ТШ

The Function Placement Problem (FPP)

Wolfgang Kellerer Technical University of Munich Dagstuhl, January 16-18, 2017 based on A. Basta, W. Kellerer, et al., Applying NFV and SDN to LTE Mobile Core Gateways; The Functions Placement Problem. ATC'14@ ACM SICGOMM, Chicago, August 2014. and a keynote given at the Intl. Teletraffic Congress, ITC 2016 Morenturin der TVM

search

This work is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program grant agreement No 647158 – FlexNets (2015 – 2020).

European Research Counci

Function Placement with SDN and NFV

NFV: Virtualized network function running in a data center

- where to place your virtualized network function?
- what and how to virtualize your function?
- what are functions' interdependencies?

SDN: Control of forwarding path (traverse network functions) and control/data plane split

- where to place your SDN controllers? Controller Placement Problem (CPP) (Heller 2012) and a lot of follow up work
- Controller as a typical network function?
 - no function (de-)composition
 - static placement

Prof. Wolfgang Kellerer | Chair of Communication Networks | TUM

The Function Placement Problem (FPP)*

... not just a generalization of the CPP.

Function placement (based on SDN/NFV) needs to consider

1: Function realization: (de-)composition

2: Dynamics: time matters for varying conditions

3: Flexibility: for an overall analysis

... and many more

* First introduced in A. Basta, W. Kellerer, M. Hoffmann, H. Morper, K. Hoffmann, Applying NFV and SDN to LTE Mobile Core Gateways; The Functions Placement Problem, AllThingsCellular14, Workshop ACM SICGOMM, Chicago, IL, USA, August 2014.

Part 1: Function (de-)composition

Prof. Wolfgang Kellerer | Chair of Communication Networks | TUM

Part 1: Function Realization → Placement

- NFV = ? virtualize & move function (= black box) to DC
- Consider components/dependencies carefully: function chain

Example: mobile core network functions

Function Realization based on NFV

Function Realization based on SDN: move functions back

7

Interdependencies \rightarrow Function chains (mixed design) \prod

Propagation latency depends on function chain = path SGW - PGW

Some Evaluation Studies

•Virtualize all GWs? decompose all? mixed deployment?

Which GWs should be virtualized? decomposed? DC(s) placement?

satisfy data-plane latency (

minimize core load

1 <mark>\$</mark>

[2] A. Basta, W. Kellerer, M. Hoffmann, H. Morper, K. Hoffmann, Applying NFV and SDN to LTE Mobile Core Gateways; The Functions Placement Problem, AllThingsCellular14, Workshop ACM SICGOMM, Chicago, IL, USA, August 2014

Evaluation

Part 2: Dynamic Placement

Prof. Wolfgang Kellerer | Chair of Communication Networks | TUM

11

Part 2: Dynamic Placement

So far: static placement of functions

Reality: requirements (e.g., network traffic) change over time

Placement needs to consider

- change of conditions require to adapt optimal placement → dynamic (re-)placement
- migration effort and time

• Use case:

Prof. Wolfgang Kellerer | Chair of Communication Networks | TUM

profile in North America

Use Case: Traffic Modeling

ПΠ

- Traffic at each SGW = population * intensity
- Intensity = f(daytime) [12] and f(time zones)
- Split day into time slots \rightarrow change network configuration

[12] L. Qian, B. Wu, R. Zhang, W. Zhang, and M. Luo, Characterization of 3G Data-plane Traffic and Application towards Centralized Control and Management for Software Defined Networking," 2013 IEEE International Congress on Big Data

Use Case: Traffic Modeling

ТЛП

- Traffic At each SGW = population * intensity
- Intensity = f(daytime) [12] and f(time zones)
- Split day into time slots \rightarrow change network configuration

[12] L. Qian, B. Wu, R. Zhang, W. Zhang, and M. Luo, Characterization of 3G Data-plane Traffic and Application towards Centralized Control and Management for Software Defined Networking," 2013 IEEE International Congress on Big Data

Use Case: Traffic Modeling

- Traffic At each SGW = population * intensity
- Intensity = f(daytime) [12] and f(time zones)
- Split day into time slots → change network configuration

[12] L. Qian, B. Wu, R. Zhang, W. Zhang, and M. Luo, Characterization of 3G Data-plane Traffic and Application towards Centralized Control and Management for Software Defined Networking," 2013 IEEE International Congress on Big Data

Evaluation

• Daily total network load vs. daily DC power saving? → adaptation matters

Part 3: Flexibility as a metric for analysis

Prof. Wolfgang Kellerer | Chair of Communication Networks | TUM

Part 3: Flexibility

European Research Council

Recall: many options to consider for function placement

- (de-)composition and chaining
- dynamics

Analyse a network design with respect to the options it can realize to handle dynamically changing requirements: \rightarrow flowibility as a metric

 \rightarrow flexibility as a metric

Ex.: Flexibility of a system design w.r.t. function placement

change requests that can be fulfulled by a system design x

$$\varphi^{placement}$$
 (design.x) = $\frac{(\sum_{i} \sum_{j} feasibleSol_{i,j} \cdot w_{i,j})}{\sum_{i} \sum_{j} w_{i,j}}$

all change requests

Prof. Wolfgang Kellerer | Chair of Communication Networks | TUM

Use Case: EPC Function Placement

ПΠ

3 design choices to compare for future mobile core network [5]: (1) SDN design

- (2) NFV design
- (3) mixed SDN/NFV design

Parameter in focus:

- Flexibility to support different latency requirements for
 - control plane latency and data plane latency

e.g.: {5, 10, 15,..., 45, 50} ms

[5] W. Kellerer, A. Basta, A. Blenk, Using a Flexibility Measure for Network Design Space Analysis of SDN and NFV, SWFAN'16, IEEE INFOCOM Workshop, April 2016.

Design Choices Use Case

Legacy LTE core design: Gateways (GW) as dedicated middleboxes

(1) SDN design: separation of control and data plane for GWs

(b) SDN Core GW Architecture

only control to cloud

(2) NFV design: all functions (data and control) mixed SDN/NFV design: run in a cloud

(3)

control and data to cloud

Flexibility measure and evaluation setup

Flexibility measure:

$$\varphi^{placement}$$
 (design.x) = $\frac{(\Sigma_i \Sigma_j feasibleSol_{i,j} \cdot w_{i,j})}{\Sigma_i \Sigma_j w_{i,j}}$

Function placement problem formulated as a MILP [6]

- SDN controllers, mobile VNFs, SDN switches and data centers placement
- constraints on data and control plane latency
- weights

$$w_{i,j} = \frac{\alpha}{dataLatency_i} + \frac{\beta}{controlLatency_j}$$

[6] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, K. Hoffmann, Applying NFV and SDN to LTE mobile core gateways, the functions placement problem, All things cellular Workshop ACM SIGCOMM, Chicago, August, 2014.

Evaluation parameters

22

Use Case

000 0000	
Parameters	Values
Data plane latencies to support	{5, 10, 15,, 45, 50} ms
Control plane latencies to support	{5, 10, 15,, 45, 50} ms
	total: 10 * 10 = 100 possible solutions
Data plane latency weight (α) Control plane latency weight (β)	α = 1 $ β = 1 $ $ α = 10 $ $ β = 1 $ $ α = 1 $ $ β = 10$
Design choices	SDN, NFV, SDN/NFV
Data center deployment	Logically centralized (2 DCs) Distributed (8 DCs)
Тороlоду	US SDN NFV
Example placement for mixed SDN/NFV design [6]	
	Corpus Christi

[6] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, K. Hoffmann, Applying NFV and SDN to LTE mobile core gateways, the functions placement problem, All things cellular Workshop ACM SIGCOMM, Chicago, August, 2014. Results [5]

With respect to the support of latency requirements in function placement:

- mixed SDN/NFV is more flexible for a logically centralized data center infrastructure
- for distributed data centers all three design choices are equally flexible

 [5] W. Kellerer, A. Basta, A. Blenk, Using a Flexibility Measure for Network Design Space Analysis of SDN and NFV, SWFAN'16, IEEE INFOCOM Workshop, April 2016.

Key Takeaways

• The Function Placement Problem needs to consider

- Function (de-)composition
- Dynamics

• Flexibility as a new metric for analysis

References for further reading

- A. Basta, W. Kellerer, M. Hoffmann, H. Morper, K. Hoffmann, *Applying NFV and SDN to LTE Mobile Core Gateways; The Functions Placement Problem*, AllThingsCellular14, Workshop ACM SICGOMM, Chicago, IL, USA, August 2014.
- A. Basta, A. Blenk, M. Hoffmann, H. Morper, K. Hoffmann, W. Kellerer, SDN and NFV Dynamic Operation of LTE EPC Gateways for Time-varying Traffic Patterns, 6th International Conference on Mobile Networks and Management (MONAMI), Würzburg, Germany, September 2014.
- W. Kellerer, A. Basta, A. Blenk, *Flexibility of Networks: a new measure for network design space analysis?,* arXive report, December 2015. <u>http://www.lkn.ei.tum.de/forschung/publikationen/dateien/Kellerer2015FlexibilityofNetworks:a.pdf</u>
- W. Kellerer, A. Basta, A. Blenk, Using a Flexibility Measure for Network Design Space Analysis of SDN and NFV, Software-Driven Flexible and Agile Networking (SWFAN), IEEE INFOCOM Workshop, San Francisco, USA, April 2016.