
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Reliability-aware Synthesis with Dynamic Device
Mapping and Fluid Routing for Flow-based

Microfluidic Biochips
Tsun-Ming Tseng, Member, IEEE, Bing Li, Mengchu Li, Student Member, IEEE,

Tsung-Yi Ho, Senior Member, IEEE, and Ulf Schlichtmann, Member, IEEE

Abstract—In flow-based biochips, peristaltic pumps consisting
of valves are essential to generate circulation flow in a mixer.
When a peristaltic pump is activated, the related valves for
peristalsis are required to be actuated for many times. However,
the roles of valves in traditional chips are fixed, and therefore
the valves for peristalsis can wear out much faster than the
valves for guiding fluid transportation. This could lead to a
reduced lifetime of the chip, because the whole chip function
can be affected when just a few or even only a single valve
wears out. In this paper, we propose a valve-centered architecture
with virtual valves, based on which we introduce a valve-role-
changing concept to balance the valve actuations. By switching a
valve into different roles, microfluidic components such as mixers,
storages and flow channels can be formed dynamically during
the assay process, which enables us to balance the utilization
of valves, and synthesize designs that support various kinds of
operations. Compared with our preliminary work, we further
decrease the largest number of valve actuation as well as the
number of valves by the revised dynamic device mapping and
fluid path routing. For dynamic device mapping, we introduce
a virtual-boundary concept to generate devices at better places
while connections between devices are still guaranteed. For fluid
path routing, we accurately model valve actuation resulting from
our valve-actuation-aware routing, and revise the results by rip-
up and reroute. In addition to performance, we improve the
reliability of our method by assuring fluid paths from devices to
chip boundaries. Experiments show that the new method can be
8 times better than the traditional method, and outperforms our
preliminary work for large cases even with fewer valves.

Index Terms—Flow-based microfluidic biochip, reliability, dy-
namic device, pump valve, routing.

I. INTRODUCTION

Microfluidic biochips have drawn much attention in recent
years, because they can replace various cumbersome labora-
tory equipment by integrating all devices into one small chip.
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Figure 1: (a) Electrodes in a digital biochip. (b) Sectional
graph of droplet movement. (c) A droplet path.

Since it is much faster to move samples between devices in
a chip than between equipment in a big laboratory, using a
biochip to execute biochemical assays can save much time
and effort. For example, it takes 2-4 days traditionally to
identify target pathogens even in the best laboratory in the
world, but a few minutes are already enough when using
microfluidic biochips [1]. Besides, reagents for biochemical
experiments are sometimes extremely expensive. For instance,
RNase inhibitor, a polyclonal antibody that is commonly used
in reverse transcription polymerase chain reaction (RT-PCR)
to protect RNA from degradation by inhibiting the activity
of RNases [2] [3], costs 600 euros per milliliter in June
2015 [4]. Since microfluidic biochips require smaller amounts
of samples and reagents, they also have merits in cost saving.

Microfluidic biochips can be classified into two types:
digital biochip and flow-based biochip. In digital biochips,
electrodes, which are connected to voltage sources, are usually
arranged regularly as shown in Figure 1(a). By changing the
applied voltages on different electrodes, a droplet can be
attracted from an electrode with a lower applied voltage to
an electrode with a higher applied voltage as shown in Fig-
ure 1(b). Therefore, when we switch the voltages on electrodes
along a path alternatively, a moving path for the droplet and
thus also a virtual device such as a mixer can be formed as
shown in Figure 1(c) and Figure 1(a), respectively.

Based on this working principle, regular-placed electrodes
provide a general platform to perform different assays in the
same chip. Since the electrodes can easily be integrated and
manufactured in large scale, digital biochips also provide good
support for complicated assays with numerous operations.
However, it is difficult for the electrical field force on the
electrodes to deal with large droplets: It may be too strong
so that it can tear up the droplets, or it may be too weak
to drag them [5]. Therefore, operations taking large droplets
as inputs need to be split into several operations with small
input volumes, and their results need to be combined back
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Figure 2: (a) Structure of a valve. (b) A dedicated mixer. (c)
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afterwards, which may prolong assay execution time [6].
Furthermore, in digital biochips, the only input ratio that is
allowed for mixing and splitting operations in most works
is 1:1, which may cause quantization error in many sample
preparation applications [7] [8] [9].

Compared with digital biochips, flow-based biochips
provide the possibility to perform biochemical operations
requiring various input volumes and ratios directly. Flow-based
biochips, which is the other important type of microfluidic
biochips, consist of some flow layers and a control layer, and
uses micro-mechanical valves as its control units. Valve is the
most fundamental component to perform any active control in
flow-based biochips. Since a valve is typically made from the
material Polydimethylsiloxane (PDMS), it is pneumatic and
its shape can be changed if inflated.

In Figure 2(a), we show the general structure of a valve.
This valve structure consists of a pressure source, a control
channel lying in the control layer, and a flow channel lying
in the flow layer. When a valve is open, fluids can pass
through the valve without obstruction and travel along the
paths formed by flow channels. To guide the fluid to its
destination, we only need to close some valves by pumping air
or oil from their pressure sources into their control channels,
which will be inflated and thus block the flow channels
underneath. Therefore, dedicated devices, such as mixers, can
be constructed as shown in Figure 2(b).

In order to separate fluids into operation inputs of peculiar
volumes and ratios, which is also called volume metering,
biologists build fixed-length channels that are enclosed by two
valves. An example is shown in Figure 2(c), in which the width
of the flow channel is W , and the distance between valves va
and vb is L. By closing va and vb, we can separate the required
W×L volume from the main sample flow and transport it to
a device easily.

Design methodology for flow-based microfluidic biochips
has been developed considerably in the last decade. The
research works first targeted specified problems. For ex-
ample, the system-level modeling for a specific flow-based
biochip [10]. Then the target problems became more general.
As in [11], the whole design flow was considered and the pos-
sibility of mapping biochemical assays to flow-based biochip
automatically was demonstrated.

However, all the proposed work concentrated on flow-based
biochips integrated with specific-purpose microfluidic devices,
which can only support a specialized type of operations.
Even a slight change of operation protocols may involve the
fabrication of a new device, or the re-design of the whole
chip. Therefore, the demand for reconfigurable or program-
mable microfluidic hardware has arised [12]. [13] proposed

and manufactured a general-purpose software-programmable
microfluidic chip which is constructed with regularly arranged
valve matrix and is capable of performing various biochem-
ical operations without hardware modifications. However, this
design requires a much larger number of valves than traditional
designs, which results in much more control efforts.

Another issue of flow-based biochips used to be neglected
in early research is the reliability of valves. As proposed
in [10] [14], the valves they applied are only promised to be
actuated reliably for a few thousand times, and the whole chip
function can be affected when just a few or even only a single
valve wears out. Recently, some research works have noticed
this problem and proposed methods to reduce the number
of valve actuations for guiding fluid transportation [15] [16].
However, during a mixing operation, valves for peristalsis in
mixers are actuated many more times compared with valves
for transportation. Since the service life of a biochip might be
affected by the first worn out valve, it is more important to
reduce the number of valve actuations for peristalsis.

In this work, we classify the roles of a valve into three
categories: control valves for guiding fluid transportation;
pump valves for peristalsis; and wall valves for forming device
boundaries and flow channels. We transform the valve matrix
proposed in [13] into a valve-centered architecture with virtual
valves, based on which we propose a dynamic device mapping
method that synthesizes designs which support various kinds
of operations with a reduced number of valves, and solves the
reliability problem caused by unbalanced valve actuations.

Compared with the traditional method, our contributions
include:

• We propose the first synthesis method for a valve-centered
general-purpose biochip architecture, which generates dy-
namic chip layouts from the sequencing graph and schedul-
ing results of a bioassay.

• We balance the valve actuations and thus enhance the
service life of the whole chip by introducing a valve-
role-changing concept and applying dynamic device map-
ping. Experimental results show that compared with the
traditional method, we reduce the largest number of valve
actuations by 45%–80%.

• We reduce the number of valves by proposing virtual valves
in the synthesis process. The valves are called “virtual”,
because instead of fabricating every valve in the valve-
centered architecture, some of the valves will be removed
from the chip or replaced by functionless wall at the end
of the synthesis process. Experimental results show that
compared with the traditional method, besides the reduction
of valve actuations, we also reduce the number of valves by
5%–25% in most cases

• Other benefits of our method include:
+ We introduce in situ on-chip storages to store operation
products temporarily. Compared with off-chip or dedicated
on-chip storages, our method saves the transportation delay
and additional control efforts for off-chip communication,
without aggravating the chip area cost.
+ We generate dynamic devices according to the need of
each operation to fulfil its specific requirement on input
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volume and ratio. Compared with dedicated specialized
devices, dynamic devices do not occupy chip areas perman-
ently, and the space they once occupied can be released for
further use.

• Compared with our preliminary work [17], major technical
improvements include:
+ We propose virtual boundaries for dynamic devices,
which provide more flexibility to the dynamic device map-
ping, and result in a better solution with fewer valve
actuations.
+ We improve the reliability of our method by assuring fluid
paths from devices to chip ports.
+ We improve our routing algorithm by taking valve actu-
ations caused by path routing into consideration, and revise
our routing results by rip-and-reroute to approximate the
optimal solution.
+ Experimental results show that besides the reliability
improvements, in most cases, we further reduce the largest
number of valve actuations by up to 35%, and the number
of valves by up to 12%.
The rest of this paper is organized as follows: In Section II,

we introduce the reliability issue and our basic idea. In
Section III, we propose an ILP model to perform dynamic
device mapping and then route the fluid paths. We show
experimental results of the numbers of valve actuations and
the number of valves in Section IV, and conclude our work
in Section V.

II. BASIC IDEA AND PROBLEM FORMULATION

In this section, we first introduce the reliability issue in valve
actuation. Then we show how to distribute valve actuations
evenly by assigning different roles to valves on request. At
the end of this section, we define the problem formulation of
our work.

A. Working Principle of Valves inside Mixers

In a traditional flow-based biochip, valves can be classified
into two types: control valves that are used to control flow
directions, and pump valves that are used to form peristaltic
pumps in mixers. Figure 3 shows an example of a traditional
mixer. It consists of a circular flow channel and 9 valves, 6 of
which are control valves, and the other 3 are pump valves.
Generally, when executing a mixing operation, we can fill
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Figure 5: Mixers in different sizes using the same area: (a) A
smaller mixer. (b) A larger mixer.

the mixer with an input sample and a reagent by changing
the status of different control valves as shown in Figure 3(a)
and Figure 3(b). Then we close the control valves connected
to the outer flow channels and actuate the pump valves inside
this mixer repeatedly in a particular order to generate a
circulation flow as shown in Figure 3(c) like the flow in
a washing machine [18]. After the reaction, we use control
valves to guide the mixing product out as shown in Figure 3(d)
and Figure 3(e). Assuming a pump valve needs to be actuated
40 times [13] during each mixing operation, Figure 3(f) shows
the total number of valve actuations of a mixer after two
mixing operations. We can see that some valves are actuated
80 times while the others are only actuated 8 or 4 times.
When more mixing operations are bound to the same mixer,
the imbalance of sum of actuations between pump valves and
control valves becomes even larger.

B. Our Idea: Valve-role-changing Concept

Since pump valves are actuated much more often than
control valves, if we make a valve play different roles at
different times, namely changing its role between control valve
and pump valve, the actuations can be balanced significantly
among different valves. Figure 4 shows an example imple-
menting this valve-role-changing concept. In this example,
two mixing operations are mapped to the same rectangular
mixer. The mixer contains 8 valves, 2 of which only work
as control valves, and the other 6 change their roles between
control valves and pump valves in different operations. As
shown in Figure 4(b), the largest number of valve actuations
is reduced from 80 to 48 compared with Figure 3(f), which
means that the service life of this mixer is nearly doubled. In
addition, we only use 8 valves to form the mixer in Figure 4,
instead of using 9 valves as shown in Figure 3.

Besides control valves and pump valves, we can also make
some valves work as wall valves as shown in Figure 5. These
valves are used as the boundary walls of a certain device and
thus provide the possibility to change the size and function of
devices. Therefore, a valve is no longer dedicated to a single
device. After a device finishes its work, it can be treated as a
free space composed by valves for further device construction.
This flexibility offers us more options for generating devices,
so that we can take advantage of valves which used to be
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rarely actuated and therefore spread valve actuation activities
more evenly.

C. Flow Channel Sharing

By changing the roles of valves on request, valves that were
part of previously-generated devices or previously-routed fluid
paths can be reused to form a new flow channel as well. An
example is shown in Figure 6, which shows a chip with three
mixers. In this example, the product of an operation performed
in mixer A is the input of another operation performed in
mixer B. Similarly, the product of an operation performed
in mixer B is the input of another operation performed in
mixer C. To carry out the transportations, we build direct
flow channels from mixer A to mixer B and from mixer B
to mixer C respectively as shown in Figure 6(a). The status
of valves as open or closed in each mixer are similar to the
valves of a mixer just finishing a mixing operation as shown
in Figure 3(e).

When there is one more pair of sequential operations that
are bound to mixer A and mixer C respectively, a traditional
approach is to build one more dedicated channel between
mixer A and mixer C, by which a new flow channel, one
more new valve, and some more valve actuations on existing
valves are introduced as shown in Figure 6(b). However, if
flow channels inside devices are no longer dedicated to these
devices, we can use part of other devices that are not working
for the time being, e.g. mixer B in Figure 6(c) to transport
fluids. Compared with the cost caused by the new channel
in Figure 6(b), as shown in Figure 6(c) we do not even need
an extra valve actuation.

D. Problem Formulation

We use the valve-role-changing concept to solve the reliab-
ility problem of valves. The problem formulation of this work
is defined as:

Input:
1. A bioassay sequencing graph, which specifies operation

relations, durations, volumes and input proportions.
2. A bioassay scheduling result, which specifies the start

time of each operation.
Objective:

1. Reduce the largest number of valve actuations by distrib-
uting them evenly.

2. Reduce the number of valves.
Output:

(a)
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8
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or

Figure 7: (a) A 4×4 valve-centered architecture (b) A 2×4
dynamic mixer. (c) A 4×2 dynamic mixer. (d) Dynamic mixers
of different orientations sharing the same area.

1. The result of dynamic device mapping, which specifies
the device locations, shapes and orientations.

2. The routing result of fluid paths.

III. RELIABILITY-AWARE SYNTHESIS

In this section, we first show the working principles of a
valve-centered architecture, and how to utilize this architecture
to support our valve-role-changing concept. Then we introduce
an ILP model for a routing-convenient dynamic device map-
ping as well as the idea of in situ storages. We show our
methods of improving the routing reliability and describe our
routing algorithm, which takes the impact on valve actuations
and the sum of valves into consideration.

A. Valve-centered Architecture

The idea of the valve-centered architecture is from a valve
matrix proposed and manufactured by [13], in which valves
are arranged regularly and every component including flow
channels in the chip is completely constructed by valves, and
the basic unit of a flow channel is a chamber encircled by four
valves. Therefore, this valve matrix is programmable just like
the electrode matrix in digital biochips. However, the number
of valves implemented in the chip can be very large, which
leads to much control effort. In this paper, we transform that
valve matrix into a valve-centered architecture with virtual
valves.

In the valve-centered architecture, virtual valves are ar-
ranged regularly. A 4×4 example in a coordinate system is
shown in Figure 7(a). These valves are virtual because some
of them may not be manufactured as real valves, but removed
after synthesis. The virtual valves can be used as wall valves
to construct the boundary walls of devices, so that the devices
can be formed and split up on request dynamically during the
biochemical assay. We call such devices dynamic devices.

In the valve-centered architecture, different dynamic devices
can share the same area without making any valve play the
role as pump valve twice. For example, two 2×4 mixers
with different orientations as shown in Figure 7(b)(c) can
be generated in the same region at different time as shown
in Figure 7(d): though the two mixers overlap with each other,
their pump valves are completely different.

B. Dynamic Device Mapping

To generate dynamic devices at the best locations in the
valve-centered architecture and thus achieve the most reliable
designs, we propose an integer linear programming (ILP)
model to accurately model valve actuation brought by con-
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structing dynamic devicces. In this model, instead of modeling
all actuation activities, we only model the actuation activities
for peristalsis, since pump valves dominate the valve actuation
problem. To determine the location, shape, and orientation of
each dynamic device, we introduce a binary variable sx,y,k,i as
selection variable. (x,y) is the left-bottom corner coordinate
of a device to represent its location, for example, (0,0), (2,0),
(0,2), (2,2) as shown in Figure 8(b)(c)(d)(e); k represents the
index of a device type, including shape and orientation of the
device, such as 1 for 3×3, 2 for 2×4, and 3 for 4×2; i is the
index for the ith operation. When a selection variable sx,y,k,i
is set to 1, it means that the ith operation is mapped to a device
of type k at the location (x,y). Since each operation can be
only mapped to a single device, we introduce the following
constraint ∑

x,y,k

sx,y,k,i=1, ∀i≤|O| (1)

where O is the set of all operations in the assay.
Each time when an operation is mapped to a dynamic mixer,

some virtual valves related to this mixer will work as pump
valves. With location, shape, and orientation information of a
device, the coordinates of these temporary pump valves are
ascertained. We represent the number of valve actuations for
peristalsis of each virtual valve by an integer variable vx,y and
calculate it as

vx,y=
∑

xp,yp,k,i

pisxp,yp,k,i, ∀(x,y)∈C, ∀sxp,yp,k,i∈S (2)

where pi is a constant representing the number of actuations
for a pump valve to perform the ith mixing operation, C is the
set of all coordinates, and S is a set containing all selection
variables sxp,yp,k,i that satisfy the following condition: when
sxp,yp,k,i is set to 1, a k-type mixer will be generated with left-
bottom corner at (xp,yp) to perform the ith mixing opration,
and the virtual valve at (x,y) will work as one of its pump
valves.

To avoid generating different devices in the same area at the
same time, we introduce four more integer variables as bi,le,
bi,ri, bi,up, and bi,do. As shown in Figure 8(a), bi,le, bi,ri, bi,up,
bi,do represent the coordinates of all wall valves, which build
the boundaries of the dynamic device that the ith operation
is mapped to. By using these variables, the non-overlapping
constraints for two devices mapped by operations i1 and i2
can be modeled as

(bi1,ri≤bi2,le)∨(bi1,le≥bi2,ri)∨(bi1,up≤bi2,do)∨(bi1,do≥bi2,up)
(3)

t

sc

(a) (b)

dc

t3
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ob

ts

oc

t3t2 dc/sc
ts

da db

da

t1

db

t2

da

Figure 9: An example of an in situ on-chip storage sc: (a)
Scheduling result. (b) Chip snapshots at different time.

which can be transformed into linear form as

bi1,ri≤bi2,le+c1M, (4)
bi1,le≥bi2,ri−c2M, (5)
bi1,up≤bi2,lo+c3M, (6)
bi1,lo≥bi2,up−c4M, (7)
c1+c2+c3+c4=3 (8)

in which c1, c2, c3, c4 are auxiliary binary variables, and M
is a very large constant. From constraint (4) to (7), when one
of ck, k∈{1,2,3,4} is set to 1, the corresponding inequation
becomes trivial. However, with constraint (8), one of the
elements in the set {c1,c2,c3,c4} must be set to 0, so that
at least one of the four non-overlapping conditions can be
successfully fulfilled.

With the constraints mentioned above, we build an ILP
model to minimize the highest vx,y , which is the largest
number of actuations of those valves for peristalsis. We bound
this number by an integer variable w with the following
constraint

vx,y≤w, ∀(x,y)∈C (9)

and the whole model can be described as

Minimize: w (10)
Subject to: constraints (1)−(2),(4)−(9) (11)

C. In Situ On-chip Storages

In a biochemical assay, the product of a preceding operation
is usually the input of a later operation. We call the preceding
operation parent operatio of the later operation, and the
later operation child operatio of the preceding operation.
Correspondingly, the device performing the parent operation is
called the parent device of the device performing the child
operation, and the device performing the child operation is
called the child device of the device performing the parent
operation. Because an operation can only start after all its
inputs are ready, the early coming products of preceding
operations need to be stored. A traditional practice is to build
some dedicated storages, which need extra chip area and can
cause transport delay. In our method, with the valve-centered
architecture, we generate dynamic devices as in situ on-
chip storages to store coming products, so that chip area and
transportation time can be saved.

An example is shown in Figure 9, in which the scheduling
result is drawn as a Gantt Chart, and the dynamic mixers are
simplified and drawn as the circulation flows that they contain.
oa, ob, and oc are mixing-operations, in which oc takes the
products of oa and ob as its inputs and therefore oc is the child
operation of oa and ob. da, db, and dc are dynamic devices
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for oa, ob, and oc. sc is an in situ on-chip storage that will
be transformed into dc directly after collecting all inputs, and
thus save the transportation effort.

At time ts, oa is completed and thus the valves which have
constructed da can be treated as free valves, so that we can
build sc by using some of these valves to store the product of
oa immediately. Since sc only contains the product of oa at
time ts, there is still some free space inside it. In our method,
we take advantage of those free spaces by allowing them to
overlap with their parent devices. In this example, ob is in
process at time ts. Therefore, sc only occupies part of the
later dc until ob is completed at time t3. Then sc is turned to
dc by using the free valves of the former db, and the product of
ob can also conveniently be led to dc for the coming operation.

To implement this special overlapping permission to our ILP
model, we only need to add an auxiliary binary variable c5 to
constraint (8)

c1+c2+c3+c4=3+c5. (12)

If c5 is set to 1, c1, c2, c3 and c4 must all be 1, which permits
the overlapping between two devices. But if we do not want
this overlapping to happen, we can set c5 to 0, so that the
meaning of this constraint will be the same as constraint (8).

D. Routing-convenient Mapping

Our dynamic device mapping also guarantees the transporta-
tion paths between parent and child devices, which brings con-
venience to routing. When we map two sequential operations
to two different devices, we prefer to build a direct connection
between these devices to save the transportation effort. In order
to do that, we introduce a constant d, which is the minimum
dimension of all devices, as the maximum distance between a
parent device and its child device. This distance limit can be
introduced to our model by adding four more constraints:

bi1,ri>bi2,le−d, (13)
bi1,le<bi2,ri+d, (14)
bi1,up>bi2,lo−d, (15)
bi1,lo<bi2,up+d (16)

where i1 is the parent operation of i2.
These constraints ensure that the distance between a parent

device and its child device is short enough to prevent other
devices from being inserted between them and thus obstructing
their connection path. For example, as shown in Figure 10(a),
suppose oa is the parent operation of ob, and od is the child
operation of ob and oc. If these operations are mapped to
different devices, by controlling their device locations, direct
connections can be easily built between parent and child
devices as shown in Figure 10(b).

dd
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dbda

high-density area low-density
area

dc

dd

(b)

db

da

high-density area low-density
area

dc

<d
<d

Figure 11: Device location of db: (a) Without virtual bound-
aries. (b) With virtual boundaries.

dd

db

da

dc
<d

overalpping prohibition

prohibition
device insertion

direction connection

dc dd

Figure 12: Guarantee of direct connection from da to db.

However, with a strict distance control, the number of
potential device locations will be remarkably reduced, since
a child device has to be put next to its parent device. An
example is shown in Figure 11(a), the left part of the chip is
crammed with devices while the other part is left unused. This
limitation may keep us from finding an optimal solution and
lengthen the optimization process.

Since our target is to build direct connections between
parent and child devices, but not necessarily to put them close
to each other, we introduce virtual boundaries to refine our
distance controlling method. The virtual boundaries of a device
circle a virtual area which is larger than or equal to the real
size of this device, which can be introduced to our model by
adding following constraints:

b′i,ri≥bi,ri, (17)

b′i,le≤bi,le, (18)

b′i,up≥bi,up, (19)

b′i,lo≤bi,lo (20)

where b′i,ri, b
′
i,le, b′i,up, and b′i,lo are the virtual boundaries of

the dynamic device that the ith operation is mapped to.
Instead of controlling the distance between exact device

locations, we control the distance between virtual areas, which
can be easily introduced to our model by replacing the bound-
ary variables in constraints (13)-(16) with virtual boundary
variables. As shown in Figure 11(b), da and db are no longer
forced to be put together. Therefore, da can be located in the
low-density area of the chip.

We have also modified the overlapping rule of devices with
our virtual-area concept by replacing the boundary variables in
constraints (4)-(7) with virtual boundary variables. As shown
in Figure 12, by prohibiting the overlapping among virtual
areas instead of the exact device locations, we prevent the
direct connection between parent and child devices from being
obstructed by other devices.
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Since the occupancy rate of chip area varies during an
assay process according to the assay sequencing graph and the
scheduling result, virtual boundaries can be applied especially
when the occupancy rate of chip area is low so that the virtual
area is not an issue for area competition among devices. As
a conclusion, the introduction of virtual boundaries provides
us more flexibility of locating devices and thus allows us to
maximize the utilization of chip area and balance the valve
actuations even further.

E. Assurance of Fluid Paths to Chip Boundaries

In order to transport waste, samples, reagents, and final
products, devices need to be connected with chip ports. Since
our valve-centered architecture is implemented in a matrix-
shaped biochip [13], in which chip ports are all located at the
chip boundaries, we propose a method to assure the fluid paths
from a dynamic device to chip boundaries.

When a device lies in the inner part of a chip and is
completely encircled by other devices as shown in Figure 13(a)
after the dynamic device mapping, the path between a device
and chip boundaries can be blocked, Therefore, we break the
encirclement by adding a new objective in our ILP model to
draw this certain device closer to the corner of the chip, and
perform the dynamic device mapping again.

Before introducing the objective, we first define the distance
between a device and chip corners. As shown in Figure 13(a),
the distance between da and chip corners is decided by the
horizontal and vertical distance between da and the chip
boundaries. This can be introduced to our model by adding
following constraints:

li,1≥bi,le−q1M, (21)
li,1≥ lmatx−bi,ri−q2M, (22)
li,2≥bi,lo−q3M, (23)
li,2≥ lmaty−bi,up−q4M, (24)
q1+q2=1, (25)
q3+q4=1 (26)

in which li,1, li,2 are the horizontal and vertical distance
between a device and its nearest chip corner, lmatx, lmaty

are the horizontal and vertical dimensions of the chip, q1, q2,
q3, q4 are auxiliary binary variables and M is a very large
constant.

When one of qk, k∈{1,2,3,4} is set to 1, the corresponding
inequation becomes trivial. Taking Figure 13(a) as an example,
the set of horizontal distances between da and chip boundaries
is {bi,le,lmatx−bi,ri}, and the set of vertical distances between
da and chip boundaries is {bi,lo,lmaty−bi,up}. Constraints
(21)(22) ensure that we will choose exactly one value from
each set to control the distance between da and its nearest
chip corner. For the sake of model reduction, we represent
this distance by li,1+li,2, instead of

√
l2i,1+l

2
i,2 applying the

Pythagorean theorem. Accordingly, we modify our optimiza-
tion objective:

Minimize: w+αfi×(li,1+li,2),∀li∈Sd (27)

where α is a constant coefficient, fi is a weight factor which
increases each time the connection path problem occurs to the

dd
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dc

(b)

de

dd

db

da

dc

de
bi,le

bi,lo

lmatx−bi,ri

lmaty−bi,lo

Figure 13: An example of fluid path assurance for da to chip
boundaries: (a) da is freely placed. (b) da is closer to chip
boundaries.

ith operation, and Sd is the set of operations whose device
connection to chip boundaries are blocked.

With this modification, as shown in Figure 13(b), we can
obtain a new mapping result. Based on this different request,
the shape and location of our dynamic devices are adjusted
so that da is drawn near the upper right chip corner and no
longer encircled by other devices, which assures the fluid path
between da and chip boundaries and thus chip ports.

F. Valve-actuation-aware Routing

After the dynamic device mapping process, we route the
fluid paths in the chip. Our routing method takes valve
actuations caused by path routing into consideration and thus
further reduces the largest number of valve actuations and the
number of valves.

We apply Dijkstra’s shortest path algorithm and construct
the cost function according to valve actuations. In our valve-
centered architecture, fluid paths can be divided to chambers
formed by valves. As shown in Figure 14(a), A, B, C, and D
are such chambers. By controlling the valves connected with
these chambers, namely v1, v2, v3, and v4, we can control the
direction of fluids and thus build different fluid paths.

Before we route a new fluid path, we record the number of
current valve actuations of each valve and set it as the cost
of this valve, and we set the initial cost of each chamber as
infinity, as shown in Figure 14(b).

When the actuation of valve v is involved in forming a fluid
path to a chamber CH , the cost of v will be added with the
cost of the last chamber that this path is constructed with.
We define the sum of the costs as s and compare it with the
cost of chamber CH . If s is smaller, we update the cost of
chamber CH with s. Our target is to find the lowest cost of
each chamber that we want to reach to from a starting point,
and thus deciding the routing path with back-tracing. As shown
in Figure 14(b), the cost of the starting sample port is set to 0.
In order to reach chamber A, we add the cost of valve v1 with
0 and get a new value 3, which is smaller than infinity, and
thus replace infinity as the new cost of chamber A as shown
in Figure 14(c).

In our example, v4 has been used as pump valve for multiple
times and thus actuated for 120 times. We suppose that 120
is exactly the largest number of valve actuations in the chip.
On the other hand, v2 has not been actuated yet and may be
removed at the end of the entire synthesis. Therefore, when
the actuation of v4 and v2 is involved in forming a routing
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Figure 14: Update of chamber costs: (a) Target chambers. (b)
Initial costs. (c) For chamber A. (d) For chamber B. (e) For
chamber C. (f) For chamber D.

path, we will either worsen our former optimization result, or
we will need to manufacture an extra new valve. In order to
reduce these actuations, we set extra cost for actuating these
valves. As shown in Figure 14(d), we set extra cost Ca to
v2 which is never used and extra cost Cb to v4 which has the
highest number of actuations. When we want to reach chamber
B from chamber A, we need to actuate v2 and v4. Therefore,
the cost of chamber B will be updated with the sum of costs
of v2, v4, and A, which is 123+Ca+Cb, since 123+Ca+Cb

is less than infinity. Correspondingly, the new cost of chamber
C is 126+Cb and the new cost of chamber D is 3, as shown
in Figure 14(e)(f).

This cost function can be represented as:

if cN <cC+sviavi

+(1−uvi)Ca+mvi
Cb,∀vi∈SC ,

then cN =cC+sviavi

+(1−uvi)Ca+mvi
Cb,∀vi∈SC (28)

where cN is the cost of the to-be-reached chamber N , cC is the
cost of the last passed-by chamber C, svi is a binary variable
indicating whether the actuation of valve vi is involved in
forming a fluid path from C to N , avi is the number of
actuation of vi, uvi is a binary variable indicating whether
vi has ever been actuated, mvi is a binary variable indicating
whether vi is the valve with the highest number of actuations,
and SC is a set containing the valves encircling chamber C.

According to the assay schedule, each time when we need
a new routing path, we accurately record the current valve
status to decide which valve actuations should be involved in
forming this new routing path. Based on these information, we
apply our above mentioned method to get a routing solution.
But since the assay is in progress, a valve with currently fewer
actuations may also serve as a frequently actuated pump valve
later. Therefore, we apply a rip-up and reroute method for

sample 0 3/0 0 3/0 3

2/80 2/80

5/3 5/3

40/0 40/0

B

A

D

Cport

(a) (b) (c)

∞
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adding tvi as val2:val1/val2 current actuation as val1

adding tvi as val2:

Figure 15: Chamber costs applying rip-up and reroute: (a)
Target chambers. (b) Initial costs. (c) Updated chamber costs.

several iterations based on the former routing results to revise
our routing solution.

Suppose that we want to revise the costs of chambers A,
B, C and D as shown in Figure 15(a). Valve v1, v2, v3 and
v4 are currently actuated for 3, 2, 5 and 40 times respectively.
As shown in Figure 15(b), we know from the former routing
results that in the last iteration, from the current time till the
end of the assay, v2 will be actuated 80 more times. Therefore,
we revise the cost of v2 by adding 80 to it. Similarly, we
also add the cost of v3 with 3. We then get the new costs
of chambers A, B, C, D as shown in Figure 15(c), which
provides us a more comprehensive solution.

The revised cost function can be formulated as follows:

if cn<cc+svi×avi
+(1−uvi)Ca+mviCb

+tvi ,∀vi∈Sc,

then cn=cc+svi×avi
+(1−uvi)Ca+mviCb

+tvi ,∀vi∈Sc (29)

in which tvi indicates the extra actuations of vi from the
current time till the end of the assay in the last iteration. In
this way, we maximize the utilization of existing valves with
fewer actuations and thus also existing flow channels, which
enables us to reduce the largest number of valve actuations
and the sum of valves even further.

G. Overall Algorithm

Algorithm 1 gives an overall view of our methods. We index
the lines as Li, i∈N, at the beginning of each line. After
reading the program input as shown in L1 and building the
data structure as shown in L2, we perform our dynamic device
mapping by using an ILP model as shown in L3-L12 and then
decide the routing paths as shown in L13-L26.

After we get our first dynamic device mapping results, we
perform an area check in L6-L8 and a fluid-path-assurance
check in L9-L11 to support the reliability of our method:

Our valve-role-changing concept brings us more options
for overlapping. Besides the overlapping permission for in
situ on-chip storages and parent devices as mentioned in
Section III-C, when a storage has enough free space, we also
allow routing paths to pass through this storage as shown
in Figure 16(b), thus saving the efforts for a long detour
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Algorithm 1: Reliability-aware Synthesis
L1 Read sequencing graph and scheduling result.
L2 Build virtual valves in valve-centered architecture.
L3 # DynamicDeviceMapping
L4 repeat
L5 Build and solve ILP model for dynamic device mapping.
L6 if overlapping area of (storage s, device d) > free space of s then
L7 Forbid (s,d) from overlapping with each other.
L8 end
L9 if fluid paths from or to device d can not reach chip boundaries

then
L10 Draw d closer to chip boundaries.
L11 end
L12 until feasible dynamic device mapping;
L13 # Routing
L14 for iteration ite=1 to maxIte do
L15 Rip up all routed paths.
L16 for time t=1 to maxT do
L17 forall the connections do
L18 Route a path with minimum cost.
L19 if overlapping area of (storage s, path p) > free space

of s then
L20 Forbid (s,p) from overlapping with each other.
L21 Rip up p and reroute.
L22 end
L23 end
L24 Record the numbers of valve actuations.
L25 end
L26 end
L27 Remove non-actuated valves.

da

sk

(b)

da

sk

sample waste sample waste
port port port port

(a)

Figure 16: (a) The storage sk is an obstacle for routing paths.
(b) The storage sk can be passed through by routing paths.

as shown in Figure 16(a). To make sure that overlapping
only happens on the premise of enough free storage-space,
we perform an area check as shown in L6-L8 and L19-L22.
We then perform a fluid-path-assurance check as mentioned
in Section III-E as shown in L9-L11.

We route the fluid paths after dynamic device mapping. The
valve-actuation-aware routing results will be revised by a rip-
up and reroute method for several iterations as shown in L14-
L26.

IV. EXPERIMENTAL RESULTS

We implemented the reliability-aware synthesis in C++ on a
computer with a 2.67 GHz CPU. The ILP model for dynamic
device mapping was solved by the ILP solver Gurobi [19].
The device library applied in this work is shown in Table I,
where volume indicates the number of chambers occupied
by a device, dimension indicates the number of chambers
in horizontal and vertical directions of this device, and ratio
indicates the input ratios that are supported by the device.

In our method, we assume that mixing operations with
the same input volume and ratios have the same duration
regardless of the mixer dimensions, and this duration indicates
the maximum duration in mixers of all dimensions. For
example, suppose that a mixing operation oa can be executed
in either mixer m1 or mixer m2 (m1 and m2 only differ in
dimensions), the execution time of oa in m1 is t1 and the
execution time of oa in m2 is t2. If t1>t2, we will specify
t1 as the duration of oa in our method, regardless of whether

Table I: Library of devices used in this work.

Volume 4 6 8 8 10 10
Dimension 2×2 2×3 2×4 3×3 2×5 3×4

Ratio 1 : 1 1 : 2 1 : 1, 1 : 3 1 : 1, 1 : 3 1 : 4, 2 : 3 1 : 4, 2 : 3

m1 or m2 is finally in use. The proposed method provides a
conservative execution of operations in different mixers, and it
can be extended easily to handle different execution durations
by describing the execution time of an operation in different
mixers with a lookup table.

We take four test cases from widely used laboratory pro-
tocols [20] [21]. For each test case we set up three different
policies. As the policy index increases, we increase the number
of mixers used in a traditional design, in which dedicated
mixers, storages, and detectors are used. Correspondingly,
we can obtain different scheduling results as the inputs for
experiments. We compare the experimental results of our new
method under two different settings with the results of the
optimal binding for the traditional designs and with the results
from our preliminary work [17] in Table II, in which the
meaning of each column is:
#op : the number of operations and mixing operations thereof.
Po. : the policy index.
#d: the number of devices, including mixers and detectors.
#m4−6−8−10: the numbers of operations bound to the same mixers,

with hyphens separating mixers of different sizes.
vs tmax: the largest number of valve actuations applying the op-

timal binding for the traditional designs.
vsmax: the largest number of valve actuations and actuations for

peristalsis thereof applying our methods.
#v: the sum of used valves.
T : the program runtime.

In Table II, column 8-10 show the results of applying the
method in our preliminary work under conservative setting,
column 11-13 show the results of applying the new method
under conservative setting, column 14-15 show the results of
applying the method in our preliminary work under aggressive
setting, and column 16-18 show the results of applying the new
method under aggressive setting.

In the traditional designs, we assume there are 4 different
sizes of mixers: 4, 6, 8, and 10. The 4-unit mixers with two
ports can support 1:1 mixing operations, the 6-unit mixers
with two ports can support 1:2 mixing operations, the 8-unit
mixers with three ports can support 1:1 as well as 1:3 mixing
operations, and the 10-unit mixers with three ports can support
2:3 as well as 1:4 mixing operations. Each design contains
a storage to store products temporarily, and the number of
cells in the storage is determined by the largest number of
simultaneous accesses to the storage.

Each assay operation, according to the volume of its inputs,
is assigned to a mixer with the required size. If there are
multiple mixers with the same size, we apply an optimal
binding regarding valve actuation by distributing operations to
mixers as evenly as possible. Because the loadings on mixers
with different sizes may vary considerably, we add one more
mixer for each mixer type that is under the heaviest loading
as the policy index increases to alleviate the heavy burden.
For example, as shown in Table II, in test case PCR policy
1, there are 3 mixers with different sizes. 1 mixing operation
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Table II: Comparison of the highest valve actuation times and the number of valves.

Optimal Binding for Traditional Designs [17] Cons. New Method Cons. [17] Aggr. New Method Aggr.
Column Index 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

#op Po. #d #m4−6−8−10 vs tmax #v vsmax #v T vsmax #v T vsmax #v vsmax #v T

PCR 15(7) p1 3 1-0-4-2 160 83 45(40) 71 0.8 42(40) 77 0.8 35(30) 71 31(30) 62 0.9
p2 4 1-0-(2,2)-2 80 99 45(40) 76 0.8 44(40) 71 0.7 34(30) 76 36(30) 62 0.8
p3 6 1-0-(2,1,1)-(1,1) 80 131 43(40) 82 0.9 44(40) 82 0.9 31(30) 82 32(30) 76 1.1

Mixing Tree 37(18) p1 4 2-4-5-7 280 108 93(80) 105 2.9 87(80) 109 2.4 46(42) 105 35(30) 105 94
p2 5 2-4-5-(4,3) 200 124 93(80) 105 2.9 87(80) 109 2.3 46(42) 105 35(30) 105 94
p3 6 2-4-(3,2)-(4,3) 160 140 90(80) 124 3.3 90(80) 122 3.3 60(50) 124 38(30) 120 21.5

Interpolating 71(35) p1 7 5-9-9-(6,6) 360 178 145(120) 176 357.1 132(120) 163 30.1 72(65) 176 62(42) 173 0.5h
Dilution p2 9 5-(5,4)-(5,4)-(6,6) 240 207 94(80) 207 87.8 94(80) 207 20.7 56(42) 207 38(32) 206 1h

p3 10 5-(5,4)-(5,4)-(4,4,4) 200 225 92(80) 208 101.2 90(80) 206 108 56(50) 208 47(35) 209 1.5h
Exponential 103(47) p1 10 6-(8,8)-(7,6)-(6,6) 320 241 135(120) 214 485.3 101(80) 224 774.6 75(75) 214 55(50) 216 0.5h

Dilution p2 11 6-(6,5,5)-(7,6)-(6,6) 280 254 134(120) 255 488.9 103(80) 254 858 71(65) 255 48(40) 261 1h
p3 12 6-(6,5,5)-(5,4,4)-(6,6) 240 268 99(80) 259 314.3 93(80) 259 957.6 58(40) 259 47(40) 253 1.5h

is bound to the 4-unit mixer, 4 mixing operations are bound
to the 8-unit mixer, and 2 mixing operations are bound to the
10-unit mixer. Hence we add one more 8-unit mixer in policy
2, so that in the result of the optimal binding the 4 mixing
operations can be evenly assigned to the two 8-unit mixers as
2 operations per mixer.

In our methods, we first built a square matrix containing
virtual valves based on the valve-centered architecture. In this
matrix, the number of virtual valves is larger than 1.5 times the
number of valves used in the traditional method, and the total
fluid volume of the matrix is larger than 2 times the highest
total fluid volume of the operations that simultaneously work
in the chip. This setting is arbitrary, but not harmful to the
number of valves implemented at the end, because the non-
actuated virtual valves are removed after the synthesis.

After constructing the matrix, we built and solved the model
for dynamic device mapping and routed the sample paths. We
calculated the largest numbers of valve actuations in vsmax

in Table II, which are close to the numbers of actuations
for peristalsis thereof. This fact validates our method in
Section III-B, where we only model actuation activities for
peristalsis.

In our model, all valves passed by the circulation flow inside
a dynamic mixer are regarded as pump valves. For example,
the 2×4 dynamic mixer as shown in Figure 7(b) uses 8 pump
valves, while the dedicated mixer as shown in Figure 3(f)
only uses 3 pump valves. Though in our method we use more
pump valves, so that theoretically the loading on each valve
should be alleviated under the same efficiency, it is difficult
to tell how many actuations are sufficient for a single mixing
operation. Therefore, we provide both a conservative setting
and an aggressive setting for comparison with the traditional
method.

Under our first setting we still assume that each pump valve
is actuated 40 times for a single mixing operation, which is
exactly the same as the setting for pump valve working in a
dedicated mixer in the traditional method as a conservative
comparison. vsmax in column 8 and column 11 show that
even under this conservative setting, we still reduce the largest
numbers of actuations by more than 50% compared with
traditional method. By contrast, under our aggressive setting,
we assume that the sum of actuations for peristalsis of a mixer

tu
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o2
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Figure 17: The scheduling result of case PCR in p1.

is the same as that in the traditional method. For example, the
sum of valve actuations for peristalsis of a dedicated mixer
to perform a single mixing operation in a traditional design
is 3×40=120, so we change the number of actuations of each
valve in our dynamic mixer using 8 pump valves to 15 since
8×15=120. As shown in vsmax in column 14 and column 16,
the results are much better, even with a small number of valves
shown in #v.

Compared with our preliminary work, we propose three
major improvements in this work:

1. Routing-convenient mapping with virtual boundary men-
tioned in Section III-D.

2. Assurance of fluid paths to chip boundaries mentioned in
Section III-E.

3. Valve-actuation-aware routing applying rip-up and
reroute method mentioned in Section III-F.

which bring about better solutions in valve actuation as well as
the sum of valves, and enhance the reliability of our method.

The routing-convenient mapping provides our model more
flexibility in generating devices, while their connections are
guaranteed with virtual boundaries and virtual areas of devices.
For large designs that provide more options to the locations
of devices, devices can be generated in best places when their
locations are not strongly limited by the locations of their
parent and child devices. Since the best locations for devices
performing sequential operations may be far apart from each
other, to route the possible long connections between them, our
new valve-actuation-aware routing method shows its benefit.
In our new routing method, we model corresponding valve
actuations accurately for accessing every chamber in the
chip, and we further revise the results by rip-up and reroute.
Compared with the routing in our preliminary work where we
route fluid paths in the shortest length, in the new method a
longer path may be preferred if valve actuations led by routing
this path can be reduced. As shown in Table II, we achieve
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results with noticeable improvements for vsmax in column 8
and column 11 as well as for #v in column 9 and column
12. For example, compared with our preliminary work, for
test case Exponential Dilution in policy 1, we further reduce
the largest number of valve actuations under both conservative
and aggressive settings by more than 25%.

In our preliminary work [17], we only performed op-
timization under conservative setting, and the results under
aggressive setting were directly derived from the results un-
der conservative setting, where the program runtimes under
aggressive setting approximate 0 and we thus omitted them in
the table. In this work, we perform optimization for each test
case both under conservative and aggressive setting.

In general, the program runtime denoted as T in Table II
is not very stable, which strongly depends on the heuristics
the optimization solver selects. However, a trend can still
be observed that the program runtime typically exponentially
increases with the problem size, which is mainly caused by the
ILP modeling method that we apply. Though the scalibility is
usually considered as an issue for ILP modeling method, it is
not a serious problem for this work, since the matrix size of the
general purpose architecture cannot be unlimitedly enlarged.

To show the working principles of our method intuitively,
we take the synthesis result of case PCR with 7 mixing ope-
rations in policy 1 as an example. The input of our method is
the scheduling result of this case with 3 time-units (tu) as the
transport delay. We show the scheduling result in Figure 17
and the synthesis result in Figure 18, in which o1 and o2 are
the parent operations of o5, o3 and o4 are the parent operations
of o6, and o5, o6 are the parent operations of o7.

In Figure 18, closed valves are drawn in light color. The
valves that are never actuated are removed and the area is left
empty, just like the two valves at the top-right corner of the
chip. In addition, if valves are only actuated once and no fluid
flows through them while they are open, they are removed as
well and we build functionless walls drawn in dark color at
the areas those valves once occupied. The numbers of valve
actuations at every time moment are directly labeled on the
corresponding valves. Fluid paths are represented by lines and
their directions are indicated by the arrows on the lines. If two
or more paths come from or go to the same region, the paths
routed earlier are drawn in dashed lines, and the paths routed
later are drawn in solid lines. Since not all of the products
would go to next devices but some of them also would go to
waste sink, for each dynamic device finishes its job we route a
fluid path for it to the waste port. Unlike the fluid paths from
input ports, fluid paths to waste port are drawn in dark color.

At t = 0tu as shown in Figure 18(a), o3 starts and takes
sample and reagent as inputs from port 1 and 2. The input
from port 2 comes first, and is followed by the input from
port 1.

Since o3 is a mixing operation with a volume as 8 units, it
occupies a 2×4 area in the chip, in which 2 internal valves
are closed as internal boundaries of the mixer, and the other
8 internal valves are actuated for 40 times as pump valves to
produce a circulation flow.

At t = 2tu as shown in Figure 18(b), o4 starts and the
dynamic device mapped by it is located adjacent to the device

mapped by o3. These two devices share the same closed valves
as their outer boundaries. The input of o4 from port 1 comes
first this time, and the valve connected to port 1 at the chip
boundary is closed when routing the fluid path from port 2.

At t = 3tu, storage s6 is constructed immediately after o3
and o4 are finished as shown in Figure 18(c), which stores
the products of o3 and o4. Some products of o3 and o4 go to
their next device s6, but some of them also go to waste sink.
Note that the storage mapped by s6 is placed in a distance
from o3 and o4. In the method in our preliminary work, this
situation can not happen since the child devices are forced
to be placed adjacent to their parent devices to prevent other
devices from being inserted between them. With the concept
of virtual boundaries, the virtual area of s6 can be larger
than the area it really occupies, and is adjacent to the mixers
mapped by o3 and o4. Since the overlapping between virtual
areas is prohibited, no device can be inserted between the
devices mapped by o3 and s6 as well as o4 and s6, so that
the connections between them can be guaranteed and directly
constructed.

At t = 6tu s6 changes into a device mapped by o6 and starts
to work as shown in Figure 18(d), which ends at t = 9tu as
shown in Figure 18(e). Some of product of o6 goes to s7, and
some other goes to the waste port. This fluid path to the waste
port is not the shortest one in distance from the device mapped
by o6, but has the lowest cost according to our cost function
(29). At the same time, o2 starts after receiving inputs from
port 1 and port 2.

At t = 12tu o2 ends and sends its product to s5 as well
as to the waste port as shown in Figure 18(f). Also, o1 starts
while the device performing o1 occupies a chamber of the
storage for s5 with the prerequisite that the remaining free
area inside the storage is still enough to store its input from
o2. In our test case, according to the information from the
sequencing graph of the bioassay, only 2 volume-unit product
of o5 comes from o2 and 8 volume-unit product comes from
o1, thus the overlapping of 1 volume-unit chamber between
the device mapped by o1 and s5 is allowed, since the storage
mapped by s5 only contains 2 volume-unit product from o2
for the time being, and the feasibility check mentioned in
Section III-G can pass.

In Figure 18(f), though storage s5 overlaps with one of its
parent device mapped by o1, it is placed far away from its
another parent device mapped by o2, and their direct connec-
tion is blocked by the storage for s7. In this new work, this
situation can happen since the device mapped by o7 is the child
device of the device mapped by o5, thus the overlapping of
their virtual areas is allowed when performing dynamic device
mapping. However, when performing feasibility check for
overlapping area among devices, we use the real boundaries
of devices so that the check passes since the actual area of
the device mapped by o7 do not overlap with the actual area
of the device mapped by o5. Consequently, storage s5 can be
placed far from the device mapped by o2, and storage s7 can
be placed in between them.

Though s7 seems to obstruct the direct connection from the
device mapped by o2 to the device mapped by o5, device like
s7 must be a storage and is not a blockage in most cases
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Figure 18: Snapshots of the synthesis result of test case PCR in policy 1 under conservative setting.

(a) (b) (c)

Figure 19: Different designs of PCR in different policies under
conservative setting: (a) Policy 1. (b) Policy 2. (3) Policy 3.

since one of its parent devices, e.g. the device mapped by o5
in this case, just starts to work after receiving inputs from this
direction connection. In this case, though the valve-actuation-
aware routing method eventually routes this connection as a
detour since this routing leads to the minimum valve actuation
according to our cost function, a straight connection is still
available, as s7 only contains 2 volume-unit input from o6
according to our test case and has 8 free volume units left
that can be used for overlapping.

Finally, at t = 25tu as shown in Figure 18(j), At t = 15tu

as shown in Figure 18(g), o1 ends and sends its product to
s5 and the waste port. Then o5 starts to work at t = 18tu
as shown in Figure 18(h). After o5 ends at t = 22tu as shown
in Figure 18(i), it sends its product to s7 as well as to the waste
port. Note that the fluid path from the device mapped by o5
to the waste port has a similar shape with the paths from o3
to s6 in Figure 18(c), from o3 as well as o4 to the waste port
in Figure 18(c), from o6 to the waste port in Figure 18(e),
and from o1 to the waste port in Figure 18(g), because our
rip-up and reroute method tend to minimize valve actuation
regarding the current status of valves. Since these valves are
used to form fluid paths or flow channels in devices at early
time moments, they tend to be chosen to form flow channels
for fluid paths as only few valve actuations are needed.

the last operation o7 starts, and it ends at t = 29tu as shown
in Figure 18(k). We assume that for all test cases, their final
products leave the chip from the only output port, which is
also regarded as the waste port. Note that the fluid path from
the device mapped by o7 to the waste port is routed in the
same manner again as for other devices.

Figure 19 shows different designs of PCR in different
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Figure 20: Different synthesis results of test case Exponential Dilution at t = 143tu by different methods: (a) With the method
in [17]. (b) With the new method under conservative setting. (c) With the new method under aggressive setting.

policies under conservative setting, where designs in Fig-
ure 19(a) and Figure 19(b) are derived from a 8×8 valve
matrix, and the design in Figure 19(c) is derived from a 9×9
valve matrix. These designs look very different from each
other since compared with the sum of valves actually needed
to implement the designs, the sum of virtual valves in these
matrices are more than sufficient, and the synthesis results
have shown some characteristics about the bioassays.

Figure 20 shows the performance of our method on rela-
tively small virtual-valve matrices for test case Exponential
Dilution by using different methods or under different settings,
in which the status of valves and the sum of valve actuations
show the final moment of the chip that it should be after fin-
ishing the whole bioassay at t = 143tu. Figure 20(a) shows the
result of applying the method in our preliminary work. Since
each time when a valve plays the role as pump valve, it needs
to be actuated for 40 times under our setting. In Figure 20(a)
there are several valves playing the role as pump valve for
3 times, while there are also several valves playing the role
as pump valve for 0 times. For these valves, the difference
in valve actuation can be larger than 120, and thus leads
to a remarkable imbalance. This imbalance is significantly
alleviated by our new comprehensive method. In Figure 20(b),
the result is greatly improved as most valves play pump valve
for 2 times, and the largest number of actuations decrease from
135 to 101.

Figure 20(c) shows the result of applying the new method
under aggressive setting, by which valve actuations are further
decreased. Note that in Figure 20(a), there is only one valve
under the heaviest loading and is needed to be actuated for
135 times. We circle out this certain valve in Figure 20(a).
But in Figure 20(b) there are 2 valves actuated most for 101
times, and in Figure 20(c) there are 6 valves actuated for 55
times under the heaviest loading. This means that compared
with our preliminary work, valve actuations in our new work
are not only decreased but also distributed evenly.

Figure 20(c) also demonstrates that a fluid path with the
minimum valve actuations may not be the shortest one. In Fig-
ure 20(c), a long detour is chosen for forming the fluid path

to transport the final product of a detector to the output port.
Though this path is long, it takes advantage of existing flow
channels and thus contributes to a better solution.

V. CONCLUSION

In this paper we have addressed a reliability problem of
flow-based biochips due to unbalanced valve actuations. The
problem is solved by the proposed reliability-aware synthesis
including two steps as dynamic device mapping and fluid path
routing based on a virtual valve-centered architecture with
valve-role-changing concept. Compared with our preliminary
work, we have revised the routing-convenient device mapping,
assured fluid paths to chip boundaries, and proposed a valve-
actuation-aware routing for fluid paths. Experimental results
show that this new work outperform our preliminary work
especially when the designs are large.
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