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Abstract: MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been
experimentally shown to regulate gene expression post-transcriptionally. One main interest in
miRNA research is the investigation of their functional roles, which can typically be accomplished
by identification of mi-/mRNA interactions and functional annotation of target gene sets.
We here present a novel method “miRlastic”, which infers miRNA-target interactions using
transcriptomic data as well as prior knowledge and performs functional annotation of target
genes by exploiting the local structure of the inferred network. For the network inference,
we applied linear regression modeling with elastic net regularization on matched microRNA
and messenger RNA expression profiling data to perform feature selection on prior knowledge
from sequence-based target prediction resources. The novelty of miRlastic inference originates
in predicting data-driven intra-transcriptome regulatory relationships through feature selection.
With synthetic data, we showed that miRlastic outperformed commonly used methods and was
suitable even for low sample sizes. To gain insight into the functional role of miRNAs and
to determine joint functional properties of miRNA clusters, we introduced a local enrichment
analysis procedure. The principle of this procedure lies in identifying regions of high functional
similarity by evaluating the shortest paths between genes in the network. We can finally assign
functional roles to the miRNAs by taking their regulatory relationships into account. We thoroughly
evaluated miRlastic on a cohort of head and neck cancer (HNSCC) patients provided by The
Cancer Genome Atlas. We inferred an mi-/mRNA regulatory network for human papilloma virus
(HPV)-associated miRNAs in HNSCC. The resulting network best enriched for experimentally
validated miRNA-target interaction, when compared to common methods. Finally, the local
enrichment step identified two functional clusters of miRNAs that were predicted to mediate
HPV-associated dysregulation in HNSCC. Our novel approach was able to characterize distinct
pathway regulations from matched miRNA and mRNA data. An R package of miRlastic was made
available through: http://icb.helmholtz-muenchen.de/mirlastic.

Int. J. Mol. Sci. 2015, 16, 30204–30222; doi:10.3390/ijms161226230 www.mdpi.com/journal/ijms



Int. J. Mol. Sci. 2015, 16, 30204–30222

Keywords: miRNA expression; mRNA expression; mi-/mRNA regulatory network; elastic net
regression; local enrichment analysis; head and neck squamous cell carcinoma

1. Introduction

MicroRNAs (miRNAs) represent small-single stranded RNA molecules that own the ability to
bind to the complementary 3′-untranslated region (3′ UTR) of messenger RNA (mRNA) sequences, to
post-transcriptionally fine-tune target mRNA gene expression [1,2]. MiRNA biogenesis was proven to
be under tight spatio-temporal control and targeting relationships were shown to be largely restricted
to specific cell types or tissues [3–5]. MiRNAs are thought to act in a combinatorial manner and were
also shown to modulate oncogene expression [6,7]. Dysregulation of miRNAs has been associated
with human cancer and proven to be sufficient for driving oncogenesis in mouse models, while
changes on the genetic and epigenetic levels of the miRNA biogenesis have been associated with
cancer initiation [8].

miRNAs may act as oncogenes or tumor-suppressor genes, as demonstrated in various studies
across many cancer types [9–11], including our own work on head and neck squamous cell carcinoma
(HNSCC) [12,13]. HNSCC represents one of the most commonly diagnosed carcinomas worldwide
with an incidence of ~600,000 patients per year [14] and is characterized by phenotypic, etiological,
biological and clinical heterogeneity [15–18]. Heavy smoking, alcohol abuse and infection with
high-risk types of human papilloma virus (HPV), mostly HPV-16, represent the major risk factors
associated with HNSCC. Combined treatment procedures include surgery, radiotherapy alone or in
conjunction with chemotherapy or immunotherapy. However, the survival rate for patients with
advanced HNSCC remains limited to ~50% [19–21]. An oncogenic HPV infection was associated with
expression of the viral oncogenes E6 and E7, leading to cell cycle deregulation through E6-induced
degradation of p53 and E7-mediated inactivation of the Retinoblastoma (Rb) protein [22,23].
The subsequently caused promotion of cell cycle progression and proliferation were considered to be
the onset of HPV-mediated carcinogenesis. HPV+ tumors represent a distinct group within HNSCCs,
differing from HPV-tumors in pathogenesis, histopathology, clinical outcome—prognosis was more
favorable for HPV+ patients—and molecular biology [15,17,24]. Specific molecular characteristics
related to HPV status include gene mutations, genomic copy number aberrations, changes in DNA
methylation, mRNA and miRNA expression patterns [17,25]. Lajer et al. identified a set of core
miRNAs implicated in HPV pathogenesis [25,26]. Strikingly, those HPV core miRNAs are related to
the E6/p53 and E7/Rb pathways of HPV induced malignant pathogenesis. The reported involvement
of miRNAs in HPV related pathogenesis motivated us to further explore miRNAs associated with
HPV infection in HNSCC and to reveal how those miRNAs regulate underlying cellular mechanisms
in HNSCCs with respect to HPV status.

Regulation of cellular processes by miRNAs was thought to be mediated through their target
genes. It is thus worthwhile to infer target relationships of miRNAs in order to reveal their
functional roles. The idea builds on two subsequent steps: (1) identification of mi-/mRNA gene
interactions and (2) functional annotation of target genes. As for (1) obtaining mi-/mRNA gene
interactions, both computational and experimental methods were used. Several bioinformatics
algorithms have been proposed to predict miRNA targets: TargetScan uses a statistical model based
on stringent seed pairing, site features and likelihood of preferential conservation [27], miRanda uses
a moderately stringent seed pairing algorithm that also considers site number, conservation and
free energy [28], while mirSVR represents a machine learning method based on a down-regulation
score [29]. The disadvantages of in silico target prediction methods reside in the high false positive
prediction rates and unspecificity for a given setup [30]. Other approaches inferred miRNA
targets solely from expression values [31]. Experimental identification of mi-/mRNA interactions
can be achieved through genetic screening, quantification of gene expression changes caused by
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miRNA transfection or methods based on crosslinking of mRNA and miRNA-containg argonaute
(AGO) complexes followed by immunoprecipitation like Photoactivatable-Ribonucleoside-Enhanced
Crosslinking and Immunoprecipitation (PAR-CLIP) [32] or High-throughput sequencing of RNA
isolated by crosslinking immunoprecipitation (HITS-CLIP) [33]. The StarBase database stores
mi-/mRNA target relationships that were identified using PAR-CLIP or HITS-CLIP [34]. Other
methods such as the micro-multivariate Markov modeling inference engine (microMUMMIE) [32],
PAR-CLIP miRNA assignment (PARma) [35] or MIRZA [36] used CLIP data to computationally infer
the specific miRNA that guides the interaction of AGO with a gene target.

While simultaneous measurements of entire transcriptomes including mRNAs and miRNAs
have become relatively straightforward with high-throughput techniques, their integration is not
trivial. Several methods have been proposed to integrate miRNA and mRNA data for the
identification of mi-/mRNA networks. An intuitive approach for finding associations between
miRNAs and mRNAs on expression level is correlation analysis [37,38]. Generally, correlation
analyses cannot adequately model the demonstrated joint effects of several miRNA on a shared
target [39]. To account for the miRNA joint effects, multiple linear regression models have been
proposed. An appropriate model, which has been used for target inference on expression level [40],
was given by the least absolute shrinkage and selection operator (lasso) regression [41]. It imposes
sparsity by an L1 penalty on the regression coefficients shrinking them towards zero, thus allowing
for feature selection on the variables in the model. However, lasso selects one representative from
each correlated group of miRNAs, so it does not account for co-expression. In contrast to lasso, the
ridge regression model maintains all predictors in the model by using an L2 penalty but does, in
turn, not perform feature selection. To overcome these drawbacks, an elastic net penalty [42] was
used for the integration of miRNA and gene expression data [43], which combines the L1 and L2
penalties in order to account for co-expression among miRNAs and, at the same time, performs
feature selection for potential regulatory relationships with target genes. We also previously showed
that the usage of elastic net regression in combination with a negativity constraint on the coefficients
provides reasonable results both on mRNA and proteome level [44,45].

To reveal functional properties of target gene sets, common approaches were based on
statistical enrichment testing to identify over-represented functional categories [46–48]. For example,
miRGator [47] was proposed to infer miRNA functions by performing a statistical enrichment test
of target genes in each term for gene ontology, pathway and disease annotations available on the
PhenoMir platform [49]. These methods typically generate a large amount of significantly enriched
functional categories, however, many of which are unrelated to the diseases and conditions. A recent
study showed that the most commonly used functional enrichment test returns significant p-values
for targets of randomly selected miRNAs, revealing the intrinsic bias in the target prediction [50].
A combined approach that identifies functional roles of miRNAs from experimental data, together
with adequate statistical modeling and miRNA-tailored functional annotation analysis, remains to
be done.

We have set out to develop a method, called miRlastic, to infer miRNA functions in a data-driven
manner using statistical inference of mi-/mRNA interactions, as well as functional characterization
of the inferred network (Figure 1A).

To obtain condition-specific mi-/mRNA interactions, we developed a statistical inference
method taking into account matched miRNA and mRNA expression data of the underlying
conditions together with prior knowledge of sequence-based predictions.

We used a multiple linear regression model with elastic net penalty, which is a trade-off between
lasso and ridge regression that accounts for both joint effects of several miRNAs on a common target
(Figure 1B) and co-expression between miRNAs [42]. We ensured selecting down-regulation effects
with a negativity-constraint on the regression coefficients.
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Figure 1. Functional characterization of miRNAs in a condition-specific manner by data-driven
inference of mi-/mRNA networks and subsequent functional annotation in the networks.
(A) MiRlastic uses a two-step approach integrating prior knowledge and mi-/mRNA expressions
to infer mi-/mRNA network and miRNA functional annotation; (B) Schematic drawing of miRNAs
co-expressed in clusters induced by an yet unknown regulatory layer. Only several of the putative
miRNA regulators are collectively regulating the mRNA expression.

On synthetic data, miRlastic outperformed commonly used methods and was especially suitable
for low sample sizes. To functionally annotate miRNAs based on the inferred mi-/mRNA network,
we introduced a local enrichment analysis that scores miRNAs given the underlying network
structure with respect to functional annotations of target genes.

We thoroughly evaluated miRlastic on a cohort of HNSCC patients provided by The Cancer
Genome Atlas (TCGA). We inferred an mi-/mRNA regulatory network for human papilloma virus
(HPV)-associated miRNAs in HNSCC. The resulting network best enriched for experimentally
validated miRNA-target interactions, when compared to commonly used methods. Finally, the local
enrichment analysis (LEA) procedure identified two functionally distinct clusters of miRNAs that
were predicted to mediate HPV-associated dysregulation in HNSCC. An R package of miRlastic was
made available through miRlastic [51].

2. Methods and Materials

2.1. HNSCC Data

We downloaded Level 3 mRNA and miRNA RNA-seq data from the TCGA data portal.
The mRNA Level 3 data consisted of gene expression measurements which were generated
following the protocol previously described by the TCGA consortium [52]. For analysis on mRNA
expression level, we selected only the mRNAs with non-zero count values in more than 80% of the
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patients, non-zero standard deviation and applied a log2 transformation. For miRNA analysis, we
obtained normalized expression levels for miRNA precursors after selecting only those miRNAs that
accomplished the same criteria as the mRNAs. In the first step, we overlaid the precursor entries
with associated entries in TargetScan. By doing so, we considered only those miRNAs that are
supposed to be incorporated into the RNA-induced silencing complex (RISC) complex and thus not
subject to degradation [53]. For each miRNA, for which TargetScan provides predictions on both -3p
and -5p strands, we unify the two sets of putative targets and assign them to the corresponding
precursors. After running the inference step, we intersect the resulting mi-/mRNA interactions
from the individual precursors with the predictions of the mature miRNAs provided by TargetScan.
We performed differential miRNA expression analysis on a subcohort of 244 patients for which
the human papillomavirus (HPV) status clinical parameter was provided [17] in order to identify
deregulated miRNAs between HPV+ and HPV- patients. When using the edgeR package [54], we
also included the age and gender as confounder variables. We controlled for a 5% false discovery rate
(FDR) using Benjamini and Hochberg algorithm [55].

2.2. Preliminaries

We defined X and Y as two matrices that contain miRNA (xjk) and mRNA (yik) expression
data, both simultaneously measured in s samples, with k ∈ {1, ..., s}, i ∈ {1, ..., n}, j ∈ {1, ..., m},
such that n and m represent the number of measured miRNAs and mRNAs, respectively.
We denoted the regulatory interaction of miRNAs and their putative mRNA targets as a
bipartite graph G. The bipartite graph G captures all putative mi-/mRNA interactions in
G = (VmiR, VmR, E) with disjoint sets of two node types as VmiR and VmR. The set of
all mRNAs represents all the nodes listed in VmR = {vmR

1 , ..., vmR
m }, and likewise the miRNAs

represent the nodes in VmiR = {vmiR
1 , ..., vmiR

n }. The edge set E = {e1, ..., ez} connects the
nodes from VmiR with the ones from VmR as el = (vmiR

u , vmR
w ) with l ∈ {1, ..., z}. The edges

el were extracted from the TargetScan database (Version 6.2) [27] and used as input graph G for the
miRlastic inference method yielding an optimized graph, G′ = (VmiR, VmR, E′) with E′ ⊆ E.

2.3. Group-Wise Correlation of miRNAs with a Shared Target Gene

We exemplary calculated pairwise Pearson correlation coefficients among all miRNA expression
profiles from the HNSCC dataset, which were predicted by TargetScan with the common target
C9orf85 (Figure 2A). Note that this data was representative for the entire dataset. We observed
subgroups of high correlation which corresponds to the expectation that functionally related miRNAs
or miRNAs in high proximity on the chromosome tend to be co-expressed [7,56].

To systematically analyze whether miRNA expression profiles were typically correlated when
sharing a putative target, we next defined a measure of correlation strength c(X) for a matrix of
miRNA expression measurements X = (xik) as

c(X) =
||R(X)||F√
(n2 − n)/2

with the Pearson correlation matrix R(X) = (ρi1i2) = (rX i1 ·X i2 ·
) for i1, i2 ∈ i. The Frobenius norm of

the correlation matrixR(X) was calculated as

||R(X)||F =

√
∑

i1<i2

ρ2
i1i2
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Figure 2. Collective effects of co-expressed miRNAs. (A) Pairwise correlation of putative, expressed
miRNA regulators together with their target gene C9orf85 (obtained from the HNSCC dataset).
The miRNAs are themselves clustered into several co-expressed groups; (B) The distribution of
correlation strengths c(X) of miRNA sets, which are predicted to target a common gene, (red curve
and histogram) is higher than for randomly re-sampled mi-/mRNA associations (blue, Wilcoxon rank
sum test has p < 1× 10−80) in the HNSCC miRNA expression dataset.

Note that only the upper triangular matrix with (n2 − n)/2 elements was considered for the
calculation of the Frobenius norm. As all elements of R(X) range between [−1, 1], all values of c(X)

range between [0, 1]. The extreme values c(X) = 0 and c(X) = 1 indicate an entirely uncorrelated
and perfectly (anti-)correlated set of miRNAs, respectively.

Using the correlation strength measure c(X), we evaluated the properties of collective miRNA
regulation by assessing the (anti-)correlation strength across all miRNAs, which are predicted to
target a common mRNA. We found that these sets of miRNAs were more correlated among each
other than randomly sampled sets of miRNAs (p < 1× 10−80 Wilcoxon rank sum test, Figure 2B).

2.4. mi-/mRNA Network Inference

To model the regulatory behavior of several miRNAs jointly modulating one common mRNA
target vmR

i , we extracted from G all connected n∗ miRNAs vmiR
i∗ with i∗ = {i|∃(vmiR

i , vmR
j ) ∈ E}.

We refer to these observations of one mRNA j as yj and to its associated miRNA observations as

X(j) = XT
i∗ , where the one-dimensional vector yj and the s × n∗-dimensional matrix X(j) represent

the response and the predictors of a regression model.
The mi-/mRNA interaction can be modeled without feature selection by a linear regression

model, separately for each mRNA as:

yj ∼ β j0 + X(j)βj + ε

with the normally distributed error ε ∼ N(0, σ), parameters βj = (β j1, ..., β jn∗) and intercept β j0.
As shown above, high co-expression among miRNAs is typical for miRNAs with functional

similarity and thus, needs to be taken into account when performing feature selection. From correlation
between miRNAs and their target gene, the effects of joint actions of miRNAs were detectable.

For network inference, we next performed feature selection using penalized regression (elastic
net [42]). We therefore introduced a negativity constraint on the coefficients βj to account for the fact
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that miRNAs mainly down-regulate mRNA target expression levels [57]. The βj values were obtained
by solving the following optimization problem:

β̂j = argmin
βj

|yj − X(j)βj + λPα(βj)|,

where

Pα(βj) = (1− α)
1
2
||βj||22 + α||βj||1.

The parameter αj with 0 ≤ αj ≤ 1 denotes the elastic net mixing parameter. The second
parameter λ was identified by 10-fold cross-validation using the glmnet package. For estimating
the regression coefficients β̂j, we used a coordinate descent approach [58], which is also implemented
in the glmnet package.

To tune the elastic net penalty, we adjusted α with respect to the potentially expected fraction of
correlated predictor groups. The parameter αj of the elastic net regression model of yj, given X(j), is

then defined as αj = 10−c(X(j)).
The choice of the parameter α allowed for an unbiased parameter tuning whereas lower values

of αj were slightly preferred. However, we wanted αj to remain non-zero in any case such that
feature selection was performed in all models. Therefore, gene-specific choice of αj parameter was a
good trade-off.

2.5. Functional Characterization of miRNA-Target Networks

To identify local, closely-connected functions within the inferred network, we designed a local
enrichment analysis (LEA) procedure. We evaluated whether node arrangements were assigned to a
certain term, describing e.g., a molecular function or biological process, occurred by chance or not.
Proximity of two target gene nodes in the network were measured by their shortest path. The bipartite
graph G′ = (VmiR, VmR, E′) was the input for LEA. The edges and edge weights were represented as
a matrix W = (wij) with z non-zero entries. In this case, edge weights were given by scaled negative
regression coefficients. We transformed weights by ew to obtain positive edge weights.

A path between two gene nodes was defined as P(a, b) = (vmR
1 , ..., vmR

p ) with vmR
1 = vmR

a and
vmR

p = vmR
b such that there exists an miRNA node connected to both nodes vmR

k and vmR
k+1 in P(a, b) for

all 1 ≤ k < p. The distances of a path between two nodes vmR
a and vmR

b were computed as:

d(a, b) =
p−1

∑
k=1

min
i∗

(wi∗k + wi∗k+1)

where i∗ denotes the miRNAs that target the mRNAs k and k + 1. A path P(a, b) between the mRNAs
a and b is then called shortest path Pmin(a, b) if it minimizes the distance d(a, b).

Next, we scored local neighborhoods in the network. Let Mk = g1k, ..., gmk denote the gene set
consisting of m annotated genes for a specific term k with k ∈ 1, ..., l, which may be, for example,
retrieved from an online repository like the Kyoto Encyclopedia of Genes and Genomes (KEGG) [59],
and let Mk,G′ := Mk ∩ VmR be the set of genes in Mk that overlap with the genes in G′. In order to
determine the enrichment of Mk,G′ around a certain mRNA j in G′, we compared the distribution of
the shortest path distances Dmin(j, Mk,G′) to the background distribution Dmin(j, G′ \ Mk,G′). Note
that Dmin(j, Mk,G′) included the shortest path distance to a node itself, which is defined as zero, if
vj ∈ Mk,G′ . We applied a left-tailed Wilcoxon rank-sum test, which resulted in a p-value indicating
whether the values of Dmin(j, Mk,G′) were significantly shifted towards lower values when compared
to values of Dmin(j, G′ \Mk,G′). We used p-values to assess a score S(vj) as S(vj) = − log10(pj) that
described the enrichment of the term for the given functional group Mk around gene j.
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To finally characterize the importance of miRNAs in G′, we calculated the miR score SmiR(vi)

for every node vi ∈ VmiR by considering the set V := {vj|(vj ∈ VmR) ∧ (∃(vi, vj) ∈ E)} of associated
mRNA nodes. We also introduced a weight that accounts for the number of corresponding targets
|Vi| for each miRNA. The score was then defined as:

SmiR(vi) =

 1
|Vi| ∑

vj∈Vi

S(vj)

 ·√|Vi|.

Figure 3 illustrates the LEA scoring. The inferred mi-/mRNA interactions were subjected to
LEA with the nodes A, I, J, P being part of the gene set assigned to the term (term nodes, Figure 3A,
diamond shaped). Exemplary shortest distances between node M (blue) or B (purple) and respective
term nodes were calculated.
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Figure 3. Node scoring strategy of local enrichment analysis. (A) Example of a network in which
the nodes are represented by miRNAs (green) and genes (grey) and the edges are represented by
the mi-/mRNA interactions. The network is given as input for the functional annotation step. We
assume that four genes are assigned to a certain functional group—A, I, J, P (diamond shape); (B) The
transformed network after computing the shortest path distances between these four nodes and the
two nodes M (blue) and B (purple). The edge labels denote the weights after the transformation.
The edge weight indicates the strength of the mi-/mRNA negative regulation; (C) The distribution
of shortest paths from node M to the nodes A, I, J and P is significantly shifted to lower values.
No shift can be observed for node B. The p-values determined by left-tailed Wilcoxon rank-sum
test are converted to the node scores; (D) Network visualization after annotating functional groups.
The node scores are indicated by the color. The size of the miRNA nodes corresponds to the miR score.

We next compared the distributions of shortest distances to the background distribution that
represents the shortest distances to genes, which did not overlap with the gene set assigned to the
term (Figure 3C). We observed that, in the case of node M, the distribution of shortest distances to
the gene set assigned to the term tends to be shifted to lower values as compared to the background
distribution, which was not the case for node B. In order to statistically test for this shift to lower
values, we apply a left-tailed Wilcoxon rank-sum test and obtain a significant p-value that is
(p = 7× 10−3) in the case of node M, while the p-value for node B was not significant p = 6.5× 10−1.
We can thus conclude that node M was actually located in close proximity of the nodes associated
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with the term k, whereas node B is not. Given the p-values from the left-tailed Wilcoxon rank-sum
test, we can calculate the scores of the two nodes M and B as S(M) = − log10(7× 10−3) = 2.15 and
S(B) = − log10(6.5× 10−1) = 0.19, respectively. This score indicated the proximity of a gene to the
genes in the functional group.

Finally, we were interested in finding local enrichment of a set of terms given their associated
gene sets. With G′ being the mi-/mRNA network and Mk,G′ the set of overlapping genes between
the gene set Mk of term k and the genes in G′, we selected all shortest distances Dmin(Mk,G′) between
the nodes vj ∈ Mk,G′ . We compared the distribution of this set to the distribution of all other shortest
distances Dmin(VmR \Mk,G′). We applied a left-tailed Wilcoxon rank-sum test to assess the enrichment
of associated terms in a local area of the network. Terms were then considered to be locally enriched
if their adjusted p-values (Bonferroni corrected) were below a significance threshold of p < 0.05.

2.6. Implementation and Availability

The whole miRlastic pipeline was implemented within the R environment for statistical
computing [60]. For elastic net regression we used the glmnet package [58]. To calculate the shortest
paths in a given mi-/mRNA network, we used the implementation of Dijkstra’s algorithm [61] in the
igraph [62] package.

MiRlastic can be downloaded as an R package from http://icb.helmholtz-muenchen.de/
mirlastic [51].

2.7. Synthetic Data

We set up a test environment: in each of the test runs, we generated a set of synthetic miRNA
and mRNA expression values adapting to biological features. We modeled a set of miRNAs with
expression values xi ∼ N (0, 1) targeting a common mRNA. Furthermore, expression levels were
modeled for a set of unknown factors, hj ∼ N (0, 1) which were assumed to target a distinct subset
of the predicted miRNAs (Figure 4a). We generated synthetic miRNA expression values by assuming
a randomly coordinated regulation as it is the case, for example, for clustered miRNAs. Assuming a
repressive effect of the targeting miRNAs, the mRNA expression profile was then generated as

y = σε + ∑
i
−x̂i

where ε ∈ N (0, 1) corresponds to the noise arising from biological reasons or experimental artifacts.
We performed tests with different magnitudes of the error weight σ. In addition to the miRlastic
inference, we also applied correlation analysis and lasso on the generated profiles. For the correlation
analysis, a synthetic miRNA was considered to be a true regulator of a mRNA if the adjusted p-value
(Bonferroni corrected) of the negative Pearson correlation coefficient was below 0.05. For lasso, we
used the miRlastic inference method with a fixed α = 1. The entire procedure was repeated three
times with 10, 30 and 50 samples each across 500 runs and varying noise levels. In each parameter
setting, the corresponding F1 measure was calculated.

We counted the number of falsely chosen miRNAs (false positives, FP) and the number of
correctly missed miRNAs (false negatives, FN) obtained after several runs. Based on precision
and recall rate, we computed F1 = 2 · (precision · recall)/(precision + recall), where precision =

TP/(TP + FP) and recall = TP/TP + FN, for any related confusion matrix comparing actually
classes (true and false) to any classification results (positive and negative).
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Figure 4. Benchmark with synthetic data. (A) Heatmap illustrating a set of randomly generated
synthetic miRNAs with 30 samples; (B) Heatmap of pairwise correlations between the generated
miRNAs; (C) Success-rate (F1) of all algorithms across varying sample numbers and noise levels to
recover the true synthetic mi-/mRNA associations.

2.8. Validation of Network Inference on Experimental HNSCC Data

We compared the network inference results, by accounting for how many mi-/mRNA target
predictions were experimentally validated. Experimentally validated interactions were downloaded
from StarBase [34]. As background set, we considered only those mi-/mRNA interactions with
medium stringency from the starBase database intersected with the set of miRNAs and mRNAs
also predicted by TargetScan. Note that TargetScan was used as prior network for miRlastic and
all related methods, such that we compared all inference methods to the fraction of experimentally
validated interactions in TargetScan itself. For validation, we performed Fisher’s exact test to test
whether inferred mi-/mRNA pairs by one method (e.g., inferred using miRlastic) were enriched for
experimentally validated pairs from StarBase.

3. Results and Discussion

We extensively evaluated the performance of the miRlastic network inference using synthetic
data and further applied the miRlastic pipeline on HNSCC patients available on the TCGA
data portal.

3.1. Robust mi-/mRNA Network Inference for Small Sample Sizes

In order to assess the performance of our inference approach, we built a test environment
generating synthetic miRNA and mRNA expression profiles with characteristic biological features.
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We generated expression profiles of sets of miRNAs targeting the same mRNA (Figure 4A) such
that miRNAs were set-wise highly correlated among each other while the correlation to miRNAs
in different groups was rather low (Figure 4B). The mRNA expression was then calculated as being
regulated by only a subset of miRNAs and additional noise. The set-wise miRNA correlations for the
synthetic expression data was in accordance with the HNSCC expression data as shown in Figure 2A.

We evaluated the performance of miRlastic in comparison with the related methods, namely
pairwise Pearson correlation analysis and lasso. Correlation analysis showed low performance for
low sample numbers, whereas the results improved for high sample numbers. Lasso performed good
for medium and high sample numbers, yet only for low noise levels, indicating reduced robustness
against noisy observations. Throughout all settings, the miRlastic inference method outperformed
correlation analysis and Lasso, especially for low sample numbers (Figure 4C).

The benchmark on synthetic data indicated that the miRlastic inference method was able to
provide reasonable results even when applied on low-dimensional datasets. This comes as another
advantage, since low sample datasets are ubiquitous in biological research due to the costs required
for large-scale techniques. The number of matched samples tend to be lower especially for combined
expression data (miRNA and mRNA), since the measurements need to be performed twice. Here,
we could show that the miRlastic inference was able to reliably identify true regulators with high
specificity and sensitivity in a biologically reasonable synthetic test environment.

3.2. mi-/mRNA Regulatory Network of Head and Neck Squamous Cell Carcinoma

To understand HPV-associated miRNA-mediated gene regulation of HNSCC, we applied the
miRlastic inference to the HNSCC TCGA data set. As HPV was shown to disrupt cellular
differentiation in HNSCC [17,63,64], we used only those 244 patient samples with reported HPV
status. Subsequent to preprocessing, target predictions were available for 16,617 mRNAs and
600 miRNAs. We performed a differential analysis between HPV+ and HPV- patients yielding
44 significantly differentially expressed miRNAs (Figure 5A). Among the differentially expressed
miRNAs, we observed the miR-9 family, miR-363, miR-20b which have been associated with the
HPV status in several independent studies [26,65–69]. In agreement with the results of the Wald et al.
study [70], miR-363 showed up-regulation in the HPV infected patients. We performed the miRlastic
inference using 135,391 targets predicted by TargetScan in combination with the respective miRNA
and mRNA expression values. MiRlastic inferred 766 mi-/mRNA interactions (Figure 5B).

We next asked whether the network inferred by miRlastic was specifically enriched for
experimentally validated mi-/mRNA interactions. Therefore, we collected experimentally validated
interactions from StarBase and compared performance to three other existing methods, namely lasso
and Pearson as well as Spearman correlation analysis. A Fisher’s exact test was conducted in order to
determine whether the fraction of inferred and validated interactions was higher than expected from
the prior target network (TargetScan) with respect to the number of inferred interactions (Figure 5C).
For miRlastic, the test yielded a highly significant p-value of p = 8.736821 × 10−4. We obtained
a p-value of p = 1.059271 × 10−2 for lasso, p = 1.228527 × 10−1 for Pearson correlation and
p = 9.978787 × 10−1 for Spearman. These results indicated that the miRlastic approach was able
to identify a higher fraction of validated target predictions as compared to the other methods. Lasso
also performed well with a significantly fraction of experimentally identified interactions but when
compared to miRlastic was clearly lower (Figure 5C). Pearson and Spearman correlation did not show
any significant difference. Taken together, miRlastic inference outperformed other commonly used
methods with respect to the over-representation of experimentally validated mi-/mRNA interactions.
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Figure 5. mi-/mRNA regulatory network inference in HNSCC samples. (A) 44 miRNA expression
profiles show differential expression between HPV+ (blue) and HPV- (green) patients; (B) mi-/mRNA
regulatory network generated by our inference algorithm. The network consists of 766 regulations
between 44 miRNAs (light blue) and 16,617 genes (light yellow). The edges represent miRNA-target
relationships in the context of the TCGA HNSCC cohort; (C) Performance evaluation of the
mi-/mRNA associations inference module. The left bar plot indicates the number of mi-/mRNA
interactions detected by our approach, lasso, Pearson and Spearman. The right bar plot shows the
−log10-transformed p-values when testing for enrichment of experimentally validated targets
within the results of each method. We provide an interactive representation of this network at
http://icb.helmholtz-muenchen.de/mirlastic/hnscc [71].

3.3. Two Functional Clusters in miRNA-Mediated HPV-Associated Dysregulation

In the previous sections, we described the network that resulted from the analysis of mi-/mRNA
data from tumors of patients from the TCGA HNSCC cohort with known HPV status. To finally
gain insights into the functional role of the identified mi-/mRNA pairs, we analyzed miRNA-target
genes for local enrichment given the HNSCC network. For the application of LEA on the
HNSCC mi-/mRNA interaction network, we downloaded 108 pathways from KEGG for gene
annotations [59].

In total, we obtained nine significantly locally enriched pathways (Figure 6). Overall, distinct
frequencies of genetic alterations affecting the key signaling pathways of G protein Ras (RAS) and
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mitogen-activated protein kinases (MAPK), as well as apoptosis, were reported before for HPV+ and
HPV–HNSCC on gene level: for example, TP53, HRAS, MYC, BIRC2 and CASP8 were most often
altered in HPV- tumors, whereas HPV+ cases were characterized by PIK3CA mutations, inactivation
of TRAF3, the viral genes E6, E7 and amplification of E2F1 [17].
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Figure 6. Functional characterization of the HNSCC mi-/mRNA network. Heatmap of miR scores
SmiR(v) for each miRNA v in the network indicating the functional role in the significantly locally
enriched KEGG pathways.

We next clustered miRNAs according to their functional miR score that reflected the strength of
interactions of miRNAs with a particular pathway identified two clusters with similar pattern of miR
scores across pathways (Figure 6).

The two pathway MAPK- and neurotrophin-signaling pathway associated with both clusters
suggesting that they were orchestrated by most miRNAs in HPV-associated dysregulation. Notably,
MAPK-, RAS-, neurotrophin and toll-like receptor (TLR) signaling share common elements such as a
series of MAPKs, protein kinase B (AKT) and most importantly the downstream located transcription
factor NF-κB, which is involved in regulating chief processes governing tumorigenesis such as
immune response, apoptosis, proliferation and angiogenesis [72,73]. Interestingly, hsa-miR-193b
showed a strong association with these pathways which was so far shown to play important roles
in MAPK signaling [74] and independently shown for HNSCC [75]. This finding validated the
miRlastic approach analyzing miRNA regulation in a data-driven manner with subsequent scoring
by functional annotation in a network-context.
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The first miRNA cluster was characterized by associations of many miRNAs (hsa-miR-106a,
-125b, -548b-3p/5p, -15b, -9-2, -9-1, -20b, -155, and -582-3p) mostly with the endocytosis pathway.
Endocytosis was shown to be deregulated in cancer cells in such a way that cell surface molecules with
growth advantage effects were recycled at higher rates while molecules with reduced growth effects
or those making cells recognized by the immune system were removed from the cell surface [76].

The second miRNA cluster was functionally broader and characterized by associations between
hsa-miR-2355-5p/3p, -193b, -1910 and 3166 with cytokine-cytokine receptor (CCR) interaction,
regulation of actin cytoskeleton, RAS signaling, apoptosis, toll-like receptor (TLR) signaling and
signaling involved in regulating pluripotency of stem cells. Disruption of the apoptosis pathway
is one of the hallmarks of cancer and is the result of bypassing cell cycle control in cancer cells,
which, in turn, leads to uncontrolled proliferation of cells [77]. Disturbance of the regulation of the
actin cytoskeleton was shown to play a role in the motility and invasion potential of HNSCC cells,
which were key features of metastasizing cells [78]. Cancer stem cells (CSC) were described to be
involved in therapy resistance of HNSCC, while HPV+ HNSCCs have been shown to harbor smaller
proportions of CSC compared to HPV–HNSCCs [79]. Consequently, these results provided a possible
explanation for the favorable prognosis of HPV+ HNSCC patients and link the pathway “signaling
pathways regulating pluripotency of stem cells” also to HPV-infection. The expression patterns of
TLR, which not only play a role in the immunological defense against pathogens but also in cancer,
were demonstrated to be related to the HPV-status [80]. The HPV oncogenes E6 and E7 have been
shown to reduce expression of TLRs, thus linking the TLR signaling pathway to HPV+ HNSCCs [81].

The oncoproteins E6 and E7 are known to bind several cellular targets, which have been
described to regulate, among others, cytokine signaling, thereby providing a link between
HPV-status and the “cytokine-cytokine receptor interaction” pathway [82]. Cytokine-cytokine receptor
interaction in general is a common mechanism of cell-cell communication between tumor cells
and surrounding non-tumor cells and plays an important role in regulation of the tumor driving
mechanisms immune suppression and angiogenesis [83]. The miRlastic analysis suggested that few
miRNAs, predominantly hsa-miR-193b and -2355-5p, mediated gene dysregulation largely through
modulation of TLR–CCR-interaction signaling and signaling regulating pluripotency of stem cells.

In all, the pathways identified applying miRlastic were in context with signaling disturbance
known to be associated with HNSCC tumorigenesis. Moreover, the identified pathways were also
known to be related to HPV-status of HNSCC, strengthening the validity of the generated mi-/mRNA
regulatory network. Our finding suggested that the two clusters of miRNA-mediated target gene
regulation were characterized by distinct signaling pathways deregulated in HPV+ versus HPV-
HNSCC and, therefore, support plausibility of the results in the context of the biology of HPV+
HNSCC tumors.

4. Conclusions

We have demonstrated the power of coupling an miRNA-characteristic mi-/mRNA target
inference method to a local enrichment analysis on the inferred network, in order to identify
functional roles of miRNAs in a given experimental setting. The proposed target inference of
miRlastic employed a linear regression model with elastic net penalization and negativity-constrained
coefficient estimation. The choice of balancing between L1 and L2 was achieved by capturing the
co-expression structure of miRNAs independently for each common target gene. The miRlastic
inference was able to best enrich for experimentally validated interactions. The local enrichment
analysis and subsequent clustering of functional miR scores across pathways, finally allowed us
to assign functional roles to sets of miRNAs as given by short distances in the inferred networks
between target genes of a selected pathway. The method was made publicly available as an R
package. We applied mirRlastic to HPV-associated mi-/mRNA regulation in HNSCC data and were
able to identify two miRNA clusters of each distinct functional roles. The HPV-associated analysis
in HNSCC patients provided, via the identified mRNA targets, descriptive and mechanistic insights
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into the molecular phenotype of HPV-driven HNSCC and further validated the meaningfulness of
the miRlastic method at a biological and clinical level. We used precursor miRNA expression instead
of mature miRNA expression, which was used in previous applications of our approach [44,45], and
thus proved that miRlastic is independent from the transcriptional status. In summary, we designed
a method for which we showed that it provided a valuable basis for identifying functional roles of
miRNAs in a disease context. On the one hand, we selected miRNAs that have a promising role as
potential biomarkers due to the significant association with a disease-specific cellular process. On
the other hand, this knowledge can further be used to identify potential therapeutic targets, e.g., for
cancer treatment, since it has been shown that tumor growth may be prevented either by systemic
administration of miRNAs [84] or miRNA silencing [85].

Acknowledgments: We thank Ivan Kondofersky for statistical help in developing the inference method and
Gökçen Eraslan for further statistical help. This work was supported by the German Federal Ministry of
Education and Research (BMBF) within the framework of the e:Med research and funding concept (grant #
01ZX1313C) and the European Research Council (Latent Causes: 259294); the Deutsche Forschungsgemeinschaft
(InKoMBio: SPP 1395 (TH 900/3-2)) and (Psycourse).

Author Contributions: Steffen Sass, Nikola S. Mueller and Fabian J. Theis developed and refined the method.
Adriana Pitea analyzed HNSCC data and evaluated the method. Nikola S. Mueller and Fabian J. Theis planned
and supervised the study. Kristian Unger and Julia Hess analyzed biological results. Steffen Sass and Adriana
Pitea drafted the manuscript and Steffen Sass, Adriana Pitea, Nikola S. Mueller, Kristian Unger, Julia Hess and
Fabian J. Theis wrote the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lewis, B.; Shih, I.; Jones-Rhoades, M.; Bartel, D.; Burge, C. Prediction of mammalian microRNA targets.
Cell 2003, 115, 787–798.

2. Schmiedel, J.; Klemm, S.; Zheng, Y.; Sahay, A.; Bluthgen, N.; Marks, D.; van Oudenaarden, A. MicroRNA
control of protein expression noise. Science 2015, 348, 128–132.

3. Guo, Z.; Maki, M.; Ding, R.; Yang, Y.; Zhang, B.; Xiong, L. Genome-wide survey of tissue-specific microRNA
and transcription factor regulatory networks in 12 tissues. Sci. Rep. 2014, 4, doi:10.1038/srep05150.

4. Barad, O.; Mann, M.; Chapnik, E.; Shenoy, A.; Blelloch, R.; Barkai, N.; Hornstein, E. Efficiency and specificity
in microRNA biogenesis. Nat. Struct. Mol. Biol. 2012, 19, 650–652.

5. Cohen, S. Use of microRNA sponges to explore tissue-specific microRNA functions in vivo. Nat. Methods
2009, 6, 873–874.

6. Pasquinelli, A. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship.
Nat. Rev. Genet. 2012, 13, 271–282.

7. Sass, S.; Dietmann, S.; Burk, U.; Brabletz, S.; Lutter, D.; Kowarsch, A.; Mayer, K.; Brabletz, T.; Ruepp, A.;
Theis, F.; et al. MicroRNAs coordinately regulate protein complexes. BMC Syst. Biol. 2011, 5, 136.

8. Lin, S.; Gregory, R. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 2015, 15, 321–333.
9. Ma, X.; Conklin, D.; Li, F.; Dai, Z.; Hua, X.; Li, Y.; Xu-Monette, Z.; Young, K.; Xiong, W.; Wysoczynski, M.;

et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat. Commun. 2015, 6, 7151.
10. Medina, P.; Nolde, M.; Slack, F. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell

lymphoma. Nature 2010, 467, 86–90.
11. Esquela-Kerscher, A.; Slack, F. Oncomirs—MicroRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6,

259–269.
12. Summerer, I.; Hess, J.; Pitea, A.; Unger, K.; Hieber, L.; Selmansberger, M.; Lauber, K.; Zitzelsberger, H.

Integrative analysis of the microRNA-mRNA response to radiochemotherapy in primary head and neck
squamous cell carcinoma cells. BMC Genom. 2015, 16, 654.

13. Summerer, I.; Niyazi, M.; Unger, K.; Pitea, A.; Zangen, V.; Hess, J.; Atkinson, M.; Belka, C.; Moertl, S.;
Zitzelsberger, H. Changes in circulating microRNAs after radiochemotherapy in head and neck cancer
patients. Radiat. Oncol. 2013, 8, 1–9.

14. Du, Y.; Peyser, N.D.; Grandis, J.T. Integration of Molecular Targeted Therapy with Radiation in Head and
Neck Cancer. Pharmacol. Ther. 2014, 142, 88–98.

30218



Int. J. Mol. Sci. 2015, 16, 30204–30222

15. Leemans, C.; Braakhuis, B.; Brakenhoff, R. The molecular biology of head and neck cancer. Nat. Rev. Cancer.
2011, 11, 9–22.

16. Stransky, N.; Egloff, A.; Tward, A.; Kostic, A.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.; Lawrence, M.;
Sougnez, C.; McKenna, A.; et al. The mutational landscape of head and neck squamous cell carcinoma.
Science 2011, 333, 576–582.

17. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell
carcinomas. Nature 2015, 517, 576–582.

18. Pai, S.; Westra, W. Molecular pathology of head and neck cancer: Implications for diagnosis, prognosis and
treatment. Annu. Rev. Pathol. 2009, 4, 49–70.

19. Bar-Ad, V.; Palmer, J.; Yang, H.; Cognetti, D.; Curry, J.; Luginbuhl, A.; Tuluc, M.; Campling, B.; Axelrod, R.
Current management of locally advanced head and neck cancer: The combination of chemotherapy with
locoregional treatments. Semin. Oncol. 2014, 41, 798–806.

20. Orth, M.; Lauber, K.; Niyazi, M.; Friedl, A.; Li, M.; Maihoefer, C.; Schuettrumpf, L.; Ernst, A.; Niemoeller, O.;
Belka, C. Current concepts in clinical radiation oncology. Radiat. Environ. Biophys. 2014, 53, 1–29.

21. Schmitz, S.; Ang, K.; Vermorken, J.; Haddad, R.; Suarez, C.; Wolf, G.; Hamoir, M.; Machiels, J. Targeted
therapies for squamous cell carcinoma of the head and neck: Current knowledge and future directions.
Cancer Treat. Rev. 2014, 40, 390–404.

22. Psyrri, A.; DiMaio, D. Human papillomavirus in cervical and head-and-neck cancer. Nat. Clin. Pract. Oncol.
2008, 5 , 24–31.

23. Moody, C.; Laimins, L. Human papillomavirus in cervical and head-and-neck cancer. Nat. Rev. Cancer
2010, 10, 550–560.

24. Pannone, G.; Santoro, A.; Papagerakis, S.; Muzio, L.L.; Rosa, G.D.; Bufo., P. The role of
human papillomavirus in the pathogenesis of head and neck squamous cell carcinoma: An overview.
Infect. Agents Cancer 2011, 6, 4.

25. John, K.; Wu, J.; Lee, B.; Farah, C. MicroRNAs in Head and Neck Cancer. Int. J. Dent. 2013, 2013, 650218.
26. Lajer, C.; Garnaes, E.; Friis-Hansen, L.; Norrild, B.; Therkildsen, M.; Glud, M.; Rossing, M.; Lajer, H.;

Svane, D.; Skotte, L.; et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers:
Bridging between HPV-related head and neck cancer and cervical cancer. Br. J. Cancer 2012, 106, 1526–1534.

27. Lewis, B.; Burge, C.; Bartel, D. Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell 2005, 120, 15–20.

28. John, B.; Enright, A.; Aravin, A.; Tuschl, T.; Sander, C.; Marks, D. Human MicroRNA Targets. PLoS Biol.
2004, 2, e363.

29. Betel, D.; Koppal, A.; Agius, P.; Sander, C.; Leslie, C. Comprehensive modeling of microRNA targets
predicts functional non-conserved and non-canonical sites. Genome Biol. 2010, 11, R90.

30. Bassett, A.R.; Azzam, G.; Wheatley, L.; Tibbit, C.; Rajakumar, T.; McGowan, S.; Stanger, N.; Ewels, P.A.;
Taylor, S.; Ponting, C.P.; et al. Understanding functional miRNA-target interactions in vivo by site-specific
genome engineering. Nat. Commun. 2014, doi:10.1038/ncomms5640.

31. Li, X.; Gill, R.; Cooper, N.; Yoo, J.; Datta, S. Modeling microRNA-mRNA interactions using PLS regression
in human colon cancer. BMC Med. Genom. 2011, 19, 44.

32. Hausser, J.; Zavolan, M. Identification and consequences of miRNA-target interactions–beyond repression
of gene expression. Nat. Rev. Genet. 2014, 15, 599–612.

33. Chi, S.; Zang, J.; Mele, A.; Darnell, R. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps.
Nature 2009, 460, 479–486.

34. Yang, J.H.; Li, J.H.; Shao, P.; Zhou, H.; Chen, Y.Q.; Qu, L.H. starBase: A databse for exploring
microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acid Res.
2011, 39, D202–D209.

35. Majoros, W.; Lekprasert, P.; Mukherjee, N.; Skalsky, R.; Corcoran, D.; Cullen, B.R.; Ohler, U. MicroRNA
target site identification by integrating sequence and binding information. Nat. Methods 2013, 10, 630–633.

36. Khorshid, M.; Hausser, J.; Zavolan, M.; van Nimwegen, E. A biophysical miRNA-mRNA interaction model
infers canonical and noncanonical targets. Nat. Methods 2013, 10, 253–255.

37. Li, W.; Chen, L.; Li, W.; Qu, X.; He, W.; He, Y.; Feng, C.; Jia, X.; Zhou, Y.; Lv, J.; et al. Unraveling the
characteristics of microRNA regulation in the developmental and aging process of the human brain.
BMC Med. Genom. 2013, 6, 55.

30219



Int. J. Mol. Sci. 2015, 16, 30204–30222

38. Sales, G.; Coppe, A.; Bisognin, A.; Biasiolo, M.; Bortoluzzi, S.; Romualdi, C. MAGIA, a web-based tool for
miRNA and Genes Integrated Analysis. Nucleic Acids Res. 2010, 38, 352–359.

39. Rinck, A.; Preusse, M.; Laggerbauer, B.; Lickert, H.; Engelhardt, S.; Theis, F. The human transcriptome
is enriched for miRNA-binding sites located in cooperativity-permitting distance. RNA Biol. 2013, 10,
1125–1135.

40. Lu, Y.; Zhou, Y.; Qu, W.; Deng, M.; Zhang, C. A Lasso regression model for the construction of
microRNA-target regulatory networks. Bioinformatics 2011, 27, 2406–2413.

41. Muniategui, A.; Nogales-Cadenas, R.; Vasquez, M.; Arangueren, X.; Luttun, A.; Prosper, F.;
Paculal-Montano, A.; Rubio, A. Quantification of miRNA-mRNA Interactions. PLoS ONE 2012, 7, e30766.

42. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 2005, 67,
301–320.

43. Beck, D.; Ayers, S.; Wen, J.; Brandl, M.; Pham, T.; Webb, P.; Chang, C.; Zhou, X. Integrative analysis of
next generation sequencing for small non-coding RNAs and transcriptional regulation in Myelodysplastic
Syndromes. BMC Med. Genom. 2011, 4, 19.

44. Meyer, S.; Sass, S.; Mueller, N.; Krebs, S.; Bauersachs, S.; Kaiser, S.; Blum, H.; Thirion, C.; Krause, S.;
Theis, F.J.; et al. Integrative Analysis of MicroRNA and mRNA Data Reveals an Orchestrated Function of
MicroRNAs in Skeletal Myocyte Differentiation in Response to TNF-Îś or IGF1. PLoS ONE 2015, 10, e0135284.
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