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Lesion-behaviour mapping analyses require the demarcation of the brain lesion on each (usually transverse)
slice of the individual stroke patient’s brain image. To date, this is generally thought to be most precise when
done manually, which is, however, both time-consuming and potentially observer-dependent. Fully automated
lesion demarcation methods have been developed to address these issues, but these are often not practicable
in acute stroke research where for each patient only a single image modality is available and the available
image modality differs over patients. In the current study, we evaluated a semi-automated lesion demarcation
approach, the so-called Clusterize algorithm, in acute stroke patients scanned in a range of common image mo-
dalities. Our results suggest that, compared to the standard of manual lesion demarcation, the semi-automated
Clusterize algorithm is capable of significantly speeding up lesion demarcation in the most commonly used
image modalities, without loss of either lesion demarcation precision or lesion demarcation reproducibility.
For the three investigated acute datasets (CT, DWI, T2FLAIR), containing a total of 44 patient images obtained
in a regular clinical setting at patient admission, the reduction in processing time was on average 17.8 min per
patient and this advantage increased with increasing lesion volume (up to 60 min per patient for the largest le-
sion volumes in our datasets). Additionally, our results suggest that performance of the Clusterize algorithm in a
chronic dataset with 11 T1 images was comparable to its performance in the acute datasets. We thus advocate the
use of the Clusterize algorithm, integrated into a simple, freely available SPM toolbox, for the precise, reliable and

fast preparation of imaging data for lesion-behaviour mapping analyses.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Lesion-behaviour mapping analyses that enable the mapping of clin-
ical deficits to the location of brain damage represent an indispensable
method for the study of human brain function (Rorden and Karnath,
2004). Specifically, their ability to demonstrate a causal relationship be-
tween a structural lesion and an observable deficit, means that they are
an important addition to modern neuro-imaging techniques that allow
us to measure and localise the neural correlates of task performance in
healthy subjects. Lesion-behaviour mapping analyses are most com-
monly performed in stroke patients as stroke lesions are focal, well-
defined and clearly visible in patients’ brain images (as opposed to
e.g., tumour lesions where the full extent of affected brain tissue often
extends beyond the visible tumour borders (see e.g. Karnath and
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Steinbach, 2011). Lesion-behaviour mapping analyses require the de-
marcation of the lesion border on each, usually transverse, slice of the in-
dividual patient’s brain image. To date, this is generally thought to be
most precise when done manually, which is, however, both time-
consuming and potentially observer-dependent (Ashton et al., 2003).
As a consequence, sample sizes studied in lesion-behaviour mapping
studies are typically small, which severely limits statistical power and
prohibits the application of new innovative methods like multivariate
pattern analysis (MVPA) to lesion data (shown in e.g. Smith et al,, 2013
to be possible in sufficiently large datasets).

To address these disadvantages associated with manual lesion de-
marcation, several fully automated lesion demarcation methods have
been proposed over the years. As the name implies, these methods do
not require any user interaction and as such are both less time-
consuming and, theoretically, less observer-dependent than manual
lesion demarcation. The most common type of fully automated lesion
demarcation methods rely on the comparison of each patient brain to
a reference dataset of neurologically healthy control brains (Gillebert
et al,, 2014; Mah et al,, 2014; Seghier et al., 2008; Stamatakis and
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Tyler, 2005; Wilke et al., 2003). In this method, the brain images of both
the patient and the controls are normalised to the same template.
Subsequently, the patient brain is statistically compared to the control
dataset on a voxel-by-voxel basis to identify “atypical areas” (i.e.
suspected lesions) where image intensity differs between patient and
controls.

The disadvantage of these fully automated lesion demarcation
methods, however, is that they may be less precise than manual demar-
cation as, in contrast to a human observer, they may fail to identify im-
aging artefacts. Moreover, a large practical drawback is that these fully
automated lesion demarcation methods require the collection of a suffi-
ciently large control dataset (Wilke et al., 2014). This drawback is
compounded by the fact that these fully automated lesion demarcation
methods can only be applied to stroke patient data that have the same
image modality as the control dataset. These issues are particularly
problematic when performing lesion-behaviour mapping analyses
with acute stroke patients, where scientists typically have to rely on im-
aging data obtained in a regular clinical setting. In most neurological de-
partments, image collection protocols performed at admission follow
clinical, not scientific criteria. For example, computed tomography
(CT) remains the modality of choice for many stroke patients at admis-
sion (El-Koussy et al., 2014), with advantages typically including the de-
finitive detection of haemorrhage, speed and cost-efficiency, as well as
fewer exclusion criteria than magnetic resonance (MR) imaging. Due
to the recent development of CT templates for spatial normalisation
(Rorden et al., 2012), these images no longer have to be excluded
from lesion-behaviour mapping analyses. However, having to rely on
clinical CT and MR images has several consequences for anatomo-
behavioural studies in acute stroke: First, often only a single image mo-
dality is available per patient. Second, the available image modality
often differs between patients (depending on time since stroke, contra-
indications for MRI, etc.) and thirdly, even within an image modality,
image acquisition parameters may differ between patients. This limits
the practical applicability of the fully automated lesion demarcation
methods described above in acute patient settings.

A possible solution to these issues has recently been offered in the
context of a semi-automated lesion demarcation approach developed
by Clas et al. (2012), the so-called Clusterize algorithm (“Clusterize”).
Semi-automated lesion demarcation methods typically combine a
fully automated detection of “abnormalities” (i.e. potential lesions)
with manual editing by the user to determine the final location and ex-
tent of the lesion (e.g. Wilke et al., 2011). In doing so, these methods aim
to combine the best of both worlds: the presence of fully automated
steps makes these methods less time-consuming than manual lesion
demarcation, while mandatory user interaction results in lesion demar-
cation that is more precise and/or less error-prone (in the sense that
they are closer to the results from the current gold standard, manual de-
marcation) than that obtained by fully automated lesion demarcation
methods. Clusterize combines a fully-automated clustering of the
image (using automatically-defined local intensity maxima and itera-
tive region growing) with a manual, interactive selection and modifica-
tion of the clusters-of-interest. Interestingly, while originally developed
to determine demyelination load in metachromatic leukodystrophy
using T2 images, Clusterize should theoretically be able to demarcate
lesions regardless of image modality, as long as the lesion can be sepa-
rated from directly adjacent healthy tissue on the basis of image

Table 1
Patient characteristics for each of the 3 acute datasets.

intensity (note, however, that this is also a mandatory prerequisite
when performing manual lesion delineation). Thus, this algorithm
might provide a practical, fast, and easy to implement option to delin-
eate the lesions of acute stroke patients.

In the current study, we therefore aimed to evaluate the perfor-
mance of Clusterize in acute stroke patients scanned with a range of
common image modalities (CT, DWI, T2FLAIR). We compared the
results of Clusterize to the results obtained with manual lesion demarca-
tion, with respect to the final lesion map, processing time, and inter-
rater reliability.

2. Methods
2.1. Imaging data

Three ischaemic acute stroke datasets were used, with a total of n =
44 images (see Table 1 for patient characteristics of each of the 3 acute
datasets). The first dataset contained 13 CT images from patients with
acute unilateral stroke, covering the whole brain with an in-plane reso-
lution of 0.4 x 0.4 mm and a slice thickness varying between 4.5 and
5.1 mm. The second dataset contained 16 diffusion-weighted MR im-
ages (DWI) from patients with acute unilateral stroke, covering the
whole brain with an in-plane resolution of 0.9 x 0.9 mm and a slice
thickness varying between 4.8 and 6.3 mm. The third dataset contained
15 T2FLAIR-weighted MR images from patients with acute unilateral
stroke covering the whole brain. Nine of these images had an in-plane
resolution of 0.9 x 0.9 mm and a slice thickness varying between 4.4
and 8.0 mm, the remaining 6 images had an in-plane resolution of
1.0 x 1.0 mm and a slice thickness varying between 2.0 and 2.2 mm.
These images from acute ischaemic stroke patients were collected as
part of the routine clinical investigation after the patient was admitted
to the Tiibingen Center of Neurology due to acute onset of neurological
symptoms.

2.2. Manual lesion demarcation approach

For each patient image of each of the 3 datasets, manual demarcation
of each brain lesion was performed by a trained rater. For each patient,
the boundary of the lesion was delineated directly on the individual
brain image for every single transverse slice using MRIcroN software
(http://www.mricro.com/mricron). The time required for manual le-
sion demarcation of each image of each of the 3 datasets was recorded
in minutes with a stopwatch.

2.3. Semi-automated lesion demarcation approach with the Clusterize
algorithm

For each patient image of each of the 3 datasets, semi-automated de-
marcation of each brain lesion was also performed with Clusterize (Clas
et al., 2012). This algorithm has been integrated into an easy-to-use,
freely available SPM toolbox (http://www.medizin.uni-tuebingen.de/
kinder/en/research/neuroimaging/software/). We used this toolbox
with SPM8, running under Matlab R2013b (The Mathworks, Inc., Natick,
MA).

First, we used Clusterize to perform a fully automated clustering of
the image on the basis of local intensity maxima and iterative region

Dataset Gender Mean age Time between stroke onset and imaging Lesion side Lesion location
CcT 6M,7F 65.9 years (42-80) 2.4 days (0-10) 41H,9RH 12 MCA, 1 MCA/PCA
DWI 10M,6F 58.4 years (42-80) 2.6 days (0-9) 1LH, 15RH 15 MCA, 1 PCA
T2FLAIR 12M,3F 57.8 years (41-80) 3.9 days (0-8) 1LH, 14 RH 13 MCA, 2 PCA

Legend: for age (at the time of imaging) and time between stroke onset and imaging the mean and range (in brackets) is given. For lesion side, LH = left hemisphere and RH = right
hemisphere. For lesion location, MCA = medial cerebral artery territory and PCA = posterior cerebral artery territory.
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growing (see Clas et al. (2012) for full details). To avoid oversegmented
results, a cluster extend volume threshold of 150 mm? (i.e. 0.15 cm?)
was used for the initiation of a cluster. To eliminate non-contributing
background voxels, a lower intensity threshold of 20% was used and
the intensity threshold was subsequently iteratively adapted in steps
of 1%. For each image slice, this ultimately results in a 3-dimensional
matrix with one 2-dimensional plane for each intensity threshold con-
taining the clusters found at that intensity threshold. The fully automat-
ed clustering was run in overnight batch jobs. Unattended processing
time was approximately 30 min for each image in the acute CT dataset
and approximately 1-2 min for each image in the acute DWI and
acute T2FLAIR datasets.

After this fully automated clustering of the image, the same trained
rater that also performed the manual lesion demarcation used Clusterize
to interactively select the cluster(s) corresponding to the lesion(s) (again
see Clas et al. (2012) for full details). If necessary, the size of the
cluster(s) was/were adapted by modifying the intensity threshold (i.e.
the optimal intensity plane was interactively selected from the automat-
ically computed 3-dimensional matrix). The time required for this man-
ual interactive selection and adaptation of the cluster(s)-of-interest of
each image of each of the 3 datasets was again recorded in minutes
with a stopwatch.

2.4. Comparison between manual and semi-automated lesion demarcation
approach

For each image of each dataset, the trained rater performed the man-
ual lesion demarcation first, followed by the semi-automated lesion
demarcation. Thus, the comparison between the manual and semi-
automated lesion demarcation approaches was potentially confounded
by effects of familiarity with the patient image. To address this
confound, we had the same trained rater redo the manual and semi-
automated lesion demarcation of all 3 datasets. Subsequently, when
comparing the manual and the semi-automated lesion demarcation ap-
proaches, we used the data from these second demarcation instances
where the rater was familiar with the patient image during both manual
and semi-automated lesion demarcation.

To compare the lesion maps generated by Clusterize to the lesion
maps generated by the gold standard manual delineation, we calculated
Dice’s similarity index (DSI; Dice, 1945) for each image for each of the 3
datasets, using the following formula:

2(manualAsemi — automated)
(manual + semi — automated ).

DSImanuaLsemi—automated =

The DSI is thus calculated by dividing twice the overlap between the
two maps by their sum, thereby taking into account both false positives
and false negatives, and ranges from 0 (no agreement) to 1 (perfect
agreement). The DSI has been compared with the kappa statistic (Zou
et al., 2004) and accordingly DSI values between .6 and .8 have been
considered good and DSI values >.8 have been considered near perfect
(Landis and Koch, 1977).

As the DSI can be insensitive to differences between the maps in sit-
uations where the overlap between the maps is high (DSI > .8), we ad-
ditionally calculated Jaccard’s coefficient of community (JCC; Jaccard,
1912), which is more sensitive to differences between the maps in
these situations, using the following formula:

jcc _ 2(manualArsemi — automated)
manual.semi-automated (1 qpyqlvsemi — automated ).

The JCCis thus calculated by dividing twice the overlap between the
two maps by their union and also ranges from 0 to 1. The relationship
between the DSI and the JCC is expressed as JCC = DSI / (2 — DSI). Con-
sequently, JCC values >.54 can be considered good and JCC values >.67
can be considered near perfect.

To assess whether the average DSI and/or JCC differed between the 3
acute datasets, we performed Kruskal-Wallis tests. To compare the time
required between manual and semi-automated lesion demarcation, we
performed a Wilcoxon signed-rank test for each of the 3 acute datasets.
Finally, to assess whether either DSI values, JCC values or differences in
processing time required between manual and semi-automated lesion
demarcation were associated with lesion volume, we performed
Spearman’s rank correlation analyses. A Bonferroni correction for multi-
ple comparisons was applied when appropriate and significance was as-
sumed when p < .05.

2.5. Inter-rater reliability

To assess inter-rater reliability, a second trained rater independently
redid the manual and semi-automated lesion demarcation of all 3
datasets. We used the intraclass correlation coefficient (ICC [model
2,1]) to quantify the inter-rater reliability of the volumes of the lesion
maps, both for the manual and the semi-automated lesion demarcation
approach for each of the 3 acute datasets. To assess whether the vol-
umes of the lesion maps differed systematically between the raters,
the lesion volumes from the first and second rater for each of the 3
datasets were statistically compared with Mann-Whitney-U tests.
Again, a Bonferroni correction for multiple comparisons was applied
when appropriate and significance was assumed when p < .05.

2.6. Confirmation of performance in chronic stroke patients

As mentioned in the Introduction section, performance of Clusterize
should theoretically be independent of image modality. As such, it should
be able to demarcate lesions not only in acute stroke patients with CT,
DWI or T2FLAIR images, but also in chronic stroke patient where the typ-
ical image modality is T1. To confirm this, we additionally assessed per-
formance of Clusterize in a dataset containing T1 images from patients
with chronic unilateral stroke. This dataset contained 11 T1-weighted
MRI images from patients with chronic perinatally acquired unilateral
medial cerebral artery stroke (5 male, 6 female; mean age 15.5 years,
age range 10-30; 7 left hemispheric stroke, 4 right hemispheric stroke).
These images were collected as part of a study on reorganisation follow-
ing early brain lesions (Juenger et al., 2011) and covered the whole brain
with a resolution of 1.0 x 1.0 x 1.0 mm. For this dataset, manual and
semi-automated lesion demarcation were performed as described
above and by the same trained raters, with the only exception that the
first rater performed the manual and semi-automated lesion demarca-
tion only once. Thus, in this dataset the comparisons between manual
and semi-automated lesion demarcation might be confounded by effects
of familiarity with the patient image.

3. Results

An example of the results from both manual and semi-automated le-
sion demarcation with Clusterize for a single patient of each of the 3
acute datasets is shown in Fig. 1.

3.1. Manual lesion demarcation approach

For the acute CT dataset, the average lesion volume was 28.64 (stan-
dard deviation [SD] = 33.81, 95% confidence interval [C]] = +18.38)
cm? for the first rater and 31.24 (SD = 36.31, CI = +19.73) cm® for
the second rater; this difference was not significant (U,g = .385,
p >.999) and the ICC was .993 (CI = .976 to .998). For the acute DWI
dataset, the average lesion volume was 22.03 (SD = 31.09, CI = +
15.23) cm? for the first rater and 22.51 (SD = 33.42, CI = +16.37)
cm?® for the second rater; this difference was not significant
(Usp <.188, p >.999) and the ICC was .973 (CI = .925 to .990). For the
acute T2FLAIR dataset, the average lesion volume was 15.59 (SD =
19.29, CI = +9.76) cm? for the first rater and 20.44 (SD = 26.89,
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Clusterize

Manual

Fig. 1. An example of the results from both manual and semi-automated lesion demarca-
tion with Clusterize in a single patient for each of the 3 acute datasets.

Cl = +13.61) cm? for the second rater; this differences was once again
not significant (Usg = .394, p>.999) and the ICC was .933 (Cl = .813 to
977).

Manual lesion demarcation required on average 19.6 (SD = 16.2,
Cl = + 8.8) minutes per patient for the acute CT dataset, 18.4 (SD =
214, CI = £10.5) minutes per patient for the acute DWI dataset and
25.1 (SD = 28.1, CI = +£14.2) minutes per patient for the acute
T2FLAIR dataset.

3.2. Semi-automated lesion demarcation approach with the Clusterize
algorithm

For the acute CT dataset, the average lesion volume was 28.24 (SD =
33.16, CI = +18.02) cm? for the first rater and 27.54 (SD = 32.86,
Cl = +17.86) cm? for the second rater; this difference was not signifi-
cant (Uyg = .026, p >.999) and the ICC was .994 (CI = .980 to .998).
For the acute DWI dataset, the average lesion volume was 21.71
(SD = 31.45, Cl = +15.41) cm? for the first rater and 19.39 (SD =
28.51, Cl = 4-13.97) cm? for the second rater; this difference was not
significant (Us; = .490, p >.999) and the ICC was .962 (Cl = .895 to
.987). For the acute T2FLAIR dataset, the average lesion volume was
15.59 (SD = 19.54, CI = +9.89) cm? for the first rater and 17.95

Dice’s similarity index

11
0.9'- T I T
0.8+ J'
0.7
0.6
0.5 T T T

CcT DWI T2FLAIR

(SD = 21.96, Cl = £11.11) cm? for the second rater; this difference
was once again not significant (Uso = .270, p >.999) and the ICC was
984 (CI = .953 t0 .995).

Semi-automated lesion demarcation took on average 4.4 (SD = 3.50,
Cl = 41.9) minutes per patient for the acute CT dataset, 2.3 (SD = 1.7.
Cl = 40.8) minutes per patient for the acute DWI dataset and 3.1
(SD = 2.7, CI = 41.4) minutes per patient for the acute T2FLAIR
dataset.

3.3. Comparison between manual and semi-automated lesion demarcation
approach

The average DSI between the manually and the semi-automatically
demarcated lesion maps was .85 (SD = .08, CI = +.04) for the acute
CT dataset, .86 (SD = .07, CI = £.03) for the acute DWI dataset and
.85 (SD = .10, CI = +.05) for the acute T2FLAIR dataset (see Fig. 2)
and did not differ significantly between the 3 datasets (H, = .180,
p = .914). For each of the 3 datasets, DSI values were significantly cor-
related with lesion volume (CT dataset: p;3 = .742, p = .012; DWI
dataset: p1g = .818, p <.001; T2FLAIR dataset: p15 = .696, p = .012),
with DSI values increasing as lesion volume increased. The average JCC
between the manually and the semi-automatically demarcated lesion
maps was .74 (SD = .10, CI = +.06) for the acute CT dataset, .76
(SD = .11, CI = +.05) for the acute DWI dataset and .75 (SD = .14,
Cl = 4.07) for the acute T2FLAIR dataset (see Fig. 2) and likewise did
not differ significantly between the 3 datasets (H, = .180, p = .914).
For each of the 3 datasets, JCC values were significantly correlated
with lesion volume (CT dataset: p;3 = .742, p = .012; DWI dataset:
p1s = .818, p <.001; T2FLAIR dataset: p;15 = .696, p = .012), with JCC
values increasing as lesion volume increased.

For each of the 3 datasets, the inter-rater reliability was comparable
between manual and semi-automated lesion demarcation (CT dataset:
ICC = .993 for manual vs. .994 for semi-automated; DWI dataset:
ICC = .973 for manual vs. .962 for semi-automated; T2FLAIR dataset:
ICC = .933 for manual vs. .984 for semi-automated) (see Fig. 3). More-
over, for each of 3 acute datasets, semi-automated lesion demarcation
was significantly faster than manual lesion demarcation (CT dataset:
W3 = 3.185, p = .003; DWI dataset: W5 = 3.186, p = .003; T2FLAIR
dataset: Wty5 = 3.300, p = .003) (see Fig. 3). For each of the 3 datasets,
the difference in processing time between manual and semi-automated
lesion demarcation was significantly positively correlated with lesion
volume (CT dataset: py3 = .827, p <.001; DWI dataset: p;g = .907,
p <.001; T2FLAIR dataset: p;5 = .888, p <.001). In other words, as lesion
volume increased, the reduction in processing time offered by the semi-
automated approach became more pronounced.

3.4. Confirmation of performance in chronic stroke patients
In the chronic stroke dataset, manual lesion demarcation took on av-

erage 140.5 (SD = 80.0, CI = 447.3) minutes per patient. The average
lesion volume was 37.75 (SD = 37.87, Cl = £22.38) cm? for the first

Jaccard'’s coefficient of community
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Fig. 2. Similarity between the lesion maps from manual and semi-automated lesion demarcation for each of the 3 acute datasets, calculated using either Dice’s similarity index (left graph)
or Jaccard’s coefficient of community (right graph). Error bars denote the 95% confidence interval of the mean.
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Inter-rater reliability (ICC)

Time required for lesion demarcation (min.)
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Fig. 3. Inter-rater reliability (left graph) and time required for lesion demarcation of lesion volumes (right graph) for both manual (solid lines) and semi-automated (dashed lines) lesion
demarcation for each of the 3 acute datasets. Error bars denote the 95% confidence interval of the mean.

rater and 40.18 (SD = 38.85, CI = 4-22.96) cm? for the second rater;
this difference was not significant (U, = .164, p >.999) and the ICC
was .995 (CI = .982 to .999). Semi-automated lesion demarcation
took on average 32.5 (SD = 19.6, CI = +11.6) minutes per patient.
The average lesion volume was 41.36 (SD = 39.05, CI = +23.08) cm>
for the first rater and 41.41 (SD = 39.04, Cl = +23.07) cm® for the sec-
ond rater; this difference was once again not significant (U, = .098,
p>.999) and the ICC was .994 (Cl = .979 to .998).

Comparing manual and semi-automated lesion demarcation in
chronic stroke patients, produced results highly similar to those obtain-
ed in the acute stroke datasets: The average DSI between the manually
and the semi-automatically demarcated lesion maps was .87 (Cl = +
.04) and the average JCC between the manually and the semi-
automatically demarcated lesion maps was .77 (Cl = £.07). As for the
acute datasets, both DSI and JCC values in the chronic dataset were sig-
nificantly positively correlated with lesion volume (DSI: pry; = .791,
p =.004; JCC: p;; =.791, p = .004). Moreover, the inter-rater reliability
was comparable between manual and semi-automated lesion demarca-
tion approaches (ICC = .995 for manual vs. .994 for semi-automated).
Finally, semi-automated lesion demarcation was significantly faster
than manual lesion demarcation (W;; = 2.934, p = .003) and the
reduction in processing time achieved by the semi-automated approach
became more pronounced with increasing lesion volume (p;; = .955,
p<.001).

4. Discussion

In the current study, we evaluated the performance of Clusterize
(Clas et al., 2012) for semi-automated lesion demarcation in acute
stroke patients scanned in a range of commonly used image modalities
(CT, DWI, T2FLAIR). Our DSI (>.8 in all 3 acute datasets) and JCC (>.7 in
all 3 acute datasets) values indicate that the agreement between the
lesion maps generated by Clusterize and the lesion maps generated
manually was excellent, suggesting that the precision of the lesion de-
marcation of Clusterize was comparable to the precision of the current
gold standard of manual lesion demarcation. Moreover, the average
DSI value in our acute T2FLAIR dataset containing images from stroke
patients was comparable to the average DSI value in the T2FLAIR dataset
from Clas et al. (2012), who used Clusterize to demarcate lesions in
metachromatic leukodystrophy patients (.85 in our dataset versus .79
in the dataset from Clas et al.). This suggests that Clusterize is a robust
tool for semi-automated lesion demarcation regardless of lesion
aetiology. Previous studies using fully automated lesion demarcation re-
ported DSIs of .7342 for DWI images (Mah et al., 2014) and around .6 for
CT images (Gillebert et al., 2014). Thus, in terms of lesion demarcation
precision, the semi-automated Clusterize algorithm outperforms these
fully automated lesion demarcation methods i.e. the results obtained
with Clusterize are closer to the results of manual lesion demarcation
than the results obtained with previously suggested fully automated le-
sion demarcation methods.

Secondly, for all 3 acute datasets, the inter-rater reliability of Clusterize
was comparable to that obtained after manual lesion demarcation, indi-
cating that the reproducibility of both methods was comparable in all 3
acute datasets. Overall, both raters agreed extremely well for the CT,
DWI and T2FLAIR datasets (ICC > .93 for both manual and semi-
automated lesion demarcation). Moreover, the inter-rater reliability of
Clusterize in our T2FLAIR stroke patient dataset was comparable to the
inter-rater reliability of Clusterize in the T2FLAIR metachromatic leuko-
dystrophy patient dataset of Clas et al. (2012) (.984 in our dataset versus
.982 in the dataset from Clas et al.), again suggesting that Clusterize is ro-
bust against differences in lesion aetiology.

Thirdly, our results demonstrate that semi-automated lesion demar-
cation with Clusterize was significantly faster than manual demarcation
for all 3 acute datasets with a reduction in processing time of on average
17.8 minutes per patient. For a large-scale analysis (e.g. MVPA) with
100-200 acute stroke patient images, this would amount to approxi-
mately 30-60 hours of working time saved. Importantly, this reduction
in processing time per patient increased as lesion volume increased: for
lesions smaller than 5 cm?, the reduction in processing time per patient
was only approximately 2 minutes, but this increased to a reduction in
processing time per patient of approximately 20 minutes for lesions of
5-30 cm? and reached a maximum reduction in processing time per pa-
tient of up to 60 minutes for the largest lesions in our acute datasets
with volumes of around 100 cm?>,

Finally, the performance of Clusterize in a chronic T1 dataset was
comparable to the performance of Clusterize in the acute datasets. As
for the acute datasets, the DSI (.87) and JCC (.77) values for the chronic
T1 dataset indicated that the agreement between the lesion maps gen-
erated by the Clusterize algorithm and the lesion maps generated man-
ually was excellent. These DSI values also again compare favourably to
the results from a previous study, where average DSI values of .64
were obtained for T1 images when using a fully automated lesion de-
marcation method (Seghier et al., 2008). Moreover, the inter-rater reli-
ability of Clusterize was comparable to that obtained after manual lesion
demarcation (ICC = .995 for manual and .994 for semi-automated le-
sion demarcation). While the timing measurements cannot be as easily
interpreted in this chronic T1 dataset due to potentially confounding ef-
fects of the rater’s familiarity with the patient images, our results do
suggests that the reduction in processing time offered by Clusterize
over manual lesion demarcation in the chronic T1 dataset was compara-
ble to that seen in the acute datasets.

Taken together, compared to the (gold) standard of manual lesion
demarcation, the semi-automated Clusterize algorithm is capable of
significantly speeding up lesion demarcation without loss of either
precision or reproducibility. Moreover, our results demonstrate that
Clusterize is capable of lesion demarcation that is of comparable quality
to that obtained by manual lesion demarcation in both acute and chron-
ic stroke and with images in the most commonly used modalities (CT,
DWI, T2FLAIR and T1). Finally, the semi-automated approach taken
here allows for a routine human quality control step not implemented
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in fully-automated methods, avoiding the perpetuation of lesion classi-
fication errors into later analyses. As this algorithm has been integrated
into a simple, freely available SPM toolbox (http://www.medizin.uni-
tuebingen.de/kinder/en/research/neuroimaging/software/), it can be
effortlessly implemented and used to aid in the preparation of imaging
data for larger-scale lesion-behaviour mapping analyses.
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