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Abstract— In recent years, psychoacoustic impacts of a prod-
uct has won increasing importance in various design and
manufacturing sectors. However, conventional measurement
setups based on microphones are expensive and noise-sensitive.
This paper proposes a novel method to estimate psychoacoustic
parameters from accelerometer measurement by using artificial
neural networks. The proposed method has been successfully
applied on automotive vehicle interior components which pro-
duce nonstationary sounds when operated. In order to develop
and tune the proposed method, the operation sounds are first
measured by a microphone and an accelerometer simultane-
ously. Then, static and dynamic psychoacoustic parameters are
calculated from the microphone signals according to the audi-
tory model. Finally, the relationship between the psychoacoustic
parameters and the accelerometer signals is approximated
by feedforward multilayer neural networks. As a result, the
performance of the proposed method using artificial neural
networks is successfully validated on the existing database.

I. INTRODUCTION

With the development of electric cars, greater importance
has been attached to subjective perception of the vehicle
interior sound in the automotive industry. Especially at the
first contact with the vehicle in a dealership, where the
engine is stopped, the sound of operation components is a
deciding factor for customers. Previous studies have shown
that subjective perception of nonstationary sound is highly
correlated with the psychoacoustic parameters, loudness
and sharpness [1]–[4]. The microphone and the artificial
head are conventional measuring techniques to quantify the
perceived sound by a human, but because of their cost
and the complexity to build such a test bench, they are
not ideal in the manufacturing industry. Furthermore, the
result obtained through conventional measuring techniques
is highly disturbed by environmental noises. By contrast, the
use of accelerometers shows its superiority in price and noise
resistance. This is the reason why this paper investigates the
feasibility of psychoacoustic analysis using accelerometer-
based measurements.

An accelerometer measures structural vibrations by mea-
suring the structural vibration acceleration. Whereas conven-
tional techniques record the sound waves in the air by mea-
suring the sound pressure over time. Most psychoacoustic
research has been based on airborne measurement [1]–[4].
Research on the measurement of psychoacoustic parameters
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with the accelerometer has been less extensive. To the best
of our knowledge, only one case can be reported: Moritz
et al. [5] have worked on the correlation between airborne
and structure-borne sound of the motor noise, which is one
specific kind of stationary sound. They have found that
loudness calculated from both sensors is linearly correlated,
but sharpness is not. Their method of linear regression
showed its shortage in handling the correlation of sharpness.

From another perspective, Wang et al. [6] illustrated that
Artificial Neural Networks (ANNs) are powerful enough to
approximate the existing auditory model for the loudness
in the air. ANNs have already been widely applied in
vehicle acoustics for evaluation [7], [8], classification [9]
and recognition [10]. Research in [7] and [8] focused on
stationary sound, and results in [9] and [10] were limited
to predefined categories or patterns. None of them covers
structure-borne measurement. In our research, the measured
sound is nonstationary, and the target values i.e. the psychoa-
coustic parameters have a large range of value and are not
categorized.

The goal of this paper is to fill the above-mentioned
lack and aims to achieve psychoacoustic parameters of the
nonstationary sound based on the accelerometer measure-
ment using ANNs. Correlation between the microphone
measurement and accelerometer measurement with reference
to loudness and sharpness will be discussed. Compared to
existing literature, the method proposed in this paper permits
to:

• Provide a noise-resistant measurement of sound percep-
tion using structure-borne accelerometers,

• Measure and evaluate the psychoacoustic parameters
earlier in manufacturing,

• Show the potential to replace expensive sensors with
economical ones and ANN-processing.

The whole process is shown in Fig. 1. The two branches
in the flowchart specify the different treatments, respec-
tively for microphone-based and for accelerometer-based
measurements. The branch above (Path 1) shows the con-
ventional way to achieve psychoacoustic parameters, which
are calculated from microphone signals according to the
auditory model [11]. The branch below (Path 2) describes the
proposed new way to achieve sound quality estimation from
accelerometer-based measurements with the help of ANN-
processing. In order to define the behavior of the ANN, the
ANN is first trained using both measurements. This training
process permits the ANN to learn the relationship between
the accelerometer data and the results of the conventional



Fig. 1. Flowchart of the proposed method

calculation. Once the ANN has been trained, the branch
above can be eliminated, and the sound quality estimation
of a new component can be performed according to Path 2.
That means, solely accelerometer-based measurement would
be needed in further usage.

The remainder of the paper is structured as follows.
Section 2 gives out the theoretical background regarding
acoustics and ANN techniques. Section 3 describes the
methodology of the proposed approach from the experiment,
data processing to ANN modeling. Section 4 presents the
results of applying the ANN on the measured data. The
performance of the ANNs is validated, and the method pro-
posed in this paper is also evaluated from the manufacturing
aspects. A conclusion is made in Section 5.

II. BACKGROUND

A. Psychoacoustics

The study of the human perception of sound is called
psychoacoustics. The sensitivity of the human ear changes
as a function of frequency. Human hearing combines sound
with near frequencies into 24 frequency bands [11]. It is
complex to evaluate the perception, because it shows an
individual difference. A lot of efforts have been made to
use the psychoacoustic parameters to evaluate sound quality
subjectively, e.g. loudness, sharpness, rhythm, roughness etc.
[11]. It has been found that the sensation of nonstationary
sound is highly correlated with the psychoacoustic parame-
ters, loudness and sharpness [1]–[4]. Loudness describes the
human perception characteristics regarding the sound mag-
nitude. In this paper it is measured and calculated according
to the Zwickers auditory model in ISO 532B in unit of sone.
Sharpness is a sensation related to the sound spectra density

and it influences people’s sensory pleasantness. It is highly
dependent on the high frequency proportion in the sound.
There is no ISO standard to calculate the sharpness. In this
study, it is also calculated according to Zwicker [11], which
is one of the popular methods. Unit of sharpness is acum.

B. Artificial Neural Networks

Artificial neural networks (ANNs) are powerful tools to
map the inputs into desired outputs when the input/output
relation are complex and nonlinear. An ANN is a data
processing system that develops as a generalization of the
mathematical model of human cognition [12]. It consists of
numerous simple processing units which are interconnected
with each other in a structured architecture. Fig. 2 shows a
normal feedforward multilayer network, which consists of an
input layer, an output layer and one or more hidden layers.

Fig. 2. Architecture of a Feedforward Multilayer Network

A single neuron is shown in Fig. 3, in which the inputs xi

from the previous layer are weighted by wi, led into a sum
block Σ, added with the bias b, processed with an activation



function F and finally output in y. Formally, a neuron can
be defined as follows:

y = F (z) = F (Σn
i=1xiwi + b), (1)

where n is the number of the inputs, and z is the sum of the
weighted inputs.

Fig. 3. A Neuron in the ANN

Before the neural network comes into usage it should
firstly be trained and validated by a series of training data.
In the training phase, network parameters adapt themselves
in response to an amount of learning examples from the
data pool. The adaptation continues iteratively until the error
between the output of the ANN and the desired output lies
within tolerance. In this way, the network configures itself
and learns the desired input-output relationship.

III. METHODOLOGY

This section describes the procedures to obtain the pro-
posed approach. The proposed approach is composed of three
main steps: sound measurement, data preparation for ANNs,
as well as ANN modeling. Measurements are carried out with
a real-time measuring system PAK1 and all the processing
is done with MATLAB. Microphone signals are used to
calculate targets of the ANN (see subsection III-B.1), which
are specifically the loudness and sharpness. Measured data
from the accelerometer are processed to extract features (see
subsection III-B.2), which are fed to the ANN as inputs.
Based on that, the suitable ANN structure is determined.

A. Measurement protocol

A data pool is required to train the ANN in order to
achieve the maximum accuracy. The operation sounds of the
same component2 from different vehicles are recorded in a
semi anechoic chamber (see Fig. 4). Both a condenser micro-
phone and a triaxial piezoelectric accelerometer are used in
the measurement. The microphone is placed opposite to the
component with a constant distance, while the accelerometer
is directly fixed to the component surface with wax according
to ISO 5348. All the components are operated manually
in different parts, which simulates the realistic operating
conditions.

Original records of both sensors in the experiments are
shown in Fig. 5. Every record lasts 15 seconds with a

1http://www.pakbymbbm.com/
2For confidential reasons, little specific information can be provided about

the component considered in this study. This component is an operating
element frequently used by the driver and also manipulated when in the
showroom, with the engine stopped

Fig. 4. Measurement Arrangement

Fig. 5. Measured Data and Stimuli in the Experiment. Here, each
experiment consists of 5 stimuli.

sampling rate of 48 kHz. In the 15 seconds, complete
operation actions which includes one operation action and
one release action are repeated. These actions are called
stimuli. Every record contains 5-6 stimuli. In this experiment,
every complete stimulus is cut out with a fixed duration of
2 seconds. In total, 11 physical components have been mea-
sured. Once the falsely recorded stimuli have been removed,
221 stimuli from the microphone and 221 stimuli from the
accelerometer make up the data pool in our research.

B. Data Preparation for the ANN

In order to train ANNs properly and correctly, original
measured data are pre-processed to determine the desired
inputs and targets. As for the nonstationary sound, dynamic
characteristics are as important as the overall evaluation. For
this reason, our targets contain two parts: static parameters
and parameters which traces the dynamic status. Both parts
are selected with reference to loudness and sharpness. Two
ANNs are used separately for the different targets, because
they are in different complexity degrees. Furthermore, having
two separated ANNs makes it more flexible for future users
to apply. In order to train the ANNs, the data pool is divided
into two parts. Calculated parameters from the microphone,
loudness and sharpness, provides the ANN with training
targets, and extracted features from the accelerometer are
fed into the ANNs as inputs.

1) Psychoacoustic Parameter Calculation: In this step,
targets values are prepared for the ANN. Psychoacoustic
parameters, loudness and sharpness, are calculated from the



microphone signals, which are distinguished into static and
dynamic parameters. Static parameters show the statistic
evaluation of a measurement, which is represented by two
static values i.e. total loudness and total sharpness. They
evaluate a stimuli as a whole. Dynamic parameters, which
are also called time-varying parameters, are referred to as
the time series of instantaneous loudness and instantaneous
sharpness specifically in this paper. Considering that the
auditory temporal effects have influence when the sound
duration is shorter than 200 ms [11], time-varying parameters
are acquired by dividing the stimulus into 20 ms frames and
calculating parameter values in each frame.

2) Feature Extraction: Feature extraction offers the inputs
of the ANN from the accelerometer. The original data
are numerous vibration acceleration values measured at a
high sampling rate, which are too much information for
the neural network. Thus, the input space is reduced by
extracting features from the accelerometer signals to allow
a better efficiency. Extracted features are expected to be
representative for its psychoacoustic impact. Because the
accelerometer has a different frequency response from that
of the microphone, we analyze the signals in the frequency
domain. Corresponding to the two sets of target parameters,
input information also falls into the static and the dynamic
features. As for the static features, each stimulus is consid-
ered as a whole and no time-related factors are in included in
the feature. Original signals are filtered with the Butterworth
filter into 24 frequency bands from 0 to 15.5 kHz [11].
For each band we get 10 sampling points. Then, the 240
points in spectrum are selected to represent the static feature
of the signal. Dynamic features are extracted in a similar
way. Instead of processing the whole stimuli, the treatment
is carried out using time windowing. A 240-point spectral
and temporal matrix is calculated in every 20 ms.

As a result, we obtain two sets of feature data for each
stimulus corresponding to the two types of targets. From the
static view, every stimulus is featured with a frequency-based
vector (240x1). From the dynamic view, it is featured with
a time-and-frequency-based 240x100-matrix (see Fig. 6).

Fig. 6. The Temporal and Spectral Feature of an Accelerometer Stimulus

C. Artificial Neural Network Modeling

In this paper, feedforward multilayer ANNs are used
to estimate psychoacoustic parameters from accelerometer
signals. Two ANN-models are developed separately for static
and dynamic target parameters. ANNs in this research can be

regarded as nonlinear function approximator. Previous work
showed that the Levenberg-Marquardt algorithm works well
with nonlinear function approximation [13]. It offers accurate
results and works efficiently for the ANN with a moderate
size. This is an iterative process that searches for a local
minimum of the multivariate cost function. More information
can be found in [14]. Thus, in this study both networks are
trained with the Levenberg-Marquardt algorithm.

In both ANNs, a three-layer structure is chosen. For static
parameter estimation, ten neurons are used in the hidden
layer. In the ANN for dynamic parameters, thirty neurons
are used in the hidden layer. The larger number of neurons
is required by the higher nonlinearity between inputs and
targets. However, when the number is further increased in
our experiments, it does not show much improvement in
performance. The ANNs use two outputs: the total loudness
and total sharpness for the static parameter estimation, and
dynamic loudness and sharpness for the dynamic parameter
estimation.

In the experiment, available data are divided into three
sets: 70% for training, 15% for validation and 15% for test.
Training, validation and test data are selected randomly from
the whole measured data pool. Some component data may
be used only for training, validation or testing, and some can
be partly used for several of them.

The ANN configures its network parameters mainly ac-
cording to the input-output relationship of the training data.
Validation data compares the ANN outputs and the targets,
and checks the stopping conditions of training. They validate
the performance of the ANN in the training process. Test
data are not involved in the training process. They are used
to evaluate the posteriori performance of the ANN. In other
words, the test set checks whether the Path 2 in Fig. 1 could
work alone on future data from accelerometer-based mea-
surements only. The division ratio is referred to the previous
experience in [13]. A good ANN is expected to provide
accurate results in both training and testing processes. A brief
overview of the settings is shown in Table I.

TABLE I
CONFIGURATION OF THE ANNS
ANN For Static Param-
eters

ANN For Dynamic Pa-
rameters

Structure 10 hidden neurons 30 hidden neurons
Training Algo-
rithm

Levenberg-Marquardt

Data Division 70% Training,15% Validation,15% Test
Activation
Function

Hidden layer: tan-sigmoid , Output layer: linear

Implementation Software: Matlab R2013b
Platform Hardware: Laptop Intel Core i7-4720HQ

CPU @ 2.2GHz, RAM 16GB

IV. APPLICATION AND RESULTS

A. Results of the ANNs

1) ANN for Static Evaluation: The ANN for static eval-
uation proves to offer satisfactory results very efficiently.
The static parameters, total loudness and total sharpness, are



successfully estimated from the selected feature information
of accelerometer signals (see Fig. 7 and Fig. 8).

In Fig. 7 and Fig. 8, each circle represents a stimuli,
plotted by the target values (total loudness and total sharp-
ness from microphone signals) on the horizontal axis and
the ANN outputs on the vertical. The fit line shows the
linear regression between the targets and generated outputs.
According to the results, both parameters can be acquired at
the same time without extra treatment.

Fig. 7. Results of Total Loudness

Fig. 8. Results of Total Sharpness

Fig. 9 shows the results of the training and testing process.
There is a high correlation R between ANN outputs and
targets in the training process, which reaches more than
0.999. It demonstrates that the network is good at finding
the input-output relationship within the training data. In the
test phase, the correlation reaches more than 0.993. The good
results in the test phase proves the generalization capability
of the network, which implies that the ANN is robust for
untrained data.

2) ANN for Dynamic Evaluation: Correlation of the out-
puts with desired parameters are good too, with 0.953 and
0.928 respectively for the training and testing process. There
are more training data for this ANN since the input features
and target values vary with time. Taking account of time-
related factors also leads to a higher complexity of the input-
output relationship. However, the good performance of the
ANN-processing is ensured by increasing the number of
neurons in the ANN. Fig. 10 shows the results of the training
and testing processes. Each circle represents a 20 ms slice of

Fig. 9. Training (above) and Test (below) Results for Static Parameters

the stimulus, plotted by the target values on the horizontal
axis and the ANN outputs on the vertical.

B. Evaluation of the Method

The estimation of static parameters is accurate. The root-
mean-square error (RMSE) of the total loudness estimation
is 0.616 sone, and RMSE for total sharpness is 0.082 acum.
The maximum error of the total loudness is 2.8 sones, and
it is 0.2 acum for total sharpness. Therefore, compared to
the target values which mainly varies from 8 to 14 sones for
the loudness and from 1.6 to 2 acums for the sharpness, the
method to estimate static parameters has been judged robust
enough in the given context.

In comparison, even though the ANN correlation factors
were good, estimation errors of dynamic parameters are
much larger than those of static parameters. RMSE of the
instantaneous loudness is 1.272 sones, and RMSE of the
instantaneous sharpness is 0.693 acum. The estimation error
peaks at 25.4 sones and 2.4 acums respectively for instan-
taneous loudness and instantaneous sharpness. Though the
correlation is high, such large errors are not acceptable in our
case. Therefore, the method to estimate dynamic parameters
is still not robust enough and needs further investigation.

Because the training process is an independent process,
which does not take place during the application phase, the
training time is not significant to the manufacturing usage.
Instead, the recall time in the application process is worth
analyzing. In our experiment, once the network is trained, it
can be applied i.e. recalled almost in real time. As for a single
2-sec stimulus which is sampled at 48000 Hz, the ANN



Fig. 10. Training and Test Results for Dynamic Evaluation

takes 0.01 sec in average to generate the static parameters,
and it takes 1 sec to generate 100 instantaneous dynamic
parameters. Table II shows the average processing time for
one stimulus in Matlab, including the time to extract feature
and to recall an ANN. On the whole, the processing time of
our proposed method is shorter than 2 sec. Thus, one way
to improve the robustness of the ANN analysis for dynamic
psychoacoustic parameters would be to define it with a higher
complexity and to use a larger training set.

TABLE II
PROCESSING TIME OF THE METHOD WITH A SINGLE STIMULUS

For Static Evaluation For Dynamic Evaluation
Feature Extraction 0.13 s 0.17 s
ANN Application 0.01 s 1.00 s

Total 0.14 s 1.17 s

V. CONCLUSION

This paper has presented a method to evaluate the correla-
tion between accelerometer-based measurement and conven-
tional microphone-based measurement with special reference
to the psychoacoustic parameters. Both static parameters
(total loudness, total sharpness) and dynamic ones (instan-
taneous loudness, instantaneous sharpness) are taken into
account with two independent ANNs. The operation sound
of the vehicle interior components have been measured and
221 pairs of stimuli were used to train and test the ANNs.
Experiment results show that the ANNs are able to estimate
psychoacoustic parameters from the accelerometer signals.

The estimation of static psychoacoustic parameters are ac-
curate and efficient. ANN outputs are highly correlated with
the target values calculated from the microphone signals.
Thus, the proposed using accelerometer can be used as a
cost-effective, reproducible and noise-resistant alternative to
the conventional microphone-based approach.

However, the estimation of dynamic parameters are not ro-
bust enough yet: even though correlation factors and RMSE
errors are good, peak errors are still too high.

Future work considers extraction of alternative features
from accelerometer signals, or training of the ANNs directly
from raw accelerometer signals.
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