
Design-to-test: an approach to enhance testability of programmable
controllers for critical systems – two case studies

Canlong Ma & Julien Provost
Assistant Professorship for Safe Embedded Systems, Faculty of Mechanical Engineering
Technische Universität München, Garching bei München, Germany

ABSTRACT: This paper presents a continuation of researches on design-to-test (DTT) approach, which en-
hances the testability of programmable controllers for critical systems, where the specifications and implemen-
tations are modeled as finite state machines. Firstly, the testing problems in the field of programmable controllers
and critical systems are defined. To solve these problems, the DTT approach takes testing performance into con-
sideration during the design of specification. Then, the DTT approach is applied on two representative industrial
case studies from previously published works.

1 INTRODUCTION

Critical systems are technical or socio-technical sys-
tems, where failures can result in significant losses
of life, serious environmental damages or high eco-
nomic costs (Sommerville 2007). According to this
definition, many industrial applications are critical
systems, therefore a series of international standards
such as IEC 61508 (general industry), ISO 26262
(automotive) and DO-178B (avionics) have been es-
tablished to formulate the functional safety require-
ments and development guidelines for industrial sys-
tems. The concept of Safety integrity level (SIL) is
defined to measure the dependability and safety re-
quirements of a system (IEC61508 2010). According
to Part-3 in IEC61508 (2010), complete testing is rec-
ommended (for all SILs) and highly recommended
(for high SILs). For critical systems with highest SILs
such as avionic equipment and some automotive ap-
plications, a complete testing is mandatorily required.

Programmable controllers are widely used in
safety-critical industries. They are designed to with-
stand harsh industrial environments. Their program-
ming languages are standardized and easy to under-
stand. Besides, their cyclic execution mode enables
them to fulfill ‘hard’ real-time requirement (Bolton
2006).

However, the beneficial characteristics of pro-
grammable controller also bring some testing is-
sues. Meanwhile, the complexity of automations sys-
tems nowadays is continuously increasing (Rösch,
Ulewicz, Provost, & Vogel-heuser 2015), and as men-
tioned above critical systems are always demanding
high requirement of testings such as complete cov-

erage. To cope with all these challenges, recently,
a design-to-test (DTT) approach has been proposed
(Ma & Provost 2015). The DTT approach aims at
making a bit more efforts in design, in order to gain a
huge benefit during testing.

In this paper, the DTT approach is further im-
proved and systematically presented. Then, the DTT
approach is applied on two industrial case studies
from previously published works. The first one is a
wind farm operation and maintenance system, which
is a typical safety critical system because it is in an ex-
treme environment and may cause enormous losses.
The second one is an automated manufacturing sys-
tem, which can be a general reference for large scale
complex systems.

The paper is organized as follows: Section 2, as a
background, presents the syntax and graphics of finite
state machine used in this paper, as well as black-box
testing for programmable controllers. Section 3 pro-
vides a detailed introduction of testing issues cover-
ing single-input-change (SIC) -testability, observabil-
ity and controllability problems, and also presents the
DTT approach, including T-guard, O-action and C-
guard methods. In section 4 and 5, two case studies
are introduced, described, analyzed and modified by
the DTT approach. Finally, section 6 presents the con-
clusions.

2 BACKGROUND

2.1 Finite state machine with boolean signals

Finite state machine (FSM) is a bunch of model-
ing languages, which is firstly developed in academi-



cal fields such as mathematics and computer science.
Benefit from the abundant theoretical results from
these fields, FSM has also been widely introduced
into industrial applications such as programmable
controllers to formalize different kinds of practical
processes.

Moore machine is a basic and popular form of
FSM. Many other FSMs can be automatically or eas-
ily transformed into Moore machines, e.g. Mealy ma-
chine (Lee & Seshia 2011) and Petri net (Chang &
Huang 1990).

In this paper, a specification model is supposed to
be Moore machine with boolean signal inputs, which
is presented as a 6-tuple (S, sinit,Ω,Λ, δ, λ) where:

• S is a finite set of states

• sinit is the initial state, sinit ∈ S

• Ω is a finite set of input signals

• Λ is a finite set of output actions

• δ : S × Ω → S is the transition function, that
maps the current state and the input signals to
the next state

• λ : S → Λ is the output function, that maps the
states to their corresponding output actions

In the paper, Moore machines are also presented
with graphics. As shown in Fig. 1, a state s is drawn
as a circle / an ellipse (e.g. S1 is an initial state), in-
side which its corresponding action λ is written (e.g.
‘A3’ in S3). A transition δ is represented by lines with
arrows, upon which the corresponding guard is placed
(e.g. ‘¬a · b’ from S1 to S2).

A state can either have an external observable ac-
tion, e.g. ‘A3’ in S3 and ‘A4’ in S4, or no observable
action, e.g. ‘∅’ in S1 and S5. Besides, a state can also
be given an internal control action, e.g. ‘XS2’ in S2
and ‘XS6’ in S6. The internal control actions are used
as boolean transition guards, e.g. when the state S2
is activated, ‘XS2’ is assigned the value ‘1’, then the
transition from S4 to S5 can be fired.

XS2∅

S2S1

¬a·b
A3

S3

¬XS6

∅A4

S5S4

XS2
XS6

S6

a·¬b

Figure 1: A simple example of Moore machine with boolean sig-
nals

Applying the DTT approach, a set of individual
Moore machines are parallel composed with stability
research. In the composed machine, a location means
a combination of states from individual machines. An
evolutions is a function that maps the current location
to a next one.

2.2 Black-box conformance testing

Software testing is a process, or a series of processes,
designed to make sure computer codes perform what
they were designed to do and conversely, that they not
do anything unintended, as stated in Myers, Badgett,
& Sandler (2011).

Black-box testing is an important testing strategy,
which doesn’t concern the internal structure but only
concentrates on the input-output behavior of to-be-
tested software products (Pressman 2010). It is widely
applied in later phases of testings, where the internal
structures are not easily visible.

Conformance testing is aimed at checking whether
an implementation, seen as a black-box with inputs /
outputs, behaves correctly with respect to its specifi-
cation (Cheriaux, Picci, Provost, & Faure 2010).

In this paper, the to-be-tested objects are imple-
mented programmable controllers and the specifica-
tions are FSM models. The goal of this testing is to
verify if a controller has the same behaviors as its de-
signed specification.

A test unit is made up of 3 stages, each contains a
few steps:

• Before testing:

– initialize both the specification model and
controller

– control the model to a certain state by in-
putting a signal sequence and apply the
same sequence to the controller

– verify that the model and controller are in
the same state

• During testing:

– apply the testing input signals to both the
model and controller

• After testing:

– observe the states in the model and con-
troller

– compare the results and record

2.3 Observability & Controllability

To realize the third testing step, it needs to be identi-
fied which state is currently active. Recent researches
in this field e.g. (Provost, Roussel, & Faure 2014)
and (Guignard & Faure 2014) were carried out un-
der a strong assumption: all states are identifiable by
observing the emitted outputs at time t. However, if
this is not satisfied, problems of state identification
arise (Lee & Yannakakis 1996). This issue is named
observability problem.

For Moore machines, output actions are linked to
respective states. As in the domain of black-box test-
ing all internal structures (states and transitions) are



invisible to testers. If some states have the same out-
put actions, they can not directly be distinguished
from each other. This state identification problem
might be solved by searching for a distinguishing se-
quence. However, the existence of such sequences is
not always guaranteed. And if they exist, they might
be of exponential length (Lee & Yannakakis 1996).

Similarly, a FSM model should be brought to a spe-
cific state to execute the first testing step. A system is
said to be controllable at time t0, if it is possible by
means of a control vector to transfer the system from
any initial state x(t0) to any other state in a finite in-
terval of time (Ogata 2012)(Page 675).

The controllability problem can be solved in two
steps: identify the final state after some operations
and then move to the desired state. The first step is
solved by searching for a homing or synchronizing
sequence. Both methods determine the final state of
a machine after applying the sequence (Lee & Yan-
nakakis 1996). After that, the machine can be brought
to any specific state by applying the corresponding in-
put sequences derived from the specification model
in the design phase. Of course, this process is con-
ditioned on fulfillment of the previously mentioned
observability requirement.

3 DESIGN-TO-TEST (DTT) APPROACH

As testing reference, the specification i.e. a FSM
model will be controlled, observed and tested as well
as the controller. However, in practice due to some is-
sues a FSM itself might not be (well) testable, e.g. the
upper system in Fig. 2.

To solve these problems in testing phase, the
design-to-test approach modifies the specification
models in design phase, which are implemented as
executable code in programmable controllers later on.
Respectively, DTT approach solves the single-input-
change (SIC) -testability, observability and control-
lability problems by modifying the models with T-
guards, O-actions and C-guards, i.e. the lower system
in Fig. 2.

3.1 SIC-Testability & T-guard method

Due to the cyclic execution mode, programmable con-
trollers might read biased inputs when several input
signals change the values at the same time (see the up-
per right diagram in Fig. 3). To exclude this faulty be-
havior, a complete testing should only contain single-
input-change (SIC) sequences. This issue is named
as SIC-testability problem (Provost, Roussel, & Faure
2014).

The T-guard method is developed to transform
multiple-input-changes (MICs) into SICs. As pre-
sented in the lower sketch of Fig. 3, for all the MIC
related transitions, a T-guard will be added to their
guards. Before a MIC happens, the T-guard is set the
value ‘0’, so all outgoing transitions are frozen from

guardaction

before

after

guardaction

C-guard

O-action T-guard

S2

S3
S4

S1

S0

S5

S9

S8

S7

S6

S2

S3
S4

S1

S0

S5

Figure 2: Basic idea of DTT approach: adding T-guards, O-
actions and C-guards to modify the initial specification models

being fired. After the MICs are stabilized, the T-guard
is set the value ‘1’ again, now only the correct outgo-
ing transition will be fired.

Through this way, any non-trivial specification
model can be then fully SIC-testable.

S2S1

a·b·T¬a·¬b

¬a·b·T
a·¬b·T

time

T 1
0

b 1
0

1
0

a

States S1 S2

OI EController 
Cycle

OI E OI E OI E OI E OI E OI E I

T-guard method

Figure 3: T-guard method. Upper left: an excerpt of Moore ma-
chine that has SIC-testability problem and modified by T-guards;
Upper right: the physical cause of SIC-testability problem in pro-
grammable controllers; Bottom: the way T-guard works to trans-
form a MIC into SIC

3.2 Observability & O-action method

As introduced in 2.3, so far there exists no method
that can completely solve the observability problem.

Fig. 4 presents the O-action method to handle this
issue. In the composed machine, if several locations
have the same output actions, the states that compose
these locations will be analyzed. The involved states
that have the same output actions will be added a set
of O-actions.



Since any O-action can be set the value ‘True’ or
‘False’, the minimum number needed to distinguish n
states is dlog2(n)e. After all the locations are checked
and the related states are modified with O-actions, the
complete model is then fully observable.

A
i
·O

1
·O

2

S1’

A
i
·¬O

1
·O

2

S2’

A
i
·¬O

1
·¬O

2

S3’

A
i
·O

1
·¬O

2

S4’

A
i

S1

A
i

S2

A
i

S3

A
i

S4

O-action method

Figure 4: O-action method: the figure shows an example of four
states that initially have the same action, and modified by O-
actions

3.3 Controllability & C-guard method

Unlike the observability problem, the controllability
problem can be solved by existing methods. However,
those methods will cost a long control time for com-
plex systems, which increases testing execution time.
How to rapidly control the system from an arbitrary
state to another, is the new task of the controllability
problem.

An example of the controllability problem, i.e. an
excerpt of a large scale FSM model, is presented in
Fig. 5, where the states constitute a long chain. The
tester has to pass through a long path from a state in
‘i-group’ to a state in ‘j-group’ or vice versa.

In order to achieve a better controllability, i.e.
shorter paths between any couple of states, DTT ap-
proach adds C-guards to the models. C-guards builds
new transitions, i.e. shortcuts, between some long
distance couple of states. It is noteworthy that after
adding one C-guards, the distance of some other states
has been also indirectly shorten. So the DTT approach
uses an algorithm to calculate a globally optimal set
of C-guards to fulfill the controllability requirement
of testers.

Si+1Si Si+3Si+2

Sj+2Sj+3 SjSj+1

… …

… …

C-guard method

C1 C2

C3 C4

Figure 5: C-guard method: the figure shows how C-guards create
new transitions and shorten the path costs between states

3.4 Design, Testing & normal execution

Applying the DTT approach in the design phase, the
specification models are added T-guards, O-actions
and C-guards according to testing requirements on
SIC-testability, observability and controllability.

In the testing phase, T-guards are set the value ‘0’
for MIC test steps and set back the value ‘1’ after the
MIC is completed. O-actions are assigned the values
in accordance with the O-action method calculations.
C-guards are set the value ‘1’ to enable the shortcuts.

After testing, T-guards will be set the value ‘1’, so
they are always ‘True’ and will not affect the original
transition guards. C-guards will be set the value ‘0’,
so the new transitions cannot be fired. O-actions are
just outputs, so they can anyway not affect the transi-
tion behavior of the FSM models. In summary, DTT
approach will not change the nominal behavior of the
specification systems during normal execution.

4 CASE STUDY 1: A WIND FARM OPERATION
AND MAINTENANCE SYSTEM

4.1 Description of system

The first case study is a wind farm operation and
maintenance system taken from Byon, Perez, Ding,
& Ntaimo (2010). Fig. 6 shows the basic components
of a wind turbine. A wind turbine is made up of a
tower, two or three-bladed rotors, and a nacelle which
houses several critical components such as the drive
train, gearbox, generator, and the electrical system.

Figure 6: CASE-1: Wind turbine components

According to the research, the critical components
will degrade their functions based on a constant prob-
ability during a fixed time period. In scope of FSM
modeling, four different groups of states are used



on_off

wind_spead

observation

corrective_mnt

preventive_mnt

turn_on_off

wind_in

obsv

corr_mnt

prev_mnt

deg_in

pwr_out

status_out

deg_on_off

deg_out

status_out

power_out

Figure 7: CASE-1: Wind turbine block diagram

to represent their statuses: ‘Normal’, ‘Alert’, ‘Alarm’
and ‘Failed’.

The complete wind farm system contains a large
number of subsystems. Two key subsystems of the
Wind Turbine (WTURBINE) are chosen to be studied
in this paper: Power Generator (PWRGEN) and Com-
ponent Degradation (CMPDEG). The inputs, outputs
and coupling relationship of PWRGEN and CM-
PDEG are displayed in Fig. 7.

4.2 Modeling of system

The two subsystems are modeled as Moore machines:
PWRGEN in Fig. 8 and CMPDEG in Fig. 9. The two
individual models contain 13 inputs and 8 outputs.

Power-Generator (PWRGEN)

XC1_7m+mXR1_13

P1_1

onm·m¬wind_in

PG-ON

PG-ON

PG-ON

PG-OFF

PG-OFF

PG-FAILED

PG-OFF

PG-OFF

PG-OFF

PG-OFF

wind_in

¬mwind_in

onm·mwind_in

¬monm+mprev_mnt

onm·m¬mwind_in wind_in

¬mwind_in

onm·mwind_in

¬monm+mprev_mnt

onm·m¬mwind_in wind_in

¬mwind_in

¬monm+mprev_mnt

onm·mwind_in

XC1_8m+mXR1_14

XC1_9m+mXR1_15

XC1_10m+mXR1_16

XC1_11m+mXR1_17

XC1_12m+mXR1_18

corr_mnt

mnt_done

P1_2

P1_3

P1_4 P1_5

P1_6

P1_7 P1_8

P1_9

P1_10

Normal

Alert

Alarm

Failed

Figure 8: Model of subsystem: Power Generator

Component-Degradation (CMPDEG)

P.nWIND

P.nSERVICE

ACTIVE

PASSIVE

REPORT REPORT

XC1_7 XC1_13

XC1_8 XC1_14

XC1_9 XC1_11

XC1_10 XC1_16

XC1_11 XC1_17

XC1_12 XC1_18

deg_1

¬non

deg_1

¬nwind_in

wind_in

TI_L

mnt_done

deg_2

deg_3

deg_4

deg_5

deg_6

deg_2

deg_3

deg_4

deg_5

deg_6

TI_S

prev_mnt cncorr_mnt
C1_1

C1_2
C1_3 C1_4

C1_5 C1_6

C1_7

C1_8

C1_9

C1_10

C1_11

C1_12

C1_13

C1_14

C1_15

C1_16

C1_17

C1_18

prev_mnt cn
corr_mnt

TI_LTI_S

on

TI_STI_S

Figure 9: Models of subsystem: Component Degradation

PWRGEN is initialized in a ‘PG-OFF’ state. A
state in PWRGEN has one of the observable actions:
‘PG-OFF’, ‘PG-ON’ or ‘PG-FAILED’. Only when
the switch is turned on (‘on’), the wind speed is un-
der the cutoff threshold (‘wind-in’), and no preven-
tive maintenance (prev-mnt) is executed, PWRGEN
has the action ‘PG-ON’. Otherwise it has the action
‘PG-OFF’. Once a heavy degradation occurs, PWR-
GEN has the action ‘PG-FAILED’ and has to wait for
a corrective maintenance (‘corr-mnt’) to return to the
initial state.

From economic and technical aspects, a wind tur-
bine cannot be frequently inspected, therefore the
classification of ‘Normal’, ‘Alert’ and ‘Alarm’ are
merely internally marked and cannot reflected in the
observable actions, though they are of great impor-
tance from the maintenance viewpoint.



CMPDEG is initialized in a ‘PASSIVE’ state. A
state in CMPDEG can have one of the actions: ‘PAS-
SIVE’, ‘ACTIVE’, ‘REPORT’, ‘P. SERVICE’ (i.e.
passive service), ‘P. WIND’ (i.e. passive wind) or ‘∅’
(i.e. empty).

When CMPDEG is in state C1-5 or C1-6, i.e. has
the action ‘ACTIVE’ or ‘P. WIND’, it will regularly
go to state C1-3 or C1-4, i.e. has the action ‘RE-
PORT’. The frequency that CMPDEG switch to /
back from the action ‘REPORT’ is controlled by time
interval long / short (‘TI-L’ / ‘TI-S’).

When a certain type of degradation (i.e. ‘deg-1’ to
‘deg-6’) occurs, CMPDEG will go to a certain state
that will control the activation of different groups in
the subsystem PWRGEN.

4.3 Testing issues

It can be observed that the states in PWRGEN and
CMPDEG have complex transition relations with
each other. Several inputs might change their val-
ues between two transitions. During testing, SIC-
testability problem will occur when such changes
happen.

When observing the individual models, it is easy
to find that some states have the same output actions.
For example, in PWRGEN, the states P1-1, P1-3, P1-
4, P1-6, P1-7 and P1-9 all have the action ‘PG-OFF’,
and in CMPDEG, 12 states don’t have an observable
action. This implies that, after composition, it is prob-
able that there are some locations that have same ac-
tions, which leads to observability problem.

Since the states have complex transition relations
and somehow ‘strongly connected’, it is hard to ana-
lyze manually whether this system would have con-
trollability problem.

According to the above qualitative estimations, this
system is problem-prone in testing.

4.4 Applying DTT approach

The composed machine of this system has 150 loca-
tions and 2117 stable evolutions.

Based upon qualitative analysis of the system done
by DTT approach, 149 out of 150 locations in the
composed machine contain non-SIC-testable parts.
According to DTT approach, T-guards are added 58
out of the 59 transitions in the two subsystems.

In the composed machine, several locations share
the same output actions. Calculated by DTT ap-
proach, 10 O-actions will be added to the two subsys-
tems. With help of these O-actions, the three statuses
‘Normal’, ‘Alert’, ‘Alarm’ are now observable, which
provides useful information to maintenance manage-
ment.

The initial maximum of path cost between any cou-
ple of locations is 5. Although it is already not a bad
result, DTT approach can help to reach a better perfor-
mance. After adding 18, 21 or 25 C-guards, the max-

imum path cost is reduced respectively to 4, 3 or 2
steps.

Now the modified specification model achieves a
full SIC-testability, a full observability and a better
controllability for testing purpose.

5 CASE STUDY 2: AN AUTOMATED
MANUFACTURING SYSTEM

5.1 Description of system

The second case study is an automated manufacturing
system taken from Cabasino, Giua, & Seatzu (2009).
Its layout is shown in Fig. 10.

¡

I1¢ ¡

£ ¤

¥ ¦ §

¨ ¡

£ ¡

£ ©

¤

¢ ©

£

¨ ©

©

I1 I2

M3M1

R3

M2

B
R4

R1

M4

R2

AGV

O1 O2

Figure 10: CASE-2: Layout of a manufacturing system

The system is made up of four machines (M1 to
M4), four robots (R1 to R4), one AGV system (AGV),
one buffer of finite capacity (B), two inputs of mate-
rial pieces to be processed (I1 and I2) and two out-
puts for the processed pieces (O1 and O2). The two
production lines produce two different kinds of final
product.

In the upper left quarter of Fig. 10, robot R1 picks
up a piece of raw material from input I1 when avail-
able and places it to machine M1. M1 begins its ma-
chining work, and when it finishes, its sensor gives a
signal ‘M1-finished’. If buffer B is not full at the mo-
ment, robot R3 carries the semi-manufactured product
and places it to B.

In the lower left quarter of Fig. 10, robot R3 takes
a semi-manufactured product from B when it is not
empty and places it in machine M2. Similarly, a signal
‘M2-finished’ is sent after M2 has done its machining.
Robot R2 then picks the final product and places to
AGV, which transports the product to its correspond-
ing output O1.

Noticing that each robot interacts with two ma-
chines and other parts such as input, output or the
buffer, a controller has been set up for each robot to
regulate its operations.



On the right side, the same kind of work is executed
by R1, M3, R4, M4 and R2.

5.2 Modeling of system

In this paper, only the left half of the whole system
(I1, M1, R1, R3, B, M2, R2, AGV and O1) is investi-
gated due to two reasons:

1. Simplicity reason. The left and right halves of
the system are symmetrical and have the same
behavior, so the result of left part can also be ap-
plied to the right part.

2. State explosion. The current version of DTT ap-
proach has a space limitation for locations and
evolutions, i.e. approximately 1000 locations and
10,000 evolutions. The composed machine of the
complete case study is estimated to contain more
than 10,000 locations and 1000,000 evolutions.
This limitation is planed to be overcome in fol-
lowing research works.

In the rest part of this section, ‘the system’ is re-
ferred to the left part.

The system contains 10 subsystems: robot R1, con-
troller C1, machine M1, robot R3, controller C3,
buffer B, machine M2, robot R2 and controller C2 and
AGV. Besides, 13 inputs and 9 outputs are specified in
this system.

XB1_1

B1_2

ULD_B1,
XB1_6

XB1_3

LD_B1,
XB1_5

XC3_2

XC3_4 XC1_2

XC3_1 · ¬ B1_empty

XB1_2

XC3_3 · ¬ B1_full

XC3_1 · B1_empty

XC3_3 · B1_fullXC3_4

Buffer (B)

B1_5

B1_1

B1_6

B1_3

XM1_4 ∅

Machine1 (M1)

M1_3

M1_1

M1_4

XM1_1
XC1_2

XC3_2

M1_finished

XC1_3

XC3_3
∅ ∅

M1_2M1_5

Figure 11: Models of subsystem: Machine & buffer

Considering the fact that every machine does the
same kind of work, so does also every robot and con-
troller. Again for simplicity reason the models for M1,
B, R3 and C3 are selected as examples to be presented
in Fig. 11 and Fig. 12.

XC3_4

R3_finished

XC3_2

R3_finished

PP_M1_B1 PP_B1_M2

Robot3 (R3)

R3_3

R3_1

R3_2

XR3_1

XC3_1

XC3_2

XC3_4

XC3_3
XR3_1 · XB1_5

(XB1_1 + XB1_2) · XM1_4

(XB1_1 · ¬ XM2_1 + XB1_2) · XM1_4

(XB1_1 + XB1_3) · XM2_1

XR3_1 · XB1_6

(XB1_1 · ¬ XM1_4 + XB1_3) · XM2_1

Controller3 (C3)

C3_3

C3_4C3_1

C3_2

Figure 12: Models of subsystem: Robot & Controller

5.3 Testing issues

It is obvious that several parts in the system can be ex-
ecuted in parallel. So in the composed machine, some
inputs can change for the same evolutions. In testing,
such changes will lead to SIC-testability problems.

When observing the individual models, it is easy
to find that some states have the same output actions.
For example, in M1 the states M1-2, M1-3 and M1-
5 don’t have an observable action. Similar to the first
case study, this will cause the observability problem.

Since the system contains 10 subsystems, in the
composed machine, it is highly possible that many lo-
cations are not strongly or even not connected. When
testing large scale parallel systems, controllability is
an important performance factor.

According to the above qualitative estimation, this
system is also problem-prone in testing.

5.4 Applying DTT approach

The composed machine of this system has 271 loca-
tions and 15089 stable evolutions.

Checked by the DTT approach, 260 out of 271 lo-
cations contain non-SIC-testable parts. Applying the
T-guard method, a optimal feasible solution is ob-
tained: T-guards are added to 6 transitions.

To solve the observability problem, 5 O-actions are
added to the related states.

Checked by C-guard method, the maximum path
cost between two locations is ‘inf.’, which means
some locations are not reachable from some other
states. This is normal with regard to specification for
system function. However, from the view of testing,



especially for critical systems, a complete testing is
often required. By using the C-guard method, this sys-
tem can be fully reachable and testable.

After adding 13, 17 or 36 C-guards, this path cost
is reduced respectively to 4, 3 or 2 steps.

Also, the modified specification model for this case
study now achieves a full SIC-testability, a full ob-
servability and a better controllability for testing pur-
pose.

6 CONCLUSIONS

This paper has presented the design-to-test (DTT) ap-
proach and the application on case studies.

The DTT approach was first proposed in (Ma &
Provost 2015) and aims to improving the testability of
programmable controllers, reducing the testing over-
head with small amount of design overhead and also
keeping the nominal behavior unchanged during nor-
mal execution.

Inputs of the DTT approach are specification mod-
eled as Moore machines. By running the T-guard, O-
action and C-guard methods, the specification mod-
els are modified to meet the requirements of full SIC-
testability, full observability and better controllability.

The way to apply DTT approach and the advanta-
geous results have been shown through two represen-
tative case studies in the field of critical systems.

Further works are aiming at an improved imple-
mentation of the DTT approach, which can handle
systems of larger state space. This will be realized by
a series of measures, e.g. by combining the controller
specification models with plant behavioral models in
order to consider only physically-feasible combina-
tions of input signals.

REFERENCES

Bolton, W. (2006). Programmable logic controllers (4th ed.). El-
sevier.

Byon, E., E. Perez, Y. Ding, & L. Ntaimo (2010). Simulation of
wind farm operations and maintenance using discrete event
system specification. Transactions of the Society for Mod-
elling and Simulation International 87(12), 1093–1117.

Cabasino, M. P., A. Giua, & C. Seatzu (2009). Discrete Event
Diagnosis Using Petri Nets. In ICINCO09: 6th Int. Conf. on
Informatics in Control, Automation and Robotics, pp. 15–29.

Chang, C. K. & H. Huang (1990). On transforming Petri net
model to Moore machine. In 14th Annual Int. Computer
Software and Applications Conf., Number 052, Chicago, pp.
267—-272. IEEE.

Cheriaux, F., L. Picci, J. Provost, & J.-M. Faure (2010). Con-
formance test of logic controllers of critical systems from
industrial specifications. In European Conference on Safety
and Reliability - ESREL 2010, Rhodes, Greece, pp. paper—-
308.

Guignard, A. & J.-M. Faure (2014). A Conformance Relation
for Model-Based Testing of PLC. In 12th Int. Workshop on
Discrete Event Systems, Cachan, pp. 412–419.

IEC61508 (2010). Functional safety of electrical / electronic
/ programmable electronic safety-related systems (2nd ed.).
International Electrotechnical Commission.

Lee, D. & M. Yannakakis (1996). Principles and methods of
testing finite state machines – a survey. Proceedings of the
IEEE 84(8), 1090–1123.

Lee, E. A. & S. A. Seshia (2011). Introduction to embedded sys-
tems: A cyber-physical systems approach.

Ma, C. & J. Provost (2015). Design-to-Test Approach for Black-
Box Testing of Programmable Controllers. In IEEE Int. Conf.
on Automation Science and Engineering (CASE), 2015, pp.
1018–1024.

Myers, G. J., T. Badgett, & C. Sandler (2011). The Art of Soft-
ware Testing 3rd Edition (3rd ed.), Volume 1. John Wiley &
Sons, Inc.

Ogata, K. (2012). Modern Control Engineering. Prentice Hall.
Pressman, R. S. (2010). Software Engineering A Practitioner’s

Approach Seventh Edition. MC Graw Hill.
Provost, J., J.-M. Roussel, & J.-M. Faure (2014). Generation of

Single Input Change Test Sequences for Conformance Test
of Programmable Logic Controllers. IEEE Trans.on Ind. In-
form. 10, 1696–1704.

Rösch, S., S. Ulewicz, J. Provost, & B. Vogel-heuser (2015). Re-
view of Model-Based Testing Approaches in Production Au-
tomation and Adjacent Domains — Current Challenges and
Research Gaps. Journal of Software Engineering and Appli-
cations 8(September), 499–519.

Sommerville, I. (2007). Software Engineering. Pearson Educa-
tion Limited.


