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Abstract— Data-driven nonparametric models gain impor-
tance as control systems are increasingly applied in domains
where classical system identification is difficult, e.g., because of
the system’s complexity, sparse training data or its probabilistic
nature. Gaussian process state space models (GP-SSM) are
a data-driven approach which requires only high-level prior
knowledge like smoothness characteristics. Prior known prop-
erties like stability are also often available but rarely exploited
during modeling. The enforcement of stability using control
Lyapunov functions allows to incorporate this prior knowl-
edge, but requires a data-driven Lyapunov function search.
Therefore, we propose the use of Sum of Squares to enforce
convergence of GP-SSMs and compare the performance to other
approaches on a real-world handwriting motion dataset.

I. INTRODUCTION

Accurate identification of dynamical systems is funda-
mental for the application of control engineering. Classical
control uses system identification methods and observations
of the system’s behavior to identify parametric models. The
identification strongly depends on the choice of the model
structure as otherwise the corresponding set of parameters
cannot be determined. The potential model candidates are un-
known, especially for complex, possibly stochastic, systems,
e.g., human behavior. Therefore, identification using data-
driven models has recently emerged, because the application
of control engineering reaches more towards areas where no
analytic description of the system dynamic exists.

Practitioners, e.g., in robotics, successfully employ au-
tonomous dynamical systems for encoding desired trajecto-
ries based on observed motions from humans. Given training
data points of point-to-point motions, a stable dynamical
system is learned, which guarantees convergence to the goal
point during reproduction [1]. The application of nonpara-
metric data-driven models is very promising in such domains
as knowledge about the complexity of the motion is missing
a priori. Nevertheless, some fundamental properties of the
dynamical system must be given as otherwise generalization
outside of the observed dataset is not possible [2]. Here, we
consider sufficiently smooth behavior and the convergence of
the dynamical system as prior knowledge, which both hold
for many real-world systems.

From a system identification point of view, subspace meth-
ods as proposed in [3] allow to incorporate stability assump-
tions. But classical methods rely on a particular parametric
model structure, e.g., ARMA models in the linear case or
Hammerstein models for nonlinear inputs [4]. However, for a
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good performance, the model structure should be known. An-
other issue is the quantification of the possible ignorance of
the model outside of the training dataset. Some identification
methods use stochastic embedding [5] to model the bias error
as realization of a stochastic process, but the benefits from
a Bayesian modeling approach are not exploited. Therefore,
the behavior in areas without observations is not properly
defined and must be handled with care. Gaussian processes
(GPs) allow to quantify the model fidelity as they also encode
the uncertainty directly in the stochastic process (without
separate model error estimation). The work in [6] considers
kernel-based approaches like the GP for identification and
reviews recent work at the intersection to machine learning.

Previous work in [7], [8] considers GPs for system iden-
tification due to their beneficial properties regarding the
bias variance trade-off, the strong background of Bayesian
nonparametrics models and the implied smoothness (when
using an appropriate kernel). The stability of GP-SSMs is
first investigated in [9], [10] but without elaborating how
convergence can be enforced. Alternatively, [1] uses Gaus-
sian Mixture Models for learning stable dynamics, while [11]
develops a generic framework for stabilizing learned dynami-
cal systems using control Lyapunov functions. However, both
methods do not consider the uncertainty in the model.

The contribution of this paper is a novel approach to
learning stochastically stable GP-SSMs. First, we propose the
use of Sum of Squares (SOS) as a flexible control Lyapunov
function and demonstrate its superiority over previous ap-
proaches in terms of computational efficiency and flexibility.
Second, we present methods to enforce asymptotic stability
for deterministic GP-SSM and global uniform bounded-
ness for the stochastic GP-SSM under the SOS Lyapunov
function. We demonstrate the results on an experimental
handwriting motion dataset.

The remainder of this paper is structured as follows: After
formulating the considered problem in Section II, Section III
presents the main result. It is followed by numerical evalu-
ation in Section IV and a conclusion.

II. PROBLEM FORMULATION

Consider a discrete-time system with a continuous-valued
state1 xk ∈ X ⊆ Rn driven by an unknown stochastic pro-
cess

xk+1 = f(xk) +G(xk)ωk, ωk ∼ N (0, In), (1)

1Notation: Lower/upper case bold symbols denote vectors/matrices,
respectively. In denotes the n× n identity matrix and A � 0 the positive
definiteness of matrix A. E[·] denotes the expected value, var[·] the variance
of a random variable. R0

+, R+ denote all real positive numbers with and
without the zero, respectively. The norm ‖ · ‖ denotes Euclidean norm.



where ωk is a random variable from the probability
space (Ω,F ,P) with sample space Ω, the correspond-
ing σ-algebra F and the probability measure P . As-
sume that f : X → X is infinitely differentiable as well
as G : X → Rn

+ which maps to the diagonal elements of
positive definite matrices. It is assumed, that true dynamical
system xk+1 = f(xk) is globally uniformly asymptotically
stable and the real stochastic process (1) is globally uni-
formly bounded, which is defined as follows:

Definition 1 (Uniform Boundedness [12]): The trivial so-
lution of (1) is uniformly bounded if, for every α > 0 there
exists β = β(α) > 0 such that

‖xk‖ < β, almust surely, (2)

when ‖x0‖ < α for a k ≥ 0. It is globally uniformly bounded
if α is arbitrary large.
We assume that consecutive measurements of the state are
taken, thus N data pairs are given in the training set
D = {(x̄i, x̄i+1)}Ni=1. The goal is to find a process model
fψ with parameters ψ, which estimates the real process (1)
based on data D using the above stated prior assumption on
convergence and smoothness.

Based on this definition, finding the model fψ is formal-
ized as a constrained likelihood optimization

ψ∗ = arg max
ψ

N∑
i=1

logP(x̄i+1|x̄i,fψ), (3a)

s.t. xk+1 = fψ(xk) is globally uniformly bounded, (3b)

where fψ is an infinitely mean-square differentiable stochas-
tic process. The optimization ensures, that the model fψ
best possibly corresponds to the real process (1), when
using the likelihood (3a) as a measure for similarity. The
constraint (3b) incorporates the prior assumption on bound-
edness of the underlying process. This paper aims to develop
a method for synthesizing the model fψ using a Bayesian
data-driven approach which is computationally tractable.

III. STOCHASTIC STABILITY WITH SOS CONTROL
LYAPUNOV FUNCTIONS

Our general idea is to learn a GP-SSM fψGP
(xk) and a

SOS control Lyapunov function V (xk) separately using the
available training data. Then, the overall model is synthesized

fψ(xk) = fψGP
(xk) + u(xk), (4)

where u(xk) is an internal stabilizing command computed
from the control Lyapunov function.

A. Learning Gaussian Process State Space Models

A Gaussian process is a stochastic process which assigns
to any finite subset {x1, . . . ,xM} ⊂ Rn in a continuous
input domain a joint Gaussian distribution. It is often con-
sidered as a distribution over functions [13], denoted by
f(x) ∼ GP(mGP(x), kGP(x). It is fully specified by its
mean function mGP(x) : X → R and covariance function
kGP(x,x′) : X × X → R. If no prior knowledge about
the function is available the mean function is commonly set

to zero, but our approach equivalently works with nonzero
priors. A widely used covariance function is the squared
exponential kernel with automatic relevance determination

kGP(x,x′) = σ2
f exp

(
−1

2
(x− x′)ᵀL−2(x− x′)

)
. (5)

The variables L = diag(l1, . . . , ln) and lj ∈ R+,
∀j = 1, . . . ,n and σf ∈ R0

+ are considered hyperparameters
of the GP and concatenated in ψGP = [l1 · · · ln σf ]T .
The kernel (5) is infinitely differentiable and consequently
results in a distribution over infinitely mean square differ-
entiable functions [13]. Thus, by the choice of the kernel,
the smoothness assumption regarding the true process (1) is
matched.

We model the output variables as independent from
each other, thus, n independent GPs are employed for
a n-dimensional state space, denoted as

fψGP
(x) ∼ GP(0,kGP(x,x′)), (6)

where kGP(·, ·) =
[
kGP,1(·, ·) . . . kGP,n(·, ·)

]ᵀ
is com-

posed of covariance functions with corresponding hyperpa-
rameters ψGP,j , j = 1, . . . ,n, and

fψGP
(x) =


fψGP ,1(x) ∼ GP(0, kGP,1(x,x′))
...

...
fψGP ,n(x) ∼ GP(0, kGP,n(x,x′)).

(7)

The GP-SSM models the difference equation of a stochastic
dynamical system mapping from the current state xk to the
normal distribution over the next state xk+1, thus

xk+1 ∼ GP(0,kGP(xk,x′k)). (8)

Given input training data {x̄i}Ni=1 and output training data
{x̄i+1}Ni=1 and the current state xk, the mean and variance
of the j-th component of the next state xk+1,j is given by

E[xk+1,j ]=k
ᵀ
j (Kj + σ2

onIN )−1yj =: µj(xk), (9)

var[xk+1,j ]=kGP,j(xk,xk)-kᵀj (Kj + σ2
onIN )-1kj=:σ2

j (xk),

(10)

where yj = [x̄2,j , · · · , x̄N+1,j ]
ᵀ, j = 1, . . . ,n concatenates

the j-th dimension of the output training data {x̄i+1}Ni=1,
σon ∈ R0

+ is observation noise and

Kj =

kGP,j(x̄1, x̄1) . . . kGP,j(x̄1, x̄N )
...

. . .
...

kGP,j(x̄N , x̄1) . . . kGP,j(x̄N , x̄N )

 ,

kj =
[
kGP,j(x̄1,xk) . . . kGP,j(x̄N ,xk)

]ᵀ
.

Following Bayesian inference principle, the optimal hy-
perparameters regarding the training data are obtained by
maximizing the marginal likelihood for every component,
i.e. for every j = 1, . . . ,n

ψ∗GP,j = arg max
ψGP,j

log p(yj |X,ψGP,j),

log p(yj |X,ψGP,j) = −1

2
yT
j Kjyj −

1

2
log detKj

− N

2
log(2π), (11)



where X = [x̄1, · · · , x̄N ] concatenates the input data
{x̄i}Ni=1. This optimization is nonconvex and commonly
solved using gradient-based solvers in the GP-SSM train-
ing [13].

B. Learning Sum of Squares Lyapunov function

Sum of Squares, a suitable technique for constructing
Lyapunov functions, is defined as follows [14].

Definition 2 (Sum of Squares): For x ∈ Rn, a multivari-
ate polynomial p(x) is a Sum of Squares if there exist some
polynomials rm(x), m = 1 . . .M such that

p(x) =

M∑
m=1

r2m(x). (12)

It is well-known that an equivalent characterization of SOS
is given as follows [15].

Lemma 1 (SOS in vector notation): A polynomial p(x)
of degree 2M is a SOS if and only if there exists a positive
semidefinite matrix Q̂ � 0 and a vector of monomials2 m(x)
containing monomials of degree ≤M and > 0 such that

p(x) = m(x)ᵀQ̂m(x). (13)
This lemma crucially simplifies the construction of a SOS to
finding the elements of the Mn×Mn dimensional symmetric
matrix Q̂. In order to make the SOS a valid Lyapunov
candidate, we restrict the matrix to be positive definite
Q ∈ S+ with

S+ =
{
Q ∈ RMn×Mn |Q � 0,Q = Qᵀ} .

1) Learning SOS from Data: Since the deterministic part
of the true process xk+1 = f(xk) is asymptotically stable,
there exists a Lyapunov function V (xk) which reduces in
each time step

V (xk+1)− V (xk) < 0. (14)

To keep the problem of finding this function tractable, we
assume a SOS Lyapunov candidate V of degree 2M

V (xk) = m(xk)ᵀQm(xk). (15)

Since all which is known about (1), besides the stability,
are its realizations in the dataset, those will be used for the
Lyapunov function search

Q∗ = arg min
Q∈S+

N∑
i=1

g (V (x̄i+1)− V (x̄i)) , (16)

which minimizes the violation of the condition (14) with

g(ξ) =

{
0 for ξ ≤ 0

g̃(ξ) for ξ > 0
(17)

and g̃(ξ) : R+ → R+ is chosen as a strictly monotone in-
creasing convex function. With this choice, the optimization
can be solved efficiently also for large degrees of the SOS
since it is a convex problem.

2A monomial of degree M in x ∈ Rn is a scalar function
∏n
j=1 x

αj

j
where αj are nonnegative integers with

∑n
j=1 αj = M . The number of

all possible monomials of degree ≤M and > 0 is Mn =
(n+M)!
n!M !

− 1.

Proposition 1: The optimization in (16) is a convex prob-
lem if V is a Sum of Squares and the function g is a non-
decreasing convex function.

Proof: The Lyapunov function (15) is a linear function
of the matrix Q. The difference V (x̄i+1) − V (x̄i) is also
linear, thus convex in Q. The composition of g and this
difference is convex because g is non-decreasing and convex
by assumption. As the sum of convex functions is also
convex, the objective function is convex. The constraint set
S+ is convex, thus (16) is a convex problem.

Remark 1: Even though, we aim to identify a stochastic
process, a deterministic Lyapunov criteria on (14) is em-
ployed. This is done only in the function search but not
in the actual control computation (as shown in the follow-
ing section) and therefore does not affect the convergence
properties of the resulting system. This is also why the pa-
rameter choice of the Lyapunov function will only influence
the identification precision but not the convergence itself.
Considering the observations of the stochastic process as its
mean realizations, as in (16), is a reasonable assumption,
since the data is the only information available about the
system. Because of the stochastic nature, not all data points
might adhere to the Lyapunov function which belongs to the
stable true dynamics f . Therefore, the objective function (16)
might not reach zero. However, this not decisive for the
convergence properties of the identified system as shown
later on.

C. Stabilizing Control

After learning a SOS control Lyapunov function from data,
it is employed to compute a stabilizing command ‖u‖ <∞
for the GP-SSM. We start with a deterministic consideration
of the GP-SSM before dealing with the stochastic case.

a) Deterministic Results: For this case, the proposed
next state x̃k+1 is the mean prediction µ : X → X of the
GP in (9), thus x̃k+1 = µ(xk), which is possibly not stable.
The stabilizing command is found through optimization3

u∗ = arg min
u

1

2
uᵀu, (18a)

s.t. V (µ(xk) + u)− V (xk) < 0 if xk 6= 0

V (µ(xk) + u)− V (xk) = 0 if xk = 0,
(18b)

where V is the SOS function determined in (16). This is
not a convex problem because of the nonconvex constraint
set (18b). Therefore, finding a global minimum cannot be
guaranteed. However, this is not critical concerning the
stability, because any u in the constraint set leads to a
stable system. Reaching a local minimum will only result
in behavior different from the training data, but convergence
is guaranteed. In case that the stability condition is already
satisfied for the uncorrected GP-SSM, the stabilizing com-
mand equals 0, so there is no need to solve this optimization.
For the deterministic case, the following conclusion is drawn.

Proposition 2: The system

xk+1 = fψ(xk) := µ(xk) + u∗(xk), (19)

3The dependency of u on xk was dropped for notational convenience.



where µ is the mean function of a GP from (9) and the
stabilizing command u∗(xk) obtained from the constrained
optimization (18) is uniformly globally asymptotically stable.

Proof: The function V is a SOS and therefore positive
definite (with the restriction Q ∈ S+) and radially un-
bounded and therefore a valid Lyapunov candidate. The op-
timization is feasible, since the solution u = −µ(xk) is al-
ways in the constraint set because V (0)− V (xk) = −V (xk)
is negative definite ∀xk ∈ X . Also boundedness of ‖u‖ is
full filled here, since deterministic GP-SSMs with squared
exponential kernel are bounded [9].

b) Stochastic Results: For the stochastic case, the pro-
posed state x̃k+1 = fψGP

(xk) is a Gaussian distributed
vector (from the GP) and the stabilizing command is obtained
from the optimization

u∗ = arg min
u

1

2
uᵀu, (20a)

s.t. δV (xk) < 0 if xk 6= 0,

δV (xk) = 0 if xk = 0,
(20b)

where δV (xk) = E[V (x̃k+1 + u)|xk] − V (xk). Since
V (x̃k+1+u) is a polynomial in x̃k+1 for the SOS Lyapunov
function, the computation of the constraint (20b) reduces to
a sum over expectations of multivariate polynomials

E[V (x̃k+1 + u)|xk] = (21)

=

Mn∑
i,j=1

QijE[mi(x̃k+1 + u)mj(x̃k+1 + u)|xk],

where mi(·),mj(·) are the i, j-th element of the monomial
vector m(·) and Qij the elements of Q. These expectations
are moments of the random vector x̃k+1 + u and their
computation for arbitrary degrees M and dimensions n for
normally distributed random vectors are given in [16].

In contrast to the deterministic case, (20) is not feasible
∀xk ∈ X , because E[V (x̃k+1 + u)|xk] > 0 ∀xk, even for
u = −µ(xk). And since V (xk) → 0 for ‖xk‖ → 0, the
allowed set δV (xk) ≤ 0 is empty for some xk near the ori-
gin. Before analyzing the impact of this feasibility problem
on convergence properties, we review the Lyapunov based
criteria [12] for showing boundedness from Definition 1.

Theorem 1 (Global Uniform Boundedness): The stochas-
tic system of the form (1) is almost surely globally uni-
formly bounded, if there exists a positive definite, radially
unbounded function V (xk), for which

E[V (xk+1)|xk]− V (xk) < 0, ∀‖xk‖ > δ (22)

holds for some δ ∈ R+.
To apply this theorem the boundedness of the expectation of
the Lyapunov function must be shown for our setting.

Lemma 2: There exists a c1 ∈ R+ which upper bounds
the expectation of the Sum of Squares Lyapunov function

E [V (x̃k+1 + u)|xk] < c1, (23)

where x̃k+1 = fψGP
(xk) is a GP-SSM with a squared

exponential kernel and u is obtained from (20).

Proof: The expectations E [x̃k+1] and variances
var [x̃k+1], j = 1, . . . ,n, of a GP-SSM with squared ex-
ponential kernel are bounded by

√
Nσ2

f ,j‖hj‖ and σ2
f ,j ,

respectively. This which was shown in [10] using the ab-
breviation hj = (Kj + σ2

onI)−1yj . Thus it follows

E [ x̃k+1,j + uj |xk] <
√
Nσ2

f ,j‖hj‖+ uj (24)

var [ x̃k+1,j + uj |xk] < σ2
f ,j . (25)

The expectation of the SOS Lyapunov function
E [V (x̃k+1 + u)|xk] is a polynomial in the
expectations (24) and the variances (25) as given from
equation (21). Hence, it is also bounded.
This leads to the main result on boundedness of the system.

Proposition 3: The system

xk+1 = fψ(xk) := fψGP
(xk) + u∗(xk), (26)

with Gaussian process fψGP
(xk) ∼ GP(0,kGP(xk,x′k))

with squared exponential kernel as defined in (5) and the sta-
bilizing command u∗(xk) obtained from the constrained op-
timization (20) is globally uniformly bounded for a bounded
initial value x0. Whenever δV (xk) > 0, thus (20) not
feasible, u∗ = −µ(xk) is set.

Proof: From Lemma 2, it can be obtained that

δV (xk) < c1 − V (xk). (27)

Due to the fact that lim‖xk‖→∞ V (xk) = ∞ is unbounded
and (27), there must exist a c2 ∈ R+ such that

δV (xk) < 0, ∀‖xk‖ > c2. (28)

Therefore, the conditions of Theorem 1 are satisfied.
Thus, there exists a set Bc2 around the origin where (20) is
not feasible. But outside of this set, X \ Bc2 , the problem
is feasible and the stabilizing command ensures decreasing
expectation of the Lyapunov function. Therefore, the system
is guaranteed to convergence to Bc2 in probability.

IV. EXPERIMENTAL EVALUATION

For evaluation purposes, we compare the proposed SOS
Lyapunov function, now denoted by VQ, the previously
proposed weighted sum of asymmetric quadratic functions
(WSAQF) VWSAQF [11] and a quadratic Lyapunov function
VP based on the LASA handwriting dataset4. Since no
other approach for learning stochastic stable systems is
known from literature, we first compare the proposed SOS-
based technique in a deterministic setting before showing
simulations for the stochastic case.

A. Setup Deterministic

The dataset contains 24 demonstrations of human writing
motions in two dimensions. Three repetitions of 150 or 250
steps are taken for each movement, thus D contains 450-750
elements. In the first step, the hyperparameters ψGP for the
2D GP-SSM are trained according to Section III-A. For the
deterministic model the mean of the GP-SSM is taken. We
compare three different Lyapunov functions.

4Available for download at https://bitbucket.org/khansari/seds
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Fig. 1. Result for GP-SSM mean (streamlines in blue) along with the
training data (red arrows) for the S-shape motion. First plot depicts the
original GP-SSM and the asymptotically stabilized GP-SSMs are shown
below. The contour lines of the stabilizing Lyapunov function (Quadratic,
WSAQF, SOS) is drawn in black.

• A quadratic Lyapunov function VP (xk) = xᵀ
kPxk,

where P � 0 with n(n + 1)/2 = 3 free parameters
(the elements of the Cholesky decomposition of P ).

• The WSAQF Lyapunov function [11] defined as

VWSAQF(xk) = xᵀ
kP 0x+

L∑
l=1

βl(xk) (xᵀ
kP l(xk-ξl))

2
,

with βl(xk) =

{
1 if xᵀ

kP l(xk − ξl) ≥ 0
0 otherwise,

which has continuous first order partial derivatives and
is positive definite for P 0...L � 0. We consider here
L = 3 resulting in (L+ 1)n(n+ 1)/2 + nL = 18 free
parameters for the Cholesky decompositions of P 0...L

and ξ1...L. WSAQF have been originally proposed in

continuous-time domain, therefore results might vary.
• The proposed SOS Lyapunov function defined in (21)

with degree 2M = 4, resulting in Mn = 5 monomi-
als and therefore Mn(Mn + 1)/2 = 15 free parameters
(Cholesky decomposition of Q).

The optimization (16) is solved for each Lyapunov function
to determine the optimal parameters. For efficient imple-
mentation, we perform a Cholesky decomposition LLᵀ for
all positive definite matrices and optimize over the nonzero
entries of the lower triangular matrix, which allows to avoid
the positive definiteness constraint. To enforce strict positive
definiteness of the matrices Q,P ,P 0...L their eigenvalues
are enforced to be larger than 0.01 by adding this as a
constraint to the numerical optimization. For the optimiza-
tion (16), we chose g̃(ξ) = ξ in accordance to Proposition 1.
The optimization (16) has, depending on the employed
Lyapunov function, a nonconvex or convex objective function
(Table I), nevertheless we employed for all the same solver.

For the evaluation of fψ , the correction term u is obtained
from solving (18). The constraint can be either convex or
nonconvex, making the entire problem convex nor not, as
summarized in Table I. For numerical robustness, we enforce
the strict negativity in (18b) by

V (µ(xk) + u)− V (xk) < −ρ log(1 + V (xk))

in our implementation, where ρ = 0.1 was chosen.
The simulations start from the initial points of the training

trajectories until reaching a neighborhood of the origin
‖xk‖ < 10 or the 500 steps limit. The performance is
compared regarding three quality measures:
• The computation time for finding the optimal Lyapunov

function (solving (16)) in Matlab on a laptop with Intel
Core i7 q740 processor at 1.73 GHz and 4 GB RAM.

• The total area between the training data curve and the
curve from the simulated trajectories.

• The average correction effort Ecor defined as

Ecor =
Kf∑
k=1

‖uk‖
/ Kf∑

k=1

‖xk‖ where Kf is the total

number of steps summed over all trajectories and uk

are the corresponding stabilizing commands.
The results are shown graphically for the S-shape motion

in Fig. 1 and quantitatively for the entire dataset in Table I.
The computation time for the quadratic Lyapunov function
is the lowest as it has the least parameters to optimize, but
also the lowest precision due to little flexibility. The SOS
Lyapunov function outperforms the WSAQF with respect
to all measures. The correction effort and the area is the
lowest and therefore the stabilized model follows the training
data more accurately then all others, while applying fewer
corrections.

B. Setup Stochastic

To evaluate the stochastic setting, we simulate as follows.
• GP-SSM without stabilization: Realizations of the tra-

jectories are generated by drawing in each step from

xk+1 ∼ N (µ(xk), Σ(xk)) , (29)
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Fig. 2. Stochastic sample paths (black lines) along with the training data
(red arrows) for the W-shape for the original and stabilized GP-SSM.

where mean E[xk+1] = µ(xk) and variance
var[xk+1] = Σ(xk) = diag

(
σ2
1(xk), . . . ,σ2

n(xk)
)

are
inferred from the GPs according to (9), (10).

• GP-SSM with stabilization through SOS Lyapunov
function: At each step u(xk) is computed according
to (20) and the next step is drawn from

xk+1 ∼ N (µ(xk) + u(xk), Σ(xk)) . (30)

The stabilizing command is independent of the realiza-
tion of xk+1 which is unknown when u is computed.
It only depends on µ(xk), Σ(xk).

For both cases, three trajectories beginning at each starting
point of the training data and two trajectories starting outside
the training data are generated as shown in Fig. 2. For the
original GP-SSM only 1 of 5 path approaches the origin,
while all realizations of the stabilized GP-SSM converge to
a small set around the origin.

C. Discussion

Regarding flexibility, SOS outperforms the quadratic and
WSAQF Lyapunov function on the employed dataset as
shown in Table I which leads to higher precision in adherence
to training data. Regarding the computational complexity,
the search of the quadratic and the SOS Lyapunov func-
tion (16) are convex problems, and therefore have significant
advantages, over the WSAQF which explains the lower com-
putation times. Computing the stabilizing command for the
SOS has a disadvantage compared to WSAQF and quadratic
Lyapunov funtions as (18) is not convex. However, this
drawback is inherent to flexible Lyapunov candidates: If only
convex Lyapunov candidates are permitted, more complex
systems cannot be captured. In the stochastic case, sample
paths for the original GP-SSM do not converge reliably.
In contrast, the proposed stabilized GP-SSM guarantees
convergence near the origin.

V (xk) Ecor

Area
Error

(16)
av. time

(16)
convex

(18)
convex

Quadratic 0.1523 7.41e+03 1.06s yes yes
WSAQF 0.0912 4.77e+03 462.64s no yes
SOS 0.0149 2.03e+03 29.89s yes no

TABLE I
AVERAGE PERFORMANCE AND PROPERTIES OF QUADRATIC, WSAQF
AND SOS LYAPUNOV FUNCTIONS ON THE HANDWRITING DATASET.

V. CONCLUSION

In this paper, we propose a novel approach for learning
stable Gaussian process state space models using control
Lyapunov functions. In the first step, we propose a Sum
of Squares function in the data-driven search for Lyapunov
candidates and demonstrate its advantages over existing
approaches in terms of computational complexity (convexity
of the optimization problem) and its flexibility based on a real
world dataset for the deterministic GP-SSM. In the second
step, we derive criteria to guarantee global uniform bound-
edness for the stochastic system and provide simulations.
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