented a real-time enhanced SOA for industrial automation

within the RI-MACS project [26]. RI-MACS supports services with different crit-

icality (hard, soft and non real-time) with temporal isolation of the more critical

levels from the less critical ones. The presented SOA uses a modification of the WS-

Agreement protocol to negotiate real-time and Quality of Service (QoS) properties for

the individual services. Timing properties are enforced by a modified Linux Kernel

that supports real-time scheduling through the earliest deadline first (EDF) algo-

rithm. EDF is an optimal scheduling algorithm for preemptive uniprocesors [124].

RI-MACS is the first project to specifically target real-time SOAs in industrial au-

tomation. Compared to rtSOA it offers more QoS levels than just the hard real-time

task. However, the rtSOA runtime is more lightweight, requiring no complex operat-

ing system, such as the real-time Linux used by RI-MACS. Additionally, rtSOA offers

end-to-end timing guarantees for complex workflows instead of isolated guarantees

for single service instances.
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SOCRADES

The approach to workflow composition and execution within the SOCRADES project

is based upon high level Petri nets [82]. The Petri nets serve as formal specification,

provide semantics for composition and support conflict resolution in the SOCRADES

architecture. Automation processes can be modeled on a high layer of abstraction

because the chosen Petri net formalism distinguishes between immediate transitions

for tasks such as message transmission and timed transitions for longer running tasks

such as movements of a robot arm [81]. During composition these timed transitions

are replaced with their concrete Petri net representations.

Petri nets also provide the run time semantics and control in the SOCDRADES

project. An orchestration engine interprets a Petri net, which has been provided to

the engine at run time, and therefore executes the workflow composition represented

by the Petri net. Multiple devices may cooperate in the execution of larger Petri

nets where synchronization and communication between the models running on each

devices is performed at run time. Precompiled versions of Petri nets may be employed

for more resource constrained devices that are unable to perform an interpretation

of a Petri net model at run time.

The SOCRADES approach based on the Petri net formalism offers a clear semantic

for complex composed models at run time and allows thorough formal verification

and analysis of its behavioral properties during design. However, the flexibility of

the presented approach is not complemented by reliable timing guarantees because

the Petri net orchestration engine does not consider timing issues. Petri net models

may also quickly become very large and complex [81], leading to high overhead in

interpretation. Both of these issues indicate that the presented approach is not well

suited to the rtSOA target domain of hard real-time systems with tight control cycles.

AESOP

The AESOP project investigated the possibilities of bringing SOAs into industrial

control loops [46]. From a technology perspective, the Efficient XML Interchange

(EXI) binary XML format has been identified as a crucial complement to the XML

based DPWS messages, if cycle times of a few milliseconds are targeted [71]. AESOP

achieved cross-layer collaboration of services and devices mainly through use of an

orchestration engine, which constitutes an event based model with central control

through an orchestrator. Other research within the project highlighted the bene-

fits of service choreographies over service orchestrations for automation tasks [104].

Starke et al. implemented an event-based choreography engine for service-oriented

automation and observed a higher degree of performance and reactivity compared

to a traditional approach based on orchestration. Choreographies are composed of

individual roles which specify the behavior of devices participating in the choreog-

raphy which is realized through invocation of the device’s services. Based on its role

description, a device will establish connections to other devices where it subscribes

to the relevant events published by the remote device. Starke et al. do not mention

end-to-end performance guarantees for these event based choreographies [104].
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rtSOA also offers decentralized service choreographies, but additionally focuses on

the temporal aspects and offers deterministic, predictable and verifiable real-time

properties. Users of the choreography engine described by Starke et al. first have to

specify the individual roles before those roles can be combined into the choreography

and deployed to the devices. In contrast to this approach, rtSOA choreographies

are composited from available service descriptions which are bound to devices at

a later stage. The push-based communication paths of rtSOA are automatically

derived from this binding. Our approach is therefore more top-down than the AESOP

choreographies.

The SOCRADES or AESOP design can be united with the rtSOA approach to

achieve both event-based flexibility and cyclic determinism where needed: A cyclic

sub-system, scheduled with rtSOA, can periodically trigger events which are then

processed by an event-based architecture on higher layers. The DPWS protocol

together with the binary EXI format is a possible candidate for more full featured

service discovery and message exchange than the minimal functionality implemented

for our real-world demonstrator (Chapter 6).

RT-Llama

RT-Llama is a real-time middleware for service-oriented architectures [85, 90] with

support for end-to-end deadlines. It achieves predictable execution times for complex

workflows forming DAGs through pre-reservation of resources for the whole workflow.

Similar to our model, services in a workflow must be assigned a WCET. Based on

the workflow structure and the service WCETs, intermediate deadlines are derived

and used for scheduling. We discuss a similar approach in Section 4.2.1. RT-Llama

is targeted at dynamic SOAs, which are defined as systems in which workflows may

join or leave the system at arbitrary times [85]. Resource reservation is performed for

periodic workflows which can have differing periods from one another. The remaining

resources are available for sporadic workflows without predefined periods if enough

capacity is available for the tasks. An efficient admission test is another contribution

of the RT-Llama system [85]. RT-Llama supports a wider range of scheduling situa-

tions by being designed for multiple periodic and aperiodic workflows. However, the

industrial automation domain is not as dynamic as the dynamic SOAs described by

RT-Llama. RT-Llama may deny admission of a workflow at run time which could be

catastrophic in hard real-time systems. A system for industrial automation there-

fore will be pre-planned with all necessary tasks before it is deployed to ensure that

critical tasks will always be executed on time. Scheduling with rtSOA provides these

kinds of guarantees. Compared to rtSOA the RT-Llama system is resource inten-

sive because its prototype is implemented using a real-time Java Virtual Machine

(JVM) [90]. The scheduling algorithms of rtSOA also work on a more fine-grained

level. Our work schedules real-time tasks with enough precision to meet individual

slots in a TDMA-cycle whereas RT-Llama assumes only a bounded message delay.

The overall target systems of RT-Llama thus have more resources and less stringent

timing requirements than the industrial automation domain targeted by rtSOA.



46 3. The rtSOA Approach

iLAND

iLAND is a middleware for service-oriented soft real-time systems [39] that supports

time-bounded reconfiguration. After an initial offline phase in which the workflows

and their properties are analyzed the iLAND middleware supports time bounded op-

eration with soft real-time semantics. Time-bounded reconfiguration means that the

workflows can be modified to include new services or capabilities and the generated

communication and computation schedules are adjusted accordingly. iLAND can

perform automatic service composition, meaning that it can derive a new workflow

which conforms to given functionality and properties. Apart from the focus on soft

real-time, the main difference to rtSOA is the higher resource usage of iLAND as it

is implemented on top of the JVM and requires the presence of a RTOS which sup-

ports task preemption. Time-bounded reconfiguration may be relevant in the area

of industrial automation insofar as switching between different modes of operation

of the whole system is concerned. These modes of operation are distinct preplanned

execution states, similar to how an rtSOA execution plan is a single preplanned state.

If mode switching were implemented, reconfiguration of an rtSOA system could be

performed by configuring a new execution plan during idle times of the nodes and

switching to the new mode in a coordinated manner. However, reconfiguration in

industrial automation often also involves modification of the physical environment

of the system, for example repositioning modules in a modular production system or

removing leftover work pieces from the manufacturing line. The quick redeployment

of execution plans with rtSOA, as demonstrated in Chapter 6, is not the bottle-

neck in such a scenario, limiting the requirement for run-time reconfiguration as

implemented by iLAND in the rtSOA target domain.

AutoFOCUS

Voss and Schätz [113] present a model based approach for development, deployment

and scheduling of embedded applications. The application is modeled as a network

of automata. The hardware resources, to which the application should be deployed,

can consist of multiple micro controllers connected to shared memory via a bus

system. The authors employ Satisfiability Modulo Theories (SMT) solvers to find

both a suitable task placement and schedules for each device. From these generated

schedules individual binaries for each target system can be derived through automatic

code generation. Voss and Schätz target systems with a bus-based communication

channel that has a fixed bound on latency, whereas our model adopts a fine-grained

communication model on the level of the individual TDMA-slots. Section 4.1.3 shows

that the employed SMT-solvers are an order of magnitude slower than mixed integer

linear programming (MILP) solvers for similar feasibility problems [66]. Chapter 4

presents our MILP formulation along with several fast and efficient heuristics which

are again orders of magnitude faster than the MILP solver approach. Together with

the fact that the output of the AutoFOCUS development tool is a binary for each

module, which carries the drawbacks of reconfiguration through reprogramming that

we have laid out earlier (c.f. Section 3.5.1), the AutoFOCUS approach is not suitable
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for rtSOA’s target systems. However, the system does prove the value of model based

development and automatic synthesis of schedules for distributed systems. As such,

AutoFOCUS was one of the design inspirations for rtSOA.

MGSyn

Another example for a non-SOA based approach to flexible and reconfigurable man-

ufacturing systems is MGSyn [20], which synthesizes controller programs with prin-

ciples adapted from game theory. The game is modeled with two players, the system

and environment, which alternate taking turns. The system wins the game if it can

always reach winning conditions, which are specified in a subset of linear tempo-

ral logic (LTL). The environment may play any allowed move at any time and is

not required to cooperate with the system. Goals for this synthesis are specified

in a modified version of the Planning Domain Definition Language (PDDL). The

generated control program is essentially a state-transition diagram that fulfills the

specification. It also offers the possibility to generate programs that fall beneath a

specified upper bound for the overall execution time or other metrics, such as power

consumption. MGSyn is also based on code generation and replacement of bina-

ries on the controllers which is not in accordance with a SOA-based approach. The

main questions raised by the approach based a formal specification language, when

compared with a SOA-based approach, are reusability of individual components,

modularity and approachability. Studies have shown the benefits of using visual

programming together with large grain dataflow architectures for productivity and

correctness [6, 116]. This programming paradigm is combined with high-level reuse

of individual services in rtSOA.

Conclusion

This chapter described the rtSOA approach for realizing distributed real-time sys-

tems with SOAs and distributed data processing principles. The planning process for

generating real-time capable execution plans is a key component to this architecture.

The next chapter (Chapter 4) therefore presents several possible methods for deriv-

ing the execution plan and performs a thorough evaluation of the alternatives. Our

real-world demonstrator for the rtSOA GUI and runtime is presented in Chapter 6.
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CHAPTER 4

From Specification to Solutions

Parts of this chapter have been previously published in [65, 66].

“Choose well. Your choice is brief, and yet endless.”

- Johann Wolfgang von Goethe, translated by Thomas Carlyle

This chapter covers the different approaches to generating a feasible execution plan

for a workflow following the principles expressed in Chapter 3. rtSOA execution

plans comprise of static, cyclic schedules for each device that participates in the

plan.

Workflows are modeled as directed, acyclic graphs of tasks. The edges in a graph

represent data flow between individual tasks. Each task is annotated with a worst

case execution time (WCET). The range of possible start and completion times of the

task can be constrained by setting a task release time and deadline. Each workflow is

annotated with a global deadline and the period after which the workflow is repeated.

The overall goal is to find a suitable task ordering for a given assignment of tasks

to machines. Tasks on a single machine cannot overlap or be preempted. This task

ordering must fulfill all local deadlines (on the task level), local release times and

global deadlines (on the workflow level). A task cannot be started before all transi-

tively preceding tasks have been completed. For describing the different algorithmic

approaches, we use the following formal notation:

The basis for deadline assignment is a workflow W = 〈T ,G, DW, PW〉 with a task

set T , the precedence graph G formed by the tasks, a global deadline DW, and a

period PW ≥ DW after which the execution of the task set is repeated. The task set

T = {t1, t2, . . . , tn}, contains the individual tasks ti. Each task has a (worst case)

execution time written as |ti|, a start time ti.S and a completion time ti.C = ti.S+|ti|.
The release time ti.R and deadline ti.D constitute constraints on the earliest start
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time and latest completion time, respectively. The precedence graph G = 〈T ,≺〉
places constraints on the task ordering. A precedence relation between two tasks ti
and tj is written as ti ≺ tj if ti is a direct predecessor of tj and as ti ≺≺ tj if ti is

a transitive predecessor of tj , e.g.,ti ≺ . . . ≺ tj . G forms a directed, acyclic graph.

Each task is assigned to a machine mi ∈ M by the function µt(ti) : T → M. µt is

defined prior to the scheduling problem described in this section.

Some of the scheduling methods described in this chapter also take the underlying

network configuration into account. As mentioned in the previous chapter, we as-

sume real-time communication is provided by a network protocol which only allows

communication at predetermined time instances, i.e.,a TDMA protocol. The assign-

ment of TDMA-slots to machines and the timing properties of the slots are used as

input parameters to the scheduling process. Our model of a TDMA-configuration

consists of a number of TDMA-Slots with a fixed slot start and end time. Each slot

is assigned to exactly one machine and is repeated after one TDMA cycle period. A

TDMA slot may carry messages from multiple tasks on one machine to receivers on

all other machines, i.e.,we assume a broadcast semantic. Tasks on the same machine

communicate without time delay.

The TDMA-slot configuration is represented as S = 〈S, µs, PS〉. Therein the set of

TDMA slots is represented by S = {s1, s2, . . . , sn} with each slot si having a slot-

length |si|, a slot start time si.S and a slot completion time si.C = si.S + |si|. Each

slot is assigned to a single machine by the function µs(si) : S → M. The TDMA

cycle is repeated after period PS. Tasks in W either communicate locally if they are

on the same machine, or they send a message in a TDMA-slot that is assigned to

the same machine. τ(ti) is the slot assignment function for tasks, its output is either

a single TDMA slot si, which is used by the task ti to broadcast its result, or the

empty set ∅ if task ti only has successors on the same machine.

In classical scheduling theory scheduling problems are classified according to the

α|β|γ scheme where α describes the machine environment, β describes the processing

details and γ denotes the objective function that should be minimized. The general

complexity of scheduling problems can vary immensely, depending on these param-

eters. For example, the problem 1|prec|Lmax, denoting a single machine problem

with general precedence constraints on the tasks where the objective is minimizing

the maximum lateness, can be solved in polynomial time [72]. The slightly different

problem 1|rt|Lmax, where rt denotes that tasks have a minimum release-time after

which they may be activated, is strongly NP-hard [76].

How would the scheduling problem for rtSOA be classified? One could classify the

problem as Pm|prec|Lmax, where Pm denotes m parallel machines. This problem

is strongly NP-hard, as it generalizes P2|chains|Cmax, which has been proven as

strongly NP-hard [34]. This assertion can be made based on the complexity hi-

The complexity results mentioned in this section were found using the search functionality of

“The Scheduling Zoo”, located at http://www-desir.lip6.fr/˜durrc/query/

http://www-desir.lip6.fr/~durrc/query/
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erarchy of scheduling problems [92]. Pm is a more general form of P2 [92](mean-

ing two parallel machines), prec is more general than chains [34], meaning chain-

structured graphs, and the makespan Cmax can be reduced to the maximum lateness

Lmax [92]. However, the classification as Pm|prec|Lmax is too pessimistic. For the

rtSOA scheduling problem, we assume that the engineer has fixed the allocation

of tasks to machines before the scheduling process, thus relieving the scheduling

algorithm from the duty of finding a suitable task allocation. Therefore, we could

conceptually view the problem as a single-machine scheduling problem, although this

constitutes an oversimplification. Additionally, the maximum lateness is an unsuit-

able objective function. rtSOA targets hard real-time systems where the workflow

must be completed at a given deadline. If we minimize the total makespan Cmax, we

minimize the total completion time of the workflow. If the makespan is then smaller

than the global deadline DW, the scheduling process was successful.

Can we then classify the problem as 1|prec|Cmax, meaning that it can be solved in

polynomial time? 1 In general, the answer is no due to network communication.

1|prec|Cmax would only be a correct classification of the scheduling problem if we

added an upper-bound for transmission delay to the processing time of each task

that has successors placed on different machines. This approach would unnecessarily

lengthen the sum of processing times in the workflow, leading to a lower success rate

when scheduling the workflow with a makespan smaller than DW. Can we model

the individual TDMA-slots as release-times for each task, classifying the problem

as 1|prec; rt|Cmax? Lawler has proven this problem to be in complexity class P as

well [72]. This approach is better and we indeed model the problem in this way

for some of our heuristics (c.f. Section 4.2). However, the release time rj of a

task tj with predecessor ti can depend on the completion time of the predecessor ti:

Because tj must be ready to run at time rj , ti must have completed at that time.

Additionally, data from ti must have been received by tj via the network. This means

transformation of the scheduling problem in this way is either pessimistic, by using an

upper limit for rj , or must be repeated after each scheduling step, thus invalidating

the assumptions necessary to prove membership in the complexity class P .

We derive that the rtSOA scheduling problem is strongly NP-hard from the fol-

lowing argument: When two tasks are placed on different machines, a non-zero

communication delay occurs. In the general scheduling literature this is modeled

as task-dependent time lags lij between tasks ti and tj , meaning that tj can only

start after at least lij time units have passed between the two tasks. Assuming that

an oracle could provide us with valid values for all lij , we could classify the rtSOA

problem as 1|prec; lij |Cmax. Wikum et al. proved that 1|chains; l|Cmax is strongly

NP-hard [118], meaning that the idealized rtSOA problem is strongly NP-hard by

extension. Here, l stands for task-independent time lags which are generalized by

task-dependent time lags. The generalization of chains by general precedence con-

straints prec remains [34].

11|prec|Lmax is in complexity class P and generalizes 1|prec|Cmax
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The target area of rtSOA are hard real-time systems, meaning that our objective

function Cmax could be regarded as too fine-grained. Hard real-time systems follow

a step wise binary function for evaluating their performance. A result either fulfills

the deadline constraints or it violates them. If the deadline is violated, the value

of the result does not degrade but immediately reaches zero or becomes negative

(c.f. Section 1.2). Conversely, it does not matter how far a solution is beneath the

deadline limit, it is always valued the same. We are thus more accurately searching

for a feasible solution to the scheduling constraints instead of trying to minimize an

objective function. However, this does not result in a reduction of the complexity

class for the scheduling problem, because the deadline could be chosen so that it is

equal to the smallest possible makespan Cmax.

However, this argument hints at the general structure of the problem: Finding the

optimum, in terms of the smallest makespan, may generally not be the goal of the

scheduling process. Instead we are interested in an effective method for finding

feasible solutions to the scheduling problem described above. The remainder of

this chapter explores different approaches based on either state space exploration

(Section 4.1) or heuristic approaches (Section 4.2).

4.1 State Space Exploration

A näıve way of performing state space exploration for the rtSOA scheduling problem

would be the enumeration of all topological orderings of the workflow with subse-

quent validation of the resulting schedules’ feasibility. A small example for such an

approach is shown in Figure 4.1. Generating a single topological order is easy and

has a time complexity of O(|V |+ |E|), where |V | is the number of vertices, or tasks,

in the workflow and |E| is the number of edges, or precedence relations, between

the workflow tasks. Enumerating all topological orders and checking them for feasi-

bility is #P-complete [12]. Valiant defines the #P complexity class and shows that

problems in #P are at least as hard as NP-complete problems [109]. While NP-hard

problems conceptually often deal with questions of the sort “Is there a satisfactory

solution that fulfills these constraints”, #P-hard problems cover the task of enumer-

ating all solutions to such problems [1]. From this high-level description it intuitively

follows that the two classes are related, and that #P-hard problems are at least as

hard as NP-hard problems.

The remainder of this chapter covers more efficient methods for finding feasible so-

lutions through state space exploration. Section 4.1.1 describes an approach based

on a Satisfiability Modulo Theories (SMT) solver, which combines a Boolean satis-

fiability (SAT) solver with other theories, such as linear arithmetic, bit-vectors or

arrays [30]. The next section Section 4.1.2 shows how the problem can be formulated

as a Mixed Integer Linear Program (MILP), that can solved with many of today’s

highly tuned solvers. Section 4.1.3 covers related work in this area.
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(a) An example workflow with 7 tasks, allocated to two different machines
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(b) A feasible task ordering for the workflow shown in subfigure a)
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(c) An infeasible task ordering, resulting from the switch of tasks t3 and t2

Figure 4.1: All topological orderings are potential valid task orderings. The example

workflow in subfigure a) has 32 different topological orderings. In practice, switching

two tasks can result in large differences in schedule length, as shown by subfigures

b) and c). The schedule shown in subfigure b) is feasible, the schedule in subfigure

c), differing only by the order of tasks t2 and t3 from the former, is infeasible.

4.1.1 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) solvers are efficient tools for finding feasible

solutions to general first order logic problems that can be extended with a number

of other theories, such as arithmetic, bit-vectors, arrays and uninterpreted func-

tions [30]. As such, they offer an expressive and natural way of formulating the

rtSOA scheduling problem in mathematical terms. In general a SMT solver is not

an optimizer, because its output is a model, i.e.,a variable valuation, that renders

all specified constraint formulas true. Other techniques, such as a binary search

over possible values for the deadline constraints [113] with subsequent reevaluation

of the SMT problem, have to be employed when optimization of an objective value

is desired. Because our approach is only aimed at finding a feasible solution, a single

evaluation of the SMT problem described below is sufficient.

The SMT solver receives the workflow W and TDMA configuration S as input and

generates start times ti.S for each task t ∈ W.T as its output, so that the global

deadline DW is adhered to. If the tasks are distributed over several machines, the

solver also finds a valid TDMA-slot assignment τ(ti) for each task ti with successors

on different machines.



54 4. From Specification to Solutions

Equation 4.1 is an input constraint for the SMT solver and describes the bounds for

the task start times and completions times. It requires that all task start times have

to be non negative, completion times have to be smaller than the global deadline

and the completion time must be the start time plus the task execution time.

∀ti ∈ T : ti.S ≥ 0 ∧ ti.C ≤ DW ∧ ti.C = ti.S + |ti| (4.1)

Equation 4.2 requires that all tasks on the same machine do not overlap. For any

two tasks on the same machine the start time of one task should be larger than, or

equal to, the completion time of the other task. Alternatively ti and tj could refer

to the same task.

∀ti, tj ∈ T : µt(ti) = µt(tj) =⇒ ti.C ≥ tj .S ∨ tj .C ≥ ti.S ∨ ti = tj (4.2)

Equation 4.3 places constraints on two tasks, placed on different machines, that have

a predecessor relationship between them. The constraint requires the solver to choose

a TDMA slot for the first task via the function τ() and enforces the completion of

task ti before the beginning of the chosen slot. Similarly, task tj may only start

after the completion of the TDMA slot, i.e.,after tj has received the message from ti
contained within the TDMA-slot.

∀ti, tj ∈ T : µt(ti) 6= µt(tj) ∧ ti ≺ tj =⇒ τ(ti) 6= ∅ ∧ µs(τ(ti)) = µt(ti)

∧ ti.C ≤ τ(ti).S ∧ tj .S ≥ τ(ti).C
(4.3)

The SMT formulation for the rtSOA scheduling problem is complete with these

equations. In the next section we present an equivalent formulation as a mixed

integer linear program. Both formulations are compared in Section 4.1.3.

4.1.2 Mixed Integer Linear Programming

An Integer Linear Program (ILP) consists of three parts: A linear objective function

to be maximized, e.g.,

f(x1, . . . , xn) = c1xy + . . .+ cnxn

a number of problem constraints of the form

a11x1 + . . .+ a1nxn ≤ b1

a21x1 + . . .+ a2nxn ≤ b2

. . .

am1 x1 + . . .+ amn xn ≤ bm
and variables x1, . . . , xn ∈ Z.
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For a Mixed Integer Linear Program (MILP) not all variables xi are required to be

integers. While MILPs are not as expressive, or the formulation of a problem might

not be as natural, when compared with a SMT problem formulation there has been a

tremendous amount of research and engineering in the last decades to enable efficient

solving of MILPs. Intuitively, being formulated in a single theory instead of multiple

theories, as is the case with our SMT formulation, a MILP solver should be faster

than a SMT solver. The evaluation in Section 4.1.3 shows that this is indeed the

case for our problem.

Keha et al. [59] examined the performance of four different MILP formulations for

single machine scheduling problems. They note that“MLIP formulations for schedul-

ing problems are often classified based on the choice of the decision variables. The

different decision variables used to distinguish between the different MILP formula-

tions are: completion time variables (F1) [4], time index variables (F2) [101], linear

ordering variables (F3) [35] and assignment and positional date variables (F4) [94].”

Their paper shows that the first approach (F1), based on completion time variables,

generates the highest number of feasible solutions in a given time although other

formulations are faster in finding the optimum solution.

Since our focus is on quickly finding feasible solutions, we have based our MILP

formulation around completion time variables and extended the formulation to mul-

tiple processors communicating via TDMA. The time index variable approach(F2)

can be rejected, because it uses binary variables xij if a task ti starts at time index

j, which must be chosen at a set granularity before. We would either loose precision

or face formulations with a huge number of variables. The approach based on linear

ordering variables (F3) uses the variables yij which are set to 1 if task ti precedes

task tj . We have not evaluated this approach, because the results of Keha et al.

show that it often fails to produce a feasible solution in an allocated amount of time.

Additionally, specifying constraints representing TDMA-communication is cumber-

some in F3, at best. The last formulation (F4) uses assignment variables uij which

are set to 1 if task ti is assigned to position j. The positional variables Ck specify

the completion time of the task at position k. This formulation is also competitive

for finding feasible solutions in a specified time budget. However, in previous work

we determined that this MILP-formulation performs worse than F1 for scheduling

in-tree task sets with release times and deadlines [63] on a single machine. This prob-

lem is similar to the rtSOA scheduling problem, as the communication over TDMA

can be represented by attaching release times and deadlines to the task set. We have

therefore only adapted the formulation based on completion time variables to the

more general rtSOA scheduling problem.

All solver specific remarks apply to the software package Gurobi2 in version 6.5 which

we used in our experiments.

2http://www.gurobi.com/

http://www.gurobi.com/
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The LP variables are thus Ci = ti.C for all tasks t ∈ T and binary variables yij = 1

that denote that task ti is scheduled before task tj . Note that ti ≺≺ tj =⇒ yij = 1

but yij = 1 6=⇒ ti ≺≺ tj , i.e yij only denotes precedence in the schedule produced

by the solver. Additionally we introduce the binary variables uik = 1 that indicate

task ti sending its data via TDMA-slot sk.

Equation 4.4 and Equation 4.5 define the value ranges for the completion time vari-

ables and the precedence variables. The implication in Equation 4.5 is not part of

a valid LP constraint. We use this notation as a shorthand to denote that we only

added the constraints in the consequent of the implication if the antecedent of the

implication was given. In the case of Equation 4.5, we fix the value for the ordering

variables yij and yji so that the precedence constraints expressed by the workflow

graph are adhered to.

∀ti ∈ T : Ci ≥ |ti| ∧ Ci ≤ DW (4.4)

∀ti, tj ∈ T : yij ∈ 0, 1 ∧ ti ≺≺ tj =⇒ yij = 1 ∧ yji = 0 (4.5)

The constraints in Equation 4.6 prohibit two tasks from overlapping. This means

that for every two tasks on a machine, one of them needs to finish before the start

of the other. Two tasks on different machines may overlap at will and thus there are

no restrictions placed on their corresponding y-variables. As with Equation 4.5, the

consequent of the implication in Equation 4.6 is only added to the MILP constraints

if the antecedent is true ,i.e.,if the tasks ti and tj are placed on the same machine.

∀ti, tj ∈ T : µt(ti) = µt(tj) =⇒
ti.C + |tj | ≤ tj .C +DW ∗ yji
∧ tj .C + |ji| ≤ ti.C +DW ∗ (1− yji)

(4.6)

The last set of constraints expresses communication over the TDMA-network. If two

tasks are in a direct predecessor relation, but not running on the same machine, they

need to communicate over the network. This means firstly that the preceding task

ti has to finish before any TDMA slot assigned to its machine. This is implied in

the first two (in-)equalities in Equation 4.7. Lastly, the receiving task tj can only

start after the TDMA slot which transports the message from ti has ended. Once

more, the implication indicates that these constraints are only added to the MILP

formulation if the antecedent of the implication is true.

∀ti, tj ∈ T : ti ≺ tj ∧ µt(ti) 6= µt(tj) =⇒
∑
sk∈S

uik = 1

∧ ti.C ≤
∑
sk∈S

uik ∗ sk.S

∧ tj .S ≥
∑
sk∈S

uik ∗ sk.C

(4.7)

We have found that Gurobi is faster in finding a feasible solution if no objective

function is defined, therefore we omit its specification.
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Workflow Tasks Feasibility Heuristic Runtime Timeouts

Gurobi 3.50ms 0
infeasible

Z3 72.88ms 0

Gurobi 5.88ms 0
16

feasible
Z3 254.79ms 0

Gurobi 10.70ms 0
infeasible

Z3 753.94ms 0

Gurobi 37.66ms 0
32

feasible
Z3 7,389.46ms 0

Gurobi 23.86ms 0
infeasible

Z3 3,650.26ms 3

Gurobi 114.21ms 0
48

feasible
Z3 44,905.51ms 0

Gurobi 47.01ms 0
infeasible

Z3 27,916.04ms 66

Gurobi 268.07ms 0
64

feasible
Z3 77,707.18ms 0

Table 4.1: Runtime comparison of a MILP-solver (Gurobi) with an SMT-solver (Z3).

The runtime is given as the geometric mean over the observed test cases, timeout

was after 20 minutes.4

4.1.3 Discussion and Related Work

Given the SMT-formulation presented in Section 4.1.1 and the MILP-formulation in

Section 4.1.2, the question arises which of these two approaches is preferable. The

ease of expression is higher in the SMT-formulation which provides a very straight

forward approach to constraint programming. However, this expressiveness comes

at the cost of higher runtimes with the current generation of SMT-solvers. We have

chosen Z33 in version 4.3, an efficient SMT-solver from Microsoft Research [30].

The benchmarks in Chapter B.3 show that Z3 represents the current state of the

art in SMT-solvers. However, benchmarks of the rtSOA scheduling problem show

that Z3 is orders of magnitude slower than Gurobi for the formulations presented

in Section 4.1.1 and Section 4.1.2. Table 4.1 shows the comparison of our SMT-

formulation evaluated with Z3 and our MILP-formulation solved through Gurobi.

Benchmarks in Section B.1 and Section B.2 show that Gurobi is one of the fastest

solvers, both for finding optimal and feasible solution to MILP-problems. Gurobi

used up to 6 concurrent threads, corresponding to the number of physical cores on

our machine. Z3 remained single threaded, thereby explaining a large part of the

initial performance difference. However, the relative difference in runtime increases,

indicating that the lack of multithreading is not the only reason why Z3 is less

performant than Gurobi in our experiment.

3https://github.com/Z3Prover/
4Runtimes reported in Table 4.4 may be different because the analyzed task graphs vary.

https://github.com/Z3Prover/
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Related Work

Voss and Schätz [113] use SMT-solvers to find both a suitable task placement and

schedules for each device. They target systems with a bus-based communication

channel that has a fixed bound on latency, whereas our model adopts a fine-grained

communication model on the level of the individual TDMA-slots. The novelty of

their approach lies in the binary search over a target parameter (i.e.,the makespan)

to reach a near-optimal solution. As such, their work is representative of other re-

search in the area of system synthesis. System synthesis covers the allocation of

computational and communication resources as well as the binding of tasks and

messages to those resources together with their scheduling. Reimann et al. . [95]

offer an approach based on SMT-principles in the presence of nonlinear constraints

which often stem from nonfunctional requirements, e.g.,power consumption or ther-

mal characteristic of systems. Their approach combines efficient SAT-solvers with

domain specific background theories that evaluating those complex nonfunctional

constraints. Reimann et al. thereby implemented an indirect SMT approach which

allows the integration of external analysis tools and accelerates the synthesis problem

by identifying infeasible regions in the state space instead of only identifying singu-

lar infeasible states. Compared to the more focused feasibility problem inherent in

rtSOA scheduling, the area of system synthesis solves a more general optimization

problem which is only indirectly applicable to reconfigurable manufacturing systems.

System synthesis occurs during the design time of embedded systems, which is less

frequent than the reconfiguration expected to occur in modular production systems.

Therefore, the solvers employed to find high quality solutions to the system synthe-

sis problem may run for a longer time span. In contrast, the response time of the

rtSOA planner should lie within the human attention span to realize an iterative and

interactive development and engineering tool (c.f. Section 3.1).

Other approaches to state space exploration have been built around principles from

game theory [18,20]. In these approaches, the system and its environment are mod-

eled as two competing parties which alternate taking turns. In the approach of Cassez

et al. [18] the game is solved by UPPAAL-TiGA [8] which employs model checking

techniques to the area of timed game automata. This approach is more general than

the feasibility problem solved by rtSOA, but comes at the price of higher runtime

complexity and the known scalability issues of model checkers. The work of Cheng

et al. [20] synthesized control software from solutions to the game representation

identified with a specialized solver called GAVS+ [21] which implements different

solving algorithms, mostly based on reachability, depending on the type of game.

The runtime of this solver may also suffer from the state space explosion problem.

Other possible state space exploration approaches are based on the A* algorithm.

While faster than a simple branch-and-bound algorithm, the evaluation by Kwok

and Ahmad [70] indicates that this approach may not be feasible for larger task

graphs, as the solving time required for graphs with 32 tasks approaches multiple

days in their 2005 paper. Although modern computer hardware provides significantly
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more performance, runtimes of multiple days point to a general scalability issue.

A performance comparison for multiprocessor task scheduling with communication

delays by Jin et al. [49] supports our conclusion. Jin et al. evaluated approaches

based on genetic algorithms, simulated annealing, tabu search, the A* algorithm and

domain specific heuristics. The implementation of A* in the paper was modified so

that the algorithm was applicable to scheduling problems with communication delay.

This modification restricted the search space of A*, reducing its runtime complexity

but also reducing the quality of the generated solutions. The results by Jin et al.

show that the A* based approach was significantly slower than all other methods. In

general, the quality of the generated solutions, expressed in terms of the makespan

of the resulting schedules, was high enough for the domain specific heuristics so that

the increase in runtime for iterative search methods is not justified.

Given the rtSOA design goals (c.f. Section 3.1), domain specific heuristics are a

promising alternative to state space exploration, which is in line with the benchmark

results by Jin et al. [49]. The next section presents several domain specific heuristics

for the rtSOA scheduling problem. These heuristics are compared with the MILP-

based state space exploration approach in Section 4.3.

4.2 Heuristic Approaches

The remainder of this section presents different heuristics for the rtSOA schedul-

ing problem, starting with a two-phase approach based on intermediate deadline

assignment with subsequent scheduling in Section 4.2.1, followed by a single-phase

approach based on distributed scheduling heuristics in Section 4.2.2.

4.2.1 Deadline Assignment Heuristics

The approach based on deadline assignment heuristics solves the task ordering prob-

lem in two steps. In the first step a deadline assignment heuristic attaches local

deadline and release-time constraints to each task. Afterwards, Potts’ heuristic [93]

generates a task ordering which is validated through simulation. The scheduling task

is performed in a per-machine fashion, meaning that Potts’ heuristic is used to find

a schedule for the single machine case with release times and deadlines. This section

describes the employed deadline assignment heuristics. Figure 4.2 shows an example

workflow with a deadline of 10 ms and a total execution time of 5 ms. The deadlines

generated by the heuristics described in this section are shown in Table 4.2.

A
1ms

B
0.5ms

C
2ms

D
0.5ms

E
0.5ms

Figure 4.2:

Example graph

Node ED EQS EQF PD Slice Pure Slice Norm Slice Adapt-G Slice Adapt-L

A 7.00ms 3.67ms 4.00ms 3.33ms 3.50ms 3.75ms 3.67ms 3.77ms

B 7.00ms 3.67ms 4.00ms 3.33ms 3.50ms 3.75ms 3.67ms 3.77ms

C 9.50ms 7.83ms 9.00ms 6.67ms 7.50ms 8.75ms 8.08ms 7.83ms

D 9.50ms 7.83ms 9.00ms 6.67ms 10.00ms 10.00ms 10.00ms 10.00ms

E 10.00ms 10.00ms 10.00ms 10.00ms 10.00ms 10.00ms 10.00ms 10.00ms

Table 4.2: Deadlines assigned to the tasks of the example graph

shown to the left. Overall workflow deadline was 10 ms, individual

task deadlines are shown below the task name in the graph.
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We introduce additional notation for formal definition of the heuristics: The direct

predecessor set of a task ti, defined as Prec(ti) = {tj ∈ T |tj ≺ ti} with the analogous

successor set Succ(ti) = {tj ∈ T |ti ≺ tj}. The set of tasks with in-degree 0, i.e.,the

roots of the DAG are specified as Roots = {ti ∈ T |Prec(ti) = ∅}, with the leafs

given by Leafs = {ti ∈ T |Succ(ti) = ∅}. Additionally, let dti ≺≺ tje be the length of

the longest path from ti to tj . The length of ti ⊀≺ tj is ∞, the length of the path

from a task ti to itself is 0 and dti ≺ tje = 1. We then define the top-level ti.L
t of

task ti as min(dtr ≺≺ tie) for tr ∈ Roots. Analogously the bottom-level ti.L
b of task

ti is min(dtl ≺≺ jie) for tl ∈ Leafs. The expression T t� = {tj |ti, tj ∈ T ∧ tj .Lt� ti.Lt}
describes a set of tasks which fulfill a condition on their level Lt where � can be

any binary operator, e.g.,T t> = {tj |ti, tj ∈ T ∧ tj .Lt > ti.L
t}. As a shorthand for all

TDMA-slots assigned to the same machine as a given slot introduce the following

notation: Slots(t) = {s ∈ S|µ(s) = µ(ti)}

4.2.1.1 Simple Heuristics

The first set of heuristics we implemented was described by Kao and Garcia-Molina

[54] for soft real-time tasks with serial-parallel dependencies. We adapted these

heuristics to general DAGs by grouping tasks together by their levels, meaning the

distance of a task from a root or leaf of the workflow graph.

The simplest heuristic is called Effective Deadline (ED), which assigns a deadline

to each task that is equal to the global deadline minus the execution time of all

succeeding levels. The formal definition is shown in Equation 4.8. It is greedy in

the sense that it assigns all available slack to the root tasks of the DAG. Slack is

defined as the time span between task release time and deadline minus the task’s or

level’s WCET. This can be seen in the example table where all of the available slack

(5 ms) is assigned to tasks in the first level from the top (A and B) which means the

following levels, comprising of tasks C and D in level 2 and task E in level 3, are

assigned no slack at all.

ti.D = DW −
∑
t∈T t

>

|t| (4.8)

Equal Slack (EQS) tries to avoid ED’s bias by assigning equal amounts of slack to

the individual levels of a workflow. The formula for deadline assignment is shown

in Equation 4.9, the release times are specified by Equation 4.10. In the running

example there are 5 ms of total slack available which are distributed over 3 levels,

leaving 1.66 ms per level. These are added to the WCET of all tasks in the level plus

the deadline of the previous level.

ti.D = ti.R+
∑
t∈T t

=

|j|+
DW − ti.R−

∑
t∈T t

≥
|j|

max(Lt)− Lti + 1
(4.9)

ti.R = max(0, tp.D) for tp ∈ T t< (4.10)
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Equal Flexibility (EQF) follows a similar strategy, but it scales the amount of slack

assigned to a task proportionally to its length, as shown in Equation 4.11 and Equa-

tion 4.12. Larger levels receive more slack in EQF. In the example, level 1 receives

40 % of the slack because it makes up 40 % of the total WCET in the workflow.

ti.D = ti.R+
∑
t∈T t

=

|j|+

(
DW − ti.R−

∑
t∈T t

≥
|t|
)
∗∑t∈T t

=
|t|∑

t∈T t
≥
|t| (4.11)

ti.R = max(0, tp.D) for tp ∈ T t< (4.12)

The Proportional Deadline (PD) heuristic follows a different strategy. After dividing

the graph into n levels it divides the global deadline into n parts of equal length

which are assigned to each level. In contrast to the previous heuristics, PD uses the

bottom levels of each task, as shown in Equation 4.13. In the example graph with 3

levels, the second level from the top is assigned a deadline that corresponds to 2
3 of

the global deadline.

ji.D =
1 + Lbi

1 +max(Lb)
∗DW (4.13)

We modified these heuristics by introducing a corrective factor for communication

over the TDMA network. In a first step, the mean communication delay κ is cal-

culated for each machine in the TDMA network. This number specifies the average

time a task has to wait for the next available TDMA slot on a given machine. If any

task in a level has a successor on a different machine, the maximum κ of the com-

municating machines is added as a “hidden” level representing a virtual processing

time. The TDMA-modified Equal Slack (EQS-TDMA) and TDMA-modified Equal

Flexibility (EQF-TDMA) heuristics then distribute the slack between the normal,

non-hidden, levels the same way as their non-modified counterparts. This method

leads to an improved effectiveness of the heuristics as shown by the evaluation in

Section 4.3.1.

We also propose deadline assignment based on the earliest release and latest finish

time (ERT-LFT) of each task. The earliest release time (ERT) of each task is

determined by traversing the DAG from its sources and calculating the minimum

time at which all previous tasks have finished and, if the tasks are located on other

machines, have sent their data via the next available TDMA-slot. Similarly, the

latest finish time (LFT) is obtained by attaching a deadline to each task such that its

successor can finish during the global workflow deadline. In the ERT-LFT heuristic,

the ERT is used as the release time of a task while the LFT is used as its deadline.
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Given the initial values for the latest finish time and earliest start time from Equa-

tion 4.14 and the function definition of Equation 4.15, we can specify the latest finish

time as shown in Equation 4.16.

∀t ∈ Roots : t.ERT = 0

∀t ∈ Leafs : t.LFT = DW

(4.14)

The LFT will be propagated from the leafs of the DAG to the roots, as defined in

lft succ. If two tasks are located on the same machine, the successor task propagates

its own LFT minus its WCET. If the tasks are on two different machines we iden-

tify the last possible TDMA slot for the predecessor task to communicate with its

successor. The start time of that slot is then propagated as LFT to the predecessor

task form its successor.

lft succ(ti, tj) =

{
tj .LFT − |tj |, if µt(ti) = µt(tj)

max(s.S) : s.C ≤ tj .LFT − |tj |, else for s ∈ Slots(ti)
(4.15)

Equation 4.16 finally specifies that a task is assigned the minimum propagated LFT

from all its successors.

∀ti ∈ T , ∀tj ∈ Succ(ti) : ti.LFT = min(lft succ(ti, tj)) (4.16)

The earliest release time is specified analogously, but in direction from the DAG roots

to the leafs, by propagating the ERT from a predecessor task to the successor task.

Equation 4.17 defines this propagation on the same machine and over the network

while Equation 4.18 specifies that a task’s ERT is the maximum ERT propagated

by its predecessors.

ert prec(ti, tj) =

{
tj .ERT + |tj |, if µt(ti) = µt(tj)

min(s.C) : s.S ≤ tj .ERT + |tj |, else for s ∈ Slots(tj)
(4.17)

∀ti ∈ T , ∀tj ∈ Prec(ti) : ti.ERT = max (ert prec(ti, tj)) (4.18)

4.2.1.2 Slicing technique

Jonsson and Shin [51] presented a set of deadline assignment heuristics based on

the slicing technique, which works by identifying the critical path through a DAG

based on one of several path metrics. The global deadline is then distributed by

assigning non-overlapping execution windows (slices) to the tasks on the critical path.

Algorithm 1 shows the deadline distribution algorithm as defined in the original

paper. In the following we will outline the different metrics used for finding the

critical path in a DAG.
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Algorithm 1 Slicing algorithm by Jonsson and Shin [51]

1: function Slicing

2: Tworking ← T
3: while Tworking 6= ∅ do

4: Find critical path φ in G that minimizes metric Rslice

5: Distribute deadline Dφ of φ to all tasks in φ

6: for all ti ∈ φ do

7: for all tp : tp ≺ ti do

8: tp.D = ti.R

9: for all ts : ti ≺ ts do

10: ts.R = ti.D

11: Tworking ← Tworking without φ

The Pure (Slice-Pure) metric is similar to the EQS heuristic in so far as it distributes

the available slack equally between all tasks on the critical path, analogously, the

Normalized (Slice-Norm) metric is similar to the EQF heuristic and scales the as-

signed slack with the task length. Table 4.2 demonstrates the outcome: The slicing

technique will identify the path A ≺ C ≺ E as the critical path in the workflow.

The total slack available on this path is 6 ms, which results in 2 ms of slack being

allotted to tasks A,C,E. The next critical path in the graph is B ≺ D where 9 ms

of slack would be available. However, B must still finish before C, resulting in the

same deadline (3.5 ms) being assigned to B and all of the leftover slack being added

to D. Slice-Norm works after the same principle but the assigned slack is scaled

by the task length. In Equations 4.19 to 4.22 we give the definition of the different

metrics Rslice used for finding φ in Algorithm 1. |φ| is the number of tasks in the

path φ.

Slice-Pure metric:

RslicePure =

(
Dφ −

∑
t∈φ |t|

)
|φ| (4.19)

ti.D = tp.D + |ti|+RPure for tp ∈ φ : tp ≺ ti (4.20)

Slice-Norm metric:

RsliceNorm =
Dφ −

∑
t∈φ |t|∑

t∈φ |t|
(4.21)

ti.D = tp.D + |ti| ∗ (1 +RNorm) for tp ∈ φ : tp ≺ ti (4.22)

The Globally Adaptive (Slice Adapt-G) metric only scales the task execution time

if the length of a task is over a certain threshold. As in the original paper, we use

the mean task execution time [51] as threshold. In the globally adaptive metric, the

length of a task is then scaled by a constant factor that depends on the number of

machines on which the workflow is executed and a global metric that measures the
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degree of parallelism in the workflow. In the example case, tasks A and C would

be scaled by the factor 1.5, because they meet or exceed the mean execution time

of 1 ms. Working with these virtual execution times, the total remaining slack to

distribute along the path is 10 ms− (1.5 ms ∗ 1.5)− (2 ms ∗ 1.5)− 0.5 ms = 2.25 ms.

Thus, the resulting deadline for task A is (1.5 ms ∗ 1.5) + 4.25ms
3 ≈ 3.67 ms. Virtual

task execution times for the globally adaptive slicing are defined in Equation 4.23,

the deadline assignment in Equation 4.24.

|tvirti | =
{
|ti| if|ti| < thres

|ti| ∗ (1 + kG ∗ ξ/|M|) if|ti| ≥ thres
(4.23)

ti.D = tp.D + |tvirti | for tp ∈ φ : tp ≺ ti (4.24)

The Locally Adaptive (Slice Adapt-L) metric scales the task execution length based

on the local level of task parallelism instead of scaling by a global metric for paral-

lelism. For example, the degree of parallelism for task A in Figure 4.2 is 2 because

there are no data dependencies with tasks B and D. As with the Adapt-G metric,

tasks A and C are assigned a longer virtual execution time and the remaining slack is

distributed along the critical path. Equation 4.25 defines how virtual task execution

times are calculated in the locally adaptive slicing metric, Equation 4.26 defines the

deadlines assigned by this heuristic.

|tvirti | =
{
|ti| if|ti| < thres

|ti| ∗ (1 + kL ∗ |Ψi|/|M|) if|ti| ≥ thres
(4.25)

ti.D = tp.D + |tvirti | for tp ∈ φ : tp ≺ ti (4.26)

Jonsson and Shin [51] set the release times of each task to the deadline of the previous

task in their original paper. We relax those release times to the Earliest Release

Time (ERT) of each task, because our benchmarks have shown that the traditional

method is too restrictive for the rtSOA scheduling problem. The presented heuristics

are evaluated in Section 4.3 together with more advanced heuristics which we present

in the next section.

4.2.2 Distributed Scheduling Heuristics

Scheduling algorithms for tasks with communication usually comprise two different

phases [29]. At First a task selection phase, also called the prioritization phase,

takes place and determines which task should be scheduled next. The second phase,

a processor selection phase, determines the processor on which the task should be

executed. In our scenario, the processor selection is fixed a priori, which means we

focus on the task ordering mechanism of each heuristic.
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The Heterogeneous Earliest Finish Time (HEFT) [108] and Dominant Sequence Clus-

tering (DSC) [121] heuristics are examples for list-scheduling algorithms that main-

tain a fixed priority list of tasks which is calculated once. Both heuristics use the

length of the longest path (in terms of WCET and communication time) from a

task t, including the communication times, to a sink of the DAG for their task pri-

oritization. We will use exit(t) to denote this path. HEFT simply ranks tasks by

increasing exit(t) (c.f. Algorithm 2). The DSC heuristic uses the ERT of t plus

exit(t) as the priority of t as shown in Algorithm 3.

Algorithm 2 Heterogeneous Earliest Finish Time (HEFT) heuristic

1: function ScheduleAfter(t, releaset, T sched)
2: blockedTime ← 0

3: for all tsched ∈ T sched do

4: if µt(t) = µt(tsched) ∧ tsched.C > releaset then

5: blockedTime ← max(blockedTime, tsched.C − releaset)

6: t.S = releaset + blockedTime

7: return {T sched ∪ t}

8: function HEFT(T )

9: T sched ← ∅
10: ∀t ∈ T calculate exit(t) and t.ERT

11: for all t ∈ T sorted by decreasing exit(t) do

12: T sched ← ScheduleAfter(t, t.ERT, T sched)

Algorithm 3 Dominant Sequence Clustering (DSC) heuristic

1: function DSC(T )

2: T sched ← ∅
3: ∀t ∈ T : calculate t.ERT

4: ∀t ∈ T : blevel(t) = exit(t)

5: while T \ T sched 6= ∅ do

6: ∀t ∈ T : tlevel(t) = t.ERT

7: t← arg max(tlevel(t) + blevel(t)) over t ∈ T \ T sched
8: T sched ← ScheduleAfter(t, t.ERT, T sched)
9: ∀t ∈ T \T sched calc t.ERT using tsched.S as t.ERT for all tsched ∈ T sched
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The Mobility Directed (MD) [120] heuristic chooses tasks based on their mobility,

defined as the difference between a task’s LFT and its earliest start time (EST),

divided by the task’s WCET. Although the EST is similar to the ERT, it is recal-

culated after each task selection and takes into account the scheduling time of the

other workflow tasks. The EST is calculated in line 7 of Algorithm 4.

Algorithm 4 Mobility Directed (MD) heuristic

1: function MD(T )

2: T sched ← ∅
3: ∀t ∈ T : calculate t.ERT and t.LFT

4: while T \ T sched 6= ∅ do

5: t← arg max( t.LFT−t.ERT|t| ) over t ∈ T \ T sched
6: T sched ← ScheduleAfter(t, t.ERT, T sched)
7: ∀t ∈ T \T sched calc t.ERT using tsched.S as t.ERT for all tsched ∈ T sched

Earliest Task First (ETF) [45] picks a task among the ready tasks, meaning tasks

whose predecessors have already been scheduled, by choosing the task with the min-

imum EST. Ties are broken by the task with the smallest LFT minus WCET as

shown in Algorithm 5.

Algorithm 5 Earliest Task First (ETF) heuristic

1: function etf(T )

2: T sched ← ∅
3: ∀t ∈ T : calculate t.ERT and t.LFT

4: while T \ T sched 6= ∅ do

5: ReadyTasks ← args min(t.ERT ) over t ∈ T \ T sched
6: t← arg min(t.LFT − |t|) over t ∈ ReadyTasks

7: T sched ← ScheduleAfter(t, t.ERT, T sched)
8: ∀t ∈ T \T sched calc t.ERT using tsched.S as t.ERT for all tsched ∈ T sched

We propose two additional scheduling heuristics: an adapted version of Potts’ heuris-

tic [93] that works in a distributed environment with fixed task-placement, and the

Least Delay heuristic (LD). Our proposed LD heuristic tries to determine the im-

plications of scheduling each task in the ready set. The heuristic schedules each of

the tasks in the ready set in a “what-if” manner and determines the EST of all tasks

in the DAG based on this speculative scheduling. The resulting EST of each sink

task is compared to its EST before the speculative scheduling, yielding a value for

the expected delayt of the sink task t. The maximum delayt yields the delay for the

entire workflow. The heuristic now chooses the task from the ready set that resulted

in the minimum workflow delay. This heuristic has a high run-time complexity, but

our evaluation (Section 4.3.1) shows it can generate solutions in many cases where

the other heuristics failed to do so. The pseudocode is given in Algorithm 6.
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The adapted Potts’ heuristic is set up by picking the task with the minimum LFT

from the available ready set, meaning the current time on the task’s machine is

equal or greater than the task’s EST. This initial step is also known as Schrage’s

heuristic [93]. In most cases, Schrage’s heuristic yields valid schedules, meaning the

DAG sinks do not violate the workflow deadline in the schedules. If the first pass

of Schrage’s heuristic was unsuccessful, Potts’ heuristic then analyzes the resulting

schedules and looks for a task A that violates its LFT. A is called the critical task.

This means there could be another task B with a smaller EST than A but with a

larger latest starting time (LST) scheduled before A because A was not ready at

that moment. If such a task B, also called the interference task, exists on the same

machine as A, we introduce an additional edge in the DAG from A to B to ensure

that A will be scheduled before B. If no such task exists on the same machine as

the critical task, we look for an interference task B′ on a different machine. We

then take B′ as the new critical task and try to locate an interference task C on

the same machine as B′. If C exists, we introduce an additional edge from C to

B′ and continue as previously described. The modified workflow is then rescheduled

with Schrage’s heuristic. Pseudocode for the modified Potts’ heuristic is shown in

Algorithm 7.

Algorithm 6 Least Delay heuristic (LD)

1: function LeastDelay(T , G)

2: T sched ← ∅
3: ∀t ∈ T : calculate t.ERT and exit(t)

4: while T \ T sched 6= ∅ do

5: T tmp ← T sched
6: minDelay ←∞
7: tminDelay ← ∅
8: for all troot ∈ T \ T sched : Prec(troot) = ∅ do . Unscheduled roots

9: T tmp ← ScheduleAfter(troot, troot.ERT, T tmp)
10: Tmp ← ∀t ∈ T \ T tmp calc. t.ERT using t.S as t.ERT for t ∈ T tmp
11: delay ← max(Tmp(tleaf ) − t.ERT ) for tleaf ∈ T \ T sched :

Succ(tleaf ) = ∅
12: if delay < minDelay ∨ (delay = minDelay ∧maxLen < exit(troot))

then . Scheduling current root leads to a smaller delay in the leafs than before

13: tminDelay ← troot
14: minDelay ← delay

15: maxLen← exit(troot)

16: T sched ← ScheduleAfter(tminDelay, tminDelay.ERT, T sched)
17: ∀t ∈ T \T sched calc t.ERT using tsched.S as t.ERT for all tsched ∈ T sched
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Algorithm 7 Modified Potts’ heuristic for distributed systems

1: function Potts(T )

2: AbsoluteEarliest ← ∀t ∈ T : calculate t.EST

3: for i ≤ number of tasks in T do

4: T Schrage ← SchragesHeuristic(T )

5: if T Schrage is a valid schedule then . Valid if t.C of all DAG leafs ≤ DW

6: return T Schrage
7: else

8: interference ← IdentifyInterference(T Schrage)
9: if interference 6= ∅ then

10: add new precedence relation crit ≺ interference to G
11: else

12: return Infeasible with Potts’ heuristic

13: return Infeasible with Potts’ heuristic

14: function SchragesHeuristic(T )

15: T sched ← ∅
16: ∀t ∈ T : calculate t.LFT

17: while T \ T sched 6= ∅ do

18: for all ti ∈ T \ T sched ordered by increasing t.LFT do

19: machineClock ← max(tj .C) over tj ∈ T sched ∧ µt(ti) = µt(tj)

20: if ti.ERT ≥ machineClock then

21: t← ti
22: break for-loop

23: T sched ← ScheduleAfter(t, t.ERT, T sched)
24: ∀t ∈ T \T sched calc t.ERT using tsched.S as t.ERT for all tsched ∈ T sched

25: return T sched
26: function IdentifyInterference(T )

27: interference ← ∅
28: for all t ∈ T do . Identify critical task

29: if (t.C > t.LFT ∧ t.S > AbsoluteEarliest(t)) ∨ t.C > DW then

30: crit ← t . t violates its own deadline or the workflow deadline

31: break for-loop

32: for all t ∈ T do . Identify interference task delaying the critical task

33: if µt(t) = µt(crit) ∧ crit .LFT < t.LFT ∧ t ⊀≺ crit then

34: interference ← t . t violates local or workflow deadline

35: break for-loop

36: if interference 6= ∅ then return interference

37: crit ← arg max(t.ERT −AbsoluteEarliest(t)) over t ∈ Prec(crit)

38: for all t ∈ T do

39: if µt(t) = µt(crit) ∧ crit .LFT < t.LFT ∧ t ⊀≺ crit then

40: interference ← t

41: break for-loop

42: return interference
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4.3 Evaluation and Discussion

Heuristics approach the rtSOA scheduling problem from a different angle than so-

lutions based on state space exploration. Instead of trying to find a feasible task

ordering somewhere in the state space of the problem, heuristics directly generate a

“reasonable” task order based on certain rules that are successful in a large number

of cases. Heuristics prove the existence of a feasible solution by construction, but

cannot be used to prove the absence of a feasible schedule. Lower-bound calculations

can exclude the existence of a feasible solution in some cases, but an area of uncer-

tainty remains where only approaches based on state space exploration can prove

the infeasibility of a given scheduling problem. When comparing different heuris-

tics with each other, and with a state space exploration approach, we measure the

effectiveness of each approach. It is defined as:

The effectiveness of a heuristic over a set of feasible scheduling prob-

lems is the percentage of all problem instances in the set for which the

heuristic found a feasible task ordering in regards to a given deadline and

network configuration.

The effectiveness of state space exploration techniques, given enough time, is always

100 %. Because heuristics only explore a small percentage of the solution space,

their effectiveness is smaller, but they are much cheaper computationally. This

thesis shows that all heuristics combined together have an effectiveness of almost

99 % when applied to our set of test cases.

Since industrial use cases span a wide range of potential layouts of the resulting task

graphs, we rely on synthetic benchmarks, based on several well-known graph genera-

tion methods [25]. The Erdős-Rènyi G(n, p) method generates an unbiased DAG out

of all possibilities, therefore our benchmarks contain this form of task graph weighted

with 50 %. The Layer-by-Layer method allows specifying the maximum depth of the

graph and was developed specifically for validation of scheduling algorithms. It is

contributing 20 % to the overall number of test cases. Similarly, Task Graphs for Free

(TGFF) is another method of generating task graphs for the validation of scheduling

methods. It is also weighted with 20 %. The Random Orders method generates a

partial order (i.e.,a DAG) by intersecting several total orders, which are constructed

by shuffling the nodes of the graph. This method produces graphs with all transitive

edges and is used for generating the last 10 % of the test cases. Figure 4.3 shows

examples of the graphs generated by these methods.

We generated a total of 1 200 000 feasible workflows, in the aforementioned ratio,

with either 16, 32, 48 or 64 tasks which were randomly assigned to either 2, 4 or

8 machines connected via TDMA. Random workflows were generated by the graph

generation methods shown in Figure 4.3 and scheduled with Gurobi and the MILP-

formulation described in Section 4.1.2 until we had found 1.2 mio feasible test cases
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Figure 4.3: Example output of the used graph generation methods

with the described distribution. To avoid bias in the evaluation, the amount of fea-

sible workflows is the same for each combination of machine count and task count,

i.e.,there are 100 000 workflows for each combination of number of machines and num-

ber of tasks in a workflow. The workflows all have a common deadline and period of

10 ms, which is also the length of a TDMA round. TDMA slots of 120 µs length (the

time needed to transmit 1500 bytes, which is the largest allowed UDP packet size,

over 100 Mbit Ethernet) were assigned in round-robin style to the machines. The

workflows were then run through the heuristics pipeline, described in Section 3.3, to

determine which percentage of feasible solutions a heuristic can find, i.e.,the effec-

tiveness measure defined at the beginning of this section. The effectiveness of the

state space exploration-approach naturally is 100 %, therefore it is not shown in the

performance plots below. A detailed description of how the benchmark set was gen-

erated and how the individual attributes, against which we measure the heuristics’

effectiveness below, are distributed in the benchmark set is given in Section A.3.

In the following we will evaluate the effectiveness of the presented heuristics in Sec-

tion 4.3.1 and analyze the influence of different attributes, such as the number of

machines or the size of the workflow, on the heuristics’ performance in Section 4.3.2.

The runtime characteristics of the presented heuristics are evaluated in Section 4.3.3

before we give our overall conclusions on the presented evaluation in Section 4.3.4.
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Heuristic Effectiveness

ED 61.44%

EQS 75.91%

EQF 75.92%

PD 75.12%

EQS-TDMA 79.50%

EQF-TDMA 79.50%

Slice Pure 74.24%

Slice Normalized 72.11%

Slice Adapt-L 74.46%

Slice Adapt-G 74.24%

ERT-LFT 90.70%

HEFT 80.31%

DSC 92.65%

MD 86.05%

ETF 94.44%

Potts 95.39%

LD 92.47%

combined 99.00%

Table 4.3: Overall effectiveness of heuristics

4.3.1 Effectiveness

Table 4.3 shows the overall effectiveness of the presented heuristics in finding feasible

execution plans (schedules) together with a separate scheduling phase. The simple

Effective Deadline (ED) heuristic is only able to find feasible schedules in 60 % of

the examined cases. Equal Slack (EQS) and Equal Flexibility (EQF) perform nearly

identical at almost 76 % effectiveness. The reason for this is that they do not lead

to different task orderings after scheduling with Potts’ algorithm. The release times

and deadlines generated by both EQS and EQF traverse the task graphs by the

top-level ti.L
t of the tasks. The minor differences between both heuristics are caused

by random ordering of tasks within the same level. Analogously, the Proportional

Deadline (PD) heuristic traverses task graphs by the bottom-level ti.L
b of the tasks.

It has a slightly lower effectiveness at 75 %. The Slicing heuristics have mostly

identical performance, with the normalized slicing heuristic performing a bit worse

than the others. However, they are the worst overall deadline assignment heuristics,

apart from the ED heuristic. Our TDMA-modified Equal Slack (EQS-TDMA) and

TDMA-modified Equal Flexibility (EQF-TDMA) heuristics also traverse the task

graph in the same way as the unmodified versions. The modification of adding the

average time between TDMA-slots on each machine in the network has lead to an

increase of the heuristics’ effectiveness. EQS-TDMA and EQF-TDMA both have an

overall effectiveness of 79.5 %. Our next new deadline assignment heuristic, Earliest

Release and Latest Finish Time (ERT-LFT), has by far the highest effectiveness of
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all examined deadline assignment heuristics at 90.7 %. This heuristic attaches the

most relevant set of timing constraints on the individual task level when compared

with the other deadline assignment heuristics.

Apart from ERT-LFT, the deadline assignment heuristics perform worse than the

distributed scheduling heuristics. The performance of HEFT is similar to the effec-

tiveness of the modified EQS-TDMA and EQF-TDMA heuristics. Heterogeneous

earliest finish time (HEFT) is a very simple heuristic as it only ranks tasks by the

length of the longest path from a task to an output (or exit) node of the graph.

This is denoted as exit(t) (c.f. Section 4.2.2). HEFT neglects to take the earliest

release time (ERT) into account. The dominant sequence clustering (DSC) heuris-

tic also uses exit(t) but additionally considers the ERT of a task when prioritizing

tasks. Tasks which have a long exit(t) and a late ERT are prioritized because they

are more critical. DSC therefore performs with 92.6 % effectiveness, which are 12 %

more than offered by HEFT. The mobility directed (MD) heuristic has moderate

effectiveness at 86 %. MD only considers paths to a task in its scheduling decisions,

not paths from a task to an leaf of the graph. The best scheduling heuristic from

literature is the earliest task first (ETF) heuristic, reaching 94.4 % effectiveness. It

mostly considers tasks’ release times for prioritization, but uses the latest finish time

of a task as a tie-breaker.

Our modification to Potts’ heuristic is the most effective heuristic at over 95 % effec-

tiveness. The heuristic iterates over the scheduling problem multiple times and tries

to eliminate scheduling conflicts if it detects an infeasible outcome. Our second new

distributed scheduling heuristic, the least delay (LD) heuristic, reaches nearly 92.5 %

effectiveness making it the fourth best heuristic ranked by effectiveness. Overall, the

heuristics found feasible solutions for 99 % of all generated problem instances, mean-

ing only 1 % of all instances were unsolvable through heuristics. This high overall

effectiveness shows the general feasibility of using heuristics to generate schedule

based execution plans.

In the following we will study the impact of different attributes of the scheduling

problem on the heuristics effectiveness. We have grouped the EQS, EQF and PD

heuristics together under the name EQ*-PD, as there is barely any difference between

their performance, no matter the examined attribute of the scheduling problem.

For the same reason, we have grouped the EQS-TDMA and EQF-TDMA heuristics

together under the label EQ*-TDMA. The same behavior can be observed for the

slicing heuristics which are grouped together under the label Slice-*.

We first consider the impact of the number of devices participating in the execution

plan on the effectiveness of the heuristics. This relation is plotted in Figure 4.4. For

simple cases with only 2 machines, all heuristics show good performance. These cases

reduce the impact of the network and of inter-machine parallelism on the outcome.

The single machine case of scheduling tasks with precedence constraints is solvable

in polynomial time [72]. As the number of machines in the execution plan increases,

the impact of good heuristics on the outcome rises. The simplistic ED heuristic drops
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Figure 4.4: Effectiveness of heuristics plotted against the number of machines in the

network. The “combined” plot line contains all heuristics.

to 35 % effectiveness in the 8 machine case whereas the ERT-LFT heuristic, as the

best of the deadline assignment heuristics, is able to maintain an effectiveness of over

85 %. The HEFT heuristic struggles to reach high effectiveness in situations with

many machines as well. The slicing heuristics start with moderate effectiveness but

their performance remains relatively stable. Another group of scheduling heuristics

(DSC, ETF, LD and Potts’) also shows stable performance and remains near 90 %

effectiveness in the 8 machine case, outperforming the slicing heuristics. The gap

between the best heuristics and the combined effectiveness widens as more machines

are added to the scheduling problem. All heuristics together achieve over 98.8 %

effectiveness in the 8 machine case.
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Figure 4.5: Effectiveness of heuristics plotted against the schedule utilization
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Similarly, the schedule utilization has a large impact on the effectiveness of the exam-

ined heuristics. Figure 4.5 expresses the schedule utilization as a relative percentage.

50 % schedule utilization in a problem instance with 4 machines and 10 ms deadline

would represent a total of 20 ms of processing time distributed among the machines.

Time spent waiting on TDMA-slots and actually transmitting messages via TDMA

is not included in the schedule utilization. The utilization impacts the heuristic ef-

fectiveness so much because it reduces the resilience to inefficiency. An inefficient

task ordering produced by a heuristic could still be feasible in a problem instance

with low schedule utilization whereas an instance with high utilization would be less

forgiving. Our modified EQS-TDMA and EQF-TDMA heuristics outperform the

deadline assignment heuristics published in literature, but they do not perform sat-

isfactorily in high-utilization situations. The Slicing heuristics perform similar to the

other deadline assignment heuristics. ERT-LFT has an all round better performance

than the other deadline-assignment heuristics. However, its performance still drops

as the schedule utilization rises. This reduction in effectiveness is also seen with

most distributed scheduling heuristics. Only ETF and our modified Potts’ heuristic

are able to achieve a relatively stable performance in situations with high schedule

utilization. ETF and modified Potts’ are the only two heuristics that consider the

minimum LFT of a set of ready tasks as a metric during scheduling.
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Figure 4.6: Effectiveness of heuristics plotted against the number of workflow tasks

Figure 4.6 shows that the effectiveness of all heuristics decreases as the number of

tasks in a workflow grows larger. This behavior is expected because the state space

in which the feasible solution could lie increases with the number of tasks. Each

heuristic only examines a single “state” for each run, so naturally the chances of

this state being a feasible solution are reduced with an increasing number of states.

Apart from HEFT, all distributed scheduling heuristics are relatively stable in their

effectiveness. The Slicing heuristics show the biggest drop in effectiveness, meaning

that they are not well suited for larger task graphs.
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Figure 4.7: Effectiveness of heuristics plotted against the edge generation chance

Figure 4.7 examines the effectiveness of our heuristics against the number of edges in

the task graph. We have expressed this property as the edge generation chance which

denotes the percentage out of all theoretically possible edges being present in a given

workflow. An edge generation chance of 100 % would mean a fully connected DAG.

This relative attribute reduces the bias that would be introduced by choosing the

number of edges directly, because graphs with a high number of edges tend to have

a higher number of tasks than graphs with a lower number of edges. The number of

edges only has a small influence on the overall effectiveness of the heuristics. When

more edges are added to a task graph, the search space for the scheduling problem

is reduced because the partial order represented by the task DAG is brought closer

to a total order of the tasks contained within the DAG. More precedence constraints

therefore mean fewer possible task orderings. However, edges in the task DAG not

only represent precedence constraints but also stand for data dependencies, thus the

amount of network traffic also rises when adding more edges to the task DAG. As

such, the network scheduling becomes harder.

Figure 4.8 also indirectly considers network scheduling as a potential source of diffi-

culty. The figure shows the number of layers in a graph on the x-axis. As a graph

becomes “deeper”, there are longer chains of messages and fewer potential parallel

executions. The heuristics are not very sensitive to this attribute on its own. The

decrease in effectiveness of the EQ* heuristics until 12 levels can be explained by

the accompanying rise in the average number of tasks in the graph. It is intuitive

that DAGs with a smaller number of tasks have fewer layers in them. The average

workflow size in our benchmark set stays constant from 12 levels onward. The fol-

lowing increase in effectiveness can be explained by the decreasing average number

of machines, from 4.7 to 3.1 machines, which reduces the complexity and delays

caused by network communication. An exception to the previous statement are the

slicing heuristics which have almost consistently decreasing effectiveness for graphs

with more levels, indicating that the way they distribute deadlines along the critical

path of a DAG is ineffective.
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Figure 4.8: Effectiveness of heuristics plotted against the number of workflow levels
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Figure 4.9: Effectiveness of heuristics plotted against the graph generation method

The small decrease in effectiveness around an edge generation chance of 37.5 % in

Figure 4.7 is caused by a large number of graphs generated by the Random Orders

generation method. These types of graph seem to be harder for the heuristics than

graphs generated with other methods, as shown by Figure 4.9. Totally random DAGs

generated by the Erdős-Rènyi G(n, p) method are the easiest class of workflows for

most heuristics. Both the Layer-by-Layer and Task Graphs for Free graph generation

methods, which are designed to represent typical task graphs, pose a similar level of

difficulty for the heuristics.
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4.3.2 Information Gain

So far we often had to remark on the relative influence of different attributes on

the heuristics’ effectiveness to explain anomalies in some of the graphs plotting the

heuristics’ effectiveness against an attribute. To quantify the influence of individual

attributes we have performed an analysis of the information gain offered by each

attribute. In machine learning, the information gain of an attribute refers to the

amount of entropy that is reduced by the inclusion of the attribute in a classification

method. It is synonymous with the Kullback-Leibler divergence [69]. Figure 4.10

shows the information gain ratios of all examined attributes, plus the sum of all

information gain ratios, for all presented deadline assignment heuristics. The in-

formation gain ratio is the ratio of information gain in an attribute relative to the

intrinsic information in the class. For example, the ERT-LFT heuristic has the in-

trinsic information that over 90 % of all test cases scheduled with this heuristic will

lead to a feasible result. By using the information gain ratio we are reducing the

bias towards feasibility inherent in the data set. The results in Figure 4.10 were

obtained by extracting a data set for each heuristic, with the feasibility result (“true”

or “false”) as the class label. We then evaluated the information gain ratio of the

attributes in each data set with the WEKA machine learning framework [41].
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Higher values for information gain of an attribute in Figure 4.10 imply a larger

relative difficulty of the attribute for an heuristic. For example, the ED heuristic

is highly influenced by the number of machines in the rtSOA scheduling problem.

The figure also indicates a high sensitivity of the heuristic to the used workflow

generation method, indicating that the heuristic favors certain types of workflows

over others. Both observation match our previous evaluation. ED performs poorly

as the number of machines increases (c.f. Figure 4.4) and favors graphs generated by

the Erdős-Rènyi G(n, p) method over all other graphs (c.f. Figure 4.9).

Figure 4.10 also shows that the number of machines in the execution plan is the most

important factor determining the effectiveness of most deadline assignment heuris-

tics, followed by the number of tasks in the workflow. For the more effective heuristic

ERT-LFT, the influence of these factors is decreased, but the relative importance of

the schedule utilization is rising. In general, the sum of all information gain ratios is

a predictor for the effectiveness of a heuristic. Potts’ heuristic has the lowest sum,

and ED the highest sum. The sum of information gain ratios for a heuristic is nega-

tively correlated with the heuristic’s effectiveness. EQS, EQF and PD have a nearly

identical sum of information gain ratios, as do EQS-TDMA and EQF-TDMA and

the Slicing heuristics. Figure 4.10 also shows that the DSC and MD heuristics are

successfully addressing the problems that the simple deadline assignment heuristics

are having with a higher number of machines. However, DSC and MD are more

sensitive to high schedule utilization than more effective heuristics, such as ETF or

Potts. When running all heuristics sequentially, as symbolized by the entry in Fig-

ure 4.10 labeled “combined”, the influence of the number of machines drops further.

The Information gain ratio also explains the difficulties of the Slicing heuristics in

our evaluation where they struggle for workflows with many tasks, edges or levels.

For the overall schedulability with heuristics, the schedule utilization is the most

influential attribute, followed by the graph structure and the number of machines.

Other attributes play a minor role and the number of levels in the workflow is nearly

irrelevant. This is promising, because it indicates that a combination of heuristics

would also have high effectiveness for larger task-graphs running on more machines.

4.3.3 Runtime Comparison

The use of heuristic always implies a trade off between better run-time characteristics

and reduced effectiveness. Table 4.4 shows the geometric mean of the heuristics’

performance as well as the runtime of the Gurobi MILP-solver. Gurobi did use up

to 6 threads in parallel while our heuristics were not parallelized. The measurements

were obtained on an Intel Core i7-3930K with 6 physical cores and 64 GB RAM.

It is apparent that most heuristics outperform the MILP-solver by two to three

orders of magnitude. Even heuristics with a higher run-time complexity, such as

the LD heuristic or Potts’ heuristic, have a significantly shorter run time than the

solver. This situation supports our argument to combine heuristics. Table 4.4 also

5Runtimes reported in Table 4.1 may be different because the analyzed task graphs vary.
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Algorithm

EQS

EQF

EQS-TDMA

EQF-TDMA

PD

Slice Pure

Slice Normalized

Slice Adapt-L

Slice Adapt-G

ERT-LFT

HEFT

DSC

MD

ETF

Potts

LD

Gurobi

Valid Workflows

16 Tasks 32 Tasks 48 Tasks 64 Tasks 128 Tasks

0.04ms 0.06ms 0.08ms 0.11ms 0.11ms

0.03ms 0.05ms 0.08ms 0.10ms 0.10ms

0.12ms 0.15ms 0.18ms 0.22ms 0.17ms

0.06ms 0.09ms 0.12ms 0.15ms 0.16ms

0.03ms 0.05ms 0.07ms 0.10ms 0.10ms

0.18ms 0.60ms 1.76ms 4.56ms -ms

0.17ms 0.58ms 1.73ms 4.53ms -ms

0.21ms 0.78ms 2.26ms 5.94ms -ms

0.18ms 0.61ms 1.79ms 4.69ms -ms

0.06ms 0.14ms 0.22ms 0.32ms 0.38ms

0.10ms 0.20ms 0.34ms 0.55ms 0.90ms

0.11ms 0.22ms 0.37ms 0.55ms 0.85ms

0.08ms 0.17ms 0.30ms 0.45ms 0.73ms

0.09ms 0.24ms 0.46ms 0.75ms 1.40ms

0.13ms 0.30ms 0.50ms 0.72ms 0.96ms

0.94ms 6.06ms 20.06ms 49.71ms 228.51ms

5.34ms 35.60ms 106.78ms 226.88ms 2,508.05ms

Invalid Workflows

16 Tasks 32 Tasks 48 Tasks 64 Tasks 128 Tasks

0.04ms 0.08ms 0.11ms 0.13ms 0.12ms

0.04ms 0.08ms 0.10ms 0.13ms 0.12ms

0.08ms 0.13ms 0.17ms 0.21ms 0.19ms

0.07ms 0.12ms 0.16ms 0.19ms 0.18ms

0.03ms 0.06ms 0.09ms 0.11ms 0.12ms

0.28ms 1.18ms 8.03ms 62.26ms -ms

0.26ms 1.14ms 7.49ms 54.06ms -ms

0.33ms 1.43ms 9.34ms 68.64ms -ms

0.28ms 1.22ms 8.35ms 63.88ms -ms

0.09ms 0.21ms 0.34ms 0.44ms 0.49ms

0.13ms 0.28ms 0.45ms 0.62ms 0.91ms

0.15ms 0.32ms 0.53ms 0.70ms 0.90ms

0.11ms 0.26ms 0.44ms 0.60ms 0.80ms

0.13ms 0.35ms 0.62ms 0.88ms 1.49ms

0.23ms 0.51ms 0.85ms 1.17ms 1.69ms

1.21ms 6.55ms 18.46ms 36.32ms 206.58ms

8.51ms 27.57ms 61.21ms 95.62ms 219.30ms

Table 4.4: Geometric averages of the runtime spent by the presented heuristics and

the Gurobi MILP solver on scheduling problems of varying workflow size, split into

valid and invalid workflows.5

shows that most heuristics need slightly more time for offering potential solutions

when workflows are invalid, as these graphs tend to be more complex. In contrast,

Gurobi is often able to quickly prove the infeasibility of such configurations from the

mathematical structure of the resulting MILP. Table 4.4 also shows that the Slicing

heuristics are a poor choice for larger and more complex workflows as their runtime

requirements rise rapidly. This is caused by the search for the critical path in those

heuristics, which necessitates the enumeration of all possible paths from a root to a

leaf of the task graph.

The cumulative runtime distribution of the LD and Potts’ heuristic as well as the

MILP-solver are shown in Figure 4.11. For workflows with 16 tasks, Potts’ run-

time varies in a relatively narrow band since it only rarely needs to reschedule after

identifying interference tasks. Rescheduling explains the bump in the runtime curve

of Potts’ heuristic for 128 tasks. Around 60 % of the 128-task workflows could be

solved without rescheduling. The runtime of the LD heuristic has a generally larger

runtime than Potts’ heuristic, because LD is relatively complex. The worst observed

runtime of Potts’ heuristic is still smaller than the best observed runtime of the

MILP-approach and the worst observed case of the LD heuristic is smaller than

the geometric average of the approach based on Gurobi. The solver has the largest

spread, ranging from just over 100 ms to over 100 s for 128 task workflows, because it

explores a larger portion of the state space. These figures exclude the time required

for transformation of the rtSOA scheduling problem to a MILP representation, which

requires an additional few hundred milliseconds.

Overall, heuristics are able to quickly find feasible execution plans, even when run-

ning several heuristics in sequence. The MILP formulation we presented in Sec-

tion 4.1.2 also has reasonable response times in most cases. However, the runtime

required to solve larger problem instances with a MILP solver increases faster than

that of the heuristics because it has a higher algorithmic complexity - even when tak-
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ing into account that a modern solver, such as Gurobi, will employ its own heuristics

to find an initial feasible solution. From a runtime perspective, we thus view a com-

bination of effective domain specific heuristics as the better choice for the interactive

engineering environment as outlined in Goal 4 in Section 3.1 and shown in Chapter 6.

The human attention span for interactive systems is in the order of a few hundred

milliseconds to one second [83], which is only reliably achieved by using heuristics

instead of a solver based approach. Gurobi required several minutes in the worst

examined cases (c.f. Figure 4.11).

0.1ms 1ms 10ms 100ms 1s 10s 100s
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Figure 4.11: Cumulative runtime distribution for feasible problem instances

4.3.4 Conclusions

Table 4.6 shows a pairwise comparison of all heuristics on the entire benchmark

set. Even the best heuristics (Potts’ or ETF) are unable to find a solution for the

scheduling problem in some cases were the overall worst heuristics (Slicing heuristics,

EQS, EQF or PD) are successful. This fact is the basis for our approach which uses a

combination of different heuristics in succession. This fact also justifies the inclusion

of the LD heuristic which has a relatively high run-time cost (Table 4.4). The LD

heuristic explores a different area of the search space than many other heuristics,

meaning it has the highest number of unique solutions (3398) which are not generated

by any other heuristic. Potts’ and DSC follow in second and third place with 2753

and 2631 unique solutions, respectively. ETF and ERT-LFT also have a relatively

high number of unique solutions with 1342 and 829, respectively. Slice-Pure and

EQS have the least unique solutions with 46 and 41, respectively, unique solutions.

It is worth having more than one heuristic available as each will explore additional

areas of the search space. Overall, the heuristics solved 99 % of all feasible examined

scheduling problems. Coupled with a fast execution - below 10 ms or even below 1 ms

in nearly all cases - our approach of using heuristics for generating schedule-based

execution plans enables interactive planning and reconfiguration without delays.
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Heuristics: Potts’ → LD → DSC → ERT-LFT → ETF → . . .

Effectiveness: 95.4 % → 97.5 % → 98.2 % → 98.5 % → 98.7 % → 99.0 %

Table 4.5: Optimal sequence for executing the heuristics on the benchmark data set

When running heuristics in sequence, it would be ideal to start with an effective

heuristic and choose new heuristics that maximize the chance of finding a feasible

solution, taking into account which heuristics were run previously. We determined

the optimal sequence of heuristics for the benchmark data set by starting with the

most effective heuristic (Potts) and successively adding the heuristic that leads to

the highest combined effectiveness. The optimal sequence is shown in Table 4.5.

After the first five heuristics, the remaining ones only have negligible delta to the

ones before them, thus we do not explicitly list their optimal sequence. Three out of

five heuristics in the optimal heuristic sequence are our own heuristics or modified

existing heuristics (modified Potts, LD and ERT-LFT). The evaluation of the optimal

sequence shows that the LD heuristic should be kept in the set of heuristics despite

its higher computational cost, because it already appears in the second spot directly

after the overall more effective Potts’ heuristic.
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Table 4.6: Cross evaluation of heuristics. The percentages specify the amount of test

cases in which one heuristic found a feasible solution while the other heuristic did

not. The arrows next to the percentages point to the associated heuristic.



CHAPTER 5

Validation

“There is nothing more deceptive than an obvious fact.”

- Arthur Conan Doyle, The Boscombe Valley Mystery

One of the benefits of the rtSOA approach is the generation of execution plans with

verifiable real-time properties. This chapter shows different approaches to assessing

the temporal behavior of an rtSOA execution plan that may be used depending on the

safety requirements of the system. The highest level of confidence can be reached

by using an automated formal approach, namely model checking with UPPAAL1

as described in Section 5.1. However this approach often has high computational

requirements and may take a long time to complete. A quicker method is simulation

of the schedules through discrete event simulation which follows the same execution

semantics but does not offer the same level of confidence. Our simulation approach

is described in Section 5.2.

5.1 Model Checking via Timed Automata

“Model checking is an automated technique that, given a finite-state

model of a system and a formal property, systematically checks whether

this property holds for [. . . ] that model.” [3]

This definition, given by Baier et al. in their book “Principles of Model Checking” [3],

summarizes the main benefits of model checking, but also hints at its drawbacks.

Compared to other formal approaches, model checking is a highly automated and

high level technique. Given a representation of a system it evaluates system proper-

ties, such as liveness or safety properties, specified in temporal logic. Temporal logics

express statements over the potential execution sequences of a system. Model check-

ing requires no formal proofs and can generate counter examples if the evaluated

property does not hold for the examined system.

1http://www.uppaal.org/

http://www.uppaal.org/
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Given the application domain of rtSOA, model checking of its output schedules

requires a representation that includes a concrete notion of time. This is different

from the classical representation structures for model checking which only include

the notion of “happens before” or “happens after”. It also poses a challenge, as

an unsuitable representation of time may quickly turn the finite-state model into

an infinite-state model. The most common ways to model such timed systems are

timed Petri nets [10] or timed automata [126]. We chose to perform model checking

of rtSOA schedules with UPPAAL [9], a mature tool suite for model checking of

networked real-time systems. We will therefore only cover timed automata in the

remainder of this section.

(a) Timer version 1 (b) Timer version 2

(c) Timer version 3 (d) Switch

(e) Model checked properties of the composition of the models Timer version 3 and Switch.

(f) TCTL formulas corresponding to the properties shown in Figure 5.1e.

Figure 5.1: Examples demonstrating the properties of timed automata in UPPAAL.

Purple text represents state invariants. Green text represents guards, meaning con-

ditions that must be true for the associated transition to be active. Dark blue text

shows updates to local or global variables performed during state transitions. Light

blue text denotes channels that are used for time synchronization automata.
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Figure 5.1a shows a very simple timed automaton modeled with UPPAAL. It features

two states, named idle and running and a clock named x that is reset whenever the

automaton enters the state running. The guard x == 10 enforces that the transition

from running to idle is only active when exactly 10 time units have passed. The

displayed model therefore represents a first attempt to model a timer. Unfortunately,

progress, defined as the occurrence of further state transitions, is not guaranteed in

this model because the automaton may spend an indefinite amount of time in either

state. The guard only enables the transition from running to idle, but it does not

enforce the transition and the automaton may instead remain in the state running

indefinitely. To enforce system progress, UPPAAL offers the possibility to add state

invariants over clocks. This refinement is shown in Figure 5.1b where we introduced

the invariant x <= 10 in the state running. The automaton may now only remain in

the running state as long as the value for clock x is smaller or equal to 10. Combined

with the guard x == 10 on the outgoing transition, the introduced invariant now

causes the automaton to remain in the state running for exactly 10 time units.

Our goal is model checking of networked systems, so it would be convenient to have

a mechanism which enables communication between multiple automata. Such a

mechanism would simplify modeling of the rtSOA execution plans because we would

not have to model the execution plan as a single automaton but could instead use

a more natural, compositional approach. UPPAAL offers communication between

automata in two ways: An asynchronous communication path via shared global vari-

ables and a time synchronized path via channels. This is illustrated in Figure 5.1c

and Figure 5.1d. We added a second automaton, called Switch, which is synchro-

nized with the Timer automaton via two channels, named timerOn and timerOff.

When the Switch leaves the waiting state, it forces the Timer automaton to make

a synchronous transition, via the timerOn channel. This transition must happen at

the same time. The Timer enforces another synchronous transition after 10 time

units have passed via the timerOff channel.

Using UPPAAL, we can now modelcheck the composition of these two automata.

Figure 5.1e shows some properties of the composition of the Timer automaton and

the Switch automaton. This composition is performed automatically by UPPAAL.

It shows that the Switch may reach the active state, but may also remain in the

waiting state indefinitely. However, it will not remain in the active state forever.

In fact, it will do so for exactly 10 time units, as dictated by the synchronization

between the Timer automaton and the Switch automaton and as verified by the

last query shown in Figure 5.1e. Figure 5.1f shows the corresponding temporal logic

specifications.

UPPAAL allows specification of properties with a subset of the timed computation

tree logic (TCTL) [10]. In CTL, a run of a system is represented as a potentially infi-

nite tree of states and transitions between states. To reduce the state space, a model

checker will try to detect possible loops in the system execution that will then be

added to the tree as annotations. Examples for the allowed TCTL subset in UPPAAL
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(a) E � φ: A path exists where eventually φ (b) A � φ: On all paths eventually φ

(c) E� φ: A path exists where always φ (d) A� φ: On all paths always φ

(e) φ =⇒ ρ : φ always leads to ρ.

Figure 5.2: Different (T)CTL-formulas. A state is shaded darker if condition φ holds

in that state, hatched states indicate that condition ρ holds.

are shown in Figure 5.2 which visualizes the TCTL properties on a tree. Put simply,

A describes properties that hold on all paths in the tree where E only describes that

at least one path exists. Similarly, � describes that a property must always be true

while � only demands that it must be true at some time. Invariant properties are

useful for checking safety properties of the system, for example A� clock ≤ deadline

could be used to verify that a system will always finish its execution before a deadline

has been reached. Properties of the form A�num tasks finished = num tasks can be

used to check the eventual correctness or completion of a system’s execution, e.g.,in

the provided example we are checking that a system will eventually complete all of its

tasks. Path invariants (Figure 5.2c) can be used to identify execution paths through

the system that satisfy certain properties. For example, E� clock ≤ deadline could

be used to identify a valid task ordering that would fulfill all scheduling conditions.

t1
t 2

t6

Machine A

t3

Machine B

t4

t5

Machine C

A B C A B C A B C

Network Timeline

Figure 5.3: The rtSOA execution model based on static cyclic schedules. Gray areas

indicate resources used by an example workflow, arrows represent data dependencies.
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Figure 5.3 illustrates the rtSOA execution model again. Machines execute static

cyclic schedules and communicate over a TDMA-network. The schedules are the

output of the rtSOA heuristics or state exploration approaches and are designed to

meet a global deadline. More details are given in Chapter 3. The focus of this chapter

lies on the validation of these precomputed schedules. We have therefore designed

a system model in UPPAAL that can quickly and automatically be adapted to new

schedule configurations. Figure 5.4a shows the automaton template that models the

behavior of a machine following the rtSOA execution semantics. One instance of

this automaton is present for each machine that participates in an rtSOA execution

plan. The machine may only spend time in the states named idle, blocking or task.

All other states in Figure 5.4a have been marked as urgent (denoted by the ∪ sign),

meaning that no time may be spent in those states. The machine starts in the

ini state and immediately transitions to the idle state. During this transition the

workflow clock is started and a new workflow cycle starts. The machine now spends

time in the idle state until the next task is scheduled for execution. If all required

messages for the execution of the task have been received, the machine enters the

task state, representing active execution of the task. Otherwise, the machine enters

the blocking state where it remains until new all messages from preceding tasks have

been received over the network. In our current model, a task will always run for

exactly the WCET. This behavior could be changed by modifying or removing the

guards on the outgoing transitions of the task state if, for example, the influence of

jitter were to be studied. The synchronization channel chan force on the outgoing

transition from task is used to ensure that tasks finish before a TDMA-slot starting

at the same time instance. This means that a message from a task completing at

time 10 will be included in a TDMA-slot that also starts at time 10 and is allocated

to the same machine as the task.

Synchronization channels in UPPAAL cannot carry messages, they only ensure syn-

chronized transitions of two or more automata from one state to another. We are

therefore using shared variables that represent messages sent from task ti to tj . Our

model contains three Boolean matrices named produced, net and have. When task

ti is completed, the function named net send() sets produced[i][j] to true, if task tj
is a direct successor of ti and located on a different machine. The actual delivery of

this message is modeled with three additional automata. The TDMA network itself

is modeled by the automaton shown in Figure 5.4b. Before entering the tdma slot

state, the automaton enforces a synchronization on the chan start channel. When

leaving the state, it enforces a synchronization on the chan end channel, ensuring

that data from the machines is made available to all receivers directly after a TDMA

slot. This automaton merely synchronizes the transitions between the sending au-

tomaton (Figure 5.4c) and receiving automaton (Figure 5.4d) at the beginning and

end of each TDMA slot. The sending automaton will move the produced message

to the net matrix, representing a message that is currently in flight. The receiving

automaton finally sets have[i][j] to true.
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(a) Automaton modeling a machine for verifying an rtSOA schedule with UPPAAL

(b) Automaton modeling the TDMA-network

(c) Automaton for sending messages

from the network

(d) Automaton for receiving mes-

sages from the network

Figure 5.4: UPPAAL templates for verification of rtSOA schedules
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Notice that guards and updates may contain method names, such as is ready() or

sched next(). By using these methods we can reuse the same automata templates for

verification of all rtSOA execution plans. A concrete model of an rtSOA schedule

is configured for verification in UPPAAL by changing global variables representing

the schedule times of the tasks, the allocation of tasks to machines, the precedence

relation between tasks and the start and end times of the TDMA slots as well as

the assignment of TDMA slots to machines. This dynamic part of the UPPAAL

model is automatically generated after deriving an execution plan with rtSOA. For

example, the method sched next() determines the time that the automaton in Fig-

ure 5.4a spends in the idle state through a simple lookup of the start time of the

next scheduled task on the machine represented by the automaton. This corresponds

to a lookup in the array task start in Listing 5.1, which contains a simplified and

shortened example for the configuration variables.

...

const uint16_t num_tasks = 2; // number machines

const uint16_t num_tasks = 8; // number of tasks in the workflow

// cycle time of each machine

uint31_t machine_cycles[num_machines] = {10000000 , 10000000};

// start time of each task

uint31_t task_start[num_tasks] = {0, 2555713 , 2505713 ,...};

// WCET of each task

uint31_t task_wcet[num_tasks] = {1092734 , 50000, 50000 ,...};

...

Listing 5.1: Example for configuration parameters specifying the schedule times in

our UPPAAL model

We formulated the following properties for model checking of rtSOA execution plans:

1. A[] wf_clock <= deadline

This property is fulfilled if all machines always complete their respective sched-

ules before the deadline is reached.

2. A<> tasks_completed == num_tasks

All tasks of the workflow will eventually be completed.

3. forall(i:id_t) Machine(i).ini -> forall(i:id_t) Machine(i).ini

All machines will eventually return to their initial state, meaning all machines

will complete their schedules.

4. TDMA.tdma_beacon -> TDMA.ini

The TDMA automaton will always complete its cycle after it has sent a beacon.

5. A[] forall(i:id_t) Machine(i).blocking imply Machine(i).b <= 0

No machine spends any time in the blocking state. Machine(i).b is the clock

that measures time spent blocking.
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Properties

correctness

liveness

non-blocking

16 Tasks

2 Machines 4 Machines

Runtime DNF Runtime DNF

209ms 1% 1,712ms 27%

258ms 1% 4,043ms 27%

90ms 2.2% 722ms 78%

32 Tasks

2 Machines 4 Machines

Runtime DNF Runtime DNF

448ms 0.6% 3,633ms 9.9%

558ms 0.6% 8,786ms 9.9%

183ms 0.9% 1,217ms 93%

Table 5.1: In the enumeration above, properties 1 and 2 are correctness properties,

properties 3 and 4 are liveness properties and property 5 is the non-blocking property.

DNF stands for “did not finish” and includes timeout after 30 minutes or out-of-

memory models.

Table 5.1 shows a quantitative evaluation of the above properties on two or four

machines with random workflows that had either 16 or 32 tasks. We generated 1000

instances for each combination of machine number and workflow size with the G(n, p)

method (c.f. Section 4.3). We can see that, even for relatively small models, there are

some instances where the evaluation did not finish, either due to memory constraints

or a timeout after 30 minutes. Our model scales relatively well with the number of

tasks but additional machines quickly lead to a state space explosion, as established

by the quickly rising number of “did not finished” entries in Table 5.1. This section

has proven that model-checking of rtSOA schedules is possible, but often not fast

enough or feasible for larger problem instances. We therefore present an alternative

approach to validation based on simulation in the next section.

5.2 Discrete Event Simulation

In discrete event simulation, events happen at a concrete point in time and mark a

change in the overall system state. Between two events, the system state is assumed

to stay constant. This mode of simulation fits well with the representation of rtSOA

execution plans. Tasks start and end at a particular time in an execution plan and

communication over TDMA also implies that message transfer starts and ends at a

particular instance in time. This short description already covers the essence of the

rtSOA simulation model. Figure 5.5 shows an illustration of the event stream that

represents a simulation of an rtSOA schedule. The events that make up a simulation

run are managed in an event queue in which events can be enqueued and removed.

As shown in Figure 5.5, we enqueue “missed deadline” events for each task and the

overall workflow but remove those events again if the respective tasks or the workflow

successfully complete before the “missed deadline” events.

The simulations follows the same basic model as shown in Figure 5.3 and described

in Section 3.3. The simulation contains three different entities: nodes, meaning the

machines running the rtSOA workflow; the TDMA network; and messages carried

by the TDMA slots and sent from node to node. As before, each node has its own

cycle. The NodeCycleStart event for each machine is executed at simulation time 0

along with the TDMACycleStart event. When executing the NodeCycleStart event,
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t1 start ...
TDMA 

slot end
t1 end
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no

yes

... ... t2 start
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miss t1
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no
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t1 end
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Schedule t1 

start

Last

workflow 

task?

Cancel 
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workflow
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cycle start

Schedule 
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yes

node cycle 

start

Schedule task 

deadlines

Figure 5.5: Illustration of the event queue in a discrete event simulation of a rtSOA

schedule. Arrows on solid edges represent a logic flow that is triggered by the start

of an event in the event stream. Dashed edges with rounded tips represent additions

or deletions in the event queue.

the first task is chosen from the nodes’ schedule and the TaskStart event is added

to the simulation’s event chain. During the NodeCycleStart event, events are sched-

uled that represent the deadline of each individual task. An event representing the

deadline of the workflow is scheduled during the first TaskStart event of the current

workflow execution. Deadline events only fire if the associated task or workflow have

missed their deadline, thus indicating a violation of timing constraints. Therefore,

deadline events are canceled if the associated task or workflow end event fires before

them. Whenever a TaskStart event is executed, the simulation checks if all required

messages have already been received. If this is the case, the machine state is changed

to “running” (c.f. the state transition from idle to task in Figure 5.4a via interme-

diate states) and the TaskEnd event is scheduled. If the task is still missing some

prerequisite messages from other tasks, the simulation first checks whether undeliv-

ered messages are present in the node’s message input queue. If this is the case, it

removes the first message, delivers it to the correct task and then reevaluates the

readiness of the scheduled task. If no more messages are waiting in the input queue,

the machine is entering the “blocked” state (c.f. the blocking state in Figure 5.4a).

In this state, each arriving message is immediately delivered and the readiness of the

scheduled task is reevaluated. When the TaskEnd event is executed, the TaskStart

event of the next task in the current node’s schedule is added to the event queue

and the currently ending task removes its deadline event from the queue. Deadline

events only fire if the deadline is violated. Should the currently ending task be the
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last task in the workflow, it also removes the workflow deadline event from the event

queue. The TaskEnd event also produces all outgoing messages of the ending task.

Messages for successors on the same machine are delivered immediately. Messages

for successors on other machines are put in the output queue of the machine.

Message delivery over the network is simulated via TDMA events. Analogously to

the NodeCycleStart event, the TDMACycleStart event represents the start of a new

iteration of the network slot schedule. The TDMACycleStart event also schedules

the first TDMASlotStart event as well as the next TDMACycleStart event. During

a TDMASlotStart event messages from the output queue of the machine associated

with the TDMA-slot are removed and marked as being in transit. These messages

are then delivered to the receiving machines during the next TDMASlotEnd event.

The TDMASlotEnd event also schedules the next TDMASlotStart.

Our simulation is implemented based on the simulation framework DESMO-J2. In

contrast to formal verification with UPPAAL, simulation with DESMO-J is fast and

only requires a few milliseconds for each of the cases in our benchmark data set.

For our benchmark data set, the simulation time scales with the number of tasks:

Workflows with 16 tasks require 2.9ms, 32 tasks require 5ms and 64 tasks require

10.3ms. This is fast enough to be employed in the rtSOA heuristics pipeline for

verification of each schedule result.

To be more precise, simulation time depends on the number of simulated events.

This number may become large for workflows which require a long simulation time.

To make reliable claims about the validity of a given rtSOA execution plan, the

simulation should be run until the relative period of the TDMA-cycle and all machine

cycles repeats. This time span is called the hyper period of the execution plan

and constitutes the least common multiple of the TDMA cycle, all machine cycles

and all workflow cycles. If the system exhibits repeating behavior over multiple

hyper periods, then it can be stated with a high degree of confidence that generated

schedules will satisfy the timing constraints. The largest drawback of the simulation

based approach is the absence of any formal guarantees, which can only be provided

by formal verification methods. However, simulation is a fast and efficient way to

test candidate execution plans. Plans passing this initial test can then be verified

with UPPAAL or other formal approaches.

2http://www.desmoj.de

http://www.desmoj.de
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Real-World Prototype

Parts of this chapter have been previously published in [67].

“The whole is more than the sum of its parts.”

- Aristotle

We have implemented a real-world prototype to validate the assumptions given in

Section 3.2 and to show the feasibility of the execution model detailed in Section 3.4.

The goal in developing the demonstrator was to show the ease of reconfiguring a

complex control workflow in a networked real-time environment. The physical setup

of our prototype consists of a Festo Modular Production System (MPS)1 distribu-

tion station and processing station as shown in Figure 6.1a. The distribution station

features a stacking magazine and swivel arm for work piece distribution to the pro-

cessing station. Both the magazine and arm are pneumatic actuators. The processing

station has four electric actuators: A rotary table, a testing module and a drilling

module. It also features an electric sorting gate that is used to remove work pieces

from the rotary table. We control all sensors and actuators in this setup through

five Olimex STM32-P107 development boards2 connected to IO-boards3. This con-

nection is established via the I2C (Inter-Integrated Circuit) bus running in standard

mode (100 kbit/s). The CPU is a STM32F107 32-bit ARM-based micro controller

running at 72 MHz, featuring 256 kB of flash memory and 64 kB RAM. The actua-

tors and sensors are grouped together with a controller in functional units, e.g.,one

node controlling the magazine, one for the rotary table and sorting gate and another

one for the drill. The development boards are connected via 100 Mbit full-duplex

switched Ethernet.

1http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system
2https://www.olimex.com/Products/ARM/ST/STM32-P107/
3https://www.olimex.com/Products/Modules/IO/MOD-IO/

http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system
https://www.olimex.com/Products/ARM/ST/STM32-P107/
https://www.olimex.com/Products/Modules/IO/MOD-IO/
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& IO-Boards 

(a) Hardware setup for our demonstrator

(b) The development- and IO-boards used in

our demonstrator

Figure 6.1: The prototype consists of a Festo MPS distribution and processing station

(Subfigure a), controlled by Olimex STM32-P107 development boards (Subfigure b).

This chapter is subdivided into a description of the software runtime on the nodes

(Section 6.1) followed by an explanation of how services are discovered (Section 6.2)

and, in Section 6.3, how new execution plans for this manufacturing system can be

automatically derived with rtSOA.

The author of this thesis does not take credit for the full implementation of the

software stack running on the physical demonstrator nodes. Much of the scaffolding,

the networking stack and the internal message routing (c.f. Section 6.1) has been

contributed by the author’s industry partner Siemens. The author implemented the

timetable mechanics described in Section 6.1, the service description and discovery

features explained in Section 6.2 and all interactions with the rtSOA planner and

the graphical user interface described in Section 6.3.

6.1 Software Runtime

The software on the nodes is implemented directly in C without a real-time op-

erating system (RTOS). The software architecture is a simple control loop, shown

in Figure 6.2. It first updates the sensor / actuator values by communicating

with the IO-board over the I2C bus. After this first step, the software performs

message routing between service instances on the node. Services do not communi-

cate directly with each other but via links created between their input- and output

ports, as shown between Service 1 and Service 2 in the example in Figure 6.2. A

message producing service writes its output to the message queue of the node local

message routing layer which delivers the message to the consuming services during

the processMessages() call. The routing layer also performs message distribution

over the network, if the user has configured a link to a service instance on a remote

node. This process is transparent for the sending and receiving services. Messages

sent over the network are encapsulated with the Erbium CoAP implementation [68],

adapted for use without the Contiki OS.
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Figure 6.2: Illustration of the main loop

on the nodes controlling the demonstrator.

The updateTimetable() method triggers

the execution of all scheduled service in-

stances on the node and is thus the central

control point in this time triggered system.

Since our implementation does not support context switching, long running services

are encouraged to yield control of the CPU whenever possible. An example would

be a service controlling the vacuum arm in our demonstrator. The arm needs several

seconds to reach its end position after being instructed to move in a given direction.

The service would yield control after triggering the movement and set an internal

timer which will reactivate the service after a given duration. The service then

queries the sensors for whether or not the arm has reached its resting position so

that the service may signal completion to its successors. The processTimers()

method will check for expired timers and activate the associated service instances.

Another important implementation detail is the adherence of services to the data

flow semantics detailed in Section 3.4. To ensure that a workflow composed of rtSOA

service instances is a “well-behaved” data flow graph, every service must be invoked

during each timetable cycle and must emit a message on each output port. This

message may indicate a “no-op” if the preconditions of the service were not fulfilled.

Initially, service instances are triggered by the updateTimetable() method. The

timetable contains the machine local schedule computed by the rtSOA planning

heuristics, an example of which is shown in Figure 3.3e. The schedule on the node

consists of pointers to all scheduled service instances with a given time offset from

the cycle start and a value for the expected WCET of the service instance. After

configuring schedules on all nodes in the network the user may choose any node as the

master node, which will then trigger the synchronized execution of all schedules in
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the network by issuing a start command via network broadcast. It also periodically

resends the start signal to re-sync the cycle start times of all participating nodes.

Finally, the updateNetwork() method sends and receives messages over the Ethernet

connection.

6.2 Service Description and Discovery

Semantic description of services and their discoverability when composing work-

flows is a complex topic and subject to ongoing research [77] and standardization

efforts [89]. Although these are important building blocks in a full fledged service-

oriented architecture for manufacturing systems, they are out of scope for our cur-

rent demonstrator. We therefore only implemented a minimal set of features to

enable discoverability. Service discovery is performed in two steps: The planner

first sends a ping command to the IPv6 address ff02::fd, which corresponds to

all link local CoAP nodes [99]. Afterwards rtSOA downloads all available service

descriptions, from the nodes that responded to the ping, by issuing a GET-request

to the URI coap://[<IP>]:5683/timetable/.installed. The node responds to

this GET-request with a JavaScript Object Notation (JSON) object that contains

a description of each service available on the machine. An example for this descrip-

tion is shown in Figure 6.3. The service description contains information about the

service’s WCET, its input and output ports as well as configurable attributes of the

service. In the shown example, the drill service has two input ports (for triggering

the service execution via the timer or via the network), two output ports (one that

signals completion and another one for status information) and three parameters,

for example a configurable duration for how long the drill-bit should be run.

6.3 Changing Execution Plans

The rtSOA approach to software reconfiguration of manufacturing systems follows

the steps outlined in Section 3.3. Given a workflow layout with global timing con-

straints and a manual selection of the nodes which should execute the services the

rtSOA planner will generate an execution plan consisting of a schedule for each node.

The machine local schedules are then deployed on each node, so that the time table

implementation (Figure 6.2) may trigger the service execution at the predetermined

time. To instantiate the execution plan, a matching cycle time must be set on all

participating nodes before naming the services that should be instantiated with a

predetermined offset from the cycle start. Following that, links between the input

and output ports of services with data dependencies must be created on the node

that contains the data producing service, following a publish-subscribe model. The

node-internal message routing is performed by the processMessages() method as

described in Section 6.1, communication between nodes is encapsulated in CoAP

messages. Lastly, configuration parameters are set on the service instances as neces-

sary.
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{name: „TTDDrill“, 

 wcet: 2200, 

 inports: {  

   num: 2, 

   attr: [{ 

       size: 1,  

       type: 1,  

       name „In_Drill_Timer“ 

     },{ 

       size: 1,  

       type: 0,  

       name: „IN_Drill_Trigger“ 

     }] 

 }, outports: { 

   num: 2, 

   attr: [{ 

       size: 1,  

       type: 0,  

       name: „Out_Drill_Done“ 

     },{…}] 

 },  

 

 confAttributes: { 

   num: 3, 

   attr: [{ 

       name: „Attr_DrillDuration“,  

       min: 0,  

       max: 65535,  

       default: 0 

     }, {…},{…}] 

 } 

} 

 

... continued  

Figure 6.3: Nodes advertise their installed services via a simple JSON description,

when queried. A video demonstrating the process of manually configuring a workflow

with rtSOA is available at https://youtu.be/Wa5KdHEivOo.

For example, our demonstrator features a service for moving the vacuum arm where

a configuration parameter must be set, indicating the direction (left or right) in

which the arm should be moved upon service invocation. This naturally means that

our implementation supports multiple instances of the same service with different

parameters on the same machine. An example video demonstrating the process of

manually configuring a service orchestration with our demonstrator can be found at

https://youtu.be/Wa5KdHEivOo. This video only serves demonstration purposes,

because manually orchestrating more complex workflows in this manner would be

too error prone and time consuming. When using the rtSOA planning tool, these

configuration steps are performed automatically during deployment.

To demonstrate the evolution of a basic workflow we consider the example workflows

shown in Figure 6.4. At the first stage, the systems only consists of a single module,

the Festo MPS processing station featuring an electric turn table with a testing and

drilling module (c.f. Figure 6.1a). A real world example for this system would be

an half-automated assembly system with a turntable on which a human operator

would place base parts and from which the human would transfer finished parts to

storage [117]. A workflow for such a system is shown in Figure 6.4a. Vertices in

the displayed graph represent named service invocations, edges represent a successor

relationship. While thicker edges represent actual data flow, thin edges only represent

a logical precedence relation without actual data flow. After sensing the presence of

a work piece with the service named IsPresent, the system transfers the work piece

to the testing module which performs the tests offered by the Verify service. Based

on the output of this service, the work piece may be further processed by the Drill

service or only transported past that module by the Rotary service.

https://youtu.be/Wa5KdHEivOo
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Rotary2

Drill Rotary3 Eject

(a) Workflow for the processing station of

the Festo MPS

IsNotPresent Magazine
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DrillRotary3Eject

(b) Extended workflow which added the dis-

tribution station to the processing station

IsPresent

Rotary1 Verify

Rotary2

Drill Rotary3
Eject

!A||B Dispense

ArmLeft PickUp

ArmRight

A&&B Place

IsEmpty

(c) Advanced version of the previous workflow that runs the distribu-

tion and processing stations in parallel

Figure 6.4: Evolution of the service composition controlling the Festo modular pro-

duction system: From a simple processing station, via an intermediate step that

extended the system by a second station, to an optimized workflow that runs both

station in parallel.

Figure 6.4b represents an evolution of the system by extending the system with

the Festo MPS distribution station providing automated supply of parts. All of

the services present in the first workflow (Figure 6.4a) have been reused, but some

feature different configuration parameters. For example, the service instance named

IsPresent in Figure 6.4a triggers the further execution of the workflow once the

worker has placed a work piece in the starting position. In contrast, the service

instance named IsNotPresent in Figure 6.4b triggers the transport of a work piece

to the starting position if no work piece was detected there.

rtSOA does not perform optimization on the structure of the workflow. For example,

the workflow shown in Figure 6.4b is inefficient because it is using all modules of

the system in sequence whereas the distribution station and processing station can

also be run in parallel. This parallel workflow is shown in Figure 6.4c. It still

reuses all of the previous services but requires additional logic services. For example,

the service instance named !A||B triggers the dispensing of a work piece from the

magazine when either no work piece is present on the starting position, or if a work

piece was present but has already been moved to the next position by the Rotary

service. The first code path is used when executing the workflow initially, whereas

the second path is executed when the cycle wraps around and is executed repeatedly.

Mutually exclusive paths through a workflow are currently not supported by rtSOA

and constitute an area for future research.
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Figure 6.5: The service composition interface of the rtSOA demonstrator. This

screenshot depicts a zoomed in portion of the workflow from Figure 6.4c.

Reconfiguring the system can be performed without rebooting or reprogramming

the nodes. Our demonstrator offers a graphical user interface (GUI) for the task of

(re-)configuration which is shown in Figure 6.54. This view constitutes the service

composition GUI and is used by an engineer to design or alter the structure of a

workflow represented as a DAG. This view supports multiple modes which corre-

spond to different task in specifying the workflow structure, connections between

services instances’ ports or specifying service instance attributes. The first mode is

the composition mode which can be used to add new service instances to the work-

flow. Service instances may be created from service descriptions advertised by real

devices in the network or from archived device descriptions. Service instances are vi-

sually represented by rounded rectangles with their name written above. The circles

on the left-hand side of the service instance represent the instance’s input ports, the

ones on the right-hand side represent its output ports. Connections between ports

can be created by putting the GUI into the connection mode and first clicking on the

output port and then clicking on the input port of another service instance. These

connections are represented by solid arrows in the GUI. Dashed arrows show logical

precedence without data transfer, they can be created the same way as port connec-

tions by clicking on the two service instances involved. Figure 6.5 shows the GUI in

the inspection mode which can be used to display or change individual attributes of

service instances. The last relevant mode is the instance assignment mode in which

an engineer can specify the concrete device on which a service should be placed dur-

ing workflow execution. The GUI also offers delete, undo and redo functionality for

convenience.

4The service composition GUI was developed by Christian Feiler during his Bachelor’s thesis

titled “A Graphical Editor for Service Choreographies in Industrial Real-Time Control Loops”
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Figure 6.6: After generating and deploying an execution plan by pressing the but-

tons marked 1-3, the user has started the execution of the workflow with the but-

ton marked by the number 4. The GUI is currently displaying a live visualization

of this execution. A video showing the process described here can be found at

https://youtu.be/WjgEySzpTo8.

For deployment and simulation of a workflow designed with the service composition

GUI (Figure 6.5), the user can switch to the appropriate view as shown in Figure 6.6.

In this case the parallel workflow shown in Figure 6.4c was loaded. The user can

either trigger the discovery of nodes and services, as described in Section 6.2, by

selecting the button labeled Discover or load prerecorded service descriptions with

the Load button, if they wish to perform a dry-run of the planning heuristics. If

the environment offers all services required by the workflow, the user can create an

execution plan by clicking the button labeled rtSOA Planner which will generate

schedules for all devices in the network. This process follows the heuristics described

in Section 4.2 and typically completes within a few milliseconds. After deploying the

execution plan to the participating nodes with the Deploy button the user can then

trigger the workflow execution with the Start Workflow button. Figure 6.6 shows

a running workflow in which most service instances have already completed their

tasks, as indicated by a checkmark. This visualization is generated live, meaning in

a timely manner, from debug information sent from the nodes to the PC running the

visualization interface. The ArmRight service is executed in parallel with the Eject

service, as indicated by the cogwheel icon, on two different nodes. The remaining

service instances are awaiting activation. A video demonstrating reconfiguration

with this GUI can be viewed at https://youtu.be/WjgEySzpTo8. The video shows

the initial execution plan of the workflow depicted in Figure 6.4b and subsequent

reprogramming with the parallel workflow depicted in Figure 6.4c and Figure 6.6

followed by the execution of this new workflow.

https://youtu.be/WjgEySzpTo8


CHAPTER 7

Conclusion

In this work we have presented the rtSOA approach for dataflow driven engineering

of distributed hard real-time systems. rtSOA is focused on enabling wide-reaching

reuse of existing software modules and enabling fast, iterative and incremental de-

velopment following principles of distributed data processing. The main use case for

rtSOA lies within the area of industrial manufacturing which is under market pres-

sure to increase its flexibility and adaptability, both in terms of product volume and

product variants. We showed how distributed data processing principles can be used

together with service-oriented architectures to achieve rapid reconfiguration of mod-

ular production systems, which are positioned to provide the necessary adaptability

for manufacturing enterprises. rtSOA execution plans offer deterministic, verifiable

real-time properties and can be integrated with event-driven architectures on higher

levels of the automation hierarchy. Therefore, we consider the rtSOA approach as

an extension to existing research regarding SOAs in industrial environments, which

is often either controlled in a centralized service orchestration or has emergent, non-

deterministic behavior from a temporal perspective.

The heuristics-based synthesis of time triggered workflow execution plans is an unique

aspect of the rtSOA approach. By reducing the time required for the generation of

execution plans to a sub-second interval, rtSOA can be integrated in interactive de-

velopment tools, offering quick response times for design space exploration. Our

evaluation shows that a combination of heuristics can solve over 99% of 1.2 million

test cases, making heuristics a feasible alternative to exhaustive search methods. The

heuristics proved to be, on average, two to three orders of magnitude faster than an

approach based on an MILP satisfiability solver. Our own heuristics contribute a

high number of unique solutions that were not found by other heuristics from litera-

ture. Our prototype implementation of an rtSOA engineering tool and an embedded



102 7. Conclusion

runtime has shown that modification of an automation workflow is possible through

reconfiguration and rerouting of dataflow while incurring nearly zero downtime. In

the following we outline directions for future research based on this work.

Support for decision nodes

The current dataflow semantics of rtSOA do not have any concept of decision nodes

which may send output data to different successor nodes depending on internal or

external state. Such behavior may be desirable, for example to provide different

execution paths under failure conditions. The closest equivalent in the current rtSOA

semantics would be nodes with multiple successors that send output data to all

successors where the successor nodes would then individually decide whether or not

they will act upon the data. Each node could then potentially omit the emission of

data tokens of their own, thus deactivating certain execution paths. However, each

of the tasks on those execution paths would still be included in an rtSOA execution

plan, even if those paths are mutually exclusive. Explicit decision nodes could be

used to indicate such mutually exclusive paths, allowing rtSOA to schedule them in

an “either / or“ fashion, thus reducing unnecessary overhead in such scenarios.

Service placement and composition

In the current state, rtSOA supports engineers in determining a suitable service

placement only by providing quick feedback about the feasibility and schedulability

of their manual service placement and service composition. Algorithms for deter-

mining suitable service placements and service compositions in a (semi-)automatic

way, taking semantic descriptions and ontologies of the services and their execu-

tion environment into account, would further increase the development velocity of

rtSOA-based systems. Domain specific heuristics for task placement could be ap-

plied to this problem as well, mirroring the rtSOA principles for deriving schedule

based execution plans.

Integration with standard protocols

Chapter 2 has outlined the comprehensive efforts of research and industry in the area

of service-oriented architectures for manufacturing systems. The work presented in

this thesis has considered rtSOA as an abstract engineering approach with general-

ized execution semantics. Integration or adaption of the rtSOA principles to existing

standards, for example the IEC 61499 standard for distributed automation systems

or the use of OPC-UA or DPWS with rtSOA, would further increase the applica-

bility of rtSOA for next generation manufacturing systems or in the Industrie 4.0

initiative.



APPENDIX A

Testbench and Benchmark Data Set

Since industrial use cases span a wide range of potential layouts of the resulting

task graphs, we rely on synthetic benchmarks, based on several well-known graph

generation methods [25]. Section A.1 describes these graph generation methods in

more detail while Section A.2 explains how we generated our benchmark data set and

explores its properties. The data set described here forms the basis of the evaluation

in Chapter 4.

A.1 Graph Generation Methods

We reimplemented the four different task graph generation method described by

Cordeiro et al. [25]. Example graphs from the different generation methods are

shown in Figure A.1.
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Figure A.1: Example output of the used graph generation methods
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The G(n, p) method

The G(n, p) method is a simple graph generation method, shown in Algorithm 8, that

yields every possible DAG with the same output probability [25]. The definition is

given by Cordeiro et al. as:

“For a given n number of vertices, the G(n, p) method generates a graph

where each element of the
(
n
2

)
possible edges is present with independent

probability p.” [25]

Algorithm 8 The G(n, p) method (from [25])

1: function G(n ∈ N, p ∈ R)

2: Let M be an adjacency matrix n× n initialized as the zero matrix.

3: for all i = 1 to n do

4: for all j = 1 to i do

5: if random() < p then

6: M [i][j]← 1

7: else

8: M [i][j]← 0

9: return graph represented by M

Layer-by-Layer

This method was proposed by Tobita and Kasahara [107] for the evaluation of multi-

processor scheduling algorithms. The definition of a layer is equivalent to our defini-

tion of the top-level ti.L
t of a task ti as min(dtr ≺≺ tie) for tr ∈ Roots (c.f. Chapter 4).

Pseudocode for this method is shown in Algorithm 9.

Algorithm 9 The Layer-by-Layer method (from [25])

1: function Layer − by − Layer(n ∈ N, k ∈ N, p ∈ N)

2: Distribute n vertices between k sets enumerated as L1, . . . , Lk
3: Let layer(v) be the layer assigned to vertex v

4: Let M be an adjacency matrix n× n initialized as the zero matrix.

5: for all i = 1 to n do

6: for all j = 1 to n do

7: if layer(j) > layer(i) then

8: if random() < p then

9: M [i][j]← 1

10: else

11: M [i][j]← 0

12: return random DAG with k layers and n nodes
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Random Orders

This method, proposed by Winkler [119], generates a partial order, i.e.,a DAG, by

intersecting two or more total orders. The pseudocode for this method is shown in

Algorithm 10.

Algorithm 10 Random Orders method (from [25])

1: function RandomOrders(n ∈ N, k ∈ N)

2: Initialize graph G = (V,E) with V = ∅, E = ∅
3: Generate k random permutations of V

4: for all t1, t2 ∈ V do

5: if t1 < t2 in all k permutations then

6: Add edge t2, t1 to E

7: return DAG with n vertices

Fan-in / Fan-out

Dick et al. [33] published this task graph generation method under the name Task

Graphs for Free, the name “Fan-in / Fan-out” is the terminology used by Cordeiro

et al. However, this name better captures the essence of the method, as the two

specifiable parameters are the maximum in-degree and out-degree of a vertex in the

task-DAG as shown in Algorithm 11. For example, a binary tree would be generated

by this method when using an in-degree of one and an out-degree of two.

Algorithm 11 The Fan-in / Fan-out method (from [25])

1: function FanIn − FanOut(n ∈ N, ind ∈ N, outd ∈ N)

2: Initialize graph G = (V,E) with V = ∅, E = ∅
3: V ∪ t
4: while |V| < n do

5: if Random() < 0.5 then . Fan-out phase:

6: tsource ← arg max(outd − |Succ(t)|) over t ∈ V
7: Add up to outd − |Succ(tsource)| tasks to V

8: Add edges from tsource to new tasks

9: else . Fan-in phase:

10: S = {t ∈ V |outd > |Succ(t)|}
11: Compute subset T ⊆ S with |T | ≤ ind

12: V ∪ tsink
13: Add edges to tsink for all t ∈ T
14: return DAG with ≥ n tasks having out-degree ≤ outd and in-degree ≤ ind
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A.2 Benchmark Data Set

We generated random workflows with either 16, 32, 48 or 64 tasks that we then

randomly distributed onto 2, 4 or 8 machines. The tasks were then assigned a

random WCET so that the total schedule utilization was between 12.5% and 75%. An

utilization of 100% for a scheduling problem with 8 machines means that all 8 CPUs

would be busy for 100% of the time. We then used the MILP formulation described

in Section 4.1.2 to determine the feasibility of the scheduling problem. This process

was continued until we collected 1.2 million feasible test cases. Each combination

of machine number and task count is represented 100 000 times in the data set,

distributed between the different graph generation methods described above. 50%

of the data set is generated with the G(n, p) method, 20% are generated with the

Layer-by-Layer method and the Fan-in / Fan-out method, each. The last 10% were

generated with the Random Orders method.

Our approach to generating scheduling problems will not lead to feasible workflows

with the same probability across all parameters used for the generation methods.

Easier problems may be represented more often than harder problems, as we explain

in the remainder of this appendix chapter. Unfortunately, we did not posses the

computational resources necessary to generate a truly uniformly distributed data

set. The computation time for the feasible workflows alone on a 12-core Intel Core

i7-3930K was already over 200 CPU days with the infeasible scheduling problems

adding another multiple on top. The author estimates that the generation of the

benchmark set in its current state took over three months of non-stop computation.

The following figures visualize the respective frequency of workflows generated by

the graph generation methods described earlier, plotted against the graph generation

method parameters.
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Figure A.2: Distribution of graphs generated by the G(n, p) method, plotted against

their frequency in the test data set



A.2. Benchmark Data Set 107

Figure A.2 shows the relative frequency of workflows generated by varying the edge

probability p in the G(n, p) graph generation method. Most graphs have a edge

probability < 20%, which might indicate relatively loosely connected graphs. Fig-

ure A.3 studies the relation between the workflows in our data set and their number

of edges more closely. It shows that most graphs are indeed well connected and that

isolated nodes can only be expected for the 16-task workflows. The reason for this is

indicated by the two example graphs in Figure A.4, showing that the relative number

of edges to tasks increases in workflows generated with the G(n, p) method when the

number of tasks is increased while the edge probability is kept constant. In fact,

the number of edges increases quadratically when the number of tasks is increased

linearly.
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Figure A.3: Cumulative distribution of workflows with a given number of edges in

the benchmark set
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edge probability p the same.
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Figure A.5: Distribution of graphs generated by the Layer-by-Layer method, plotted

against their frequency in the test data set

Figure A.5 is analyzing the frequency of test cases generated by calls to the Layer-

by-Layer method with different parameters for the number of layers k and the edge

probability p. As with the G(n, p) method, the benchmark set contains a smaller

number of workflows with high edge probability p. Additionally, the benchmark set

contains relatively more test cases with fewer levels than with more levels. Figure A.6

Shows that most workflows have between 4 and 12 levels but with a relatively long

tail.
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Figure A.6: Number of workflows with a given number of levels in the data set
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Figure A.7: Distribution of graphs generated by the Fan-in / Fan-out method, plot-

ted against their frequency in the test data set

Lastly we analyzed the frequency of workflows generated with differing parameters

for the Fan-in / Fan-out method as shown in Figure A.7. No such analysis is nec-

essary for the Random-Orders method because we always generated the workflows

by intersecting two random permutations, as this lead to the larges variation in the

out-degree of the generated tasks. One more interesting characteristic of the data

set is the Figure A.8 distribution of scheduling problems in regard to their processor

utilization.
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Figure A.8: Cummulative distribution of test cases with a given processor utilization

in the benchmark data set. Workflows do not vary significantly from the overall

distribution shown here based on the number of tasks.
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A.3 Testbench

This section covers the technical details of how we generated the benchmark data

set described in the previous section. Figure A.9 shows a domain model of our

testbench program which also visualizes the processing pipeline for workflow tasks

in the testbench: Initially, a workflow is created that represents a DAG with a global

deadline and period. Over time, more and more information is attached to the task.

After assignment to a machine, the task is also assigned a WCET. It is then further

enriched with a local deadline and release time, after which the task can be scheduled.

The final processing step is the verification of the overall schedule through simulation

on a given network topology.

By using the testbench, a user can generate workflows with the graph generation

methods described in Section A.1, use the methods from Chapter 4 and trigger

verification through simulation or model checking as described in Chapter 5. Any

output of the processing pipeline can be persisted to a database during any step

via the Hibernate object-relational-mapping (ORM) framework. The user can also

resume work by loading input from the database. The testbench is configured via

a declarative query language which we explain in Section A.3.1. Section A.3.2 lists

the commands we used to generate our benchmark set.

*

Requirements*

*

Capabilities

*

1 1 1

1

1

1

1

1

Task

+Name: String

Workflow

+Name: String

+Deadline: Duration

+Period: Duration

TaskAssigned

+WCET: long

WorkflowAssignment

TaskConstrained

+Deadline: Duration

+Releasetime: Duration

WorkflowConstraints

TaskScheduled

+ScheduleTime: Duration

MachineSchedule

WorkflowSchedule

Capability

Machine

+Address: String
MachineStore

TDMASlot

+Start: Duration

+End: Duration

+IsBeacon: boolean

TDMAConfiguration

+Period: Duration

Simulation

Figure A.9: The domain model for the rtSOA testbench in UML. Internal classes

and database tables roughly follow the same model, but are omitted for reasons of

complexity.
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A.3.1 Specification Language

This section describes the grammar of the testbench configuration language we used

to generate our data set. The specification of the data set itself can be found in

the next section (Section A.3.2). On a a conceptual level, the specification language

declares a number of streams that generate tuples from one of the classes shown in

the domain model (Figure A.9). For example, the workflows command in Figure A.14

generates tuples of type “Workflow” which group a number additional tuples of type

“Task”. For each of the composition classes in Figure A.9 there exists a generator

command. The WCET-analysis command (Figure A.13) is an exception as it has no

representation in the domain model. This command simply generates a mapping of

machine and task to WCET, that is it specified the WCET of a given task on all the

possible machines.

commands: <machines>

<tdma>

<workflow>

<wcet analysis>

WITH id AS ( <make> ) , id AS ( <make> ) <workflow assignments> ;

<workflow constraints>

<schedules>

<simulation>

<verification>

Figure A.10: High-level structure of the test case specification grammar.

machines:

UNION

MAKE MACHINES BY MACHINES GENERATE ( int series: num machines )

QUERY ( string )

Figure A.11: Grammar for generating Machine objects.

tdma:

USING id: machines MAKE TDMA BY ROUND ROBIN ( <parameters> )

( <machines> )

MAKE TDMA BY QUERY ( string )

Figure A.12: Grammar for generating a TDMA configuration.

wcet analysis:

UNION

USING id: machines , id: workflow MAKE ANALYSIS BY RANDOM WCETS ( <parameters> ) REPEAT ( int )

( <machines> ) , ( <workflow> ) STREAM

MAKE ANALYSIS BY QUERY ( string )

Figure A.13: Grammar for generating random WCET values for tasks.
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workflow:

UNION

MAKE WORKFLOWS BY ERDOS GNP ( <parameters> ) REPEAT ( int )

other methods ( <parameters> ) STREAM

QUERY ( string )

Figure A.14: Grammar for generating workflows.

workflow assignments:

UNION

USING id: wcet analysis MAKE WORKFLOW ASSIGNMENTS BY RANDOM FIT REPEAT ( int )

( <wcet analysis> ) STREAM

MAKE WORKFLOW ASSIGNMENTS BY QUERY ( string )

Figure A.15: Grammar for assigning workflow tasks to machines.
workflow constraints:

UNION

USING id: workflow assignments MAKE WORKFLOW CONSTRAINTS BY HEURISTIC A ( id: tdma ) REPEAT ( int )

( <workflow assignments> ) HEURISTIC A ( <tdma> ) STREAM

HEURISTIC B

other methods ( <parameter> )

MAKE WORKFLOW CONSTRAINTS BY QUERY ( string )

Figure A.16: Grammar for assigning deadlines and release times.

schedules:

UNION

USING id: workflow constraints MAKE SCHEDULES BY EDF REPEAT ( int )

( <workflow constraints> ) POTTS STREAM

MAKE SCHEDULES BY QUERY ( string )

Figure A.17: Grammar for scheduling times.

simulations:

USING id: scheudles , id: tdma MAKE SIMULATION FOR int UNTIL int

( <schedules> ) , ( <tdma> ) int CYCLES

Figure A.18: Grammar for simulating scheduled tasks on a given network topology.

A.3.2 Data Set Specification

This section serves as a reference for how the benchmark data set was generated.

Listings A.1 to A.4 specify the declarations used to generate the corpus of feasible

problem instances. Listing A.5 specifies how these feasible problem instances were

then used to evaluate the efficacy of the implemented heuristics (Section 4.2).
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1 WITH
2 m as (MAKE MACHINES BY machines_generate(2)),
3 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
4 # workflow with 16 tasks and random edge chance between 12.5% and

75%
5 wf as (MAKE WORKFLOWS BY erdos_gnp(16, rnd(0.125, 0.75), 10000000,

10000000) STREAM),
6 # generate WCETS with random utilization between 12.5% and 75%
7 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
8 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
9 # use Gurobi -solver to identify feasible problem instances
10 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
11 sched as (USING c MAKE SCHEDULES BY potts STREAM)
12 # keep generating problems until we have 50000 feasible instances
13 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;
14

15 WITH
16 m as (MAKE MACHINES BY machines_generate(2)),
17 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
18 wf as (MAKE WORKFLOWS BY erdos_gnp(32, rnd(0.125, 0.75), 10000000,

10000000) STREAM),
19 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
20 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
21 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
22 sched as (USING c MAKE SCHEDULES BY potts STREAM)
23 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;
24

25 WITH
26 m as (MAKE MACHINES BY machines_generate(2)),
27 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
28 wf as (MAKE WORKFLOWS BY erdos_gnp(48, rnd(0.125, 0.75), 10000000,

10000000) STREAM),
29 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
30 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
31 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
32 sched as (USING c MAKE SCHEDULES BY potts STREAM)
33 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;
34

35 WITH
36 m as (MAKE MACHINES BY machines_generate(2)),
37 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
38 wf as (MAKE WORKFLOWS BY erdos_gnp(64, rnd(0.125, 0.75), 10000000,

10000000) STREAM),
39 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
40 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
41 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
42 sched as (USING c MAKE SCHEDULES BY potts STREAM)
43 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;
44

45 WITH
46 m as (MAKE MACHINES BY machines_generate(4)),
47 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
48 wf as (MAKE WORKFLOWS BY erdos_gnp(16, rnd(0.125, 0.75), 10000000,

10000000) STREAM),
49 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
50 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
51 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
52 sched as (USING c MAKE SCHEDULES BY potts STREAM)
53 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;
54

55 WITH
56 m as (MAKE MACHINES BY machines_generate(4)),
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57 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)
),

58 wf as (MAKE WORKFLOWS BY erdos_gnp(32, rnd(0.125, 0.75), 10000000,
10000000) STREAM),

59 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125
, 0.75) STREAM),

60 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
61 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
62 sched as (USING c MAKE SCHEDULES BY potts STREAM)
63 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;
64

65 WITH
66 m as (MAKE MACHINES BY machines_generate(4)),
67 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
68 wf as (MAKE WORKFLOWS BY erdos_gnp(48, rnd(0.125, 0.75), 10000000,

10000000) STREAM),
69 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
70 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
71 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
72 sched as (USING c MAKE SCHEDULES BY potts STREAM)
73 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;
74

75 WITH
76 m as (MAKE MACHINES BY machines_generate(4)),
77 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
78 wf as (MAKE WORKFLOWS BY erdos_gnp(64, rnd(0.125, 0.75), 10000000,

10000000) STREAM),
79 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
80 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
81 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
82 sched as (USING c MAKE SCHEDULES BY potts STREAM)
83 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;
84

85 WITH
86 m as (MAKE MACHINES BY machines_generate(8)),
87 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
88 wf as (MAKE WORKFLOWS BY erdos_gnp(16, rnd(0.125, 0.75), 10000000,

10000000) STREAM),
89 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
90 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
91 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
92 sched as (USING c MAKE SCHEDULES BY potts STREAM)
93 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;
94

95 WITH
96 m as (MAKE MACHINES BY machines_generate(8)),
97 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
98 wf as (MAKE WORKFLOWS BY erdos_gnp(32, rnd(0.125, 0.75), 10000000,

10000000) STREAM),
99 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
100 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
101 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
102 sched as (USING c MAKE SCHEDULES BY potts STREAM)
103 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;
104

105 WITH
106 m as (MAKE MACHINES BY machines_generate(8)),
107 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
108 wf as (MAKE WORKFLOWS BY erdos_gnp(48, rnd(0.125, 0.75), 10000000,

10000000) STREAM),
109 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
110 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
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111 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
112 sched as (USING c MAKE SCHEDULES BY potts STREAM)
113 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;
114

115 WITH
116 m as (MAKE MACHINES BY machines_generate(8)),
117 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
118 wf as (MAKE WORKFLOWS BY erdos_gnp(64, rnd(0.125, 0.75), 10000000,

10000000) STREAM),
119 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
120 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
121 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
122 sched as (USING c MAKE SCHEDULES BY potts STREAM)
123 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 50000;

Listing A.1: Definitions for the part benchmark data set that was generated with

the G(n, p) method. Comments are prefixed with #.

1

2 WITH
3 m as (MAKE MACHINES BY machines_generate(2)),
4 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
5 wf as (MAKE WORKFLOWS BY layer_by_layer(16, rnd(2, 15), rnd(0.125,

0.75), 10000000, 10000000) STREAM),
6 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
7 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
8 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
9 sched as (USING c MAKE SCHEDULES BY potts STREAM)
10 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
11

12 WITH
13 m as (MAKE MACHINES BY machines_generate(2)),
14 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
15 wf as (MAKE WORKFLOWS BY layer_by_layer(32, rnd(2, 15), rnd(0.125,

0.75), 10000000, 10000000) STREAM),
16 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
17 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
18 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
19 sched as (USING c MAKE SCHEDULES BY potts STREAM)
20 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
21

22 WITH
23 m as (MAKE MACHINES BY machines_generate(2)),
24 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
25 wf as (MAKE WORKFLOWS BY layer_by_layer(48, rnd(2, 15), rnd(0.125,

0.75), 10000000, 10000000) STREAM),
26 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
27 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
28 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
29 sched as (USING c MAKE SCHEDULES BY potts STREAM)
30 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
31

32 WITH
33 m as (MAKE MACHINES BY machines_generate(2)),
34 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
35 wf as (MAKE WORKFLOWS BY layer_by_layer(64, rnd(2, 15), rnd(0.125,

0.75), 10000000, 10000000) STREAM),
36 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
37 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
38 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
39 sched as (USING c MAKE SCHEDULES BY potts STREAM)
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40 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
41

42 WITH
43 m as (MAKE MACHINES BY machines_generate(4)),
44 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
45 wf as (MAKE WORKFLOWS BY layer_by_layer(16, rnd(2, 15), rnd(0.125,

0.75), 10000000, 10000000) STREAM),
46 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
47 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
48 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
49 sched as (USING c MAKE SCHEDULES BY potts STREAM)
50 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
51

52 WITH
53 m as (MAKE MACHINES BY machines_generate(4)),
54 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
55 wf as (MAKE WORKFLOWS BY layer_by_layer(32, rnd(2, 15), rnd(0.125,

0.75), 10000000, 10000000) STREAM),
56 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
57 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
58 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
59 sched as (USING c MAKE SCHEDULES BY potts STREAM)
60 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
61

62 WITH
63 m as (MAKE MACHINES BY machines_generate(4)),
64 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
65 wf as (MAKE WORKFLOWS BY layer_by_layer(48, rnd(2, 15), rnd(0.125,

0.75), 10000000, 10000000) STREAM),
66 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
67 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
68 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
69 sched as (USING c MAKE SCHEDULES BY potts STREAM)
70 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
71

72 WITH
73 m as (MAKE MACHINES BY machines_generate(4)),
74 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
75 wf as (MAKE WORKFLOWS BY layer_by_layer(64, rnd(2, 15), rnd(0.125,

0.75), 10000000, 10000000) STREAM),
76 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
77 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
78 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
79 sched as (USING c MAKE SCHEDULES BY potts STREAM)
80 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
81

82 WITH
83 m as (MAKE MACHINES BY machines_generate(8)),
84 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
85 wf as (MAKE WORKFLOWS BY layer_by_layer(16, rnd(2, 15), rnd(0.125,

0.75), 10000000, 10000000) STREAM),
86 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
87 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
88 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
89 sched as (USING c MAKE SCHEDULES BY potts STREAM)
90 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
91

92 WITH
93 m as (MAKE MACHINES BY machines_generate(8)),
94 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
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95 wf as (MAKE WORKFLOWS BY layer_by_layer(32, rnd(2, 15), rnd(0.125,
0.75), 10000000, 10000000) STREAM),

96 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125
, 0.75) STREAM),

97 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
98 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
99 sched as (USING c MAKE SCHEDULES BY potts STREAM)
100 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
101

102 WITH
103 m as (MAKE MACHINES BY machines_generate(8)),
104 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
105 wf as (MAKE WORKFLOWS BY layer_by_layer(48, rnd(2, 15), rnd(0.125,

0.75), 10000000, 10000000) STREAM),
106 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
107 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
108 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
109 sched as (USING c MAKE SCHEDULES BY potts STREAM)
110 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
111

112 WITH
113 m as (MAKE MACHINES BY machines_generate(8)),
114 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
115 wf as (MAKE WORKFLOWS BY layer_by_layer(64, rnd(2, 15), rnd(0.125,

0.75), 10000000, 10000000) STREAM),
116 ana as (MAKE ANALYSIS BY random_wcets(wf , m, 50000, 10000000, 0.125

, 0.75) STREAM),
117 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
118 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
119 sched as (USING c MAKE SCHEDULES BY potts STREAM)
120 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;

Listing A.2: Definitions for the part benchmark data set that was generated with

the Layer-by-Layer method

1

2 WITH
3 m as (MAKE MACHINES BY machines_generate(2)),
4 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
5 wf as (MAKE WORKFLOWS BY fanin_fanout(16, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
6 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
7 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
8 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
9 sched as (USING c MAKE SCHEDULES BY potts STREAM)
10 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
11

12 WITH
13 m as (MAKE MACHINES BY machines_generate(2)),
14 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
15 wf as (MAKE WORKFLOWS BY fanin_fanout(32, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
16 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
17 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
18 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
19 sched as (USING c MAKE SCHEDULES BY potts STREAM)
20 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
21

22 WITH
23 m as (MAKE MACHINES BY machines_generate(2)),
24 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
25 wf as (MAKE WORKFLOWS BY fanin_fanout(48, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
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26 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,
rnd(0.125, 0.75)) STREAM),

27 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
28 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
29 sched as (USING c MAKE SCHEDULES BY potts STREAM)
30 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
31

32 WITH
33 m as (MAKE MACHINES BY machines_generate(2)),
34 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
35 wf as (MAKE WORKFLOWS BY fanin_fanout(64, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
36 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
37 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
38 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
39 sched as (USING c MAKE SCHEDULES BY potts STREAM)
40 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
41

42 WITH
43 m as (MAKE MACHINES BY machines_generate(4)),
44 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
45 wf as (MAKE WORKFLOWS BY fanin_fanout(16, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
46 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
47 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
48 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
49 sched as (USING c MAKE SCHEDULES BY potts STREAM)
50 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
51

52 WITH
53 m as (MAKE MACHINES BY machines_generate(4)),
54 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
55 wf as (MAKE WORKFLOWS BY fanin_fanout(32, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
56 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
57 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
58 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
59 sched as (USING c MAKE SCHEDULES BY potts STREAM)
60 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
61

62 WITH
63 m as (MAKE MACHINES BY machines_generate(4)),
64 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
65 wf as (MAKE WORKFLOWS BY fanin_fanout(48, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
66 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
67 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
68 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
69 sched as (USING c MAKE SCHEDULES BY potts STREAM)
70 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
71

72 WITH
73 m as (MAKE MACHINES BY machines_generate(4)),
74 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
75 wf as (MAKE WORKFLOWS BY fanin_fanout(64, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
76 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
77 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
78 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
79 sched as (USING c MAKE SCHEDULES BY potts STREAM)
80 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
81
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82 WITH
83 m as (MAKE MACHINES BY machines_generate(8)),
84 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
85 wf as (MAKE WORKFLOWS BY fanin_fanout(16, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
86 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
87 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
88 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
89 sched as (USING c MAKE SCHEDULES BY potts STREAM)
90 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
91

92 WITH
93 m as (MAKE MACHINES BY machines_generate(8)),
94 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
95 wf as (MAKE WORKFLOWS BY fanin_fanout(32, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
96 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
97 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
98 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
99 sched as (USING c MAKE SCHEDULES BY potts STREAM)
100 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
101

102 WITH
103 m as (MAKE MACHINES BY machines_generate(8)),
104 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
105 wf as (MAKE WORKFLOWS BY fanin_fanout(48, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
106 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
107 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
108 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
109 sched as (USING c MAKE SCHEDULES BY potts STREAM)
110 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;
111

112 WITH
113 m as (MAKE MACHINES BY machines_generate(8)),
114 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
115 wf as (MAKE WORKFLOWS BY fanin_fanout(64, rnd(4, 10), rnd(2, 5), 10

000000, 10000000) STREAM),
116 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
117 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
118 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
119 sched as (USING c MAKE SCHEDULES BY potts STREAM)
120 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 20000;

Listing A.3: Definitions for the part benchmark data set that was generated with

the Fan-In / Fan-Out method

1

2 WITH
3 m as (MAKE MACHINES BY machines_generate(2)),
4 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
5 wf as (MAKE WORKFLOWS BY random_orders(16, 2, 10000000, 10000000)

STREAM),
6 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
7 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
8 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
9 sched as (USING c MAKE SCHEDULES BY potts STREAM)
10 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;
11

12 WITH
13 m as (MAKE MACHINES BY machines_generate(2)),
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14 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)
),

15 wf as (MAKE WORKFLOWS BY random_orders(32, 2, 10000000, 10000000)
STREAM),

16 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,
rnd(0.125, 0.75)) STREAM),

17 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
18 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
19 sched as (USING c MAKE SCHEDULES BY potts STREAM)
20 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;
21

22 WITH
23 m as (MAKE MACHINES BY machines_generate(2)),
24 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
25 wf as (MAKE WORKFLOWS BY random_orders(48, 2, 10000000, 10000000)

STREAM),
26 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
27 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
28 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
29 sched as (USING c MAKE SCHEDULES BY potts STREAM)
30 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;
31

32 WITH
33 m as (MAKE MACHINES BY machines_generate(2)),
34 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
35 wf as (MAKE WORKFLOWS BY random_orders(64, 2, 10000000, 10000000)

STREAM),
36 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
37 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
38 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
39 sched as (USING c MAKE SCHEDULES BY potts STREAM)
40 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;
41

42 WITH
43 m as (MAKE MACHINES BY machines_generate(4)),
44 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
45 wf as (MAKE WORKFLOWS BY random_orders(16, 2, 10000000, 10000000)

STREAM),
46 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
47 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
48 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
49 sched as (USING c MAKE SCHEDULES BY potts STREAM)
50 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;
51

52 WITH
53 m as (MAKE MACHINES BY machines_generate(4)),
54 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
55 wf as (MAKE WORKFLOWS BY random_orders(32, 2, 10000000, 10000000)

STREAM),
56 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
57 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
58 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
59 sched as (USING c MAKE SCHEDULES BY potts STREAM)
60 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;
61

62 WITH
63 m as (MAKE MACHINES BY machines_generate(4)),
64 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
65 wf as (MAKE WORKFLOWS BY random_orders(48, 2, 10000000, 10000000)

STREAM),
66 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
67 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
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68 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
69 sched as (USING c MAKE SCHEDULES BY potts STREAM)
70 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;
71

72 WITH
73 m as (MAKE MACHINES BY machines_generate(4)),
74 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
75 wf as (MAKE WORKFLOWS BY random_orders(64, 2, 10000000, 10000000)

STREAM),
76 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
77 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
78 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
79 sched as (USING c MAKE SCHEDULES BY potts STREAM)
80 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;
81

82 WITH
83 m as (MAKE MACHINES BY machines_generate(8)),
84 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
85 wf as (MAKE WORKFLOWS BY random_orders(16, 2, 10000000, 10000000)

STREAM),
86 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
87 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
88 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
89 sched as (USING c MAKE SCHEDULES BY potts STREAM)
90 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;
91

92 WITH
93 m as (MAKE MACHINES BY machines_generate(8)),
94 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
95 wf as (MAKE WORKFLOWS BY random_orders(32, 2, 10000000, 10000000)

STREAM),
96 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
97 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
98 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
99 sched as (USING c MAKE SCHEDULES BY potts STREAM)
100 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;
101

102 WITH
103 m as (MAKE MACHINES BY machines_generate(8)),
104 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
105 wf as (MAKE WORKFLOWS BY random_orders(48, 2, 10000000, 10000000)

STREAM),
106 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
107 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
108 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
109 sched as (USING c MAKE SCHEDULES BY potts STREAM)
110 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;
111

112 WITH
113 m as (MAKE MACHINES BY machines_generate(8)),
114 td as (USING m MAKE TDMA BY round_robin broadcast (10000000, 50000)

),
115 wf as (MAKE WORKFLOWS BY random_orders(64, 2, 10000000, 10000000)

STREAM),
116 ana as (USING m, wf MAKE ANALYSIS BY random_wcets(50000, 10000000,

rnd(0.125, 0.75)) STREAM),
117 a as (USING ana MAKE WORKFLOW_ASSIGNMENTS BY first_fit STREAM),
118 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY gurobi(td) STREAM),
119 sched as (USING c MAKE SCHEDULES BY potts STREAM)
120 USING sched , td MAKE SIMULATION FOR 2 CYCLES UNTIL 10000;

Listing A.4: Definitions for the part benchmark data set that was generated with

the Random Orders method
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1 WITH
2 # Machines are not loaded from database by dependent objects.

Regenerate
3 m as (MAKE MACHINES BY machines_generate ([2, 4, 8]])),
4 td as (USING m MAKE TDMA BY round_robin (10000000, 50000)),
5 # Load all workflow assignments from the database
6 a as (MAKE WORKFLOW_ASSIGNMENTS BY query("")),
7 # Run specified heuristics on the loaded assignments
8 c as (USING a MAKE WORKFLOW_CONSTRAINTS BY heuristic_a heuristic_b

),
9 sched as (USING c MAKE SCHEDULES BY potts)
10 # run simulation to check validity of heuristics ’ solution
11 USING sched , td MAKE SIMULATION FOR 2 CYCLES;

Listing A.5: Definitions for running evaluating the heuristics (Section 4.2) over the

known feasible scheduling problems in the data set. The query function in line 4

loads the workflow assignments from the database with the specified filter. Since no

filter is specified, all existing assignments are loaded and used as input for generating

the workflow constraints. Comments are prefixed with #.



APPENDIX B

Archived Benchmarks of SMT and MILP-Solvers

This appendix chapter archives several benchmarks results of SMT and MILP-

Solvers, which were accessed online by the author.

B.1 Benchmark of MILP-Solvers

This is a verbatim copy of the benchmarks performed by Hans Mittelmann, published

on http://plato.asu.edu/ftp/milpc.html, accessed on Sept. 26th 2016. The bench-

marks show that the Gurobi MILP-solver, empoyed in this thesis, is the fastest com-

mercialy avaliable solver at the time of writing. IBM CPLEX 1 and FICO Xpress 2

are other performant options. CBC 3 is an open source option, but the results show

that it is over 20 times slower than Gurobi.

15 Jun 2016

=======================================================

Mixed Integer Linear Programming Benchmark (MIPLIB2010)

=======================================================

H. Mittelmann (mittelmann@asu.edu)

The following codes were run with a limit of 2 hours on the MIPLIB2010 benchmark

set with the MIPLIB2010 scripts (exc Matlab) on two platforms.

1/4 threads: Intel i7-4790K, 4 cores, 32GB, 4GHz, available memory 24GB;

12 threads: Intel Xeon X5680, 12 cores, 32GB, 3.33Ghz, available memory 24GB;

These are updated and extended versions of the results produced for the

MIPLIB2010 paper.

1https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
2http://www.fico.com/en/products/fico-xpress-optimization-suite
3https://projects.coin-or.org/Cbc

http://plato.asu.edu/ftp/milpc.html
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.fico.com/en/products/fico-xpress-optimization-suite
https://projects.coin-or.org/Cbc
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CPLEX-12.6.3: CPLEX

GUROBI-6.5.0 GUROBI

ug[SCIP/cpx/spx]-3.2.1: Parallel development version of SCIP (SCIP+CPLEX/SOPLEX on

1 thread)

CBC-2.9.8: CBC

XPRESS-8.0.0: XPRESS

MATLAB-2016a: MATLAB (intlinprog)

MIPCL-1.1.2: MIPCL

[...]

Statistics of the problems can be obtained from the MIPLIB2010 webpage.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Unscaled and scaled shifted geometric means of run times

All non-successes are counted as max-time.

The third line lists the number of problems (87 total) solved.

1 thr CBC CPLEX GUROBI SCIPC SCIPS XPRESS MATLAB MIPCL

-------------------------------------------------------------------------

unscal 1639 86 74 418 517 93 3416 870

scaled 22 1.16 1 5.65 6.99 1.25 46.2 11.8

solved 53 86 86 75 70 86 26 65

-------------------------------------------------------------------------

4 thr CBC CPLEX FSCIPC FSCIPS GUROBI XPRESS MIPCL

-------------------------------------------------------------------

unscal 839 46 339 641 39 49 396

scaled 21.8 1.19 8.82 17 1 1.28 10.3

solved 66 86 75 69 87 86 74

-------------------------------------------------------------------

12 thr CBC CPLEX FSCIPC FSCIPS GUROBI XPRESS MIPCL

-------------------------------------------------------------------

unscal 668 41 327 511 37 44 336

scaled 18 1.11 8.85 14 1 1.20 9.11

solved 69 87 74 70 87 86 76

-------------------------------------------------------------------

MIPCL could only be run with 10 threads

B.2 Feasibility Benchmark of MILP-Solvers

This is a verbatim copy of the benchmarks performed by Hans Mittelmann, pub-

lished on http://plato.asu.edu/ftp/feas bench.html, accessed on Sept. 26th 2016.

The benchmarks show that the Gurobi MILP-solver, empoyed in this thesis, is the

fastest commercialy avaliable solver for determining a feasible solution at the time

of writing. IBM CPLEX is the only other solver with comparable performance in

determining an initially feasible solution. CBC is an open source option, but the

results show that it is over 80 times slower than Gurobi.

http://plato.asu.edu/ftp/feas_bench.html
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14 Apr 2016 =====================

Feasibility Benchmark

=====================

H. Mittelmann (mittelmann@asu.edu)

Logfiles for these runs are at: plato.asu.edu/ftp/feas_bench_logs/

MILP problems mostly from MIPLIB2010 were solved for a feasible point

The following codes were run on an Intel i7-4790K with 4 threads:

CPLEX-12.6.3: CPLEX

FEASPUMP2: as implemented for interactive use at NEOS (utilizes CPLEX)

GUROBI-6.5.0: GUROBI

XPRESS-8.0.0: XPRESS

CBC-2.9.8: CBC

Times given are elapsed times in seconds. A time limit of 1 hr was imposed.

Shifted geometric means of the times are listed. [...]

========================================================

problem(33 tot) CPLEX FP2 GUROBI XPRESS CBC

--------------------------------------------------------

geometric mean 1.14 3.74 1 2.75 80.1

problems solved 33 31 33 30 15

--------------------------------------------------------

bdry0_79 898 178 99 29 t

bdry1_79 985 83 195 26 578

cdma 1 11 1 7 f

circ10-3 69 1552 564 t t

ivu06-big 1 522 1 52 t

ivu52 1 33 1 12 t

lectsched-1 68 t 14 8 t

lectsched-3 26 18 8 8 1165

momentum3 1 42 1 17 t

n15-3 4 84 6 55 1138

neos-826650 1 1 4 7 12

neos-849702 28 56 25 627 t

ns1116954 3 913 156 63 1565

ns1354092 205 6 473 45 81

ns1456591 1 13 1 1 t

ns1631475 1 19 1 1 t

ns1685374 1 5 1 1 355

ns1854840 2 28 1 2 t

ns1904248 4 f 2 1 t

ns2122603 1 307 1 1 t

ns506428 235 103 3 70 690

ns848845 18 51 56 223 t

ns894236 1064 13 3 t t

ns894786 1 28 356 t t

ns894788 220 6 419 299 3104

ns903616 1 14 36 59 t

rail01 1 86 19 122 2330

rocII-9-11 5 16 3 5 t

satellites3-40 16 681 1 2 1115

satellites3-40-fs 1 581 3 1 2647

shs1023 78 83 8 345 2113

triptim2 4 24 15 1299 202

triptim3 107 29 38 338 210

========================================================

"t": time limit exceeded; "f": fail
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B.3 Benchmark of SMT-Solvers

This is a copy of the results of the 11th International Satisfiability Modulo Theories

Competition (SMT-COMP 2016), accessed on Sept. 26th 2016. It was published on

http://smtcomp.sourceforge.net/2016/results-QF LIA.shtml?v=1467876482.

The “QF LIA” track contains problems with unquantified integer arithmetic, i.e.,the

underlying logic used in the SMT-formulation of Section 4.1.1. All Quantifiers therin

are resolved by adding individual terms for the bound variables. The results show

that Z3 solver, which was used in this thesis, is a state-of-the-art SMT-solver for

these kinds of problems. Other potential candidates, such as Yices 2 4, CVC 4 5,

MathSAT 5 6 or SMTInterpol 7 have runtime characteristics of the same order of

magnitude as Z3. MathSat 5 has thelowest CPU time and the highest amount of

correctly solved problem instances, however it ist not listed as winner of the contest

below, because it did not participate in SMT-COMP 2016.

QF_LIA (Main Track)

Competition results for the QF_LIA division as of Thu Jul 7 07:24:34 GMT

Benchmarks in this division: 5839

Winners:

Sequential Performances: CVC4

Parallel Performances: CVC4

Results:

+---------------------------------------------------------++------------------------------------------++-------------------+

| | Sequential performance || Parallel performance || Other information |

| Solver +-------------+------------------+----------++--------+----------+----------+-----------++-------------------+

| | Error Score | Correctly Solved | avg. CPU || Errors | Corrects | avg. CPU | avg. WALL || Unsolved |

| | | Score | time || | | time | time || benchmarks |

+-------------+-------------+------------------+----------++--------+----------+----------+-----------++-------------------+

| CVC4 | 0.000 | 5510.092 | 167.597 || 0.000 | 5510.092 | 167.669 | 167.493 || 168 |

| MathSat5* | 0.000 | 5561.147 | 138.080 || 0.000 | 5561.147 | 138.144 | 138.040 || 120 |

| ProB | 0.000 | 1178.476 | 1507.090 || 0.000 | 1178.476 | 1508.020 | 1507.096 || 5148 |

| SMT-RAT | 0.000 | 3223.364 | 1098.452 || 0.000 | 3223.814 | 1099.095 | 1098.449 || 3450 |

| SMTInterpol | 0.000 | 5456.162 | 198.425 || 0.000 | 5456.666 | 211.890 | 190.450 || 251 |

| Yices2 | 0.000 | 5465.835 | 180.926 || 0.000 | 5465.835 | 181.015 | 180.885 || 206 |

| veriT-dev | 0.000 | 2654.377 | 709.000 || 0.000 | 2854.377 | 709.385 | 708.966 || 3578 |

| z3* | 0.000 | 5444.101 | 187.484 || 0.000 | 5444.101 | 187.577 | 187.420 || 254 |

+-------------+-------------+------------------+----------++--------+----------+----------+-----------++-------------------+

*Non-competitive.

4http://yices.csl.sri.com/
5http://cvc4.cs.nyu.edu
6http://mathsat.fbk.eu/
7https://ultimate.informatik.uni-freiburg.de/smtinterpol/

http://smtcomp.sourceforge.net/2016/results-QF_LIA.shtml?v=1467876482
http://yices.csl.sri.com/
http://cvc4.cs.nyu.edu
http://mathsat.fbk.eu/
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
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[96] W. Rödiger, T. Mühlbauer, P. Unterbrunner, A. Reiser, A. Kemper, and

T. Neumann. Locality-Sensitive Operators for Parallel Main-Memory Database

Clusters. In Proceedings of the IEEE International Conference on Data Engi-

neering (ICDE), 2014.

[97] J. Schlick, P. Stephan, M. Loskyll, and D. Lappe. Industrie 4.0 in der Praktis-

chen Anwendung. In Industrie 4.0 in Produktion, Automatisierung und Logis-

tik. Springer, 2014.

[98] A. Scholz, I. Gaponova, S. Sommer, A. Kemper, A. Knoll, C. Buckl, J. Heuer,

and A. Schmitt. εSOA-Service Oriented Architectures Adapted for Embedded

Networks. In Proceedings of the IEEE International Conference on Industrial

Informatics (INDIN), 2009.

[99] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol

(CoAP). RFC 7252, RFC Editor, June 2014. http://www.rfc-editor.org/rfc/

rfc7252.txt.

[100] W. Shen and D. H. Norrie. Agent-Based Systems for Intelligent Manufacturing:

A State-of-the-Art Survey. Knowledge and Information Systems, 1(2), 1999.

[101] J. P. Sousa and L. A. Wolsey. A Time Indexed Formulation of Non-Preemptive

Single Machine Scheduling Problems. Mathematical Programming, 54(1), 1992.

[102] L. M. S. D. Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos, and
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