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An emerging issue in neuroimaging is to assess the diagnostic reliability of PET and its application in clinical prac-
tice.We aimed at assessing the accuracy of brain FDG-PET in discriminating patients withMCI due to Alzheimer3s
disease and healthy controls. Sixty-two patients with amnestic MCI and 109 healthy subjects recruited in five
centers of the European AD Consortium were enrolled. Group analysis was performed by SPM8 to confirmmet-
abolic differences. Discriminant analyses were then carried out using themean FDG uptake values normalized to
the cerebellum computed in 45 anatomical volumes of interest (VOIs) in each hemisphere (90 VOIs) as defined in
the Automated Anatomical Labeling (AAL) Atlas and on 12 meta-VOIs, bilaterally, obtained merging VOIs with
similar anatomo-functional characteristics. Further, asymmetry indexes were calculated for both datasets. Accu-
racy of discrimination by a Support VectorMachine (SVM) and the AAL VOIswas tested against a validatedmeth-
od (PALZ). At the voxel level SMP8 showed a relative hypometabolism in the bilateral precuneus, and posterior
cingulate, temporo-parietal and frontal cortices. Discriminant analysis classified subjects with an accuracy rang-
ing between .91 and .83 as a function of data organization. The best valueswere obtained froma subset of 6meta-
VOIs plus 6 asymmetry values reaching an area under the ROC curve of .947, significantly larger than the one ob-
tained by the PALZ score. High accuracy in discriminatingMCI converters fromhealthy controlswas reached by a
non-linear classifier based on SVM applied on predefined anatomo-functional regions and inter-hemispheric
asymmetries. Data pre-processingwas automated and simplified by an in-house createdMatlab-based script en-
couraging its routine clinical use. Further validation toward nonconverter MCI patients with adequately long
follow-up is needed.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
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diagnosis of Alzheimer3s Disease (AD) by the International Working
Group (IWG) in 2007 and 2010 (Dubois et al., 2007; Dubois et al.,
2010) and in the new diagnostic criteria of AD by the National Institute
of Aging–Alzheimer Association (NIA–AA) (McKhann et al., 2011). No-
tably, FDG-PET induced substantial changes in the diagnosis and
pharmacological management of patients with dementia, and in recog-
nizing AD among atypical cases (Laforce et al., 2010). Moreover, FDG-
PET has been included in the NIA–AA diagnostic criteria of Mild Cog-
nitive Impairment (MCI) due to AD (Albert et al., 2011; Sperling
et al., 2011) while the recently proposed IWG-2 research criteria hy-
pothesize its role as a disease evolution rather than as a pure diag-
nostic biomarker (Dubois et al., 2014). All these new criteria are
based on evidence accumulated since 1984 (McKhann et al., 1984)
but need now to be applied and verified, i.e., validated, in large pa-
tient populations. This process is ongoing and available data are in-
deed encouraging (Lucignani and Nobili, 2010).

However, an emerging issue, as well as for atrophy indexes with
Magnetic Resonance Imaging (MRI), is how to measure or evaluate
the information contained in the FDG-PET scans3 data to be used in clin-
ical routine at the individual level. The metrics chosen to evaluate
hypometabolism may carry variability in accuracy as high as the differ-
ence in accuracy betweendifferent biomarkers (Frisoni et al., 2013). The
commonest way is the visual reading that is the cornerstone of any re-
port but it may not be accurate enough (Foster et al., 2007; Patterson
et al., 2010) particularly at the early stages of the disease (i.e. MCI) or
when expert readers are not available on site. For this reason, some au-
tomated software, either free on the web (such as Statistical Parametric
Mapping, SPM, and 3D-Stereotactic Surface Projections, 3D-SSP) or
traded on the market (such as the T-sum computation and the PALZ
score embedded in PMOD®) been applied to analyze patients3 scans.
Such as for T-sum, accuracy may vary between patients with AD-
dementia and patients with MCI, as it has been shown for MRI
(Chincarini et al., 2014).Machine learning and pattern recognition algo-
rithms have also been developed to aid in neuroimage analyses — for a
review see Lemm et al. (2011).

Recently, using various automated image-based classification
methods, efforts have been made to discriminate AD and MCI patients
from healthy controls by MRI (Cuingnet et al., 2011), FDG-PET (Arbizu
et al., 2013; Gray et al., 2012; Illan et al., 2011; Toussaint et al., 2012),
in amultimodal fashion (Zhang et al., 2011) or implementing univariate
and multivariate analyses (Toussaint et al., 2012), cross-sectional and
longitudinal information (Gray et al., 2012), image projection onto a
feature space (Illan et al., 2011) and atlas- (Cuingnet et al., 2011) and
manually- (Zhang et al., 2011) based segmentation methods.

Most of these studies were conducted in large cohorts of patients
from the Alzheimer3s Disease Neuromaging Initiative (ADNI) database
and reached a statistical accuracy in discriminating AD patients from
controls of 93% when using three biomarkers (MRI, FDG-PET and CSF)
(Zhang et al., 2011) and higher than 90% with FDG-PET only (Arbizu
et al., 2013; Gray et al., 2012; Illan et al., 2011). However accuracies
were substantially lower in studies in which MCI (later converted to
AD) was considered instead of patients with full-blown AD dementia
(Cuingnet et al., 2011; Toussaint et al., 2012; Zhang et al., 2011). Though
FDG-PET has been shown to correlate with the severity of cognitive
impairment (Chen et al., 2010), subtle abnormalities at the earliest (pro-
dromal) stages of the diseasemay bemore difficult to be detected. Yet, it
is exactly at these stages that precise diagnosis and, possibly, prognosis
are needed.

In fact, although effective disease-modifying drugs are still in the
pipeline, there is no doubt that these should be used as earlier as possi-
ble in the natural history of the disease since a critical issue inMCI is the
possible conversion to AD and biomarkers able to predict this event
with high accuracywould allow for all possible therapeutic intervention
to be immediately implemented. As a consequence, the need of an early
diagnosis in faint symptomatic patients is mandatory and even in the
era of amyloid-PET, the demonstration of synaptic dysfunction at
specific brain sites maintains a high positive predictive value (Dukart
et al., 2013). In the case of AD the validation of methodologies aiming
at predicting disease progression should be performed in two different
stages: (i) assessment of the capability to differentiate normal aging
fromMCI; and (ii) assessment of the capability to predict the conversion
of MCI to AD.

In the present study we aimed at evaluating the accuracy of a meth-
od implementing automated Volume of interest (VOI)-based segmenta-
tion and Support Vector Machine in discriminating a large sample of
patients with MCI who later converted to AD from healthy controls.
All clinical-neuropsychological diagnosis and FDG-PET have been col-
lected in five centers of the European Alzheimer3s Disease Consortium
(EADC). The accuracy of the present method was evaluated by compar-
ison with an already validated discriminating technique (Herholz et al.,
2002) by the application of PALZ scoring to the same sample of patients
and controls.

2. Materials and methods

2.1. Subjects

Patient and control selection and definition as well as PET technical
details in the five EADC centers have been reported in previous papers
(Albert et al., 2011; Morbelli et al., 2012; Morbelli et al., 2013). Local
ethics committee approved the project and all subjects signed the
informed consent. Briefly, patients with amnestic MCI according to
the current criteria (Albert et al., 2011) were followed by clinical-
neuropsychological assessment and only those developing dementia
of the AD type during the observation period (mean conversion time
22.6 ± 16.0 months, range 6–42) were considered for this study
(MCI-converters). These were sixty-two patients, 34 women and
28 men, age range: 54–86 years (mean: 72.3 ± 8.2); mean MMSE
score at the time of FDG-PET 27.0 ± 1.5. One hundred and nine
healthy subjects investigated in the same centers, including 57
women and 52 men (age range: 52–83 years, mean: 66.8 ± 6.5;
mean MMSE score at the time of FDG-PET: 29.3 ± 1.0) served as
controls. Their health status was checked again with a clinical inter-
view about 1 year later (mean: 11.8 ± 4.8 months). Having relatives
affected by dementia was not an exclusion criterion for healthy con-
trols. For both patients3 and controls3 groups, MRI evidence of major
stroke or brain mass was considered as an exclusion criterion, while
white matter hyperintensities, leucoaraiosis and lacunae did not
constitute an exclusion criterion if the Wahlund score was b3 in all
regions (Wahlund et al., 2001). Drugs known to interfere with
brainmetabolism and perfusion were slowly tapered andwithdrawn
whenever possible, before undergoing neuropsychological and FDG-
PET examinations. This was successfully achieved in most patients
and controls, with just 14 patients and 8 controls taking stable
doses of selective serotonin reuptake inhibitors and none taking
benzodiazepines. Mean age was significantly different between pa-
tients and controls. In order to take physiological effects of age and
gender on PET data into consideration, and to distinguish these ef-
fects from changes due to pathological condition, the variations of
PET data as function of age and gender were analyzed in controls.

2.2. Image acquisition and preliminary analysis

FDG-PET was performed in all centers, according to the European
Association of Nuclear Medicine guidelines (Varrone et al., 2009). Injec-
tion, acquisition and image reconstruction protocols are detailed in
a previous paper of the EADC study group (Morbelli et al., 2012).
DICOM files were exported and converted into Analyze format. At a
preliminary step, MCI-converter patients were compared with con-
trols by Statistical Parametric Mapping (SPM8) (Friston et al., 1994)
in order to verify the well known pattern of posterior cingulated and
temporoparietal hypometabolisms in early AD. To avoid inconsistencies
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deriving from the use of the default SPM brain H2O template (Gispert
et al., 2003), PET scans were normalized using a customized brain FDG
PET template, obtained from brain PET and MR imaging scans of 27
healthy subjects as detailed elsewhere (Morbelli et al., 2012). After tem-
plate editing, all brain PET scanswere processed by affine and nonlinear
spatial normalization into the stereotaxic space of the Montreal Neuro-
logical Institute through the study-customized FDG template using
SPM. The spatially normalized sets of images were then smoothed
with an 8-mm isotropic Gaussian filter to blur individual variations in
gyral anatomy and to increase the signal-to-noise ratio. Brain PET
from MCI-converter patients were compared on a voxel-by-voxel
basis to those from the normal controls using a “two-sample t-test” de-
sign of SPM8 (Friston et al., 1994) implemented in Matlab R2014a
(MathWorks, Natick, Massachusetts, USA). The significance threshold
was set at p b 0.05, corrected for multiple comparisons with family
wise error (FWE). Only clusters containing more than 100 voxels were
considered to be significant. Age, sex and center were included in the
analysis as confounding variables.

2.3. Region of interest identification and data preprocessing

Mean FDG uptake values were computed in 45 anatomical volumes
of interest (VOIs) in each hemisphere (90 VOIs) as defined by the AAL
Atlas (Tzourio-Mazoyer et al., 2002).

The dataset to be analyzed was obtained by an in-house created
Matlab-based script that automatically processedmean FDG uptake sig-
nal intensity from each of the 90 AAL VOIs. The mean signal intensities
computed for each VOI were normalized within each subject to the av-
erage intensity of the cerebellar VOIs included in AAL as defined by
Schmahmann et al. (1999). This choice was based on the knowledge
that the cerebellum is poorly affected by the AD pathological process
and on the evidence that, when using the cerebellum instead of whole
brain counts as the reference region, accuracy in distinguishing AD
patients from controls increases (Soonawala et al., 2002). Next, the
number of VOIs was further reduced by merging regions with similar
anatomo-functional characteristics into meta-VOIs in order to decrease
the number of variables for statistical analysis and to verify if the analy-
sis of specific and functionally meaningful meta-VOIs might contribute
to characterize the pathological process. All these calculationswere per-
formed by theMatlab script in a single step allowing a substantial spare
of time and simplifying the whole process. Twelve meta-VOIs were
constructed in each hemisphere: 1. Occipital Cortex (Calcarine/Lin-
gual/Inferior Occipital/Middle Occipital/Superior Occipital Gyri); 2. Thala-
mus/Putamen/Pallidum/Caudate; 3. Parahippocampal gyrus/Amygdala/
Hippocampus/Insula; 4. Orbito-frontal Cortex (Inferior Frontal/Medial
Frontal/Superior-Orbital Frontal Gyri); 5. Frontal Cortex (Middle
Frontal/Superior Frontal/Superior-Medial Frontal Gyri); 6. Cuneus/
Fusiform Gyrus/Precuneus; 7. Postcentral Gyrus/Precentral Gyrus/
Supplementary Motor Area; 8. Parietal Lobe (Inferior Parietal/Superior
Parietal Gyri); 9. Anterior Cingulate Gyrus, 10. Posterior Cingulate
Gyrus, 11. Temporal Lobe (Inferior Temporal/Middle Temporal/
Superior Temporal Gyri), and 12. Temporal Pole (Middle Temporal
Pole/Superior Temporal Pole Gyri).

Data from control subjects were first analyzed by applying a General
Linear Model (GLM) to evaluate the effect of age and gender and conse-
quently correct FDG-PET analyses accordingly. This analysis was restrict-
ed to controls in order to separate possible physiological weakening of
metabolic activity with age (and gender differences) from the effect of
pathological conditions whose probability increases with age. Discrimi-
nant analysis was performed by a non-linear classifier based on the Sup-
port Vector Machine (SVM) method with Radial Basis Functions (Cortes
and Vapnik, 1995). The procedure was independently applied to the dif-
ferent datasets extracted from the same groups of PET images in order to
evaluate the influence of data preprocessing and to identify the regions
with the highest statistical impact. Each dataset included cerebellum-
normalized FDG-PET values relevant to a particular set of VOIs. Since
asymmetric metabolism has often been found in pathological condition
(Kovalev et al., 2006; Rodriguez et al., 1993; Zahn et al., 2004), absolute
values of inter-hemispheric asymmetries were also considered and eval-
uated, for each VOI, as:

asyvoi ¼
abs nvvoi;l−nvvoi;r

� �

nvvoi;l þ nvvoi;r

where nvvoi,x is the normalized FDG value relevant to the right (r) or left
(l) hemisphere and abs() stands for the absolute value.

The two basic datasets were made up by the normalized values rel-
evant to the 90 (45 bilateral) AAL regions and by the normalized values
relevant to the 24 (12 bilateral) anatomo-functional homogeneous
meta-VOIs. Two other datasets were obtained by adding hemispheric
values to each of the previous ones: 90 VOIs plus 45 asymmetry values
for the AAL regions (135 values) and 24 VOIs plus 12 asymmetry values
for the meta-VOIs. This last dataset (36 values) was then the starting
point to explore the accuracy of a smaller set of variables by the applica-
tion of a step-wise backward selection procedure (by removing the less
influential variables, one at a time).

In order to evaluate our VOI-based classifier with reference to an
already validated system, the PMOD software (PMOD Technologies,
http://www.pmod.com) was used for automatic, voxel-based evalua-
tion of scans with the ‘Alzheimer’ option computing the ‘Probability of
ALZheimer’ or PALZ score. The PALZ score (Herholz et al., 2002) is a
voxel-based parametric mapping method yielding diagnostic informa-
tion on brain regions that are typically affected in AD: it aims at discrim-
inating AD from healthy controls above 50 years of age. Individual FDG-
PET images are compared to a fixed database of normal elderly scans
through a voxel-wise t-test, including age as confounding variable.
The PALZ score is computed as the sum of t-scores in a pre-defined
AD-pattern mask and is compared with a threshold for abnormality
drawn from the normal elderly database: PALZ-score higher than
threshold (11,089) indicating abnormal FDG-PET. As some centers pro-
vided DICOM files and some others provided Analyze files, DICOM files
were converted into Analyze format. In fact, the use of different formats
gives rise to slight differences in PALZ scores, as already outlined in a
previous paper (Caroli et al., 2012). Preliminary to the PALZ score com-
putation, scans in Analyze format were checked for display orientation
and eventually reoriented to correct anatomic position.

2.4. Statistics

The reliability of the discriminationwas evaluated by a series of con-
ventional parameters. For each classification procedure (PALZ-score and
VOI-based with different datasets) we evaluated accuracy, sensitivity,
specificity, positive and negative likelihood ratios, odds ratio and the
area under the Receiver Operating Characteristic (ROC) curve (AUC).
All these parameters were evaluated by a cross-validation procedure
which entails the separation between the model fitting and testing to
enable generalization of results and to prevent overfitting (the adapta-
tion to features peculiar only to the study sample). Cross-validation
was implemented by the ‘leave-one-out’ technique in which each sub-
ject was classified by a model fitted to all remaining ones, so creating
a virtually-independent testing set with the same size of the original
sample. As a by-product of the SVM training we could calculate the
ranking for each region, that is a roughmeasure of how relevant is a par-
ticular feature to the outcome of the classifier.

All parameters measuring discrimination capability were estimated
with their 95% confidence intervals (CIs) whichwere computed accord-
ing to the characteristics of each parameter. The Wald interval
with exact binomial probabilities was applied to sensitivity, specificity
and accuracy (Brown et al., 2001); CIs for positive (+LR) and negative
(−LR) likelihood ratios were estimated according to the Simel method
(Simel et al., 1991); CIs for the odds ratio were estimated by the

http://www.pmod.com
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conventional log-transform method (Glas et al., 2003) while CIs for the
ROC-AUC were estimated by the bootstrap method described by Qin
and Hotilovac (2008). For a comparison between the results obtained
with different procedures, the ROC-AUCs were compared by evaluating
the z-value for paired scores according to Hanley and McNeil (1983).

Discriminant analysis by SVM and following ROC curve analysis and
accuracymeasurementswere performed by using the Statistics Toolbox
of Matlab R2014a (MathWorks, Natick, Massachusetts, USA).

3. Results

In the preliminary comparison of whole brain FDG values at the
group level using SPM8, relative hypometabolism was found in the bi-
lateral precuneus, and posterior cingulate, temporo-parietal and frontal
cortices, as expected (Fig. 1, Supplementary Table 1).

GLM analysis of normalized regional FDG values in the control sub-
jects as a function of age and gender showed a significant effect of region,
and region × gender interaction for both the partition into 90 AAL regions
(region effect: F89,9434 = 11.42, p b 0.0001; region × gender interaction:
F89,9434 = 5.18, p b 0.0001) and for the partition into 24 meta-VOIs (re-
gion effect: F23,2438 = 11.34, p b 0.0001; region × gender interaction:
F23,2438 = 6.67, p b 0.0001). No significant effect was found for age or
for the age × region interaction. Normalized regional values were accord-
ingly corrected for the effect of gender.

Discriminant analysis by SVM enabled the classification of subjects
with an accuracy ranging between .91 and .83 as a function of data orga-
nization (Table 1). The best values were obtained from the 90 AAL
Fig. 1.Metabolic differences between healthy controls andMCI patients converting toAD. Tree-d
significantly lower in MCI-converters(n= 62) than in healthy controls (n= 109) (threshold p
row left:medial left view; top row right:medial right view; second row left: posterior view; sec
bottom row left: view from below; and bottom row right: view from above. Talairach coordina
regions (90R) and from a subset of 6 meta-VOIs plus 6 asymmetry
values (6R + 6A). Relatively less accurate classification was obtained
with the 24 meta-VOIs (24R) and with the 90 AAL regions with associ-
ated asymmetry values (90R+ 45A). As for the subset 6R + 6A, which
provided the overall best classification (sensitivity: .92, specificity: .91),
the relevant AAL regions were ranked: 1. Parahippocampal Gyrus/
Amygdala/Hippocampus/Insula (left), 2. Frontal Cortex (left), 3.
Postcentral Gyrus/Precentral Gyrus/Supplementary Motor Area (left),
4. Parietal Cortex (right), 5. Anterior Cingulate (left), and 6. Posterior
Cingulate (left). In the same subset, the most relevant AAL regions for
asymmetry values were: 1. Occipital Cortex, 2. Pallidus/Caudate
nucleus/Thalamus, 3. Parahippocampal Gyrus/Amygdala/Hippocampus/
Insula, 4 Orbito-frontal Cortex, 5. Frontal Cortex, and 6. Cuneus/
Fusiform/Precuneus.

The high rate of correct classification, particularly for the datasets
90R and 6R+6A,was emphasized by the high positive likelihood ratios
(the ratio between the probabilities of positive test in patients with re-
spect to controls) and low negative likelihood ratios (the ratio between
the probabilities of negative test in patients with respect to controls)
and by the high diagnostic odds ratios (the ratio between the odds of
positivity in patients with respect to controls). The values of these pa-
rameters are reported in Table 1with relevant CIs showing a large over-
lapping among the different datasets.

The same measures (with relevant confidence intervals) are re-
ported for the classification based on the PALZ-score. We first con-
sidered the classification based on the standard fixed threshold
(PALZ-score = 11,089) which yielded a high specificity (.92) but a
imensional rendering of SPManalysis showing those regions inwhich 18F-FDGuptakewas
b 0.05, corrected for multiple comparisons with the family-wise error (FWE) option). Top
ond row right: frontal view; third row left: right-side view; third row right: left-side view;
tes and further details are provided in Supplementary Table e1.



Table 1
Performancemeasures of the Support VectorMachine classifier as applied to different datasets (value and 95% confidence intervals) and comparedwith PALZ discrimination analysis tool.

90R 24R 90R + 45A 24R + 12A 6 R + 6A PALZ (Th = 11,089) PALZ (Th = 8116)

Accuracy .90 (.86–.95) .85 (.79–.90) .83 (.77–.89) .87 (.81–.92) .91 (.87–.95) .82 (.75–.87) .80 (.73–.85)
Sensitivity .90 (.83–.98) .84 (.75–.93) .74 (.63–.85) .87 (.79–.95) .92 (.85–.98) .65 (.52–.75) .77 (.65–.86)
Specificity .90 (.84–.96) .85 (.79–.92) .88 (.82–.94) .86 (.80–.93) .91 (.85–.96) .92 (.85–.96) .82 (.73–.88)
Likelihood ratio + 8.95 (5.08–15.78) 5.71 (3.59–9.10) 6.22 (3.66–10.58) 6.33 (3.92–10.22) 10.02 (5.52–18.17) 7.82 (4.07–15.00) 4.21 (2.78–6.41)
Likelihood ratio − .11 (.05–.23) .19 (.11–.34) .29 (.19–.45) .15 (.08–.29) .09 (.04–.21) .39 (.28–.54) .28 (.17–.44)
Odds ratio 83.15 (29.17–237.0) 30.22 (12.79–71.42) 21.23 (9.43–47.81) 42.30 (16.84–106.2) 112.9 (36.75–346.6) 20.20 (8.57–47.64) 15.26 (7.08–32.88)
Area under curve .93 (.87–.97) 0.89 (0.82–0.94) .88 (.82–.93) .92 (.86–.96) .95 (.89–.98) .87 (.80–.91) .87 (.80–.91)

The classifier was applied to different datasets obtained by different pre-processing of the same set of images.
90R: 90AAL regions; 24R: 24 anatomo-functionalmeta-VOIs; 90R+45A: same as 90R plus inter-hemispheric asymmetries; 24R+12A: same as 24R plus inter-hemispheric asymmetries;
6R+ 6A: 6 meta-regions and 6 inter-hemispheric asymmetries drawn from step-wise backward selection. All parameters, but the area under ROC curve, are dependent on the threshold
which was chosen looking for the best point along the ROC curve: considering the PALZ tool the value of the parameter T-sum associated to this point was 8116 (last column) while the
standard threshold (implemented in the commercially available software package by PMOD Technologies, Switzerland) is set at 11,090 (second to the last column).
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relatively low sensitivity for MCI-converter patients. A different thresh-
old (8116) drawn from the point on the ROC curve closer to the optimal
one (sensitivity= specificity = 1) yielded a higher sensitivity (.77) but
lower specificity (details in Table 1).

The ROC curves relevant to the PALZ-score and 3 of the analyzed
datasets (90R, 24R and 6R+6A) are showed in Fig. 2. Pairwise compar-
isons between the VOI-based procedures and PALZ-score showed that
the procedure based on the best fitted meta-regions (6 selected re-
gions + 6 asymmetries) performed significantly better than the PALZ-
score (greater AUC: z = 2.14, p b 0.02) and the same was true for the
initial 90 ALL regions (z = 1.68, p b 0.05) while the difference between
the 24-meta-regions and PALZ classification was not significant (z =
0.61, N.S.).
Fig. 2. Receiver Operating Characteristic curves: classifier comparisons. Receiver operating cha
chine classifier as applied to 3 different datasets drawn from the same set of neuroimages: 90R
and 6 inter-hemispheric asymmetries drawn from step-wise backward selection. The best clas
metry values, yielding 92% sensitivity and 91% specificity. Both 6R + 6A and 90R performed si
4. Discussion

Our data confirm and strengthen not only the value of FDG PET anal-
ysis as a valuable tool in the diagnostic process for AD but also the capa-
bility of automated classifiers to accurately identify the disease at the
stage of MCI, in our sample on average 2 years before conversion.

In a clinical setting inwhich neuroimaging is considered to be a sup-
portive feature, effective tools for automatic identification of AD-related
hypometabolic patterns at the individual level are needed. In this re-
spect, the relevance of automated image-based classifications in clinical
routine increases if the implementedmethodwill overcome the accura-
cy of 90%, reached by the consensus diagnostic criteria for AD as validat-
ed against neuropathology (Ranginwala et al., 2008), which is especially
racteristic (ROC) curves obtained by PALZ discrimination tool and by Support Vector Ma-
: 90 AAL regions; 24R: 24 anatomo-functional meta-regions; and 6R+ 6A: 6 meta-regions
sification, marked by an asterisk, was obtained by a subset of 6 meta-regions and 6 asym-
gnificantly better than PALZ-score (6R + 6A: p b 0.02; 90R: p b 0.05).
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of value if AD is still in its prodromal phase, i.e. MCI. In our study all 62
MCI patients converted to AD after a mean follow-up time of about
2 years allowing to compare our discrimination values to a robust gold
standard, although if not to neuropathology. Furthermore, the recruited
subjectswere carefully stratified by different centers undergoing neuro-
psychological assessment. This accurate selection has decreased the
possibility for the results to be biased by variables out of control, notably
the lack of conversion and stable or improvingmemory function in non-
convertingMCI patients (Pagani et al., 2010). In addition, the metabolic
differences found in the preliminary analysis between the two cohorts
(Fig. 1) are fully consistentwith the prevalent literature on themetabol-
ic impairment in MCI (see Bohnen et al., 2012 and Nobili et al., 2014 for
review) supporting the appropriateness of group selection and the reli-
ability of the classification analyses.

The proposed method shows an accuracy of 91% in discriminating
MCI-converters from healthy controls with an area under the ROC
curve of almost 95% being superior to previous investigations inMCI pa-
tients applying similar techniques based on unimodal biomarkers and
reporting sensitivity and specificity slightly higher than 80% (Salas-
Gonzalez et al., 2010; Toussaint et al., 2012).

In this respect the accuracy of our analyses is comparable to those of
investigations seeking to classify AD-dementia and healthy controls
(Bloudek et al., 2011; Herholz et al., 2002; Ishii et al., 2006; Kakimoto
et al., 2011; Lehman et al., 2012), even when multimodal biomarkers
were combined (Zhang et al., 2011).

We compared our results with the ones obtained by the PALZ-score, a
procedure which was applied to discriminate AD patients from healthy
elders with high sensitivity and specificity, both around 93% according
toHerholz et al. (2002). The sensitivity of the PALZ score considerably de-
creased when applied to our sample of MCI-converter patients and also
the choice of a threshold fitted to this sample yielded an overall accuracy
around 80%, in linewith previous reports inwhich the PALZ score inMCI-
converter patients showed a sensitivity of 79% in a naturalistic population
(Galluzzi et al., 2010). The present VOI-based approach associated with
an SVM classifier enabled a significantly better performance reaching an
accuracy above 90% which is of particular interest when applied to MCI
patients. On the other hand, the sensitivity of the PALZ score is based on
AD patients reaching 83% in very mild (Herholz et al., 2002) and 85% in
mild AD patients (Herholz et al., 2011), but it has not been specifically
trained and validated in prodromal AD patients.

Besides the high accuracy achieved by our classification method, its
potential interest in everyday clinical routine lies in the implementation
of a readily available anatomical atlas and in the use of an in-house
Matlab-based script able to assess and sort fully automatically in a few
minutes the uptake values in more than hundred segmented VOIs and
meta-VOIs making them available for further statistical analyses. The
processing time and the use of the script are easier than similar VOI
and meta-VOI analyses in which computation time is longer and auto-
mation procedures are more complex (Caroli et al., 2012).

The Parahippocampus Gyrus/Amygdala/Hippocampus/Insula com-
plex was found to be among the most valuable 6 meta-VOIs in discrim-
inating MCI-converters from controls both for its uptake values and for
asymmetry index. This replicates the findings of Gray et al. who found
by SVM, in AD and healthy control cohorts, the right hippocampus
and amygdala to be among the few regions showing changes in cross-
sectional and longitudinal data, the amygdala being the only region ac-
counting for the difference between stable and converting MCI (Gray
et al., 2012). The importance of these structures in the onset and devel-
opment of AD is well known but it is seldom reported in PET studies
using voxel-based analysis tools (such as SPM) possibly due to the con-
tribution of smoothing to the image processing, likely decreasing the
possibility to correctly identify and/or segment these small structures
(Mosconi, 2005).

On the other hand, althoughMCI/ADdiagnostic criteria usually point
to temporo-parietal and posterior cingulate cortex hypometabolisms
we also found the frontal and orbitofrontal cortices among the predictors
accounting for the highest accuracy both for uptake and asymmetry
values. These regions involved in episodicmemory encoding and retrieval
have been previously described to be hypometabolic inMCI converters in
several studies (Drzezga et al., 2003; Nobili et al., 2008) and correlated
across studies to memory and cognitive decline being preferentially
affected at the time of dementia onset (Anchisi et al., 2005; Caselli et al.,
2008; Chen et al., 2010; Herholz et al., 2002; Langbaum et al., 2009;
Mosconi et al., 2004b). However, the power of the present analysis
including large cohorts of subjects and a sophisticated regional and
asymmetry analysis might have allowed the identification of subtle
but significant changes already at the early stages of the disease. Frontal
and orbitofrontal cortex regions were also grouped by exploratory data
analysis into separated components (Nobili et al., 2008; Pagani et al.,
2009) and, besides showing significantly lower FDG uptake in MCI con-
verters, in conjunctionwith a verbalmemory test, were among the bet-
ter discriminators betweenMCI-converters and healthy controls, with a
sensitivity of 82% and a specificity of 100% (Nobili et al., 2008).

The presence of the Postcentral Gyrus/Precentral Gyrus/Supplemen-
taryMotor Area complex among themost discriminatingmeta-VOIs un-
derscores an interesting methodological issue. These regions showed
relatively increased uptake at the group level as compared to controls
(results not shown), likely due to the semi-quantitative nature of the
analyses, that is, in a context in which large portions of the brain have
a relatively decreased uptake, preserved regions show a proportionally
higher uptake. The higher the difference between affected and spared
regions, the higher the probability of neurodegeneration. This is consis-
tent with the study by Chen and coworkers analyzing changes in FDG
uptake in MCI and AD patients (Chen et al., 2010). Looking for the best
normalization factor to analyze metabolic decline in MCI they found a
cluster of spared voxels mainly located in thewhitematter and somato-
sensory cortex. In the same study the authors suggested a method to
characterize metabolic decline by mean values drawn from the best
clusters of voxels, as evaluated in a training set, rather than analyzing
predefined anatomical or functional volumes, which might vary in
their effect, size and location. We acknowledge that the identification
of data-driven regions might improve the appropriateness of data to
be analyzed although it implies longer processing time. On the other
hand, our method, by taking into account relatively large anatomo-
functional VOIs might have reduced the variance of data. Furthermore
by decreasing the number of variables and applying a non-linear classi-
fication algorithm able to automatically assign an appropriate weight
and role to each affected or spared region we obtained a high classifica-
tion accuracy supporting the validity of the approach.

The evaluation of asymmetries added value to the analyses and fits
with the clinical experience in image reading that often highlights
differential hemispheric uptake at the very early stages of the disease
while bilateral and more symmetric involvement is rather a feature of
overt stages (Herholz, 1995). On the other hand a feature of neurode-
generation is a high gradient between more and less affected regions
and in this group of MCI-converters the asymmetry index captured
metabolic patterns able to yield maximal accuracy. The evaluation of
asymmetries along with the ability to capture contrasts between affected
and spared regions is the key feature enabling the present SVMmodel to
be sensitive to subtle variation of FDG uptake patterns in the early phase
of the disease also in comparison with the PALZ scores, which simply
sums the voxel-based t-values in the expected hypometabolic regions.

A rather unexpected result of this study is the lack of a statistically
significant effect of age on brain metabolism. The effect of aging on
brain blood flow andmetabolism is indeed a well known phenomenon,
especially in the frontal regions (De Santi et al., 1995). However, such an
effect is mainly detectable when all the age ranges are considered, the
youngest decades (i.e. from 20 to 50 years of age) clearly showing the
highest values but the effect is smoother when considering only
middle-aged and elderly subjects. Indeed, in the present study only sub-
jects (controls and patients) in the last decadeswere included. Thismay
have accounted for the lack of a statistically significant effect.
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A limitation of the study is that MCI-converters were discriminated
only with respect to healthy controls. Further studies are needed to
test if the capability of the used automatic classifier to identify MCI pa-
tients about 2 years before conversion will also apply to cohorts of MCI-
non-converting to AD or to patients bearer of other confounding patho-
logical conditions. In this respect to properly select the latter groups for
statistical analyses a follow-up time as long as 7 years is required
(Bennett et al., 2002) and these analyseswill be the next step to validate
the presentmethodology. A further limitation of this study relies on the
fact that we did not evaluate the possible confounding effect of apolipo-
protein E genotype, as these data were available for just some of the pa-
tients. Indeed, it has been demonstrated that APOE4 carriers may show
peculiar, and more extensive, regions of hypometabolism with respect
to the general AD population thus possibly having partially influenced
the results of the present analysis (Mosconi et al., 2004a). Similarly,
we did not exclude healthy controls whose relatives were affected by
dementia and themean follow-up time of healthy controlswas relative-
ly short (i.e. 1 year). Thus, we cannot exclude that someone among con-
trols may have developed cognitive impairment in the following years,
as it was shown in previous longitudinal studies (Mosconi et al., 2007).
Nevertheless, this would have rather brought on a lower accuracy in
distinguishing controls from MCI patients. Finally, the use of different
scanners is a further potential limitation of this study, although we
tried to minimize any such limitation by using a multiple-factor ap-
proach including the balanced number of patients and controls among
centers.

In conclusion, in this study we reached a particularly high accuracy
in discriminating MCI-converters from healthy controls thanks to the
application of a non-linear classifier based on SVM preceded by individu-
ation of anatomo-functional meta-VOIs, normalization to cerebellum and
evaluation of inter-hemispheric asymmetries. It has to be underscored
that this quite complex and time-consuming data pre-processing was
automated and simplified by the in-house created Matlab-based script
encouraging its implementation in clinical routine to assist in the diagno-
sis of AD in aMCI possibly along with MRI and CSF biomarkers.

Even in the era of amyloid PET imaging that has been licensed by
regulatory Agencies to exclude rather than to confirm AD, FDG-PET
maintains a role not only as a marker of disease evolution but also as
an important diagnostic biomarker in the early stages of the disease.
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